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Abstract 

GPUs (Graphics processing units) are commonly used in high-performance computing 

to improve the execution time of parallelizable programs. SeisSol, as such a program, 

can currently only use GPUs manufactured by NVIDIA. In this thesis, we extend the 

GPU-related libraries to work additionally on GPUs manufactured by AMD. We examine 

the performance of the extended libraries on the AMD Radeon Instinct MI50 using the 

Roofline model and compare it to results measured on the NVIDIA Tesla V100. 

Furthermore, we investigate using multiple AMD GPUs, which communicate via 

OpenMPI. The Radeon Instinct MI50 achieved a good performance but was slower than 

the NVIDIA GPU. We detected a problem in the communication between the GPUs, 

which is restricted to collective communication. This does not affect SeisSol since it uses 

mainly point-to-point communication. 
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1. Introduction 

Up until now, GPUs (Graphics processing unit) manufactured by AMD played no 

significant role in the architecture of high-performance computers. In the list of the 500 

most powerful supercomputers published in November 2020 by TOP500, only one 

system uses AMD GPUs [1]. About 130 other systems incorporating GPUs feature 

NVIDIA products [1]. But as two new supercomputers featuring AMD GPUs are planned, 

which are going to achieve more than 1 𝐸𝑋𝐴𝐹𝐿𝑂𝑃 =  1018 𝐹𝐿𝑂𝑃 per second [2], namely 

the Frontier [3] and the El Capitan system [4], GPUs developed by AMD may play a 

bigger role in the future of high-performance computing. Thus, the ability to run programs 

using AMD GPUs for accelerating computation opens the possibility to deploy these 

programs to upcoming systems. As the simulation of natural phenomena is a traditional 

high-performance computing field, the software package SeisSol represents a candidate 

for introducing AMD GPU support via the HIP API. The software is used for simulating 

earthquake dynamics and already capable of using NVIDIA GPUs for accelerated 

computation. To keep the software package flexible this thesis does not simply port 

SeisSol to HIP. Instead, the two libraries Device and GemmForge, which provide GPU-

related functionality for SeisSol, get extended to support AMD GPUs while retaining 

compatibility for NVIDIA GPUs. 

1.1. Related Work 

A directly comparable work does not exist, since this thesis describes the first 

implementation of SeisSol using AMD GPUs for the computation. But [5] represents the 

direct predecessor of this thesis. It describes the implementation of the GPU-related 

features for SeisSol targeting NVIDIA GPUs and both libraries extended in this thesis 

were created in the context of it. Thus, this work serves as the origin of this thesis. Apart 

from SeisSol several HPC programs have already been ported for AMD GPUs, like [6], 

[7], and [8]. Whereas [7] follows a similar approach as this thesis by abstracting the GPU-

related API calls with an additional layer, [6] defines the functionality, which can be used 

for both GPUs in a common folder. The platform-specific implementation is realized in a 

separate folder for each platform, which interfaces the common folder. For usage of the 

different platforms, each platform gets explicitly accessed, whereas in our approach an 

API manages the access to the different platforms. 
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1.2. Structure 

This thesis is structured as followed: In the following chapter 2, background knowledge 

about GPUs, the software SeisSol, and important libraries used in the thesis gets 

provided. Chapter 3 introduces the two libraries which provide GPU functionality for 

SeisSol. Furthermore, performed changes and additions to support AMD GPUs get 

depicted. These changes get evaluated in chapter 4, where the functionality of both 

libraries on both platforms gets verified. Additionally, important characteristics of the 

used AMD GPU for SeisSol get examined via special benchmark tests. The results of 

those tests get compared to results achieved with a comparable NVIDIA GPU model. 

Additionally, the usage of multiple GPUs via MPI gets examined. Chapter 5 finalizes the 

work by concluding the performed changes. 
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2. Basics 

This chapter covers required background knowledge about the used GPUs and APIs 

provided by the corresponding manufacturer. Furthermore, the theoretical background 

of the target software SeisSol and two libraries important for multi-node computing get 

illuminated.  

2.1. Hardware 

Since a major computational part of SeisSol consists of matrix manipulation, as 

described later, the ability to simultaneously execute the same operation multiple times 

is more important than a fast execution of a single operation. This translates into a 

hardware requirement for the capability of parallelism instead of single-thread 

performance. This demand is met by GPUs, which contain thousands of moderately fast 

cores, in contrast to CPUs (Central processing unit), which offer few, fast cores. Since 

this thesis focuses on porting the GPU-dependent parts of SeisSol to a new 

manufacturer architecture, namely AMD, there are two manufacturer-specific hardware 

architectures relevant to the thesis. The next two chapters describe the hardware 

architectures of the two mainly used GPU models. 

