

Technical University of Munich

Department of Informatics

Bachelor's Thesis in Informatics

Performance portability and evaluation of
heterogeneous components of SeisSol

targeted to AMD GPUs

Simon Dominick

Technical University of Munich

Department of Informatics

Bachelor's Thesis in Informatics

Performance portability and evaluation of
heterogeneous components of SeisSol

targeted to AMD GPUs

Leistungsübertragbarkeit und Beurteilung
der verschiedenen Komponenten von

SeisSol für AMD Grafikkarten

Author: Simon Dominick

Supervisor: Dr. Michael Bader

Advisor: Ravil Dorozhinskii

Submission Date: 15.04.2021

I confirm that this bachelor's thesis is my own work and I have documented all sources

and material used.

Ich versichere hiermit, dass ich die von mir eingereichte Bachelorarbeit selbstständig

verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

III

Abstract

GPUs (Graphics processing units) are commonly used in high-performance computing

to improve the execution time of parallelizable programs. SeisSol, as such a program,

can currently only use GPUs manufactured by NVIDIA. In this thesis, we extend the

GPU-related libraries to work additionally on GPUs manufactured by AMD. We examine

the performance of the extended libraries on the AMD Radeon Instinct MI50 using the

Roofline model and compare it to results measured on the NVIDIA Tesla V100.

Furthermore, we investigate using multiple AMD GPUs, which communicate via

OpenMPI. The Radeon Instinct MI50 achieved a good performance but was slower than

the NVIDIA GPU. We detected a problem in the communication between the GPUs,

which is restricted to collective communication. This does not affect SeisSol since it uses

mainly point-to-point communication.

IV

Contents

Abstract .. III

1. Introduction ... 1

1.1. Related Work ... 1

1.2. Structure .. 2

2. Basics .. 3

2.1. Hardware .. 3

2.1.1. NVIDIA .. 3

2.1.2. AMD .. 5

2.1.3. Comparison of the Architectures ... 6

2.2. API .. 8

2.2.1. CUDA .. 9

2.2.2. HIP .. 10

2.3. SeisSol ... 12

2.4. OpenMPI .. 14

2.5. UCX .. 15

3. Implementation ... 18

3.1. The Device library ... 18

3.1.1. Consideration of using HIP .. 18

3.1.2. Design ... 19

3.1.3. Functionality .. 21

3.2. GemmForge ... 21

3.2.1. The Architecture class ... 22

3.2.2. Architecture lexicons ... 23

4. Evaluation ... 24

4.1. Roofline Model .. 24

4.1.1. Theoretical background ... 24

4.1.2. Application to AMDs Radeon Instinct MI50 ... 26

4.1.3. Comparison to NVIDIAs Tesla V100 ... 31

4.2. Jacobi Solver ... 32

4.2.1. The Math ... 32

4.2.2. The CPU implementation .. 33

4.2.3 The GPU port ………………………………………………………………………………...... 34

4.2.4. Test Results .. 35

5. Conclusion and Future Work ... 43

V

List of Figures ... 44

List of Tables ... 45

Bibliography .. 46

1

1. Introduction

Up until now, GPUs (Graphics processing unit) manufactured by AMD played no

significant role in the architecture of high-performance computers. In the list of the 500

most powerful supercomputers published in November 2020 by TOP500, only one

system uses AMD GPUs [1]. About 130 other systems incorporating GPUs feature

NVIDIA products [1]. But as two new supercomputers featuring AMD GPUs are planned,

which are going to achieve more than 1 𝐸𝑋𝐴𝐹𝐿𝑂𝑃 = 1018 𝐹𝐿𝑂𝑃 per second [2], namely

the Frontier [3] and the El Capitan system [4], GPUs developed by AMD may play a

bigger role in the future of high-performance computing. Thus, the ability to run programs

using AMD GPUs for accelerating computation opens the possibility to deploy these

programs to upcoming systems. As the simulation of natural phenomena is a traditional

high-performance computing field, the software package SeisSol represents a candidate

for introducing AMD GPU support via the HIP API. The software is used for simulating

earthquake dynamics and already capable of using NVIDIA GPUs for accelerated

computation. To keep the software package flexible this thesis does not simply port

SeisSol to HIP. Instead, the two libraries Device and GemmForge, which provide GPU-

related functionality for SeisSol, get extended to support AMD GPUs while retaining

compatibility for NVIDIA GPUs.

1.1. Related Work

A directly comparable work does not exist, since this thesis describes the first

implementation of SeisSol using AMD GPUs for the computation. But [5] represents the

direct predecessor of this thesis. It describes the implementation of the GPU-related

features for SeisSol targeting NVIDIA GPUs and both libraries extended in this thesis

were created in the context of it. Thus, this work serves as the origin of this thesis. Apart

from SeisSol several HPC programs have already been ported for AMD GPUs, like [6],

[7], and [8]. Whereas [7] follows a similar approach as this thesis by abstracting the GPU-

related API calls with an additional layer, [6] defines the functionality, which can be used

for both GPUs in a common folder. The platform-specific implementation is realized in a

separate folder for each platform, which interfaces the common folder. For usage of the

different platforms, each platform gets explicitly accessed, whereas in our approach an

API manages the access to the different platforms.

2

1.2. Structure

This thesis is structured as followed: In the following chapter 2, background knowledge

about GPUs, the software SeisSol, and important libraries used in the thesis gets

provided. Chapter 3 introduces the two libraries which provide GPU functionality for

SeisSol. Furthermore, performed changes and additions to support AMD GPUs get

depicted. These changes get evaluated in chapter 4, where the functionality of both

libraries on both platforms gets verified. Additionally, important characteristics of the

used AMD GPU for SeisSol get examined via special benchmark tests. The results of

those tests get compared to results achieved with a comparable NVIDIA GPU model.

Additionally, the usage of multiple GPUs via MPI gets examined. Chapter 5 finalizes the

work by concluding the performed changes.

3

2. Basics

This chapter covers required background knowledge about the used GPUs and APIs

provided by the corresponding manufacturer. Furthermore, the theoretical background

of the target software SeisSol and two libraries important for multi-node computing get

illuminated.

2.1. Hardware

Since a major computational part of SeisSol consists of matrix manipulation, as

described later, the ability to simultaneously execute the same operation multiple times

is more important than a fast execution of a single operation. This translates into a

hardware requirement for the capability of parallelism instead of single-thread

performance. This demand is met by GPUs, which contain thousands of moderately fast

cores, in contrast to CPUs (Central processing unit), which offer few, fast cores. Since

this thesis focuses on porting the GPU-dependent parts of SeisSol to a new

manufacturer architecture, namely AMD, there are two manufacturer-specific hardware

architectures relevant to the thesis. The next two chapters describe the hardware

architectures of the two mainly used GPU models.

2.1.1. NVIDIA

Up until now, SeisSol used NVIDIA GPUs [5] for the computation of the matrix

manipulations. Therefore, an NVIDIA GPU is used as a comparison to the new

implementation in the thesis. The model used is the NVIDIA Tesla V100 SXM2 16 GB

released in 2019, which contains the Volta GV100 architecture. It features 16 GB HBM2

memory with a bandwidth of about 1133 GB/s [9]. The clock speed ranges from 1245

MHz to 1597 MHz if boosted [9]. The Tesla V100 SXM2 models allow a connection

between the GPU and other processors with the NVLink technology [10]. NVLink

provides higher bandwidth for data exchange between the processors than the

expansion bus standard. The Volta architecture supports up to six bidirectional links,

where each link delivers up to 25 GB/s [10]. For GPU-to-GPU bidirectional

communication up to 300 GB/s by using all six links [10] can be achieved in contrast to

32 GB/s provided by PCIe 3.0 [11]. NVLink also allows the connection of a GPU to a

CPU, if the CPU supports NVLink. The achievable bandwidth is dependent on the

number of links supported by the CPU. For example, IBMs POWER9 CPU supports up

to six links, thus a bidirectional connection with a bandwidth of 300 GB/s to one Volta

GPU is possible [12]. The GV100 design features as stated in [10] six GPCs (GPU

4

Processing Cluster), each of those incorporating seven TPCs (Texture Processing

Cluster). A TPC combines two SMs (Streaming Multiprocessor), resulting theoretically in

6 𝐺𝐶𝑃𝑠 ∗ 7 𝑇𝑃𝐶𝑠 ∗ 2 𝑆𝑀𝑠 = 84 𝑆𝑀𝑠, but in the Tesla V100, only 80 SMs are activated.

One SM houses 64 FP32 cores for single-precision and 32 FP64 cores for double-

precision floating-point operations. For integer operations, 64 INT32 cores are included.

Furthermore, the architecture has 8 Tensor cores per SM, commonly used for neural

networks. A Tensor core computes the operation 𝐷 = 𝐴 ∗ 𝐵 + 𝐶 , where 𝐴,𝐵,𝐶 and 𝐷 are

matrices with a dimension of 4𝑥4. All the cores of an SM are distributed evenly between

four processing blocks. Each block has its warp scheduler, dispatch unit, L0 instruction

cache, and a 64 KB-sized register file for storing data needed for the computation.

Additionally, each SM has 128 KB of L1 data cache, which can be used for data sharing

between the cores, one L1 instruction cache, and four texture units. The 6144 KB-sized

L2 cache is accessible by all SMs and used for instructions and data, in contrast to the

L0 and L1 caches.

For the execution of instructions, the processing block uses a specialized version of the

SIMD (Single instruction multiple data) model [13] called SIMT (Single instruction

multiple threads) [10]. The SIMD model describes a computational system where one

instruction, for example, add or multiply, gets executed on a set of data. In contrast

instructions in multicore CPUs get executed on a single piece of data by the single cores

(SISD - single instruction single data), which are the CPU equivalent to processing

blocks. The SIMT model refines the SIMD model by executing the instruction with one

thread per data piece. In contrast, a vector processor satisfies the SIMD model, but not

the SIMT model since a single thread executes the instruction for a vector of data. The

following figure depicts these three models:

Figure 1: The SISD (left), SIMD (middle) and SIMT (right) model

As described in [10], the GV100 bundles 32 threads into a warp, where every thread

executes the same operation simultaneously. To realize branch execution, for example,

an if-else statement, each warp has an active mask, determining which thread should be

executed. Nonactive threads do not perform any work during the execution step of the

warp. Furthermore, the Volta architecture provides a program counter and a call stack

for each thread in the warp, in contrast to one program counter and call stack for the

5

whole warp. This allows for synchronization in smaller than warp thread sizes.

Furthermore, it enables a geared execution of branch instructions, meaning that the warp

does not have to execute the whole branch at once, but can switch freely between the

instructions of multiple branches. Additionally, this technique allows for communication

between the threads during branch execution, which would not be possible without the

multiple program counters. With only one program counter and call stack, the warp can

only synchronize on the warp level, since only the state of the whole warp is known.

Each SM can handle up to 64 active warps, where the warps get divided evenly [14] onto

the warp schedulers of the four processing blocks. For the instructions mainly used by

SeisSol, namely, float multiplication for the matrices and integer arithmetic for pointers

and the control variables of the loops, the Volta architecture needs 4 cycles to complete

the execution on a whole warp [14]. Due to the separate INT32 and FP32 cores, a Volta

SM can execute integer and floating-point arithmetic in parallel [10]. This allows

simultaneous execution of the instructions nested in a loop and updating the control

variables for the next step. To hide latency generated by memory transactions and

control flow operations, the warp scheduler can choose another warp to be issued to the

processing block [15].

