
DEPARTMENT OF INFORMATICS
LUDWIG MAXIMILIANS UNIVERSITY MUNICH

Bachelor’s thesis

Quantum process tomography of
spin glasses via time-delayed

measurements

Daniil Teplitskiy

DEPARTMENT OF INFORMATICS
LUDWIG MAXIMILIANS UNIVERSITY MUNICH

Bachelor’s thesis

Quantum process tomography of
spin glasses via time-delayed

measurements

Daniil Teplitskiy

Examiner: Prof. Christian B. Mendl

Advisor: Irene López Gutiérrez

Submission Date: 9. August 2021

I confirm that this bachelor’s thesis is my own work and I have documented all
sources and material used. The implementation of this thesis can be found in
the Github repository https://github.com/MaestroDT/bachelorarbeit-quantum-
tomography-of-spin-glasses-via-time-delayed-measurements and access was
given to the advisor.

Aachen, 09.08.2021

. .
(Signature of the candidate)

https://github.com/MaestroDT/bachelorarbeit-quantum-tomography-of-spin-glasses-via-time-delayed-measurements
https://github.com/MaestroDT/bachelorarbeit-quantum-tomography-of-spin-glasses-via-time-delayed-measurements

Abstract

When characterizing quantum systems, quantum process tomography (QPT) is the standard
primitive. But due to the high complexity of quantum systems and the curse of dimension-
ality, QPT becomes impractical when dealing with a large number of qubits. On the other
hand, combining QPT and machine learning has shown great success in recent studies. In
this thesis, the opportunity is explored of doing QPT in combination with machine learning
and parametrized quantum circuits, regarding the reconstruction of Hamiltonians of spin
glasses. This results in a rather simple and straightforward algorithm. For this, in the
beginning, the necessary quantum circuit is derived. With this, the Hamiltonians of Ising
spins are reconstructed. Finally, we switch to spin glasses, which doesn’t differ much to Ising
spins, and do the same here. From this, the systems are fully characterized by the obtained
Hamiltonians afterwards. These approaches are done for system sizes of up to 12 qubits,
whereas more qubits would be also possible. The results of the reconstructions are reaching
high fidelity values using simulated data for the Ising model and spin glasses, showing and
underlining the efficiency of the proposed algorithm.

vii

Contents

1 Introduction 1

2 Foundation 3
2.1 Quantum process tomography . 3
2.2 Hamiltonian . 5

2.2.1 For the Ising Model . 5
2.2.2 For spin glasses . 6

2.3 Trotterized circuit . 6

3 Architecture and Technical setup 11
3.1 Hamiltonian generation . 11

3.1.1 For the Ising model . 12
3.1.2 For spin glasses . 12

3.2 Data generation . 13
3.3 Setup with Flux . 15

3.3.1 Training circuit . 15
3.3.2 Loss function . 16
3.3.3 Optimizer . 20
3.3.4 Callback function while training . 21
3.3.5 Training . 21

4 Application and Results 25
4.1 Runtime . 25

4.1.1 For the Ising model . 26
4.1.2 For spin glasses . 28

4.2 Reconstruction fidelity . 29
4.3 Different loss functions . 36
4.4 Different circuits for training . 39

5 Conclusion 45
5.1 Future work . 45

List of Figures 47

List of Tables 49

Bibliography 51

ix

1 Introduction

In the modern world machine learning is on the rise in many different areas and is a useful
tool in the ongoing research in these fields, i.e. quantum chemistry [Dra20] and quantum
physics [Hus17]. It opens up new doors and opportunities to solve complex problems nu-
merically, as it allows to learn an underlying structure and parameters which imitate the
problem. Therefore, this is a reasonable approach to solve problems which might be to
difficult or impractical to solve analytically. In this thesis, the opportunities are explored,
which are given by machine learning and quantum circuits to do quantum process tomog-
raphy (QPT) of spin glasses via time delayed measurements.

QPT has been already accomplished for various setups, be it for the reconstruction of
quantum channels [TWA+20] with the means of unsupervised learning and tensor networks,
the characterization of performance of an universal entangling gate between two supercon-
ducting qubits [BAH+10] or for the extraction of electrons and hole wavefunctions and their
probabilities from electrical currents [BMR+19].

But first of all, what is QPT? It is the process of characterizing the dynamics of a quantum
system via experimental measurements. To have such a method is very important as it is
used, i.e. for benchmarking quantum hardware, as this verifies if the quantum hardware
is working correct and does that what it is supposed to do. The need comes due to that
Quantum hardware is getting bigger and bigger with having dozens of manipulatable qubits
right now. It is expected that in near future the sizes will grow to hundreds of qubits [Pre18].
IBM already released their quantum systems (Q System One), Falcon (2019) with 20 qubits,
and Hummingbird (2020) with 65 qubits and more are announced for the upcoming years.
Thanks to the nature of QPT, it comes handy in applications where a system which consists
of qubits or can be described with such needs to be characterised.

There are several different approaches to QPT. One method is the standard approach
proposed by Isaac L. Chuang and M. A. Nielsen [NC10], where a χ-matrix is derived that
characterizes the dynamics ε of the system and which will be further explained in section
2.1. An another approach would be ancilla-assisted process tomography [ABJ+03]. Here,
the process ε acting on a system A is characterized by prepraring a single state, σ and then
measuring (ε

⊗
I)σ. For appropriate initial states and an ancilla system B with at least

the same Hilbert space dimension as A, ε can be characterized by performing the process
on system A, leaving B isolated and performing tomography on the output of (ε

⊗
I)σ.

Unfortunately, QPT is covered with the curse of dimensionality as the preparation [NC10]
and measurement sets [NC10, ABJ+03] scale exponentially with the number of qubits in the
system. Because of this, QPT has only been implemented for quantum systems of a small
size [BAH+10, OPG+04, RKS+06].

There are approaches to bypass these limitations, such as [TWA+20] where they use an
efficient representation of a choi matrix in terms of a tensor network, combined with an
unsupervised machine learning algorithm to learn the optimal tensor-network parameters.
The algorithm consists of reducing the statistical divergence of the corresponding process

1

1 Introduction

probabilities and of the underlying true probability distribution of the measurement data.
Thereby, only the parameters of the tensors, of which there are significantly fewer than
the choi matrix entries, need to be learned. This approach is a prime example of how
machine learning can be used in connection with QPT, namely, in the first step, a good
parametrized representation of the respective quantum system is chosen where there are as
few parameters as possible. Followed up by a machine learning algorithm determining the
optimal parameters to represent the system based on some distance measurement.

Accordingly, the algorithm of this thesis works the same way. First, the Ising spins or the
spin glasses are getting represented by Hamiltonians according to sections 2.2.1 and 2.2.2,
with parameters Ji and hi. Respectively the time evolution for a quantum system, |φt+1〉 =
e−iHt |φt〉 is getting approximated by the trotter fromula [NC10] and can be interpreted as
a quantum circuit consisting of parametrized rotation gates. Finally the machine learning
algorithm is applied, which searches for the optimal parameters for Ji and hi, by minimizing
the statistical divergence of the corresponding process probabilities and the underlying true
probability distribution of the measurement data from |φt+1〉 = e−iHt |φt〉. How this is done
will be explained in detail in the next chapters, starting with the foundations, followed by
the technical setup, and application, as well as the results.

2

2 Foundation

Before the actual algorithm gets explained, it is necessary to explain the basics, that are
needed to understand the approach of the thesis and upon what it is build.

2.1 Quantum process tomography

In theory d2 pure quantum states |φ1〉 , . . . , |φd2〉 are chosen, where d stands for the dimen-
sions of the quantum system, so that the corresponding density matrices
|φ1〉 〈φ1| , . . . , |φd2〉 〈φd2 | form a basis set for the space of d×d matrices. After that, the single
quantum states would be prepared in quantum states and be subjected to the process which
should be characterized. When all states were subjects to the process ε(|φi〉 〈φi|), quantum
state tomography (QST) is applied to the output of the respective processes. From a purist’s
point of view the system is now characterized, since the quantum operation ε can now be
determined by a linear extension to all states.

But how can a useful representation of ε be determined in practice? Ultimately the goal
is to determine the set {Ei} of operators for ε

ε(ρ) =
∑
i

EiρE
†
i (2.1)

which characterizes the dynamics of the system. To achieve this, a convenient way is to use
a fixed set of operators {Ẽi}, which form a basis on the state space

Ei =
∑
m

eimẼm (2.2)

for some set eim. Now equation (2.2) can be inserted into (2.1)

ε(ρ) =
∑
i

∑
m

eimẼmρ
∑
n

e∗inẼ
†
n (2.3)

=
∑
mn

ẼmρẼ
†
n

∑
i

eime
∗
in (2.4)

=
∑
mn

ẼmρẼ
†
nχmn (2.5)

where χmn =
∑

i eime
∗
in are the d4 entries of the positive hermitian χ matrix, which shows

that ε can be described by a complex number matrix, once the set of Ei has been fixed. But
still the question remains, how can these entries be obtained?

Let ρj , 1 ≤ j ≤ d2 be a fixed linear independent basis for d × d matrices. A convenient
choice is to use the set of operators |m〉 〈n|. Experimentally, the output state ε(|m〉 〈n|) may

be obtained by preparing |m〉, |n〉, |+〉 = |m〉+|n〉√
2

and |−〉 = |m〉+i|n〉√
2

and performing a QST

3

2 Foundation

on ε(|m〉 〈m|), ε(|n〉 〈n|), ε(|+〉 〈+|) and ε(|−〉 〈−|). Then these informations can be used to
form linear combinations to get ε(ρj)

ε(|m〉 〈n|) = ε(|+〉 〈+|) + iε(|−〉 〈−|)− 1 + i

2
ε(|n〉 〈n|)− 1 + i

2
ε(|m〉 〈m|). (2.6)

Each ε(ρj) can be expressed as a linear combination of the basis states

ε(ρj) =
∑
k

λjkρk (2.7)

with the corresponding eigenvalues λk, which can be retrieved by standard linear algebraic
algorithms. Furthermore

ẼmρjẼ
†
n =

∑
k

βmnjk ρk (2.8)

gets defined, where βmnjk are complex numbers which can also be determined by standard

linear algebraic algorithms given Ẽm and ρj . By combining (2.5), (2.7) and (2.8) it follows

λjk =
∑
mn

βmnjk χmn. (2.9)

The only step left now, is to retrieve χ. Therefore β can be viewed as a d4×d4 matrix, with
mn indexing the columns and jk indexing the rows. χ and λ can be seen as vectors with d4

entries. Now the generalized inverse κ of beta is found by some standard linear algebraic
algortihm and χ is determined:

χmn =
∑
jk

κjkmnλjk. (2.10)

At this point ε is characterized, as χ is determined and can be used in (2.5). To get the
respective operators {Ei}, the χ matrix gets diagonalized by a corresponding unitary matrix
U †

χmn =
∑
xy

UmxdxδxyU
∗
ny (2.11)

where δxy represents the kronecker delta and dx represents the eigenvalues of χ. From this,
the operators for ε are determined by

Ei =
√
di
∑
j

UijẼj . (2.12)

The system is now fully characterized by the standard approach of QPT as described in
[NC10].

Despite the beauty of this approach, the approach used in this thesis is slightly different.
Instead of reconstructing a χ matrix for the time evolution of the spin glasses, the Hamilto-
nian, which characterizes the system is derived directly from the measurements. This allows
for a simple yet effective machine learning algorithm in combination with quantum circuits,
which will be described and analyzed throughout the thesis.

4

2.2 Hamiltonian

2.2 Hamiltonian

In this thesis, the Hamiltonian is used to characterize the dynamics of a system as it has fewer
parameters to reconstruct which characterize it than the χ-matrix from section 2.1. This
will get clear in 2.2.1 and 2.2.2. Traditionally the time-independent Hamiltonian represents
the total amount of energy in a (closed) system and characterizes, therefore the dynamics
of it [Sch07].

The Schrödinger linear differential equation

i}
∂

∂t
|φ(t)〉 = H |φ(t)〉 (2.13)

with } standing for the reduced planck constant, describes how a quantum state |φ〉 changes
over time governed by a Hamiltonian H. The argument t stands for the time dependence
of |φ〉. The solution for Eq. (2.13) is given by

|φ(t)〉 = Ut |φ(0)〉 with Ut = e−iHt (2.14)

as long as H is time-independent with Ut as the unitary time evolution operator [NC10].

2.2.1 For the Ising Model

The (transverse-field) Ising model is a mathematical model which was originally invented to
describe ferromagnetism [Isi25]. With this model, it is possible to identify phase transitions
of matter, as a simplified model of reality [Gal99]. It is defined over a d-dimensional lattice,
consisting of n Ising spins (↑, ↓), which can also be represented as qubits, i.e. |0〉 as ↑ and
|1〉 as ↓. In this thesis, the 2-dimensional Ising model is investigated. Here, the adjacent
sites interact with each other with a consistent coupling strength J . Also, each site has a
consistent external magnetic field h interacting with it, which acts orthogonal to the plane
spanned by the lattice, as can be seen in figure 2.1. The sites are enumerated from the top
left counting through the rows to bottom right.