2.1.1. NVIDIA 

Up until now, SeisSol used NVIDIA GPUs [5] for the computation of the matrix 

manipulations. Therefore, an NVIDIA GPU is used as a comparison to the new 

implementation in the thesis. The model used is the NVIDIA Tesla V100 SXM2 16 GB 

released in 2019, which contains the Volta GV100 architecture. It features 16 GB HBM2 

memory with a bandwidth of about 1133 GB/s [9]. The clock speed ranges from 1245 

MHz to 1597 MHz if boosted [9]. The Tesla V100 SXM2 models allow a connection 

between the GPU and other processors with the NVLink technology [10]. NVLink 

provides higher bandwidth for data exchange between the processors than the 

expansion bus standard. The Volta architecture supports up to six bidirectional links, 

where each link delivers up to 25 GB/s [10]. For GPU-to-GPU bidirectional 

communication up to 300 GB/s by using all six links [10] can be achieved in contrast to 

32 GB/s provided by PCIe 3.0 [11]. NVLink also allows the connection of a GPU to a 

CPU, if the CPU supports NVLink. The achievable bandwidth is dependent on the 

number of links supported by the CPU. For example, IBMs POWER9 CPU supports up 

to six links, thus a bidirectional connection with a bandwidth of 300 GB/s to one Volta 

GPU is possible [12]. The GV100 design features as stated in [10] six GPCs (GPU 
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Processing Cluster), each of those incorporating seven TPCs (Texture Processing 

Cluster). A TPC combines two SMs (Streaming Multiprocessor), resulting theoretically in 

6 𝐺𝐶𝑃𝑠 ∗ 7 𝑇𝑃𝐶𝑠 ∗ 2 𝑆𝑀𝑠 = 84 𝑆𝑀𝑠, but in the Tesla V100, only 80 SMs are activated. 

One SM houses 64 FP32 cores for single-precision and 32 FP64 cores for double-

precision floating-point operations. For integer operations, 64 INT32 cores are included. 

Furthermore, the architecture has 8 Tensor cores per SM, commonly used for neural 

networks. A Tensor core computes the operation 𝐷 = 𝐴 ∗ 𝐵 + 𝐶 , where 𝐴,𝐵,𝐶 and 𝐷 are 

matrices with a dimension of 4𝑥4. All the cores of an SM are distributed evenly between 

four processing blocks.  Each block has its warp scheduler, dispatch unit, L0 instruction 

cache, and a 64 KB-sized register file for storing data needed for the computation. 

Additionally, each SM has 128 KB of L1 data cache, which can be used for data sharing 

between the cores, one L1 instruction cache, and four texture units. The 6144 KB-sized 

L2 cache is accessible by all SMs and used for instructions and data, in contrast to the 

L0 and L1 caches. 

For the execution of instructions, the processing block uses a specialized version of the 

SIMD (Single instruction multiple data) model [13] called SIMT (Single instruction 

multiple threads) [10]. The SIMD model describes a computational system where one 

instruction, for example, add or multiply, gets executed on a set of data. In contrast 

instructions in multicore CPUs get executed on a single piece of data by the single cores 

(SISD - single instruction single data), which are the CPU equivalent to processing 

blocks. The SIMT model refines the SIMD model by executing the instruction with one 

thread per data piece. In contrast, a vector processor satisfies the SIMD model, but not 

the SIMT model since a single thread executes the instruction for a vector of data. The 

following figure depicts these three models: 

 

Figure 1: The SISD (left), SIMD (middle) and SIMT (right) model 

As described in [10], the GV100 bundles 32 threads into a warp, where every thread 

executes the same operation simultaneously. To realize branch execution, for example, 

an if-else statement, each warp has an active mask, determining which thread should be 

executed. Nonactive threads do not perform any work during the execution step of the 

warp. Furthermore, the Volta architecture provides a program counter and a call stack 

for each thread in the warp, in contrast to one program counter and call stack for the 
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whole warp. This allows for synchronization in smaller than warp thread sizes. 

Furthermore, it enables a geared execution of branch instructions, meaning that the warp 

does not have to execute the whole branch at once, but can switch freely between the 

instructions of multiple branches. Additionally, this technique allows for communication 

between the threads during branch execution, which would not be possible without the 

multiple program counters. With only one program counter and call stack, the warp can 

only synchronize on the warp level, since only the state of the whole warp is known. 

