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Abstract

The flow of fluids accompanies our daily life, starting from the turbulent mixing of milk in a coffee pot
over the ride in an aerodynamically shaped car to thunderstorms formed at large scale in weather fronts.
Fluid flow phenomena reveal a fascinating complexity over a large variety of scales. Even some of the
seemingly simplest phenomena, such as the foam generation in breaking waves, are far from being
completely understood. However, a detailed understanding of the occurring mechanisms does not only
satisfy scientific curiosity, but it is also essential for the design of technical and medical applications.
Compressible fluid dynamics is often directly connected to supersonic aircrafts and the related astonish-
ing effects such as the sonic boom. However, the intriguing behavior of shock waves also allows for a
non-invasive treatment of kidney stones and novel drug-delivery techniques.

The numerical flow simulation is a powerful and hazard-free tool that accompanies the investigation
of these phenomena, in particular since the practicability of real experiments is often limited. Complex
flows include fluid interfaces that are strongly deforming due to interactions with both turbulent struc-
tures and shock waves. An accurate prediction of such complex flows requires numerical schemes that
maintain the immiscible nature of fluid interfaces and the discontinuous change of state variables across
shock waves. Hence, the inherent numerical dissipation of these schemes has to be minimized to avoid
smearing of discontinuities during the simulation progress. Today, this target is commonly met by the ap-
plication of so-called low-dissipation high-resolution methods. The most advanced numerical schemes
in the context of compressible multi-component flows are based on such schemes, that were originally
established for single-phase compressible flow solvers. However, when such solvers are applied for
heavily refined computational grids, recently, some major shortcomings became apparent.

The aim of this thesis is to investigate and overcome the documented shortcomings and failures of
low-dissipation high-resolution methods that originate from the underlying finite volume methodology.
Two major topics are intensively investigated: First, the artificially broken symmetry in high-resolution
simulations in combination with latest low-dissipation schemes, and, second, the grid-aligned shock in-
stability that severely limits an accurate simulation of supersonic flows. A comprehensive discussion of
these topics is provided and the predominant mechanisms that lead to the loss of accuracy are uncov-
ered for the first time. The detailed understanding of the problem mechanisms is then utilized to design
simple but highly effective modifications that stabilize a variety of popular schemes and significantly im-
prove their accuracy. The robustness of the proposed scheme is tested for a comprehensive set of cases
with unprecedented grid resolutions, both in two- and three-dimensional setups. The obtained results
indicate that the newly developed methods are highly efficient and effective.

This publication-based thesis is structured as follows: Chapter 1 motivates the presented research
topics, and gives a detailed introduction to state-of-the-art compressible flow solvers. Special focus lies
on the development of high-order and low-dissipation numerical schemes. Moreover, an introduction
to numerically induced symmetry breaking and the numerical flaw of grid-aligned shock instabilities is
provided. In Chapter 2, a detailed description of the applied finite volume methodology is provided
together with a short discussion of the low Mach number inconsistency in the context of compressible
schemes. The main findings of my work are summarized in Chapter 3. Each publication is introduced
with a short review of the state of the art, followed by a conclusion of the novel results of the publication.
In Chapter 4, a list of all four peer-reviewed journal publications is provided. A concluding discussion
across all topics of the thesis is given in Chapter 5 together with an outlook for possible future work.
All peer-reviewed publications are reprinted with permission in the appendix. Finally, the bibliography
provides a comprehensive list of literature references.
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Kurzfassung

Viele alltägliche Phänomene beinhalten komplexe strömungsphysikalische Effekte, sei es die turbulente
Durchmischung von Milch und Kaffee, die Fahrt im aerodynamisch geformten Fahrzeug oder auch das
Gewitter, das sich entlang einer großen Wetterfront bildet. Die Strömungsphysik von Fluiden weist eine
erstaunliche Komplexität und Vielfalt in den auftretenden Größenordnungen auf. Wir sind weit davon
entfernt, selbst einige augenscheinlich einfache Vorgänge, wie zum Beispiel die Schaumerzeugung in
brechenden Wellen, in all ihren Details zu verstehen. Ein genaues Verständnis der auftretenden Mecha-
nismen dient jedoch nicht nur der Befriedung wissenschaftlicher Neugierde, sondern ist grundlegend für
die Gestaltung technischer und medizinischer Anwendungen. Kompressible Strömungsdynamik wird oft-
mals als Erstes mit Überschallflugzeugen, und dem damit verbundenen faszinierenden Phänomen des
Überschallknalls, in Verbindung gebracht. Einige weitere unerwartete Eigenschaften von Stoßwellen
erlauben jedoch auch die nicht-invasive Behandlung von Nierensteinen, oder eine innovative Form der
nadelfreien Injektion.

Die numerische Strömungssimulation stellt eine mächtiges und zugleich sicheres, begleitendes Werk-
zeug bei der Untersuchung dieser Phänomene dar, insbesondere da reale Experimente in der Praxis
oft nicht durchführbar sind. Komplexe Strömungen beinhalten Grenzflächen zwischen den verschiede-
nen Fluiden, die sich durch die Wechselwirkung mit turbulenten Strukturen und Stoßwellen stark de-
formieren können. Die präzise Vorhersage solcher Strukturen erfordert numerische Methoden, welche
die scharfe Abgrenzung der Fluide und die sprunghafte Änderung der Zustandsgrößen über Stöße
hinweg aufrechterhalten. Die numerische Dissipation, die direkt durch die numerischen Methoden
verursacht wird, muss folglich minimiert werden, um ein Verschmieren der Unstetigkeiten im Simula-
tionsverlauf zu verhindern. Dieses Ziel wird heute üblicherweise durch den Einsatz von so genannter
"high-resolution" Verfahren mit niedriger numerischer Dissipation erreicht. Die am weitest entwickelten
numerischen Methoden im Bereich der kompressiblen Mehrkomponentenströmung basieren dabei auf
solchen etablierten Verfahren, die ursprünglich für Einphasenströmungen entwickelt wurden. In den let-
zten Jahren traten jedoch schwerwiegende Mängel solcher Verfahren auf, wenn sie in Kombination mit
sehr fein aufgelösten Rechengittern verwendet wurden.

Das Ziel dieser Doktorarbeit ist die detaillierte Untersuchung und Überwindung dokumentierter Män-
gel, beziehungsweise Fehler der "high-resolution" Verfahren, deren Ursprünge sich im zugrundeliegen-
den Finite Volumen Verfahren finden. Zwei Hauptthemen werden dabei intensiv untersucht: Erstens
der numerisch bedingte Verlust der Symmetrie beim Einsatz von neuesten "low-dissipation" Verfahren.
Zweitens, die gitterabhängig auftretende Schockinstabilität, die oftmals eine präzise Vorhersage bes-
timmter Überschallkonfigurationen verhindert. Die Arbeit beinhaltet eine umfassende Untersuchung und
Diskussion dieser Themen. Dabei werden die dominierenden Mechanismen, die zum Genauigkeitsver-
lust der Berechnungen führen, erstmals aufgezeigt. Das genaue Verständnis der Problemmechanismen
wird schließlich verwendet, um einfache, aber hoch effektive Methoden zu entwickeln, die eine Vielzahl
der verbreiteten Verfahren stabilisieren und deren Genauigkeit signifikant verbessern. Die Stabilität der
vorgeschlagenen Methoden wird mittels einer umfassenden Serie an Testfällen überprüft. Dabei werden
bekannte Referenzfälle in bis dato unerreichter Auflösung sowohl in zwei, als auch in drei Dimensionen
simuliert. Die erzielten Ergebnisse bestätigen die hohe Effektivität und Effizienz der neu entwickelten
Verfahren.

Die publikationsbasierte Doktorarbeit gliedert sich wie folgt: Die Motivation hinter den behandel-
ten Forschungsthemen, sowie der Stand der Technik der numerischen, kompressiblen Strömungslöser
wird in Kapitel 1 dargestellt. Dabei liegt ein besonderes Augenmerk auf der Entwicklung der "high-
resolution" Verfahren höherer Ordnung. Darüber hinaus wird eine Einführung in die Literatur des nu-
merisch bedingten Symmetrieverlustes und des numerischen Fehlers der gitterabhängigen Schockin-
stabilität gegeben. Kapitel 2 beinhaltet eine detaillierte Beschreibung des verwendeten Finite Volumen
Ansatzes. Zusätzlich wird auf die Inkonsistenzen bei der Anwendung von kompressiblen Lösern für Strö-
mungen mit geringen Machzahlen eingegangen. Die Hauptergebnisse meiner Arbeit werden in Kapitel 3
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dargestellt. Jede Veröffentlichung wird durch eine kurze Zusammenfassung des aktuellen Stands der
Forschung und einer Kurzfassung der darüber hinausgehenden Ergebnisse erklärt. Kapitel 4 zeigt eine
Liste aller vier extern begutachteter und in wissenschaftlichen Fachzeitschriften veröffentlichten Artikel.
Alle behandelten Themen der Doktorarbeit werden in Kapitel 5 zusammenfassend diskutiert und es
wird ein Ausblick auf mögliche anknüpfende Forschungsthemen gegeben. Alle Veröffentlichungen inklu-
sive der Lizenz zur Wiederverwendung befinden sich im Anhang der Arbeit. Das abschließende Liter-
aturverzeichnis beinhaltet alle verwendeten Quellen und Referenzarbeiten.
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Chapter 1

Introduction

1.1 Motivation

This thesis provides a comprehensive overview of my research in the field of numerical method devel-
opment for compressible flow solvers. The focus lies on the improvement of the classical finite-volume
methodology with respect to two major topics: understanding and avoiding of floating-point induced ef-
fects on highly resolved simulations with low-dissipation methods, and enhancement of numerical robust-
ness against the grid-aligned shock instability problem (commonly denoted as carbuncle phenomenon).

My research is based on the European Union’s Horizon 2020 research and innovation programme
project Manufacturing Shock Interactions for Innovative Nanoscale Processes (grant agreement No.
667483). The objective of this project is to discover the intriguing behavior of shock waves with the help of
latest state-of-the-art computational methods. Such methods comprise the application of low-dissipation
and high-order finite volume schemes combined with a multiresolution grid approach implemented within
a massively parallel simulation framework, which allows for the prediction of complex interactions across
scales such as shock interactions with turbulent structures and multiphase interfaces. Potential applica-
tions range from targeted drug delivery over kidney-stone lithotripsy to advanced aircraft design.

Computational Fluid Dynamics (CFD) plays an important role in today’s understanding of complex
fluid mechanics. Often, experiments are either complicated to set up, expensive or even dangerous, e.g.
when extreme temperatures or pressures are present. Then, simulations provide a powerful and secure
alternative to study complex physical behavior. Moreover, accompanying simulations to real experiments
are particularly helpful to deepen the understanding of physical phenomena since the availability of state
quantities is not limited to measurement points or certain time intervals. Hence, the propagation and
interaction of shock waves can be closely followed in the minutest detail, while the dominating flow
structures can be easily validated against experimental observations.

The development of low-dissipation and high-order numerical schemes allows for a computation of
shock wave phenomena with hitherto unprecedented precision. The massive reduction of inherent nu-
merical dissipation by the schemes thus allows for a precise prediction of shock wave propagation also
for long time intervals. Additionally, the constant rise in computational power combined with multireso-
lution schemes enables extremely fine computational grids. These developments come along with new
challenges. The precision limit of floating-point calculations is well known in the scientific-computing
community, but this topic has been of little interest to the CFD community so far. Indeed, effects of
floating-point inaccuracies may heavily influence numerical results when low-dissipation methods are
applied. Even though multiple research groups noticed some unexpected behavior in their results, these
effects have not been studied in literature so far [25, 41, 42, 117, 139, 146, 168].

Despite the tremendous improvements in numerical methods over the last decades, the simulation
of multi-component compressible flows is still a difficult task. Even though there are various different
approaches to include multiple different fluids, all procedures rely on a proper treatment of the wave
propagation within each phase. It is therefore of crucial importance to apply robust and accurate single-

1
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phase methods in the first place. In his review of developments in CFD since the 1960s, Bram Van
Leer [91] denoted the so-called carbuncle phenomenon as the "greatest unresolved problem of classical
finite-volume schemes". Surprisingly, even three decades after its detection, this instability that plagues
high Mach number simulations with low-dissipation schemes has still not been fully understood.

These topics are of high scientific and industrial interest since they touch the core of the finite volume
methodology that most of the state-of-the-art compressible flow solvers are based on. Although the find-
ings presented in this thesis are mainly presented for inviscid Euler equations, the developed methods
directly translate to more complex solvers, e.g. multi-component Navier-Stokes solvers. The following
sections provide a detailed introduction to the state of the art of high-order schemes and the resultant
research questions that are covered by this thesis.

1.2 High-Order and Low-Dissipation Godunov-Type Schemes

The success of Godunov’s approach [48] in finite-volume methods during the last two decades is caused
both by its rigorous conservation property at the discrete level and by the straightforward application of
high-order methods in combination with efficient approximate Riemann solvers. Traditional schemes,
such as the Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) [157] or flux limiting
procedures [93, 150], are usually limited to third order [92]. While this is accurate enough in many cases,
the prediction of shock interactions with turbulent structures and multiphase interfaces requires very
low inherent dissipation of the numerical schemes since such phenomena occur at vanishing physical
viscosity. The class of weighted essentially non-oscillatory (WENO) schemes proved appropriate for this
task due to their straightforward design principles, which allow the construction of schemes with arbitrary
order.

WENO schemes were developed from ENO schemes that were originally proposed by Harten et
al. [64]. The basic idea of WENO schemes is to achieve a designed order 2r − 1 in smooth regions
by an ideal combination of sub-stencils of order r. The local order will be automatically reduced if a
smoothness measure exceeds a predefined threshold. Then, only smooth sub-stencils are taken into
account. A weighting procedure was first described by Liu et al. [102], and later optimized by Jiang and
Shu in their seminal work [76] resulting in the WENO5-JS. This fifth-order scheme is certainly the most
widespread WENO type up to date, and has been applied to various different fields of computational
physics [140]. It consists of three third-order sub-stencils combined with smoothness measures that limit
the influence of the sub-stencil dependent on a gradient-like evaluation of the stencil points.

Despite the enormous success of this scheme, the stencil has still limited capability to resolve tur-
bulent structures. In fact, it is observed that the order of the scheme often reduces already in smooth
areas. This happens in particular in the vicinity of smooth extrema, such as the maximum and mini-
mum regions of sine functions. The WENO-M scheme of Henrick et al. [68] improved the quality near
smooth extrema, however, the mapping procedure causes additional computational cost. On the other
hand, also the resolution at discontinuities has been further improved. A major progress consists in the
introduction of a global smoothness measure that takes the smoothness of the whole stencil region into
account. The resulting WENO5-Z scheme of Borges et al. [12] shows a significantly sharper resolution
of discontinuities. An alternative approach to further reduce the inherent numerical dissipation is to in-
crease the order. Balsara and Shu [9] were the first to propose WENO schemes up to 13th order. Later,
Gerolymos et al. [46] extended the reconstruction stencil even up to 17th order. However, practical rele-
vance of schemes beyond fifth order is limited to this day. WENO schemes with extreme order often lack
robustness and have to be combined with monotonicity preserving [9, 46]. Besides the additional cost
of stabilization methods, extreme-order stencils also require huge stencil ranges that renders common
implementation procedures, e.g. distributed-memory parallelization, increasingly inefficient. Hence, the
focus lies on improving existing procedures without further increasing stencil sizes.

Hu et al. [74] developed a six-point stencil that blends between central and upwind schemes smoothly
with new types of smoothness indicators. The WENO-CU6 has been further improved by the introduction
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of a physically-motivated scale-separation formulation [72]. In their work, the authors show that the scale-
separation WENO-CU6-M2 scheme leads to a physically consistent implicit subgrid-scale model for
incompressible and compressible turbulence, which makes the scheme also applicable for underresolved
simulations. This type of scheme has been successfully applied for the direct numerical simulation (DNS)
of Richtmyer-Meshkov instabilities [153, 154]. More recently, an alternative group of methods has been
proposed by Fu et al. [41, 42]. An ENO-like stencil selection, that considers sub-stencils either with
their ideal weight or not at all, allows for a drastic reduction of numerical dissipation. The targeted ENO
(TENO) schemes have been successfully applied to simulate compressible multi-component flows [59],
chemical reacting flows [30], and turbulence in high-speed compressible flows [60].

Besides the described main developments of WENO-type methods, there is a vast number of con-
tributions with minor improvements of specific schemes. The incremental-stencil WENO reconstruction
(WENO-IS) [161] is enhanced for the simulation of multiphase flows. It includes an additional 2-point
candidate stencil, which leads to an increased robustness of simulations using the 5-equation model of
Allaire [3]. However, the increase in robustness comes along with a higher amount of inherent dissipation
[177]. Balsara et al. [8] proposed a class of WENO schemes with adaptive order that builds upon com-
putationally efficient Legendre polynomials. Acker et al. [2] further improved the WENO5-Z by adding an
additional term in the smoothness formulations resulting in significant accuracy benefits in smooth parts
of the solution. Other incremental modifications have been proposed by multiple different groups [7, 43,
44, 169, 175, 176]. Today, the number of new publications on WENO adaptations makes it increasingly
hard to follow each development in detail. The provided list of publications is certainly incomplete and
limited to a selection of most interesting developments in the context of our project. The high scientific
activity demonstrates the large interest to construct stable and accurate low-dissipation schemes.

While Godunov [48] originally applied an iterative Riemann solver to exactly solve the Riemann prob-
lem on each interface, this expensive approach has later been replaced by explicit, approximate Riemann
solver. The application of computationally cheaper approximate solver is possible with nearly no impact
on the accuracy of the result since only a limited amount of information of the whole Riemann solution is
actually required for the flux evaluations [94]. The most important groups of approximate Riemann solver
are the Osher approximation [34, 106, 107], the Roe approximation [126] and HLL-type solver [66, 152].
The Osher approximation is commonly applied in the field of steady aerodynamics [150], but can be
rarely found in modern CFD solvers. As mentioned by different authors [4, 120], the Osher approxima-
tion is one of few schemes that can accurately handle slowly moving shock waves without producing
post-shock oscillations.

The Roe approximation represents the group of linearized solvers. Even though this method reveals
a number of shortcomings, it is one of the most widespread approximate Riemann solvers today. The
approximation relies upon a linearized system matrix built with the help of Roe-averaged quantities. The
averaging process has to be derived for each system of equations of interest. This might turn out to be a
complicated task, though it has been done for Euler equations with a general equation of state [47, 127]
and magnetohydrodynamics [13]. One of the drawbacks of linearized methods is that these schemes
cannot properly handle transsonic rarefactions without entropy fix. Non-physical rarefaction shocks are
usually avoided by the introduction of additional dissipation [65, 150]. Another well-known difficulty of the
Roe approximation is its weak positivity preserving property [114]. In low-density regions of the flow, the
solver may produce negative pressure or density states that cause an immediate failure of the simulation.
This flaw is amplified when using high-order WENO methods, and it renders a straightforward application
on complex flow simulations with latest reconstruction methods problematic.

The HLLC flux is typically more robust, though slightly more dissipative as compared to Roe’s approx-
imation. This flux was originally developed by Toro et al. [152] via the introduction of an accurate contact
wave treatment into the HLL solver, which builds upon the seminal work by Harten, Lax and Van Leer
[62]. Actually, the authors [62] already proposed the possibility of designing two types of fluxes. Note,
these two options are denoted as "HLL" and "HLLC" in literature. However, they did not provide suitable
signal speed estimates, which are necessary to use these fluxes in flow solvers. Thus, it took several
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years till Einfeldt [32] and Davis [24] independently from each other proposed signal speed estimates for
the HLL solver. Later, Batten et al. [10] completed the set of signal speed estimates that are commonly
in use today with an accurate estimate for the contact wave. The HLL-type solvers have been shown to
preserve positivity [32] and results are not flawed by nonphysical rarefaction shocks [150]. The HLLC
flux is often applied for the simulation of multi-component flows with the four-, five- and six-equation
models [77, 132, 134], and has been extended to handle capillary forces to simulate surface tension
effects at liquid/gas interfaces [45]. Moreover, its design principles allow for straightforward extensions
to other types of hyperbolic equations, e.g. for magnetohydrodynamics [6, 58, 95], by the introduction of
additional wave types. The HLLC solver has also been extended for general equation of states [73].

The Roe approximation with entropy fix and the HLLC flux are denoted as complete Riemann solver in
context of Euler equations since they accurately capture all occurring wave types. In contrast, incomplete
Riemann solvers, e.g. the HLL solver, only model a subset of the existing wave types. This may lead
to excessive smearing, especially of contact waves. The same smearing is observed for flux vector
splitting schemes, such as the Steger–Warming splitting [145] or the van Leer splitting [158]. While the
latter are easy to implement and often used for steady state simulations in aerodynamic applications,
their accuracy is often insufficient when applied to Euler equations [159].

(a) HLL - First Order (b) HLL - WENO3-JS (c) HLL - WENO5-JS

(d) HLLC - First Order (e) HLLC - WENO3-JS (f) HLLC - WENO5-JS

Figure 1.1: Gresho vertex problem - simulated pressure distribution after one advection cycle

While the development of new types of Riemann solver seems finished by the end of the last century,
the number of publications for WENO schemes is steadily increasing to this day. A small, illustrative ex-
ample shall demonstrate the impact of the Riemann solver and reconstruction scheme choice. In Figure
1.1, the advection of a rotating vortex is simulated according to the work of Gresho and Chan [51] with
a low-dissipation complete HLLC flux and an incomplete HLL flux combined with spatial reconstruction
schemes with increasing order. The pressure distribution after one full advection cycle through the do-
main is correctly predicted and almost indistinguishable from the initial condition for both Riemann solvers
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when combined with WENO5-JS. However, the application of a third-order scheme reveals significant
effects of numerical dissipation of the HLL flux. Interestingly, the application of a first-order scheme in
combination with HLL leads to a pressure field with unit value up to floating-point precision. This simple
example demonstrates the large influence of high-order schemes for the accurate prediction of complex
flows. When different types of Riemann solver are combined with high-order reconstruction methods,
the differences among them often almost vanish. The reduction of numerical dissipation during the last
two decades was mainly achieved via the improvement of spatial reconstruction stencils. The devel-
opments on Riemann solvers are mainly focused on the improvement of robustness against numerical
instabilities, see Section 1.4. Nevertheless, as shown in [37, 39], the numerical dissipation can also be
further reduced by adaptations of the Riemann solver itself. Unfortunately, a reduced amount of numeri-
cal dissipation decreases the robustness of the simulation. As a remedy, additional positivity-preserving
techniques [70, 90, 173] gain further interest to stabilize simulations with latest reconstruction schemes.

1.3 Floating-Point Induced Symmetry Breaking

Figure 1.2: Rayleigh-Taylor instability

The developments described in Section 1.2 lead to a
significant decrease of inherent numerical dissipation in
shock capturing methods. Additionally, modern com-
puter hardware facilitates the use of these schemes with
very fine mesh resolution. Thus, simulations with billions
of computational cells simulated over thousands of time
steps became feasible with widespread mainstream nu-
merical frameworks [69, 116, 128, 163]. Eventually, di-
minishing numerical dissipation fails to suppress numeri-
cally triggered instabilities of well-established verification
cases for the inviscid Euler equations. In Figure 1.2, a
Rayleigh-Taylor instability is shown when simulated with a
high-order TENO scheme. Similar results can be found
in literature [25, 41, 42, 117, 139, 146, 168]. Even though
one might argue that results look somehow physical, since
flow fields from experimental images also never look per-
fectly symmetric, this result cannot be expected for a per-
fect initial setting of a symmetric problem. Hence, it is
highly unsatisfactory to obtain simulation results that in-
clude undesired behavior whose origin and properties can
only be speculated on.

Remacle et al. [117] were the first to suspect floating-
point inaccuracies due to round-off errors to be the reason
for numerical symmetry breaking in the context of discon-
tinuous Galerkin methods. It is well known that floating-
point calculations suffer from loss of associativity due to
round-off errors dependent on the chosen precision [49].
Usually, this flaw does not affect CFD simulations since its
effect is suppressed by the inherent dissipation of the nu-
merical scheme. If at all, symmetry breaking typically can
only be observed for small-scale structures near the reso-
lution limit. However, when simulations are performed on

supercomputers, trillions of floating-point errors may accumulate. Then, with vanishing numerical vis-
cosity using latest methods, the small-scale symmetry breaking exhibits inverse-cascade phenomena
and affects the macroscopic flow evolution leading to a drastically changed flow topology.
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To this day, there where only few attempts to actively control the influence of round-off errors. Suther-
land [147] introduced a cut-off approach to control the floating-point truncation error for simulations in
astrophysics. Recently, Don et al. [29] suggested to locally reduce the order of smoothness indicators
in WENO schemes to delay the onset and reduce the magnitude of symmetry errors. It is evident that a
detailed understanding of the underlying mechanism behind numerical symmetry breaking is desirable.
This understanding may also be helpful to gain control over the process in terms of inserting physically
meaningful disturbances. This is particularly relevant in view of further increasing computational power
and the increasing complexity of numerical methods.

1.4 The Grid-Aligned Shock Instability

Figure 1.3: Carbuncle phenomenon
in bow shock simulation

In 1988, Peery and Imlay were the first to describe "an unusual
numerical phenomenon" [112] in literature. They encountered a
severe disturbance of the flow field in the region of the stagna-
tion point similar to the one shown in Figure 1.3. Here, a bow
shock around a blunt body was simulated using Roe’s approxi-
mation revealing the disruptive instability. It was the starting point
of three decades of intense investigations and dozens of scien-
tific publications concerned with this complicated issue. Due to its
excrescence-like shape, the phenomenon was soon commonly
denoted as the "carbuncle phenomenon", though the instability
may occur in various different manners, not always being as de-
structive as in the bow-shock case. In fact, the instability often
occurs when strong shock waves move aligned with the compu-
tational grid. Other examples are the kinked Mach stem and the
odd-even decoupling phenomenon [114]. A representative exam-
ple of the latter is shown in Fig. 1.4 for the simulation of a shock
wave interaction with a helium bubble in air with the HLLC solver.
The fact that the instability occurs predominantly in combination
with the most successful group of complete Riemann solvers ren-
ders the issue particularly harmful.

Quirk [114] performed a systematic investigation of the prob-
lem, and noticed that schemes with good shock-capturing prop-
erties are more likely to be affected by the instability than more
dissipative flux formulations, such as the HLL Riemann solver or
flux-vector splitting schemes. He concluded that insufficient dis-
sipation at the contact line might be the reason for the instability,
which paved the way for possible treatments of the problem. Af-
terwards, almost all proposed cures add additional dissipation the
one way or the other. Quirk [114] already noticed that the ad-
hoc application of Harten’s entropy fix to increase numerical dis-
sipation at the contact and shear waves cures the problem, albeit
lacking physical justification.

In the following, most investigations of the problem directly focused on specific types of Riemann
approximations to cure the problem. For a comprehensive overview of developments for Roe schemes
the reader is referred to Section 3.2. Additional findings for HLL-type schemes are summarized in detail
in Section 3.3.

In contrast to previous approaches, Rodionov [122] did not try to modify the discretization of the
convective term, but he suggested to add additional viscosity via a new source term. He argues that
this approach is more consistent with the underlying physical principles, as the Euler equations are com-
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plemented to Navier-Stokes-type equations. The proposed scheme delivers stable results and can be
easily combined with any desired Riemann solver. The methodology was successfully extended to three-
dimensional simulations [123] and to higher-order methods [124]. In fact, Rodionov [123] performed one
of few investigations of the carbuncle phenomenon in three-dimensional simulations. Recently, a simpli-
fied procedure for the calculation of the artificial viscosity has been proposed [125]. However, Rodionov’s
method increases dissipation not only in the shock vicinity, but it may contaminate the computational do-
main even far away of shocks.

Another general approach has been developed by Chen et al. [18–20]. In [20], a simple interface-
normal velocity reconstruction procedure is proposed that can be easily applied in combination with
existing Riemann solver. The authors argue that a linear reconstruction of the interface-normal velocity
between associated neighbor cells takes the high-order properties in the transverse direction of the cell
interface into consideration, which has been always neglected in conventional finite volume methods.
Although this procedure stabilizes all tested schemes, the physical mechanism behind the modification
remains unclear. Further studies on the underlying mechanism were performed in [18] using a newly
developed instability analysis model named ”cell–shock–cell system". Their study revealed that the nu-
merical shock instability essentially starts from the grid face perpendicular to the shock rather than the
grid parallel to it. They concluded that the shock instability is essentially a multidimensional phenomenon.
The negative pressure dissipation of the density flux at the vertical transverse face of a shock was found
to trigger the instability. This term has been reformulated subsequently by a transverse pressure dissipa-
tion modification in [19]. Again, the proposed general cure can be applied to any desired Riemann solver.

Figure 1.4: Odd-even decoupling in multi-
component flow simulation

Note, that all of the techniques reported in literature add
additional dissipation to the scheme in one way or another.
Additional discussions on grid-aligned shock instabilities with
minor modifications of the presented schemes can be found
in literature [15, 67, 80, 82, 103, 110, 121, 167]. The grid-
aligned shock instability has also been studied in connection
with the AUSM family of schemes [16, 85, 88] and for shallow
water equations [5, 81, 83].

Along with the efforts to eliminate the occurrence of the
instability in numerical simulations, there has also been an
intense discussion about possible physical origins of the
problem [33, 104, 115, 121]. Robinet et al. [121] studied
the stability of two-dimensional plane shock waves. Their
theoretical analysis uncovered a previously undetected gen-
uine instability of Euler equations. This instability was con-
jectured as possible intrinsic origin of both the carbuncle
phenomenon and Quirk’s odd-even decoupling. The au-
thors supported their assumption by comparison of theoret-
ical predictions with numerical results that showed convinc-
ing correlations. As a consequence, they suggested to de-
sign numerical methods in the framework of Navier-Stokes

equations rather than for Euler equations. However, the theoretical analysis presented in [121] has been
heavily criticized in [23], where the authors argue against the existence of a so-far unknown instability
of Euler equations. Beyond, the physical background of the carbuncle phenomenon seems to be sup-
ported by some experimental observations [79, 84]. In [79], the interaction of vortices and bow shocks
is studied. The authors observed flow features that strongly resemble the carbuncle structure. Kikuchi
et al. [84] designed experiments based on preliminary numerical simulations that suffered from the bow
shock instability. For gases with low ratio of specific heats γ, the shock instability can also be observed
in their experiments. As pointed out by [122], experimental observations often include special set-ups
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that might trigger an instability, whereas the instability in simulations forms by itself. Elling [33] argues
that carbuncles may be some special kind of entropy solutions, which can be physically correct in some
circumstances. He describes a simple setting using filaments to trigger an instability that resembles the
carbuncle phenomenon while being a correct vanishing-viscosity solution. Beside some few cases that
can be physically motivated, the strong grid-dependency of many simulation results connected with the
instability clearly points to a numerical origin. Nevertheless, the controversial discussion reveals that the
problem is still not fully understood.