Figure 2.1: Lattice with Ising spins (arrow up stands for spin up and arrow down for spin
down) on each site (external magnetic field not shown)[PG20].

The Hamiltonian function for such a system with periodic boundary condition and a

5

2 Foundation

configuration σ is defined as:

H(σ) = −J
∑
〈i,j〉

σiσj − h
n∑
i

σi (2.15)

where σi ∈ {+1,−1} represents spin-up or -down [Isi25]. Here H represents the total amount
of energy in the configuration of the system.

For our purposes, as it will be worked with quantum states, we want to express this in
a quantum mechanical way using the respective Pauli matrices for the Ising spins. That’s
the case as each of the Pauli matrices corresponds to an observable describing the spin of a
spin-1

2 particle in each of the three dimensions. The resulting Hamiltonian is

H = −J
∑
〈i,j〉

σZi σ
Z
j − h

n∑
i

σXi (2.16)

where σZl is the Pauli-Z matrix and σXl is the Pauli-X matrix acting on site l (i.e. σXl =
I ⊗ I ⊗ . . .⊗ σX ⊗ . . .⊗ I︸ ︷︷ ︸

n−times

, where σX acts on the l-th qubit for an n-qubits big system and

I stands for the 2 × 2 Identity matrix) [SIC13]. In this case, the Hamiltonian represents a
superposition of configurations with the eigenstates of H, referred to as energy eigenstates
and the corresponding eigenvalues as energies.

As can be seen here, there are only two parameters characterizing the system, which need
to be learned. This is a desired property, as in the standard QPT, there were too many,
which made the process unfeasible for large systems.

2.2.2 For spin glasses

Spin glasses doesn’t differ that much from the Ising model. They are a part of the condensed
matter physics and are magnetic states characterized by randomness. In our case the n
spins are positioned in a lattice but not necessarily on the grid lines spanned by the lattice,
see figure 2.2. According to the Edward-Anderson model [EA75] the Hamiltonian for a
transverse-field is now defined as

H = −
∑
〈i,j〉

Ji,jσ
Z
i σ

Z
j −

n∑
i

hiσ
X
i (2.17)

with Ji,j as the coupling strength of the adjacent sites 〈i, j〉 and hi as the magnetic field
acting on spin at site i. Different from the Ising model, the J’s and h’s aren’t necessarily
the same and can differ. This has the effect, that there are now more parameters which
are needed to describe a system but on the other hand, more complex systems can now be
characterized. Still, the additional parameters aren’t that many compared to QPT.

2.3 Trotterized circuit

The trick for the algorithm to work now lies in the approximation of eq. 2.14. For many
systems the Hamiltonian can be written as a sum over many local interactions where Hi

6

2.3 Trotterized circuit

Figure 2.2: Random spin structure of a spin glass (top) and the ordered of a ferromagnet
(bottom). The arrows represent the direction of the spins, the thick dashed lines,
the interactions between neighboring sites and the thin dashed lines, the lattice
structure. The external magnetic field isn’t shown in this picture [zur10].

acting on a constant number of systems

H =
∑
k

Hk (2.18)

following from that, it is possible to rewrite eiHt in form of a multiplication of eiHkt acting
on small subsystems, which are easier to compute as eiHt and can be easier approximated
via quantum circuits [NC10].

Generally, ei(A+B)t 6= eiAteiBt, where A and B are matrices, as it is only applicable if A
and B commute. For general cases the trotter formula needs to be used. Let A and B be
hermitian operators, then the trotter formula holds for any real t [NC10]

ei(A+B)t = lim
x→∞

(eiAt/xeiBt/x)x. (2.19)

With further approximations we can rewrite eq. (2.19) as

ei(A+B)∆t = eiA∆teiB∆t (2.20)

where when ∆t is getting smaller, the approximation gets more accurate.
Applying eq. (2.20) to the evolution operator of(2.14) with the Hamiltonian for the Ising

model (2.16), results in

e−iH∆t = e−i(−J
∑

〈l,j〉 σ
Z
l σ

Z
j −h

∑n
l σ

X
l)∆t (2.21)

≈
(2.20)

e−i(−J
∑

〈l,j〉 σ
Z
l σ

Z
j)∆te−i(−h

∑n
l σ

X
l)∆t (2.22)

=
∏
〈l,j〉

ei(Jσ
Z
l σ

Z
j)∆t

n∏
l

ei(hσ
X
l)∆t. (2.23)

Eq. (2.23) can be written, because σZ and σX commute with itself.

7

2 Foundation

Further calculations for ei(hσ
X
l)∆t results in

ei(hσ
X
l)∆t = cos(−h∆t)I − i sin(−h∆t)σXl (2.24)

= cos(−h∆t) (I ⊗ I ⊗ . . .⊗ I)︸ ︷︷ ︸
n−times

−i sin(−h∆t) (I ⊗ . . . σX . . .⊗ I)︸ ︷︷ ︸
n−times

(2.25)

= (I ⊗ . . .⊗ I)︸ ︷︷ ︸
α−times

(cos(−h∆t)I − i sin(−h∆t)σX) (I ⊗ . . .⊗ I)︸ ︷︷ ︸
(n−α−1)−times

(2.26)

= (I ⊗ . . .⊗ I)︸ ︷︷ ︸
α−times

Rx(−2h∆t) (I ⊗ . . .⊗ I)︸ ︷︷ ︸
(n−α−1)−times

(2.27)

= Rx(−2h∆t)l (2.28)

with Rx(θ)l = cos(θ/2)I − i sin(θ/2)σXl = e−iθσ
X/2. (2.29)

Therefore, eq. (2.23) can further be represented with rotation [NC10] and Entanglement-
ZZ gates [KC01]

e−iH∆t =
∏
〈l,j〉

EntZZ(−2J∆t)l,j

n∏
l

Rx(−2h∆t)l (2.30)

with EntZZ(θ)l,j = e−iθσ
Z
l σ

Z
j /2. (2.31)

Now, everything is there to represent the time evolution of a system with the means of
quantum circuits. The quantum circuit in figure 2.3 is equivalent to eq. (2.14) with eq.
(2.30) used as the evolution operator, thus representing the Ising model.

Time evolution operater Ut

|φ1〉 . . .

|φ2〉 . . .

|φ3〉 . . .

...
...

...

|φn−2〉 . . .

|φn−1〉 . . .

|φn〉 . . .

|φ(0)〉

Rx(−2h∆t)

EntZZ(−2J∆t)1,2 EntZZ(−2J∆t)n̂,n′ |φ(∆t)〉

Rx(−2h∆t)

Rx(−2h∆t)

Rx(−2h∆t)

Rx(−2h∆t)

Rx(−2h∆t)

Figure 2.3: Quantum circuit representation of eq. (2.14) for the Ising model. The rotation
gates are acting on each qubit seperately, while the entanglementZZ gates act
only qubit n̂ and n’, the other qubits are left untouched.

As can be seen, the circuit consists of parametrized gates where all the Rx gates have the
same parameter as well as the EntZZ gates. The goal is to learn these parameters for a

8

2.3 Trotterized circuit

specific system via time-delayed measurements of the system. After they are learned, the
system is fully characterized as the Hamiltonian of the system is known. Analogous to the
Ising model, the formula for the time evolution operator of spin glasses is

e−iH∆t =
∏
〈l,j〉

EntZZ(−2J〈l,j〉∆t)l,j

n∏
l

Rx(−2hl∆t)l. (2.32)

The resulting quantum circuit for spin glasses can be seen in fig. 2.4. In comparison to the

Time evolution operater Ut

|φ1〉 . . .

|φ2〉 . . .

|φ3〉 . . .

...
...

...

|φn−2〉 . . .

|φn−1〉 . . .

|φn〉 . . .

|φ(0)〉

Rx(−2h1∆t)

EntZZ(−2J1,1∆t)1,2 EntZZ(−2Jn̂,n′∆t)n̂,n′ |φ(∆t)〉

Rx(−2h2∆t)

Rx(−2h3∆t)

Rx(−2hn−2∆t)

Rx(−2hn−1∆t)

Rx(−2hn∆t)

Figure 2.4: Quantum circuit representation of eq. (2.14) for spin glasses. The rotation gates
are acting on each qubit seperately, while the entanglementZZ gates act only
qubit n̂ and n’, the other qubits are left untouched.

Ising model, more parameters need to be learned but at most only n + 2n = 3n (with the
periodic boundary condition), as each qubit has a Rx gate assigned and in a two dimensional
lattice, with width and height bigger than one, are only 2n interactions, meaning each qubit
has in theory two outgoing interactions. That’s the case as an interaction between two
qubits is bidirectional and therefore counted only once. It can be imagined that each qubit
has an outgoing connection to the top and right. For lattices where the width or height
equals two or less, there are 2n − width if height ≤ 2 else 2n − height parameters, as in
this cases, due to the periodic boundary condition, there are ’duplicate’ interactions in the
lattice which need to be subtracted.

The only bottleneck left are the high dimensional matrices and state vectors, which scale
exponentially with the number of qubits, on which mathematical operations will be executed
during the learning process.

9

3 Architecture and Technical setup

After the foundation is set, it can be proceeded with the architecture and technical setup.
In this chapter, it will be explained how the algorithm is set up and works. I.e., how
all the single parts like the Hamiltonian or the circuits are initialized and look like. The
algorithm is written in the programming language Julia [BEKS17], for the machine learning
part Flux [ISF+18] is used, as it enables an efficient and easy to use interface, and for the
quantum circuits, Qaintessent and Qaintellect, a framework from the quantum computing
group of Informatics 5 of the TU Munich is used, because it allows to create parametrized
quantum circuits and let these to be trained efficiently via Flux. Julia is used as it is
high-performant and delivers a good approach to numerical computing. Furthermore, it has
good libraries like Flux and Qaintum, for the purposes of this thesis. As this thesis relies on
fast and efficient computation regarding the curse of dimensionality, Julia is a good choice.
Julia is also currently in the center of research [FIM+21, CCG21, GSW20] in computer and
computational sciences, as it has a broadly diversified ecosystem for many different purposes.
For example, in this thesis it is worked with mostly with sparse arrays and matrices, as Julia
has a very nice and efficient way to execute computations on these and saves memory on
the same time. As the matrices and arrays will become big, this comes handy.

Below is a table 3.1 of the tools which were used KrylovKit was used for the efficient

Tool Version Reference

Julia 1.6.0 https://julialang.org
Flux 0.12.1 https://fluxml.ai

Qaintellect 0.1.0 https://github.com/Qaintum/Qaintellect.jl#master
Qaintessent 0.1.1 https://github.com/Qaintum/Qaintessent.jl#master
KrylovKit 0.5.3 https://github.com/Jutho/KrylovKit.jl

BenchmarkTools 1.1.0 https://github.com/JuliaCI/BenchmarkTools.jl

Table 3.1: Tools used in this thesis.

exponentiation of matrices.

3.1 Hamiltonian generation

As there is no experimental data available from an experiment which can be used for learn-
ing the underlying Hamiltonian, data needs to be simulated which will be used instead.
Therefore, first of all, a Hamiltonian needs to be generated, which describes the underlying
system and from which the time-delayed measurements of quantum states will be taken.
These measurements will then be used in the machine learning process as input/output
data on which the training quantum circuit will be optimized and from which the true
Hamiltonian can be recreated.

11

https://julialang.org
https://fluxml.ai
https://github.com/Qaintum/Qaintellect.jl#master
https://github.com/Qaintum/Qaintessent.jl#master
https://github.com/Jutho/KrylovKit.jl
https://github.com/JuliaCI/BenchmarkTools.jl

3 Architecture and Technical setup

In this case, first of all, a lattice needs to be created, where the qubits (Ising spins) are
positioned on, and the corresponding adjacency matrix. This is done via the function in
figure 3.1. Nx stands for the width and Ny for the height of the lattice. Here the periodic
boundary condition is assumed. This matrix is needed as only the neighboring spins interact
with each other. With this, the different Hamiltonians for the Ising model and spin glasses

1 function lattice_adjacency_map(Nx::Integer, Ny::Integer)
2 L = Nx * Ny
3 adjacency = zeros(Int, (L, L))
4 for j in 0:Ny-1
5 for i in 0:Nx-1
6 # assuming periodic boundary conditions
7 i_next = (i+1) % Nx
8 j_next = (j+1) % Ny
9 # nearest neighbors
10 if Nx > 1 adjacency[j*Nx + i + 1, j*Nx + i_next + 1] = 1; end
11 if Ny > 1 adjacency[j*Nx + i + 1, j_next*Nx + i + 1] = 1; end
12 end
13 end
14 adjacency = adjacency + transpose(adjacency)
15 # only 0 or 1 entries
16 return (adjacency .!= 0)
17 end

Figure 3.1: Code to create the adjacency matrix for a lattice.

can be created.