Each SM can handle up to 64 active warps, where the warps get divided evenly [14] onto 

the warp schedulers of the four processing blocks. For the instructions mainly used by 

SeisSol, namely, float multiplication for the matrices and integer arithmetic for pointers 

and the control variables of the loops, the Volta architecture needs 4 cycles to complete 

the execution on a whole warp [14]. Due to the separate INT32 and FP32 cores, a Volta 

SM can execute integer and floating-point arithmetic in parallel [10]. This allows 

simultaneous execution of the instructions nested in a loop and updating the control 

variables for the next step. To hide latency generated by memory transactions and 

control flow operations, the warp scheduler can choose another warp to be issued to the 

processing block [15]. 

2.1.2. AMD 

The AMD GPU used for this thesis is the AMD Radeon Instinct MI50 Accelerator released 

in 2018. It has 32 GB of HBM2 memory width a bandwidth of 1024 GB/s, the clock speed 

ranges from 1200 up to boosted 1746 MHz [16]. It is connected via PCIe 4.0 x16 lanes, 

which allow about 64 GB/s [17] bandwidth between GPU and main memory. Additionally, 

it includes the AMD Infinity Fabric technology, which enables up to 184 GB/s direct GPU 

to GPU communication in addition to the PCIe connection [17]. The Radeon Instinct MI50 

is based on the GCN 5.1 architecture, codenamed Vega. It consists of four shader 

engines housing 15 CUs (Compute Unit) and one workload manager per shader engine 

[18]. Each CU contains one SU (Scalar Unit) and 4 VUs (Vector Units) [19]. The SU can 

execute exactly one integer instruction in SISD fashion, whereas the VUs, which are 16 

lanes wide SIMD processing units, can execute integer and floating-point instructions on 

16 work items simultaneously [18]. The CU holds 12.5 KB of SGPR (Scalar General-

Purpose Register) [18] organized in 32-bit wide entries [19]. For each VU, 64 KB VGPR 

(Vector General-Purpose Register) are available [18]. Like the SGPR the VGPR is 

organized in 32-bit entries [19], which can be combined for representing larger values. 

Furthermore, each CU holds a 16 KB-sized L1 cache, and a 64 KB storage called LDS 

(Local Data Share) [18]. The LDS is intended for data sharing between VUs [19]. In 

contrast, the L1 cache is intended for moving data into and computed results out of the 

CU [19]. The L1 cache of each CU is connected to the 4 MB sized L2 cache [16] shared 
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by all CUs of the GPU and can move data directly between the VGPRs or the LDS and 

the memory of the GPU [19]. For data sharing between the single CUs, the GPU provides 

the 64 KB sized GDS (Global Data Share) [19]. For the controlling and distributing of the 

workload, each CU contains one scheduler [18]. 

As described in [18], the AMD GPU executes the program in the SIMD fashion, where it 

groups 64 work items, the AMD terminology for threads, into a wavefront, the AMD 

equivalent for NVIDIAs warp. Logically all the 64 work items get executed simultaneously 

on a single VU. Branch divergence is represented by a 64-bit wide execute mask, one 

bit for each lane, and a 1-bit flag, which indicates if all entries in the mask have the value 

zero. If the entry in the mask is zero for a certain lane, this lane does not execute any 

instruction during the execution step of the whole VU [19]. 

Each VU can hold up to 10 wavefronts in its instruction buffer, making 40 in total for a 

CU [18]. Since a VU contains only 16 lanes, a wavefront gets executed in a minimum of 

four steps to complete the instruction for all 64 work items [18]. If a wavefront creates 

delay, by waiting for a memory transfer, for example, the VU can be switched to another 

wavefront to hide the latency. If all work items of a wavefront execute the same integer 

arithmetic instruction, the instruction gets distributed to the SU of the CU. The scheduler 

of the CU chooses every clock cycle according to the round-robin method another VU to 

work on [18]. The round-robin method simply divides the time evenly among all VUs. 

During scheduling, the scheduler can only issue one instruction per wavefront and 

maximal 5 wavefronts at once. Furthermore, the instructions must differ in their category, 

for example, SU or VU or memory instructions [18]. 

2.1.3. Comparison of the Architectures 

The comparison in this section is based on the hardware specifications, whereas a 

comparison of the GPUs based on measurements is included in the evaluation chapter. 

Table 1 lists easily comparable hardware specifications. For the deeper comparison of 

the 2 GPUs, this section focuses on the SM and CU. The VUs of a CU are comparable 

with the processing blocks of an SM since both have the capacity for working on 16 

threads or work items simultaneously and both, the SM and CU house four of the 

respective components.  