2.1.2. AMD

The AMD GPU used for this thesis is the AMD Radeon Instinct MI50 Accelerator released

in 2018. It has 32 GB of HBM2 memory width a bandwidth of 1024 GB/s, the clock speed

ranges from 1200 up to boosted 1746 MHz [16]. It is connected via PCIe 4.0 x16 lanes,

which allow about 64 GB/s [17] bandwidth between GPU and main memory. Additionally,

it includes the AMD Infinity Fabric technology, which enables up to 184 GB/s direct GPU

to GPU communication in addition to the PCIe connection [17]. The Radeon Instinct MI50

is based on the GCN 5.1 architecture, codenamed Vega. It consists of four shader

engines housing 15 CUs (Compute Unit) and one workload manager per shader engine

[18]. Each CU contains one SU (Scalar Unit) and 4 VUs (Vector Units) [19]. The SU can

execute exactly one integer instruction in SISD fashion, whereas the VUs, which are 16

lanes wide SIMD processing units, can execute integer and floating-point instructions on

16 work items simultaneously [18]. The CU holds 12.5 KB of SGPR (Scalar General-

Purpose Register) [18] organized in 32-bit wide entries [19]. For each VU, 64 KB VGPR

(Vector General-Purpose Register) are available [18]. Like the SGPR the VGPR is

organized in 32-bit entries [19], which can be combined for representing larger values.

Furthermore, each CU holds a 16 KB-sized L1 cache, and a 64 KB storage called LDS

(Local Data Share) [18]. The LDS is intended for data sharing between VUs [19]. In

contrast, the L1 cache is intended for moving data into and computed results out of the

CU [19]. The L1 cache of each CU is connected to the 4 MB sized L2 cache [16] shared

6

by all CUs of the GPU and can move data directly between the VGPRs or the LDS and

the memory of the GPU [19]. For data sharing between the single CUs, the GPU provides

the 64 KB sized GDS (Global Data Share) [19]. For the controlling and distributing of the

workload, each CU contains one scheduler [18].

As described in [18], the AMD GPU executes the program in the SIMD fashion, where it

groups 64 work items, the AMD terminology for threads, into a wavefront, the AMD

equivalent for NVIDIAs warp. Logically all the 64 work items get executed simultaneously

on a single VU. Branch divergence is represented by a 64-bit wide execute mask, one

bit for each lane, and a 1-bit flag, which indicates if all entries in the mask have the value

zero. If the entry in the mask is zero for a certain lane, this lane does not execute any

instruction during the execution step of the whole VU [19].

Each VU can hold up to 10 wavefronts in its instruction buffer, making 40 in total for a

CU [18]. Since a VU contains only 16 lanes, a wavefront gets executed in a minimum of

four steps to complete the instruction for all 64 work items [18]. If a wavefront creates

delay, by waiting for a memory transfer, for example, the VU can be switched to another

wavefront to hide the latency. If all work items of a wavefront execute the same integer

arithmetic instruction, the instruction gets distributed to the SU of the CU. The scheduler

of the CU chooses every clock cycle according to the round-robin method another VU to

work on [18]. The round-robin method simply divides the time evenly among all VUs.

During scheduling, the scheduler can only issue one instruction per wavefront and

maximal 5 wavefronts at once. Furthermore, the instructions must differ in their category,

for example, SU or VU or memory instructions [18].

2.1.3. Comparison of the Architectures

The comparison in this section is based on the hardware specifications, whereas a

comparison of the GPUs based on measurements is included in the evaluation chapter.

Table 1 lists easily comparable hardware specifications. For the deeper comparison of

the 2 GPUs, this section focuses on the SM and CU. The VUs of a CU are comparable

with the processing blocks of an SM since both have the capacity for working on 16

threads or work items simultaneously and both, the SM and CU house four of the

respective components.

As an advantage, the SM features a scheduler for every processing block, whereas the

CU has only one scheduler for all four VUs. A processing block gets instantly the next

available warp scheduled after it completes the execution of a warp. The scheduler of

the CU however works every clock cycle on a different VU. If an instruction takes 𝑛

cycles, where 𝑛 % 4 ≠ 0 or no wavefront is available for execution during the scheduling,

the VU stands still for 3 cycles until the scheduler is able to schedule on this VU again,

even if a wavefront would be available in the meantime. Thus, a CU can have an idle VU

7

although a wavefront would be ready for execution, whereas the SM can put a

processing block instantly to work if there are warps available.

 Tesla V100 Radeon Instinct MI50

Memory Size 16 GB 32 GB

Memory Type HBM2 HBM2

Bandwidth 1133 GB/s 1024 GB/s

Number of SMs (NVIDIA)/CUs (AMD) 80 60

FP32 Cores per SM (NVIDIA)

Lanes per CU (AMD)

 64 64

Total number of FP32 cores (NVIDIA)

Total number of VU lanes (AMD)

 5120 3840

Shared Memory per SM (NVIDIA)

LDS per CU (AMD)

 96 KB 64 KB

Register File per SM (NVIDIA)

VGPR per CU (AMD)

 256 KB 256 KB

Boosted clock speed 1597 MHz 1746 MHz

Theoretical FP32 performance

(based on boosted clock speed)

 15.7 TFLOPs 13.41 TFLOPs

Table 1: Comparison of hardware specifications

Another advantage of the SM is the set of separate INT32 cores in every processing

block. They enable the parallel execution of FP32 and INT32 instructions for warps. In

contrast, the CU only incorporates the SU, which is shared between all four VUs.

Furthermore, the SU can only execute on one piece of data (SISD) in contrast to the 16

INT32 cores, which can work on a set of data (SIMD). The SU is only used if all 64 work

items of a wavefront perform the same operation with the same parameters and if a

wavefront of a VU already occupies the SU, wavefronts residing on the other VUs cannot

use the SU. Hence the SM can execute a floating-point and integer instruction

simultaneously for every processing block, whereas the CU can only execute both

operations if the SU is not occupied and the integer instruction is the same for the whole

wavefront.

The architectures differ in the grouping size of work items or threads. Both, the CU and

SM have the capacity for four simultaneously executed groups. But NVIDIA bundles 32

into a warp and AMD 64 into a wavefront. This is not automatically an advantage for one

of the architectures. If a program cannot utilize the size of 64 work items, the VU still

executes all 64 work items and unused lanes perform no useful work. But if the capacity

is used, the VU may perform more work at once than a processing block. This is

dependent on the executed instruction: For example, the VU needs, as the processing

block, four cycles for the FP32 FMA (Fused Multiply-Add), but it can process the doubled

8

amount of work items or threads than its NVIDIA counterpart. This leads to another,

closely related aspect. The CU can handle more threads than an SM, namely 2560 to

2048, since the CU can hold up to 40 wavefronts with 64 threads each in its buffers, the

SM can hold 64 warps with 32 threads each. But due to the grouping size of a wavefront,

this does not automatically translate to an advantage of the AMD GPU. If the program

cannot utilize all 64 slots, many work items remain empty.

Additionally, the SM houses 8 Tensor cores, whereas the CU has no comparable

counterpart. But for SeisSol the Tensor cores pose no advantage because it employs an

algorithm optimized for the used matrix sizes, which does not use Tensor cores. The

used algorithm gets explained in chapter 3.2.

Apart from the SMs and CUs the Tesla V100 has another advantage over the Radeon

Instinct MI50. The Tesla V100 can be connected to the CPU via NVLink, whereas the

Radeon Instinct MI50 is connected via PCIe 4.0. However, the connection to the CPU

via NVLink is not mandatory, it can be used only for connecting GPUs, like the Infinity

Fabric of AMD. But NVLink offers, depending on the number of used links, up to 300

GB/s, Infinity Fabric only 184 GB/s. The PCIe 4.0 connection to the CPU of the Radeon

Instinct MI50 is also slower than NVLink with 64 GB/s, but if the Tesla V100 is not

connected via NVLink, it only offers 32 GB/s with PCIe 3.0.

2.2. API

Unlike in the early days of scientific GPU programming, where researchers had only

access to the GPU via graphical APIs and formulated their calculations as a shader

program in shading languages [20], today both NVIDIA and AMD provide APIs especially

designed for non-graphics related usage of GPUs. These are usable by more common

programming languages, such as C++. Both manufacturers follow the same basic

concepts: To distinguish between the CPU and GPU scope, the CPU scope is called the

host side, and the GPU scope the device side. Consequently, functions running on the

CPU are called host functions and functions running on the GPU device functions. A

special case of device functions is the kernel functions. They are callable by the host

side, in contrast to non-kernel device functions, which are only callable by the device

side. Furthermore, the kernel functions represent the entry point for the GPU

computation. Like the functions, the memory also gets differentiated between host

memory and device memory.

The basic structure of a program invoking a kernel function for GPU computation is the

same for both APIs: Firstly, the required memory gets allocated on the GPU and the

required data gets transferred. Then the kernel function will be called and executed. After

the execution, the results get copied back to the CPU and the allocated device memory

9

gets deallocated. But not every algorithm profits by running on the GPU. The GPU clock

speed is much slower than a CPU clock speed, but the GPU excels in parallel

processing. Furthermore, the copying of the data creates latency, which is reducible to

a certain amount by concurrent copying and executing, which is supported by the GPUs.

Thus, only heavy parallelable algorithms, for example, gemms (General Matrix

Multiplication), can profit when processed on GPUs.

2.2.1. CUDA

CUDA (Compute Unified Device Architecture) [21] is the name of the API provided by

NVIDIA. It was released in 2006 as a library for C and is now available for multiple

programming languages on Windows and Linux. It provides language extensions for

marking functions and variables for GPU or CPU usage and functions for controlling the

data and program flow. Files using the CUDA-specific features need to include the

cuda.h file and to be compiled by the nvcc compiler. The code snippet below shows a

simple CUDA C++ program to demonstrate important CUDA features. The program

sums up two vectors and stores the result in a separate vector.

1. #include <cuda.h>
2.
3. #define SIZE 100
4.
5. __global__ void matrixMultiplicationKernel(int* a, int* b, int* c){
6. int tid = threadIdx.x + blockIdx.x * blockDim.x;
7. while(tid < SIZE){
8. c[tid] = a[tid] + b[tid];
9. tid += blockDim.x * gridDim.x;
10. }
11. }
12.
13. int main(){
14.
15. int host_a[SIZE], host_b[SIZE], host_c[SIZE];
16.
17. for(int i = 0; i < SIZE; i++){
18. host_a[i] = i;
19. host_b[i] = 2 * i;
20. }
21.
22. int *dev_a, *dev_b, *dev_c;
23.
24. cudaMalloc(&dev_a, SIZE * sizeof(int));
25. cudaMalloc(&dev_b, SIZE * sizeof(int));
26. cudaMalloc(&dev_c, SIZE * sizeof(int));
27.
28. cudaMemcpy(dev_a, host_a, SIZE * sizeof(int), cudaMemcpyHostToDevice);
29. cudaMemcpy(dev_b, host_b, SIZE * sizeof(int), cudaMemcpyHostToDevice);
30.
31. matrixMultiplicationKernel<<<32,32>>>(dev_a, dev_b, dev_c);
32.
33. cudaMemcpy(host_c, dev_c, SIZE * sizeof(int), cudaMemcpyDeviceToHost);
34.
35. cudaFree(dev_a);
36. cudaFree(dev_b);
37. cudaFree(dev_c);

10

38. return 0;
39.
40. }

Line 1 contains the include statement for the CUDA library. In lines 5 – 11 the kernel

function gets defined. It is marked by the __global__ keyword. The GPU runs the kernel

function in blocks of threads. The blocks get assigned to an SM and the threads are

distributed onto warps, where each processing block executes the kernel function. To

coordinate the computation, each thread and block get numbered. The programmer can

access these indices by the threadId and blockId variables provided by cuda.h as shown

in line 6. For example, the fifth thread of the second block works on the index

4 + 1 ∗ 32 = 36. In case the problem dimension is bigger than the amount of called

threads, the index tid gets incremented in line 9. The maximum number of threads is

determined by the hardware limits of the GPU. In lines 24 - 26 the memory on the GPU

gets allocated by the cudaMalloc function and the needed data gets transferred in lines

28 – 29 using the cudaMemcpy function. Both functions need the size of the data, SIZE *

sizeof(int), and the copy function needs additional information about the direction of the

transfer. In this case, the copy goes from the host to the device, represented by

cudaMemcpyHostToDevice. In line 31 the kernel function gets launched by the CPU, marked

by the <<<32,32>>> expression after the function name. The first number determines the

number of launched blocks, the second the number of threads per block. After the

launch, the resulting data gets copied back in line 33, this time the direction is

cudaMemcpyDeviceToHost, and the memory on the GPU gets deallocated in lines 35 – 37

via cudaFree. Apart from this simple example, the CUDA library offers more functionality

like synchronization of threads or streams, which goes beyond the scope of the thesis.