1.5 The Aim of This Thesis

This thesis aims to summarize my work of the last four years. The presented findings contribute to
the advancement of high-resolution schemes for compressible flow solvers in terms of improvement of
consistency and numerical robustness allowing for an accurate prediction of complex flow configurations.
The previous sections highlighted the large scientific interest to gain additional understanding of both the
numerically triggered symmetry breaking and the occurrence of the grid-aligned shock instability. This
thesis includes the following four contributions, each of which is published in the peer-reviewed Journal
of Computational Physics or Journal of Computer & Fluids respectively:

1. A detailed investigation of floating-point induced symmetry breakdown, which results in a novel
generalized consistency-ensuring summation rule to avoid numerical symmetry breakdown, see
Section 3.1.

2. A novel explanation of the carbuncle phenomenon, which enables the construction of a shock-
stable Roe-type scheme with reduced numerical dissipation, see Section 3.2.

3. A detailed investigation of the grid-aligned shock instability in connection with the HLLC solver,
which results in a novel centralized formulation and a novel shock-stable HLLC-LM scheme with
reduced numerical dissipation

4. The identification of a mathematical inconsistency of a popular type of signal-speed estimate for
HLL-type schemes

Additionally, the findings have been presented at four international conferences, namely, at the
GAMM Annual Meeting 2018 in Munich, at the 30th International Conference on Parallel Computational
Fluid Dynamics 2018 in Indianapolis (USA), at the 32nd International Symposium on Shock Waves 2019
in Singapore and at the 14th WCCM & ECCOMAS Congress 2020 in Paris.

The remainder of this work is structured as follows: In Chapter 2, the governing equations and
the fundamental numerical approach of the finite-volume framework are introduced including spatial and
temporal discretization techniques. A detailed description of high-order spatial reconstruction procedures
along with the applied Riemann solvers is provided. The proposed new schemes of this work are directly
based on these methods. Chapter 2 completes with a short introduction to the shortcomings of Godunov-
type schemes in the context of low Mach number flows. In Chapter 3, an overview of the novelties of the
four publications is presented. Each of these publications is motivated with a short review on the state
of the art, indicating the particular issues that have been overcome in the corresponding publication. A
list of all publications is provided in the subsequent Chapter 4. Chapter 5 concludes the findings of the
thesis and provides an outlook for possible future topics.



Chapter 2

Mathematical Model and Numerical Approach

2.1 Governing Equations

The physical behavior of the inviscid, compressible flow considered in this work is mathematically mod-
eled by the Euler system of partial differential equations [93, 150]. The three-dimensional formulation in
conservative form gives

Ut +F (U)x +G (U)y +H (U)z = 0, (2.1)

where U is the density of the conserved quantities mass ρ, momentum ρv ≡ (ρu,ρv,ρw) and total
energy E = ρe+ 1

2ρv · v, with e being the internal energy per unit mass.
The fluxes F , G and H are defined as

F =











ρu
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ρuv
ρuw

u (E + p)


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ρw
ρuw
ρvw
ρw2 + p
w (E + p)











. (2.2)

The compressible system is closed using the stiffened-gas equation of state, which was first proposed
by Harlow and Amsden [61]. The pressure p is given by

p = (γ− 1)ρe− γp∞ (2.3)

with the ratio of specific heats γ and the background pressure p∞. Note, that this formulation recovers
the ideal gas law for vanishing background pressures p∞ = 0. The ratio of specific heats for monatomic
gases is γ = 1.67, and γ = 1.4 for diatomic gases, such as nitrogen and oxygen, which are the
main components of air. Water is usually modeled with γ-values between 4 and 7. The background
pressure p∞ is introduced to mimic the incompressible nature of liquids. It usually takes values as high
as p∞ = 3.0 · 108 for water [71, 77, 131, 133]. Note that γ and p∞ are empirically fitted for water to
ensure the correct speed of sound.

The speed of sound c for the stiffened-gas equation of state is

c =

√

√γ · (p+ p∞)
ρ

. (2.4)

The full set of Navier-Stokes equations can be considered by adding viscous force terms and heat
conduction terms. Additional source terms, such as gravitation or axisymmetric contributions, can also
be easily incorporated. The described system can be extended to describe multi-component flows either
by a level-set formulation [71] or by an additional advection equation for material properties [77].

9
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The developed methodological improvements described in Chapter 3 can be easily applied to the
full set of Navier-Stokes equations for multi-component flows revealing the same beneficial behavior as
presented for the Euler system of equations. However, for the mechanism studies shown in this thesis,
it is beneficial to limit investigations to the inviscid Euler system of equations at first as the physical
viscosity of Navier-Stokes equations may impede the observability of numerical shortcomings inherent
to the modeling of the inviscid system.

2.2 Finite-Volume / Method-of-Lines Approach

Following the finite-volume approach, the continuous domain of interest is discretized by non-overlapping
cells to solve the Euler system of equations provided in Section 2.1 numerically. In the following, a
Cartesian framework with cell sizes ∆x , ∆y , ∆z is applied. A physical domain with total extent Lx ×
L y × Lz is then divided into

�

Nx =
Lx
∆x

�

×
�

Ny =
L y

∆y

�

×
�

Nz =
Lz
∆z

�

computational cells. See Figure 2.1
for a two-dimensional schematic representation of the computational grid. The third dimension behaves
accordingly. The indices i, j,k denote the i-th cell in x-direction, j-th cell in y-direction and k-th cell in
z-direction. Each cell covers Ii, j,k = [x i−1/2, x i+1/2]× [y j−1/2, y j+1/2]× [zk−1/2, zk+1/2] with cell center
point at x i = (i − 0.5) ·∆x , y j = ( j − 0.5) ·∆y , zk = (k − 0.5) ·∆z and i = 1...Nx , j = 1...Ny ,
k = 1...Nz. The physical domain D is given by D =

⋃

i, j,k
Ii, j,k.

Ui, j−1,kUi−1, j−1,k Ui+1, j−1,k

Ui, j,kUi−1, j,k Ui+1, j,k

Ui, j+1,kUi−1, j+1,k Ui+1, j+1,k

Ii+1, j,k

j

j− 1/2

j+ 1/2

ii− 1/2 i+ 1/2

Fi+1/2, j,kFi−1/2, j,k

Gi, j−1/2,k

Gi, j+1/2,k

Figure 2.1: Schematic representation of the computational grid in two dimensions with cell center points
(blue) and relevant fluxes (red) for the cell of interest (green). The direction of fluxes is shown for positive
flux values.

The cell-averaged conservative quantity vector Ui, j,k for a cell with volume Vi, j,k = ∆x ·∆y ·∆z is
evaluated from

Ui, j,k(t) =
1
Vi, j,k

∫

Vi, j,k

U(x , y, z, t)d xd ydz, (2.5)

and stored for each of the computational cells. The definition of Ui, j,k discretizes the continuous distri-
bution with second order [94].
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The integration of Eq. (2.1) over the cell volume together with Eq. (2.5) gives the semi-discrete time
evolution equation

d
d t

Ui =
1
∆x
(Fi− 1

2 , j,k − Fi+ 1
2 , j,k) +

1
∆y
(Gi, j− 1

2 ,k −Gi, j+ 1
2 ,k) +

1
∆z
(Hi, j,k− 1

2
−Hi, j,k+ 1

2
), (2.6)

where F, G and H approximate the fluxes at the cell faces. The connection to continuous fluxes is shown
exemplarily in x-direction

∫

x ,y,z

F(x , y, z, t)x d xd ydz =

∫

y,z

�

F(x i+1/2, y, z, t)d ydz −F(x i−1/2, y, z, t)
�

d ydz ≈

≈
�

Fi+1/2, j,k(t)− Fi−1/2, j,k(t)
�

·∆y ·∆z.

(2.7)

Eq. (2.6) recovers the fundamental property of conservation laws that the magnitude of conserved
quantities can only be changed in time through fluxes across cell boundaries. Figure 2.1 shows the situ-
ation exemplarily in two dimensions. The total amount of conserved quantities is necessarily maintained
since quantities leaving one cell are directly entering the respective neighboring cell. This conservation
property, also called "telescoping" property, is a necessary condition for correct wave speed predictions,
and therefore, it is fundamental for accurately solving compressible flow dynamics [94, 150].

Various different numerical algorithms have been developed to approximate the numerical fluxes F,
G and H [66, 107, 126]. Today, most common approaches built on a method that was first described by
Godunov [48]. In his seminal work, Godunov suggests to solve Riemann problems at each cell face. The
comparatively easy extension to high spatial orders renders Godunov’s scheme particularly favorable.
Details of the flux computation will be discussed in Section 2.2.2 and Section 2.3.

2.2.1 Temporal Discretization

The semi-discrete ordinary differential equation (ODE) (2.6) is integrated in time using high-order strong
stability-preserving (SSP) Runge-Kutta schemes [50, 141]. Note, that an application of the explicit Euler
forward time integration directly results in Godunov’s method [94]. However, this method is unstable
when the fluxes are discretized with high order [162].

The righthand side of Eq. (2.6) can be abbreviated using the operator L resulting in

d
d t

U=L(U) (2.8)

An optimal strong stability-preserving second-order Runge-Kutta scheme as proposed by Gottlieb et al.
[50] is given by

U∗ = Un +∆t ·L(Un),

Un+1 =
1
2
(Un +U∗) +

1
2
·∆t ·L(U∗).

(2.9)

The corresponding optimal strong stability-preserving third-order Runge-Kutta scheme [50] is given by

U∗ = Un +∆t ·L(Un),

U∗∗ =
3
4
·Un +

1
4
·U∗ +

1
4
·∆t ·L(U∗),

Un+1 =
1
3
·Un +

2
3
·U∗∗ +

2
3
·∆t ·L(U∗∗).

(2.10)
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The authors in [162] show that all optimal first- and second-order strong-stability-preserving Runge-Kutta
methods are linearly unstable when coupled with WENO5. However, for all calculations within the scope
of this thesis no major differences could be observed between second- and third-order time integration.

The time step has to be restricted using an appropriate CFL condition. The maximum time step is
determined by

∆t = CC F L ·
�

max
i, j,k

�

|ui, j,k|+ ci, j,k

∆x
+
|vi, j,k|+ ci, j,k

∆y
+
|wi, j,k|+ ci, j,k

∆z

��−1

. (2.11)

The applied CFL number CC F L ranges between 0.3 and 0.8. This choice for the maximum time step
calculation is commonly applied [111, 150], and leads to stable calculations in most cases. However,
it should be noticed that these simple signal speed predictions do not bound the true wave speeds in
general. Signal speeds emerging from the interaction of the data at each cell interface may have higher
magnitudes than predicted by Eq. (2.11) [149]. Algorithms to determine theoretical bounds for the signal
speeds are available [53], but computationally costly as they may lead to unnecessarily small time steps.
When additional physics are considered, such as viscosity, surface tension or gravity, their inherent
maximum signal speeds also have to be considered for the maximum admissible time step evaluation.

A suitable set of initial values has to be provided for the initial time step to solve the initial-value
problem (2.6). No further starting procedure is required as only single-stage time integration schemes
are applied here.

2.2.2 Spatial Discretization - Flux Evaluation

The applied spatial discretization techniques are focused on an accurate and consistent approximation
of the cell-face fluxes required from Eq. (2.6). These fluxes are determined solving a Riemann problem
at each cell face [48]. While originally, the Riemann problem has been solved exactly with the help of iter-
ative methods [150], the majority of state-of-the-art methods nowadays relies on approximate Riemann
solvers. This practice is motivated by the high cost of iterative methods required for exact Riemann so-
lutions together with the fact that only a limited number of information of the solution is used for the flux
computation. Approximate solvers proved to be efficient with negligible accuracy drawbacks. Two major
groups of approximate Riemann solver are applied in this thesis, the Roe-type Riemann solver [126] and
the HLL-type Riemann solver [66, 152]. Due to their central relevance for this thesis, these solvers are
discussed in detail in Section 2.3.

Only first order in space can be achieved when the Riemann solvers directly take the cell-averaged
states of cells directly connected to the face as left and right state of the Riemann problem. Thus, the
second major task consists in the application of high-order methods. This target is usually met by the
introduction of high-order weighted essentially-non-oscillatory (WENO) reconstructions [63, 76, 141].
The reconstruction is applied dimension-by-dimension either on the states or on characteristic fluxes
depending on the applied Riemann solver.

WENO5-JS

Today, the fifth-order WENO reconstruction proposed by Jiang and Shu [76] called WENO5-JS [140]
is the most popular one of the ENO-type schemes. Since a full 5-point stencil may generate spurious
oscillations due to Gibbs’ phenomenon or may diverge near discontinuities, e.g. shocks, the reconstruc-
tion is performed using a nonlinearly weighted combination of sub-stencils instead. WENO5-JS consists
of three second-order sub-stencils S1, S2, S3. Figure 2.2 shows the sub-stencils exemplarily for left
and right interface state reconstructions in x-direction. Additionally, nonlinear smoothness measures are
computed for each of the sub-stencils. When discontinuities are present within the 5-point stencil, the
smoothness measures are used to only involve information from smooth sub-stencils for the reconstruc-
tion. In case of smooth input data, the designed fifth order of the reconstruction is theoretically recovered
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Figure 2.2: Schematic representation of sub-stencils for classical fifth-order WENO reconstructions at
cell interface i+1/2. The sub-stencils S required for the left interface flux F−i+1/2 are highlighted in green,
and sub-stencils S required for the right interface flux F+i+1/2 are highlighted in red. Solid circles represent
nodes where cell-averaged values are available.

by an optimal combination of sub-stencils. The input stencil is shifted by one cell depending on whether
the reconstruction is performed from the left or from the right side. Since both procedures are symmetric,
only the left reconstruction (green) will be presented in detail. The reconstruction of the right interface
value is obtained accordingly. The final reconstructed value uRECON is determined by a combination of
the reconstructed values of each sub-stencil uSk and nonlinear smoothness measures ωk via

uRECON =
3
∑

k=0

ωk · uSk . (2.12)

The reconstructed values uSk for each sub-stencil Sk are calculated from

uS1 =
1
3

ui−2 −
7
6

ui−1 +
11
6

ui, uS2 = −
1
6

ui−1 +
5
6

ui +
1
3

ui+1, uS3 =
1
3

ui +
5
6

ui+1 −
1
6

ui+2. (2.13)

The nonlinear normalized weights ωk are defined by

ωk =
αk

∑3
k=0αk

with αk =
dk

(ε+ βk)2
(2.14)

and nonlinear smoothness indicators βk

β1 =
13
12
(ui−2 − 2ui−1 + ui)

2 +
1
4
(ui−2 − 4ui−1 + 3ui)

2 ,

β2 =
13
12
(ui−1 − 2ui + ui+1)

2 +
1
4
(ui−1 − ui+1)

2 ,

β3 =
13
12
(ui − 2ui+1 + ui+2)

2 +
1
4
(3ui − 4ui+1 + ui+2)

2 .

(2.15)

The ideal weights, which recover the full order of the scheme, are d1 = 0.1, d2 = 0.6 and d3 = 0.3.
The ε value was originally set to 10−6 in order to avoid a division by 0 [76]. However, Borges et al.
[12] argued that the epsilon may have significant impact on the order reduction near smooth extrema.
They suggested a value of 10−40 to avoid any unintended order reduction. The simulations presented
in this thesis are performed using ε equal to machine precision to avoid any influence of ε besides the
division-by-zero control.
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TENO5

The targeted essentially non-oscillatory (TENO) scheme developed by Fu et al. [41] significantly reduces
the numerical dissipation introduced by the spatial reconstruction. This reduction allows for a more
accurate simulation of turbulent flow behavior [40]. While classical WENO schemes apply a weighted
combination of all sub-stencil contributions, TENO schemes either apply a candidate stencil with its
original linear weight, or they remove its contribution completely when discontinuities are detected by the
smoothness indicators. This procedure leads to an efficient separation of discontinuities and small-scale
fluctuations.

The reconstructed sub-stencil uSk values are identical to the ones given in Eq. (2.13), and the
smoothness indicators βk are identical to Eq. (2.15). However, the simple weights αk are calculated
using the global smoothness measure of Borges et al. [12]

αk = 1+
τ5

βk + ε
with τ5 = |β3 − β1| . (2.16)

The weight αk then leads to a decision parameter bk that decides whether the stencil is included in the
final reconstruction or completely ignored. Thus, the finial weights ωk are computed from

ωk = bk · dk with bk =







0 if
�

αk
∑

k αk

�6
≤ CT ,

1 if
�

αk
∑

k αk

�6
> CT

(2.17)

with optimal weights dk being identical to WENO5-JS. The decision parameter CT can be utilized to
adjust the dispersion and dissipation behavior of the scheme. In this thesis, the value is fixed to CT =
10−5.

This hard cut-off decision rule with an unsteady change in reconstruction results for minor input
fluctuations makes the TENO scheme particularly prone to floating-point inconsistencies. Hence, results
produced with high-order TENO variants often appear notably crooked as compared to traditional results
obtained with WENO methods [40, 42].

Characteristic decomposition

The finite-difference formulation of the Roe Riemann solver requires a transformation into characteristic
space to evaluate the characteristic flux contributions [126, 150]. A characteristic decomposition has also
been demonstrated to be favorable for finite-volume formulations, where the states are reconstructed first
and the Riemann problem is solved for the reconstructed values in a second step. The reconstruction of
characteristic states instead of conservative or primitive states may avoid an interaction of characteristic
waves of different families [77, 113]. This leads to a significantly reduced level of numerical oscillations
in results.

In the following, the characteristic decomposition is presented in x -direction. The formulations in y-
and z-directions are analogous. Conservative states are projected onto characteristic space by W= L·U
with L being the left eigenvector matrix. For the Euler equations, the linearized system reads as

L=















1
4

q2

Ĥ− 1
2 q2 +

1
2

û
ĉ

1
2

û
Ĥ− 1

2 q2 −
1
2ĉ −

1
2

v̂
Ĥ− 1

2 q2 −
1
2

ŵ
Ĥ− 1

2 q2
1
2

1
Ĥ− 1

2 q2

−q2 + Ĥ û v̂ ŵ −1
v̂ 0 −1 0 0
−ŵ 0 0 1 0

1
4

q2

Ĥ− 1
2 q2 −

1
2

û
ĉ

1
2

û
Ĥ− 1

2 q2 +
1
2ĉ −

1
2

v̂
Ĥ− 1

2 q2 −
1
2

ŵ
Ĥ− 1

2 q2
1
2

1
Ĥ− 1

2 q2















(2.18)

with the enthalpy H = (E+p)/ρ, and the Roe-averaged velocity magnitude q2 = û2+ v̂2+ŵ2. Quantities
with hat-notation “̂." denote density-based Roe averages of the cell-averaged variables of the cells adja-

cent to the face [126]. The Roe-averaged speed of sound is evaluated from ĉ =
Æ

(γ− 1) · (Ĥ − 0.5 · q2).
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The remaining Roe averages for k = u, v, w, H are evaluated from

k̂ =
k̄i ·
p
ρi + k̄i+1 ·

p
ρi+1

p
ρi +

p
ρi+1

. (2.19)

The back-transformation onto physical space is performed by U = R ·W, with R being the right eigen-
vector matrix of the linearized system given by

R =

















1 1
Ĥ− 1

2 q2 0 0 1

û− ĉ û
Ĥ− 1

2 q2 0 0 û+ ĉ

v̂ v̂
Ĥ− 1

2 q2 −1 0 v̂

ŵ ŵ
Ĥ− 1

2 q2 0 1 ŵ

Ĥ − ĉû Ĥ
Ĥ− 1

2 q2 − 1 −v̂ ŵ Ĥ + ĉû

















. (2.20)

2.3 Riemann Solvers

For Godunov-type schemes, the initial-value problem

Ut + F (U)x = 0 with U (x , 0) =

¨

UL if x < 0,

UR if x ≥ 0
(2.21)

has to be solved for each cell interface to determine the flux over the interface. For this task, the two
major groups of approximate Riemann solvers that are commonly in use today are described in this
section. Both the Roe-Riemann solver and the HLL-type Riemann solvers are widespread in scientific
computational fluid dynamics frameworks. While the main advantage of the Roe-Riemann solver is its
low inherent dissipation, the HLL-type solvers are more stable and easier to extend for complex physics,
e.g. multiphase formulations or magnetohydrodynamics. A more detailed comparison will be given in
Section 2.3.3.

2.3.1 Roe-Type Riemann Solver

The classical Roe formulation [126] gives the following numerical flux function

FRoe
i+1/2 =

1
2
(Fi+1 + Fi)−

1
2

Ri+1/2

�

�Λi+1/2

�

�Li+1/2 (Ui+1 −Ui) , (2.22)

with L = R−1 and R being the left and right eigenvector matrices of the Jacobian ∂ F/∂U given by Eq.
(2.18) and Eq. (2.20), respectively. The diagonal matrix Λ is formed with the eigenvalues

λ1 = û− ĉ, λ2,3,4 = û, λ5 = û+ ĉ. (2.23)

Note, that quantities with hat-notation “̂." again denote density-based Roe averages with calculation rules
as provided in the end of Section 2.2.2.

The flux-vector splitting form of Eq. (2.22) reads as

F+i+1/2 = Fi +Ri+1/2

�

�Λi+1/2

�

�R−1
i+1/2Ui (2.24)

and

F−i+1/2 = Fi+1 −Ri+1/2

�

�Λi+1/2

�

�R−1
i+1/2Ui+1, (2.25)
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and allows the application of high-order finite-difference WENO reconstructions in characteristic space.
The final high-order flux is obtained by

FRoe
i+1/2 =

1
2

�

F+i+1/2 + F−i+1/2

�

. (2.26)

Note, that the inherent linearization of the scheme using discontinuous jumps is incorrect for waves
with continuous change in flow variables [150]. Hence, the Roe Riemann solver may produce entropy-
violating weak solutions, such as rarefaction shocks. Different strategies have been described to cir-
cumvent the occurrence of non-physical weak solutions [62, 65, 94]. In the popular approach of Harten
and Hyman [65], additional viscosity is introduced to trigger the physically valid solution. This method is
motivated by the vanishing viscosity approach. An alternative method proposed by Leveque [94] splits
the single wave that represents the rarefaction fan in two waves connected by an intermediate state.
This procedure concentrates on a proper treatment of transsonic rarefaction waves.

Since the additional numerical viscosity introduced by these fixes may impede the observability of
numerical shortcomings studied in this thesis, no entropy fix has been applied in any of the presented
cases. The experience shows that the Roe solver is less prone to rarefaction shocks when combined
with high-order methods. Except of few specific flow conditions that are not considered in this thesis, no
entropy-violating solutions were observed. However, it should be pointed out that entropy fixes are highly
recommended when the Roe solver is applied to general configurations. Otherwise, results always have
to be critically evaluated for the appearance of nonphysical shocks.

Componentwise local Lax-Friedrichs flux

Besides the possible occurrence of non-physical solutions, the Roe solver is prone to positivity violations
[114]. As a remedy, the componentwise local Lax-Friedrichs flux was proposed and adds a slightly
increased amount of dissipation. The componentwise local Lax-Friedrichs flux differs from the Roe flux
in the choice of the eigenvalues Λ. Instead of density-based Roe averages, the eigenvalues in the
componentwise local Lax-Friedrichs flux are determined by

|λ1|=max (|ui − ci| , |ui+1 − ci+1|) ,
�

�λ2,3,4

�

�=max (|ui| , |ui+1|) ,
|λ5|=max (|ui + ci| , |ui+1 + ci+1|) .

(2.27)

Note that as compared to the original local Lax-Friedrichs flux, often called Rusanov flux [129], this def-
inition has different eigenvalues for each characteristic field. As a consequence of the minor change in
eigenvalues, results are still close to the one obtained with the classical Roe solver, though the robust-
ness of the scheme is significantly increased.

2.3.2 HLL-Type Riemann Solver

HLL-type Riemann solvers do not rely on a linearization of the nonlinear Euler equations, but they are
the result of integral considerations connected with consistency conditions [150]. Thus, these schemes
reveal some beneficial properties. They do not require entropy fixes, and positivity is guaranteed at
least for first-order evaluations. Even though the positivity property does not translate to high-order
reconstructions [70], these methods are still considerably more robust than the Roe solver.

HLL Riemann Solver

The HLL (Harten-Lax-Van Leer) flux [66] is a simple type of an incomplete Riemann solver. In Figure 2.3,
the elementary solution of the Riemann problem (2.21) for the Euler system is sketched schematically for
the interface x i+1/2. The HLL formalism models the Riemann problem only including the two nonlinear
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xi−1/2 xi xi+1 xi+1/2xi+1/2

tn

tn+1

UL U∗L U∗R UR

U∗ = UH LL

Figure 2.3: Schematic propagation of elementary waves in space-time coordinate system with nonlinear
waves (dashed black) and contact wave (dashed red). The HLL flux models an averaged intermediate
state U∗ (blue), whereas the HLLC flux models the full system with two intermediate states U∗L and U∗R

(red).

waves that separate the left and right initial states from an averaged intermediate state U∗. U∗ is obtained
from

U∗ =
SRUR − SLUL + FL − FR

SR − SL
(2.28)

with FL/R = F
�

UL/R

�

. The left and right signal speeds SL/R denote the nonlinear wave speeds. The final
flux is given by

FH LL =







FL if SL ≥ 0,

FR if SR ≤ 0,
SRFL−SLFR+SLSR(UR−UL)

SR−SL
else.

(2.29)

SL and SR can be obtained from different algorithms as described in the end of this section.

HLLC Riemann Solver

The incomplete modeling of the HLL solver may lead to an excessive smearing of contact discontinuity
lines. Toro et al. [152] introduced the missing contact wave to overcome this deficiency. The result-
ing HLLC flux includes all waves present in the Euler system. Hence, the HLLC solver is a complete
solver for this system. The additional contact wave separates the intermediate state into a right and left
intermediate state U∗L/R as shown in red in Figure 2.3.

Two formulations are commonly applied to compute the HLLC flux. The classical approach proposed
by Toro [152] gives

FH LLC =



















FL if SL ≥ 0,

F∗L = FL + SL · (U∗L −UL) if SL < 0 ∩ S∗ ≥ 0,

F∗R = FR + SR · (U∗R −UR) if SR > 0 ∩ S∗ ≤ 0,

FR if SR ≤ 0.

(2.30)

Today, the shorter formulation [77]

FH LLC =
1+ si gn(S∗)

2

�

FL + S− (U∗L −UL)
�

+
1− si gn(S∗)

2

�

FR + S+ (U∗R −UR)
�

, (2.31)
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with

S− =min(SL, 0), S+ =max(SR, 0), (2.32)

is more often implemented as it avoids the computationally expensive case evaluations. The signal
speed estimates SL , SR, S∗ are discussed later in this section. The formulations (2.30) and (2.31) give
identical results for most cases, however certain signal speed estimates may lead to different behavior
[38]. The intermediate states, U∗L and U∗R, are determined from

U∗K =
SK − uK

SK − S∗













ρK

ρKS∗
ρK vK

ρK wK

EK + (S∗ − uK)
�

ρKS∗ +
pK

SK−uK

�













(2.33)

with K = L, R.

Signal Speed Selection

Both the HLL and the HLLC solver have to be combined with suitable signal speed estimates as proposed
by different authors [10, 24, 32, 54, 151]. A group of estimates proposed by Davis [24]

SDavis
L =min(uL − cL, uR − cR), SDavis

R =max(uL + cL, uR + cR) (2.34)

and the estimates of Einfeldt [32]

SEin f eld t
L = û− ĉ, SEin f eld t

R = û+ ĉ (2.35)

using a generalized formulation for the speed of sound

ĉ2 =
cL

2 · pρL + c2
R ·
p
ρR

p
ρL +

p
ρR

+
1
2

p
ρL
p
ρR

�p
ρL +

p
ρR

�2 (uR − uL)
2 , (2.36)

and the Roe-averaged velocity

û=
uL ·
p
ρL + uR ·

p
ρR

p
ρL +

p
ρR

(2.37)

are most frequently applied in scientific codes. It is interesting to note that neither the choices of Davis
[24] nor the ones of Einfeldt [32] do limit the nonlinear signal speeds in general [151]. Nevertheless, this
rarely leads to stability issues. Guermond et al. [54] proposed iterative methods to determine true bounds
for the physical wave speeds. Recently, various authors determined û and ĉ from arithmetic averages
ū = 1

2

�

uL + uR
�

and c̄ = 1
2

�

c L + cR
�

[21, 45, 164]. This simplified approach yields acceptable results in
cases with sufficiently weak shocks, but it may also catastrophically fail in certain flow conditions [38]. In
this thesis, a blend of both classical approaches with

SBlend
L =min(uL − cL, û− ĉ), SBlend

R =max(uR + cR, û+ ĉ) (2.38)

is applied [78]. This blend delivers slightly improved estimates in terms of robustness and accuracy.
Following Batten et al. [10], the contact wave speed for the HLLC flux is obtained from

S∗ =
pR − pL +ρLuL (SL − uL)−ρRuR (SR − uR)

ρL (SL − uL)−ρR (SR − uR)
. (2.39)
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2.3.3 Discussion on Approximate Riemann Solvers

There is a significant difference among the two groups of Riemann solver that was only briefly men-
tioned so far. While the Roe flux can be extended to high order using the described flux-vector splitting
procedure of Eq. (2.24) and Eq. (2.25), this is generally not possible for HLL-type schemes. The lat-
ter are extended to high order via the finite-volume approach, i.e. the left and right input states are
first reconstructed with high order. While there is no difference in one-dimensional calculations, the
finite-volume approach has significant performance drawbacks in multidimensional simulations. Here,
an expensive Gauss integral evaluation over the cell face including multiple reconstructed state values
has to be performed to maintain the formal order of the scheme [140]. Explicit procedures are available
[148] and have been applied for two-dimensional simulations [22, 78]. However, for three dimensional
simulations, this procedure is about nine times more expensive than the flux-splitting approach, which
drastically limits its practical relevance. The weighted compact nonlinear schemes (WCNS) have been
developed to overcome this issue [26, 27, 105, 172]. With this approach, only state pairs have to be
reconstructed, and high order is obtained by the application of the WCNS scheme on the fluxes after-
wards. While this procedure heavily reduces the computational cost, there is still an overhead when
compared to finite-difference schemes. During my studies, I implemented both the Gauss evaluation
and the WCNS procedure and compared results to the application of the midpoint flux evaluation that
requires no additional treatment. Besides the large performance differences, no significant accuracy
differences could be observed during an extensive evaluation of multiple single- and multi-component
cases. These results confirm previous findings of Zhang et al. [171] for configurations including shock
waves. Without additional treatments, the finite-volume approach reduces the formal order of a flux
evaluation in x-direction to O

�

∆x5,∆y2,∆z2
�

. However, this has little to no effect on our simulation
results. This might be explained by the fact, that the theoretical order of the scheme is technically only
relevant if all features of the solution are properly resolved. For high-speed or even inviscid simulations
with small-scale structures, simulations are certainly under-resolved. Since the thesis focuses on this
type of simulations, the midpoint rule is directly applied for finite-volume type schemes without additional
procedures resulting in a comparable performance of Roe and HLL-type schemes.