3.1.1 For the Ising model

The Ising model Hamiltonian gets created with the function from figure 3.2, where J and h
are the characterizing parameters. Adjacency is the adjacency matrix for the given lattice
and sigma are the pauli matrices. First, a sparse zero Hamiltonian matrix is created and
then the interaction terms of the neighboring spins, as well as the interaction of the spins
with the external magnetic field, get substracted from the zero matrix. Line 17 in figure 3.2
represents (I

⊗
I
⊗
. . .
⊗
σZ
⊗
I
⊗
. . .
⊗
σZ
⊗
. . .
⊗
I) where the Pauli-Z matrices act

on site i and j and Line 24 equals to (I
⊗
I
⊗
. . .
⊗
σX
⊗
I
⊗
. . .
⊗
I) where the Pauli-X

matrix acts on site i.

3.1.2 For spin glasses

The spin glass Hamiltonian gets created analogously. Therefore, we need to create first the
parameters J and h, where J is a matrix and h a vector. That’s the case as in the spin glass
model, the interaction strengths between the neighboring spins can differ as well as between
the spins and the external transverse field. The matrix for J gets created equally to the the
adjacency matrix, but instead of setting 1, the strength for the pair is set. The vector for h
symbolizes the interaction with the magnetic field at each spin site, counting row by row in
the lattice from top left through the rows to bottom right.

12

3.2 Data generation

1 using SparseArrays
2

3 function construct_hamiltonian_ising(J::Real, h::Real, adjacency::
AbstractMatrix)

4 L = size(adjacency, 1)
5 @assert(size(adjacency) == (L, L))
6 H = spzeros(Float64, 2^L, 2^L)
7

8 sigma = (sparse([0. 1.; 1. 0.]),
9 sparse([0. -im; im 0.]),
10 sparse([1. 0.; 0. -1.]))
11

12 # interaction terms
13 for i in 1:L
14 for j in i+1:L
15 # considering only entries in J for i ¡ j
16 if adjacency[i, j] != 0
17 H -= J * kron(sparse_identity(2^(L-j)), sigma[3],

sparse_identity(2^(j-i-1)), sigma[3], sparse_identity(2^(
i-1)))

18 end
19 end
20 end
21

22 # external field
23 for i in 1:L
24 H -= h * kron(sparse_identity(2^(L-i)), sigma[1], sparse_identity

(2^(i-1)))
25 end
26

27 return H
28 end

Figure 3.2: Code for the Ising model Hamiltonian.

When this is done, the Hamiltonian for a spin glass can be created. It is created identically
to the Ising model Hamiltonian but instead of a constant J and h, a matrix and vector are
now used to retrieve the needed parameters.

3.2 Data generation

Now that the Hamiltonians for the Ising model, as well as the spin glasses, can be created,
the data generation can be approached. It is wanted that tuple pairs of (before,after) are
created where before is the quantum state before the time evolution and after the state after
the evolution eq. (2.14). Based on these tuples, a standard supervised machine learning
algorithm is run, where the before state is applied to the quantum circuit and the resulting
output state is compared with the true after state. Regarding the difference of these, the
parameters of the circuit are modified.

In figure 3.3 the code which was used to generate the data tuples can be seen. The pa-

13

3 Architecture and Technical setup

1 using KrylovKit
2

3 function calculateNTimeSteps(H::AbstractMatrix, phi_init, dt::Real,
ntimesteps::Int)

4 @assert(size(H,1)==length(phi_init))
5 phi_out = [phi_init]
6

7 for i = 1:ntimesteps
8 phi_mom, info = exponentiate(H, -im * dt, phi_out[i], ishermitian =

false)
9 push!(phi_out, phi_mom)
10 end
11

12 return phi_out
13 end
14

15 function dataGeneration(H::AbstractMatrix, epochs::Number,dt::Real,
timesteps::Real, nqubits::Number; showConsoleOutput = true)

16 res = []
17

18 for i in 1:epochs
19 phi0 = rand(ComplexF64,2^nqubits)
20 phi0 /= norm(phi0)
21 phiref = calculateNTimeSteps(H,phi0,dt,timesteps)
22

23 for x in 1:timesteps
24 push!(res, (phi0[x],phiref[x+1]))
25 end
26 if showConsoleOutput
27 @show(i)
28 end
29 end
30

31 return res
32 end

Figure 3.3: Code for the data generation.

rameter epochs signalizes how many initial states should be produced and applied to the
evolution process. phiref is an array of several sequential evolutions beginning at an initial
state. This array is produced in the function calculateNTimeSteps, where the method ex-
ponentiate is used from the package KrylovKit. exponentiate performs an exponentiation
of a matrix by approximating the true result of the exponentiation followed by a multipli-
cation of a vector by means of krylov subspaces [Sim15] , φ1 = e−i·dt·Hφ0. It could also be
accomplished by using the power series method for the exponentiation eX =

∑∞
k=0X

k/k!,
where X is a matrix, and then multiply the vector. Nevertheless, the krylov method is more
efficient and performs faster than the power series method as it tries to avoid matrix-matrix
operations. After n-timesteps are calculated starting at the initial state, these are returned
as an array. This is done as ∆t (in the code present as dt) is usually very small so that

14

3.3 Setup with Flux

the to be trained circuit is an accurate representation of the time evolution operator (2.14)
by means of the trotter formula (2.20). Due to this, the evolution of only one intermediate
time step for a state will not change significantly. That’s why several consecutive time steps
of an initial state can be computed to simulate an overall bigger time step as shown in eq.
(3.2).

|φ(l ·∆t)〉 = e−i·H·l·∆t |φ(0)〉 (3.1)

=

(
l∏
k

e−i·H·∆t

)
|φ(0)〉 (3.2)

Due to eq. (3.2) the final resulting state differs significantly enough to the initial state so
that when two different evolution operators with a small ∆t are acting on the same state,
a sufficient difference will be seen in the resulting states if eq. (3.2) is applied. This can be
used to generate the needed amount of training data, because the intermediate time steps
can be paired up to training tuples. Another way to generate more training data would be
to replicate the to the time available data as much as needed. Theoretically, one time step
of one initial state should be enough to train the circuit. Still, for the purposes of the thesis
several time steps of an initial state are taken as it diversifies the training data, which is
something machine learning benefits from.

After the time steps are computed, they are formed to tuples by taking a state and the
intermediate state in the array and forming so the tuple. These tuples are then added to
the result array. The result array is then used as the training data where the probability
distributions of the after states are taken later in the training process, section 3.3.2. This
is done to simulate real world experiments, as the true after state wouldn’t be known of an
unknown system which should be learned. The probability distribution of the before state
doesn’t have to be taken because when the experiment is performed, the before state will
be artificially prepared, which then will be known.

3.3 Setup with Flux

The core of this thesis lies in the machine learning algorithm. For this, the framework Flux
is used. In the following, it will be described how the environment is setup.

3.3.1 Training circuit

In the beginning, we define the quantum circuit, which should be trained in the process.
For this purpose, we use the package Qaintellect. With this, it is allowed to easy define
circuits, which can then be handed over to Flux. Flux then recognizes the parameters of the
parametrized gates and will optimize these in the training process so that the whole circuit
equals, in the end, the true evolution operator (2.14). By considering two approaches, the
Ising model and spin glasses, two circuits, which don’t differ that much, must be constructed.

3.3.1.1 For the Ising model

The construction of the circuit according to figure 2.3 can be seen in figure 3.4. First, the
rotation gates are constructed as many as there are qubits. Second, the entanglementZZ
gates are constructed according to the adjacency matrix. Because the rotation gate and

15

3 Architecture and Technical setup

1 using Qaintellect
2

3 function trotterized_circuit_timestep_ising(J::Real, h::Real, adjacency::
AbstractMatrix, dt::Real)

4 L = size(adjacency, 1)
5 meas = [MeasurementOperator([1 0; 0 -1], (L,))]
6

7 # local (single unitary) gates
8 rg = RxGate(-2*h*dt)
9 Uh = [circuit_gate(i, rg) for i in 1:L]
10

11 # interaction gates
12 intgates = CircuitGate[]
13 eg = EntanglementZZGate(-2*J*dt)
14 for i in 1:L
15 for j in i+1:L
16 if adjacency[i, j] != 0
17 push!(intgates, circuit_gate(i, j, eg))
18 end
19 end
20 end
21

22 return Circuit{L}(vcat(Uh,intgates),meas)
23 end

Figure 3.4: Code for the Ising model circuit creation.

the entanglementZZ gate are only instantiated once, it gets recognized from Flux as two
parameters as it is intended. Usually, when the circuit is created to be trained, J and h
aren’t known. In that case, an arbitrary value is passed. In the case of this thesis, 0. is
handed over when the circuit is created for training purposes.

3.3.1.2 For spin glasses

In the case of spin glasses, there isn’t much of a difference. Instead of only two values, J and
h are handed over, a matrix for the J ’s and a vector for the h’s are passed. Also, instead
of instantiating the rotation and entanglementZZ gates only once, they get instantiated
anew in each iteration of the list comprehension, as well as in the if-clause in the double
for loop with the values from J-matrix and h-vector. This way, Flux recognizes them as
separate parameters. Here also, a 0. matrix and vector are handed over when the circuit is
constructed for training purposes.

3.3.2 Loss function

While training, it is wanted that each iteration of the training process is evaluated regarding
how close it is to the optimum the wanted result. This quality measurement is assured by the
loss function. The loss function maps an event/iteration to a real number, which signalizes
how good the machine learning algorithm represents the underlying true system. Usually
an optimization seeks to minimize the loss function, this will also be the case in this thesis.

16

3.3 Setup with Flux

Here, the Kullback–Leibler divergence (3.3) [KL51], with discrete probability distributions
P and Q defined over the same probability space χ

Dkl(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3.3)

will be used as the loss function, because when working with quantum states, the quantum
states will be measured in real world examples resulting in a probability distribution. As
the Kullback–Leibler divergence was designed to measure the entropy of probability distri-
butions, it fits perfectly for this use case. The probability distribution of the predicted
quantum state from the machine learning algorithm will be compared to the true underly-
ing distribution of the after state from the training data. And then, according to this, the
circuit will be optimized [BLSF19] to resemble the true evolution operator from which the
Hamiltonian can be extracted by the parameters of J and h.

The code which was used to create the loss functions can be seen in figure 3.5. There were
functions used which were defined in the previous sections where Nx and Ny are placeholders
for the width and height of the lattice and need to be initialized once the algorithm should
be executed. The defined lossSpec function takes, in this case, four parameters, the before

1 using Flux
2 using SparseArrays
3 using Qaintellect
4

5 function lossSpec(before, cgc, after, loss)
6 phi1 = apply(before, cgc.moments)
7 loss(phi1,after)
8 end
9

10 adj = lattice_adjacency_map(Nx, Ny)
11 hrecrspn = spzeros(Float64, Nx * Ny)
12 jrecrspn = spzeros(Float64, Nx * Ny, Nx * Ny)
13 ctrain = trotterized_circuit_timestep_spinGlass(jrecrspn,hrecrspn,adj,dt)
14

15 hadamardsFront = kron([sparse_matrix(HadamardGate()) for i in 1:L]...)
16 kldivHHH(phi1,ref) = Flux.Losses.kldivergence(abs2.(hadamardsFront*phi1),

abs2.(hadamardsFront*ref))
17 kldiv(phi1,ref) = Flux.Losses.kldivergence(abs2.(phi1), abs2.(ref))
18

19 lossFirstround(before, after) = lossSpec(before, ctrain, after,kldivHHH)
20 lossSecondround(before, after) = lossSpec(before, ctrain, after,kldiv)

Figure 3.5: Code for the loss definition.

and after of the training tuple, the training circuit and the wanted loss function. In this
function, the to be optimized training circuit is applied to the initial before state in line 6.
Later, based on this application, the resulting state and the application of the chosen loss
function comparing to the true after state in line 7, the gradients will be computed, which
are necessary for the correct optimization of the circuit. As it will be worked with complex
vectors for the states, the gradients will be taken of complex values for which the wirtinger
formalism will be used [GM21].

17

3 Architecture and Technical setup

It will be used two different lossSpec functions as the training process will have two phases
in the proposed algorithm. In the first phase, the model is trained according to a σX -basis
measurement of the Ising-spins/ spin-glasses . This can be easily accomplished by simply
putting a layer consisting of hadamard gates acting on each single qubit in the end of the
circuit. In the second phase, the setup will be trained according to a measurement in the σZ-
basis. Here, the resulting state is measured without the hadamard layer. The two different
lossSpec functions can be seen in line 19 and 20, where the first function represents the
σX -measurement and the second one the σZ-measurement. The according loss functions
are in line 16 and 17. Here, the probabilities of the after states are taken.

3.3.2.1 X/Z-Measurement

But why are these two different measurements needed? Wouldn’t only the σZ- or the σX -
measurement be sufficient? Interestingly, these two are needed to be used together and
cannot be replaced by only one or the other measurement. When only the σZ-measurement
is executed, the interaction terms of the Hamiltonian aren’t recreated as they don’t have an
effect on the probability distribution of the evolved state in the σZ-basis.

This can be seen in the following. First, the time evolution operator is represented as a
matrix for a system of size n:

e−iH∆t =
∏
〈l,j〉

EntZZ(−2J〈l,j〉∆t)l,j

n∏
l

Rx(−2hl∆t)l (3.4)

=


z1 0 0 · · · 0
0 z2 0 · · · 0
0 0 z3 · · · 0
...