2.2.2. HIP

AMD released its API HIP (Heterogeneous-compute Interface for Portability) [18] in

2016. It currently is only available for Linux and C++ but support for Fortran is in

development [18]. It offers features similar to CUDA. The code snippet below shows the

same program as in the CUDA section, but this time written with HIP instead of CUDA.

Since HIP was designed to enable an easy transition from CUDA to HIP the resemblance

of HIP to CUDA is apparent. The HIP function calls are syntactically like the CUDA

versions except for hip in front instead of cuda. Their functionality is also the same, as the

syntactical similarity indicates. Hence only differences aside from the cuda to hip

transition require additional explanation.

11

1. #include "hip/hip_runtime.h"
2.
3. #define SIZE 100
4.
5. __global__ void matrixMultiplicationKernel(int* a, int* b, int* c){
6. int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
7. while(tid < SIZE){
8. c[tid] = a[tid] + b[tid];
9. tid += blockDim.x * gridDim.x;
10. }
11. }
12.
13. int main(){
14.
15. int host_a[SIZE], host_b[SIZE], host_c[SIZE];
16.
17. for(int i = 0; i < SIZE; i++){
18. host_a[i] = i;
19. host_b[i] = 2 * i;
20. }
21.
22. int *dev_a, *dev_b, *dev_c;
23.
24. hipMalloc(&dev_a, SIZE * sizeof(int));
25. hipMalloc(&dev_b, SIZE * sizeof(int));
26. hipMalloc(&dev_c, SIZE * sizeof(int));
27.
28. hipMemcpy(dev_a, host_a, SIZE * sizeof(int), hipMemcpyHostToDevice);
29. hipMemcpy(dev_b, host_b, SIZE * sizeof(int), hipMemcpyHostToDevice);
30.
31. hipLaunchKernelGGL(matrixMultiplicationKernel, 32, 32,
32. 0, 0, dev_a, dev_b, dev_c);
33.
34. hipMemcpy(host_c, dev_c, SIZE * sizeof(int), hipMemcpyDeviceToHost);
35.
36. hipFree(dev_a);
37. hipFree(dev_b);
38. hipFree(dev_c);
39. return 0;
40.
41. }

One main difference is the include statement in line 1, here the HIP runtime needs to be

included. The only difference in the kernel function is the nomenclature of the thread and

block IDs in line 6, but they work like the CUDA variant. A more distinct difference is the

launch call of the kernel function in lines 31 – 32. It is launched by the hipLaunchKernelGGL

macro, which takes the function name and the launch dimensions (blocks and threads)

as the first arguments. The following two arguments are not important for the example,

they specify the amount of additional shared memory required by the kernel and the

stream ID it should run into, where zero corresponds to the default stream. The remaining

arguments are the function parameters for the kernel function. The kernel function gets

executed in a CU, where the threads of the blocks get organized into wavefronts and

distributed to the VUs. Like NVIDIA AMD has a hardware-dependent limit for the number

of threads launched by a kernel.

The HIP environment offers command-line tools for an automatic port from CUDA to HIP

code: hipify-perl and hipifiy-clang. The first tool is faster, but the programmer may

12

have to port more code manually. The second one requires, as the name indicates, an

installation of the clang compiler, but works more precisely and generates additional

information like warnings about the port procedure [18].

Furthermore, HIP code can be compiled for NVIDIA GPUs with the nvcc compiler. The

HIP compiler hipcc invokes depending on the platform the nvcc compiler for CUDA or

the hip-clang compiler for AMD GPUs. To realize the multiplatform support in the code

the hip_runtime.h header itself includes depending on the platform either a separate

header for HIP or CUDA. The CUDA header includes the actual cuda.h header and

several other headers, that contain macros and function definitions that redirect the HIP

library calls to CUDA calls, for example, hipMalloc to cudaMalloc. The HIP-specific header

contains the actual code for the AMD platform. Currently HIP supports not all CUDA

features, a list of the supported features can be found in the documentation of HIP. To

execute a program including HIP on an AMD GPU an installation of the ROCm1 open-

source software platform is required.

2.3. SeisSol

SeisSol is software for simulating earthquakes. Its mathematical model solves the elastic

wave equation:

∂Q

∂t
+A

∂Q

∂x
+B

∂Q

∂y
+C

∂Q

∂z
=0

by a combination of the discontinuous Galerkin (DG) and the arbitrary high-order

derivatives (ADER) method as described in [22]. The elastic wave equation is dependent

on time and space, where the DG method discretizes it in the space and the ADER

scheme in the time domain resulting in a discrete model. Space dependent matrices 𝐴,

𝐵, and 𝐶 represent the physical properties of the represented material and Q is a vector

of unknowns, namely stress and velocity components. For the simulation, the simulated

area gets divided into a mesh of tetrahedrons and advances in timesteps, computing the

changes in the tetrahedrons at each timestep. The combination of all tetrahedrons

represents the simulation of the whole area. The model allows different granularity in the

mesh represented by tetrahedrons of different sizes throughout the domain [22]. A less

important area of the simulation can be represented by bigger tetrahedrons, thus

reducing the number of tetrahedrons, and needed computation. For a similar granularity

in time, SeisSol allows for different time stepping in the tetrahedrons called local time-

stepping (LTS) as described in [23]. Each tetrahedron stores its time step ∆𝑡 ∈ ℕ+ and

current time 𝑡 and may only update, if its 𝑡 + ∆𝑡 is smaller than the 𝑡 + ∆𝑡 of its neighbors.

1 https://rocmdocs.amd.com/en/latest/index.html#

13

Due to that tetrahedrons with lower importance can be set to bigger time steps thus

reducing the amount of the total time steps. If LTS is not applied, all tetrahedrons must

match the time step of the tetrahedron needing the highest accuracy, i.e., smallest step

size [24], resulting in more timesteps and thus needed computation.

For the computation of the updates in the tetrahedrons, the solution for the vector of

unknowns 𝑄 gets approximated by a polynomial represented by a time-dependent matrix

containing the coefficients of the polynomial called degrees of freedom and a set of

space-dependent, orthogonal basis functions of degree 𝑁. 𝑁 also determines the

convergence order of the whole ADER-DG scheme. Furthermore, applying the DG

scheme, the elastic wave equation gets multiplied with a test function of the same family

as the basis function and integrated over the current tetrahedron. Additionally, a

numerical flux representing the influence of the neighboring tetrahedrons is added. For

the actual computation, all tetrahedrons get transformed via a transformation matrix into

a single reference tetrahedron of known. The transformation into the reference

tetrahedron allows a more efficient computation since several parts of the resulting

equation can be computed beforehand for the reference tetrahedron, which gets used

for the update of every tetrahedron.

The time integration of degrees of freedom gets computed via the ADER scheme.

Hereby the solution of the elastic wave equation gets approximated regarding time using

a Taylor series up to the order 𝑁, which is the same as the degree 𝑁 of the basis functions

used for the DG. The time derivative of the Taylor series gets replaced by space

derivatives using the Cauchy–Kovalewski procedure.

The desired convergence order has the be chosen before the compilation and the degree

𝑁 gets determined based on the convergence order. Via 𝑁 several dimensions of the

matrices used for the computation get defined. This is used to achieve higher

performance by generating custom, optimized code for the matrix multiplication

depending on the known matrix information and targeted hardware. SeisSol supports

computation only on CPUs and optional GPU offloading for the matrix multiplications.

For this thesis, only the offloading to the GPU is considered. The generation of the kernel

and kernel call functions code is done by the GemmForge library, which got introduced

for NVIDIA GPUs in prior work [5] and is covered in chapter 3.2.

SeisSol supports computation on multi-node systems. Therefore, the tetrahedrons of the

mesh get clustered based on their LTS time step as described in [23]. As a restriction, a

tetrahedron of the cluster 𝐶𝑙 may only be surrounded by tetrahedrons of the time clusters

𝐶𝑙−1, 𝐶𝑙 or 𝐶𝑙+1, where 𝑙 marks the time step. Then the mesh gets divided into partitions,

where a partition may contain tetrahedrons from more than one time cluster.

Furthermore, a partition includes additional memory space for the neighbors of the

tetrahedrons located on the border of the partition. This is needed since a tetrahedron

14

requires the input of its neighbors for its update. These partitions get distributed onto the

nodes of the HPC cluster. The nodes compute the updates for their assigned partitions

independently and exchange data with other nodes if necessary.

2.4. OpenMPI

For the communication between the nodes, SeisSol uses an open-source

implementation of the MPI standard called OpenMPI. The MPI (Message Passing

Interface) standard specifies a communication system for parallel processes [25]. As the

name indicates, the communication between the processes is realized via messages.

MPI manages all the actual communication for the program so that the developer only

needs to invoke MPI-specified communication functions. For the messages MPI includes

reliability of transmission, meaning that a message will always be received correctly and

in the right order if several messages got sent consecutively. The programmer must only

focus on program errors and resource errors, which may occur due to exceeded system

resources. For the organization of the communication MPI associates each process with

a rank, a unique integer value in the running context. This rank is used as the destination

and source for the messages. The message passing is realized via two function types

for point-to-point communication: one for sending the message and one for receiving.

Both function types contain information about the sent data and a communication

envelope. Naturally, the send-function contains the actual data, and the receive-function

a buffer for the data to be stored in. Additionally, the receive function contains status

information about the message, including an error message, in case an error occurred

during the send. The envelope contains the information for the addressing. It has two

ranks, one for the source and one for the destination. Additionally, a tag and a

communicator, defining the communication context, must be included. A message can

only be received if the send-function and receive-function both define the same

envelope. However, a receiver may accept any rank and tag in the envelope, but the

communication context must be identical to the sender. The communication context

restricts the message to a group of processes. The processes can be organized in

groups to resemble programming patterns if necessary. MPI features blocking, which

ensures that the program execution waits until the message got successfully stored or

sent, and non-blocking variants, allowing the program to continue execution instantly

after the call of the function, of the send/receive functions. For both variants, four modes

are included, which define when the actual sending is started depending on a call of a

matching receive function. Additionally, collective communication, for example, one rank

broadcasting to all other ranks in a communication context, functions, and much more

functionality, which goes beyond the scope of this thesis, are also included in MPI.

15

2.5. UCX

For the transportation of the OpenMPI messages, SeisSol uses the open-source

framework Unified Communication X, abbreviated UCX. UCX acts as an interface

between the communication model of the program and the used hardware as described

in [26], [27], and [28]. In this case, the used communication model is MPI, the following

figure depicts the influence of UCX in the communication between the MPI processes:

Figure 2: Communication between the processes

As a main advantage, UCX takes over the hardware support from MPI but introduces a

small performance loss due to the additional layer. MPI can use interfaces defined by

UCX to communicate via different transportation technologies without performing

adjustments based on the transportation medium. Thus, the portability of the program

gets easier. During its installation, UCX automatically detects available transport systems

already installed on the machine. It supports many communication models and hardware

transportation types and allows easy integration of new models and technologies.

Furthermore, it enables a mixture of different communication models, where the models

can communicate via the UCX interface. It features three major frameworks:

UCP (Protocols), the high-level API: UCP provides interfaces for the communication

libraries. Communication libraries can use the provided interfaces for their

communication without knowing the underlying hardware or which transport type gets

used by UCX. UCP is used for the initialization of the UCX framework and managing the

communication. Hereby it fulfills several tasks. Firstly, it chooses the best transportation

medium. It considers all available network devices and transport options and chooses

the best for the task, for example, the ROCm environment for transporting to an AMD

GPU. Hereby performance and scalability are the crucial factors, but the user can restrict

the options by editing a UCX environment variable for devices and transport options.