As an advantage, the SM features a scheduler for every processing block, whereas the 

CU has only one scheduler for all four VUs. A processing block gets instantly the next 

available warp scheduled after it completes the execution of a warp. The scheduler of 

the CU however works every clock cycle on a different VU. If an instruction takes 𝑛 

cycles, where 𝑛 % 4 ≠ 0 or no wavefront is available for execution during the scheduling, 

the VU stands still for 3 cycles until the scheduler is able to schedule on this VU again, 

even if a wavefront would be available in the meantime. Thus, a CU can have an idle VU 
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although a wavefront would be ready for execution, whereas the SM can put a 

processing block instantly to work if there are warps available. 

 Tesla V100 Radeon Instinct MI50 

Memory Size  16 GB  32 GB 

Memory Type  HBM2  HBM2 

Bandwidth 1133 GB/s 1024 GB/s 

Number of SMs (NVIDIA)/CUs (AMD)  80  60 

FP32 Cores per SM (NVIDIA) 

Lanes per CU (AMD) 

 64  64 

Total number of FP32 cores (NVIDIA) 

Total number of VU lanes (AMD) 

 5120  3840 

Shared Memory per SM (NVIDIA) 

LDS per CU (AMD) 

 96 KB  64 KB 

Register File per SM (NVIDIA) 

VGPR per CU (AMD) 

 256 KB  256 KB 

Boosted clock speed  1597 MHz  1746 MHz 

Theoretical FP32 performance 

(based on boosted clock speed) 

 15.7 TFLOPs  13.41 TFLOPs 

Table 1: Comparison of hardware specifications 

Another advantage of the SM is the set of separate INT32 cores in every processing 

block. They enable the parallel execution of FP32 and INT32 instructions for warps. In 

contrast, the CU only incorporates the SU, which is shared between all four VUs. 

Furthermore, the SU can only execute on one piece of data (SISD) in contrast to the 16 

INT32 cores, which can work on a set of data (SIMD).  The SU is only used if all 64 work 

items of a wavefront perform the same operation with the same parameters and if a 

wavefront of a VU already occupies the SU, wavefronts residing on the other VUs cannot 

use the SU. Hence the SM can execute a floating-point and integer instruction 

simultaneously for every processing block, whereas the CU can only execute both 

operations if the SU is not occupied and the integer instruction is the same for the whole 

wavefront. 

The architectures differ in the grouping size of work items or threads. Both, the CU and 

SM have the capacity for four simultaneously executed groups. But NVIDIA bundles 32 

into a warp and AMD 64 into a wavefront. This is not automatically an advantage for one 

of the architectures. If a program cannot utilize the size of 64 work items, the VU still 

executes all 64 work items and unused lanes perform no useful work. But if the capacity 

is used, the VU may perform more work at once than a processing block. This is 

dependent on the executed instruction: For example, the VU needs, as the processing 

block, four cycles for the FP32 FMA (Fused Multiply-Add), but it can process the doubled 
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amount of work items or threads than its NVIDIA counterpart. This leads to another, 

closely related aspect. The CU can handle more threads than an SM, namely 2560 to 

2048, since the CU can hold up to 40 wavefronts with 64 threads each in its buffers, the 

SM can hold 64 warps with 32 threads each. But due to the grouping size of a wavefront, 

this does not automatically translate to an advantage of the AMD GPU. If the program 

cannot utilize all 64 slots, many work items remain empty.  

Additionally, the SM houses 8 Tensor cores, whereas the CU has no comparable 

counterpart. But for SeisSol the Tensor cores pose no advantage because it employs an 

algorithm optimized for the used matrix sizes, which does not use Tensor cores. The 

used algorithm gets explained in chapter 3.2.  

Apart from the SMs and CUs the Tesla V100 has another advantage over the Radeon 

Instinct MI50. The Tesla V100 can be connected to the CPU via NVLink, whereas the 

Radeon Instinct MI50 is connected via PCIe 4.0. However, the connection to the CPU 

via NVLink is not mandatory, it can be used only for connecting GPUs, like the Infinity 

Fabric of AMD. But NVLink offers, depending on the number of used links, up to 300 

GB/s, Infinity Fabric only 184 GB/s. The PCIe 4.0 connection to the CPU of the Radeon 

Instinct MI50 is also slower than NVLink with 64 GB/s, but if the Tesla V100 is not 

connected via NVLink, it only offers 32 GB/s with PCIe 3.0. 