...
...

. . .
...

0 0 0 · · · z2n


︸ ︷︷ ︸

unitary


x1,1 x1,2 x1,3 · · · x1,2n

x2,1 x2,2 x2,3 · · · x2,2n

x3,1 x3,2 x3,3 · · · x3,2n

...
...

...
. . .

...
x2n,1 x2n,2 x2n,3 · · · x2n,2n

 (3.5)

=


z1x1,1 z1x1,2 z1x1,3 · · · z1x1,2n

z2x2,1 z2x2,2 z2x2,3 · · · z2x2,2n

z3x3,1 z3x3,2 z3x3,3 · · · z3x3,2n

...
...

...
. . .

...
z2nx2n,1 z2nx2n,2 z2nx2n,3 · · · z2nx2n,2n

 (3.6)

Where zi are the entries of the resulting matrix from the multiplication of the entanglement-
ZZ gates. This multiplication results in a diagonal matrix as the entanglement-ZZ gates are
diagonal themselves. The xi,j variables stand for the entries of the resulting matrix from the
multiplication of the rotation gates. Now when performing a time evolution on an arbitrary

18

3.3 Setup with Flux

state

⇒


z1x1,1 z1x1,2 z1x1,3 · · · z1x1,2n

z2x2,1 z2x2,2 z2x2,3 · · · z2x2,2n

z3x3,1 z3x3,2 z3x3,3 · · · z3x3,2n

...
...

...
. . .

...
z2nx2n,1 z2nx2n,2 z2nx2n,3 · · · z2nx2n,2n




φ1

φ2

φ3
...
φ2n

 (3.7)

=


z1x1,1φ1 + z1x1,2φ2 + z1x1,3φ3 + · · ·+ z1x1,2nφ2n

z2x2,1φ1 + z2x2,2φ2 + z2x2,3φ3 + · · ·+ z2x2,2nφ2n

z3x3,1φ1 + z3x3,2φ2 + z3x3,3φ3 + · · ·+ z3x3,2nφ2n

...
z2nx2n,1φ1 + z2nx2n,2φ2 + z2nx2n,3φ3 + · · ·+ z2nx2n,2nφ2n

 (3.8)

Determining the probability distribution of the resulting state results in

⇒


|z1x1,1φ1 + z1x1,2φ2 + z1x1,3φ3 + · · ·+ z1x1,2nφ2n |2

|z2x2,1φ1 + z2x2,2φ2 + z2x2,3φ3 + · · ·+ z2x2,2nφ2n |2

|z3x3,1φ1 + z3x3,2φ2 + z3x3,3φ3 + · · ·+ z3x3,2nφ2n |2
...

|z2nx2n,1φ1 + z2nx2n,2φ2 + z2nx2n,3φ3 + · · ·+ z2nx2n,2nφ2n |2

 (3.9)

=


x1,1x1,1φ1φ1 + x1,2x1,1φ2φ1 + · · ·+ x1,2nx1,2nφ2nφ2n

x2,1x2,1φ1φ1 + x2,2x2,1φ2φ1 + · · ·+ x2,2nx2,2nφ2nφ2n

x3,1x3,1φ1φ1 + x3,2x3,1φ2φ1 + · · ·+ x3,2nx3,2nφ2nφ2n

...

x2n,1x2n,1φ1φ1 + x2n,2x2n,2φ2φ1 + · · ·+ x2n,2nx2n,2nφ2nφ2n

 (3.10)

where z stands for the complex conjugate of z. The zi cancels themselves out as the matrix
is diagonal and unitary, therefore zizi = 1, resulting in the EntZZ gates having no impact
on the probability distribution in the σZ-measurement.

On the other hand, when only performing a measurement in the σX -basis, it could be
observed that the parameters of the rotation gates are reconstructed wrong by a factor
v 1

2 . This could be due to the fact that when measuring in the σX -basis, the rotation gates
commute with the measurement operators and therefore having no effect on the expectation
value and measurement results:

〈(σX ⊗ · · · ⊗ σX)〉 = 〈φ| eiσX
i ∆t(σX ⊗ · · · ⊗ σX)e−iσ

X
i ∆t |φ〉 (3.11)

= 〈φ| (σX ⊗ · · · ⊗ σX)eiσ
X
i ∆te−iσ

X
i ∆t |φ〉 (3.12)

= 〈φ| (σX ⊗ · · · ⊗ σX) |φ〉 (3.13)

Still, the interaction terms will be reconstructed as the hadamard front breaks the above
described symmetry (eq. (3.10)). Due to these properties, in the first phase the σX -
measurement is performed to reconstruct the parameters of the interaction gates and after
that, in the second phase, the σZ-measurement is performed to reconstruct the parameters
of the rotation gates, leaving the interaction gates untouched.

19

3 Architecture and Technical setup

∆t System size Learning rate

0.01, 0.1 ≤ 12 Qubits 0.001
10−4, 10−3 < 12 Qubits 0.0001

10−3 12 Qubits 0.0001

Table 3.2: Used learning rates in dependence of the ∆t and the system size.

3.3.3 Optimizer

As already mentioned, an optimization seeks to reduce the loss function. In Flux, there are
several ways to do it. To achieve this, optimizers are used in this thesis, which will alter
the parameters. It optimizes the parameters in dependence of the loss function and the
associated gradients. There are several optimizers to choose from. Here ADAM [KB17]
was used, as it is an advanced optimizer and performs probably the best on average. It
implements adaptive learning rates and momentum, which allows the algorithm to converge
faster to the optimum. Adaptive learning rates help insofar that the algorithm begins with
big steps and ends with small steps, allowing faster progress. The momentum supports
finding the global optimum and not only some local, as it helps to push the process into the
right direction, overcoming the local optimum valleys. There would have been also other
options, such as RMSProp [SLHS21], but due to the fact that ADAM combines ideas from
different optimizers, among others, also the RMSProp, ADAM was chosen.

For the initialization of the ADAM optimizer, the learning rate and the tuple of the first
and second decay needs to be set. As the optimal learning rate depends on parameters such
as the ∆t, the J/h parameters and the system size. That is the case because when dt gets
small, the evolution doesn’t change the initial state that much, resulting in smaller gradients
on average, as the initial and resulting states are similar in the case of the training circuit as
well as in the case of the underlying true evolution. Because the initial states are the same
in both cases, the resulting states should be similar too. For J and h, it is analogous as they
scale dt too. The size of the system plays a role because when the system is bigger, there
are more dimensions of which the gradients are taken. Due to that, even if the gradients of
each dimension are small and are signalizing a small error in the accuracy for the according
parameter, in sum, they may be big, which could lead to a too big modification of the
parameter if the learning rate isn’t chosen well. Therefore, if these parameters scale, the
learning rate has to be scaled too. But due to the fact that J and h are mostly unknown,
determining the optimal learning rate can be non-trivial.

The default learning rates used, in dependence of J ∈ [0.6, 2.2], h ∈ [−10.8, 15.5], ∆t and
the system size can be taken from the table 3.2.

3.3.3.1 Decay

For a smoother and more automated optimization, a decay of the learning rate can be used
in Flux. This will periodically decrease the set learning rate. It is slightly different to the
adaptive learning rate of ADAM as in ADAM, the learning rate itself doesn’t get changed,
but scaled with a specific factor. Here, the learning rate itself would be changed, allowing
an even faster convergence if configured right.

Nevertheless, this wasn’t used in the thesis, as the configuration of the decay for a general
case of a system is difficult because the optimal learning rate depends on many factors.

20

3.3 Setup with Flux

Therefore, the space where the optimal learning rate lies would be big. In theory, for a
general case, a decay could be implemented, but therefore in each iteration of the decay, the
training algorithm would have to learn for a sufficient amount of time, to get the most out
of each iteration. If it gets trained for a too short amount of time the reconstruction isn’t
good enough and lowering the learning rate further could result that it gets stuck in a local
optimum. As in this thesis it was wanted to create an algorithm which is efficient and fast,
it has come to pass that the decay wasn’t used as it needs more time than just to specify
the learning rate in the beginning and observe the evolution of the loss and if needed to
restart the process with a modified learning rate. Also looking forward to bigger systems,
the amount of time per decay iteration needed, implied by the time needed to execute the
mathematical operations on high dimensional data for sufficient amount of data, exceeds
too much that it wouldn’t be beneficial in the case of this thesis to work with as time plays
a role.

Still, if needed and wanted, the decay can be easily added as Flux offers an easy way to
implement different decay options.

3.3.4 Callback function while training

Another useful feature Flux offers are callbacks. This feature allows to observe the training
process by executing a routine after every training iteration. With this, i.e. it is possible
to show the current loss or compute other values of interest. Usually, callbacks aren’t
necessary for training, they just allow the user to have more insight in what is going on.
For this thesis, it was very beneficial to have this feature, as it allows to collect data on
how well the algorithm performs. Here, it was used to collect the loss of each iteration
and the difference between the true J and the current trained J , as well as the difference
between the true h and the current trained h. In figure 3.6, the used callback function can
be seen. plotDataLs, plotDataJErr, plotDataHErr are the arrays for the loss, as well as for
the corresponding error where the data is accumulated. data is the data batch which is used
for testing, L is the size of the lattice of the system and paras are the parameters of the
circuit which are getting optimized.

Later, the collected data will be analyzed and plotted to see how the loss function corre-
lates to the error of the reconstruction.

3.3.5 Training

After all the necessary functions are defined, the core training function can be defined. For
the training function, the previously defined functions and variables will be used to generate
the needed input. The training function can be seen in figure 3.7. In the end, the optimized
parameters are returned. From these, the wanted J and h can be extracted how it was
already done in the callback function (fig. 3.6). The training is done in several rounds as
a further prevention of getting stuck in a local optimum. By adding in each round new
data, which represents an initial state and its ntimesteps, the training space gets bigger.
This method shows the wanted prevention and results even in a higher accuracy of the
reconstruction. Flux takes over the whole training process, from calculating the gradients
to optimizing the parameters with predefined settings.

Now all functions are defined which are needed to execute the algorithm. First of all,
the parameters of the circuit which should be optimized need to be retrieved. This is done

21

3 Architecture and Technical setup

1 using SparseArrays
2

3 function callback(data, loss, paras, trotterized, isSpinGlass, adj, L, dt,
J, h, isZMeas, plotDataLs,plotDataJErr,plotDataHErr; showLoss = true)

4 recreatedJ = spzeros(Float64, L, L)
5 recreatedH = spzeros(Float64, L)
6 tup = data[rand(1:length(data))]
7 ls = loss(tup[1],tup[2])
8 push!(plotDataLs, ls)
9

10 # Recovers J and h
11 if trotterized
12 if isSpinGlass
13 counter = 1
14 recreatedH = [first(paras[i])/(-dt*2) for i in 1:L]
15

16 #inverse operations of how the trotterized circuit for spinGlasses is
17 #build from J and h.
18 for i in 1:L
19 for j in i+1:L
20 # considering only entries in J for i ¡ j
21 if adj[i, j] != 0
22 recreatedJ[i,j] = first(paras[L+counter])/(-dt*2)
23 recreatedJ[j,i] = recreatedJ[i,j]
24 counter += 1
25 end
26 end
27 end
28 else
29 recreatedJ = first(paras[2])/(-dt*2)
30 recreatedH = first(paras[1])/(-dt*2)
31 end
32 end
33

34 # Calculates the mean error of the recreated J and h (array)
35 meanJ = mean(abs.(J - recreatedJ))
36 meanH = mean(abs.(h - recreatedH))
37

38 if showLoss
39 @show(ls)
40 end
41

42 # Depending on the measurement the J or h error is getting appended, because while
43 # ZMeasurement h is getting reconstructed
44 # and while XMeasurement J is getting reconstructed.
45 if isZMeas
46 push!(plotDataHErr,meanH)
47 else
48 push!(plotDataJErr,meanJ)
49 end
50 end

Figure 3.6: Code for the callback definition.