Secondly, UCP uses multi-rail communication if available. The multi-rail model uses

16

several network devices for the transmission of one message. The message gets

distributed onto the network devices according to their performance characteristics. The

distribution of messages can be uneven for network devices with different performance

characteristics. It supports up to four rails but uses two by default. The user can change

the number of rails via an environment variable, setting this variable to 1 results in no

multi-rail usage. Furthermore, it handles the fragmentation of messages. If all

preparations are made, it passes the message via the underlying UCT layer to the

selected hardware. UCP consists of several interfaces, providing functionality for the

different communication models [27][29]:

• Initialization: These interfaces collect information about the used hardware and

initialize the UCP endpoints, which get used as source and destination by the

messages.

• RMA: Here single-sided communication functions get provided, needed by the

OpenSHMEM library for example.

• AMO: These interfaces enable atomic operation on remote memory, needed by

PGAS models.

• Tag Matching: These provide the ability to give messages tags to make

messages distinguishable, which is needed by MPI models.

• Active message: These enable callback functions to be executed by a receiver if

it gets a message.

• Collectives: These interfaces provide synchronization operations and group

communication like broadcasting and all-to-all exchange, needed by MPI models.

• Stream: In these interfaces the data gets treated as a stream flowing over the

transportation layer, implying ordered data. This is needed by BSD-socket-based

models.

UCT (Transport), the low-level API: UCT represents the transport layer, which gets used

by the UCP for the actual transportation. It supports several connection types like PCIe

and NVIDIAs NVLink. To minimize performance losses overusing the designated

transport directly, UCT relies on hardware drivers provided by hardware manufacturers.

It provides 3 communication types: The short operation, for small messages, which can

be sent completely at once. For bigger messages, it provides buffered copy and send

operations, where the message gets sent in several parts via a buffer. This also provides

an option for non-contiguous transportation. Direct memory to memory communication

is supported via zero-copy operations.

UCS (Services), the service layer: UCS provides utilities for efficient communication like

commonly used data structures and memory management tools.

All three APIs can be used independently as they were designed to work together but

not rely on each other. To configure UCX after installation the user can modify a variety

17

of environment variables. UCX is included in OpenMPI and MPICH (another open-source

implementation of MPI) since version 3.0 (OpenMPI) and version 3.3 (MPICH)

respectively.

18

3. Implementation

SeisSol relies on two libraries for the GPU offloading: The Device2 library, which was

designed to provide a common interface for different GPU APIs, and GemmForge,

generating custom kernel and GPU kernel launcher functions for gemms. Both libraries

already existed before the thesis and got extended and modified during the thesis.

3.1. The Device library

As mentioned, the C++ Device library provides an interface that passes the GPU-related

calls to the currently needed GPU API depending on the hardware. SeisSol as the caller

does not need to handle GPU API calls as the Device library handles all the GPU API-

related work and returns platform-independent error messages and memory pointers to

SeisSol.

3.1.1. Consideration of using HIP

At the first glance, the HIP library can be considered as a good substitution for the Device

library, since it is designed to support both AMD and NVIDIA GPUs. However, HIP does

not support all of CUDA's functionality. For example, the CUDA function

cudaMemPrefetchAsync is not supported by HIP and thus would not be available if HIP were

used. The Device library uses the CUDA function for usage on NVIDIA hardware and

provides a workaround for AMD GPUs. Hence the Device library can maximize

performance for each platform if the related API provides a better implementation of

functionalities. Secondly, the Device API includes additional functionality around the

GPU API calls, which get explained in chapter 3.1.3. If HIP were used instead, these

additions would have to be implemented in a separate library resulting in a Device-like

library without the advantages of the Device library. Furthermore, the Device library is

extendable for a new GPU interface or hardware in the future, for example, OneAPI i.e.,

the Intel implementation of SYCL standard. A new interface just needs to implement the

functionality required by the Device library as well as the compilation process needs to

be configured for the new API. SeisSol itself would require no changes in the code to

use a new API or hardware.

2 https://github.com/SeisSol/Device/

19

3.1.2. Design

The design of the Device library is based on a mixture of two structural patterns. It

provides the AbstractAPI struct, which acts as both Facade [31] and Adapter [32]. The

platform-dependent declaration is made in a separate subclass for each platform. These

classes implement only access to those GPU API functions that are necessary for

SeisSol, therefore acting as a facade to the GPU APIs. This gets achieved by wrapping

functions that require no special datatypes. For functions requiring special datatypes, it

enables access without the need to include the GPU APIs, thus acting as an adapter. It

converts GPU-specific datatypes to standard C++ datatypes or manages the actual

control of these data types and provides control functions to the user. The actual

implementation of the subclasses is made in several classes, each covering one aspect

of functionality, for example, memory allocation or copying data between host and

device. For access to the AbstractAPI struct, the library provides the DeviceInstance

singleton. Singleton is a design pattern, where only one object of the class can exist at

any given time in the context of a running program [33]. If the program tries to create a

new, separate object, it will receive a reference to the already existing object. Based on

the singleton pattern of the DeviceInstance, only one object of the platform-dependent

implementation of AbstractAPI exists at any given time. This is important for the additional

functionality provided by the Device library, which gets described in the next chapter.

For the HIP support, a new subclass of AbstractAPI and a set of classes containing the

implementation were added in the scope of the thesis. Most of the code was portable

using hipify-perl since mostly only prefix cuda needed to be replaced with hip. But some

parts required workarounds due to missing HIP counterparts. A special case is the usage

of NVToolsExt, which is an additional API provided by NVIDIA [30]. It improves logging

and visualization for the analysis of CUDA programs. Since no HIP alternative could be

found, functions relying on it were left empty. This poses no problem for the functionality

since the API is only used for performance analysis.

The compilation process of the library is modeled using CMake. The process can be split

up into three phases shown in the following figure:

20

Figure 3: The Device compilation process

Setup: During the first phase CMake checks if the desired variables are set. The user

must define the variables REAL_SIZE_IN_BYTES and DEVICE_BACKEND. The first one determines

the used precision whereas the second variable describes the used programming API

and takes CUDA or HIP as correct values. For further optimization, during the

compilation, the user must also define the DEVICE_SUB_ARCH. This variable takes the

version label of the SM or CU of the targeted GPU architecture as values.

Compilation: As the name indicates, this phase covers the actual compilation.

Depending on the values of DEVICE_BACKEND the progress shifts either to CUDA or HIP

compilation. While the HIP path got added during this thesis, the CUDA path already

existed upfront.

The CUDA path firstly loads the CUDA CMake package, containing CMake settings

specialized for CUDA compilation. Then it tries to find the library NVToolsExt. If it is not

found, the Device library gets compiled without the support for NVToolsExt. Afterward,

the compilation flags for the nvcc compiler get set. To compile the CUDA implementation

of AbstractAPI, the nvcc compiler gets invoked by the cuda_add_library. Lastly, some

CUDA specific include libraries and paths get set.

The HIP path has the same structure, but with major differences. Since HIP is not yet a

part of the default CMake package, the path to the installation of HIP must be set

manually. Additionally, the helper CMake files located in the HIP library must be included.

In contrast to the CUDA path, the HIP path defines compiler flags for both CUDA and

HIP, since HIP may be used to compile for an NVIDIA GPU. These flags get defined in

dedicated variables for each platform and an additional variable for flags used by both.

The variable CMAKE_HIP_CREATE_SHARED_LIBRARY must be set to ensure the correct

compilation as a library and not as an executable file. The hipcc compiler gets invoked

like nvcc using hip_add_library, which is included in the CMake helper files from the HIP

library. Based on the platform the link to the hip library gets set in different ways, for

CUDA it can be set via a property variable in CMake, for HIP a direct path to the library

must be set.

21

Finalize: In the last stage compilation flags common to both paths get set. This includes

a flag determining the desired precision. Lastly, platform-independent include directories

get defined.

3.1.3. Functionality

The Device library includes additional functionality apart from the wrapping of GPU API

calls. It gathers information about the amount of allocated memory and copied data. This

gets collected by incrementing statistics variables after the invocation of GPU API calls.

Furthermore, it performs error checks after each GPU API call, logging arising error

messages. Aside from informative functionality, it provides functions for managing a

temporary memory located on the GPU, which is organized as a stack. A set number of

bytes get allocated on the GPU and managed by the library. The programmer can get a

pointer to available temporary memory, which then gets marked as used. If the

programmer does not need it anymore, the memory gets unmarked but not deallocated.

Thus, the programmer does not need to allocate and deallocate memory for temporary

usage and can potentially reduce the execution time, since less time is used on memory

management. For access to GPU streams, the library provides a circular stream buffer.

Streams are a concept for interweaving data copying from or to GPU and calculation on

the GPU. This can result in an increased performance since due to hardware

characteristics copies can be performed in parallel with computation on the GPU. Instead

of using one block of data and one kernel, a program can issue several small kernels

working on smaller pieces of data to different streams. The GPU can copy the data

required by one stream during the execution of the kernel of another stream. The Device

library can hold up to a predefined number 𝑛 of streams. If the program tries to access

the stream 𝑛 + 1, it gets redirected to the first stream, hence it acts as a circular buffer.

The library provides a function for synchronizing a single stream or all streams at once.

In SeisSol streams are primarily used to launch several small kernels, which work on

independent data.

3.2. GemmForge

For generating efficient kernels GPU SeisSol deploys the GemmForge3 library. It is

written in python 3 and includes a generator for copy-add-scale operations and gemms

(general matrix multiplication). It produces a program text for the kernel function and the

corresponding kernel call function. Since the matrices involved in the computations are

small, the maximum dimension used in this thesis is 56𝑥56, GemmForge can employ

3 https://github.com/ravil-mobile/gemmforge/

22

optimizations and thus outperform GPU standard libraries for matrix multiplication, as

shown in [5]. GemmForge relies on the standard FP32 or FP64 cores, whereas NVIDIAs

standard libraries often use Tensor cores for their matrix multiplication. For the

computation of 𝐶 = 𝐴 ∗ 𝐵 + 𝐶, where 𝐴,𝐵 and 𝐶 are matrices, GemmForge loads matrix

𝐵 in the shared memory, which is possible due to the small size of the matrix, for large

matrices shared memory maybe not sufficient. Each thread loads one element of the

same column of 𝐴 into its register. Thus, the column size of 𝐴 defines the number of

active threads launched. Each thread performs the multiplication on the same row of 𝐵.

This row now can be broadcasted to all threads from shared memory, which is faster

than each thread accessing the row consecutively [5]. For further optimization,

GemmForge relies on information about the used GPU provided before the compilation.

It calculates how many matrix multiplications can be done by a single block based on

estimations of available shared memory and registers. If possible, it launches kernels in

a two-dimensional manner, where the size of the second dimension corresponds to the

number of matrix multiplications in a block. The size of the first dimension is based on

the number of threads needed for one column and is always a multiple of the warp or

wavefront size. Hardware analysis and generation of a kernel are performed in the

GemmGenerator class. To generate a kernel a programmer must provide hardware and

matrix characteristics. Hardware characteristics contain manufacturer and specific GPU

architecture. Matrix characteristics contain the dimensions of the involved matrices,

which must be suitable for multiplication, otherwise, an error message gets printed.

Furthermore, they contain scale factors for matrix 𝐴 and 𝐶, a Boolean for each matrix

indicating if it should be transposed and an addressing mode, defining how pointers to

matrix entries are assembled. For loading of shared memory and a possible

transposition, GemmForge provides the loader module, which contains classes

specifying the sizes and loading of the shared memory. Since GemmForge was originally

designed only for NVIDIA GPUs, a way of supporting both HIP and CUDA was introduced

for this thesis, which gets explained in the following two chapters.

3.2.1. The Architecture class

GemmForge uses the Architecture class defined in the file arch.py to hold hardware-

specific data and characteristics for different GPU architectures. The class provides

produce function, which determines the used GPU by two strings, one containing the

name of the manufacturer and the other containing the name of the GPUs architecture.