2.2. API 

Unlike in the early days of scientific GPU programming, where researchers had only 

access to the GPU via graphical APIs and formulated their calculations as a shader 

program in shading languages [20], today both NVIDIA and AMD provide APIs especially 

designed for non-graphics related usage of GPUs. These are usable by more common 

programming languages, such as C++. Both manufacturers follow the same basic 

concepts: To distinguish between the CPU and GPU scope, the CPU scope is called the 

host side, and the GPU scope the device side. Consequently, functions running on the 

CPU are called host functions and functions running on the GPU device functions. A 

special case of device functions is the kernel functions. They are callable by the host 

side, in contrast to non-kernel device functions, which are only callable by the device 

side. Furthermore, the kernel functions represent the entry point for the GPU 

computation. Like the functions, the memory also gets differentiated between host 

memory and device memory.  

The basic structure of a program invoking a kernel function for GPU computation is the 

same for both APIs: Firstly, the required memory gets allocated on the GPU and the 

required data gets transferred. Then the kernel function will be called and executed. After 

the execution, the results get copied back to the CPU and the allocated device memory 
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gets deallocated. But not every algorithm profits by running on the GPU. The GPU clock 

speed is much slower than a CPU clock speed, but the GPU excels in parallel 

processing. Furthermore, the copying of the data creates latency, which is reducible to 

a certain amount by concurrent copying and executing, which is supported by the GPUs. 

Thus, only heavy parallelable algorithms, for example, gemms (General Matrix 

Multiplication), can profit when processed on GPUs. 

2.2.1.  CUDA 

CUDA (Compute Unified Device Architecture) [21] is the name of the API provided by 

NVIDIA. It was released in 2006 as a library for C and is now available for multiple 

programming languages on Windows and Linux. It provides language extensions for 

marking functions and variables for GPU or CPU usage and functions for controlling the 

data and program flow. Files using the CUDA-specific features need to include the 

cuda.h file and to be compiled by the nvcc compiler. The code snippet below shows a 

simple CUDA C++ program to demonstrate important CUDA features. The program 

sums up two vectors and stores the result in a separate vector. 

1. #include <cuda.h> 
2.  
3. #define SIZE 100 
4.  
5. __global__ void matrixMultiplicationKernel(int* a, int* b, int* c){ 
6.         int tid = threadIdx.x + blockIdx.x * blockDim.x; 
7.         while(tid < SIZE){ 
8.                 c[tid] = a[tid] + b[tid]; 
9.                 tid += blockDim.x * gridDim.x; 
10.         } 
11. } 
12.  
13. int main(){ 
14.  
15.         int host_a[SIZE], host_b[SIZE], host_c[SIZE]; 
16.  
17.         for(int i = 0; i < SIZE; i++){ 
18.                 host_a[i] = i; 
19.                 host_b[i] = 2 * i; 
20.         } 
21.  
22.         int *dev_a, *dev_b, *dev_c; 
23.  
24.         cudaMalloc(&dev_a, SIZE * sizeof(int)); 
25.         cudaMalloc(&dev_b, SIZE * sizeof(int)); 
26.         cudaMalloc(&dev_c, SIZE * sizeof(int)); 
27.  
28.         cudaMemcpy(dev_a, host_a, SIZE * sizeof(int), cudaMemcpyHostToDevice); 
29.         cudaMemcpy(dev_b, host_b, SIZE * sizeof(int), cudaMemcpyHostToDevice); 
30.  
31.         matrixMultiplicationKernel<<<32,32>>>(dev_a, dev_b, dev_c); 
32.  
33.         cudaMemcpy(host_c, dev_c, SIZE * sizeof(int), cudaMemcpyDeviceToHost); 
34.  
35.         cudaFree(dev_a); 
36.         cudaFree(dev_b); 
37.         cudaFree(dev_c); 
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38.         return 0; 
39.  
40. } 

Line 1 contains the include statement for the CUDA library. In lines 5 – 11 the kernel 

function gets defined. It is marked by the __global__ keyword. The GPU runs the kernel 

function in blocks of threads. The blocks get assigned to an SM and the threads are 

distributed onto warps, where each processing block executes the kernel function. To 

coordinate the computation, each thread and block get numbered. The programmer can 

access these indices by the threadId and blockId variables provided by cuda.h as shown 

in line 6. For example, the fifth thread of the second block works on the index 

4 + 1 ∗ 32 = 36. In case the problem dimension is bigger than the amount of called 

threads, the index tid gets incremented in line 9. The maximum number of threads is 

determined by the hardware limits of the GPU. In lines 24 - 26 the memory on the GPU 

gets allocated by the cudaMalloc function and the needed data gets transferred in lines 