22

3.3 Setup with Flux

1 using Flux
2

3 function trainCircuit(rounds, databatch, ntimesteps, loss, paras, opt,
multiple, evalcb)

4

5 for r in 1:rounds
6 # In each round new initial state and all its timesteps are added
7 data = databatch[1:(r*ntimesteps)]
8

9 # training
10 Flux.train!(loss, paras, ncycle(shuffle(data), multiple), opt, cb =

evalcb)
11 end
12

13 return paras
14 end

Figure 3.7: Code for the training function.

via the following code, including also the initialization of the optimizer with a previously
defined learning rate, as well as the data generation through the function from fig. 3.3:

1 using Flux
2

3 ctrain = trotterized_circuit_timestep_spinGlass(jrecrspn,hrecrspn,adj,dt)
4 paras = Flux.params(ctrain)
5 opt = ADAM(learningRate,(0.9, 0.999))
6 databatch = dataGeneration(H,ntrials,dt,ntimesteps,L, showConsoleOutput =

true)

where jrecrspn and hrecrspn are arbitrary values like it is described in section 3.3.1.2. adj
is the adjacency map for a lattice (also defined previously) and dt is the length of one time
step. H is in this case, a spin glass Hamiltonian, ntrials is the number of wanted initial
states, ntimesteps the wanted amount of time steps and L = Nx ·Ny, the number of qubits
in the system. Following on that the two callback functions for the two different phases need
to be initialized, where trotterized/isSpinGlass are booleans and J /h are the true J /h:

1 plotDataLs = []
2 plotDataJErr = []
3 plotDataHErr = []
4

5 evalcbFirst() = callback(databatch, lossFirstround, paras, trotterized,
isSpinGlass, adj, L, dt, J, h, false, plotDataLs,plotDataJErr,
plotDataHErr, showLoss = true)

6 evalcbSecond() = callback(databatch, lossSecondround, paras, trotterized,
isSpinGlass, adj, L, dt, J, h, true, plotDataLs,plotDataJErr,
plotDataHErr, showLoss = true)

Now that everything is set up, the training function can be executed. As already written,
this will happen in two phases, first, the training on the σX -measurement data is executed
and then on the σZ-measurement data.

23

3 Architecture and Technical setup

1 paras = trainCircuit(ntrials, databatch, ntimesteps, lossFirstround, paras,
opt, multiple, evalcbFirst)

2 paras = trainCircuit(ntrials, databatch, ntimesteps, lossSecondround, paras
, opt, multiple, evalcbSecond)

multiple is a parameter which is responsible for how often the initial training data batch,
which is used in the current iteration, should be replicated so that the resulting data batch
has more entries. This can be done so that the training process has enough data for learning.
For the algorithm to run, the needed parameters need to be initialized explicitly, as the above
code only use placeholders to describe a more general case. From the optimized parameters
of the circuit, J and h can be retrieved now as described earlier.

24

4 Application and Results

At this point, the algorithm is set up and can be executed. This will be done for various
system sizes, time step lengths and learning rates. Also, it will be run several times to
generate mean data and according to this, the reconstruction fidelity in dependence of the
loss will be measured to get empirical evidence for the correlation of the loss and the fidelity.
Also, different circuit types and loss functions will be tested on how well they perform and
if they represent a good alternative. But first and foremost, the hardware and system
properties will be listed as the performance and efficiency depends strongly on it. They can
be seen in table 4.1.

Component Model

Processor Intel(R) Core(TM) i5-7300U CPU @ 2.60 GHz
RAM 8 GB 1866 MHz LPDDR3

System 64-Bit-Operating system, x64-based processor
Operating system Windows 10 v.20H2

Table 4.1: The properties of the hardware and the system where the algorithm was run.

4.1 Runtime

First, the algorithm (sec. 3.3.5) is executed on single runs. With single runs, executions are
meant where the algorithm is only run once for a specific configuration (setting) of hyper-
parameters. This is specified as later, several runs for a specific setting of hyperparameters
will be executed to generate mean data. Several single runs for the code in section 3.3.5
with different configurations are done and the elapsed time is measured. This shall give an
intuition in what dimensions the execution time of this algorithm lies. This is interesting
insofar because QPT and the variations of it are most of the time not feasible due to sheer
amount of time, which is needed. This comes from the exponential scaling of the dimen-
sions when increasing the system size, which has the consequence that the computations
need significantly longer. That’s why it’s from interest to get an intuition about the run
time for the proposed algorithm. The measurements are done with BenchmarkTools, where
each run is executed 10 times to retrieve a mean time.

This is done for the Ising model, as well as for spin-glasses. The general configurations of
each run can be seen in table 4.2, the model specific configurations, such as J and h, will be
discussed in the associated sections. ntrials is everywhere set to 1. As already discussed in
sec. 3.3.3 it is a non trivial task to choose a learning rate as it depends from many factors.
The learning rates in tab. 4.2 were chosen by trial and error. Surely there are better choices
for individual cases, but here it was sufficient enough. When working with real world data
and unknown J and h, the training process must be supervised to check whether the loss is
getting smaller. Normally, h should be known as this parameter can be controlled/measured

25

4 Application and Results

Run ID Nx Ny ∆t learning rate multiple ntimesteps

1 2 2 0.1 0.001 81 10
2 2 2 10−2 0.001 41 100
3 2 2 10−3 0.0001 1 1000
4 2 2 10−4 0.0001 1 10000
5 3 3 0.1 0.001 1 10
6 3 3 10−2 0.001 1 100
7 3 3 10−3 0.0001 1 1000
8 3 3 10−4 0.0001 1 10000
9 4 3 0.1 0.001 1 10
10 4 3 10−2 0.001 1 100
11 4 3 10−3 0.0001 1 1000

Table 4.2: The configuration settings for single runs.

by the operator and J should be a number around 1 with some variance. Due to this, a
good learning rate can be guessed and then be tuned during the process. But as here it was
worked with simulations, the learning rates could be guessed good as J and h were known.

It wasn’t possible to go bigger in the system size as already, for a lattice size of 4 × 4,
Julia threw an OutOfMemory exception due to the curse of dimensionality.

For each execution it was configured that the overall time step should equal to 1, that’s
why, for example, in run 7 tab. 4.2, 1000 time steps of an initial state are taken according
to eq. (3.2) as the time step is set to 10−3. More could also have been done, but due
to the exponential scaling, it is only feasible for small systems. Nevertheless, an overall
time step of 1 was chosen. It could also have been chosen less time steps, or even only one
with a good amount of replications (i.e. multiple = 200) as tests showed that this was also
sufficient enough. This is beneficial because when the algorithm is run with real world data,
it is advantageous to do as little measurements as possible on the environment. It is also
beneficial to have as little as possible initial states (represented by ntrials), which should
be prepared as in these, both cases, it would be more complex to gather data. One initial
state is sufficient enough. But again, as it was worked with simulated data, this wasn’t an
obstacle.

4.1.1 For the Ising model

For the Ising model in each run, the algorithm is run with random J ∈ [0.6, 2.2] and
h ∈ [−10.8, 15.5]. These intervals are chosen as the J parameter is, on average, around 1
in real systems and h can be arbitrary big, as this parameter is determined by the external
magnetic field. That’s why the interval for J is chosen generously around 1 and for h larger,
as this is arbitrary. The mean time for each run can be taken from the table 4.3, where
the time is rounded to first integer, as the time varies slightly from run to run and only the
mean is considered. It can clearly be seen that the time rises with increasing ∆t, ntimesteps
or system size. Concluding that the elapsed time depends on the system size, as well as
the batch size, as ∆t and ntimesteps determine, in this case, the data batch size. This
was expected, as with increasing system sizes, the dimensions increase exponentially. Also,
with increasing batch sizes, it is clear that the algorithm has to work through more data,
increasing the time.

26

4.1 Runtime

Run ID 1 2 3 4 5 6 7 8 9 10 11

Time in seconds 4 24 6 59 1 11 95 1171 21 94 837

Table 4.3: Ising: Mean elapsed time for each run of the algorithm, determined according to
10 samples.

It needs to be said that these times doesn’t give evidence for how much time elapses until
a good recreation was made, but more that even with the curse of dimensionality and data
collection, this algorithm is feasible in a good amount of time for system sizes below or equal
to 12 qubits. The case why run 3 needed less time than run 2 is because the data batch was
smaller.

As these times (table 4.3) were measured with an algorithm where data (accuracy mea-
surements) was gathered and much extra computation was going on to have an insight on
the performance. It would be interesting to see if the time needed for the core algorithm,
which only learns the parameters, is lower. The results of this test can be seen in tab. 4.4.
It can be seen that there is a tendency that the times are getting smaller and even for some

Run ID 1 2 3 4 5 6 7 8 9 10 11

Time in seconds 3 10 3 26 1 5 47 446 7 64 600

Table 4.4: Ising: Mean elapsed time for each run, determined according to 10 samples, with
only the core functions used. Callback and other computations are excluded.

runs, i.e. run 2;4;7;8;10;11, they are significantly lower and even halved compared to tab.
4.3. This was expected as the computation of the callback in each iteration of the training
process can take up a good amount of computational power, which slows down the whole
process, showing that the machine learning algorithm itself is even faster.

Now it would be interesting to see how long it would take to have an accurate recreation
of the parameters. Therefore, the algorithm is modified that it will be interrupted when it
reaches a defined accuracy. This is done via the following lines of code, which replace the
lines 45 to 49 in fig. 3.6.

1 if isZMeas
2 push!(plotDataHErr,meanH)
3 meanH < 0.005 && Flux.stop()
4 else
5 push!(plotDataJErr,meanJ)
6 meanJ < 0.005 && Flux.stop()
7 end

In this example, the wanted accuracy is that the recreated parameters don’t differ more than
0.005 from the original ones. The measured time can be seen in tab. 4.5. The algorithm
is run under the same conditions as for tab. 4.3 only with the above shown changes in the
code where a threshold was set to 0.005.

As the elapsed times show, the needed time for the algorithm to have a recreation, which
only differs 0.005 to the original parameters is less, then in 4.3. This shall give an intuition
how long a recreation can take until it is somehow accurate. Unfortunately, in reality it isn’t
possible to measure the accuracy in reality this way, which means that the algorithm cannot
be interrupted like it was above. The only thing that can be done is to use heuristics and

27

4 Application and Results

Run ID 1 2 3 4 5 6 7 8 9 10 11

Time in seconds 3 1 1 7 1 5 12 33 9 44 90

Table 4.5: Ising: Mean elapsed time for each run, determined according to 10 samples of the
algorithm, until an accurate recreation of the parameters is accomplished with a
threshold difference of 0.005 .

guess when the wanted accuracy (in dependence of the loss) is reached and interrupt the
algorithm then. Still, the risk will remain that the wanted accuracy isn’t reached. That’s
why, when using the algorithm, it is therefore better to train, rather more than less, to be
on the safe side that the wanted accuracy is reached if not wanted otherwise.

4.1.2 For spin glasses

The same is done for spin glasses. Also, as for the Ising model, the J-matrix entries are
element of [0.6, 2.2] and the h-vector entries are element of [−10.8, 15.5]. Here the intervals
were chosen as in sec. 4.1.1. Running the algorithm for each configuration of tab. 4.2 for
spin glasses results in the times of tab. 4.6. As it can be seen, the times of the runs for

Run ID 1 2 3 4 5 6 7 8 9 10 11

Time in seconds 3 14 5 39 1 7 62 908 20 170 1071

Table 4.6: Spin glass: Mean elapsed time for each run of the algorithm until an accurate
recreation of the parameters is accomplished.

the Ising model, as well as spin glasses, are similar, although a tendency cannot be clearly
seen as for the runs 2;3;4;6;7;8;9 the times are faster for spin glasses, but for the runs 10
and 11, they are slower. This doesn’t have to mean anything and can be only a coincidence,
as the needed time for any run has a high variance up to several seconds. Again, these
measurements aren’t done to get an exact time a run needs for a configuration, but to see
how long, approximately a run can take. Also, the elapsed time depends on many factors,
how many programs are running in parallel, on I/O actions, is chrome running and many
more. That’s why these times only should be used to get an intuition instead of exact
results.

But what we can conclude is the same as for the Ising model. The elapsed time depends
strongly on the system size, as well as from the data batch that needs to be learned. But as
the times above (tab. 4.6) were measured with much computation and data gathering going
on, the times, as in the Ising model case, were measured again with only the core functions
running, which are needed to learn the parameters. Tab. 4.7 represents the results of the
measurements for the same configurations as above.

Run ID 1 2 3 4 5 6 7 8 9 10 11

Time in seconds 2 10 3 27 1 5 47 446 7 64 609

Table 4.7: Spin glass: Mean elapsed time for each run, determined according to 10 samples,
with only the core functions used. Callback and other computations are excluded.

What now can be seen is that the times from tab. 4.4 and 4.7 are pretty similar, if not

28

4.2 Reconstruction fidelity

identical. This leads to the conclusion that for the machine learning algorithm in these
cases, the number of parameters which need to be learned doesn’t matter and only the
data batch size matters and defines the run time. Surely, it can also be the case that there
isn’t a difference seen due to the relatively ’small’ amount of parameters which need to
be learned for spin glasses and with significantly more parameters, there maybe could be
a difference visible as more computations would go on in the background. Still, it is an
interesting observation, as that means the spin glass model, can be assumed every time,
at least for system sizes up to twelve qubits, when something needs to be learned as this
is more general than the Ising model and can therefore represent the Ising model as well.
Also, there wouldn’t be a performance benefit to restrict the model to the Ising model, as
the spin glass reconstruction claims the same amount of time for the same data batch size.
The only benefit by choosing the Ising model there is, is that there is a performance boost
when data is gathered and computations are executed on them, i.e. in the callback function
in each iteration of the training process where the reconstructed J and h are retrieved to
compute the error between the reconstructed and true parameters. As this only happens
when working with simulations, it can be advised to use the spin glass model when working
with real world data.

Last but not least the same test from tab. 4.5 is run for spin glasses to find out how
long they need until an accurate recreation is present. The test is executed for the same
configurations only this time with the spin glass model. The times measured can be seen in
tab. 4.8.