Then it returns an Architecture object filled with the corresponding hardware

characteristics. The class provides information about the size of warps or wavefronts,

the sizes of the different memory types, and how many threads and blocks can be

23

launched on a single CU or SM. For AMD support the produce function got modified to

distinguish between the two hardware manufacturers and the hardware characteristics

of the Radeon Instinct MI50 and its successor Instinct MI100 got specified. The class

can be easily extended for new architectures versions from NVIDIA or AMD, it only needs

the specific hardware characteristics defined. For a new manufacturer, a new distinction

must be included containing the characteristics of its GPUs.

3.2.2. Architecture lexicons

During the generation of the kernel in the GemmGenerator class, GemmForge used the

hardcoded CUDA specific thread and block variables and kernel call. To support multiple

manufacturer-specific APIs, the arch_lexic (an abbreviation of architecture lexicon)

module got implemented. It is designed according to the Factory method design pattern.

In the factory function, a direct creation of an object of the desired type, in this case,

lexicons, gets replaced by a factory function, which returns the correct object depending

on the current context, in this case, hardware manufacturer. The module defines the

abstract superclass AbstractArchLexic, which defines the needed variable names and

functions for accessing and combining them into often needed combinations. Platform-

dependent implementation is realized in subclasses, containing the corresponding

variable names for the thread and block variables. Furthermore, subclasses implement

a function for creating kernel launch function call. For the creation of an ArchLexic object,

the factory function arch_lexic_factory is provided, which returns a lexicon corresponding

to the used platform. The module can be easily extended for new APIs, if the new APIs

programming model is a CUDA-like programming model, using thread and blocks to

organize the distribution of the threads created by the kernel on the hardware. The

arch_lexic module got introduced in several already existing classes, replacing the

hardcoded CUDA-specific strings. The arch_lexic is used in several places – i.e.,

GemmGenerator, CsaGenerator, and loaders, which allows to fully get rid of all CUDA

hardcoded keywords and thus make GemmForge more flexible and extensible for future

changes.

24

4. Evaluation

For evaluation of the implementation, we examine the libraries GemmForge and Device.

Thereby we assess if the kernels generated by GemmForge work properly and measure

and evaluate delivered performance on the AMD Radeon Instinct MI50. The measured

performance gets compared to results measured on NVIDIAs Tesla V100 to evaluate the

delivered performance of the AMD GPU. To assess if the extension of the Device library

was successful, we created a benchmark by implementing a Jacobi solver. This

benchmark serves furthermore as an evaluation of the combination of HIP and OpenMPI,

to ensure SeisSol could get executed on multi-GPU systems and leverage available

performance.

4.1. Roofline Model

For performance evaluation of the kernel functions generated by GemmForge, we use

the Roofline model presented in [34]. This model requires measurements of bandwidth

and kernels performance, for which GemmForge provides benchmark tests. For the

thesis, these tests got ported to HIP. This chapter first describes the theoretical

background of the Roofline model and then its application to the gemms.

4.1.1. Theoretical background

The Roofline model provides a method for evaluating the performance of programs

running on multicore systems. Originally designed for multicore CPUs in 2008, it can also

be used for the analysis of programs using GPUs for computation since it is based on

concepts occurring in both CPU and GPU, namely floating-point and memory

performance. The model can be divided into two steps: Firstly, the creation of a

hardware-dependent graph based on measurements taken on the processor. Secondly,

derivation of the program into a form useable by the model and measuring the

performance of the program.

The graph defines the upper bound (roofline) for achievable performance on the

hardware. It is plotted on a two-dimensional domain where the y-dimension depicts

performance in FLOP/s. The x-dimension represents the operational intensity of the

program in FLOP/byte, which is going to be explained shortly. The graph is derived from

a combination of two hardware characteristics: maximum performance of the multicore

system in FLOP/s and achievable bandwidth for memory movement between main

memory and caches of the processor cores in byte/s. The maximum performance is

represented as a horizontal line at 𝑦 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒. The bandwidth however

25

corresponds not directly to one of the axes, but can be represented by a combination of

both axes:

𝐹𝐿𝑂𝑃
𝑠𝑒𝑐𝑜𝑛𝑑
𝐹𝐿𝑂𝑃
𝑏𝑦𝑡𝑒

=

1
𝑠𝑒𝑐𝑜𝑛𝑑

1
𝑏𝑦𝑡𝑒

=
𝑏𝑦𝑡𝑒

𝑠𝑒𝑐𝑜𝑛𝑑

Thus, the bandwidth is represented by 𝑦 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ 𝑥. The combination

of both functions results in the graph 𝑔(𝑥), which can be described as followed, where

𝑥𝑐 donates x coordinate of the intersection of both functions:

𝑔(𝑥) = {
 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ 𝑥 𝑖𝑓 𝑥 < 𝑥𝑐

 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The values of 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 can be theoretical

limits or measured by benchmarks. If a graph is constructed for given hardware it can be

used for all program evaluations run on this hardware. For new hardware, a new graph

must be constructed.

For performance evaluation of the program, the operational intensity of the kernel must

be calculated first. The operational intensity 𝐼𝑘 of a kernel can be described as:

𝐼𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑚𝑜𝑣𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑎𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑛𝑑 𝑐𝑎𝑐ℎ𝑒

But since we work on GPUs, we use arithmetic intensity instead of operational intensity

and thus define 𝐼𝑘 as followed:

𝐼𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑚𝑜𝑣𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑃𝑈 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑛𝑑 𝐺𝑃𝑈 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠

The arithmetic intensity is used since the data is already resident on the GPU during

execution of the kernel since it gets copied onto GPU memory before the invocation of

the kernel. If the intensity 𝐼𝑘 of the kernel is known, a measurement in FLOP/s can be

made and plotted in the graph as the point 𝑥𝑘:

𝑥𝑘 = (𝐼𝑘;𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒)

If the measured performance is significantly lower than 𝑔(𝐼𝑘), i.e.,𝑥𝑘 is not near the

graph, the model indicates that the kernel function can be optimized further.

26

4.1.2. Application to AMD's Radeon Instinct MI50

For the application of the Roofline model on the kernels generated by GemmForge, the

graph 𝑔(𝑥) must be created for AMDs Radeon Instinct MI 50. As maximum performance,

the theoretical performance of 13.41 TFLOP/s provided by [16] is used. The maximum

bandwidth gets measured on the Radeon Instinct MI50. Therefore, the ported version of

the bandwidth benchmark created for measurements of the NVIDIA Tesla V100 in [5]

gets used. In the benchmark, a predefined amount of GB gets allocated twice on the

GPU. A kernel copying the data from one allocation to the other gets executed. The

execution time of the kernel gets measured to achieve a GB/s value. To even out

performance peaks and lows the kernel gets repeatedly executed and the measured time

averaged depending on the number of repeats. For the port, the file global.cu got a HIP

equivalent called global.cpp. The file contains the explained kernel function and

additional utility for measurements. Furthermore, the compilation process got a new path

for HIP compilation. To start a test the number of repeats and number of GBs must be

defined in an input file. To establish a bandwidth value for the Roofline model the

benchmark got executed with different combinations of GBs and number of repeats. The

number of GBs ranged from 0.5 to 8 GBs, incrementing in steps of 0.5 GBs, whereas

the number of repeats ranged from 100 to 1000, incrementing in steps of 100 repeats,

resulting in 160 tests in total. The test parameters are widespread to generate a result

that is not restricted to a single use case but to get a more uniform value for different use

cases. A selection of test results is shown in the following figure:

Figure 4: Selection of bandwidth measurements

The results are spread in a small range with only a few outliers. The average bandwidth

of all tests was about 580 GB/s, which is about 56,6% of the theoretical performance of

27

1024 GB/s documented in [16]. Reasons for this discrepancy require deeper

investigation, which goes beyond the scope of the thesis.

Since both maximum bandwidth and performance are known, the value of 𝑥𝑐 can be

calculated as:

𝑥𝑐 =
13.41

𝑇𝐹𝐿𝑂𝑃
𝑠𝑒𝑐𝑜𝑛𝑑

0.58
𝑇𝐵

𝑠𝑒𝑐𝑜𝑛𝑑

≈ 23.1
𝐹𝐿𝑂𝑃

𝐵𝑦𝑡𝑒

And thus, the function 𝑔(𝑥) can be expressed as:

𝑔(𝑥) = {
 0.58 ∗ 𝑥 𝑖𝑓 𝑥 < 23.1

 13.41 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For the performance measurement of the kernels, the benchmark as designed in [5] is

used. The benchmark calculates the following term, where 𝐿 and 𝐴 are 56𝑥9 sized

matrices, whereas matrix 𝐵 has the dimension 9𝑥9 and matrix 𝐷 56𝑥56:

𝐿 = 𝐷 ∗ 𝐴 ∗ 𝐵 + 𝐿

Since GemmForge only generates kernels of the form 𝐶 = 𝐴 ∗ 𝐵 + 𝐶, computation is

realized in two kernels, where the first kernel computes 𝑇 = 𝐴 ∗ 𝐵 and stores the result

in the 56𝑥9 sized matrix 𝑇. The second kernel finalizes the result with the computation

𝐿 = 𝐷 ∗ 𝑇 + 𝐿. For the plotting of measured results, the arithmetic intensity of both kernels

must be calculated first. The intensity 𝐼𝑘1 of the first kernel can be described as followed,

where 𝑝 is 4 𝐵𝑦𝑡𝑒 =
32 𝑏𝑖𝑡

8
 (float) or 8 𝑏𝑦𝑡𝑒 =

64 𝑏𝑖𝑡

8
 (double) depending on precision:

𝐼𝑘1 =
9 ∗ 9 ∗ 2 ∗ 56

(2 ∗ 56 ∗ 9 + 9 ∗ 9) ∗ 𝑝

The devisor can be derived from the dimensions of the involved matrices, where 𝐴, which

gets loaded from global memory into registers, and 𝑇, which gets written back to global

memory, are 56𝑥9, hence 2 ∗ 56 ∗ 9. The matrix 𝐵, which is also loaded from global

memory, has the dimension 9𝑥9, thus the addition of 9 ∗ 9. The multiplication with 𝑝

translates the result into a number of bytes. For the determination of the dividend the

computational part of the generated kernel must be considered. Pointer arithmetic does

not contribute to the total number of floating-point operations, since they are integer

operations:

28

1. if (hipThreadIdx_x < 56) {
2. float Results[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
3. float Value;
4. for (int k = 0; k < 9; ++k) {
5. Value = GlobMatA[hipThreadIdx_x + 56 * k];
6. for (int n = 0; n < 9; ++n) {
7. Results[n] += Value * ShrMatB[k + 9 * n];
8. }
9. }
10. for (int n = 0; n < 9; ++n) {
11. GlobMatC[hipThreadIdx_x + 56 * n] = Results[n];
12. }
13. }

The floating-point operations are in line 7, one addition and one multiplication. These 2

operations are embedded in a nested for-loop in line 6, which is repeated 9 times. The

superior for-loop in line 4 is also repeated 9 times. The if statement in line 1 causes

execution of the loop in line 4 for 56 times since it represents the parallelization in HIP

fashion. The loop in line 10 does not contribute to the number of floating-point operations

since it only contains variable assignments and no computation. Thus, the whole number

of floating-point operations accumulates to 2 ∗ 9 ∗ 9 ∗ 56 for the first kernel.

The arithmetic intensity 𝐼𝑘2 of the second kernel is calculated in a similar fashion. The

devisor can be derived from involved matrices too, but with some special cases: matrix

𝐷 can be ignored since it is the same for all work items in the wavefront. Matrix 𝐿 appears

two times in the calculation since it gets loaded from global memory and after

computation back into it. Thus, the number of elements in the devisor can be expressed

as 3 ∗ 56 ∗ 9, since both 𝐿 and 𝑇 have the dimension 56𝑥9. The dividend is again derived

from the generated kernel:

1. if (hipThreadIdx_x < 56) {
2. float Results[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
3. float Value;
4. for (int k = 0; k < 56; ++k) {
5. Value = GlobMatA[hipThreadIdx_x + 56 * k];
6. for (int n = 0; n < 9; ++n) {
7. Results[n] += Value * ShrMatB[k + 56 * n];
8. }
9. }
10. for (int n = 0; n < 9; ++n) {
11. GlobMatC[hipThreadIdx_x + 56 * n] = Results[n] +
12. GlobMatC[hipThreadIdx_x + 56 * n];
13. }
14. }

Again 2 floating-point operations are in line 7, but this time the superior loop in line 4 is

repeated 56 times. The embedded loop in line 6 is repeated 9 times like in the first kernel.