An interesting comparison of the solution structure can be performed when the HLL-type schemes
are written in a centralized form [37]

FH LL =
1
2
(FL + FR)−

1
2
[|SR| (UR −U∗) + |SL| (U∗ −UL)] ,

FH LLC =
1
2
(FL + FR)−

1
2
[|SR| (UR −U∗R) + |S∗| (U∗R −U∗L) + |SL| (U∗L −UL)] ,

FROE =
1
2
(FL + FR)−

1
2

R |Λ|L (UR −UL) .

(2.40)

All schemes reveal a common central term and a solver-specific dissipation term. While there is a
specific dependency on the modeling of elementary waves for HLL-type schemes, the elementary waves
cannot easily be extracted from the linearized form of the Roe scheme. However, for the Roe scheme it
is easier to separate the acoustic and advection contribution to the total dissipation of the scheme since
they can easily be connected to the respective eigenvalues. This property will become relevant for the
targeted reduction of spurious dissipation contributions that are identified to cause numerical stability
problems for high-speed flow.

Note, that for the selection SL = SR = S∗ = λLF and λi = λLF for i = 0...5, both HLL-type fluxes and
the Roe flux degenerate to the Lax-Friedrichs flux in its well-known form

Fλ =
1
2
(FL + FR)−

1
2
|λLF | (UR −UL) . (2.41)
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2.4 The Low Mach Number Inconsistency of Godunov-Type Schemes

(a) result obtained with a Godunov-type scheme (b) correct incompressible result

Figure 2.4: Pressure field with isolines for a cylinder flow at Ma = 0.01

The problematic behavior of Godunov-type schemes when applied to low Mach number flows is
documented by various different groups [55, 56, 89, 96–98, 119, 155]. When the Mach number of a
test case is systematically reduced to approach the incompressible limit, simulation results obtained with
Godunov-type schemes usually fail to converge to the desired limit solution. Instead, excessive numerical
dissipation pollutes the discretized solution. A small, illustrative example shall demonstrate the failure
for the simulation of the flow around a cylinder in the incompressible regime. Fig. 2.4 shows inaccurate
results that were obtained using a Godunov-type solver along with the incompressible reference solution.

Guillard and Viozat [57] were the first to perform a systematic investigation of the problem with the
help of an asymptotic analysis. The authors reveal that pressure oscillations on the order of the Mach
number are present in discrete solutions, while the continuous pressure scales with the square of the
Mach number. In the following, the asymptotic analysis is described in more detail, as its outcome is
of large importance for the thesis. The first step of the asymptotic analysis is to non-dimensionalize the
Euler equations. The resultant system only depends on the non-dimensionalized state quantities density,
velocity, pressure and Mach number. An asymptotic expansion with the power of the Mach number for
each state quantity is inserted in the non-dimensional system and terms are sorted according equal
power of Mach number. Now, it is important to notice that the result of the asymptotic analysis depends
on the choice of the velocity-scale used to non-dimensionalize time.

Using the advection velocity, the asymptotic analysis reveals that the pressure is constant in space
up to second order with the Mach number

p = p0 +O
�

Ma2
�

. (2.42)

Here, p0 is the ambient pressure imposed by the boundaries. The resulting system is the incompressible
Euler system with constant density.

If, instead, the speed-of-sound is used during non-dimensionalization of time, the asymptotic analysis
reveals that the pressure is constant in space only up to first order with the Mach number

p = p0 +O (Ma) . (2.43)
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The resulting system is an acoustic system. Note, that in addition also the type of the system of equation
changes from elliptic to hyperbolic. Thus, the solution of the Euler equations highly depends whether the
emphasis is on phenomena occurring at the time scale connected with the material velocity or occurring
at the time scale connected with the speed of sound. Indeed, both limit solutions coexists and superpose
each other. The physics of a plane might serve as an example. The integral forces, such as lift and drag,
are sufficiently described by the incompressible limit solution, however for a detailed evaluation of the
noise generation the acoustic limit is relevant [56].

Thus, it is important to notice that the strong limit solution of the compressible Euler (or Navier-
Stokes) equations for vanishing velocities is not necessarily sufficiently described by the corresponding
incompressible equations. Guillard and Murrone [55] analyzed the behavior of discretized Godunov-
type schemes in such situations. They found the numerical dissipation of the scheme related to the
acoustic part of the solution to cause pressure fluctuations in simulation results of low Mach number
flows. Hence, the dominant acoustic contribution to numerical dissipation in the the low Mach number
limit is responsible for the mismatch of simulation results obtained with a compressible solver and the
incompressible limit solution.

Different remedies have been proposed in literature to overcome the accuracy problem. Turkel [155]
proposed a preconditioning scheme that became quite popular. Originally, preconditioning methods
were introduced to overcome convergence problems for steady-state simulations in the low Mach num-
ber limit. The preconditioning procedure gives convergence to the incompressible solution. As shown by
[57], this is achieved by enforcing a pressure scaling with the square of the Mach number. An overview of
preconditioning methods can be found in [156]. Although preconditioning methods successfully recover
the incompressible limit, these methods are computationally expensive and hard to combine with high-
order methods. Additionally, implicit time integration is compulsory due to severe stability restrictions.
Li et al. [96] developed an all-speed scheme by adapting the non-linear eigenvalues in the numerical
dissipation term. The authors demonstrate that pressure fluctuations scale with the square of the Mach
number. However, a pressure stabilization term has to be added to the interface fluid velocity to sup-
press checkerboard decoupling. Rieper [119] proposed an alternative low Mach number fix for the Roe
flux. The author found the change in the normal velocity components in the Riemann problem to be
responsible for the inaccurate scaling of numerical viscosity. As a remedy, the author suggests to reduce
this term by one order of magnitude. An asymptotic analysis is provided that confirms the correct con-
vergence to the incompressible solution of the modified scheme. Numerical examples indicate that the
scheme additionally suppresses checkerboard modes. Further developments and a detailed comparison
of existing methods can be found in [11, 56, 108].

The so-called low Mach number effect of compressible flow solvers has been thoroughly investi-
gated for globally low Mach number flows. However, the incorrect pressure scaling has never been sus-
pected to compromise the simulation of high-speed compressible flows. Indeed, due to the dimension-
by-dimension approach, Riemann problems with vanishing velocity components also occur when the
flow is aligned to the computational grid independent of the actual velocity magnitude. As described in
detail in Section 3.2 and Section 3.3, the low Mach number effect can be identified as prime reason for
the grid-aligned shock instability.





Chapter 3

Accomplishments

3.1 Impact of Floating-Point Induced Round-Off Errors on Large-
Scale Simulations with Low-Dissipation Methods

The application of high-order spatial reconstruction schemes as introduced in Section 1.2 may result in
severe numerical symmetry breaking, see Section 1.3. This effect is well-documented in literature [6,
25, 40–42, 117, 139, 146, 147, 168, 170, 174], though it is usually not further commented or accepted
as introduced by low dissipation [41].

Figure 3.1: Simulation of a two-dimensional implosion
with a high-order WENO scheme

Figure 3.1 shows the potentially large-
scale deformation when a low-dissipation
scheme is used for the simulation of a stan-
dardized implosion test case [101]. There
is no obvious reason why the jet should be
moving away from the diagonal line since
the setup and applied methods are com-
pletely symmetric. Remacle et al. [117] were
among the first to suspect symmetry break-
ing to be caused by an insufficient damp-
ing of floating-point induces round-off errors.
Indeed, symmetry breaking can hardly be
observed in simulations with low-order re-
construction schemes and high numerical
dissipation. Thus, the problem cannot be
found in literature before the rise of high-
order schemes.

Simultaneously to our work, Dong et al.
[28, 29] modified the smoothness indicators
of WENO-type schemes to improve the sym-
metry preservation. Results are provided for
7th- and 9th-order schemes. Later, Wang et
al. [160] applied a symmetrization algorithm,
where state values in symmetrically placed cells are averaged and used in both cells. Even though both
approaches improve the symmetry preservation, no rigorous investigation on the roots of the problem
has been performed. Additionally, the level of disturbances has only been reduced, but symmetry break-
ing is not totally avoided with this treatment. It is surprising that beside the provided references, to my
best knowledge, there is no further literature dealing with this important topic in the context of highly
resolved computational fluid dynamics.

23
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Nico Fleischmann, Stefan Adami, Nikolaus A. Adams: Numerical symmetry-preserving tech-
niques for low-dissipation shock-capturing schemes. Computers & Fluids, Volume 189, 94-107, 2019.
[36]

In this publication, a thorough investigation of the impact of floating-point induced round-of errors
on simulation results of compressible flows with latest low-dissipation methods has been performed.
Moreover, for the first time, a procedure is described that ensures exact symmetry preservation for
numerical schemes. In the first part of the paper, a HLLC Riemann solver is applied together with the
classical WENO5-JS scheme. The presented mechanism study reveals that the lack of associativity

(a+ b) + c 6= a+ (b+ c) (3.1)

in floating-point operations initiates numerical symmetry breaking. Especially, three-dimensional sum-
mations of velocity or flux-vector components are affected, but summations of more than two terms
are also present in two-dimensional algorithms. A detailed study of a symmetric implosion test case
and a Rayleigh-Taylor instability revealed that minor implementation details can heavily influence the
results. For example, a procedure to optimize the evaluation of Roe-averages given by Eq. (2.19) leads
to different results, even though the original and the optimized formalism are analytically identical. The
characteristic decomposition is identified as one source to trigger numerical symmetry breaking in two-
dimensional simulations, since it involves a series of subsequent summations. Additionally, compiler
optimizations that ignore the implemented bracketing are triggering symmetry deviations. The influence
of initial conditions is also investigated. An imprecise evaluation of the sine function is shown to cause
symmetry breaking for high grid resolutions, even when a symmetry-preserving numerical algorithm is
applied for the simulation.

In the paper, a generalized solution strategy is provided. Explicit summations techniques are pro-
vided for three and four terms, however, can also be extended for more terms. The consistency-ensuring
summation of three floating-point values a, b and c is taken according to

SU Mconsistent =
1
2
(max(s1, s2, s3) +min(s1, s2, s3)) (3.2)

with

s1 = (a+ b) + c, s2 = (c + a) + b, s3 = (b+ c) + a (3.3)

or

s1 = (a+ b) + (c + d), s2 = (c + a) + (b+ d), s3 = (b+ c) + (a+ d) (3.4)

with four floating-point values a, b, c and d. Finally, the consistency-managed sum has been applied
in combination with WENO5, TENO5, WENOCU6 and a 9th-order WENO method to a comprehen-
sive set of benchmark test cases. Simulations of Rayleigh-Taylor instabilities, gas implosions and two-
dimensional Riemann problems have been performed with unprecedented resolution. Additionally, a
novel three-dimensional version of the implosion test case is proposed. All results maintain perfect
symmetry up to floating-point precision. The presented results may also serve as benchmark for up-
coming high-performance CFD frameworks. The work proves that symmetry breaking is not a physical
result that is uncovered by highly accurate high-resolution schemes, but rather the result of algorithmic
artifacts, such as the lack of associativity, which no longer are hidden by numerical dissipation.

My contribution to this work lies in performing the investigation on the roots of symmetry breaking
and developing the consistency-ensuring summation. I implemented all described procedures in our in-
house code and performed the presented numerical simulations. Furthermore, I selected the simulation
setups presented in the paper, and post-processed the results. Finally, the manuscript for the publication
was written predominantly by me.
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3.2 Connection between the Low-Mach Effect and the Carbuncle
Phenomenon

The occurrence of grid-aligned shock instabilities in the context of low-dissipation numerical schemes
limits the accurate prediction of complex flows involving high Mach numbers. A comprehensive introduc-
tion to the problem has been provided in Section 1.4. In this section, the most important developments
to cure the Roe Riemann solver from the instability are summarized.

In a linear analysis of the problem, Sanders et al. [130] detected insufficient cross-flow dissipation to
cause the problem and proposed a multidimensional modification to the Roe approximation. Their cure
became later known as the H-correction due to the spatial arrangement of incorporated interfaces to
the entropy fix. The H-correction was further improved by Pandolfi and D’Ambrosio [109], who modified
it for the application to high-speed flow boundary layers. Moreover, the authors of [109] compared
different flux formulations and came to the conclusion that schemes that explicitly capture the contact
discontinuity are always, to some extend, prone to the grid-aligned shock instability. This confirms the
previous findings of Gressier and Moschetta [52] and Quirk [114].

At the same time, Liou [100] found the dissipative pressure term in the mass flux to be responsible
for the instability. He conjectured that schemes with a mass flux that is independent of the pressure term
are not affected by the carbuncle phenomenon. However, Liou’s conjecture was questioned by several
authors [31, 52, 109] afterwards with counterexamples including the AUSM+ scheme [99].

Later, Kim et al. [87] introduced a Mach-number-based function that controls the feeding rate of pres-
sure fluctuation into the numerical mass flux to stabilize the Roe scheme. This adaptation is motivated
by a linear perturbation analysis of the odd-even decoupling problem.

The rotated Roe scheme developed by Ren [118] shows robust shock-capturing capability with
a complete elimination of the shock instability. The upwind direction is determined by the velocity-
difference vector and the Riemann problem is rotated to automatically introduce sufficient numerical
dissipation. Although the procedure proved to be robust, there is a significant overhead since the Rie-
mann problem has to be solved twice at each cell face. Dumbser et al. [31] developed a matrix stability
procedure to analyze the problem quantitatively for steady shock waves. Their analysis confirmed that
all complete Riemann solvers are unconditionally unstable. Additionally, they localized the source of the
instability in the upstream region. While the instability has often been connected to pressure fluctuations,
recently, Chen et al. [17] suspected an inadequate shear viscosity. They introduced a pressure-based
sensing function to detect shock regions and stabilized the Roe scheme by introducing shear viscosity
into the momentum flux.

Note, that all of the described modifications locally increase numerical dissipation to cure the insta-
bility. The main improvements among the methods is to quantify the amount and location of additional
dissipation as precisely as possible. Thus, a procedure with same or less numerical dissipation as the
original scheme would be highly favorable since then, no supplementary shock sensing procedures are
required.
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Nico Fleischmann, Stefan Adami, Xiangyu Y. Hu, Nikolaus A. Adams: A low dissipation method
to cure the grid-aligned shock instability. Journal of Computational Physics, Volume 401, 109004, 2020.
[39]

In this publication, we provide a fundamentally different approach to stabilize the Roe flux. For the first
time, the problem is connected with another well-known flaw of Godunov-type schemes in the low Mach
number limit. We demonstrate that an excessive acoustic contribution to dissipation in the flux calculation
in transverse direction to the shock front propagation is the prime reason for the numerical instability. In
contrast to all previous methods described in literature, we cure the instability while the dissipation of the
scheme is further reduced. Thus, no detection mechanism of strong shocks is necessary. The provided
fix is straightforward to implement since it requires only little modification of the original formulation.

In the first part of the paper, the classical Roe flux is presented using a formulation that allows for
an easy distinction between two different contributions to the dissipative flux term. The advection con-
tribution is related to the linear eigenvector |u|, while the acoustic dissipation is related to nonlinear
eigenvalues |u± c|. For vanishing Mach numbers, i.e. vanishing velocities, it is obvious that the acoustic
contribution to dissipation dominates the advection contribution to dissipation. A connection to the su-
personic carbuncle phenomenon can be established for flux evaluations in cells where the shock front
propagates aligned to the computational grid. In such cells, the transverse velocity component is van-
ishing, while the magnitude of total velocity is high. These configurations are essential for the onset of
all types of carbuncle-like instabilities. Consequently, we denote them "grid-aligned shock instabilities".

In the second part of the paper, we provide a straightforward systematic procedure to reduce the
acoustic contribution to dissipation for low Mach numbers. The cure is limited to a modification of non-
linear eigenvalues of the system. The resultant new eigenvalues read

λ′1,5 = û±min (φ · |û| , ĉ) λ′2,3,4 = û. (3.5)

A constant φ-value of five is chosen to limit the influence of the modification to Mach numbers lower
than 0.2. Simultaneously, this choice ensures comparable acoustic and advection contributions to the
numerical dissipation in the low Mach number direction of the flow. We also provide a similar formalism
for a componentwise local Lax-Friedrichs flux. This flux is closely related to the Roe flux but reveals a
higher robustness in terms of positivity preservation. The novel fluxes are denoted Roe-M and cLLF-M.

The effectiveness of the presented fluxes is demonstrated for a comprehensive set of test cases
that are relevant in the context of shock instabilities. We provide a detailed evaluation of long-term runs
for Quirk’s odd-even decoupling case to demonstrate the robustness of Roe-M also quantitatively. The
Sedov blast wave test case is utilized to reveal the multidimensional nature of the instability. When
we apply the modification only in one spatial direction, only the stability of shocks moving to the other
direction is affected. Moreover, Roe-M delivers stable results for the double Mach reflection without
producing a kinked Mach stem. The corner flow problem is simulated using cLLF schemes due to the
known positivity issue of Roe schemes at the singular corner point. With the application of cLLF, no odd-
even decoupling can be observed in the backflow of the moving shock front. The modified schemes also
prevent the occurrence of carbuncles in classical hypersonic cylinder flows. This is both demonstrated
for a moderate Mach number of three and for a high Mach number of twenty. The Elling test case is
particularly interesting to simulate with the modified fluxes, since Elling [33] claimed that the carbuncle
in this case is physically motivated and should not be suppressed by numerical schemes. The ability of
our schemes to simulate the carbuncle structure without additional disturbances along the shock front
confirms the predictions of Elling. Finally, the new fluxes are also successfully applied to challenging
multi-component flow simulations, such as the shock-induced collapse of an air bubble in water and the
interaction of a shock-wave in air with a helium bubble.

My contribution to this work lies in performing the investigations on the connection of the low Mach
problem to different shock instability settings in supersonic flows. I implemented all described procedures
in our in-house code and performed the presented numerical simulations. Furthermore, I selected the
simulation setups presented in the paper, and post-processed the results. Finally, the manuscript for the
publication was written predominantly by me.
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3.3 Centralized and Shock-Stable Formulation of the HLLC Riemann
Solver

The approximate Roe Riemann solver and HLL-type Riemann solvers are widespread in compressible
CFD frameworks today. While the shock instability often leads to catastrophic failure in combination with
the Roe flux, the flaw is more subtle for the HLLC flux. Thus, the vast majority of literature is focused on
investigations of the shock instability connected with the Roe flux. However, some few procedures have
also been developed for the HLLC scheme to improve its shock stability.

The incomplete predecessor scheme of the HLLC flux, the HLL flux, is commonly stated to be sta-
ble against the shock instability [114]. Hence, most approaches focus on combining both methods with
the target to maintain the robustness of HLL and the contact-resolving property of HLLC. In early ap-
proaches, simple switches between the original HLL and the HLLC scheme are applied leaving the
solvers themselves unchanged. Already 1997, Quirk [114] suggested to apply the HLL scheme near
strong shocks, and a low-dissipation scheme for the rest of the domain with the help of a decision rule.
This switching procedure was later improved by Kim et al. [86]. They limited the application of the dissi-
pative HLL solver to fluxes in transverse direction of the shock propagation. Another modification of the
switching procedure was proposed by Huang et al. [75]. They limit the application of the HLL flux to cer-
tain conservative states only. Moreover, they successfully applied the rotated Riemann solver procedure
proposed by Ren [118] to the HLLC flux.

Shen et al. [137] adopted the matrix stability analysis proposed by Dumbser et al. [31] to analyze
the linear stability properties of hybrid schemes. They concluded that the numerical shock instability
originates from the flux in transverse direction of the shock wave propagation. Later, the authors devel-
oped a pure HLLC-type flux with shock-stable properties via the introducing of additional shear viscosity
[138]. Stability can be achieved via the smearing of the shear velocities on both sides of the contact
line. The resulting scheme was denoted as HLLCM. However, the increased amount of dissipation limits
an accurate calculation of boundary layers. Thus, a hybrid HLLC-HLLCM version was suggested for
application to complex flows. Additionally, a HLL-type solver with a newly introduced vorticity wave has
been found to be unstable [138]. Recently, Shen et al. [136] performed a comparative study of HLL-type
schemes with respect to the carbuncle phenomenon. They found that nonlinear acoustic waves rather
than linear vorticity and shear waves play an important role to damp out the instability. Moreover, the
authors found the application of Einfeldt signal speed estimates to be more prone to the instability than
Davis estimates. This result again indicates that insufficient dissipation plays a role in the onset of the
instability, since Davis estimates are known to be more dissipative than Einfeldt estimates.

Xie et al. [165] performed a comparative study with multiple numerical schemes obtaining results that
point in the same direction as those of Shen et al. [138]. They again found additional numerical dissipa-
tion corresponding to shear waves to be effective to stabilize low-dissipation schemes. Moreover, they
argued that this helps to maintain the consistency of mass flux across the normal shock by smearing the
perturbed momentum behind the shock. More recently, the authors proposed an alternative stabilization
with an additional pressure-dissipation term that is activated near shocks and damps spurious pressure
perturbations [166].

Simon and Mandal [143] separated the HLLC flux into the inherent HLL part and an antidiffusive part.
From this starting point, the authors designed a shock-stable scheme denoted as HLLC-ADC, where the
activation of the antidiffusive term is controlled by a pressure-ratio-based multidimensional shock sensor.
Later, the authors proposed an alternative stabilization strategy with a selective wave modification that
increases the inherent dissipative HLL part in the vicinity of shock waves [144]. The antidiffusive term of
the resulting HLLC-SWM flux remains identical to that of the original HLLC.

All previous attempts to recover the shock stability of the HLLC flux are strongly connected to the
HLL flux. However, any combination of HLLC and HLL inevitably increases the inherent dissipation of
the scheme and limits its usability for turbulent flows. Again, a shock-stable HLLC scheme with similar
or reduced numerical dissipation would be highly desirable.
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Nico Fleischmann, Stefan Adami, Nikolaus A. Adams: A shock-stable modification of the HLLC
Riemann solver with reduced numerical dissipation. Journal of Computational Physics, Volume 423,
109762, 2020. [37]

The first aim of this publication is to investigate the occurrence of the grid-aligned shock instability in
detail for the HLLC flux. Sometimes, the HLLC flux is recommended as a fix to apply, if results using the
Roe flux are deteriorated by the carbuncle phenomenon. Indeed, the effects of the instability are often
less harmful, and rarely lead to a failure of the simulation when the HLLC flux is applied. Usually, only
the odd-even decoupling in the backflow of strong shocks is observed, but no carbuncle structures grow
ahead of the shock front. However, we demonstrate that is only true for moderate resolutions and two-
dimensional simulations. In three-dimensional simulations, the HLLC flux produces similar carbuncle
structures as the Roe flux does. With increasing computational power, three-dimensional calculations
will become mainstream, and it is evident that shock-stable versions of the HLLC are required.

The second aim of this publication is to provide such a shock-stable HLLC flux exploiting the pre-
viously discovered connection to an exceeding acoustic dissipation in the low Mach number limit [39].
Unlike for the Roe scheme, the structure of the HLLC scheme renders it more complicated to distin-
guish advection and acoustic contributions to numerical dissipation. For this purpose, we derived a
novel centralized formulation of the HLLC flux. This centralized form avoids performance-unattractive
case evaluations, and allows for an easier distinction between different dissipation contributions. The
centralized HLLC flux formulation reads

FH LLC =







FL if SL ≥ 0,

FR if SR ≤ 0,

F∗ else

(3.6)

with

F∗ =
1
2
(FL + FR) +

1
2
[SL (U∗L −UL) + |S∗| (U∗L −U∗R) + SR (U∗R −UR)] . (3.7)

Interestingly, this formulation demonstrates a strong connection to the Lax-Friedrichs flux. If all signal
speed estimates of the HLLC flux are set to the scalar maximum signal speed of the Lax-Friedrichs flux,
then the HLLC flux directly reduces to the Lax-Friedrichs flux. A reduction of the acoustic contribution to
dissipation can now be easily achieved via a systematic reduction of nonlinear eigenvalues according to

SH LLC−LM
L = φ · SL, SH LLC−LM

R = φ · SR, (3.8)

where φ is a factor that smoothly reduces to zero for vanishing Mach numbers.
Properties of the resulting HLLC-LM scheme have been thoroughly tested for a comprehensive set

of cases. The corner flow problem is applied to demonstrate both the consistency of the centralized
formulation and the stability of the HLLC-LM flux against the odd-even coupling in the backflow of the
shock. A significant reduction of dissipation of HLLC-LM at slip lines is revealed for the Rayleigh-Taylor
instability. The shock stability has been quantified utilizing Quirks odd-even decoupling case. A double
Mach reflection and a Sedov blast wave have been simulated with large grid resolutions to demonstrate
the stability for strongly refined meshes. The later case has also been evaluated in three dimensions.
In this case, the original HLLC develops carbuncle-like spikes, whereas results for the HLLC-LM are
perfectly smooth. A significantly improved accuracy of the HLLC-LM scheme can also be observed for
a global low Mach number flow around a cylinder. Finally, the scheme is tested for complex single- and
multi-component flows with extreme grid resolutions, both in two and three dimensions.

My contribution to this work lies in performing simulations to uncover the increasing vulnerability
of the HLLC flux for higher resolutions and three-dimensional simulations. Furthermore, I derived the
centralized formulation and applied the dissipation reduction procedure. I implemented all described pro-
cedures in our in-house code and performed the presented numerical simulations. Moreover, I selected
the simulation setups presented in the paper, and post-processed the results. Finally, the manuscript for
the publication was written predominantly by me.
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3.4 Evaluation of Signal Speed Estimates for HLL-Type Solver

In their seminal work, Harten, Lax, and van Leer [66] described possible design strategies for a novel
group of Riemann solvers. However, the authors did not provide the necessary signal speed estimates,
which are required for the practical application of these schemes. Yet, they stated that estimates for
signal speeds have to bound the physical wave speeds. It took five more years till both Einfeldt [32]
and Davis [24] independently proposed accurate estimates to complete the first Riemann solver of this
group. Interestingly, both estimates are in widespread use to this day, even though they do not fulfill the
design requirements requested by Harten et al. [66]. Both estimates do not bound the physical wave
speeds as demonstrated by Toro et al. [151]. Davis estimates are easy to implement and independent
of the applied equation of state. Only the sound speed has to be provided. Instead, Einfeldt estimates
are designed for ideal gases assuming reasonable γ-values. They are less dissipative when compared
to Davis estimates, however, extension to complex equation of states is more complicated. Thus, Davis
estimates are still popular for multi-component flow simulations in diffuse-interface schemes, while Ein-
feldt estimates are traditionally more popular for single-phase gas flows. Batten et al. [10] provided a
signal speed estimate for the contact wave, which is commonly applied today. Moreover, Toro et al. [150]
suggested a signal speed calculation based on a constant intermediate pressure instead of using direct
estimates. However, this approach is rarely applied in CFD codes.

More recently, there have been attempts to design signal speed estimates that constitute true bounds
of the physical values [54, 151]. Guermond and Popov [54] designed a fast algorithm for the computation
of maximum signal speeds in the Riemann solution for Euler equations with a co-volume equation of
state. Their algorithm shows a cubic convergence rate. Even though their procedure is efficient and
guarantees true bounds, it rarely leads to significant differences in results. Therefore, it is often not
necessary to spend additional computational effort as compared to traditional explicit schemes.

In a series of recent publications [21, 45, 164], traditional signal speed estimates have been replaced
by a simple arithmetic-averaging procedure for the speed of sound. The authors justify the simplification
by numerical verification upon a series of test cases. However, in contrast to traditional methods a
theoretical argumentation for this simple approach is only given for sufficiently weak shocks, as already
remarked by Einfeldt [32]. Thus, a general applicability of arithmetic-average estimates is questionable
and desires further investigation. Due to the increasing complexity of CFD algorithms backtracking of
errors can be a challenging task. There is a particular interest that Riemann solvers, which represent
the lowest level of compressible schemes, deliver reliable results.
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Nico Fleischmann, Stefan Adami, Nikolaus A. Adams: On an inconsistency of the arithmetic-
average signal speed estimate for HLL-type Riemann solvers. Journal of Computational Physics: X,
Volume 8, 100077, 2020. [38]

In this publication, we perform a detailed investigation on popular signal speed estimates for HLL-
type solver. We demonstrate a major deficiency of the arithmetic-average estimate both via theoretical
considerations and a numerical test case.

We evaluate the signal speed estimates of Davis, Einfeldt, Toro and the simplified arithmetic-average
estimate for a simple moving shock wave, which is described by the Rankine-Hugoniot locus. As de-
picted in Figure 3.2, the arithmetic-average estimates significantly underestimate the true wave speeds.
Moreover, for Mach numbers higher than 3.4, the estimate of the contact signal speed reveals a higher
magnitude than the nonlinear signal speed estimate. This is a violation of the fundamental assumption
SL < S∗ < SR. Similar results are obtained for a steady shock configuration.
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Figure 3.2: Arithmetic-average signal speed estimates for the HLL(C) approximation evaluated for a
simple right-traveling shock wave for different Mach numbers (solid: right nonlinear; dotted: contact;
dashed: left nonlinear)

In the second part of the paper, the effect of these theoretical considerations is demonstrated for
the prediction of a bow shock in a simulation of a hypersonic flow around a cylinder. The application
of arithmetic-average estimates leads to non-physical results, whereas all other estimates obtain the
physically valid result. Additionally, special attention is required when a popular sign formulation of the
HLLC solver is applied. Then, the flaw of the arithmetic-average estimate is almost completely hidden,
which makes errors due to inaccurate signal speed estimates particularly difficult to detect and may lead
to undefined behavior. Considering the findings in the paper, the arithmetic-average estimate cannot be
recommended to apply, especially since cheap and consistent alternative formulations are available.