Run ID 1 2 3 4 5 6 7 8 9 10 11

Time in seconds 3 4 2 9 1 7 18 37 9 74 153

Table 4.8: Spin glass: Mean elapsed time for each run, determined according to 10 samples
of the algorithm, until an accurate recreation of the parameters is accomplished
with a threshold difference of 0.005 .

What can be seen is that the times from tab. 4.8 are lower than from tab. 4.6 but still
higher than the time from tab. 4.5, which was expected as more parameters need to be
learned. Unfortunately, the algorithm cannot benefit directly from this observation, as such
accuracy measurements cannot be made in reality as already described in sec. 4.1.1.

4.2 Reconstruction fidelity

Now, as the runtime of the algorithm was discussed, the fidelity of the reconstruction can
be approached. For this, the algorithm was run 34 times for each configuration on the spin
glass model with various configurations. It was done for spin glasses with J and h from
4.1.2, as the Ising model can also be represented by the spin glass model, which is the more
general case.

In fig. 4.1 and 4.2 the J/h error of the reconstruction between the reconstructed and the
true parameters can be seen in dependence of ∆t and the loss. The error was computed
by subtracting the true and recreated parameters and taking the mean of the absolute
values (mean(|Jtrue − Jreconstructed|) for the J parameters and analogues for h parameters
where the absolute values are taken of the entries from the resulting matrix/vector). The
runs range from system sizes of one qubit to twelve qubits and different ∆t. The idea

29

4 Application and Results

behind this test was to see if it is possible to judge on the basis of the loss if the wanted
reconstruction accuracy is reached. This is done as the loss isn’t a direct indicator if the
reconstruction of the parameters, J and h are sufficient. It only shows if the probability
distributions of the resulting states are similar, but not if the underlying Hamiltonians are
similar. The configurations themselves aren’t from interest, as it is only wanted to see if
there is a correlation between loss and accuracy. If there is a correlation, this should also
be seen for badly chosen parameters, as the loss would signalize that the wanted accuracy
isn’t reached.

As expected, the error for a ’high’ ∆t is high as the approximation by the eq. (2.20)
circuit is bad. This can be seen in fig. 4.1a as well as in 4.2a, where the error for the
reconstruction of the J parameters is relatively low, but for the h high. The J-curve curves
doesn’t surpass the 0.2 mark and the h-error don’t surpass the 1 mark on the y-axis. It can
be seen that for the other ∆t, the approximation seems to be sufficient, as here the errors
drop nearly to zero. Concluding that a ∆t of 0.01 or lower, but preferably lower, should be
sufficient enough for a good approximation with the current J and h. If the true J and h
should be higher, the ∆t has to get lower, as the approximation depends from both.

The reconstruction for one qubit (only the h parameter gets reconstructed) shows high
fluctuations (fig. 4.3a). With increasing system size, the error curve is shifted to the right,
meaning that a sufficient reconstruction is reached earlier at a higher loss, but also that the
run of the algorithm for this configuration has, in general, higher losses. Also, the curve is
more stable with less fluctuations, which can be seen in figures 4.1 and 4.2. Actually, all
other reconstructions, except for the one qubit system, have low fluctuations and produce
a rather stable curve. The possible reason for this will be later discussed in this section.

It can be seen that the loss generally doesn’t state if the reconstruction is sufficient enough,
as the loss in the diagrams of fig. 4.1 and 4.2 are all really low and are getting averagely lower
with lower ∆t. In addition, the accuracy of the reconstruction also depends on the system
size. That’s why it isn’t possible to judge, according to the loss itself, if the reconstruction is
good for a general case as there are many parameters on which this depends. Due to this the
error of J and h differs for each configuration at the same loss value. But if a specific case is
looked at, it is possible to judge based on the loss if the reconstruction is good. The specific
values can be taken from the figures 4.1, 4.2, 4.3 and 4.4. What generally can be said is that
when the loss gets lower during the training process, the reconstruction gets better. If the
loss dropped enough during the process, it can be assumed that the reconstruction accuracy
is high, concluding that it is also generally possible to judge based on the loss development
during the training process. Here, the loss dropped, on average, by a factor of e−10 until a
good reconstruction was given.

Another observation, which was expected, is that the error curves for J and h are nearly
identical for systems of the type (Nx×Ny) or (Ny ×Nx) with (width× height), as these
are the same systems only rotated by 90° on the plane where the lattice lies. That’s the case
as the coupling strengths and the external magnetic field interaction, which is positioned
orthogonal to the plane the lattice spans don’t depend on the angle. The h-error curve for
the systems (2 × 1)-(1 × 2) and (3 × 1)-(1 × 3) deviate from this somewhat in the figures
4.2c and 4.2d, but for the remaining systems this is the case. In Figure 4.1, this correlation
can be seen at best. Moreover, it can be seen that in this test this also holds for systems
of the same size, which can be seen in fig. 4.1 and 4.2 for the systems (2× 2) and (4× 1).
This is an interesting observation as this is not evident because the amount and type of
interaction terms of the systems are different, but still, the error curves are pretty similar.

30

4.2 Reconstruction fidelity

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 4.1: J error dependency of loss (KL-divergence) for different number of Qubits with
same ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|Jtrue − Jreconstructed|), where the absolute values are taken of the entries
from the resulting matrix. It can be seen that with decreasing loss, the error
also decreases. A sufficient reconstruction (error ≈ 0) can be found after a
decrease by approximately a factor of e−10 from the highest loss (loss at which
the algorithm started). The reconstruction for 4.1a is the worst and doesn’t
reaches high accuracy. Also, with increasing system sizes, the curves are shifted
to the right and the fluctuations in the curves decrease. Systems of the same
size seem to have similar(/identical) error curves.

31

4 Application and Results

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 4.2: h error dependency of loss (KL-divergence) for different number of Qubits with
same ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|htrue − hreconstructed|), where the absolute values are taken of the entries
from the resulting vector. A sufficient reconstruction (error ≈ 0) can be found
after a decrease by approximately a factor of e−10 from the highest loss (loss
at which the algorithm started). The reconstruction for 4.2a is the worst and
doesn’t reaches high accuracy. Also, with increasing system sizes, the curves are
shifted to the right and the fluctuations in the curves decrease. Systems of the
same size seem to have similar(/identical) error curves.

32

4.2 Reconstruction fidelity

Another interesting thing is that this also could hold for systems of nearly the same size
(size1/size2 ≈ 1), as this holds for the systems (4× 2) and (3× 3) (8/9 = 0.89), but not for
(1× 3) and (2× 2) (3/4 = 0.75). These are the reasons why, in the figures, there are often
curves seen which appear in couples.

Further, in figures 4.3 and 4.4, the accuracy is compared for the same system sizes but
different ∆t. One can clearly see that with lower ∆t, the loss is, on average, also lower.
That’s the case, as with lower ∆t, the evolution doesn’t change the state that much and due
to this, the loss is also lower as it doesn’t notice that much of a difference. Still, the behavior
(alias the curves) for all cases is the same as all errors are getting lower with decreasing loss,
only that the curves are shifted to the left for smaller ∆t and to right for bigger. This leads
to the conclusion that for each system, the factor by how much the loss has to drop before
a sufficient reconstruction is reached doesn’t seem to depend on the set ∆t, but is more
or less constant around e−10 (figures 4.3 and 4.4). The reconstruction for ∆t = 0.1 is the
worst, as already mentioned. And as already noted, with increasing system size, the curve
is getting more stable with less fluctuations. This is most likely due to statistical effects
as with growing system size the J and h parameters for spin glasses grow too, making the
mean, which is taken in each iteration of the training, more sound as there are more samples
considered, preventing a too big effect of outliers and fluctuations between taken data from
different iterations and runs if there exists a correlation between loss and error (which does
exist as it can be seen in the figures 4.1, 4.2, 4.3 and 4.4).

Another observation, which can be made from figures 4.3 and 4.4, is that the J and h error
curves of the same ∆t are positioned in the same interval of the loss. Whereas the J-error
curve has in general a lower slope than the h-error. Still, in the most cases, both curves
reach a sufficient reconstruction at the same loss value. Concluding that, the h parameter
has a higher mean error for the same loss values while reconstructing.

The best reconstruction accuracy for these configurations is given for ∆t = 0.001 or
∆t = 0.0001 as for ∆t = 0.01, there is sometimes no optimal reconstruction accuracy (see
i.e. fig. 4.4b or 4.4c). Interesting is also that for ∆t = 0.01, in some cases, the reconstruction
error starts to rise with decreasing loss, see fig. 4.3b, 4.3d, 4.3c, 4.4a, 4.3e, 4.4d or generally
4.1b and 4.2b.

All in all, from the figures 4.1, 4.2, 4.3 and 4.4 can be concluded that there is a correlation
between loss and the reconstruction accuracy of the J and h parameters. With decreasing
loss, the error between the true parameters and the reconstructed parameters also decreases.
After a sufficient decrease in the loss by an average factor of e−10, an accurate reconstruction
can be expected. Due to this, it is possible to judge, based on the development of the loss,
if the reconstruction is sufficient. Also, it could be seen that the J-error curves (fig. 4.1) or
the h-error curves (fig. 4.2) are almost the same for all configurations (figures 4.3 and 4.4)
only shifted to right or left in the diagrams. From figures 4.1 and 4.2, it could also be seen
that systems of the same or even similar system sizes produce nearly identical error curves.
The best reconstruction could be seen for a ∆t = 0.001 ∨ 0.0001, whereas the fluctuations
in the curves decreases with growing system sizes. While the run of the algorithm, the
error in reconstruction for the h parameter is larger than for the J parameter for the same
loss values. Still, at some point, the error for both parameters is the same. Therefore, the
algorithm shouldn’t be interrupted too early, even if the loss seems to be low enough.

33

4 Application and Results

(a) 1× 1 qubits (b) 1× 2 qubits

(c) 1× 3 qubits (d) 2× 1 qubits

(e) 2× 2 qubits (f) 2× 3 qubits

Figure 4.3: Error dependency of loss (KL-divergence) for the same number of Qubits with
different ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|Jtrue−Jreconstructed|) for the J parameters and analogues for h parameters
where the absolute values are taken of the entries from the resulting matrix/vec-
tor. A sufficient reconstruction (error ≈ 0) can be found after a decrease by
approximately a factor of e−10 from the highest loss (loss at which the algorithm
started). For ∆t = 0.1, the reconstruction is the worst in all cases. Also, with
increasing ∆t, the according curves of each system are shifted to the left. Still,
same systems have similar(/identical) error curves. It can be seen that the error
curves for h have higher slopes than for J , meaning that while reconstructing
the error for h is higher than for J at the same loss value.

34

4.2 Reconstruction fidelity

(a) 3× 1 qubits (b) 3× 2 qubits

(c) 3× 3 qubits (d) 4× 1 qubits

(e) 4× 2 qubits (f) 4× 3 qubits

Figure 4.4: Error dependency of loss (KL-divergence) for the same number of Qubits with
different ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|Jtrue−Jreconstructed|) for the J parameters and analogues for h parameters
where the absolute values are taken of the entries from the resulting matrix/vec-
tor. A sufficient reconstruction (error ≈ 0) can be found after a decrease by
approximately a factor of e−10 from the highest loss (loss at which the algorithm
started). For ∆t = 0.1, the reconstruction is the worst in all cases. Also, with
increasing ∆t, the according curves of each system are shifted to the left. Still,
same systems have similar(/identical) error curves. It can be seen that the error
curves for h have higher slopes than for J , meaning that while reconstructing
the error for h is higher than for J at the same loss value.

35

4 Application and Results

1 using Flux
2

3 mse(phi1,ref) = Flux.Losses.mse(abs2.(phi1), abs2.(ref))
4 mseHHH(phi1,ref) = Flux.Losses.mse(abs2.(hadamardsFront*phi1), abs2.(

hadamardsFront*ref))
5 mae(phi1,ref) = Flux.Losses.mae(abs2.(phi1), abs2.(ref))
6 maeHHH(phi1,ref) = Flux.Losses.mae(abs2.(hadamardsFront*phi1), abs2.(

hadamardsFront*ref))
7 huber_loss(phi1,ref) = Flux.Losses.huber_loss(abs2.(phi1), abs2.(ref))
8 huber_lossHHH(phi1,ref) = Flux.Losses.huber_loss(abs2.(hadamardsFront*

phi1), abs2.(hadamardsFront*ref))

Figure 4.5: Different loss functions which were used. The loss functions with the HHH in
the end were used in the first phase, the according loss function without the
HHH in the second phase.

4.3 Different loss functions

In addition, different loss functions were used to test whether better results can be achieved.
Therefore, the mean squared error (MSE), mean absolute error (MAE) and the huber loss
[Hub64] were used and tested as possible loss functions.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (4.1)

MAE =
1

n

n∑
i=1

|Yi − Ŷi| (4.2)

huber lossδ(Y, Ŷ) =


1

2
(Y − Ŷ)2 for |Y − Ŷ | ≤ δ

δ(|Y − Ŷ | − 1

2
δ) otherwise

. (4.3)

In fig. 4.5 can be seen how they were selected and prepared in Julia.