In this case, the loop in line 10, which gets repeated 9 times contributes to the number

of operations since it contains an addition. The loops in lines 4 and 10 get both executed,

like in the first kernel, 56 times. Thus, the dividend can be represented as

56 ∗ (2 ∗ 56 ∗ 9 + 9) and the formula for 𝐼𝑘2 as:

29

𝐼𝑘2 =
56 ∗ (2 ∗ 56 ∗ 9 + 9)

(3 ∗ 56 ∗ 9) ∗ 𝑝

For performance measurement of both kernels, the simple-gemm benchmark of

GemmForge was used. The benchmark generates a kernel function via GemmGenerator

class of GemmForge for a given precision and matrix dimensions of the three matrices

used in the kernel function. Precision and dimensions must be defined before compilation

since the generation of the kernel gets invoked during the compilation process and if

another precision or dimension is required, the benchmark must be recompiled.

Additionally, the user can define, like in the bandwidth benchmark, the number of repeats

for the kernel and the number of GBs, which determines depending on the used matrices

the number of elements on which the kernel gets applied. The benchmark checks the

correctness of the kernel function results by comparing them to a computation on CPU.

After the correctness check, the kernel gets executed the user-defined number of times

and averages measured performance over the number of repeats. The averaged results

get printed in GFLOP/s. For the usage of the extended GemmForge library, the python

file invocating GemmGenerator got extended with a new command-line argument that

determines the manufacturer. The creation of the generated filename got modified via

an if-else statement to differ between manufacturers and add the corresponding file

ending. Additionally, the generated file gets the correct include statement inserted,

depending on the manufacturer. The file containing the actual invocation of the kernel

needed no editing due to the design of the benchmark. It only must include the generated

header file, which contains the declaration of the generated kernel call function. The

compilation process got extended with a separate HIP compilation path.

The benchmark got executed with 500 repeats and a number of GBs which correspond

to 250000 elements, to get a reliable measurement for the Roofline model. The number

of GBs must be changed depending on precision and the executed kernel. Both kernels

got measured in single and double precision. The measurement was repeated 20 times

for each configuration and the result averaged over the number of repeats. To achieve

optimal performance, the kernel call was tweaked for each of the four configurations via

the GPU properties defined in the arch.py file. This results in different y-dimensions in

the wavefronts for each configuration, as depicted in table 2.

 Single precision Double precision

1st kernel 1 16

2nd kernel 16 8

Table 2: The different y-dimensions of the wavefronts

30

With measured performances and arithmetic intensities calculated, the point 𝑥𝑘 can be

created for each configuration:

𝑥𝑘1−𝑆𝑃 = (𝐼𝑘1−𝑆𝑃 = 2.08,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1.339)

𝑥𝑘1−𝐷𝑃 = (𝐼𝑘1−𝐷𝑃 = 1.04,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 0.619)

𝑥𝑘2−𝑆𝑃 = (𝐼𝑘2−𝑆𝑃 = 9.41,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 3.989)

𝑥𝑘2−𝐷𝑃 = (𝐼𝑘2−𝐷𝑃 = 4.70,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1.851)

Combined with 𝑔(𝑥) created with the bandwidth test, these result into the Roofline model

depicted in figure 5:

Figure 5: Roofline model analysis for the AMD Radeon Instinct MI50.

In comparison to the Roofline model predicted maximum performances the measured

performances of the first kernels surpass the expectation. For single-precision, the

measured average performance of 1.339 TFLOP/s is about 11% higher than the

predicted maximum performance 𝑔(𝐼𝑘1−𝑆𝑃) = 1.2064 𝑇𝐹𝐿𝑂𝑃/𝑠. For double-precision,

the difference is smaller. The measured performance is only 1% higher than the

predicted 𝑔(𝐼𝑘1−𝐷𝑃) = 0.6032 𝑇𝐹𝐿𝑂𝑃/𝑠.

The second kernels however achieve a significantly lower performance than the

predicted performance. Single precision performance is about 27% lower than the

predicted 𝑔(𝐼𝑘2−𝑆𝑃) = 5.4578 𝑇𝐹𝐿𝑂𝑃/𝑠. The difference for double precision is even

bigger with about 33% lower than 𝑔(𝐼𝑘2−𝐷𝑃) = 2.726 𝑇𝐹𝐿𝑂𝑃/𝑠.

31

4.1.3. Comparison to NVIDIAs Tesla V100

For the comparison between the manufacturers, a Roofline model analysis for NVIDIAs

Tesla V100 with the same kernels is needed. Such an analysis was already performed

in [5] and the measured values are used to create the Roofline model depicted in the

following figure:

Figure 6: Roofline model analysis for the NVIDIA Tesla V100

As described in chapter 2.1.3, the maximum performance of the Tesla V100 is higher

than the Radeon Instinct MI50s. But in both cases, maximum, achievable performance

is limited by the measured bandwidth of the respective GPU since the arithmetic

intensities of the kernels are located under the slope in the figures. Maximum theoretical

performance is not important for the comparison of these results. The measured

bandwidth of the Tesla V100 is significantly higher than Radeon Instinct MI50s although

both have a similar theoretical maximum bandwidth. The NVIDIA GPU achieves about

69.7% of its theoretical performance, whereas the Radeon Instinct MI50 only achieves

56.6%. Thus, the kernels can achieve higher performance on the Tesla V100. This

assumption is confirmed by the measured values in [5]:

𝑥𝑘1−𝑆𝑃 = (𝐼𝑘1−𝑆𝑃 = 2.08,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1.722)

𝑥𝑘1−𝐷𝑃 = (𝐼𝑘1−𝐷𝑃 = 1.04,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 0.861)

𝑥𝑘2−𝑆𝑃 = (𝐼𝑘2−𝑆𝑃 = 9.41,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 6.768)

𝑥𝑘2−𝐷𝑃 = (𝐼𝑘2−𝐷𝑃 = 4.70,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 3.210)

32

Also, measured values for the second kernels are better compared to the predicted

values of the Roofline model, they only have about 10% lower performance for single

precision and 14% for double precision. In contrast, the second kernels on the Radeon

Instinct MI50 show about 30% lower performance. The measurements of the first kernels

have a similar ratio to the anticipated performance for both GPUs. The comparison

shows that the kernels perform better on the Tesla V100. If the low bandwidth of the

AMD GPU would be increased, the GPU may yield a comparable performance, since

performance is limited by bandwidth in both cases.

4.2. Jacobi Solver

To ensure the correct functionality of the Device library, a Jacobi solver, as a good

parallelizable algorithm, got implemented in the Device library in the scope of the thesis.

The implementation uses OpenMPI combined with UCX to enable the distribution of the

problem onto several processors. Thus, the Jacobi solver serves additionally as a

benchmark for using multiple GPUs for computation. Like the Device library itself, Jacobi

solver can be compiled for single or double precision. For compilation, the user must

define the required precision, GPU manufacturer, and used GPU architecture.

Furthermore, the solver can be compiled with or without MPI. During the compilation

phase, both the CPU and the GPU solver get compiled and can be selected during the

invocation of the program.

4.2.1. The Math

The Jacobi solver is an iterative method to approximate the solution of a linear system:

𝐴𝑥 = 𝑏

Hereby matrix 𝐴 contains the coefficients of the linear system, whereas vector 𝑥 contains

the unknowns and 𝑏 the solutions of the single terms. For approximation, matrix 𝐴 gets

decomposed into two matrices 𝐷 and 𝐿𝑈 via 𝐴 = 𝐷 + 𝐿𝑈. 𝐷 is a diagonal matrix

containing the diagonal entries of 𝐴 and 𝐿𝑈 is a combination of the lower and upper

triangle part of 𝐴. Computation of a single step can then be expressed as:

𝑥𝑘+1 = 𝐷−1 ∗ (𝑏 − (𝐿𝑈 ∗ 𝑥𝑘))

For the first step 𝑘 = 0 the first solution 𝑥0 must be guessed. The steps can be repeated

a defined number of times or until a predefined discontinuation criterion is reached. For

this implementation, the criterion is defined as:

33

𝑏 − (𝐴 ∗ 𝑥k) < 𝜀

This term describes that solution 𝑥𝑘 of the current step, 𝑘 is sufficiently close to the actual

solution 𝑥, where maximum difference is defined via 𝜀.

4.2.2. The CPU implementation

The solver got implemented in two steps: firstly, a version computing only on the CPU

got implemented. This implementation got modified to use GPUs via kernel functions for

parts of computation in the second step. The CPU implementation serves as a

correctness comparison for the GPU port.

The implementation uses sparse ELLPACK form [35] for the representation of involved

matrices. This form only saves non-zero entries of the matrix and corresponding indices

in two vectors. Furthermore, additional information like the dimension of the matrix and

the maximum number of non-zero entries per row is required for representing the original

matrix. The advantages of the format are a smaller amount of used storage and a shorter

iteration over elements since only non-zero entries get traversed. But the advantages

only apply for sparse matrices, nearly filled matrices do not benefit from representation

in sparse ELLPACK form. For this implementation of a Jacobi solver, only quadratic

matrices get used. For parallelization, vectors and matrices get split up and equally

distributed onto the single MPI processes. The distribution is shown in figure 7, where

the first MPI process works on the first 𝑘 entries of the vector and the next MPI process

in the next portion. Finally, the last MPI process works on the last portion.

Figure 7: Distribution of problem domain onto MPI processes

The actual Jacobi solver using the CPU is implemented in the solver function of the

namespace host. The function takes the involved matrix and vectors as parameters.

Additionally, information for the controlling like the maximum number of repeats, the

specified 𝜀, etc. gets passed to the function. The function sets up the matrices 𝐷−1 and

𝐿𝑈 and starts the computation of the approximation. The computation is split into the

three steps 𝑡𝑚𝑝 = 𝐿𝑈 ∗ 𝑥𝑘, 𝑥𝑘 = 𝑏 – 𝑡𝑚𝑝 and 𝑥𝑘+1 = 𝐷−1 ∗ 𝑥𝑘, where 𝑡𝑚𝑝 represents

a variable for storing the results of the first step. The steps are realized in two functions,

one for the matrix-vector multiplication and one for the vector arithmetic. The third

computation step get computed using vector manipulation function instead of matrix

34

multiplication function, since the matrix 𝐷−1 can be represented as a vector, which

contains the diagonal entries of 𝐷−1. Since all other entries of 𝐷−1 are zero, no

information is lost by representation as a vector. After completion of the three

computation steps all entries of the new 𝑥𝑘 gets collected from all MPI processes and

redistributed between the MPI processes. This gets realized by the collective MPI

operation MPI_Allgatherv. These steps get repeated until either a predefined maximum

number of repeats is reached, or approximation is sufficiently close to the result.

To check the proximity of the current approximation 𝑥𝑘 the program calculates every 𝐼

steps the value of 𝑟 = 𝑏 − (𝐴 ∗ 𝑥k). The value of 𝐼 must be set before the invocation of

the computation. For the computation of 𝑟 the function calculates 𝑏 − (𝐴 ∗ 𝑥k) and takes

the entry with the highest absolute value of the resulting vector as value for 𝑟. If 𝑟 < 𝜀,

the computation can be stopped since the next step will not provide a significant

improvement of the result. Furthermore, the program takes the opportunity to print out

the number of the current iteration and the value of 𝑟 to give the user an update about

the progress. If the computation has stopped, the resulting 𝑥k and the duration of the

computation gets printed out to the user.