My contribution to this work lies in uncovering the shortcomings of the arithmetic-average signal
speed estimates. Additionally, I performed the theoretical analysis of simplified moving and steady shock
configurations to understand the erroneous simulation results for bow shock simulations. I implemented
all described procedures in our in-house code and MATLAB, and performed the presented numerical
simulations. Moreover, I selected the simulation setups presented in the paper, and post-processed the
results. Finally, the manuscript for the publication was written predominantly by me.
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Chapter 5

Concluding Discussion with Respect to the
State of the Art

Despite substantial progress in the development of numerical schemes in the last decades, the simula-
tion of compressible flows remains to be a challenge that various different scientific groups investigate
worldwide. Nowadays, scientific research for compressible flows is increasingly focused on the precise
prediction of the interaction of shock waves with different material interfaces [3, 71, 77, 132]. Especially,
material interfaces that reveal a significant change in the physical behavior of the involved materials,
such as air-water and air-solid interfaces, challenge state-of-the-art numerical solvers [134]. Interest-
ingly, a limited accuracy or even breakdown of such simulations is not always triggered by the interface
treatment itself. Instead, it is often inherited from an inconsistent single-phase treatment [114]. Latest
multi-component flow solvers heavily built upon the numerical treatment of single-phase configurations
[14, 135, 163]. Early diffuse-interface approaches only extend the set of equations by an additional
advection equation [1, 142]. The resulting system of equations is then solved using the exact same
numerical approach as for the single phase [78]. Even though sharp-interface methods, such as the
level-set method, introduce a more sophisticated treatment of fluid interfaces including surface tension
effects, large regions of the flow that are not directly located at an interface completely rely on a precise
single-phase treatment [35, 71]. Note that in some cases, an imprecise single-phase treatment may
show its adverse effects not until it is applied for the more challenging multi-component flow situations.
For example, the artificial asymmetry of simulation results is heavily amplified by the level-set method.
This is a well-known fact in the scientific community, however, rarely reported in literature. Hence, a
consistent and robust single-phase treatment is crucial for the accurate calculation of complex flow situ-
ations. The novel results presented in this thesis serve this purpose in multiple ways.

The effect of symmetry breaking in numerical results when low-dissipation schemes are applied is
well-documented in literature [6, 25, 40–42, 117, 139, 146, 147, 168, 170, 174]. Moreover, severe sym-
metry deviations were sometimes judged as a beneficial property of the scheme to uncover previously
hidden underlying physics [41, 42]. However, a detailed explanation of this effect has not been described
in literature so far. In this thesis, the reason for numerically induced symmetry breaking has been inves-
tigated. Floating-point truncation errors have been identified as the prime reason to trigger instabilities.
High-order discretization schemes in combination with highly resolved meshes decrease numerical vis-
cosity to a point where damping of the inherent physical instabilities of the inviscid Euler equations
becomes insufficient. It is pointed out that the onset of symmetry breaking with such low-dissipative
schemes first is a manifestation of algorithmic imperfections rather than of the low dissipation of the
numerical scheme. The argumentation is supported by an easy and cheap procedure to completely
avoid numerically induced symmetry breaking, independent of the inherent dissipation of the scheme
and the grid resolution. Simulations have been performed with so far unprecedentedly large resolutions
for a set of benchmark cases with schemes up to ninth order. This work improves the consistency of
the numerical simulation and demonstrates the increasing relevance of implementation verification that
accompanies the evolution from peta- to exascaling computing power.
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Another widespread flaw in numerical simulations of high-speed aerodynamics is the so-called car-
buncle phenomenon [114]. This instability occurs when strong shock waves move aligned to the compu-
tational grid, and it prevents an accurate computation of high Mach number flows using low-dissipation
shock-capturing methods [31]. To this day, the mechanism of this instability is still not fully understood
[91]. All available attempts to cure the shock instability introduce additional numerical dissipation [122].
The additional dissipation may help to suppress the instability to a certain extend, but many proce-
dures are less effective when the computational grid is refined. Additionally, they counteract the target
of decreasing numerical dissipation. In this thesis, a novel explanation of the instability is provided. It
connects the problem to another well documented shortcoming of Godunov-type schemes in the incom-
pressible limit [56, 57]. It is demonstrated that an inaccurate scaling behavior of acoustic and advection
contribution to the numerical dissipation triggers the instability. The flux calculation in transverse direc-
tion to the shock-front propagation incorporates a vanishing velocity component that resembles a low
Mach number situation in the local Riemann problem. A reduction of acoustic dissipation for low local
componentwise Mach number is demonstrated to be efficient to stabilize the simulation of hypersonic
flows while further reducing the numerical dissipation of the underlying scheme. The improved accuracy
and robustness of the novel approach has been demonstrated with newly designed Roe and compo-
nentwise local Lax-Friedrichs schemes for a comprehensive set of benchmark cases and heavily refined
computational grids.

Moreover, the previously described approach to cure the grid-aligned shock instability has also been
extended to another important group of complete Riemann solvers. A direct application to the HLLC
flux is shown to be ineffective. Thus, a novel centralized formulation of the HLLC flux is derived. This
centralized formulation allows for a straightforward reduction of acoustic dissipation in the low Mach
number limit. The resultant flux is denoted HLLC-LM. Again, multiple properties of the novel scheme
are demonstrated for complex two- and three-dimensional test cases. The HLLC-LM scheme reveals
excellent results and demonstrates its capability to simulate complex super- and hypersonic flow physics
while improving accuracy and robustness.

During the reformulation of the HLLC scheme a consistency problem with a specific signal speed
estimate, that recently gained a lot of popularity, became apparent [21, 45, 164]. A detailed investi-
gation of the behavior of the arithmetic-average signal speed estimate for HLL-type schemes revealed
an extremely poor prediction of nonlinear signal speeds in some specific cases, such as bow shocks.
Moreover, as a consequence of the erroneous nonlinear estimates evaluated with arithmetic-average es-
timates, principle assumptions of the underlying HLL-type solver, such as SL < S∗ < SR may be violated.
Aiming for a consistent methodology, this simplification of the signal-speed estimates should be avoided
and classical estimates are required instead.

The findings presented in this thesis improve the quality of classical finite-volume schemes and
deepen the understanding of underlying numerical effects. The proposed modifications are easy to apply
to many commonly applied methods. Since they improve single-phase finite-volume methodology, which
constitutes the basis of latest multi-component solvers, there is a large potential for future applications.
The methods can be directly applied in combination with both diffuse- and sharp-interface methods.
Tests with these types of multi-component solvers have been performed and no additional difficulties
became apparent. An application of the proposed methods to related physics, such as shallow water
equations or magnetohydrodynamics, seems also possible.

Even though the symmetry breaking and the grid-aligned shock instability could be classified as pure
numerical effects in the first place, both effects are closely connected to inherent instability mechanisms
of the underlying Euler system. Indeed, the non-symmetric shapes obtained in many low-dissipation
solutions closely resemble experimental results, which never show perfect symmetry. However, instead
of imitating this effect via uncontrolled and potentially biased floating-point disturbances, a more so-
phisticated approach would be to introduce a defined level of disturbances to the simulation. It seems
particularly interesting to study the effect of random disturbances on flow phenomena that occur at
vanishing physical viscosity. The documented impact of floating-point disturbances clearly reveals the
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potential of small scale disturbances to affect large scale structures via inverse cascade effects. A phys-
ical background is also commonly discussed for the carbuncle phenomenon. In ideal settings, such as
for the classical bow shock simulation, the carbuncle phenomenon is clearly a numerical artifact since
its occurrence is closely related to the applied computational grid. Nevertheless, with the fact that mi-
nor numerical disturbances are sufficient to trigger an instability mechanism, it stands to reason that
similar instabilities could also be triggered by minor physical disturbances. Indeed, some experimental
observations are documented in literature where similar structures can be detected when bow shocks
are artificially disturbed. Such phenomena are rarely investigated and might be an interesting subject for
future studies, both numerically and experimentally.
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a b s t r a c t 

Modern applications of computational fluid dynamics involve complex interactions across scales such as 

shock interactions with turbulent structures and multiphase interfaces. Such phenomena, which occur at 

very small physical viscosity, require high-resolution and low-dissipation compressible flow solvers. Many 

recent publications have focused on the design of high-order accurate numerical schemes and provide 

e.g. weighted essentially non-oscillatory (WENO) stencils up to 17th order for this purpose. As shown in 

detail by different authors, such schemes tremendously decrease adverse effects of numerical dissipation. 

However, such schemes are prone to numerically induced symmetry breaking which renders validation 

for the targeted problem range problematic. 

In this paper, we show that symmetry-breaking relates to vanishing numerical viscosity and is driven 

systematically by algorithmic floating-point effects which are no longer hidden by numerical dissipation. 

We propose a systematic procedure to deal with such errors by numerical and algorithmic formulations 

which respect floating-point arithmetic. We show that by these procedures inherent symmetries are pre- 

served for a broad range of test cases with high-order shock-capturing schemes in particular in the high- 

resolution limit for both 2D and 3D. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Many modern applications of computational fluid dynamics re- 

quire high-order shock-capturing methods for the accurate predic- 

tion of compressible flow features involving shock waves and com- 

plex flow structures [1–4] . In order to achieve an efficient and 

accurate computation, high-order spatial reconstructions are em- 

ployed together with essentially non-oscillatory (ENO) schemes to 

avoid spurious oscillations near discontinuities [5–7] . 

In their pioneering work, Harten et al. [8] introduced the essen- 

tially non-oscillatory (ENO) method. In this method the smoothest 

interpolation stencil out of a set of candidate stencils is selected to 

adapt the stencil to the actual solution. A further major develop- 

ment is the weighted-essentially non-oscillatory (WENO) method, 

first introduced by Liu et al. [9] . They proposed to construct a 

(2 r − 1) th-order accurate reconstruction from a weighted combi- 

nation of several candidate stencils of order r . Effectively, the or- 

∗ Corresponding author. 

E-mail addresses: nico.fleischmann@tum.de (N. Fleischmann), 

stefan.adami@aer.mw.tum.de (S. Adami), nikolaus.adams@tum.de (N.A. Adams). 

der (2 r − 1) is recovered in smooth regions of the flow, whereas 

in the vicinity of discontinuities the ENO property is maintained. 

The work of Jiang and Shu [10] on the efficient implementation of 

WENO stencils allowed for a straightforward design of higher-order 

methods and marks a major breakthrough of the WENO methods 

family. Due to its robust behavior combined with the increased 

spatial order, their fifth-order variant WENO5-JS gained rapid pop- 

ularity in numerical solutions of various kinds of applications not 

only in the field of fluid mechanics [11–14] . A thorough overview 

of recent applications is given in [15] . Different authors have fur- 

ther improved the method without changing the overall concept. 

Henrick et al. [16] dealt with the problem that classical WENO 

schemes are not able to recover the full order of accuracy near crit- 

ical points by the introduction of a mapping procedure resulting in 

the WENO-M scheme. Furthermore, Borges et al. [17] suggested to 

introduce a high-order global smoothness indicator and increase 

the weights of non-smooth stencils. With the resulting WENO5-Z 

stencil the dissipation in the vicinity of discontinuities can be fur- 

ther decreased while maintaining the ENO property. 

Despite the remarkable success in many applications, classi- 

cal WENO schemes are still too dissipative to fully resolve the 

https://doi.org/10.1016/j.compfluid.2019.04.004 

0045-7930/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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small-scale flow features of turbulence in direct numerical simula- 

tions. For this purpose, the order of the methods has been system- 

atically increased starting with the work of Balsara and Shu [18] , 

who followed the design rules of [10] , and later by Gerolymos et al. 

[19] , who extended and catalogued the reconstruction for stencils 

up to 17 th order. However, these first high-order methods struggle 

with stability problems and tend to lose the ENO property with- 

out further adaptations [19] . Balsara et al. [20] recently introduced 

a new class of WENO schemes with adaptive order. By adaptively 

decreasing the order of the method, stability can be maintained 

while reaching higher-order in smooth areas. Furthermore, the re- 

construction utilizes Legendre polynomials, which enables a more 

efficient calculation of the smoothness factors. Another approach 

to further reduce the dissipation is provided by the recently pro- 

posed class of targeted ENO (TENO) schemes [21,22] . While using 

the same stencil size as classical WENO schemes, the numerical 

dissipation is significantly reduced by an ENO-like stencil selection. 

Although high-order methods require an increased amount of 

computational effort, the steady growth in computational power, 

that recently is mainly driven by the massive application of paral- 

lelization strategies, allows for extreme mesh resolutions (see e.g. 

Ref. [23] ). Certainly, there is an increasing trade-off between re- 

construction order and higher numerical resolutions in terms of 

absolute error level [5] . However, the combination of high-order 

methods with fine meshes leads to a strong decrease in numerical 

dissipation. Eventually, diminishing numerical dissipation fails to 

suppress physical instabilities of well-established verification cases 

for the inviscid Euler equations, which may develop symmetry 

breaking as numerical artifact, see e.g. the Rayleigh-Taylor insta- 

bility [5,21,22,24–27] or the two-dimensional Riemann problems 

[28,29] . This sort of phenomena depends on the chosen scheme, 

on mesh resolution, but also on algorithm implementation as it 

is driven by roundoff errors. For moderate mesh resolutions, such 

symmetry breaking typically can be observed for small-scale struc- 

tures near the resolution limit. However, for higher-order schemes 

with lower dissipation, the small-scale symmetry breaking exhibits 

inverse-cascade phenomena and affects the macroscopic flow evo- 

lution leading to a drastically changed flow topology [22,24] . 

Remacle et al. [24] already suspected floating-point inaccura- 

cies due to roundoff errors to be the relevant mechanism behind 

numerical symmetry breaking for discontinuous Galerkin methods. 

Sutherland [29] introduced an approach to control the floating- 

point truncation error. Changes to physical variables that are 

smaller than a defined threshold are considered to be non-physical 

and therefore discarded. In the context of high-order (W/T)ENO- 

type methods in fluid mechanics, the problem has not been care- 

fully addressed or it is qualified as induced by the low dissipa- 

tion [21] . Shock or interface-driven (nearly) inviscid flows are the 

domain of high-resolution shock-capturing schemes. In this paper, 

we show that it is exactly these schemes which suffer from non- 

physical artifacts when they are validated for such flows. 

We demonstrate the effect of inaccuracies in floating-point 

arithmetic for the numerical solution of the inviscid Euler equa- 

tions with low-dissipative (W/T)ENO-type methods. We demon- 

strate the occurrence of numerical symmetry breaking and develop 

strategies to control and avoid this artifact. Unlike Sutherland [29] , 

we do not reduce the accuracy range of the calculations. Instead, 

we show the importance of consistent algorithms that take into ac- 

count the shortcomings of floating-point arithmetic systematically. 

Eventually, fully symmetric results can be achieved even for very 

low-dissipative schemes at large resolutions, thus enabling verifi- 

cation by grid-converged states and cross-code validation. 

The remainder of the paper is organized as follows. 

Sections 2 and 3 briefly review the inviscid Euler equations 

as governing equations and the finite volume method along 

with the method-of-lines approach. Furthermore, the relevant 

relations for the HLLC approximate Riemann solver and the 

characteristic decomposition strategy that is applied along with 

the high-order stencils are presented. In Section 4 , we identify 

numerical symmetry-breaking mechanisms and explain straight- 

forward workarounds as well as a generalized solution strategy. In 

Section 5 , we present simulation results for a set of benchmark 

cases and an extension of the implosion test case to three di- 

mensions applying both high-order methods and high resolutions. 

Conclusions are drawn in Section 6 . 

2. Governing equations 

An inviscid compressible flow evolves according to the three- 

dimensional Euler equations 

U t + F ( U ) x + G ( U ) y + H ( U ) z = 0 , (1) 

where U is the density of the conserved quantities mass ρ , mo- 

mentum ρv ≡ ( ρu, ρv, ρw ) and total energy E = ρe + 

1 
2 ρv 2 , with e 

being the internal energy per unit mass. 

The fluxes F, G and H are defined as 

F = 

⎛ 

⎜ ⎜ ⎝ 

ρu 

ρu 

2 + p 
ρu v 
ρuw 

u ( E + p ) 

⎞ 

⎟ ⎟ ⎠ 

, G = 

⎛ 

⎜ ⎜ ⎝ 

ρv 
ρu v 

ρv 2 + p 
ρv w 

v ( E + p ) 

⎞ 

⎟ ⎟ ⎠ 

, H = 

⎛ 

⎜ ⎜ ⎝ 

ρw 

ρuw 

ρv w 

ρw 

2 + p 
w ( E + p ) 

⎞ 

⎟ ⎟ ⎠ 

. (2) 

The set of equations is closed by the ideal-gas equation of state, 

where the pressure p is given by p = ( γ − 1 ) ρe with the ratio of 

specific heats γ . 

3. Finite volume approach 

In this section, we briefly recall necessary details of the 

method-of-lines approach for finite volumes, which is widely used 

to solve systems of hyperbolic equations. We focus on aspects that 

are particularly important for considering floating-point inaccura- 

cies. More detailed descriptions of the overall scheme can be found 

e.g. in [30,31] . 

The time evolution of the vector of cell-averaged conservative 

states Ū is given by 

d 

dt 
Ū i = 

1 

�x 
(f i − 1 

2 , j,k − f i + 1 2 , j,k 

+ g i, j− 1 
2 ,k 

− g i, j+ 1 2 ,k 
+ h i, j,k − 1 

2 
− h i, j,k + 1 2 

) , (3) 

where �x ( =�y = �z) is the cell size of a uniform Cartesian grid 

and f, g and h approximate the cell-face fluxes in x -, y - and z - 

direction, respectively. These fluxes are determined dimension-by- 

dimension from an approximate Riemann solver combined with 

a high-order WENO [10,18] or TENO [21] spatial reconstruction 

scheme. Additional volume source terms, such as gravitational ac- 

celeration, are omitted here for simplicity. The resulting ODE (3) is 

integrated in time using a second-order strong stability-preserving 

(SSP) Runge–Kutta scheme [32] . Note, that a higher-order time in- 

tegration does neither trigger symmetry breaking nor affect the 

general results of the simulations presented in this paper and is 

therefore omitted to save computational cost. 

3.1. HLLC approximate Riemann solver 

The majority of state-of-the-art methods relies on approximate 

Riemann solvers since exact Riemann solvers are computationally 

expensive. Two common types of approximate Riemann solutions 

are the Roe [33] and the HLL(C) [34] approximation. With the 

restoration of the contact wave by Toro et al. [35] , the HLLC ap- 

proximation models all wave types of the Euler equations explic- 

itly. Compared to the Roe approximation it is slightly more dissi- 
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pative. Nevertheless, the better positivity-preservation of the first- 

order Godunov scheme with the HLLC approximation renders it fa- 

vorable for problems with low density or pressures [36] . We fo- 

cus on a HLLC flux formulation, although for the high-order recon- 

structions as used in this work, it does not fully maintain positiv- 

ity, see also [37] . We emphasize that all concepts or workarounds 

essentially apply also to other approximate Riemann solvers. 

As “HLLC solver” we define an algorithm that delivers approx- 

imate cell-face fluxes of the Riemann problem with reconstructed 

left and right face states, U 

L and U 

R , respectively. Following the 

compact formulation of Johnsen and Colonius [38] , the HLLC flux 

is defined as 

f HLLC = 

1 + sign (s ∗) 
2 

[
f L + s −

(
U 

∗L − U 

L 
)]

+ 

1 − sign (s ∗) 
2 

[
f R + s + 

(
U 

∗R − U 

R 
)]

, (4) 

where two intermediate states, U 

∗L and U 

∗R , are separated by the 

contact wave and are determined from 

U 

∗K = 

s K − u 

K 

s K − s ∗

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρK 

ρK s ∗

ρK v K 
ρK w 

K 

E K + 

(
s ∗ − u 

K 
)(

ρK s ∗ + 

p K 

s K −u K 

)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(5) 

with k = L, R . The wave speeds s − and s + are estimated according 

to Batten et al. [36] from 

s − = min (s L , 0) , s + = max (s R , 0) , (6) 

with 

s L = min ( ̄u − c̄ , u 

L − c L ) , s R = max ( ̄u + c̄ , u 

R + c R ) . (7) 

ū and c̄ are determined from arithmetic averages ū = 

1 
2 

(
u L + u R 

)
and c̄ = 

1 
2 

(
c L + c R 

)
. Alternatively, Roe averaging can be applied to 

determine ū and c̄ , both procedures achieve nearly identical nu- 

merical results [39] . Following Einfeldt et al. [40] , the contact wave 

speed is obtained from 

s ∗ = 

p R − p L + ρL u 

L 
(
s L − u 

L 
)

− ρR u 

R 
(
s R − u 

R 
)

ρL 
(
s L − u 

L 
)

− ρR 
(
s R − u 

R 
) . (8) 

3.2. High-order spatial reconstruction with application of local 

characteristic decomposition 

At the beginning of each time step, only cell-averaged conser- 

vative variables Ū are available. For the application of the HLLC 

procedure as described above, the values at cell faces have to be 

reconstructed. Different higher-order spatial interpolations, such as 

WENO and TENO schemes [10,18,21] , are available in the literature 

for this purpose. Note that if the reconstruction is performed di- 

rectly on conservative variables, spurious oscillations may be in- 

troduced in the vicinity of discontinuities due to interactions of 

different characteristic fields [41] . The issue becomes even more 

relevant when the order of reconstruction is increased, and essen- 

tially non-oscillatory behavior can no longer be guaranteed. As a 

remedy, all cell-averaged conservative variables within the stencil 

range are locally projected onto characteristic space and the recon- 

struction of the cell-face variables is performed with these char- 

acteristic variables W̄ . Afterwards, the reconstructed characteristic 

variables at the cell faces are projected back onto physical space 

and passed to the HLLC solver. This procedure is computationally 

costly and also challenging in terms of floating-point consistency. 

Nevertheless, the decomposition is required whenever spurious os- 

cillations cannot be tolerated or positivity of density and pressure 

is violated. 

Here, we present the characteristic decomposition in x -direction 

in detail. Since the flux is computed dimension-by-dimension, the 

procedure in y - and z -directions is analogous. All conservative vari- 

ables within the stencil range are projected onto characteristic 

space by 

W̄ = L · Ū = L 1 ρ + L 2 ρu + L 3 ρv + L 4 ρw + L 5 E (9) 

with L = ( L 1 , L 2 , L 3 , L 4 , L 5 ) being the left eigenvector matrix of the 
linearized system 

L = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 
4 

q 2 

ˆ H − 1 
2 q 

2 
+ 

1 
2 

ˆ u 
c 

1 
2 

ˆ u 
ˆ H − 1 

2 q 
2 

− 1 
2 c 

− 1 
2 

ˆ v 
ˆ H − 1 

2 q 
2 

− 1 
2 

ˆ w 
ˆ H − 1 

2 q 
2 

1 
2 

1 
ˆ H − 1 

2 q 
2 

−q 2 + 

ˆ H ˆ u ˆ v ˆ w −1 

ˆ v 0 −1 0 0 

− ˆ w 0 0 1 0 

1 
4 

q 2 

ˆ H − 1 
2 q 

2 
− 1 

2 
ˆ u 
c 

1 
2 

ˆ u 
ˆ H − 1 

2 q 
2 

+ 

1 
2 c 

− 1 
2 

ˆ v 
ˆ H − 1 

2 q 
2 

− 1 
2 

ˆ w 
ˆ H − 1 

2 q 
2 

1 
2 

1 
ˆ H − 1 

2 q 
2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(10) 

with q 2 = ˆ u 2 + ̂

 v 2 + ˆ w 

2 and enthalpy H . Note that quantities with 

hat-notation “ˆ . ” denote density-based Roe averages of the cell- 

averaged variables of the cells adjacent to the face. 

After reconstruction, the resulting characteristic cell-face vari- 

ables W̄ recon are projected back onto physical space by 

Ū = R · W̄ recon = R 1 w 1 + R 2 w 2 + R 3 w 3 + R 4 w 4 + R 5 w 5 , (11) 

where R = ( R 1 , R 2 , R 3 , R 4 , R 5 ) denotes the right eigenvector matrix 

of the linearized system and is given by 

R = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

1 
ˆ H − 1 

2 q 
2 

0 0 1 

ˆ u − ˆ c ˆ u 
ˆ H − 1 

2 q 
2 

0 0 

ˆ u + 

ˆ c 

ˆ v ˆ v 
ˆ H − 1 

2 q 
2 

−1 0 

ˆ v 

ˆ w 

ˆ w 

ˆ H − 1 
2 q 

2 
0 1 

ˆ w 

ˆ H − ˆ c ̂  u 

ˆ H 
ˆ H − 1 

2 q 
2 

− 1 −ˆ v ˆ w 

ˆ H + 

ˆ c ̂  u 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (12) 

4. Mechanisms of numerical symmetry breaking 

In the following, we show how nominally symmetric problem 

configurations may result in asymmetric flow evolution due to 

floating-point errors in various steps of the numerical algorithm. 

For simplicity, we first consider two spatial dimensions. Strate- 

gies for three-dimensional problems, which reveal additional chal- 

lenges, are presented afterwards. 

We have chosen the Rayleigh-Taylor instability and a gas im- 

plosion problem as test cases given their sensitivity to small dis- 

turbances. 

The Rayleigh-Taylor instability is a common test case for accu- 

racy studies of numerical schemes [5,21,22,24] , since it contains 

both discontinuities and complex flow structures. Two initial gas 

layers with different densities are exposed to gravity with unity 

magnitude, where the resulting acceleration is directed towards 

the lighter fluid. A small disturbance of the contact line triggers 

the instability. The set-up is chosen according to [5] , where the 

computational domain is [0, 0.25] × [0, 1] and the interface is 

placed at y = 0 . 5 . Initial states are given by ( ρ, u, v , p ) y ≤0 . 5 = 

( 2 , 0 , −0 . 025 c · cos (8 πx ) , 2 y + 1 ) and ( ρ, u, v , p ) y> 0 . 5 = 

(1 , 0 , −0 . 025 c · cos (8 πx ) , y + 1 . 5) , where the speed of sound 

is c = 

√ 

γ p 
ρ with γ = 

5 
3 . Top and bottom boundary states are fixed 

to (1, 0, 0, 2.5) and (2, 0, 0, 1), respectively. Symmetry boundary 

conditions are imposed at the left and right boundary. 

The second test case describes a two dimensional implosion 

of a gas in a square box of size L = 0 . 6 as described by Liska 

and Wendroff [42] . The low-density core region forms another 

square box, yet its size is smaller and it is centered but rotated 
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Fig. 1. Illustration of the asymmetric floating-point evaluation of Eq. (9) for two symmetrically placed cells. 

Fig. 2. Implosion test case t = 1 . 0 : density contours from 0.37 (blue) to 1.18 (red); (left) straightforward implementation without sorting during characteristic decomposition; 

(right) adapted order of evaluations during characteristic decomposition. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 3. Implosion test case t = 2 . 5 : density contours from 0.4 (blue) to 1.05 (red); (left) implementation without brackets for contact wave speed calculation; (right) imple- 

mentation with brackets for contact wave speed calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

by 45 º. The corner points of the inner square box are located at 

( ± 0.15, 0) and (0, ± 0.15). Symmetry boundary conditions are ap- 

plied at all boundaries. Initially, both fluids are at rest with the ini- 

tial states ( ρ, u, v , p ) core = ( 0 . 125 , 0 , 0 , 0 . 14 ) and ( ρ, u, v , p ) outer = 

( 1 . 0 , 0 , 0 , 1 . 0 ) and γ = 1 . 4 . For simplicity, this problem is usually 

studied by employing the two axial symmetries. The reduced prob- 

lem still reveals an inherent symmetry along the diagonal axis. The 

evolution of the jet developing along this axis is very sensitive to 

small disturbances and can be easily deflected, especially for long- 

time simulations up to t = 2 . 5 . Once the symmetry is slightly per- 

turbed, frequent shock-wave interactions lead to a strong increase 

of asymmetry. 

4.1. Lack of associativity 

Standard requirements of modern programming languages en- 

sure that summation and multiplication are commutative for two 

components, i.e. the result given in floating-point notation equals 

the correctly rounded analytic solution. However, if more than two 

components are summed up or multiplied, the final floating-point 

value typically depends on the order of operations, i.e. associativity 

is lost 

( a + b ) + c � = a + ( b + c ) . (13) 
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Fig. 4. Rayleigh-Taylor instability t = 1 . 95 : density contours from 0.85 (blue) to 2.25 (red); symmetry breaking due to limited representation of π to the given number of 

digits with a resolution of 256 × 1024 using a TENO5 stencil. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 5. Rayleigh-Taylor instability t = 1 . 95 : density contours from 0.85 (blue) to 2.25 (red); symmetry breaking due to cosine evaluation inaccuracy. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Numerical algorithms build upon a series of such elementary 

operations. Accordingly, effects of truncation errors cannot be sup- 

pressed completely, however, we found that only few recurring al- 

gorithmic patterns trigger asymmetric flow behavior that leads to 

macroscopic flow deviations. These patterns occur essentially for 

all employed numerical discretization schemes. 

The simulation of the implosion test case using low-dissipative 

schemes is an illustrative example for symmetry breaking along 

the diagonal line, see Fig. 1 . The effect that triggers this asymme- 

try can be traced back to operations where directionally dependent 

quantities are subject to summation or multiplication operations, 

e.g. for the velocity components. Considering two isolated cells 

symmetric to the diagonal line, see Fig. 1 , and a perfectly symmet- 

ric flow at this time instant, the velocity component in x-direction 

of the cell A equals the velocity component in y-direction of cell B 

and vice versa. Together with the lack of associativity, Eq. (13) , the 

characteristic projection in Eq. (9) is prone to floating-point round- 

off errors, and small-scale disturbances are triggered. These distur- 

bances are amplified by physical instability mechanisms of the in- 

viscid flow (e.g. Kelvin-Helmholtz instabilities) and deflect the di- 

agonal jet in the given example. Aiming for preserving symmetry 

we have to ensure that the algorithmic pattern is dimensionally 

invariant. Such patterns with explicit directional dependencies to- 

gether with more than two components occur with the character- 

istic decomposition in high-resolution schemes. 

One straightforward solution to handle the issue is to enforce 

the order of the evaluation of matrix multiplications by insert- 

ing appropriate brackets into the source code. This will force the 
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compiler to handle the operations consistently for any cell. In 2D, 

Eq. (9) becomes 

W̄ = L · Ū = L 1 ρ + ( L 2 ρu + L 3 ρv ) + L 4 E. (14) 

The actual implementation, however, is cumbersome as Eq. (14) is 

part of a matrix multiplication that involves loops. 

Alternatively, we can order the evaluation of Eq. (14) such that 

the sum of momenta is computed first, and the other terms are 

added subsequently, i.e. 

W̄ = L · Ū = (L 2 ρu + L 3 ρv ) + L 1 ρ + L 4 E. (15) 

The same procedure is applied to Eq. (11) . 

When the directional dependence of the characteristic projec- 

tion is eliminated, the expected perfectly diagonal post-implosion 

jet is observed, see Fig. 2 . 

A second example is shown to clarify the symmetry-breaking 

mechanism for a different part of the solver. The same implosion 

problem is now calculated on the full domain. The loss of symme- 

try in the second and fourth quadrant, as shown in the left frame 

of Fig. 3 , is caused by an inconsistent calculation of the wave-speed 

s ∗ in the HLLC solver. By enforcing proper summations using addi- 

tional brackets, Eq. (8) becomes 

s ∗ = 

(
p R − p L 

)
+ [ [ [ ρL u 

L 
(
s L − u 

L 
)

− ρR u 

R 
(
s R − u 

R 
)
] ] ] 

ρL 
(
s L − u 

L 
)

− ρR 
(
s R − u 

R 
) . (16) 

Remarkably, this marginal modification removes these artifacts, see 

the right frame of Fig. 3 . The only difference between both simu- 

lations is the introduction of brackets in one single line of code. 