28 – 29 using the cudaMemcpy function. Both functions need the size of the data, SIZE * 

sizeof(int), and the copy function needs additional information about the direction of the 

transfer. In this case, the copy goes from the host to the device, represented by 

cudaMemcpyHostToDevice. In line 31 the kernel function gets launched by the CPU, marked 

by the <<<32,32>>> expression after the function name. The first number determines the 

number of launched blocks, the second the number of threads per block. After the 

launch, the resulting data gets copied back in line 33, this time the direction is 

cudaMemcpyDeviceToHost, and the memory on the GPU gets deallocated in lines 35 – 37 

via cudaFree. Apart from this simple example, the CUDA library offers more functionality 

like synchronization of threads or streams, which goes beyond the scope of the thesis. 

2.2.2. HIP 

AMD released its API HIP (Heterogeneous-compute Interface for Portability) [18] in 

2016. It currently is only available for Linux and C++ but support for Fortran is in 

development [18]. It offers features similar to CUDA. The code snippet below shows the 

same program as in the CUDA section, but this time written with HIP instead of CUDA. 

Since HIP was designed to enable an easy transition from CUDA to HIP the resemblance 

of HIP to CUDA is apparent. The HIP function calls are syntactically like the CUDA 

versions except for hip in front instead of cuda. Their functionality is also the same, as the 

syntactical similarity indicates. Hence only differences aside from the cuda to hip 

transition require additional explanation. 
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1. #include "hip/hip_runtime.h" 
2.  
3. #define SIZE 100 
4.  
5. __global__ void matrixMultiplicationKernel(int* a, int* b, int* c){ 
6.         int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x; 
7.         while(tid < SIZE){ 
8.                 c[tid] = a[tid] + b[tid]; 
9.                 tid += blockDim.x * gridDim.x; 
10.         } 
11. } 
12.  
13. int main(){ 
14.  
15.         int host_a[SIZE], host_b[SIZE], host_c[SIZE]; 
16.  
17.         for(int i = 0; i < SIZE; i++){ 
18.                 host_a[i] = i; 
19.                 host_b[i] = 2 * i; 
20.         } 
21.  
22.         int *dev_a, *dev_b, *dev_c; 
23.  
24.         hipMalloc(&dev_a, SIZE * sizeof(int)); 
25.         hipMalloc(&dev_b, SIZE * sizeof(int)); 
26.         hipMalloc(&dev_c, SIZE * sizeof(int)); 
27.  
28.         hipMemcpy(dev_a, host_a, SIZE * sizeof(int), hipMemcpyHostToDevice); 
29.         hipMemcpy(dev_b, host_b, SIZE * sizeof(int), hipMemcpyHostToDevice); 
30.  
31.         hipLaunchKernelGGL(matrixMultiplicationKernel, 32, 32,  
32.                                                  0, 0, dev_a, dev_b, dev_c); 
33.  
34.         hipMemcpy(host_c, dev_c, SIZE * sizeof(int), hipMemcpyDeviceToHost); 
35.  
36.         hipFree(dev_a); 
37.         hipFree(dev_b); 
38.         hipFree(dev_c); 
39.         return 0; 
40.  
41. } 

One main difference is the include statement in line 1, here the HIP runtime needs to be 

included. The only difference in the kernel function is the nomenclature of the thread and 

block IDs in line 6, but they work like the CUDA variant. A more distinct difference is the 

launch call of the kernel function in lines 31 – 32. It is launched by the hipLaunchKernelGGL 

macro, which takes the function name and the launch dimensions (blocks and threads) 

as the first arguments. The following two arguments are not important for the example, 

they specify the amount of additional shared memory required by the kernel and the 

stream ID it should run into, where zero corresponds to the default stream. The remaining 

arguments are the function parameters for the kernel function. The kernel function gets 

executed in a CU, where the threads of the blocks get organized into wavefronts and 

distributed to the VUs. Like NVIDIA AMD has a hardware-dependent limit for the number 

of threads launched by a kernel. 

The HIP environment offers command-line tools for an automatic port from CUDA to HIP 

code: hipify-perl and hipifiy-clang. The first tool is faster, but the programmer may 
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have to port more code manually. The second one requires, as the name indicates, an 

installation of the clang compiler, but works more precisely and generates additional 

information like warnings about the port procedure [18].  