The solver can work without MPI if desired to measure the impact of the communication

through MPI on the duration of the program. Therefore, the duration of the computation

and the communication get separately measured.

4.2.3. The GPU port

For the port to the GPU, a new Jacobi solver got implemented in the Solver class in the

namespace gpu. The GPU solver follows roughly the structure of the original solver with

slight changes and additions. It relies on the same input parameters as the CPU version

and follows the same distribution method for the problem domain shown in figure 7.

Hereby each MPI process gets one GPU assigned, which executes the kernel functions

for its MPI process. The access to GPU API functions gets realized with the Device

library, whereas the invocation of kernel functions is handled by platform independently

declared kernel call functions. Thus, only the implementation of the kernel itself and the

definition of the corresponding call function must be implemented for NVIDIA and AMD,

the remaining code can be used for both manufacturers.

The GPU solver starts the same way as the original with the setup of the matrices, but

computation cannot be started immediately after setup since data must first be copied to

GPU memory. This is handled by a separate function, which uses the Device library for

a platform-independent code. But before the invocation of this function, the program must

select the right GPU. For the selection, a Device function is used with the rank of the

current MPI process as selection criteria. After completion of the copies, the solver can

35

be started. As in the CPU, version computation is dissected in three steps. These steps

get realized in kernel functions, where a version of each kernel is implemented once for

NVIDIA GPUs and once for AMD GPUs. The GPU parallelism is hereby realized by

concurrent access on the vector entries by the GPU threads instead of a loop iteration

over them. For the matrix-vector multiplication, concurrent access is applied to the rows

of the matrix. For each kernel function, a kernel call function is implemented, which

specifies the number of threads per block, or work items per wavefront in AMD

terminology. To cover the whole vector and matrices, the appropriate number of those

blocks or wavefronts get calculated and used during the launch of the kernel. Like in the

CPU version the computed result gets collected and distributed between the MPI

processes. Hereby the data gets directly shared between the involved GPUs. Likewise,

the computation of 𝑟 combined with an output of the value and the current number of

iterations follows a predefined interval of repeats. In contrast to the original solver, the

computation is realized mainly by using kernel functions. Only the selection of the highest

absolute entry for the value of 𝑟 gets executed on the host side.

After the computation is completed, which follow the same conditions as the original, the

computed approximation 𝑥k gets copied back to the host side. Afterward, allocated

memory on the GPUs gets freed using a separate function, which uses Device functions

for deallocation.

4.2.4. Test Results

Since this Jacobi solver is used for testing, it always runs with the same values for 𝐴,𝑥0

and the solution 𝑥 for the linear equation:

𝐴 =

[

2 −1 0
−1 2 −1
0 −1 2

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
2 −1 0

−1 2 −1
0 −1 2]

 𝑥0 = [

−10
−10

⋮
−10

] 𝑥 = [

1
1
⋮
1

]

The vector 𝑏 gets computed by 𝑏 = 𝐴 ∗ 𝑥 at the start of the program. The user can define

the number of rows for 𝑥0, which automatically defines the dimensions of the quadratic

matrix 𝐴. Furthermore, the solver type to be used, CPU or GPU, the maximum number

of iterations, the number of iterations after which the output gets printed, and the value

of 𝜀 must be defined in an input file. The program shows a correct behavior if the output

vector 𝑥𝑘 converges to vector 𝑥. If the used solver is compiled with MPI, the user must

define the number of MPI processes during the invocation of the program. If the solver

is compiled without MPI, the solver always runs with one process.

36

For our first tests, we chose 100000 as the maximum number of iterations and 10000 as

the number of iterations for the intermediate output. The discontinuation criterion is set

to 𝜀 = 10−7. Only the number of rows got modified between the tests since parallelization

of multiple MPI processes is performed on the rows as depicted in figure 9. Furthermore,

GPU computation parallelizes the access to the rows too. Thus, with modifying the

number of rows an impact of both parallelization types can be observed. For the tests,

two versions of the Jacobi solver were used: one compiled without MPI and one compiled

with MPI. Both versions got compiled for single precision. The comparison of both

versions shows the impact of MPI on performance.

Figure 8: Runtime of Jacobi solver with one process on the Radeon Instinct MI50

Figure 8 shows measurements taken with an MPI and MPI-less version of the solver,

arranged in four subfigures. Only one MPI process was used to keep the results

comparable to the MPI-less solver since this only uses one process. OpenMPI was used

as MPI implementation, using UCX for transportation of messages between MPI

processes. The measurements were taken once with only CPU computing and once with

GPU offloading. The used CPU is an AMD EPYC 7742 featuring 64 cores at 2.25 GHz

base clock speed [36].

Figure 8 a) shows the performance gain of GPU offloading. The runtime increases

proportional to the number of rows for the MPI-less CPU version, whereas the MPI-less

GPU version delivers nearly constant runtime at about seven seconds for all numbers of

rows tested. In figure 8 c) the runtime of CPU versions with and without MPI gets

37

compared. The runtimes show insignificant differences for all test configurations, which

is the desired behavior of MPI. Figure 8 b) compares the behavior of both MPI solvers.

The GPU solver shows significantly worse performance than the CPU solver, which

stands in contrast to the results of the MPI-less solvers depicted in figure 8 a).

Furthermore, the MPI using GPU solver is about 42 times slower than the MPI-less GPU

solver as depicted in figure 8 d). These bad results could indicate a problem in the

combination of AMD GPUs and OpenMPI.

To further investigate the problem, the performance of computation and communication

got separately analyzed. Additionally, these performances got measured on an NVIDIA

GPU as a comparison baseline. Furthermore, a second AMD GPU got used to check if

the problem is confined to the Radeon Instinct MI50. AMD's Instinct MI100, as the current

model of AMDs Instinct series, features twice the number of CUs than the Radeon

Instinct MI50 and thus twice the number of VU lanes [37]. They operate at a lower clock

speed than the Radeon Instinct MI50, namely 1000 MHz base and 1502 MHz boosted

clock speed [38]. The theoretical single-precision performance of the MI100 reaches up

to 23.1 TFLOPs [37]. For this comparison, the number of rows was changed, the number

of iterations and discontinuation criterion remained the same as in the first tests. Fewer

tests with bigger steps in the number of rows were performed. The tests with NVIDIAs

Tesla V100 and AMDs Instinct MI100 were, like the tests with the Radeon Instinct MI50,

performed with the MPI implementation OpenMPI and UCX. The kernel got invocated

with the same launch dimensions on all three GPUs. For the examination of computation

and communication, the time of computation and communication got separately

measured, and the number of rows divided by the measured time. If several GPUs are

involved, the number of updates per second got averaged over the number of GPUs.

The measurements were performed with the ROCm version 4.1.0 for the Radeon Instinct

MI50 and version 4.0.0 for the Instinct MI100.

38

Figure 9: Average throughput of GPUs without MPI

Figure 9 shows the average compute throughput of the three GPUs with one process

without MPI for different numbers of rows. The throughput increases with the problem

size, which indicates that the GPUs perform more work in a similar time. A comparison

of the AMD GPUs show, that the newer Instinct MI100 performs worse at small problem

sizes, where the Radeon Instinct MI50 is up to 1.25 times faster. But at bigger problem

sizes the newer GPU overtakes its predecessor. The Tesla V100 achieves higher

throughput than both AMD GPUs, roughly 1.25 to 2 times the Radeon Instinct MI50. The

different ratios of the results are depicted in table 3. These ratios serve as a baseline to

which the computational ratios of the MPI solver can be compared to.

Number of Rows 5000 10 000 50 000 100 000 500 000 1 000 000

Tesla V100 to

Radeon Instinct MI50

1.90 2.01 2.05 2.04 1.42 1.25

Tesla V100 to

Instinct MI100

2.02 2.38 2.75 2.75 1.39 1.09

Instinct MI100 to

Radeon Instinct MI50

0.94 0.84 0.75 0.74 1.03 1.14

Table 3: Throughput ratios for the GPUs without MPI

39

Figure 10: Throughput of GPUs with two MPI processes

Figure 10 depicts the average throughput per GPU for computation and communication

measured while employing two GPUs via two MPI processes. The value for

computational throughput decreases since the value gets averaged over the number of

used GPUs and each GPU works only on half the number of rows.

Like in the MPI-less tests, the Instinct MI100 performs worse in computational throughput

than its predecessor for the low number of rows. In almost all test configurations the

Radeon Instinct MI50 is 2 times faster than its successor. Again, the NVIDIA GPU is

faster than both AMD GPUs, the ratio is even bigger for the tested configurations, up to

3 times than the Radeon Instinct MI50. For the communication, however, the GPUs show

different behavior. Whereas the communicational throughput increases with each step

for the NVIDIA GPU, the AMD GPUs show a constant throughput regardless of the

number of rows. Hence, the ratio increases between the NVIDIA GPU and an AMD GPU

with each step, up to 26.14 times between the Tesla V100 and Radeon Instinct MI50.

The ratios for all configurations are depicted in table 4.

40

 Number of Rows 1000 5000 10 000 50 000 100 000

Computation

Tesla V100 to

Radeon Instinct MI50

0.81 1.04 2.52 3.02 2.97

Tesla V100 to

Instinct MI100

1.60 2.08 2.58 6.71 6.44

Instinct MI100 to

Radeon Instinct MI50

0.50 0.50 0.98 0.45 0.46

Communication

Tesla V100 to

Radeon Instinct MI50

1.86 7.87 13.62 23.34 26.14

Tesla V100 to

 Instinct MI100

4.08 9.12 15.31 26.08 29.04

Instinct MI100 to

Radeon Instinct MI50

0.46 0.86 0.89 0.90 0.90

Table 4: Throughput ratios for the GPUs with two MPI processes

Compared to the ratios of the MPI-less tests depicted in table 3, the computational ratios

of the test depicted in table 4 are worse for the AMD GPUs but still close. The bad ratios

of the AMD GPUs in communication however clearly indicate a problem in the

communication between the GPUs via OpenMPI. Thus, the bad performance of the MPI

using the Jacobi solver observed in the first tests was mainly caused by the

communication.

To further investigate the communication problem, the collective communication used in

the Jacobi solver gets compared to point-to-point MPI communication. Therefore, the

OSU benchmarks for MPI get used [39]. Firstly, the OSU benchmark osu_allgatherv [39]

covering the used MPI function MPI_Allgatherv was performed using the different GPUs.

The benchmark measures latency for messages of increasing size between the

communication participants [39]. A selection of the results is shown in table 5.

41

Message Size Tesla V100 Radeon Instinct MI50 Instinct MI100

1 50.53 7.18 3.17

32 50.34 12.15 7.68

1024 51.46 135.27 115.85

32768 75.29 2807.71 1718.21

1048576 487.22 92183.18 53876.01

Table 5: Average Latency of osu_allgatherv in µs

These values show similar behavior to the Jacobi solver. For bigger message sizes the

latency increases significantly for AMD GPUs, whereas the Tesla V100 shows only a

moderate increase. At the biggest message size tested, the NVIDIA GPU has a 189.20

times lower latency than the Radeon Instinct MI50 and 110.58 times lower than the

Instinct MI100. To check the latency of point-to-point communication, the OSU

benchmark osu_latency was performed, which measures the one-way latency of the

communication [39].

Message Size Tesla V100 Radeon Instinct MI50 Instinct MI100

1 0.36 0.34 1.83

32 28.54 3.53 3.76

1024 29.38 9.13 54.18

32768 52.06 13.56 8.34

1048576 338.64 145.79 45.16

Table 6: Average Latency of osu_latency in µs

The measurements depicted in table 6 however show different behavior than the

collective communication results. The AMD GPUs have lower latency than the NVIDIA

GPU at bigger message sizes. The Radeon Instinct MI50s latency is 2.32 times lower,

the Instinct MI100s 7.50 times. This behavior is reinforced by measurements taken with

the osu_bw benchmark, which measures the bandwidth of point-to-point communication

[39]. For communication, osu_bw uses non-blocking MPI functions [39].