Note, that the driving mechanism behind symmetry breaking 

in both cases is the lack of associativity. Despite the fact that all 

results in this paper are demonstrated for one specific type of 

flow solver (HLLC) for simplicity, we emphasize that the underly- 

ing principles and derived best-practice guidelines are not limited 

to these methods, but apply for high-resolution schemes for flow 

solvers in general. 

4.2. Generalized solution strategy 

The simple workarounds that were presented in detail in the 

previous section demonstrate the fundamental mechanisms, how- 

ever, they are only applicable to two-dimensional situations. They 

do not work for more complex problems, especially not for three 

dimensions. This can be demonstrated exemplarily for the calcula- 

tion of the velocity magnitude q . Since three components have to 

be summed, three different floating-point results 

q 2 = 

{ 

(v 2 + w 

2 ) + u 

2 , 

(w 

2 + u 

2 ) + v 2 , 
(u 

2 + v 2 ) + w 

2 

(17) 

can be obtained. The same problem arises in several other parts of 

the algorithm, where subterms related to the three Cartesian direc- 

tions have to be summed up, e.g. in Eq. (3) the fluxes in x, y , and z - 

direction. This summation of direction-related terms can be found 

for a wide range of other algorithms in CFD codes including curva- 

ture calculations, multiresolution approaches and level-set meth- 

ods. 

For certain operations, where the preferential direction is 

known a priori, the simple bracketing strategy is applicable such 

as 

q 2 = 

{ 

(v 2 + w 

2 ) + u 

2 for flux calculation in x-direction , 

(w 

2 + u 

2 ) + v 2 for flux calculation in y-direction , 

(u 

2 + v 2 ) + w 

2 for flux calculation in z-direction . 

(18) 

However, generalization of this procedure under relaxed con- 

ditions is not possible. Instead, we propose to use a consistency- 

ensuring function for all relevant summations in the code. Consis- 

tency means in this context that the result of the summation is 

Fig. 6. Rayleigh-Taylor instability t = 1 . 95 : density contours from 0.85 (blue) 

to 2.25 (red); (left) straightforward implementation of Roe-averaging procedure; 

(right) efficient implementation of Roe-averaging procedure. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 

identical for all cases of Eq. (17) . Thus, the consistency-ensuring 

summation restores associativity for floating-point numbers. This 

tailored summation takes the sum of three floating-point values a, 

b and c according to 

SUM consistent = 

1 

2 

( max (s 1 , s 2 , s 3 ) + min (s 1 , s 2 , s 3 ) ) (19) 

with 

s 1 = ( a + b ) + c, 

s 2 = ( c + a ) + b, 

s 3 = ( b + c ) + a, (20) 

and four floating-point values a, b, c and d with 

s 1 = ( a + b ) + ( c + d ) , 

s 2 = ( c + a ) + ( b + d ) , 

s 3 = ( b + c ) + ( a + d ) . (21) 

Note, this procedure does not necessarily provide the floating- 

point representation of the exact analytical result, but it delivers 

a consistent result that is independent of the sequence of terms. 

Hence, the evaluation of the sum becomes directionally indepen- 

dent. Extension to higher numbers of summands is straightfor- 

ward, yet in our experience not required for common applications. 

An alternative, well-known approach to avoid errors in the sum 

of numbers with different order of magnitude is to sort the val- 

ues before adding them up. In principle, this would also work 

here, however, we compared the run time of both procedures and 

found our solution to be around 30 times faster than the applica- 

tion of “std::sort” in C++. The overall performance impact of the 
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C++ Code Example 1. A straightforward algorithm of the Roe-averaging procedure. 

C++ Code Example 2. An efficient algorithm of the Roe-averaging procedure. 

consistency-managed sums for the simulations shown in this pa- 

per is never higher than 10%. 

4.3. Influence of initial disturbance 

Although it seems obvious that perturbations in the initial con- 

dition can affect the simulation result, here we want to raise 

awareness of unintentionally initialized asymmetries. 

Consider the classical Rayleigh-Taylor instability where the ve- 

locity field is perturbed according to 

v = −0 . 025 c · cos (8 πx ) . (22) 

We want to highlight the effect of the accuracy of π when eval- 

uating Eq. (22) . In Fig. 4 we show the Rayleigh-Taylor instabil- 

ity at t = 1 . 95 for a resolution of 256 × 1024 and varying accu- 

racy of the numerical representation of π . Only from 12 digits, 

the error becomes negligible and the Rayleigh-Taylor instability 

seems symmetric. Another well-known effect is an inaccurate co- 

sine evaluation with C++ routines, shown in Fig. 5 . The fact that 

cos (π − ε) � = cos (π + ε) is known in the computer science com- 

munity, yet little attention is payed to its consequences in compu- 

tational fluid dynamics. Again, the symmetry breaking in Fig. 5 is 

simply induced by the violation of cosine-symmetry and could lead 

to wrong interpretations with respect to the quality of numerical 

schemes. As a remedy, we enforced symmetric initial conditions 

by 

v = 

{
−0 . 025 c · cos (8 πx ) , if x < 0 . 125 , 

−0 . 025 c · cos [ 8 π(0 . 25 − x ) ] , otherwise 
(23) 

and observed perfectly symmetric results even for unprecedentedly 

large resolutions for the Rayleigh-Taylor instability as compared to 

literature (see next section). 

4.4. Caveats of performance optimization 

In this last example, we demonstrate the effect of code opti- 

mizations with emphasis on runtime minimization. Given a low- 

dissipative scheme with careful implementation following our pre- 

vious guideline, round-off errors can still be triggered from code 

optimization effort s. 

We consider a scheme which involves the density-based Roe- 

averaging procedures as required for the characteristic decompo- 

sition, see Eqs. (10) and (12) . Following Roe [33] , the average is 

defined as 

ˆ k = 

k̄ i · √ 

ρi + ̄k i +1 · √ 

ρi +1 √ 

ρi + 

√ 

ρi +1 

, (24) 

where k is replaced by the averaged quantity of interest, e.g. u, v, 

w or H . A straightforward algorithm is given in Example 1 . 



N. Fleischmann, S. Adami and N.A. Adams / Computers and Fluids 189 (2019) 94–107 101 

Fig. 7. Rayleigh-Taylor instability: density contours; (top) 128 × 512; (bottom) 256 × 1024. 

From a computational efficiency point of view, the operation 

count of this implementation can be reduced. The evaluation of 

ˆ k = 

k̄ i + ̄k i +1 ·
√ 

ρi +1 

ρi √ 

ρi +1 

ρi 
+ 1 

(25) 

is analytically identical to Eq. (24) , yet computationally prefer- 

able for the saving of one costly root function evaluation. How- 

ever, this popular rearrangement causes asymmetry as demon- 

strated in the following. The optimized C++ code is shown in 

Example 2 . 

In Fig. 6 , we show two snapshots of the density contours from a 

Rayleigh-Taylor instability simulation using the implementation of 

Eq. (24) (left figure) and Eq. (25) (right figure), respectively. Both 

simulations are performed with TENO5 ( C T = 10 −5 ) using 128 × 512 

cells and the density is shown at t = 1 . 95 . Obviously, the opti- 

mized algorithm strongly affects the quality of the results and ini- 

tiates symmetry breaking. Successive mathematical operations, es- 

pecially within the costly root function, lead to a fast amplification 

of floating-point errors that affects the overall flow evolution even 

for moderate resolutions. 

5. High resolution examples and discussion 

We have reported several strategies to improve the solver im- 

plementations for the Euler equations with symmetry preserving 

property. In this section, we demonstrate their efficiency for mod- 

ern low-dissipative numerical schemes together with large spa- 

tial resolutions. The Rayleigh-Taylor instability problem, the im- 

plosion problem and a classical Riemann problem are computed 
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Fig. 8. Rayleigh-Taylor instability t = 1 . 95 : density contours; (top) 512 × 2048; (bottom) 1024 × 4096. 

in two-dimensions with unprecedented resolution and different 

high-order stencils. The results are compared to literature data 

and show very good agreement. Finally, we present a new three- 

dimensional implosion test case, which is directly obtained by the 

extension of the two-dimensional case of Liska and Wendroff [42] . 

The high number of inherent symmetries together with the high 

number of wave interactions makes this case particularly interest- 

ing and challenging to study the directional independence of the 

framework in three dimensions. 

The inviscid Euler equations are formally scale-free due to the 

infinite Reynolds number, thus numerical schemes with vanishing 

dissipation predict an infinite cascade evolution of small structures. 

Numerical dissipation retards small disturbance amplification, thus 

a delayed evolution of asymmetries is observed. For this reason, of- 

ten in literature the onset of an asymmetric Rayleigh-Taylor insta- 

bility evolution is used as an indicator for the amount of artificial 

numerical dissipation [5,21,22] . In this work, we demonstrate that 

numerical dissipation does basically determine the growth rate of 

either initially present or algorithmically induced asymmetric dis- 

turbances but does not trigger them itself. In other words, visible 

symmetry breaking is an indicator of insufficiently damped artifi- 

cial disturbances rather than the result of some underlying physics 

that is observable due to higher-order methods. 

The CFL number is set to 0.6 for all test cases. Calculations were 

performed on the SuperMUC Petascale System using CPUs of the 

type Xeon E5-2697 v3 (Haswell). The C++ source code is compiled 

using the Intel compiler (ICC) version 16.0.4. 

5.1. Rayleigh-Taylor instability 

We start evaluating the Rayleigh-Taylor instability test case, 

which is already described in Section 4 . This test case is widely 
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Fig. 9. Rayleigh-Taylor instability t = 1 . 95 : (left) density contours; (right) color density map (blue = 0 . 85 to red = 2 . 25 ). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

used for verification of numerical methods. The resolution and 

richness of vortical structures of this test case can be utilized 

as a measure of the numerical dissipation introduced by the 

method. The loss of symmetry in this test case is an effect 

of reduced numerical dissipation as shown by different authors 

[5,21,22,24,26] . Remacle et al. [24] supposed that the only cause 

of the asymmetric behavior of the flow might be due to roundoff

errors, however, they did not achieve symmetric results for higher 

resolutions. 

We simulated the Rayleigh-Taylor instability with increasingly 

high resolution applying four different high-order stencils, namely 

the WENO5-JS [10] , the TENO5 ( C T = 10 −5 ) [21] , the WENOCU6 

[43] and the WENO9 [18] stencil. The resulting density contours 

are shown in Figs. 7 and 8 for four different resolutions 128 × 512, 

256 × 1024, 512 × 2048 and 1024 × 4096. 15 contour lines are 

equally spaced from ρ = 0 . 952269 to ρ = 2 . 14589 according to [5] . 

The final simulation time is t = 1 . 95 . Unlike in Fig. 2 in [5] , Fig. 20 

in [21] and Fig. 20 in [22] , where asymmetric results are presented 

for high-order methods, the symmetry is exactly maintained up to 

floating-point precision. To our best knowledge, there is no result 

of the Rayleigh-Taylor instability reported in literature for resolu- 

tions beyond 512 × 2048. 

Fig. 9 shows the Rayleigh-Taylor instability at t = 1 . 95 for an 

extreme resolution of 4096 × 16 , 384 using the TENO5 scheme. 

Symmetry is preserved quantitatively up to floating-point pre- 

cision. Thus, the consistent floating-point arithmetic in our 

framework enables the usage of high-order methods combined 

with highly resolved meshes without any numerical symmetry 

breaking. 

5.2. 2D implosion test case 

The two-dimensional implosion test case of Liska and Wen- 

droff [42] is a challenging test case due to the presence of non- 

grid aligned shocks and the appearance of axisymmetric jets, see 

Section 4 for a more detailed problem description. This test case 

is often used for code validation in the astrophysics community 

[29,44] . Sutherland [29] reports the problem of floating-point in- 

accuracies and handles this by a controlled rounding procedure 

with a non-physical threshold. Fluctuations smaller than this limit 

are regarded as floating-point noise and intentionally eliminated. 

However, following the implementation principles of Section 4 , we 

achieve strong symmetry preservation without the usage of any 

additional error-cancellation procedure, and furthermore we are 

able to maintain the full precision range. In [29,42,44] only the 

first quadrant of the implosion problem is simulated. The symme- 

try around the diagonal of the first quadrant does not necessarily 

ensure the symmetry around the diagonals of all other quadrants 
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Fig. 10. Implosion t = 2 . 5 : color pressure map (blue = 0 . 7 to red = 1 . 15 ) is overlaid by 31 density contours (0.35 to 1.1). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Implosion t = 2 . 5 : (left) color pressure map (blue = 0 . 7 to red = 1 . 15 ) is overlaid by 31 density contours (0.35 to 1.1); (right) color density map of the inner region 

[0.15, 0.45] × [0.15, 0.45] (blue = 0 . 4 to red = 1 . 0 ) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

as shown in Fig. 3 . Thus, here we simulated the full problem do- 

main. 

Results for the final pressure and density distribution are given 

in Fig. 10 . The lowest presented resolution is chosen according to 

[42] and delivers comparable results for the WENO5-JS stencil. For 

higher resolutions, the jet moves further in diagonal direction and 

reaches the end of the domain, where it is then split into two 

parts. Thus, the progress of the jet can be used as a measure of the 

magnitude of numerical dissipation. The TENO5 stencil is able to 

achieve a result close to the one of the WENO9 stencil. Despite the 

smaller size and reduced computational cost of the TENO5 stencil 

as compared to the WENO9 stencil, the level of numerical dissipa- 

tion is similar. Thus, it is more efficient to use the TENO5 stencil 

to achieve a desired level of numerical dissipation. 

Again, the robustness of the implementation is tested by further 

increasing the resolution up to 36 · 10 6 cells. The resulting pressure 

and density distribution is shown in Fig. 11 . Due to the absence 

of any physical viscosity, no convergence can be expected and the 
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Fig. 12. 2D Riemann case at t = 1 . 1 in the region [0, 1.2] × [0, 1.2]: (left) 32 density contour levels from 0.15 to 1.7; (right) color density map (blue = 0 . 14 to red = 1 . 75 ). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

reduction of the numerical dissipation with increasing resolution 

leads to finer and finer structures. All symmetries are quantita- 

tively maintained to floating-point precision at the end of the sim- 

ulation. 

5.3. 2D Riemann case 

Schulz-Rinne et al. [45] proposed a series of two-dimensional 

Riemann test cases with systematic permutations of shockwaves 

and expansion waves running in x- and y-direction, respectively. 

Here, we focus on the four-shock setup that was already studied by 

several groups [28,29,42] . However, similarly to Balsara et al. [28] , 

we modify the domain size to [0, 2] × [0, 2] and simulate the prob- 

lem until t = 1 . 1 . This is advantageous since the relevant region 

now covers more than one quarter of the full domain at the end 

of the simulation. In literature, the initial quantities are rounded 

after five digits, resulting in measurable artifacts of the complex 

wave system. Here, we apply the exact Rankine-Hugoniot jump re- 

lations to obtain 

ρ = 1 . 5 , u = 0 , v = 0 , P = 1 . 5 , for x > 1 , y > 1 , 

ρ = 

33 
62 

, u = 

4 √ 

11 
, v = 0 , P = . 3 , for x < 1 , y > 1 , 

ρ = 

77 
558 

, u = 

4 √ 

11 
, v = 

4 √ 

11 
, P = 

9 
310 

, for x < 1 , y < 1 , 

ρ = 

33 
62 

, u = 0 , v = 

4 √ 

11 
, P = . 3 , for x > 1 , y < 1 . 

(26) 

For this test case, a cutoff value of C T = 10 −4 was used for the 

TENO5 stencil. 

The resulting density field (contours and color maps) is shown 

in Fig. 12 for a section of the computational domain. The two 

resolutions are chosen based on the reference configuration, see 

Fig. 11 of [28] , and as example of an extreme resolution with 

100 · 10 6 cells. Contrary to [28] , here the diagonal symmetry of the 

guitar-like shape of the jet is completely maintained. The same is 

also shown for an extreme resolution together with the expected 

increased richness of the fine structures. 

5.4. 3D implosion test case 

Finally, we tested the symmetry preserving property of the 

framework in three dimensions. For this purpose, the two- 

dimensional test case of Liska and Wendroff [42] ( Section 5.2 ) is 

extended to three dimensions in a straightforward way using an 

octahedral-shaped low-pressure area at the center of a cubical do- 

main of size [0, 0.6] × [0, 0.6] × [0, 0.6]. The six corner points of 

the octahedron are placed at (0.3 ± 0.15, 0.3, 0.3), (0.3, 0.3 ± 0.15, 

0.3) and (0.3, 0.3, 0.3 ± 0.15). With this setup, each of the eight oc- 

tants of the coordinate system, which is centered in the middle of 

the octahedron, has identical flow conditions. Within each octant, 

the problem can be further split into six symmetric subdomains. 

Thus, the problem can be fully described by one- 48 th of the whole 

domain. In order to avoid an asymmetric initialization, the inner 
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Fig. 13. 3D implosion: color density map (blue = 0 . 4 to red = 1 . 13 ) for t = 0 and t = 2 . 5 . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

low-pressure domain is given by 

(x − 0 . 3) + (y − 0 . 3) + (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

(x − 0 . 3) + (y − 0 . 3) − (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

(x − 0 . 3) − (y − 0 . 3) + (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

(x − 0 . 3) − (y − 0 . 3) − (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

−(x − 0 . 3) + (y − 0 . 3) + (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

−(x − 0 . 3) + (y − 0 . 3) − (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

−(x − 0 . 3) − (y − 0 . 3) + (z − 0 . 3) < 0 . 15 + 10 

−10 ∩ 

−(x − 0 . 3) − (y − 0 . 3) − (z − 0 . 3) < 0 . 15 + 10 

−10 

(27) 

with ( ρ, u, v , p ) inner = ( 0 . 125 , 0 , 0 , 0 . 14 ) , ( ρ, u, v , p ) outer = 

( 1 . 0 , 0 , 0 , 1 . 0 ) and γ = 1 . 4 . Symmetry boundary conditions are 

applied at each side of the domain. 

In Fig. 13 , density contours are shown for both the initial time 

step t = 0 and the final time step t = 2 . 5 using a resolution of 400 3 

Fig. 14. 3D implosion t = 2 . 5 : density contour line for the density value 0.86 col- 

ored according to pressure values (blue = 0 . 8 to red = 1 . 0 ). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

cells. We monitored the floating-point representation of the state 

values in all 48 subdomains and found exact agreement for all sim- 

ulation times. Furthermore, a jet along each diagonal similar to the 

one obtained in two dimensions can be detected using a density 

contour as shown in Fig. 14 . Note, that each of the jets consists of 

six perfectly symmetric parts. 

6. Conclusion 

Various examples of symmetry breaking using low-dissipative 

schemes are reported in literature. Often this effect is used to 

judge the quality, i.e. the effect of numerical dissipation, of a 

scheme. Clearly, high-order discretization schemes with highly re- 

solved meshes allow to decrease numerical viscosity effects con- 

siderably. Thus, damping of the inherent physical instabilities in 

the inviscid Euler equations is now insufficient, and the onset of 

symmetry breaking with such low-dissipative schemes first is a 

manifestation of algorithmic imperfections rather than of the low 

dissipation of the numerical scheme. 

We have identified floating-point truncation errors as the main 

source to trigger these instabilities. Due to their exponential 

growth the negligibly small initial disturbances grow rapidly dur- 

ing the simulation and may even dominate the final huge-scale 

topology of the simulation result. We show that such symmetry- 

breaking is not a physical result of highly accurate high-resolution 

schemes, but rather the result of algorithmic artifacts such as the 

lack of associativity, which no longer are hidden by numerical dis- 

sipation. 

We present implementation strategies to evaluate consistently 

floating-point arithmetic within a finite volume solver as solution 

to the prescribed problem. A generalized procedure is provided to 

guarantee directional independence that allows for maintaining the 

inherent symmetries as shown for a broad range of test cases both 

in two and three dimensions. The symmetry of the state variables 

can now be maintained exactly up to floating-point precision inde- 

pendently of resolution. 

The simulation of inviscid or very-large Reynolds number flows 

with extreme resolutions will become increasingly common with 

the evolution from peta- to exascaling computing power. In this 

paper we have addressed an important aspect of the increas- 

ing relevance of implementation verification that accompanies this 

evolution. 
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The grid-aligned shock instability prevents an accurate computation of high Mach number 
flows using low-dissipation shock-capturing methods. In particular one manifestation, 
the so-called carbuncle phenomenon, has been investigated by various different groups 
over the past decades. Nevertheless, the mechanism of this instability is still not fully 
understood and commonly is suppressed by the introduction of additional numerical 
dissipation. However, present approaches may either significantly deteriorate the resolution 
of complex flow evolutions or involve additional procedures to limit stabilization measures 
to the shock region.
Instead of increasing the numerical dissipation, in this paper, we present an alternative 
approach that relates the problem to the low Mach number in transverse direction of the 
shock front. We show that the inadequate scaling of the acoustic dissipation in the low 
Mach number limit is the prime reason for the instability. Our approach is to increase the 
“numerical” Mach number locally whenever the advection dissipation is small compared 
to the acoustic dissipation. A very simple modification of the eigenvalue calculation in the 
Roe approximation leads to a scheme with less numerical dissipation than the original Roe flux
which prevents the grid-aligned shock instability. The simplicity of the modification allows 
for a detailed investigation of multidimensional effects. By showing that modifications 
in flow direction affect the shock stability in the transverse directions we confirm the 
multidimensional nature of the instability. The efficiency and robustness of the modified 
scheme is demonstrated for a wide range of test cases that are known to be particularly 
prone to the shock instability. Moreover, the modified flux also is successfully applied to 
multi-phase flows.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Modern applications of computational fluid dynamics involve complex interactions across scales such as shock inter-
actions with turbulent structures and multiphase interfaces [1,2]. In the last decades, a variety of different numerical 
approaches were developed aiming at schemes that combine high accuracy and high robustness [3]. Shock capturing meth-
ods based on Godunov’s approach [4] nowadays are among the most successful methods for simulating compressible flows 
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involving shock waves and other discontinuities. Their versatility and ease of implementation make them advantageous over 
shock tracking methods, especially when new shock waves emerge during the simulation. Following Godunov’s approach [4], 
cell-face fluxes are determined by Riemann problems, which can be solved locally. The popularity of the method is based on 
its straightforward extension to high-order reconstruction schemes, such as ENO [5] or WENO [6] schemes. Originally the 
exact Riemann solution was computed iteratively, which soon was replaced by more efficient approximate Riemann solvers.

Numerous approximate flux formulations have been developed in the past. They can be categorized roughly as complete 
and incomplete. Incomplete fluxes, such as e.g. HLL [7] or HLLE [8] solver, typically are more robust, at the expense of 
allowing only for a limited number of waves. Contact discontinuities usually are not captured explicitly, which often leads 
to unacceptable smearing of contact lines. Complete fluxes model explicitly each of the relevant waves of the underlying 
problem, e.g. for the three-dimensional Euler equations five waves are modeled including the contact discontinuity. Popular 
examples of complete Riemann approximations are HLLC [9], the Osher approximation [10] and the Roe approximation 
[11]. Upon combining complete Riemann solvers with high-order reconstruction schemes a minimum amount of numerical 
dissipation can be obtained. Such a low numerical dissipation is crucial for the accurate calculation of flow instabilities 
and wave transport. Despite the enormous effort spent on the development of approximate Riemann solvers, which enables 
the accurate simulation of various complex flow configurations, the design of an all-purpose low-dissipation high-resolution 
Riemann solver remains to be a challenge.

It turned out that a promising group of complete Riemann solvers fails spectacularly on certain flow configurations in-
volving supersonic shock waves [12]. Since Peery and Imlay [13] first described their observation on the failure of the Roe 
flux approximation when applied to supersonic flows around a blunt body, intense research was devoted to discovering rea-
sons and cures for this undesirable behavior. An instability, first reported in [13], leads to a characteristic deformation of the 
shock front which was called “carbuncle phenomenon” due to its excrescence-like appearance. The carbuncle phenomenon 
ruined many efforts to compute grid-aligned shock waves using low-dissipation upwind schemes. Quirk [12] presented a 
catalogue of cases where Godunov type schemes were known to fail. Three of the problems he reported, namely the carbun-
cle phenomenon, the kinked Mach stem of a double Mach reflection and a newly described odd-even decoupling problem 
have in common that they develop most prominently when a high Mach number shock wave propagates aligned with the 
computational grid. Quirk [12] noticed that some schemes possessing good shock capturing properties are more likely to be 
affected by such instabilities than more dissipative flux formulations, such as the HLLE Riemann solver. Quirk [12] concluded 
that insufficient dissipation at the contact line might be the reason for the instability. A large number of scientific publica-
tions since have addressed various aspects of the challenging problem. Although not being fully understood, it is generally 
believed that the prime reason for the shock instability is insufficient numerical dissipation in the region of the shock front.

The most popular approach to cure the instability is to increase locally the numerical dissipation of the underlying 
scheme. Peery and Imlay [13] achieved such a stabilization by smoothing the Roe eigenvalues, resulting in a bow shock 
smearing over several cells. Quirk [12] noted that the ad-hoc application of Harten’s entropy fix to increase numerical 
dissipation of the contact and shear waves cures the problem, has, however, no physical justification. Sanders et al. [14]
performed a linear analysis that revealed that the instability is caused by an insufficient cross-flow dissipation. They pro-
posed a multi-dimensional modification to the Roe solver, where they apply an entropy fix that depends on neighboring 
interfaces. Due to the spatial arrangement of the incorporated interfaces the method is called H-correction. Later, Pandolfi 
and D’Ambrosio [15] modified the H-correction for the application to high-speed flow boundary layers. Both the analyses of 
Gressier and Moschetta [16] and Pandolfi and D’Ambrosio [15] investigated the behavior of different families of approximate 
Riemann solvers concerning the shock instability. They concluded that schemes that explicitly capture a contact discontinu-
ity are always to some extent prone to the grid-aligned shock instability. Liou [17] found that the dissipative pressure term 
in the mass flux is responsible for the instability, which motivated him to design new schemes that are both stable and able 
to capture contact discontinuities. The conclusion of [17] that schemes with a mass flux that is independent of the pressure 
term are not affected by the carbuncle phenomenon (Liou’s conjecture) was questioned by other authors [16,15,18]. They 
provided counterexamples including the AUSM+ scheme [19]. Ren [20] developed a shock-stable scheme based on a rotated 
Roe flux formulation, which automatically introduces artificial dissipation in the relevant regions. Although his approach 
does not require an explicit detection procedure, there is a computational overhead since the Riemann problem has to be 
solved twice on every cell interface. Kim et al. [21] introduced an improved Roe scheme that is capable of accurately re-
solving contact discontinuities and is free of the shock instability. The authors of [21] introduced a Mach-number-based 
function that controls the feeding rate of pressure fluctuation into the numerical mass flux. More recently, Chen et al. [22]
followed a similar approach to stabilize the Roe scheme by introducing shear viscosity into the momentum flux, controlled 
by a pressure-based sensing function to constrain the effect to the shock region. They noticed that the instability of the Roe 
scheme may not be caused by the pressure difference, but by inadequate shear viscosity. All procedures described so far 
have in common that they increase the dissipation of the Roe scheme in one way or another. Similar procedures have been 
developed for other types of Riemann solvers, e.g. for HLLC [23–25] or AUSM [26,27].

An alternative approach is using hybrid schemes where Riemann solvers of different families are combined. The appro-
priate scheme is chosen locally based on a control function that evaluates the local flow condition. Quirk [12] combined 
a Roe scheme with an HLL scheme and obtained good results. However, the control function involves problem-dependent 
parameter calibration and the overall scheme still is stabilized by local application of a more dissipative scheme. Rodionov 
[28] argued that the exact Riemann solver is physically the most consistent way to determine inviscid fluxes, however, 
the introduction of additional numerical dissipation moves the approximate solution further apart from the exact Riemann 
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problem. Thus, he presented a new approach where the problem is not solved by corrections to the Riemann solver but by 
introducing an artificial viscosity similar to the molecular viscosity present in the Navier-Stokes equations. This approach is 
independent of the applied Riemann solver.

The present work relates the grid-aligned shock instability to another well-known difficulty of Godunov-type schemes 
in the low Mach number limit. Guillard et al. [29,30] performed an asymptotic analysis in terms of powers of the Mach 
number, which revealed an incorrect scaling behavior of pressure fluctuations when Godunov schemes are applied at van-
ishing Mach number. For a shock wave in the solution of a multi-dimensional high-Mach-number flow propagating in one 
direction of the underlying Cartesian grid, the disturbances parallel to the shock front travel at a low relative Mach number. 
For the Roe flux formulation the dissipative flux term in this case is dominated by the acoustic contribution, while the 
dissipation due to advection vanishes. We show two possible solution strategies to balance both contributions, and thus in-
crease the Mach number for the calculation of the eigenvalues that determine the dissipative flux term. A locally decreased 
acoustic dissipation leads to an overall decrease of dissipation of the numerical scheme, while a locally increased advection 
dissipation leads to an overall increase of dissipation. The fundamental difference between our approach as opposed to 
previous attempts is that we cure the grid-aligned shock instability by a local decrease of dissipation. The implementation of 
our method into an existing Riemann solver is straightforward as it amounts to only few additional lines of code.

The remainder of the paper is organized as follows. In Section 2, the governing equations and the basic principles of 
Godunov-type methods are reviewed together with the flux formulations of the Roe approximation and a componentwise 
local Lax-Friedrichs approximation. The modifications made on the original schemes considering the low Mach number ef-
fect are presented in detail in Section 3. In Section 4, Quirk’s odd-even decoupling case is investigated both qualitatively and 
quantitatively to demonstrate the robustness of the modified Roe flux. A demonstration of the multidimensional character 
of the carbuncle phenomenon is presented in Section 5. Finally in Section 6, the effectiveness of the low Mach number 
treatment is demonstrated for the full set of relevant test cases that are commonly referred to by literature addressing the 
grid-aligned shock instability. Conclusions are drawn in Section 7.

2. Governing equations and numerical approach

We consider an inviscid compressible flow that evolves according to the three-dimensional Euler equations

Ut + F (U)x + G (U)y + H (U)z = 0, (1)

where U is the density of the conserved quantities mass ρ , momentum ρv ≡ (ρu,ρv,ρw) and total energy E = ρe + 1
2 ρv2, 

with e being the internal energy per unit mass. The fluxes F, G and H are defined as

F =

⎛
⎜⎜⎜⎜⎝

ρu
ρu2 + p

ρuv
ρuw

u (E + p)

⎞
⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎜⎝

ρv
ρuv

ρv2 + p
ρv w

v (E + p)

⎞
⎟⎟⎟⎟⎠ , H =

⎛
⎜⎜⎜⎜⎝

ρw
ρuw
ρv w

ρw2 + p
w (E + p)

⎞
⎟⎟⎟⎟⎠ . (2)

The set of equations is closed by the ideal-gas equation of state, where the pressure p is given by p = (γ − 1)ρe with a 
constant ratio of specific heats γ .