Furthermore, HIP code can be compiled for NVIDIA GPUs with the nvcc compiler. The 

HIP compiler hipcc invokes depending on the platform the nvcc compiler for CUDA or 

the hip-clang compiler for AMD GPUs. To realize the multiplatform support in the code 

the hip_runtime.h header itself includes depending on the platform either a separate 

header for HIP or CUDA. The CUDA header includes the actual cuda.h header and 

several other headers, that contain macros and function definitions that redirect the HIP 

library calls to CUDA calls, for example, hipMalloc to cudaMalloc. The HIP-specific header 

contains the actual code for the AMD platform. Currently HIP supports not all CUDA 

features, a list of the supported features can be found in the documentation of HIP. To 

execute a program including HIP on an AMD GPU an installation of the ROCm1 open-

source software platform is required.  

2.3. SeisSol 

SeisSol is software for simulating earthquakes. Its mathematical model solves the elastic 

wave equation: 

∂Q

∂t
+A

∂Q

∂x
+B

∂Q

∂y
+C

∂Q

∂z
=0  

by a combination of the discontinuous Galerkin (DG) and the arbitrary high-order 

derivatives (ADER) method as described in [22]. The elastic wave equation is dependent 

on time and space, where the DG method discretizes it in the space and the ADER 

scheme in the time domain resulting in a discrete model. Space dependent matrices 𝐴, 

𝐵, and 𝐶 represent the physical properties of the represented material and Q is a vector 

of unknowns, namely stress and velocity components. For the simulation, the simulated 

area gets divided into a mesh of tetrahedrons and advances in timesteps, computing the 

changes in the tetrahedrons at each timestep. The combination of all tetrahedrons 

represents the simulation of the whole area. The model allows different granularity in the 

mesh represented by tetrahedrons of different sizes throughout the domain [22]. A less 

important area of the simulation can be represented by bigger tetrahedrons, thus 

reducing the number of tetrahedrons, and needed computation. For a similar granularity 

in time, SeisSol allows for different time stepping in the tetrahedrons called local time-

stepping (LTS) as described in [23]. Each tetrahedron stores its time step ∆𝑡 ∈ ℕ+ and 

current time 𝑡 and may only update, if its 𝑡 + ∆𝑡 is smaller than the 𝑡 + ∆𝑡 of its neighbors. 

 

1 https://rocmdocs.amd.com/en/latest/index.html# 
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Due to that tetrahedrons with lower importance can be set to bigger time steps thus 

reducing the amount of the total time steps. If LTS is not applied, all tetrahedrons must 

match the time step of the tetrahedron needing the highest accuracy, i.e., smallest step 

size [24], resulting in more timesteps and thus needed computation. 

For the computation of the updates in the tetrahedrons, the solution for the vector of 

unknowns 𝑄 gets approximated by a polynomial represented by a time-dependent matrix 

containing the coefficients of the polynomial called degrees of freedom and a set of 

space-dependent, orthogonal basis functions of degree 𝑁. 𝑁 also determines the 

convergence order of the whole ADER-DG scheme. Furthermore, applying the DG 

scheme, the elastic wave equation gets multiplied with a test function of the same family 

as the basis function and integrated over the current tetrahedron. Additionally, a 

numerical flux representing the influence of the neighboring tetrahedrons is added. For 

the actual computation, all tetrahedrons get transformed via a transformation matrix into 

a single reference tetrahedron of known. The transformation into the reference 

tetrahedron allows a more efficient computation since several parts of the resulting 

equation can be computed beforehand for the reference tetrahedron, which gets used 

for the update of every tetrahedron. 

The time integration of degrees of freedom gets computed via the ADER scheme. 

Hereby the solution of the elastic wave equation gets approximated regarding time using 

a Taylor series up to the order 𝑁, which is the same as the degree 𝑁 of the basis functions 

used for the DG. The time derivative of the Taylor series gets replaced by space 

derivatives using the Cauchy–Kovalewski procedure. 

The desired convergence order has the be chosen before the compilation and the degree 

𝑁 gets determined based on the convergence order. Via 𝑁 several dimensions of the 

matrices used for the computation get defined. This is used to achieve higher 

performance by generating custom, optimized code for the matrix multiplication 

depending on the known matrix information and targeted hardware. SeisSol supports 

computation only on CPUs and optional GPU offloading for the matrix multiplications. 

For this thesis, only the offloading to the GPU is considered. The generation of the kernel 

and kernel call functions code is done by the GemmForge library, which got introduced 

for NVIDIA GPUs in prior work [5] and is covered in chapter 3.2. 