42

Message Size Tesla V100 Radeon Instinct MI50 Instinct MI100

1 0.06 0.45 0.74

32 2.02 11.59 9.65

1024 63.36 91.06 18.87

32768 1672.74 2868.30 3613.31

1048576 5079.01 7575.60 46859.91

Table 7: Measured point-to-point bandwidth using osu_bw in MB/s

The measurements of the benchmarks show that the communication problem is

restricted to collective communication and does not affect point-to-point communication.

An enquire to the AMD support regarding the different behaviors of collective and point-

to-point communication with OpenMPI confirmed the observation. For point-to-point

communication, OpenMPI can use the direct path between the AMD GPUs. But the

collective communication via OpenMPI requires a feature, which is not yet implemented

in the HIP library. Therefore, the messages get copied to the host side, which performs

the collective communication and copies the results back to the GPUs. This intermediate

step generates the observed latency. The required feature of HIP however is currently in

development according to the AMD statement.

43

5. Conclusion and Future Work

In this thesis, we extended the libraries Device and GemmForge, which cover the GPU-

related functionalities of SeisSol. The libraries are now compatible with AMD GPUs while

retaining the ability to run on NVIDIA GPUs. For confirmation of the successful extension,

we ran benchmarks for each library. Furthermore, these benchmarks evaluated the

performance characteristics of an AMD GPU and served as a comparison to the existing

NVIDIA implementation. Therefore, a comparable NVIDIA GPU, namely the Tesla V100,

was used, which showed some advantages over AMD's Radeon Instinct MI50.

The Roofline model analysis showed that the generated kernels perform worse on the

Radeon Instinct MI50 than on the Tesla V100, but the performance was limited by low

memory bandwidth. Comparable performance on the AMD GPU may be achieved by a

further investigation of the deviation of the measured bandwidth to the theoretical.

Furthermore, the performance of the kernels can be improved by increasing the

arithmetic intensity. This can be achieved by combining several kernels into one to

increase the number of floating-point operations at a similar rate of moved bytes, as

proposed in [5].

The Jacobi solver revealed a problem in the collective communication of AMD GPUs

performed by using OpenMPI. However, the OSU benchmarks showed, that this problem

is limited to collective communication and does not affect non-blocking point-to-point

communication. This behavior got confirmed by AMD support. However, this

communication problem does not affect SeisSol since the majority of MPI communication

is realized by the unaffected non-blocking point-to-point communication.

For running earthquake simulations using SeisSol on AMD GPUs, the next generation

of AMD GPUs may pose an opportunity. Based on information from multiple online

sources, e.g. [40], the Instinct MI200 is going to feature managed memory, which is used

by SeisSol running on NVIDIA GPUs.

Furthermore, the extension of both libraries poses an opportunity for further work.

OneAPI4, which includes the SYCL programming model [41], is such a candidate, which

unites different accelerator architectures, including GPUs, under a single API.

4 https://www.oneapi.com/

44

List of Figures

Figure 1: The SISD (left), SIMD (middle) and SIMT (right) model.................................. 4

Figure 2: Communication between the processes ... 15

Figure 3: The Device compilation process .. 20

Figure 4: Selection of bandwidth measurements ... 26

Figure 5: Roofline model analysis for the AMD Radeon Instinct MI50. 30

Figure 6: Roofline model analysis for the NVIDIA Tesla V100 31

Figure 7: Distribution of problem domain onto MPI processes 33

Figure 8: Runtime of Jacobi solver with one process on the Radeon Instinct MI50 36

Figure 9: Average throughput of GPUs without MPI .. 38

Figure 10: Throughput of GPUs with two MPI processes .. 39

45

 List of Tables

Table 1: Comparison of hardware specifications ... 7

Table 2: The different y-dimensions of the wavefronts .. 29

Table 3: Throughput ratios for the GPUs without MPI ... 38

Table 4: Throughput ratios for the GPUs with two MPI processes............................... 40

Table 5: Average Latency of osu_allgatherv in µs ... 41

Table 6: Average Latency of osu_latency in µs ... 41

Table 7: Measured point-to-point bandwidth using osu_bw in MB/s 42

46

Bibliography

[1] TOP500: https://www.top500.org/statistics/list/ using “Accelerator/CP Family” as

Category and the November 2020 release

[2] AMD: https://www.amd.com/en/products/exascale-era

[3] Oak Ridge National Laboratory: https://www.amd.com/en/products/exascale-era

[4] Hewlett Packard Enterprise: https://www.hpe.com/us/en/newsroom/press-

release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-

fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-

security-administration-nnsa.html

[5] Ravil Dorozhinskii and Michael Bader. 2020. SeisSol on Distributed Multi-GPU

Systems: CUDA Code Generation for the Modal Discontinuous Galerkin

Method. International Conference on High Performance Computing in

Asia-Pacific Region.

[6] Yuhsiang M. Tsai, Terry Cojean, Tobias Ribizel and Hartwig Anzt. 2020.

Preparing Ginkgo for AMD GPUs – A Testimonial on Porting CUDA Code to

HIP. Parallel Processing Workshopseuro-par 2020 International Workshops,

Warsaw, Poland, August 24–25, 2020

[7] Cade Brown, Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. 2020.

Design, Optimization, and Benchmarking of Dense Linear Algebra Algorithms

on AMD GPUs. 2020 IEEE High Performance Extreme Computing Conference

(HPEC), Waltham, MA, USA, 2020

[8] Yujiang Bi, Yi Xiao, WeiYi Guo, Ming Gong, Peng Sun, Shun Xu, and Yi-bo

Yang. 2020. Lattice QCD GPU Inverters on ROCm Platform. EPJ Web Conf.,

245 (2020) 09008

[9] TechPowerUp: https://www.techpowerup.com/gpu-specs/tesla-v100-sxm2-16-

gb.c3471

[10] NVIDIA. 2017. NVIDIA Tesla V100 GPU Architecture. Retrieved from:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-

whitepaper.pdf

[11] NVIDIA. 2020. NVIDIA V100 Tensor Core GPU. Retrieved from:

https://images.nvidia.com/

content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf

[12] IBM. 2018. IBM Power System AC922 Introduction and Technical Overview.

Retrieved from: http://www.redbooks.ibm.com/redpapers/pdfs/redp5472.pdf

[13] Michael J. Flynn. 1972. Some Computer Organizations and Their Effectiveness.

IEEE Transactions on Computers, VOL. c-21, NO. 9

https://www.top500.org/statistics/list/
https://www.amd.com/en/products/exascale-era
https://www.amd.com/en/products/exascale-era
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.techpowerup.com/gpu-specs/tesla-v100-sxm2-16-gb.c3471
https://www.techpowerup.com/gpu-specs/tesla-v100-sxm2-16-gb.c3471

47

[14] Zhe Jia, Marco Maggioni, Benjamin Staiger and Daniele P. Scarpazza. 2018.

Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking.

arXiv:1804.06826

[15] NVIDIA: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[16] TechPowerUp: https://www.techpowerup.com/gpu-specs/radeon-instinct-

mi50.c3335

[17] AMD. 2020. AMD Radeon Instinct MI50. Retrieved from: https://www.amd.com/

system/files/documents/radeon-instinct-mi50-datasheet.pdf

[18] Paul Bauman, Noel Chalmers, Nick Curtis, Chip Freitag, Joe Greathouse,

Nicholas Malaya, Damon McDougall, Scott Moe, René van Oostrum and Noah

Wolfe. 2019. Introduction to AMD GPU Programming with HIP. Retrieved from:

https://www.olcf.ornl.gov/wp-

content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

[19] AMD. 2020. “Vega” 7nm Instruction Set Architecture. Retrieved from:

https://developer.amd.com/wp-content/resources/Vega_7nm_Shader_ISA.pdf

[20] Jason Sanders and Edward Kandrot. 2010. CUDA by Example. Addison

Wesley

[21] NVIDIA. 2017. NVIDIA CUDA Compute Unified Device Architecture

Programming Guide. Retrieved from: http://developer.download.nvidia.com/

compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

[22] Michael Dumbser and Martin Käser. 2006. An arbitrary high-order

discontinuous Galerkin method for elastic waves on unstructured meshes – II.

The three-dimensional isotropic case. Geophys. J. Int. 167, 1 (2006), 319–336.

[23] Alexander Breuer, Alexander Heinecke and Michael Bader. 2016. Petascale

Local Time Stepping for the ADER-DG Finite Element Method. 2016 IEEE

International Parallel and Distributed Processing Symposium

[24] Michael Dumbser, Martin Käser and Eleuterio F. Toro. 2006. An arbitrary high-

order Discontinuous Galerkin method for elastic waves on unstructured meshes

– V. Local time stepping and p-adaptivity. Geophys. J. Int. (2007) 171, 695–717

[25] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface

Standard Version 3.1. Retrieved from: https://www.mpi-forum.org/docs/mpi-

3.1/mpi31-report.pdf

[26] Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B.

Baker, Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L.

Graham, Liran Liss, Yiftah Shahar. 2015. UCX: An Open Source Framework for

HPC Network APIs and Beyond. Retrieved from: https://www.openucx.org/wp-

content/uploads/2015/09/ucx_hoti20151.pdf

[27] OpenUCX Documentation: https://www.openucx.org/documentation/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.techpowerup.com/gpu-specs/radeon-instinct-mi50.c3335
https://www.techpowerup.com/gpu-specs/radeon-instinct-mi50.c3335
https://www.openucx.org/documentation/

48

[28] UCX. https://openucx.github.io/ucx/api/v1.9/html/index.html

[29] UCX. https://openucx.github.io/ucx/api/v1.9/html/md__hpc_mtr_scrap_users

_yosefe _ucx_docs_doxygen_design.html#UCP

[30] NVIDIA. https://docs.nvidia.com/nsight-visual-studio-edition/nvtx/index.html

[31] Refactoring Guru. https://refactoring.guru/design-patterns/facade

[32] Refactoring Guru. https://refactoring.guru/design-patterns/adapter

[33] Refactoring Guru. https://refactoring.guru/design-patterns/singleton

[34] Samuel Webb Williams, Andrew Waterman and David A. Patterson. 2008.

Roofline: An Insightful Visual Performance Model for Floating-Point Programs

and Multicore Architectures. Retrieved from:

https://www2.eecs.berkeley.edu/Pubs

/TechRpts/2008/EECS-2008-134.html

[35] https://people.math.sc.edu/Burkardt/data/sparse_ellpack/sparse_ellpack.html

[36] AMD. https://www.amd.com/en/products/cpu/amd-epyc-7742

[37] AMD. https://www.amd.com/en/products/server-accelerators/instinct-mi100

[38] TechPowerUp. https://www.techpowerup.com/gpu-specs/radeon-instinct-

mi100.c3496

[39] Ohio State University. http://mvapich.cse.ohio-state.edu/benchmarks/

[40] Hardware Times. https://www.hardwaretimes.com/amd-instinct-mi200-in-h2-

2021-4x-mi200-gpus-paired-per-epyc-trento-cpus-via-infinity-fabric-3-0/

[41] Intel. 2020. OneAPI Specification Release 1.0-rev-3. Retrieved from:

https://spec.oneapi.com/versions/latest/oneAPI-spec.pdf

https://openucx.github.io/ucx/api/v1.9/html/index.html
https://openucx.github.io/ucx/api/v1.9/html/md__hpc_mtr_scrap_users_yosefe
https://openucx.github.io/ucx/api/v1.9/html/md__hpc_mtr_scrap_users_yosefe
https://docs.nvidia.com/nsight-visual-studio-edition/nvtx/index.html
https://www2.eecs.berkeley.edu/Pubs
https://people.math.sc.edu/Burkardt/data/sparse_ellpack/sparse_ellpack.html
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/products/server-accelerators/instinct-mi100
https://www.techpowerup.com/gpu-specs/radeon-instinct-mi100.c3496
https://www.techpowerup.com/gpu-specs/radeon-instinct-mi100.c3496
http://mvapich.cse.ohio-state.edu/benchmarks/