The algorithm was then run for the same settings and configurations as in 4.2 with the
only difference that this time, only 5 samples for each run were taken and analyzed. The
results for these runs can be seen in fig. 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11.

It can clearly be seen in all figures that the reconstructions for ∆t = 0.1 are the worst.
This could already be seen from the reconstructions with the KL-divergence. This underlines
that the bad reconstruction for runs with ∆t = 0.1 isn’t due to the loss function, but as
already written above (sec. 4.2) due to the bad approximation through the trotter formula
(eq. 2.20). Also, the largest share of the curves is afflicted with moderate fluctuations,
which can be led back with high probability, to the fact that only 5 samples for each test of
a loss were taken. Also like the KL-divergence, the loss values for the different loss functions
decreases with decreasing ∆t. Coupled curves can also be seen in the figures 4.8, 4.7, 4.9
and 4.11 of the different loss functions, but not as clear as in fig. 4.1 and 4.2. In fig. 4.6
and 4.10 they are not seen that clearly as the fluctuations here are high and due this, the
single curves cannot be distinguished that good. This is most likely due to the small sample
sizes, which give rise to higher fluctuations. The interesting thing is that, on the contrary

36

4.3 Different loss functions

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 4.6: J error dependency of loss (mean squared error) for different number of Qubits
with same ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|Jtrue − Jreconstructed|) where the absolute values are taken of the entries
from the resulting matrix. High fluctuations can be seen in the figures. This is
most likely due to the small sample size of 5 or the high resolution of the y-axis.
The reconstruction for ∆t = 0.1 and ∆t = 0.01 are the worst. With increasing
system size, the curves are shifted to the left.

37

4 Application and Results

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 4.7: h error dependency of loss (mean squared error) for different number of Qubits
with same ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|htrue − hreconstructed|), where the absolute values are taken of the entries
from the resulting vector. The reconstruction for ∆t = 0.1 and ∆t = 0.01 are
the worst. In general, the reconstruction for the system (4× 3) seems to be the
worst here. With increasing system size, the curves are shifted to the left.

38

4.4 Different circuits for training

to fig. 4.1 and 4.2 in these figures, the curves of systems of similar sizes aren’t coupled (i.e.
(3× 3) and (2× 4)).

In contrast to the KL-Divergence loss (fig. 4.1 and 4.2), for the figures 4.6, 4.7, 4.8, 4.10
and 4.11, it can be seen that with increasing system sizes the curves are shifted to the left
instead to the right. Meaning that with increasing system size, the loss values are getting
lower. This is probably due to that that basically the MSE, MAE and the huber loss compare
the resulting probability distribution with the true probability just by taking the difference
of both and square or take the absolute value of the result. By making the system larger,
the probabilities to encounter a possible state gets averagely smaller. Therefore, the single
summands of the losses get smaller and, when squaring, even smaller, as the probabilities
and the corresponding differences are all below or equal 1.

For the tests of the MSE and the huber loss, it can be observed that the loss is generally
lower than for the KL-divergence and the MAE. Also, both of these losses have a worse
reconstruction for ∆t = 0.01 compared to the KL-divergence and MAE. The bad recon-
struction cannot be afflicted to a too small data batch size, as all the data batches had
the same sizes for each according test run. Also, for the MSE and the huber loss, there
are outliers in fig. 4.7b, 4.7c, 4.11b and 4.11c as the reconstruction for the h parameter of
(4× 3) is inaccurate. The symmetry can be explained due to that the MSE and the huber
loss have strong similarities per definition.

Also, the reconstructions of the J parameters are averagely occupied with higher fluctua-
tions, which can be seen by comparing the fig. 4.6, 4.8 and 4.10 with 4.7, 4.9 and 4.11. This
can be due to statistical variance, as only 5 samples were taken into account to construct
the mean.

The MAE loss seems to be the most accurate of the here tested losses, as it reaches the
highest accuracies on average. Also, it produces the largest losses on average, which can be
advantageous as this is more vivid.

All in all, it can be seen that these losses can be used for training, but in the tests, which
were done here, they perform on average the same or worse than the KL-divergence loss.
As it is worked with probability distributions due to the nature of quantum measurements,
the KL-divergence might be the best loss function for this use case, as this was designed for
comparing probability distributions.

4.4 Different circuits for training

Furthermore, it was tested if it isn’t possible to reconstruct the Hamiltonian with a more
general parametrized quantum circuit and than later, maybe to use these for more general
Hamiltonians. Therefore, variations of variational quantum circuits were build and tested.
An example can be found at fig. 4.12, which can be applied several times to increase the
expressiveness.

The results for this weren’t sufficient enough as the reconstruction weren’t accurate and
’wrong’ Hamiltonians were reconstructed. Theoretically, this circuit should be able to rep-
resent with the correct parameters, any possible circuit U [NC10]:

U = eiαR~v(Θ) (4.4)

with R~v(Θ) the general rotation gate. In fig. 4.12 the overall phase factors of eq. 4.4 aren’t
getting reconstructed, which wouldn’t even be possible as the phase factors don’t have

39

4 Application and Results

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 4.8: J error dependency of loss (mean absolute error) for different number of Qubits
with same ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|Jtrue − Jreconstructed|), where the absolute values are taken of the entries
from the resulting matrix. High fluctuations can be seen in the figures. This is
most likely due to the small sample size of 5 or the high resolution of the y-axis.
The reconstruction for ∆t = 0.1 is the worst. With increasing system size, the
curves are shifted to the left.

40

4.4 Different circuits for training

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 4.9: h error dependency of loss (mean absolute error) for different number of Qubits
with same ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|htrue − hreconstructed|), where the absolute values are taken of the entries
from the resulting vector. The reconstruction for ∆t = 0.1 is the worst. With
increasing system size, the curves are shifted to the left.

41

4 Application and Results

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 4.10: J error dependency of loss (huber loss) for different number of Qubits with
same ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|Jtrue− Jreconstructed|), where the absolute values are taken of the entries
from the resulting matrix. High fluctuations can be seen in the figures. This
is most likely due to the small sample size of 5 or the high resolution of the
y-axis. The reconstruction for ∆t = 0.1 and ∆t = 0.01 are the worst. With
increasing system size, the curves are shifted to the left.

42

4.4 Different circuits for training

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 4.11: h error dependency of loss (huber loss) for different number of Qubits with
same ∆t. The x-axis is scaled logarithmically. The error was computed as
mean(|htrue− hreconstructed|), where the absolute values are taken of the entries
from the resulting vector. The reconstruction for ∆t = 0.1 and ∆t = 0.01 are
the worst. In general, the reconstruction for the system (4×3) seems to be the
worst here. With increasing system size, the curves are shifted to the left.

43

4 Application and Results

R ~v1(Θ1) R ~v5(Θ5)

R ~v2(Θ2) R ~v6(Θ6)

R ~v3(Θ3) R ~v7(Θ7)

R ~v4(Θ4) R ~v8(Θ8)

Figure 4.12: Variational quantum circuit for 4 qubits with R ~vn(Θn) representing the general
rotation gate. For more or less qubits, the circuit needs only to be scaled with
the given structure.

an impact on the probability distribution. This is another reason why this approach isn’t
sufficient, as it could reconstruct the evolution operator up to a phase factor, which then has
an impact on the reconstruction of the underlying Hamiltonian, as the reconstructed one will
probably differ to the true one. Due to this, the question rises if the different Hamiltonians
represent the same system sufficiently. Because as when the same probabilities arise, it
doesn’t mean that the underlying states are the same or that the systems are underlying
the same evolution. But as this approach wasn’t pursued, the question wasn’t pursued
either.

Also, due to the many degrees of freedom, the loss function has too many local optima
for this kind of circuit in which the algorithm can get stuck. Due to this, it is very hard
to use general circuits for general physical problems without having some knowledge about
the system to which some restrictions can be applied.

Even for small system sizes i.e. (2 × 1), where the loss function should have less local
optima (as there are less parameters), the algorithm reconstructed the evolution operator
inaccurate and therefore the Hamiltonian wrong.

That’s why the trotterized circuit was used as this pushes the algorithm already in a direc-
tion and imposes a structure which restricts the degrees of freedom as well as the occurrence
of a phase factor. This results in less local optima and eases an accurate reconstruction.

44

5 Conclusion

In this work, an approach was proposed and investigated on how to do QPT on spin glasses
(Ising model included) via time delayed measurements in combination with quantum com-
puting. Therefore, the foundations which are needed for this are explained as well as the
problem with the traditional QPT, as this scales exponentially for increasing system sizes. A
representation was derived how an Ising model and then a spin glass evolution of a time step,
can be described via a quantum circuit. Due to this it was possible to build parametrized
quantum circuits where less parameters need to be reconstructed and which were optimized
to resemble the evolution of the spin glass (Ising model) system, leading to a speed up as
instead of 24n parameters of the χ-matrix only 3n parameters at most need to be recon-
structed. From the parameters of the quantum circuits, the according Hamiltonians then
could be extracted in the end. This optimization was done on data, which consists of initial
states and their evolutions. The machine learning algorithm is fed with the initial states and
then the outcome probabilities are compared with the true probabilities of the evolutions.
For the reconstruction, the time steps of the initial states need to be measured in the σZ

as well as in the σX -basis, due to unwanted symmetries. The proposed algorithm and its
implementation was presented and it could be shown that it is feasible in a relatively low
amount of time on common hardware for system sizes up to 12 qubits. Unfortunately, it
wasn’t possible to test it for more qubits, as the hardware wasn’t capable to do this large
amount of computations. For well chosen configurations, it could also be shown that the
accuracy of the reconstruction is high enough. Also, different loss functions were compared
and it could be found that the KL-divergence loss performed averagely as the best with the
highest accuracy.

5.1 Future work

The algorithm was run on simulated data and therefore only little noise was present in the
data. It would be interesting to see how the algorithm performs on real world data, as this
will be more noisy. Still, it could be shown that, in theory, this algorithm is capable of
performing QPT on spin glasses and therefore should, in theory, also work on real data.
The next step would be to set up an experiment where data according to the evolution of
some spin glass is gathered. Then the algorithm would be run on these data to be analyzed,
and could be improved according to the results.

It would also be interesting to execute this algorithm in a hybrid form, where the quan-
tum circuit is run on a real quantum computer and the optimization part is executed on
a classical computer. This could lead to a significant increase in efficiency and therefore a
decrease in run time, as the classical computer wouldn’t be affected anymore by the large
matrix/vector computations as this will be executed on the quantum computer. As a con-
sequence, larger system sizes could be feasible as well. Unfortunately, quantum computers
aren’t yet developed enough so that sheer runs will already be afflicted by much noise,
making the algorithm unfeasible. Still, this could well be a goal for the future.

45

5 Conclusion

Nevertheless, with regard to the future of quantum computing, the area of QPT will
become more and more important as quantum hardware is improving rapidly and QPT is
used in benchmarking of quantum hardware [TWA+20, BAH+10]. Maybe even a modified
version of the proposed algorithm could be used to benchmark and characterize spin qubits
[VE19], which are used as a foundation for quantum computers.