2.1. Finite volume approach

We apply Godunov’s approach for finite volumes to solve this set of equations numerically. This procedure is widely used 
for hyperbolic equations. The time evolution of the vector of cell-averaged conservative states Ū is given by

d

dt
Ūi = 1

�x
(Fi− 1

2 , j,k − Fi+ 1
2 , j,k + Gi, j− 1

2 ,k − Gi, j+ 1
2 ,k + Hi, j,k− 1

2
− Hi, j,k+ 1

2
), (3)

where F, G and H approximate the cell-face fluxes in x-, y- and z-direction, respectively. These fluxes are determined 
dimension-by-dimension from an approximate Riemann solver combined with a fifth-order WENO [6] spatial reconstruction 
scheme. Additional volume source terms, such as gravitational acceleration, are omitted here for simplicity. The resulting 
ODE (3) is integrated in time using a third-order strong stability-preserving (SSP) Runge-Kutta scheme [31].

2.2. Approximate Riemann solvers

The majority of state-of-the-art methods relies on approximate Riemann solvers since exact Riemann solvers are com-
putationally expensive. Moreover, exact Riemann solvers are not helpful to suppress the carbuncle phenomenon since they 
are likewise affected by the shock instability [12]. Here, we focus on two approximate flux formulations, the classical Roe 
flux [11] and a componentwise local Lax-Friedrichs flux [6]. The Roe flux formulation is known to be particularly vulnerable 
to the carbuncle phenomenon. Its low numerical dissipation and its ability to capture contact waves accurately is generally 
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believed to be the reason for this deficiency. The componentwise local Lax-Friedrichs flux is only slightly more dissipative 
and therefore similarly affected by the instability as the numerical examples in Sec. 4 and Sec. 6 demonstrate. Although 
both the Roe flux and the componentwise local Lax-Friedrichs flux are not positivity preserving in general, the latter one 
delivers numerically stable results in many flow conditions, where the Roe flux fails. In the following, only the x-direction 
is discussed. Due to the dimension-by-dimension approach, the other directions are handled the same way.

2.2.1. Roe Riemann flux
The classical Roe formulation gives the following numerical flux function

FRoe
i+1/2 = 1

2
(Fi+1 + Fi) − 1

2
Ri+1/2

∣∣�i+1/2
∣∣ R−1

i+1/2 (Ui+1 − Ui) (4)

where R and R−1 are the right and the left eigenvector matrices of the Jacobian ∂F/∂U, and � is the diagonal matrix formed 
with the eigenvalues

λ1 = û − ĉ, λ2,3,4 = û, λ5 = û + ĉ. (5)

Quantities with hat-notation “.̂” denote density-based Roe averages

k̂ = k̄i · √ρi + k̄i+1 · √ρi+1√
ρi + √

ρi+1
(6)

where k has to be replaced by the quantity of interest, e.g. u. k̄i and k̄i+1 are the cell-averaged variables of the cells adjacent 
to the cell face i + 1/2. No entropy-fix is applied for all computations in this paper.

The high-order spatial WENO reconstruction is performed in characteristic space using a finite difference formulation 
both on

F+
i+1/2 = Fi + Ri+1/2

∣∣�i+1/2
∣∣R−1

i+1/2Ui (7)

and

F−
i+1/2 = Fi+1 − Ri+1/2

∣∣�i+1/2
∣∣ R−1

i+1/2Ui+1. (8)

The final flux is obtained by

FRoe
i+1/2 = 1

2

(
F+

i+1/2 + F−
i+1/2

)
. (9)

2.2.2. Componentwise local Lax-Friedrichs flux
The only difference between the Roe flux and the componentwise local Lax-Friedrichs flux (cLLF) is the choice of eigen-

values � in Eq. (4). While density-based Roe averages are applied for the Roe flux, the eigenvalues in the componentwise 
local Lax-Friedrichs flux are determined by

|λ1| = max (|ui − ci | , |ui+1 − ci+1|) ,∣∣λ2,3,4
∣∣ = max (|ui| , |ui+1|) ,

|λ5| = max (|ui + ci | , |ui+1 + ci+1|) .

(10)

Note that R and R−1 are identical for both flux formulations. Compared to the original local Lax-Friedrichs flux, often called 
Rusanov flux, this definition has different eigenvalues for each characteristic field. Thus, the cLLF flux is still close to the Roe 
flux with only slightly increased numerical dissipation.

2.2.3. Note on numerical dissipation
The flux formulation given in Eq. (4) has two parts. The first term on the right-hand-side is the central flux term, and 

the second term is the dissipative flux term. Since R and R−1 are only forward and backward coordinate transformations, 
the dissipative flux merely depends on �. Again, two different contributions to the dissipative flux can be distinguished. The 
advection dissipation is proportional to |u|, while the acoustic dissipation is proportional to |u ± c|. This distinction might 
be helpful to understand the proposed cure of the shock instability.
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3. A modified flux formulation

We relate the grid-aligned shock instability to another well-known difficulty of Godunov schemes in the low Mach 
number limit. The connection can be deduced from the observation that the instability only occurs when the shock front 
moves aligned with the computational grid. For Cartesian grids, this situation involves vanishing but non-zero velocity 
components in spatial directions other than the shock propagation direction for cells covering the shock front. Note that a 
perfect alignment leads to a purely one dimensional situation and no instability occurs. A small deflection is always required 
to trigger the instability.

The asymptotic analysis on the Roe flux and general Godunov schemes by Guillard et al. [29,30] revealed that the 
centered terms of the flux formulations are of order O(1/M2), while the dissipative terms are of order O(1/M) for low 
Mach numbers. Thus, even if the initial pressure contains fluctuations of order O(M2), the dissipative flux term will lead 
to pressure fluctuations of order O(M) when M → 0. These pressure fluctuations are mostly of acoustic origin due to the 
fact that, for vanishing Mach numbers, the acoustic contribution to the numerical dissipation is much larger than that of 
the advection.

The main goal of the proposed modifications therefore is to balance the advective and acoustic dissipation in the low 
Mach number limit.

3.1. A modified Roe-M flux

A straightforward way to decrease the imbalance of advective and acoustic dissipation and consequently to avoid the 
amplification of present pressure disturbances is to increase the Mach number value M in �.

In case of the Roe flux, this can either be done by decreasing the acoustic dissipation

λ′
1,5 = û ± min

(
φ

∣∣û∣∣ , ĉ
)
, λ′

2,3,4 = û (11)

or by increasing the advection dissipation

λ′′
1,5 = u′′ ± ĉ, λ′′

2,3,4 = u′′, u′′ = sgn(û) · max

(
ĉ

φ
,
∣∣û∣∣) (12)

where φ is a positive number of order O(1). Thus, the Mach number is limited to a value of 1/φ. It is important to notice 
that both formulations do not change the eigenvector matrix nor the central flux term, although both modifications lead 
to comparable acoustic and advection contributions to the numerical dissipation in the low Mach number direction of the 
flow. While the Roe flux with Eq. (12) increases the total local numerical dissipation, the Roe flux with Eq. (11) decreases 
it. In the context of globally low Mach number flows, Li and Gu [32] developed a similar procedure. They proposed an 
All-Speed-Roe scheme that involves a momentum interpolation in the central flux term and a more complex adjustment of 
the sound speed in the low Mach number limit with similar effect as Eq. (11). Here, a stabilizing momentum interpolation 
is not required since the purpose of our method is to cure grid-aligned shock instabilities which never occur in flows with 
globally low Mach number.

There are many different methods in literature that cure the shock instability by increasing the numerical dissipation. 
To the knowledge of the authors, however, there is no approach that achieves this goal by further reducing the dissipation
of the already low-dissipation Roe flux. Thus, we will focus on the modification with eigenvalues determined by Eq. (11)
throughout the paper, even though both formulations by Eq. (11) or Eq. (12) are effective to prevent the grid-aligned shock 
instability. The Roe flux with low Mach number treatment will be denoted Roe-M in the following.

3.2. A modified componentwise LLF-M flux

The same procedure of decreasing the acoustic dissipation applied to the componentwise local Lax-Friedrichs flux leads 
to eigenvalues∣∣λ′

1

∣∣ = max
(∣∣ui − c′

i

∣∣ , ∣∣ui+1 − c′
i+1

∣∣) ,∣∣λ′
2,3,4

∣∣ = max (|ui| , |ui+1|) ,∣∣λ′
5

∣∣ = max
(∣∣ui + c′

i

∣∣ , ∣∣ui+1 + c′
i+1

∣∣) ,

(13)

with

c′
i,i+1 = min

(
φ

∣∣ui,i+1
∣∣ , ci,i+1

)
. (14)

The componentwise local Lax-Friedrichs flux with low Mach number treatment will be denoted cLLF-M in the following.
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Fig. 1. Instability progress in Quirk’s test case with Ma = 6.

4. Properties of the modified flux

In the following, a plane shock propagation along a rectangular duct with a defined disturbance level parallel to the 
shock propagation is considered to demonstrate the capabilities of the modified Roe flux, and to show the impact of the 
parameter φ on the shock stability property.

This test case was introduced by Quirk [12] as a minimal working example for the odd-even decoupling phenomenon. 
Despite its simplicity it is an efficient and reliable way to trigger the instability in combination with different numerical 
flux formulations. The rise of the instability can easily be investigated both qualitatively and quantitatively. The shock 
propagation is simulated on a domain of [0, 2400] ×[0, 20] discretized with 2400 × 20 cells. Pre-shock density and pressure 
are set to unity, and all velocity components are set to zero. Originally, the disturbance was triggered by an odd-even 
offset of the center-line grid position, whereas we follow the approach of Kemm [33] and introduce artificial numerical 
noise to the primitive variables in the initial state since the computations are done with a Cartesian-coordinate formulation. 
Inflow and outflow conditions are applied at the left and at the right boundary, respectively. Symmetry boundary conditions, 
which are equivalent to reflecting wall conditions, are enforced both at the top and at the bottom boundary of the domain. 
We have performed simulations with the original Ma = 6 setup and with a more challenging Ma = 20 setup with initial 
conditions given by

(ρ, u, v, p) =

⎧⎪⎪⎨
⎪⎪⎩

(1,0,0,1) if x > 5.0(
216
41 ,35

√
35

36 ,0, 251
6

)
else (for Ma = 6 case),(

160
27 , 133

8

√
1.4,0,466.5

)
else (for Ma = 20 case),

(15)

where the shock front is placed initially at x = 5. In order to monitor the growth rate of the disturbance quantitatively over 
time the maximum magnitude of the y-velocity component is evaluated in the whole domain as a measure of the deviation 
from the one-dimensional solution.

Fig. 1 shows the evolution of the velocity deviation for the Ma = 6 case when all initial primitive variables are super-
posed by uniform random perturbations ranging from −0.5 · 10−3 to 0.5 · 10−3. Color maps of density and velocity for 
different flux formulations are presented in Fig. 2. Note that minimum and maximum color values are chosen with respect 
to extreme values within the carbuncle. As expected, the classical Roe flux shows an exponential instability that results in a 
carbuncle-like distortion of the shock front, see Fig. 2 left. The instability manifests itself most prominently by a significant 
rise of the velocity magnitude in the carbuncle region. The componentwise local Lax-Friedrichs flux behaves similarly as the 
Roe flux, with the difference that the simulation does not break due to a floating point exception. Instead the disturbance 
level remains bounded after amplification by three orders of magnitude until the end of the simulation, see Fig. 2 center. 
All Roe-type schemes with low Mach number treatment behave stable. Values of φ within a reasonable range between 1
and 10 show comparable results. Note that the simulation is performed up to a very late point in time, where the shock 
front, given in the right frame of Fig. 2, has already passed x = 2300 without showing any non-physical behavior.

The same procedure has also been applied for a stronger shock with M = 20. Fig. 3 shows the resulting velocity de-
viations. The error growth rate for the classical Roe and componentwise local Lax-Friedrichs scheme increases noticeably, 
whereas deviations for the modified Roe fluxes remain bounded. The classical Roe scheme breaks after very few time steps 
for the increased Mach number. The final density distribution of the componentwise local Lax-Friedrichs flux as shown in 
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Fig. 2. Quirk’s test case with Ma = 6, (top) color map of density from dark blue = 0.5 to red = 6.8, (bottom) color map of velocity magnitude from 
dark blue = 0 to red = 14.5. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Instability progress in Quirk’s test case with Ma = 20.

Fig. 4 reveals that the shock wave is not only severely disturbed, but also moves with an incorrect wave speed. Instead, the 
analytically expected position of the shock front is recovered by the modified Roe flux. Again, the result obtained by the 
modified scheme shows no sign of an instability.

5. Note on the multidimensionality of the shock instability

It is known that purely one-dimensional cases are not affected by the grid-aligned shock instability unless they are 
formulated in two dimensions. Following the argumentation of Sec. 3, this behavior can now be explained as we have iden-
tified the pressure fluctuation induced by the low Mach number of the transverse direction to be the driving force of the 
instability. The Roe approximation relies upon a finite-difference approach that consists of a dimension-by-dimension eval-
uation of the numerical flux contributions. This allows for a selective application of the low Mach number modification to 
fluxes in specific coordinate directions. Thus, it should be possible to cure the instability only along pre-selected coordinate 
directions. We expect the stability to be cured for shocks moving aligned to the grid in y-direction when the modified flux 
is applied in x-direction and vice versa.

Due to its symmetry a Sedov blast wave problem is well-suited for demonstration. For this test case, a high pressure area 
with P inner = 3.5 · 105 is initiated at the center of the domain that covers exactly one cell in each of the four quadrants. The 
rest of the domain is set to a near vacuum state with P outer = 10−10. Density is set to unity and both velocity components 
are set to zero in the whole domain. Reflecting-wall conditions are applied at all boundaries. The domain is set to [0, 2.4] ×
[0, 2.4] with 480 × 480 cells.

Fig. 5 shows the pressure distribution at t = 0.1 for both the original and the modified Roe scheme. While for the 
original Roe flux four distinct carbuncles have established at each location where the shock front moves aligned to the 
grid, the Roe-M flux is able to prevent the occurrence of the carbuncles effectively and maintains a sharp shock front 
everywhere. Now, the low Mach number modification is only applied for fluxes in x-direction, respectively in y-direction. 
The results given in Fig. 6 confirm exactly our expectations.
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Fig. 4. Quirk’s test case with Ma = 20, color map of density from dark blue = 1.0 to red = 8.0.

Fig. 5. Two dimensional Sedov blast wave at t = 0.1: color map of pressure from blue = 0 to red = 22.0.

The cure of the flux in one direction affects the stability of shocks moving in the other direction. Actually, the application 
of the modification in y-direction is sufficient to stabilize the odd-even decoupling case presented in Sec. 4 where the shock 
front moves in x-direction. Three-dimensional calculations of the Sedov blast wave show stable results only when the flux 
modification is applied at least to both other directions. Thus, the grid-aligned shock instability is a true multidimensional 
phenomenon.

6. Numerical results

In this section, we investigate a wide range of test problems that are known to suffer from the shock instability. Together 
with Quirk’s odd-even decoupling and the Sedov blast wave, which were presented in the previous sections, the classical set 
of test cases consists of the double Mach reflection problem [34], the 90 degree corner flow problem [12], the flow around 
a blunt body [13] and the “physical” carbuncle set-up of Elling [35]. Additionally, we will consider two multi-phase cases, 
where we encountered carbuncle-like instabilities during a shock-interface interaction both with air/helium and water/air.

If not mentioned otherwise, calculations were performed using the classical fifth-order WENO scheme [6] combined 
with a third-order strong-stability-preserving Runge-Kutta time integration [31]. Whenever the problem does not rely on 
positivity preservation, we apply a Roe flux [11] and its low Mach number modification, otherwise the componentwise 
local Lax-Friedrichs [6] and the corresponding low Mach number modification are employed. The φ-value is always set to 
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Fig. 6. Two dimensional Sedov blast wave at t = 0.1: color map of pressure from blue = 0 to red = 22.0.

5. A level-set approach [36] is applied for multi-phase cases. The CFL number is set 0.6 for single-phase cases and 0.4 for 
cases that involve the level-set approach. The material is modeled as ideal gas with γ = 1.4.

6.1. Double Mach reflection problem

The problem of Woodward and Colella [34] on the double Mach reflection is a popular benchmark test for the quality of 
a Riemann solver. It consists of a shock front that hits a ramp that is inclined by 30 degrees. Shock unstable schemes such 
as e.g. the Roe approximation may produce an artificially kinked Mach stem as described by various authors [12,28,33].

The initial conditions for a Mach 10 shock wave are

(ρ, u, v, p) =
{

(1.4,0,0,1) if y <
√

3 (x − 1/6)(
8,33

√
3

8 ,−4.125,116.5
)

else,
(16)

and the final time is set to t = 0.2. While the computational domain typically is chosen as [0, 4] × [0, 1], here, we use an 
even larger domain of [0, 4] ×[0, 7] to avoid any boundary effects of the shock wave moving along the upper boundary. The 
domain is discretized with 960 × 1680 cells. A Neumann boundary condition with zero gradients for all variables is applied 
at the left, right and upper boundary. Along the bottom boundary, at y = 0, the region from x = 0 to x = 1/6 is always 
assigned post-shock conditions, whereas reflecting-wall conditions are imposed from x = 1/6 to x = 4.

The problem of the kinked Mach stem is usually presented for low-order schemes. However, high-order schemes are 
likewise affected if the resolution is increased. The calculations are carried out with a fifth-order WENO-Z [37] scheme. 
Note, that the classical Roe flux is not able to deliver numerically stable results due to the instability at the leading Mach 
stem. Thus, the reference result is obtained using the componentwise local Lax-Friedrichs scheme. As shown in the top 
frame of Fig. 7, the componentwise local Lax-Friedrichs flux suffers from a kinked Mach stem, a typical configuration of the 
carbuncle phenomenon. The modified Roe flux with even less numerical dissipation than the original Roe flux is able to 
produce numerically stable and correct results, see bottom of Fig. 7.

6.2. Supersonic corner flow

Another well-known test case, which was already described by Quirk [12] in the context of shock instability, is the 
diffraction of a shock wave around a sharp corner. This problem yields complicated flow patterns and many schemes en-
counter the situation of odd-even decoupling in parts of the flow where the shock wave is aligned to the grid. The instability 
occurs in particular when the mesh is highly refined.

We use a domain of size [0, 1] × [0, 1], that is uniformly initialized with (ρ, u, v, p) = (1,0,0,1/1.4). Reflecting-wall 
boundary conditions are set everywhere, except of the upper left boundary at x = 0 from y = 0.5 to y = 1. Here, the 
post-shock condition of a Mach 5.09 shock wave is prescribed. The final time is set to 0.8/Ma. The original Roe flux 
is known to produce both numerically unstable results due to the positivity violation at the cells near the corner and 
non-physical results due to a rarefaction shock wave that establishes in the flow behind the corner [12]. Thus, the reference 
solution is again obtained using the componentwise local Lax-Friedrichs flux combined with a third-order WENO scheme 
[6].

The left frame of Fig. 8 shows a schlieren image of density gradients at the end of the simulation. The non-physical 
odd-even decoupling along the upper part of the shock front is clearly visible. Since the modified Roe flux only affects 
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Fig. 7. Double Mach reflection of a Mach 10 shock wave: 40 density contours from 1.88783 to 20.9144 at t = 2.0.

Fig. 8. Corner diffraction of a Mach 5.09 shock wave: logarithmic gradients of density from 2 to 1,000 at t = 0.15717.

the shock instability and does not improve the positivity of the scheme, numerically stable results cannot be expected. 
However, correct physical results are obtained for the shock front when the modified componentwise local Lax-Friedrichs 
flux is applied, see Fig. 8 right. Note that the flow structure in the rest of the domain is not affected. The stability of the 
modified componentwise local Lax-Friedrichs flux is demonstrated for a highly resolved grid with 4800 × 4800 cells. The 
flow field still does not encounter any non-physical behavior as shown in Fig. 9.
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Fig. 9. Corner diffraction of a Mach 5.09 shock wave (high resolution): logarithmic gradients of density from 2 to 1,000 at t = 0.15717.

6.3. Supersonic flow around cylinder

The most widespread manifestation of the grid-aligned shock instability is the so-called carbuncle phenomenon. It was 
first described in [13] for a supersonic flow around a cylinder. This case is challenging for shock-capturing schemes not 
only due to the grid-alignment but also due to the steadiness of the shock. Godunov-type schemes are known to encounter 
difficulties for slowly moving and steady shocks [12,38]. The supersonic flow around a cylinder is often simulated using 
polar coordinates and implicit time integration up to a steady state [21,28]. However, in the context of this paper, we are 
mainly interested in the grid aligned shock instability, i.e. the carbuncle phenomenon, for Cartesian grids. Therefore, we 
apply the same Cartesian framework with explicit time integration as used for the other cases being aware of that the 
dissipation introduced by the time integration might not be enough to reach a fully converged steady state and a small 
resolved level of fluctuations around the steady shock may remain. The circular reflecting-wall condition representing the 
cylinder is approximated using a level-set approach [36]. The left and the remaining right boundary are set to inflow and 
outflow conditions, respectively. Top and bottom boundary conditions are set to Neumann boundary conditions with zero 
gradient for all variables. We investigated both a Mach 3 and a Mach 20 flow around the cylinder. The whole domain is 
initially set to (ρ, u, v, p) =

(
1,

√
1.4 · Ma,0,1

)
. The domain size is chosen to [0, 0.3] × [0, 0.8] for the Mach 3 case and 

[0, 0.3] × [0, 0.6] for the Mach 20 case, where the center of the cylinder (D = 0.2) is placed in the center of the right 
boundary. Simulations have been performed using a resolution of 80 cells per diameter, which is comparable to what is 
used in literature [28].

The resulting pressure distributions for the low Mach number case are shown in Fig. 10 together with Mach contour 
lines that are chosen identical to [28]. The final time t = 1.5 is large enough to ensure a fully developed bow shock. The 
application of the original componentwise local Lax-Friedrichs flux results in a noticeably disturbed flow field in the region 
of the stagnation point. The modified componentwise local Lax-Friedrichs formulation damps the fluctuations considerably. 
Minor residual oscillations can be noticed in the pressure and velocity distribution.

To investigate the situation further, a more challenging Mach 20 flow is considered. The resulting pressure distributions 
are shown together with Mach contour lines in Fig. 11. Now the original componentwise local Lax-Friedrichs flux suffers 
clearly form the classical shock instability resulting in the carbuncle phenomenon. The instability already occurs while the 
bow shock establishes. For the same point in time the modified componentwise local Lax-Friedrichs flux provides stable 
results. The simulation remains stable until the final time of 0.5 is reached. The level of residual perturbations is slightly 
higher than in the low Mach number case.

6.4. Elling test

The numerical experiment described by Elling [35] provides a flow configuration where a carbuncle-like flow evolution 
can be physically justified and thus, it should be correctly recovered by the numerical flow solver. The test case consists of 
an interaction of a steady shock front with a vortex filament. For this specific condition, a carbuncle-like flow pattern has 
been observed in experiments [39]. Some of the shock stable schemes that suppress the instability by additional numerical 
dissipation, such as the HLLE solver, are not able to recover this physically valid carbuncle-like structure [33].

The problem is set up with a steady shock that is placed at x = 50 in a domain of size [0, 100] × [0, 40], which is 
discretized by 1600 × 640 cells. The flow variables in the upstream region are set to (ρ, u, v, p) = (1,1,0,5/63) and the 
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Fig. 10. Supersonic flow around cylinder Ma = 6 at t = 1.5: color pressure map (blue = 1.0 to red = 12.1) is overlaid by 25 Mach contours (0.1 to 2.5).

Fig. 11. Supersonic flow around cylinder Ma = 20: color pressure map (blue = 1.0 to red = 550) is overlaid by 25 Mach contours (0.1 to 2.5).
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Fig. 12. Elling test case with a vortex filament interaction with a steady Mach 3 shock: density contours from dark blue = 0.35 to red = 6.0 at t = 20 for 
x = [25, 75].

Fig. 13. Initialization of shock interface interaction of a helium bubble in air: density contours from dark blue = 0.138 to red = 6.5.

downstream variables are set to (ρ, u, v, p) = (27/7,7/27,0,155/189) corresponding to a steady Mach 3 shock. In the 
upstream flow the velocity is set to zero for 19.75 < x < 20.25 imitating a vortex filament. Inflow and outflow conditions 
are applied at the left and right boundary, respectively. Reflecting-wall boundary conditions are set for the upper and lower 
boundary. The final time is set to 20.

Note, that the filament in our case consists of eight cells compared to one cell in the original case. This change is 
necessary to stabilize the simulation when the Roe approximation is applied. The left frame of Fig. 12 shows the final 
result for the density profile when the original Roe flux is applied. Besides the expected carbuncle-like structure smaller 
carbuncles develop along the shock front. However, the modified Roe scheme is able to produce a disturbance-free shock 
front, while it does not suppress the “physical” carbuncle that is triggered by the vortex, see Fig. 12 right. The reduced 
numerical dissipation is clearly visible in the fine structure of the “physical” carbuncle.

6.5. Shock interface interaction: helium bubble in air

The grid-aligned shock instability does not only affect single-phase cases, but it may also limit the numerical investiga-
tion of shock-interface interaction problems. The following case investigates the interaction of a Mach 6 shock wave in air 
(γ = 1.4) with a helium bubble (γ = 1.66) similar to the setup in [1]. The helium bubble is placed at x = 0.15, y = 0.125
within in a domain of size [0, 0.5] × [0, 0.25]. The initial diameter of the bubble is set to D = 0.05. The shock front is 
initially placed at x = 0.1. The resolution is set to 512 × 256. The pre-shock domain is at rest with ρ Air = 1, ρHe = 0.138
and p Air = pHe = 1. The post-shock values of air are identical to the Mach 6 case given by Eq. (15). Inflow and outflow 
conditions are applied at the left and right boundary, respectively. Neumann boundaries with zero gradient for all quantities 
are set at the remaining boundaries. The initial setup is given in Fig. 13.

When the original Roe approximation is applied, three distinct carbuncles occur which deteriorate the flow field behind 
the shock wave massively as depicted in the top frame of Fig. 14. The modified Roe approximation is able to prevent the 
occurrence of the carbuncles effectively. The resulting flow evolution with stable shock front is shown in the bottom frame 
of Fig. 14.

6.6. Shock interface interaction: air bubble in water

Finally, another two-phase setup is investigated featuring a water-air setup with a large density ratio as described in 
[2]. As the shock hits the air bubble, a strong transmitted shock wave starts to travel within the air bubble. When low 
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Fig. 14. Shock interface interaction of a helium bubble in air at t = 0.04: density contours from dark blue = 0.138 to red = 6.5.

dissipation schemes such as the Roe approximation are applied, the shock front in the air bubble may suffer from the grid 
aligned-shock instability.

We follow the setup of [2] with a domain size of [0, 0.024] × [0, 0.024], where the air bubble (D = 0.006) is placed in 
the middle of the domain. Inflow and outflow conditions are applied at the left and right boundary, respectively. Neumann 
boundaries with zero gradient for all quantities are set at the remaining boundaries. The shock front is initially placed at 
x = 0.008. The initial condition is given by

(ρ, u, v, p) =

⎧⎪⎨
⎪⎩

(
1323.65,661.81,0,1.6 · 109

)
water post-shock(

1000,0,0,105
)

water pre-shock,(
1,0,0,105

)
air,

(17)

where water is modeled with a stiffened equation of state (γ = 4.4, P inf = 6 · 108) and air as ideal gas (γ = 1.4). The 
resolution is set to 640 × 640.

Fig. 15 shows the results for the density distribution for the whole domain, while Fig. 16 is focused on the velocity 
distribution in the air bubble at t = 0.0029. Again, the modified Roe flux is able to recover a sharp shock front without any 
instability effects.

7. Conclusion

In this paper, we have presented a procedure to obtain low-dissipation flux approximations that are stable against the 
grid-aligned shock instability and require only minor modifications to existing schemes. The procedure is motivated by con-
necting the grid-aligned shock instability to the well-known low Mach number effect of Godunov schemes. The typical setup 
for the instability consists of a shock front that propagates in one direction of the Cartesian grid, where the disturbances 
parallel to the front propagate in a low Mach number fashion. In this situation, the acoustic contribution to dissipation is 
dominant and leads to an amplification of pressure disturbances that causes the instability. The proposed procedure avoids 
the amplification and therefore cures the instability by limiting the ratio of the advection and the acoustic contribution to 
the dissipation term. Two possible implementations of the procedure were described in detail. Increasing the advection con-
tribution to the dissipation term results in an increased overall dissipation, while reducing the acoustic dissipation leads to 
an decreased overall dissipation. A modified Roe approximation (Roe-M) and a modified componentwise local Lax-Friedrichs 
flux (cLLF-M) are given.
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Fig. 15. Shock interface interaction of a air bubble in water at t = 0.0029: logarithmic color map of density from dark blue = 0.138 to red = 6.5.

Fig. 16. Shock interface interaction of a air bubble in water at t = 0.0029: velocity magnitude within the air bubble from dark blue = 0 to red = 4400.