46

List of Figures

2.1 Lattice with Ising spins (arrow up stands for spin up and arrow down for spin
down) on each site (external magnetic field not shown)[PG20]. 5

2.2 Random spin structure of a spin glass (top) and the ordered of a ferromagnet
(bottom). The arrows represent the direction of the spins, the thick dashed
lines, the interactions between neighboring sites and the thin dashed lines,
the lattice structure. The external magnetic field isn’t shown in this picture
[zur10]. 7

2.3 Quantum circuit representation of eq. (2.14) for the Ising model. The rotation
gates are acting on each qubit seperately, while the entanglementZZ gates act
only qubit n̂ and n’, the other qubits are left untouched. 8

2.4 Quantum circuit representation of eq. (2.14) for spin glasses. The rotation
gates are acting on each qubit seperately, while the entanglementZZ gates act
only qubit n̂ and n’, the other qubits are left untouched. 9

3.1 Code to create the adjacency matrix for a lattice. 12

3.2 Code for the Ising model Hamiltonian. 13

3.3 Code for the data generation. 14

3.4 Code for the Ising model circuit creation. 16

3.5 Code for the loss definition. 17

3.6 Code for the callback definition. 22

3.7 Code for the training function. 23

4.1 J error dependency of loss (KL-divergence) for different number of Qubits
with same ∆t. 31

4.2 h error dependency of loss (KL-divergence) for different number of Qubits
with same ∆t. 32

4.3 Error dependency of loss (KL-divergence) for the same number of Qubits with
different ∆t. 34

4.4 Error dependency of loss (KL-divergence) for the same number of Qubits with
different ∆t. 35

4.5 Different loss functions which were used. The loss functions with the HHH
in the end were used in the first phase, the according loss function without
the HHH in the second phase. 36

4.6 J error dependency of loss (mean squared error) for different number of Qubits
with same ∆t. 37

4.7 h error dependency of loss (mean squared error) for different number of Qubits
with same ∆t. 38

4.8 J error dependency of loss (mean absolute error) for different number of
Qubits with same ∆t. 40

47

List of Figures

4.9 h error dependency of loss (mean absolute error) for different number of
Qubits with same ∆t. 41

4.10 J error dependency of loss (huber loss) for different number of Qubits with
same ∆t. 42

4.11 h error dependency of loss (huber loss) for different number of Qubits with
same ∆t. 43

4.12 Variational quantum circuit for 4 qubits with R ~vn(Θn) representing the gen-
eral rotation gate. 44

48

List of Tables

3.1 Tools used in this thesis. 11
3.2 Used learning rates in dependence of the ∆t and the system size. 20

4.1 The properties of the hardware and the system where the algorithm was run. 25
4.2 The configuration settings for single runs. 26
4.3 Ising: Mean elapsed time for each run of the algorithm, determined according

to 10 samples. 27
4.4 Ising: Mean elapsed time for each run, determined according to 10 samples,

with only the core functions used. Callback and other computations are
excluded. 27

4.5 Ising: Mean elapsed time for each run, determined according to 10 samples of
the algorithm, until an accurate recreation of the parameters is accomplished
with a threshold difference of 0.005 . 28

4.6 Spin glass: Mean elapsed time for each run of the algorithm until an accurate
recreation of the parameters is accomplished. 28

4.7 Spin glass: Mean elapsed time for each run, determined according to 10
samples, with only the core functions used. Callback and other computations
are excluded. 28

4.8 Spin glass: Mean elapsed time for each run, determined according to 10
samples of the algorithm, until an accurate recreation of the parameters is
accomplished with a threshold difference of 0.005 29

49

Bibliography

[ABJ+03] Altepeter, J. B. ; Branning, D. ; Jeffrey, E. ; Wei, T. C. ; Kwiat,
P. G. ; Thew, R. T. ; O’Brien, J. L. ; Nielsen, M. A. ; White, A. G.:
Ancilla-Assisted Quantum Process Tomography. In: Physical Review Letters 90
(2003), May, Nr. 19. http://dx.doi.org/10.1103/physrevlett.90.193601. –
DOI 10.1103/physrevlett.90.193601. – ISSN 1079–7114

[BAH+10] Bialczak, R. C. ; Ansmann, M. ; Hofheinz, M. ; Lucero, E. ; Neeley, M.
; O’Connell, A. D. ; Sank, D. ; Wang, H. ; Wenner, J. ; Steffen, M. ; al.
et: Quantum process tomography of a universal entangling gate implemented
with Josephson phase qubits. In: Nature Physics 6 (2010), Apr, Nr. 6, 409–413.
http://dx.doi.org/10.1038/nphys1639. – DOI 10.1038/nphys1639. – ISSN
1745–2481

[BEKS17] Bezanson, Jeff ; Edelman, Alan ; Karpinski, Stefan ; Shah, Viral B.: Julia:
A Fresh Approach to Numerical Computing. In: SIAM Review 59 (2017), Nr.
1, 65-98. http://dx.doi.org/10.1137/141000671. – DOI 10.1137/141000671

[BLSF19] Benedetti, Marcello ; Lloyd, Erika ; Sack, Stefan ; Fiorentini, Mattia:
Parameterized quantum circuits as machine learning models. In: Quantum Sci-
ence and Technology 4 (2019), Nov, Nr. 4, 043001. http://dx.doi.org/10.1088/
2058-9565/ab4eb5. – DOI 10.1088/2058–9565/ab4eb5. – ISSN 2058–9565

[BMR+19] Bisognin, R. ; Marguerite, A. ; Roussel, B. ; Kumar, M. ; Cabart, C. ;
Chapdelaine, C. ; Mohammad-Djafari, A. ; Berroir, J.-M. ; Bocquillon,
E. ; Plaçais, B. ; al. et: Quantum tomography of electrical currents. In: Nature
Communications 10 (2019), Jul, Nr. 1. http://dx.doi.org/10.1038/s41467-
019-11369-5. – DOI 10.1038/s41467–019–11369–5. – ISSN 2041–1723

[CCG21] Cuvelier, Thibaut ; Combes, Richard ; Gourdin, Eric: Statistically Efficient,
Polynomial Time Algorithms for Combinatorial Semi Bandits. 2021

[Dra20] Dral, Pavlo O.: Quantum Chemistry in the Age of Machine Learning. In: The
Journal of Physical Chemistry Letters 11 (2020), Nr. 6, 2336-2347. http://

dx.doi.org/10.1021/acs.jpclett.9b03664. – DOI 10.1021/acs.jpclett.9b03664.
– PMID: 32125858

[EA75] Edwards, S F. ; Anderson, P W.: Theory of spin glasses. In: Journal of
Physics F: Metal Physics 5 (1975), may, Nr. 5, 965–974. http://dx.doi.org/
10.1088/0305-4608/5/5/017. – DOI 10.1088/0305–4608/5/5/017

[FIM+21] Ferrolho, Henrique ; Ivan, Vladimir ; Merkt, Wolfgang ; Havoutis, Ioannis
; Vijayakumar, Sethu: Inverse Dynamics vs. Forward Dynamics in Direct
Transcription Formulations for Trajectory Optimization. 2021

51

http://dx.doi.org/10.1103/physrevlett.90.193601
http://dx.doi.org/10.1038/nphys1639
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.1038/s41467-019-11369-5
http://dx.doi.org/10.1038/s41467-019-11369-5
http://dx.doi.org/10.1021/acs.jpclett.9b03664
http://dx.doi.org/10.1021/acs.jpclett.9b03664
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1088/0305-4608/5/5/017

Bibliography

[Gal99] In: Gallavotti, Giovanni: Coexistence of Phases/Exactly Soluble Models.
Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. – ISBN 978–3–662–03952–
6, 175–231

[GM21] Gutiérrez, Irene L. ; Mendl, Christian B.: Real time evolution with neural-
network quantum states. 2021

[GSW20] Greener, Joe G. ; Selvaraj, Joel ; Ward, Ben J.: BioStructures.jl: read,
write and manipulate macromolecular structures in Julia. In: Bioinformatics 36
(2020), 05, Nr. 14, 4206-4207. http://dx.doi.org/10.1093/bioinformatics/
btaa502. – DOI 10.1093/bioinformatics/btaa502. – ISSN 1367–4803

[Hub64] Huber, Peter J.: Robust Estimation of a Location Parameter. In: The Annals
of Mathematical Statistics 35 (1964), Nr. 1, 73 – 101. http://dx.doi.org/
10.1214/aoms/1177703732. – DOI 10.1214/aoms/1177703732

[Hus17] Hush, Michael R.: Machine learning for quantum physics. In: Science 355
(2017), Nr. 6325, 580–580. http://dx.doi.org/10.1126/science.aam6564. –
DOI 10.1126/science.aam6564. – ISSN 0036–8075

[ISF+18] Innes, Michael ; Saba, Elliot ; Fischer, Keno ; Gandhi, Dhairya ; Rudilosso,
Marco C. ; Joy, Neethu M. ; Karmali, Tejan ; Pal, Avik ; Shah, Viral:
Fashionable Modelling with Flux. In: CoRR abs/1811.01457 (2018). https:

//arxiv.org/abs/1811.01457

[Isi25] Ising, Ernst: Beitrag zur Theorie des Ferromagnetismus. In: Zeitschrift für
Physik 31 (1925), 253–258. http://dx.doi.org/10.1007/BF02980577. – DOI
10.1007/BF02980577

[KB17] Kingma, Diederik P. ; Ba, Jimmy: Adam: A Method for Stochastic Optimiza-
tion. 2017

[KC01] Kraus, B. ; Cirac, J. I.: Optimal creation of entanglement using a two-qubit
gate. In: Phys. Rev. A 63 (2001), May, 062309. http://dx.doi.org/10.1103/
PhysRevA.63.062309. – DOI 10.1103/PhysRevA.63.062309

[KL51] Kullback, S. ; Leibler, R. A.: On Information and Sufficiency. In: The
Annals of Mathematical Statistics 22 (1951), Nr. 1, 79 – 86. http://dx.doi.org/
10.1214/aoms/1177729694. – DOI 10.1214/aoms/1177729694

[NC10] Nielsen, Michael A. ; Chuang, Isaac L.: Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge University Press,
2010. http://dx.doi.org/10.1017/CBO9780511976667. http://dx.doi.org/
10.1017/CBO9780511976667

[OPG+04] O’Brien, J. L. ; Pryde, G. J. ; Gilchrist, A. ; James, D. F. V. ; Lang-
ford, N. K. ; Ralph, T. C. ; White, A. G.: Quantum Process Tomogra-
phy of a Controlled-NOT Gate. In: Phys. Rev. Lett. 93 (2004), Aug, 080502.
http://dx.doi.org/10.1103/PhysRevLett.93.080502. – DOI 10.1103/Phys-
RevLett.93.080502

52

http://dx.doi.org/10.1093/bioinformatics/btaa502
http://dx.doi.org/10.1093/bioinformatics/btaa502
http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.1126/science.aam6564
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1103/PhysRevA.63.062309
http://dx.doi.org/10.1103/PhysRevA.63.062309
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1103/PhysRevLett.93.080502

Bibliography

[PG20] Physik Gruppe, Tohoku U. s.: Two dimensional ising model.
http://www.cmpt.phys.tohoku.ac.jp/open-campus/2020/ising/Ising2D.png.
Version: 2020

[Pre18] Preskill, John: Quantum Computing in the NISQ era and beyond. In: Quan-
tum 2 (2018), Aug, 79. http://dx.doi.org/10.22331/q-2018-08-06-79. – DOI
10.22331/q–2018–08–06–79. – ISSN 2521–327X

[RKS+06] Riebe, M. ; Kim, K. ; Schindler, P. ; Monz, T. ; Schmidt, P. O. ; Körber,
T. K. ; Hänsel, W. ; Häffner, H. ; Roos, C. F. ; Blatt, R.: Process
Tomography of Ion Trap Quantum Gates. In: Phys. Rev. Lett. 97 (2006),
Dec, 220407. http://dx.doi.org/10.1103/PhysRevLett.97.220407. – DOI
10.1103/PhysRevLett.97.220407

[Sch07] In: Die Prinzipien der kanonischen Mechanik. Berlin, Heidelberg : Springer
Berlin Heidelberg, 2007. – ISBN 978–3–540–71379–1, 79–169

[SIC13] In: Suzuki, Sei ; Inoue, Jun-ichi ; Chakrabarti, Bikas K.: Introduction.
Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. – ISBN 978–3–642–33039–
1, 1–11

[Sim15] Simoncini, Valeria: Krylov Subspaces. In: Higham, Nicholas J. (Hrsg.) ; Den-
nis, Mark R. (Hrsg.) ; Glendinning, Paul (Hrsg.) ; Martin, Paul A. (Hrsg.) ;
Santosa, Fadil (Hrsg.) ; Tanner, Jared (Hrsg.): The Princeton Companion to
Applied Mathematics. Princeton, NJ, USA : Princeton University Press, 2015,
S. 113–114

[SLHS21] Shi, Naichen ; Li, Dawei ; Hong, Mingyi ; Sun, Ruoyu: RMSprop converges
with proper hyper-parameter. In: International Conference on Learning Repre-
sentations, 2021

[TWA+20] Torlai, Giacomo ; Wood, Christopher J. ; Acharya, Atithi ; Carleo,
Giuseppe ; Carrasquilla, Juan ; Aolita, Leandro: Quantum process to-
mography with unsupervised learning and tensor networks. 2020

[VE19] Vandersypen, Lieven M. K. ; Eriksson, Mark A.: Quantum computing
with semiconductor spins. In: Physics Today 72 (2019), Nr. 8, 38-45. http:

//dx.doi.org/10.1063/PT.3.4270. – DOI 10.1063/PT.3.4270

[zur10] zureks: Spin glass model. https://commons.wikimedia.org/wiki/File:
Spin glass by Zureks.svg#/media/File:Spin glass by Zureks.svg.
Version: 2010

53

http://www.cmpt.phys.tohoku.ac.jp/open-campus/2020/ising/Ising2D.png
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1103/PhysRevLett.97.220407
http://dx.doi.org/10.1063/PT.3.4270
http://dx.doi.org/10.1063/PT.3.4270
https://commons.wikimedia.org/wiki/File:Spin_glass_by_Zureks.svg#/media/File:Spin_glass_by_Zureks.svg
https://commons.wikimedia.org/wiki/File:Spin_glass_by_Zureks.svg#/media/File:Spin_glass_by_Zureks.svg

	Introduction
	Foundation
	Quantum process tomography
	Hamiltonian
	For the Ising Model
	For spin glasses

	Trotterized circuit

	Architecture and Technical setup
	Hamiltonian generation
	For the Ising model
	For spin glasses

	Data generation
	Setup with Flux
	Training circuit
	Loss function
	Optimizer
	Callback function while training
	Training

	Application and Results
	Runtime
	For the Ising model
	For spin glasses

	Reconstruction fidelity
	Different loss functions
	Different circuits for training

	Conclusion
	Future work

	List of Figures
	List of Tables
	Bibliography