Results obtained with the low-Mach-number modified flux formulations for a comprehensive series of test cases confirm 
that the prime reason of the grid-aligned shock instability is not due to an insufficient amount of numerical dissipation, 
but due to the inadequate scaling of the dissipative flux contributions in the low Mach number limit. Moreover, we demon-
strated that the shock instability can be cured by reducing the overall dissipation of the scheme. The preservation of high 
accuracy in all parts of the domain including the precise capturing of contact waves is therefore straightforward and does 
not require any further procedures. The Roe-M flux is stable against the grid-aligned shock instability, although it still 
exhibits other well-known deficiencies of the Roe flux such as lack of positivity and non-physical expansion shocks. The 
proposed method can be combined with entropy satisfying and positivity preserving techniques if required. The low Mach 
number treatment is most simple to apply to the Roe and componentwise local Lax-Friedrichs approximation, where only 
the calculation of the eigenvalues is affected. However, application to other flux formulations is also possible. Demonstra-
tions of the Roe-M flux for two multi-phase applications including shock interactions with a helium bubble in air and an 
air bubble in water revealed excellent results and demonstrate that the proposed scheme is capable to simulate complex 
super- and hypersonic flow physics while maintaining high accuracy and robustness.
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The purpose of this paper is twofold. First, the application of high-order methods 
in combination with the popular HLLC Riemann solver demonstrates that the grid-
aligned shock instability can strongly affect simulation results when the grid resolution 
is increased. Beyond the well-documented two-dimensional behavior, the problem is 
particularly troublesome with three-dimensional simulations. Hence, there is a need for 
shock-stable modifications of HLLC-type solvers for high-speed flow simulations.
Second, the paper provides a stabilization of the popular HLLC flux based on a recently 
proposed mechanism for grid aligned-shock instabilities Fleischmann et al. (2020) [8]. 
The instability was found to be triggered by an inappropriate scaling of acoustic and 
advection dissipation for local low Mach numbers. These low Mach numbers occur during 
the calculation of fluxes in transverse direction of the shock propagation, where the local 
velocity component vanishes. A centralized formulation of the HLLC flux is provided for 
this purpose, which allows for a simple reduction of nonlinear signal speeds. In contrast to 
other shock-stable versions of the HLLC flux, the resulting HLLC-LM flux reduces the inherent 
numerical dissipation of the scheme.
The robustness of the proposed scheme is tested for a comprehensive range of cases 
involving strong shock waves. Three-dimensional single- and multi-component simulations 
are performed with high-order methods to demonstrate that the HLLC-LM flux also copes 
with latest challenges of compressible high-speed computational fluid dynamics.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Approximate Riemann solvers in combination with shock-capturing Godunov schemes [1] dominate modern computation 
of phenomena that involve complex flow interactions across scales such as shock interaction with multi-phase interfaces 
and turbulent scales. The application of high-order discretizations allows for an accurate prediction of many of such flows. 
However, over the last decades the grid-aligned shock instability has presented a barrier for robust computation of high 
Mach number flows using high-order discretizations with state-of-the-art low-dissipation Riemann solvers such as Roe [2]
or HLLC [3,4]. Since the first description of the problem by Peery and Imlay [5] and Quirk [6] an extensive research on the 
topic resulted in a large number of scientific publications addressing various aspects. A summary of major developments to 
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the present day can be found in [7,8]. Even though most of the research has focused on the Roe solver, also the HLLC solver 
is afflicted by the instability.

HLL-type solvers were originally developed by Harten, Lax and van Leer [3]. In combination with the nonlinear signal 
speed estimates of Einfeldt [9] and the restoration of the contact wave proposed by Toro et al. [4], the resulting HLLC 
Riemann approximation became one of the most successful and widespread Riemann solvers for hyperbolic systems [10,11]. 
An accurate estimation of the contact wave speed was communicated by Batten et al. [12]. Due to the explicit modeling 
of each wave of the governing Euler equations, HLLC is a complete Riemann solver with significantly reduced dissipation 
near contact discontinuities compared to the HLL scheme. The design of the HLLC flux allows for straightforward extensions 
to other types of hyperbolic equations, e.g. for magneto-hydrodynamics [13–15], by introduction of additional wave types. 
Moreover, the HLLC flux has been applied successfully to multi-component flows [16,17], and capillary forces have been 
introduced to simulate surface tension effects at liquid/gas interfaces [18]. Further recent applications are reviewed in [11].

While the HLLC flux is known to suffer from the shock instability, the stable behavior of the HLL flux was described 
already by Quirk [6]. He suggested to apply the HLL scheme near strong shocks in combination with lower-dissipation 
schemes, such as HLLC, in the remaining domain. These hybrid schemes lead to stable, but nevertheless contact preserving 
results. The switching procedure was improved by Kim et al. [19], where the dissipative HLL flux only is applied for the 
fluxes in transverse direction of the shock propagation. Another modification of the hybrid scheme was suggested in [20], 
where the dissipative HLL flux only is applied for two components of the flux. However, hybrid schemes may still signif-
icantly increase dissipation, and a switching procedure has to be provided. Additionally, the authors of [20] successfully 
tested the shock stability of the rotated Riemann solver method [21] applied to the HLLC flux, but they found that the latter 
approach is computationally rather expensive. The first pure HLLC-type flux with shock-stable properties, called HLLCM, was 
developed by Shen et al. [22] via smearing of the shear velocities on both sides of the contact line. This procedure introduces 
shear viscosity and stabilizes the calculation of strong shocks. However, the introduced amount of dissipation limits the ac-
curacy of boundary layer calculations and therefore the authors again suggested to apply a hybrid HLLC-HLLCM version for 
complex flows. Recently, Xie et al. [23] proposed an HLLC-type Riemann solver with an additional pressure-dissipation term 
that is activated near shocks and damps spurious pressure perturbations. Simon and Mandal [24,25] proposed two different 
approaches to avoid the shock instability. They separated the HLLC flux into the inherent HLL part and an antidiffusive part. 
In their first approach [24], the activation of the antidiffusive term is controlled by a pressure-ratio-based multi-dimensional 
shock sensor. The resulting solver called HLLC-ADC restores the shock stability of the HLL flux. The second approach [25] is 
to apply a selective wave modification that increases the inherent dissipative HLL part in the vicinity of a shock wave. The 
antidiffusive term of the resulting HLLC-SWM flux remains identical to that of the original HLLC.

In comparison to the large number of proposed modifications of the Roe flux, the grid-aligned shock instability of the 
popular HLLC solver has found much less consideration in literature. The reason is probably, that the solution of most two-
dimensional simulations remains bounded, and therefore the effect of the introduced disturbances is not as catastrophic 
as with the Roe flux. However, with increased resolution, high-order discretizations, and extension to three-dimensional 
simulations, the application of the HLLC flux is prone to develop severe carbuncles, similarly to that obtained with the Roe 
flux, as is shown in this paper.

In [8], the authors proposed a new possible mechanism of the grid-aligned shock instability. A wrong scaling behavior of 
numerical dissipation due to the local low Mach number in transverse direction of the shock front propagation was found to 
cause the numerical shock instability. A modification for the popular Roe flux and the local componentwise Lax-Friedrichs 
flux was proposed that proved to be shock stable. The present paper proposes a new shock-stable modification of the HLLC 
flux called HLLC-LM that is based on these findings. As a straightforward reduction of nonlinear wave speeds is not sensible 
for the classical HLLC formulation, a new centralized reformulation of the HLLC flux is derived. This alternative formulation 
allows for an analogous reduction of acoustic dissipation as with the modified Roe scheme without introducing additional 
difficulties. Most of the present shock-stabilizing variants of the HLLC flux restore the shock stability by adding additional 
dissipation in one way or the other, as motivated by the stability of the stable, but highly dissipative HLL scheme. In contrast, 
the proposed HLLC-LM flux with less numerical dissipation than the classical HLLC flux represents a fundamentally different 
approach in comparison to the earlier HLLC-HLL combination models. Moreover, in this paper the shock stability of both 
HLLC and HLLC-LM is studied using high-order methods in space and time, unlike the low-order examples presented in 
most of the aforementioned publications. We also investigate the grid-aligned shock instability for the HLLC solver in three 
dimensions and reveal that carbuncles are more likely to occur than in two dimensions.

The paper is organized as follows. In Section 2, the governing equations and the general framework of Godunov-type 
methods are reviewed together with the classical HLLC flux formulation. A centralized formulation of the HLLC flux is 
derived in the first part of Section 3, followed by the low Mach number adapted wave speed formulations resulting in the 
newly proposed HLLC-LM scheme. In Section 4, a comprehensive set of test cases is studied to verify the accuracy and 
shock stability of the new scheme. Results are also provided with high resolution including a study of three-dimensional 
effects. Finally in Section 5, calculations of complex flow phenomena that take advantage of the applied high-order schemes, 
such as a flow around a diamond and multi-component flows with nontrivial shock-interface interactions, are studied to 
further demonstrate both the stability and the reduced numerical dissipation of the HLLC-LM flux. Conclusions are drawn 
in Section 6.
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2. Governing equations and numerical approach

We consider an inviscid compressible flow that evolves according to the three-dimensional Euler equations

Ut + F (U)x + G (U)y + H (U)z = 0, (1)

where U is the density of the conserved quantities mass ρ , momentum ρv ≡ (ρu,ρv,ρw) and total energy E = ρe + 1
2 ρv2, 

with e being the internal energy per unit mass. The fluxes F , G and H are defined as

F =

⎛
⎜⎜⎜⎜⎝

ρu
ρu2 + p

ρuv
ρuw

u (E + p)

⎞
⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎜⎝

ρv
ρuv

ρv2 + p
ρv w

v (E + p)

⎞
⎟⎟⎟⎟⎠ , H =

⎛
⎜⎜⎜⎜⎝

ρw
ρuw
ρv w

ρw2 + p
w (E + p)

⎞
⎟⎟⎟⎟⎠ . (2)

The set of equations is closed by the ideal-gas equation of state, where the pressure p is given by p = (γ − 1)ρe with a 
constant ratio of specific heats γ .

2.1. Finite volume approach

Our numerical framework is identical to the one described in [8], where Godunov’s approach [1] for finite volumes is 
applied to solve the given set of equations. The time evolution of the vector of cell-averaged conservative states Ū is given 
by

d

dt
Ūi = 1

�x
(Fi− 1

2 , j,k − Fi+ 1
2 , j,k + Gi, j− 1

2 ,k − Gi, j+ 1
2 ,k + Hi, j,k− 1

2
− Hi, j,k+ 1

2
), (3)

where �x is the cell size of a uniform Cartesian grid and F, G and H approximate the cell-face fluxes in x-, y- and 
z-direction, respectively. These fluxes are determined dimension-by-dimension from a Riemann solver combined with a 
high-order WENO spatial reconstruction scheme [26]. Additional volume source terms, such as gravitational acceleration, 
are omitted here for simplicity. The resulting system of ODE (3) is integrated in time using a high-order strong stability-
preserving (SSP) Runge-Kutta scheme [27].

2.2. The HLLC Riemann solver

In order to avoid computationally expensive iterative solution of the Riemann problem, approximate Riemann solvers 
are commonly employed. In this paper, we focus on one specific approximation, the HLLC solver, which is one of the 
most popular and versatile Riemann solvers. It has been extended to a broad range of applications, also beyond classical 
computational fluid dynamics [11].

Toro et al. [4] define the HLLC flux as

FH LLC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FL if SL ≥ 0,

F∗L = FL + SL · (U∗L − UL) if SL < 0 ∩ S∗ ≥ 0,

F∗R = FR + S R · (U∗R − UR) if S R > 0 ∩ S∗ ≤ 0,

FR if S R ≤ 0,

(4)

where two intermediate states, U∗L and U∗R , are separated by the contact wave and are determined from

U ∗K = S K − uK

S K − S∗

⎛
⎜⎜⎜⎜⎝

ρK

ρK S∗
ρK v K

ρK w K

E K + (S∗ − uK )
(
ρK S∗ + pK

S K −uK

)

⎞
⎟⎟⎟⎟⎠ (5)

with K = L, R , and UL , UR being the reconstructed left and right face states, respectively.
Following Einfeldt [9], the maximum left and right nonlinear signal speed estimates are obtained from

SL = min(uL − cL, û − ĉ), S R = max(uR + cR , û + ĉ), (6)

where û and ĉ are determined from the Roe average

û = uL · √ρL + uR · √ρR√
ρL + √

ρR
(7)
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Fig. 1. Schematic illustration of the vanishing velocity component v in transverse direction of the shock front propagation.

and

ĉ2 = cL
2 · √ρL + c2

R · √ρR√
ρL + √

ρR
+ 1

2

√
ρL

√
ρR(√

ρL + √
ρR

)2 (uR − uL)
2 . (8)

The contact wave speed is estimated according to Batten et al. [12] from

S∗ = pR − pL + ρLuL (SL − uL) − ρR uR (S R − uR)

ρL (SL − uL) − ρR (S R − uR)
. (9)

High-order approximations for the left and right face states, UL and UR , are obtained upon characteristic decomposition in 
combination with a high-order WENO scheme as described in detail in [28].

3. A shock-stable HLLC type solver with low Mach number modification

An inaccurate scaling behavior of the acoustic and advection contribution to the numerical dissipation in the low Mach 
number limit has been found to be the driving mechanism of the numerical grid-aligned shock instability [8]. The connec-
tion is motivated by the observation, that shock instabilities only occur when a high Mach number shock wave propagates 
almost perfectly aligned with the computational grid.

When the shock wave moves in x-direction as shown in Fig. 1, the velocity components of the local transverse direction 
v , respectively v and w for the three-dimensional case, have a vanishing magnitude. Consequently, the local directional 
Mach number will also vanish during the computation of the fluxes in transverse directions of the shock wave propagation. 
Note that a perfect alignment with zero Mach number in transverse directions leads to a one-dimensional situation where 
no instability occurs. A small deflection is always required to trigger the instability. There is a thorough documentation of the 
shortcomings of Riemann solvers in the low Mach regime [29–31] which dates back to the findings of Guillard et al. [32,33]. 
In [32], the authors showed that a wrong scaling behavior of the numerical dissipation leads to pressure fluctuations that 
may ruin the prediction of low Mach number flows using Godunov’s approach. This flaw is now considered as the driving 
mechanism of the grid-aligned shock instability. In their recent publication, Chen et at. [34] performed a stability analysis 
to investigate the shock instability mechanism for simplified systems. Their results support the given argumentation as the 
authors also detect an inaccurate pressure dissipation of the Riemann solver at the vertical transverse face of the shock 
to be the driving mechanism for the instability. A minor modification that reduces the acoustic dissipation of the Roe 
Riemann solver in the low Mach number limit proved to be effective in suppressing the instability [8]. The reduction of 
acoustic dissipation can be achieved by reduction of the nonlinear eigenvalues of the Roe dissipation matrix for small Mach 
numbers. This procedure stabilizes simulations of supersonic flows. For dealing with global low Mach number flows near 
the incompressible limit, there are other methods available in literature [29–31].

A straightforward modification of the nonlinear signal speeds of the HLLC solver following [8] turns out to be ineffective 
in suppressing grid-aligned shock instabilities. The reason for the ineffectiveness can be found when the limit solution of 
the Roe-M flux and a modified HLLC flux with similarly reduced nonlinear signal speed are compared for vanishing Mach 
numbers. While the Roe-M approximation [8] reduces in the low Mach number limit to the central flux term

FRoe−M Ma→0−−−−→ 1

2
(FL + FR) , (10)

a modified HLLC approximation with identical reduction of nonlinear signal speeds results in

4
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FH LLC−R E DU C E D Ma→0−−−−→
{

FL if S∗ ≥ 0,

FR if S∗ ≤ 0.
(11)

Thus, differently from the limit solution of the Roe-M scheme, a straightforward modification of the HLLC flux leads to a 
pure classical upwind scheme. Upwinding is not required in the absence of shocks and, moreover, introduces an undesir-
able amount of numerical dissipation, which counteracts the objective of reducing dissipation. Thus, the goal is to find a 
formulation of the HLLC flux that continuously approaches the central flux term in the limit of low Mach numbers.

3.1. Central formulation of the HLLC flux

In a first step, the classical HLLC flux will be reformulated motivated by the derivation of the central Roe flux formulation.
The intermediate flux F∗L can be determined using two alternative approaches

F∗L = FL + SL (U∗L − UL) (12)

and

F∗L = FR + S R (U∗R − UR) + S∗ (U∗L − U∗R) . (13)

While the traditional derivation of Eq. (12) applies the Rankine-Hugoniot condition only once starting from the left side, 
alternatively, the Rankine-Hugoniot condition can also be applied twice starting from the right side, Eq. (13). A central 
formulation of F∗L can be established by averaging both formulations and is given by

F∗L = 1

2
(FL + FR) + 1

2
[SL (U∗L − UL) + S∗ (U∗L − U∗R) + S R (U∗R − UR)] . (14)

Analogously, the right intermediate flux can be determined by

F∗R = FR + S R (U∗R − UR) (15)

and

F∗R = FL + SL (U∗L − UL) + S∗ (U∗R − U∗L) (16)

resulting in

F∗R = 1

2
(FL + FR) + 1

2
[SL (U∗L − UL) − S∗ (U∗L − U∗R) + S R (U∗R − UR)] . (17)

By comparing Eq. (14) and Eq. (17) we note that only the sign of the third term, which is related to the contact wave, 
differs for both expressions. Finally, considering the requirement that F∗L is applied if S∗ ≥ 0 and F∗R is applied if S∗ ≤ 0, a 
central formulation of the HLLC flux is obtained by

FH LLC =

⎧⎪⎨
⎪⎩

FL if SL ≥ 0,

FR if S R ≤ 0,

F∗ else

(18)

with

F∗ = 1

2
(FL + FR)

1

2
[SL (U∗L − UL) + |S∗| (U∗L − U∗R) + S R (U∗R − UR)] . (19)

3.2. On the numerical dissipation of HLL(C)-type solvers

Using the centralized formulation derived in Section 3.1 both the HLL and the HLLC flux in the subsonic regime can be 
written as

FH LL = 1

2
(FL + FR) − 1

2
[|SL | (U∗ − UL) + |S R | (UR − U∗)]

FH LLC = 1

2
(FL + FR) − 1

2
[|SL | (U∗L − UL) + |S∗| (U∗R − U∗L) + |S R | (UR − U∗R)] .

(20)

A connection to the Lax-Friedrichs flux can be established, when |SL | = |S∗| = |S R | = |λ| is introduced into FH LL or FH LLC

resulting in

Fλ
H LL(C) = 1

2
(FL + FR) − 1

2
|λ| (UR − UL) . (21)
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Fig. 2. Dependence of the activation function φ on the local Mach number Malocal with Malimit = 0.1.

Now, the HLL(C) flux can be seen as a Lax-Friedrichs flux where the dissipation has been split into two (HLL), or three 
(HLLC) differently weighted contributions representing the general wave system of the underlying Riemann problem.

In the original formulation of the HLLC approximation (4), advection and acoustic contributions to the numerical dissipa-
tion are difficult to separate. However, the proposed central formulation of the HLLC solver allows for a separation of both 
contributions in analogy with the Roe flux, which is given by

FRoe = 1

2
(FL + FR) − 1

2
R |�| R−1 (UR − UL) . (22)

The first part both in Eq. (19) and Eq. (22) is the central flux term, and the second term is the dissipation flux term, 
which is characteristic for each solver. The advection dissipation of the Roe flux is proportional to the eigenvalue |u|, and 
the acoustic dissipation of the Roe flux is proportional to the eigenvalues |u ± c|. Analogously, the acoustic dissipation of 
the HLLC flux is related to the first and third term of the dissipation flux term as both terms are proportional to the 
acoustic signal speed SL , respectively S R . The advection dissipation is related to the center term, which is proportional to 
the contact signal speed S∗ . Note that the situation for the HLLC flux is more complex than for the Roe flux since S L and 
S R also contribute to S∗ , U∗L and U∗R . However, the results of this paper indicate that the main contributions of advection 
and acoustic dissipation can be distinguished as discussed.

3.3. HLLC-LM flux with low Mach number correction

The main goal of the proposed modification is to balance the vanishing advective and dominant acoustic dissipation in 
the low Mach number limit by a reduction of overall dissipation. The central formulation of the HLLC flux given by Eq. 
(18) and Eq. (19) enables a straightforward application of the Mach number dependent reduction of nonlinear signal speeds 
according to

S H LLC−LM
L = φ · SL, S H LLC−LM

R = φ · S R (23)

with

φ = sin

(
min

(
1,

Malocal

Malimit

)
· π

2

)
(24)

and

Malocal = max

(∣∣∣∣uL

cL

∣∣∣∣ ,
∣∣∣∣uR

cR

∣∣∣∣
)

. (25)

u denotes the velocity component dependent on the direction of the cell-face Riemann problem. S H LLC−LM
L and S H LLC−LM

R
are only applied for the final flux evaluation in Eq. (19). All previous procedures, especially the calculation of S∗ , U∗L and 
U∗R , are performed using the original values for SL and S R .

The application of the sine function in Eq. (24) causes a smooth decay of the acoustic dissipation as depicted in Fig. 2. 
The reference parameter Malimit is set to 0.1 for all calculations presented in this paper. This selection ensures that the mod-
ification will only be active if the local flow speed component is less than ten percent of the local sound speed. Otherwise, 
the classical HLLC formulation is fully recovered. The new scheme, denoted as HLLC-LM in the following, fully preserves the 
favorable low dissipation of HLLC at the contact line as the acoustic dissipation of HLLC-LM is reduced proportionally to 
the level of local velocities instead of the speed of sound for low Mach numbers while the advection dissipation remains 
unchanged.

6
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Fig. 3. Comparison of the classical HLLC formulation with the central HLLC formulation for the corner diffraction of a Mach 5.09 shock wave: logarithmic 
gradients of density from 1 to 1, 000 at t = 0.157.

4. Central aspects of the grid-aligned shock instability with HLLC-type solvers demonstrated for classical test cases

The calculations in this section serve to study the evolution of the numerical shock instability when HLLC-type solvers 
are applied in combination with high-order schemes. Moreover, the stability of the HLLC-LM scheme with respect to the 
grid-aligned shock problem is demonstrated for a comprehensive set of cases with strong moving shocks that are prone to 
exhibiting this instability. If not mentioned otherwise, all calculations were performed using the classical fifth-order WENO 
scheme [26] for spatial discretization combined with a third-order strong-stability-preserving Runge-Kutta time integration 
[27] and the approximate Riemann solvers as described in the previous sections. The effective range of the shock-transverse 
Mach number modification in the HLLC-LM solver is always limited to local Mach numbers lower than 0.1. The fluid is 
modeled as ideal gas with γ = 1.4. The CFL number is set 0.6 for single-phase cases and 0.4 for cases with interfaces 
employing the level-set approach. The combination of a multiresolution procedure [35] and an adaptive local time stepping 
[36] enables efficient computation with high effective resolutions. In the following, the given resolution information defines 
the finest level. Shocks are discretized with the highest resolution in all presented cases due to the applied refinement 
criteria, whereas material interfaces are by definition on the highest level.

4.1. Corner flow problem I: verification of centralized HLLC formulation

As a first step, the proposed centralized HLLC formulation given in Eq. (18) and Eq. (19) is verified against the classical 
HLLC procedure for the diffraction of a shock wave around a sharp corner. This is a well-established test case, where the 
instability of the HLLC flux becomes apparent. This case was already selected by Quirk [6] to demonstrate the failure of 
low-dissipation Riemann approximations. Additionally, the problem yields complex flow patterns. Thus, it is well suited to 
compare results of different solvers and to verify our reformulations.

We use a domain of size [0, 1] × [0, 1], that is uniformly initialized with (ρ, u, v, p) = (1,0,0,1/1.4) and discretized by 
1280 × 1280 cells. Reflecting-wall boundary conditions are set everywhere, except for the upper left boundary at x = 0 from 
y = 0.5 to y = 1. Here, the post-shock condition of a Mach 5.09 shock wave is prescribed. The final time is set to 0.8/Ma. 
Even though the first-order HLLC approximation is known to be positivity preserving, this property is not guaranteed for 
high-order extensions [37]. We encountered instabilities in the vicinity of the corner point of the backward facing step at 
the inflow for all tested variants of the HLLC flux when combined with a fifth-order WENO scheme. Therefore, simulations 
were performed using a third-order WENO scheme [26].

Fig. 3 and Fig. 4 show schlieren images of the density gradients at the final time of the simulation. The results shown 
in the left frame of Fig. 3 are obtained applying the original HLLC formulation given in Eq. (4), whereas results shown in 
the right frame of Fig. 3 are obtained applying the centralized HLLC formulation given in Eq. (18) and Eq. (19). As expected, 
there are no distinguishable differences for both formulations. Moreover, all other test cases presented in this paper have 
been investigated without encountering any differences exceeding the floating-point roundoff error. We therefore conclude 
that Eq. (18) with Eq. (19) is a valid alternative representation of the HLLC flux.

4.2. Corner flow problem II: stability of HLLC-LM formulation

As a second step, the stability of the HLLC-LM scheme is demonstrated. The aforementioned corner flow simulations 
show severe disturbances in the backflow of the leading shock front similar to results obtained with the Roe Riemann 

7
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Fig. 4. Corner diffraction of a Mach 5.09 shock wave: logarithmic gradients of density from 1 to 1,000 at t = 0.157.

solver [6]. The left frame of Fig. 4 shows that the HLLC-LM is able to capture all details of the flow while preventing any 
disturbances of the shock wave. Additionally, a high-resolved simulation is performed using 16 times smaller cells. Typically, 
the instability is enhanced by higher resolutions, however, the results presented in the right frame of Fig. 4 are still free of 
any instability.

4.3. Rayleigh Taylor instability: numerical dissipation at contact lines

The inherent numerical dissipation of the original HLLC flux and HLLC-LM flux is compared by investigating a classical 
Rayleigh-Taylor instability. Two initial gas layers with different densities are exposed to gravity with unity magnitude, where 
the resulting acceleration is directed towards the lighter fluid. A small disturbance of the contact line triggers the instabil-
ity. The computational domain is given by [0,0.25] × [0,1] and the interface initially is placed at y = 0.5. Initial states 
are given by (ρ, u, v, p)y≤0.5 = (2,0,−0.025c · cos(8πx),2y + 1) and (ρ, u, v, p)y>0.5 = (1, 0, −0.025c · cos(8πx), y + 1.5), 

where the speed of sound is c =
√

γ p
ρ with γ = 5

3 . Top and bottom boundary states are fixed to (1,0,0,2.5) and (2,0,0,1), 
respectively. Symmetry boundary conditions are imposed at the left and right boundary.

The final density evolution for both solvers is shown in Fig. 5 for a resolution of 128 × 512. Results indicate a significant 
reduction of dissipation at the contact line when the HLLC-LM flux is applied instead of the original HLLC flux.

4.4. Quirk’s odd-even decoupling test: quantitative evaluation of the shock instability

The results of the Section 4.2 indicate the effectiveness of the proposed method qualitatively, however, a detailed quanti-
tative study is difficult to perform for the corner flow problem. For this purpose, the simple plane shock propagation along 
a rectangular duct with a defined disturbance level is studied. This test case was also proposed by Quirk [6] due to its 
simple setup. Nevertheless, it provides an effective and reliable way to trigger the odd-even decoupling near strong shocks, 
which is related to the grid-aligned shock instability. Moreover, it allows for a simple quantitative study of the rise of the 
instability.

The domain is set to [0, 2400] × [0, 20], and discretized with 2400 × 20 cells. Inflow and outflow conditions are applied 
at the left and at the right boundary, respectively. Reflecting wall conditions, which are equivalent to symmetry boundary 
conditions for inviscid flows, are enforced both at the top and at the bottom boundary of the domain. Pre-shock density and 
pressure are set to unity, and all velocity components are set to zero. Artificial numerical noise is introduced to all primitive 
variables in the initial state to trigger the instability [38,8]. We have performed simulations with the original Mach 6 setup 
and with a Mach 20 setup with initial conditions given by

(ρ, u, v, p) =

⎧⎪⎪⎨
⎪⎪⎩

(1,0,0,1) if x > 5,(
216
41 ,35

√
35

36 ,0, 251
6

)
else (for Ma = 6 case),(

160
27 , 133

8

√
1.4,0,466.5

)
else (for Ma = 20 case),

(26)

where the shock front is initially placed at x = 5. Both simulations are performed up to a late point in time till the shock 
front approaches the end of the domain. The final time is set to 330 for the low Mach number simulation and to 100 for 
the high Mach number simulation, respectively.
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Fig. 5. Rayleigh-Taylor instability t = 1.95: density contours from 0.85 (blue) to 2.25 (red). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 6. Instability progress in Quirk’s test case for Mach 6.

The maximum magnitude of the y-velocity component v in the domain provides a reasonable measure of the deviation 
from the one-dimensional solution, and therefore, it is well suited to monitor the growth rate of the disturbance quanti-
tatively over time. Fig. 6 and Fig. 8 show the evolution of the velocity deviation for the Mach 6 and the Mach 20 case for 
different flux approximations when all initial primitive variables are superposed by uniform random perturbations ranging 
from −0.5 · 10−3 to 0.5 · 10−3. In addition, the final density distributions are presented in Fig. 7 and Fig. 9. Besides the 
results for the discussed HLLC and HLLC-LM fluxes, the results for the more dissipative HLL flux [3] and the shock-stable 
Roe-M flux [8] are provided for comparison.

Simulations with the classical HLLC solver show an exponential instability where instabilities saturate at O(1) at around 
t = 20 for the low Mach number case and at around t = 5 for the high Mach number case. Unlike the Roe approximation, 
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Fig. 7. Quirk’s test case for Mach 6: color map of density from blue = 1.0 to red = 6.8 at t = 330.

Fig. 8. Instability progress in Quirk’s test case for Mach 20.

Fig. 9. Quirk’s test case for Mach 20: color map of density from blue = 1.0 to red = 8.0 at t = 100.

the HLLC flux forms no distinct carbuncles, and density disturbances remain bounded. However, the instability disturbs 
the shock front significantly as shown in the left frame, respectively top frame, of Fig. 7 and Fig. 9. Moreover, when the 
final position of the shock front is compared to the analytically predicted position, an incorrect wave speed is obtained. 
This effect is even more dominant for the high Mach number case. With the modified HLLC-LM scheme, the stable and 
analytically predicted result is obtained as depicted in the middle frames of Fig. 7 and Fig. 9. The magnitude of disturbances 
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Fig. 10. Double Mach reflection of a Mach 10 shock wave: 40 density contours from 1.88783 to 20.9144 at t = 0.2.

is similar to the one obtained with the Roe-M formulation [8] and slightly higher than the one obtained with the HLL flux 
for both cases. The lower disturbances of the HLL flux can be explained by a significantly higher level of inherent dissipation 
of the scheme. However, no major differences can be observed in the qualitative density results for HLL and HLLC-LM, e.g. 
middle and bottom frame of Fig. 9.

4.5. Double Mach reflection problem: effect of resolution

Several numerical schemes encounter difficulties when simulating a double Mach reflection as proposed by Woodward 
and Colella [39]. The leading Mach stem may be kinked in consequence of the numerical shock instability [6,7]. The test 
case represents a Mach 10 shock wave hitting a solid ramp with an angle of 30 degrees. The initial shock wave is set up 
with

(ρ, u, v, p) =
{

(1.4,0,0,1) if y <
√

3 (x − 1/6) ,(
8,33

√
3

8 ,−4.125,116.5
)

else.
(27)

A Neumann boundary condition with zero gradients for all variables is applied at the left, right and upper boundary. 
Along the bottom boundary, at y = 0, the region from x = 0 to x = 1/6 is always assigned post-shock conditions, whereas 
reflecting-wall conditions are imposed from x = 1/6 to x = 4. The domain size of [0, 4] × [0, 6.67] is chosen large enough 
to avoid any disturbances entering the domain at the upper boundary. The domain is discretized with 960 × 1600 cells and 
the final time is set to t = 0.2. Besides the large vertical domain size, this setup is commonly chosen in literature [40].

The final density contours for both HLLC and HLLC-LM are shown in Fig. 10. Both schemes deliver almost identical results 
with no visible deflection at the leading Mach stem. However, if the resolution is increased to 1920 × 3200 cells and the 
final time is set to t = 0.28 the results for both schemes differ significantly as shown in Fig. 11. A kinked Mach stem, 
together with a severe disturbance of the wall jet can be observed for the original HLLC scheme, whereas the HLLC-LM 
scheme is free of any instability.
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Fig. 11. Double Mach reflection of a Mach 10 shock wave: 40 density contours from 1.88783 to 20.9144 at t = 0.28.

4.6. Supersonic flow around cylinder: steady shock position

The next case predicts the bow shock resulting from a supersonic flow around a stationary cylinder. This case was first 
described by Peery and Imlay [5] to suffer from the carbuncle phenomenon. Unlike the other cases in this paper, the relevant 
shock wave is not moving, which renders the case particularly challenging for high-order shock-capturing schemes with 
explicit time integration. Following the argumentation in [8], we do not change the Cartesian grid nor the time integration, 
which likely results in a small resolved level of fluctuations around the steady shock due to the high order of the applied 
scheme. We include this case for the sake of completeness even though the application of high-order schemes here is not 
expected to reveal additional information for such configurations compared to low-order schemes.

The circular reflecting-wall condition representing the cylinder is approximated using a level-set approach [41]. At the 
left and the remaining right boundary inflow and outflow conditions are applied, respectively. Top and bottom boundary 
conditions are set to Neumann boundary conditions with zero gradient for all variables. Two different Mach numbers, Ma =
3 and Ma = 20, are studied with initial states (ρ, u, v, p) =

(
1,

√
1.4 · Ma,0,1

)
. The domain size is set to [0, 0.3] × [0, 0.8]

for the lower Mach number, and [0, 0.3] × [0, 0.6] for the higher Mach number. Final times are chosen large enough to 
reach a fully developed bow shock. The cylinder with a diameter D = 0.2 is placed at the center of the right boundary and 
resolved by 160 cells per diameter.

Besides the HLLC and the HLLC-LM schemes, the more dissipative HLL scheme is also applied. Fig. 12 and Fig. 13 show 
the resulting pressure distributions and Mach contour lines that are chosen identical to [7] for both Mach number flows. All 
three schemes show comparable results for both Mach numbers. Note that also the HLL scheme reveals some disturbances 
in the backflow of the steady shock. These disturbances of the HLL scheme in combination with high-order methods have 
been reported in literature [42]. None of the schemes suffers from the carbuncle phenomenon with the described Cartesian 
setup. Moreover, the HLLC-LM scheme has been tested for a significantly increased resolution of 640 cells per diameter, 
where it still delivers stable results as shown in the right frames of Fig. 12 and Fig. 13.

4.7. The Sedov blast wave: comparison of shock instability in two and three dimensions

The next case of this section is the classical Sedov blast wave [43,37,7]. Due to its symmetry, the Sedov blast wave 
simulation is suitable to demonstrate the effect of the grid alignment on the numerical shock instability [8]. The test case 
consists of a high pressure area covering only few cells that is initiated at the center of the domain. The rest of the domain 
is set to a near vacuum state. The whole domain is initially at rest. The initial states are given by

(ρ, u, v, p) =
{(

1,0,0,3.5 · 105
)
, if

√
x2 + y2 < 0.005,(

1,0,0,10−10
)
, otherwise.

(28)
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Fig. 12. Supersonic flow around cylinder Ma = 3 at t = 1.5: color pressure map (blue = 1.0 to red = 12.1) is overlaid by 25 Mach contours (0.1 to 2.5).

Fig. 13. Supersonic flow around cylinder Ma = 20 at t = 0.5: color pressure map (blue = 1.0 to red = 550) is overlaid by 25 Mach contours (0.1 to 2.5).

Reflecting-wall conditions are applied at all boundaries. The domain size is set to [−1.2, 1.2] ×[−1.2, 1.2], and it is resolved 
by 960 × 960 cells. The final time is set to 0.1.

The schlieren image for logarithmic density gradients is given in Fig. 14 when using the HLLC flux and the HLLC-LM flux. 
At locations where the shock front propagates aligned with the computational grid, disturbances behind the shock wave 
can be observed. The magnitude of disturbances is smaller than for the Roe flux [8] and no carbuncles occur. The results 
obtained with the HLLC-LM flux are free of any disturbance.

Finally, we extend the problem to three dimensions in a straightforward way. The domain size is set to [−2, 2] ×[−2, 2] ×
[−2, 2] and is resolved by a resolution of 640 × 640 × 640 cells. In order to save computational cost, only one-eighth of the 
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Fig. 14. Two-dimensional Sedov blast wave: logarithmic gradients of density from 1 to 500 at t = 0.1.

Fig. 15. Three-dimensional Sedov blast wave: logarithmic gradients of density from 1 to 500 at t = 0.1.

given domain is simulated and appropriate symmetry boundary conditions are applied. The setup is chosen according to 
Tasker et al. [43], where initial states are

(ρ, u, v, w, p) =
{(

1,0,0,0,23.757239 · 106
)
, if

√
x2 + y2 + z2 < 0.0875,(

1,0,0,0,1 · 10−10
)
, otherwise

(29)

with γ = 5
3 . The final time again is set to 0.1.

Results for the three-dimensional Sedov blast wave are shown in Fig. 15 for both HLLC and HLLC-LM. Differently from 
the two dimensional case, the three-dimensional simulation reveals an increased level of disturbances and the occurrence 
of significant carbuncles for the HLLC flux. This indicates that the instability is enhanced for three-dimensional simulations. 
Following the argumentation of Section 3, this behavior can be explained as follows. A three-dimensional shock wave that 
propagates along one coordinate axis suffers from an excessive acoustic dissipation that is now introduced from two sides 
as the fluxes in both other directions have a vanishing Mach number. As expected, the reduction of acoustic dissipation in 
the HLLC-LM scheme also helps to prevent the grid-aligned shock instability in three-dimensional simulations.

4.8. Subsonic flow around cylinder: low Mach number flow

In addition to the shock-dominated flow problems presented before, the performance of the proposed HLLC-LM scheme 
also is tested in the global low Mach number regime using the well-known test case of a subsonic flow around a cylinder. 
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Fig. 16. Flow around a cylinder at Ma = 0.01 using first order (top) and WENO5 (bottom): color density map (blue = 0.99993 to red = 1.00007) is overlaid 
by 21 contour lines for normalized pressure fluctuations from −7 · 10−5 to 7 · 10−5.

This flow configuration is troublesome for Godunov schemes in combination with Riemann solvers as comprehensively dis-
cussed in literature, e.g. [29]. Different modifications to Riemann solvers and preconditioning techniques have been proposed 
to increase the simulation accuracy of low Mach number flows [32,30,31].

The domain of size [0, 80D] × [0, 80D] is set large enough to avoid any interaction of reflected waves, which is crucial 
for the high-order simulation. The cylinder is placed in the center of the domain with a diameter D = 1. Initial density and 
pressure are set to unity in the entire domain. The initial velocity of u = 0.01 ·√1.4 results in a free-stream Mach number of 
0.01. At all boundaries we apply Neumann boundary conditions with zero gradient for all variables. The effective resolution 
is set to 128 cells per diameter. The final time t = 30 is large enough to approach a steady state before disturbances due 
to reflections at the domain boundaries affect the region of interest around the cylinder. Note that the application of high-
order schemes in combination with explicit time integration for the fully compressible evolution equations renders low 
Mach number simulations particularly expensive.

Fig. 16 shows the density distribution in the relevant region around the cylinder and 21 isocontours for pressure fluctu-
ations δp = p − p0 between ±γ Ma2/2 = ±7 · 10−5 similarly to [29] for HLLC and HLLC-LM using both a first-order and a 
WENO5-JS spatial discretization.

The fully symmetric flow field obtained with WENO5 shows excellent agreement with the expected result. In either case, 
the HLLC-LM solver shows similar or better performance than the original HLLC. Nevertheless, it should be pointed out 
that the HLLC-LM solver is primarily designed for applications in the high Mach number regime that suffer from shock 
instabilities. Due to the decreasing numerical dissipation in the low Mach number limit we expect the occurrence of 
pressure-velocity decoupling when the Mach number is further reduced.
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Fig. 17. Supersonic flow around a diamond-shaped obstacle with Ma = 2.85: logarithmic gradients of density from 1 to 1000 at t = 0.5.

5. Application to complex flow situations

The main motivation for the application of high-order low-dissipation schemes is an accurate prediction of highly com-
plex flow situations. Therefore, we studied three additional types of test cases that involve interaction of shock waves with 
nontrivial structures and recent examples of multi-component flow simulations using the level-set approach [41].

5.1. Supersonic flow around diamond-shaped obstacle

The first example of a highly complex flow evolution is the supersonic flow around a diamond-shaped obstacle. The 
Mach number of 2.85 is chosen to be high enough to form a double Mach reflection during and after the shock wave 
propagates over the diamond [44]. The sharp geometry changes result in extremely complex flow patterns in the wake of 
the diamond. In addition to the double Mach reflection, this case also involves a bow shock in front of the obstacle and the 
classical odd-even decoupling situation near the leading shock wave. This makes the case particularly interesting to study 
in the context of this paper.

The shock wave is initialized with

(ρ, u, v, p) =
{

(3.714,2.464,0,9.310) if x < 0.375

(1,0,0,1) else,
(30)

and the center of the diamond is placed at x = 0.7 and y = 1.6 with a distance D = 0.6 from corner to corner. The domain 
size is set to [0, 2.2] × [0, 3.2] and it is discretized with 7040 × 10240 cells. The final time is set to 0.5. Neumann boundary 
conditions with zero gradients for all variables are applied at the lower and upper boundary. Inflow and outflow conditions 
are imposed at the left and right boundary. The reflecting-wall condition representing the diamond is again approximated 
using a level-set approach [41].

Fig. 17 shows the final schlieren images of density gradients using both HLLC and HLLC-LM. An obvious disturbance 
behind the leading shock wave develops when the classical HLLC approximation is applied. This is caused by an odd-
even decoupling effect, similarly to the corner flow presented in Section 4. Again, the HLLC-LM flux fully removes the 
disturbance. Note, that the complex flow evolution is not affected by the low Mach number correction. Further details can 
be observed within the double Mach reflection zone as shown in the zoomed region given in Fig. 18. The proposed HLLC-LM 
scheme results in a stable and disturbance-free flow field behind the leading Mach stem. Moreover, the decreased numerical 
dissipation of the HLLC-LM flux becomes apparent when the resolution of the wave patterns is compared.
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Fig. 18. Zoom on double Mach reflection in supersonic flow around a diamond-shaped obstacle with Ma = 2.85: logarithmic gradients of density from 1 to 
1000 at t = 0.5.

5.2. Shock interface interaction: helium bubble in air

Another important application of high-order methods is the prediction of multi-component flows. In [8], it was shown 
that the grid-aligned shock instability limits the numerical investigation of shock-interface interaction problems. The same 
case of the interaction of a Mach 6 shock wave in air (γ = 1.4) with a helium bubble (γ = 1.66) is now studied with 
HLLC-type solvers.

Initial states are given by

(ρ, u, v, p) =

⎧⎪⎨
⎪⎩

(
216
41 ,35

√
35

36 ,0, 251
6

)
air post-shock,

(1,0,0,1) air pre-shock,

(0.138,0,0,1) helium,

(31)

where the shock is placed initially at x = 0.05. A helium bubble with initial diameter D = 0.05 is placed at x = 0.1, y = 0.15
within in a domain of size [0, 0.4] × [0, 0.3]. Inflow and outflow conditions are applied at the left and right boundary, 
respectively. Neumann boundaries with zero gradient for all quantities are set at the remaining boundaries. The resolution 
is set to 1280 × 960, which resolves the helium bubble with 160 cells per diameter. The final time of the simulation is set 
to 0.035.

Fig. 19 shows the final density results for both HLLC and HLLC-LM. The numerical instabilities at the shock front induced 
by the HLLC approximation are not as dominant as for the Roe approximation [8]. Especially, no carbuncles can be observed. 
Instead, an odd-even decoupling develops in the backflow of the shock wave similar to the one observed for the previous 
example. As before, the HLLC-LM scheme produces a clean shock front without any disturbances. Moreover, the stability of 
the proposed scheme is tested for an extreme resolution of 1280 cells per diameter. The results shown in Fig. 20 still do 
not indicate any instability.

5.3. Shock interface interaction: air bubble in water in two and three dimensions

Finally, the challenging simulation of a strong 1.6 GPa shock wave in water interacting with an embedded air bubble was 
studied. The strong transmitted shock wave in air may suffer from the grid aligned-shock instability. First, the simulations 
in [8] were repeated in two dimensions with the HLLC-type solvers. Afterwards, a new fully three-dimensional simulation 
of the problem is presented.
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Fig. 19. Shock interface interaction of a helium bubble in air I: density contours from blue = 0.138 to red = 7.5 at t = 0.035.

Fig. 20. Shock interface interaction of a helium bubble in air II: density contours from blue = 0.138 to red = 7.5 at t = 0.035.

The setup is chosen similar to [45] with initial states

(ρ, u, v, p) =

⎧⎪⎨
⎪⎩

(
1323.65,661.81,0,1.6 · 109

)
water post-shock(

1000,0,0,105
)

water pre-shock,(
1,0,0,105

)
air,

(32)

where water is modeled with a stiffened equation of state (γ = 4.4, P inf = 6 · 108) and air as ideal gas (γ = 1.4). The 
domain size is set to [0, 0.024] ×[0, 0.024], where an air bubble with diameter D = 0.006 is placed in the center. The shock 
front is initially placed at x = 0.008. Inflow and outflow conditions are applied at the left and right boundary, respectively. 
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Fig. 21. Shock interface interaction of a air bubble in water at t = 3 · 10−6: velocity magnitude contours from blue = 0 to red = 2850.

Fig. 22. 3D shock interface interaction of a air bubble in water: velocity magnitude within the air bubble from blue = 0 to red = 3500 at t = 2.6 · 10−6.

Neumann boundary condition with zero gradient for all quantities is set at the remaining boundaries. The bubble initially is 
resolved by 160 cells per diameter and the final time is set to 3 · 10−6.

Velocity magnitude results for the HLLC and HLLC-LM solver are shown in Fig. 21. Similarly to the previous case with 
helium, the HLLC approximation does not create any carbuncles. However, the flow behind the shock wave in air is sig-
nificantly disturbed. The HLLC-LM solver enables a stable prediction of the flow field. Again, the stability of HLLC-LM is 
further demonstrated by an extremely increased resolution of 1280 cells per diameter. The result of this simulation still is 
disturbance-free as shown in the right frame of Fig. 21.

We studied the same setup also in three dimensions with a straightforward extension of the domain in z-direction to 
[0, 0.024] × [0, 0.024] × [0, 0.024]. The resolution is chosen identically to the original two-dimensional case with 160 cells 
per diameter. Since the air bubble collapses faster in three dimensions, the final simulation time was reduced to = 2.6 ·10−6.

The results given in Fig. 22 demonstrate that the numerical instability is significantly stronger for three-dimensional 
simulations when the original HLLC solver is applied. Similar to the three-dimensional results for the Sedov blast wave 
in Section 4, now, small carbuncles can be observed, which never occurred in any of our two-dimensional simulations. 
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Nevertheless, the low Mach number modification in the HLLC-LM scheme leads to stable and carbuncle-free results as 
shown in the right frame of Fig. 22.

6. Conclusion

In this paper, the general idea that the low Mach number in transverse direction of the shock wave propagation is the 
reason for the grid-aligned shock instability has been exploited to design a shock-stable version of the popular HLLC approx-
imate Riemann solver. A simple reduction of non-linear wave speeds as done for the Roe flux would lead to pure upwinding 
due to the one-sided definition of the HLLC flux. Therefore, a centralized formulation of the HLLC flux is proposed. Applying 
this centralized formulation does not only avoid the switching, but also allows for a straightforward reduction of nonlinear 
eigenvalues. A smooth reduction of acoustic dissipation is guaranteed using a sine function. The proposed version of the 
HLLC scheme with modified low Mach number behavior is denoted HLLC-LM. The modified flux reduces the dissipation dur-
ing the flux calculation in case of low directional Mach number, and fully recovers the original HLLC flux otherwise. Thus, 
shock stability is retained by a further reduction of the dissipation of the HLLC approximation.

Results obtained with the centralized formulation have been thoroughly compared to the ones obtained with the classical 
formulation and found to be identical with respect to floating-point differences for all studied cases. The stability and 
accuracy of the HLLC-LM flux has been demonstrated for a comprehensive series of test cases commonly related to the 
grid-aligned shock instability. However, the prime goal of the high-order methods as applied throughout the paper is to 
simulate more complex flow situations than the classical carbuncle cases. The advantages of the HLLC-LM when applied 
to supersonic multi-component flows have been presented in detail. Stability can be maintained also for extremely high-
resolved simulations. Although the HLLC flux might still be considered as suitable for most two-dimensional situations due 
to the fact that the occurring disturbances are commonly bounded and they rarely lead to large deviations unless resolution 
is drastically increased, this is not valid in three dimensions. The three-dimensional simulations presented in this paper 
demonstrate that the HLLC flux is likely to produce severe carbuncles similar to the Roe scheme. The HLLC-LM flux revealed 
excellent results also for three-dimensional simulations. Hence, the combination of HLLC-LM with state-of-the-art high-order 
methods allows for a robust and accurate simulation of current challenges in high-speed fluid dynamics.
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In this short note, we highlight the sensitivity of the HLL-type Riemann solver with 
respect to the choice of signal speed estimates and demonstrate a major deficiency of 
the arithmetic-average estimate. The investigation of two essential Riemann problems and 
a classical bow shock simulation reveals that inherent inconsistencies of the arithmetic-
average estimate may lead to unexpected behavior and erroneous results.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The development of computationally cheap but nevertheless stable and accurate approximations of the Riemann problem 
is crucial for the success of Godunov-type methods [1] in computational fluid dynamics. In combination with high-order 
discretizations, such as WENO schemes [2], these approximate-flux solvers have become popular nowadays for the simula-
tion of complex multi-scale flow problems, e.g. shock interactions with phase interfaces or turbulent flows [3]. In particular, 
Roe and HLL-type Riemann solvers are applied in various state-of-the-art compressible flow solvers due to their favorable 
low numerical dissipation [4–6]. Common for such solvers is the need for proper estimations of the wave signal speeds. An 
overview of the topic can be found in [3]. In this short note, we highlight the sensitivity of the HLL-type Riemann solver 
with respect to the choice of signal speed estimates and demonstrate a major deficiency of the arithmetic-average estimate, 
which has become increasingly popular in recent publications [7–10].

In their fundamental work, Harten, Lax and van Leer [5] proposed design principles for simple but nevertheless robust 
approximate Riemann solvers where left and right states are linked through one or two intermediate states separated by 
waves. They did not propose actual estimates of the essential signal speeds for their approximations. They stated, however, 
that the estimates for the left- and right-going wave speed have to be lower, respectively upper bounds of the physical 
wave speeds. The popular HLL and HLLC Riemann approximations result from the combination of these design principles 
with suitable signal speed estimates as proposed by different authors [11,12,6,13,14].

Both Davis [11] and Einfeldt [12] simultaneously developed signal speed estimates for the HLL approximation. Besides 
the simple but rarely applied estimates SL = uL − cL and S R = uR + cR , Davis also proposed
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S Davis
L = min(uL − cL, uR − cR), S Davis

R = max(uL + cL, uR + cR) (1)

for the minimum signal speed SL and the maximum signal speed S R with direct application of the left and right velocity u
and speed of sound c. Instead, Einfeldt defines the generalized formulation

ĉ2 = cL
2 · √ρL + c2

R · √ρR√
ρL + √

ρR
+ 1

2

√
ρL

√
ρR(√

ρL + √
ρR

)2 (uR − uL)
2 , (2)

and the Roe average

û = uL · √ρL + uR · √ρR√
ρL + √

ρR
(3)

to determine the final signal speed estimates SL = û − ĉ and S R = û + ĉ as proposed in [12]. A blend of Davis’ approach and 
Einfeldt estimates delivers slightly improved estimates given by

S Einf eldt
L = min(uL − cL, û − ĉ), S Einf eldt

R = max(uR + cR , û + ĉ) (4)

which will be denoted ‘Einfeldt estimates’ for simplicity in the remainder of the paper. Batten et al. [13] proposed similar 
estimates to Eq. (4) with the only difference being that ĉ is determined by the original Roe average instead of the generalized 
formulation of Einfeldt (2). The contact wave was reconstructed by Toro et al. [6] resulting in the HLLC approximate Riemann 
solver that covers all physical waves governed by the Euler equations. Moreover, the authors [6] suggested to determine the 
signal speeds from the constant intermediate pressure p∗ instead of calculating them directly. p∗ is approximated under the 
assumption that both nonlinear waves are rarefaction waves. Afterwards, the exact wave relations are applied to determine 
the signal speed estimates. Finally, Batten et al. [13] proposed an estimate for the velocity of the contact speed in the form 
of

S∗ = pR − pL + ρLuL (SL − uL) − ρR uR (S R − uR)

ρL (SL − uL) − ρR (S R − uR)
, (5)

which follows directly from the acoustic wave speed estimates SL and S R , and left and right primitive states. Guermond and 
Popov [14] were the first to develop signal speed estimates that fulfill the essential boundedness criterion of Harten et al. 
[5]. They proposed both a direct and a more accurate iterative method to determine bounds for the physical wave speeds. 
Recently, Toro et al. [15] performed a detailed investigation on the boundedness of various signal speed estimates, where 
they showed that most established estimates do not bound the physical wave speeds in general. Furthermore, they provided 
new bound estimates for the fastest wave speeds. In recent publications [7–10], the accurate but computationally expensive 
Einfeldt signal speed estimate is more and more replaced by the simple arithmetic-average estimate with û = 1

2 (uL + uR)

and ĉ = 1
2 (cL + cR). This selection is reported to deliver results that are close to the ones obtained with the original Ein-

feldt estimate for a broad range of cases. However, the reasoning is highly empirical for strong shocks since a theoretical 
foundation is only given for sufficiently weak shocks, as remarked by Einfeldt [12]. Indeed, it can be easily shown that the 
arithmetic-average signal speed estimate contradicts to fundamental assumptions of the underlying Riemann approxima-
tion. In the following section, this will be demonstrated in detail for a simple moving shock wave and a steady shock wave. 
The application of the arithmetic average is particularly problematic for bow shock simulations as shown in detail in the 
third section. Additionally, a replacement of the original “if” statements by sign functions within the HLLC formulation is 
discussed. The latter implementation might (almost) completely hide the misbehavior of the arithmetic average.

2. Discussion of signal speed estimates for simple Rankine-Hugoniot shock conditions

First, the described signal speed estimates connected to the HLLC approximation are evaluated for a simple moving shock 
wave. This special case frequently appears in practical simulations, e.g. after initialization. In this example, we use a fixed 
pre-shock state with the primitive variables ρR = 1.0, v R = 0 and pR = 1.0. The left state of the shock is varied along the 
Hugoniot locus. In Fig. 1, the resulting left (dashed) and right (solid) nonlinear signal speed estimates, and the estimate for 
the contact velocity (dotted) using Eq. (5) are plotted together with the exact shock speed (bold) for moderate and high 
Mach numbers ranging from 1.01 to 4 and 1.01 to 20, respectively.

In the following, we analyze the resulting HLLC flux given by Toro et al. [6] in the form

FH LLC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FL if SL ≥ 0,

F∗L = FL + SL · (U∗L − UL) if SL < 0 ∩ S∗ ≥ 0,

F∗R = FR + S R · (U∗R − UR) if S R > 0 ∩ S∗ ≤ 0,

FR if S R ≤ 0,

(6)

for the different signal speed estimates.
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Fig. 1. Signal speed estimates for the HLL(C) approximation evaluated for a simple right-traveling shock wave for different Mach numbers (solid: right; 
dotted: contact; dashed: left).

Fig. 2. Signal speed estimates for the HLL(C) approximation evaluated for a simple steady shock wave for different Mach numbers (solid: right; dotted: 
contact; dashed: left).

A supersonic condition with all signal speeds above zero is predicted for Mach numbers larger than ∼2.1 for the Toro 
estimate [6], ∼3.5 for the Einfeldt estimate (Eq. (4)-(2)), ∼3.6 for the arithmetic-average estimate and never for the Davis 
estimate (Eq. (1)). Below these values, the HLLC flux (6) is always given by F∗L since S∗ > 0 holds true for all Mach numbers 
and all considered signal speed estimates. Note that S Arithmetic

L and S Einf eldt
L yield nearly identical results.

Although S R does not directly affect the final flux estimation in this particular case, it is nevertheless interesting to study 
the differences among the described types of estimates. For moderate Mach numbers, the estimate of Davis considerably 
overestimates the physical wave speeds, whereas both the estimate of Einfeldt and Toro are only slightly larger. For Ma >
6.7, the estimate of Toro predicts the largest right-travelling wave speed, while the estimate of Einfeldt still is close to the 
physical value. In contrast, the arithmetic-average estimate for S R systematically underestimates the physical wave speed, 
and therefore it violates the boundedness criterion of Harten et al. [5]. Moreover, the incorrect nonlinear signal speed 
estimates lead to an incorrect approximation of the contact velocity. In consequence, S R even falls below the estimate for 
the contact velocity for Ma > 3.3, which is in contradiction to the fundamental assumption S L < S∗ < S R [11,12]. However, 
due to the construction of HLLC this flaw does not affect the resulting flux for simple moving waves. Note, that for S L < 0
the left flux FL is used, and for SL > 0 the intermediate flux F∗L is used as S∗ > 0 for any estimate. Since most practical 
scenarios consist of such simple moving waves, where the contact wave direction and the flow direction are identical, it can 
be explained why results obtained with the arithmetic average are often similar to ones obtained with the Einfeldt estimate 
despite the poor estimate S Arithmetic

R . However, in the following we show that is cannot be relied upon.
The same procedure is applied to a steady shock problem with the fixed pre-shock conditions ρL = 1.0, uL = √

γ · Ma
and pL = 1.0. Post-shock states are obtained from the Rankine-Hugoniot jump condition for varying Mach numbers. The 
resulting signal speed estimates are shown in Fig. 2.

A similar qualitative behavior with switched left and right states as compared to the previous case can be observed. 
Arithmetic-average and Einfeldt estimates for S R are almost identical. However, as S∗ is still strictly positive, now the devi-
ations in SL directly affect the approximate flux. Again, the physical shock speed is not captured by the arithmetic-average 
estimate, and SL < S∗ < S R is violated. Moreover, this estimate leads to a pure supersonic flux selection independently of 
the Mach number, whereas all other estimates predict a subsonic case. The Einfeldt estimate again is close to the physical 
wave speed.

3
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Fig. 3. Supersonic flow around cylinder for different HLLC flux formulations: color pressure map (blue= 1.0 to red= 550) at t = 0.05 resolved with 160 cells 
per diameter.

3. Effect on bow shock calculations

After the discussion of the specific Riemann problems, the adverse effect of the arithmetic-average estimate is now 
demonstrated for a classical test case, the supersonic flow around a cylinder. The setup and numerical scheme is chosen 
identical to [16] with a free-stream Mach number of 20. A classical fifth-order WENO scheme [2] has been applied combined 
with a third-order, explicit, strong stability-preserving time integration [17] using a CFL number of 0.4. The maximum time 
step is determined by

�t = CC F L ·
[

max
i,k

( |ui,k| + ci,k

�x

)
+ max

i,k

( |vi,k| + ci,k

�y

)]−1

(7)

with u, v being the velocity components, c being the speed of sound and �x, �y being the cell dimensions. The simulation 
has been performed up to a final time of t = 0.5, where a fully developed bow shock is observed. The resulting pressure 
field is shown in Fig. 3(a) and Fig. 3(b) for the HLLC flux with both the arithmetic-average and the Einfeldt estimate. The 
application of the former leads to a blocking behavior during the built-up process of the bow shock combined with a 
massive overshoot in pressure and density in the cells along the shock. A similar behavior including the blocking at the 
bow shock front can be observed when the HLL flux is combined with arithmetic-average estimates (not shown here). The 
application of the Einfeldt estimate delivers results as described in literature with minor disturbances behind the shock 
front [16].

A compact formulation of the HLLC flux (6) using the sign function is given e.g. in [18] and reads

FH LLC =1 + sign(S∗)
2

[
FL + S− (U∗L − UL)

]+
1 − sign(S∗)

2

[
FR + S+ (U∗R − UR)

]
,

(8)

with S− = min(SL, 0) and S+ = max(S R , 0).
Interestingly, the failure of the arithmetic-average estimate is almost completely hidden when the sign formulation is 

applied, see Fig. 3(c), where the arithmetic-average estimate was used in combination with the compact formulation (8). 
This can be explained by a subtle change in the sequence of algorithmic decisions. The classical formulation first evaluates 
SL > 0 and immediately chooses the supersonic case if this holds true independently of S∗ , whereas the sign formulation 
first evaluates S∗ . If SL < S∗ < S R is valid, this change in the sequence of decisions will not lead to a different result. How-
ever, during the built-up process the contact-wave speed for the arithmetic-average estimate is negative, which is correct 
since the forming bow shock travels upstream towards the steady-state position, while the arithmetic-average estimate for 
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SL is positive. In this case, the sign formulation nevertheless detects the correct right part, and happens to ignore the super-
sonic nonlinear arithmetic-average estimate. The classical formulation reproduces the incorrect supersonic case. A detailed 
investigation reveals that there are still minor overshoots in density and pressure at the tip of the bow shock also for the 
sign formulation as shown in Fig. 3(d). When the Einfeldt estimate is applied, the results for both flux formulations are 
always identical and no overshoot can be observed, see Fig. 3(e).

This example demonstrates that the described shortcomings of the arithmetic-average estimate can lead to unexpected 
consequences and wrong results that can be efficiently avoided by the application of mathematically consistent estimates.

4. Conclusion

We have shown in detail that the arithmetic-average estimate may deliver comparable results as the Einfeldt estimate for 
situations with simple moving shock waves that are dominant in most practical simulations, but may also lead to extremely 
poor prediction of nonlinear signal speeds for some specific cases, such as bow shocks. As a consequence of the erroneous 
nonlinear estimates evaluated in Eq. (5), principle assumptions of the underlying HLL-type solver, such as SL < S∗ < S R

are violated by the arithmetic average. Moreover, this fundamental flaw may be hidden by an algorithmic reformulation 
of the original HLLC Riemann solver, which makes errors due to inaccurate signal speed estimates particularity hard to 
detect and may lead to unexpected behavior. In contrast to the Einfeldt estimate, both Davis and Toro estimates significantly 
overestimate signal speeds for strong shocks, which may lead to an increased numerical dissipation. Due to the mentioned 
facts, we recommend to avoid the arithmetic-average estimate wherever possible, and to apply classical, well-established 
estimates instead.
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