SeisSol supports computation on multi-node systems. Therefore, the tetrahedrons of the 

mesh get clustered based on their LTS time step as described in [23]. As a restriction, a 

tetrahedron of the cluster 𝐶𝑙 may only be surrounded by tetrahedrons of the time clusters 

𝐶𝑙−1, 𝐶𝑙 or 𝐶𝑙+1, where 𝑙 marks the time step. Then the mesh gets divided into partitions, 

where a partition may contain tetrahedrons from more than one time cluster. 

Furthermore, a partition includes additional memory space for the neighbors of the 

tetrahedrons located on the border of the partition. This is needed since a tetrahedron 
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requires the input of its neighbors for its update. These partitions get distributed onto the 

nodes of the HPC cluster. The nodes compute the updates for their assigned partitions 

independently and exchange data with other nodes if necessary. 

2.4. OpenMPI 

For the communication between the nodes, SeisSol uses an open-source 

implementation of the MPI standard called OpenMPI. The MPI (Message Passing 

Interface) standard specifies a communication system for parallel processes [25]. As the 

name indicates, the communication between the processes is realized via messages. 

MPI manages all the actual communication for the program so that the developer only 

needs to invoke MPI-specified communication functions. For the messages MPI includes 

reliability of transmission, meaning that a message will always be received correctly and 

in the right order if several messages got sent consecutively. The programmer must only 

focus on program errors and resource errors, which may occur due to exceeded system 

resources. For the organization of the communication MPI associates each process with 

a rank, a unique integer value in the running context. This rank is used as the destination 

and source for the messages. The message passing is realized via two function types 

for point-to-point communication: one for sending the message and one for receiving. 

Both function types contain information about the sent data and a communication 

envelope. Naturally, the send-function contains the actual data, and the receive-function 

a buffer for the data to be stored in. Additionally, the receive function contains status 

information about the message, including an error message, in case an error occurred 

during the send. The envelope contains the information for the addressing. It has two 

ranks, one for the source and one for the destination. Additionally, a tag and a 

communicator, defining the communication context, must be included. A message can 

only be received if the send-function and receive-function both define the same 

envelope. However, a receiver may accept any rank and tag in the envelope, but the 

communication context must be identical to the sender. The communication context 

restricts the message to a group of processes. The processes can be organized in 

groups to resemble programming patterns if necessary. MPI features blocking, which 

ensures that the program execution waits until the message got successfully stored or 

sent, and non-blocking variants, allowing the program to continue execution instantly 

after the call of the function, of the send/receive functions. For both variants, four modes 

are included, which define when the actual sending is started depending on a call of a 

matching receive function. Additionally, collective communication, for example, one rank 

broadcasting to all other ranks in a communication context, functions, and much more 

functionality, which goes beyond the scope of this thesis, are also included in MPI.  
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2.5. UCX 

For the transportation of the OpenMPI messages, SeisSol uses the open-source 

framework Unified Communication X, abbreviated UCX. UCX acts as an interface 

between the communication model of the program and the used hardware as described 

in [26], [27], and [28]. In this case, the used communication model is MPI, the following 

figure depicts the influence of UCX in the communication between the MPI processes: 

           

Figure 2: Communication between the processes 

As a main advantage, UCX takes over the hardware support from MPI but introduces a 

small performance loss due to the additional layer. MPI can use interfaces defined by 

UCX to communicate via different transportation technologies without performing 

adjustments based on the transportation medium. Thus, the portability of the program 

gets easier. During its installation, UCX automatically detects available transport systems 

already installed on the machine. It supports many communication models and hardware 

transportation types and allows easy integration of new models and technologies. 

Furthermore, it enables a mixture of different communication models, where the models 

can communicate via the UCX interface. It features three major frameworks:  

UCP (Protocols), the high-level API: UCP provides interfaces for the communication 

libraries. Communication libraries can use the provided interfaces for their 

communication without knowing the underlying hardware or which transport type gets 

used by UCX. UCP is used for the initialization of the UCX framework and managing the 

communication. Hereby it fulfills several tasks. Firstly, it chooses the best transportation 

medium. It considers all available network devices and transport options and chooses 

the best for the task, for example, the ROCm environment for transporting to an AMD 

GPU. Hereby performance and scalability are the crucial factors, but the user can restrict 

the options by editing a UCX environment variable for devices and transport options. 

Secondly, UCP uses multi-rail communication if available. The multi-rail model uses 
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several network devices for the transmission of one message. The message gets 

distributed onto the network devices according to their performance characteristics. The 

distribution of messages can be uneven for network devices with different performance 

characteristics. It supports up to four rails but uses two by default. The user can change 

the number of rails via an environment variable, setting this variable to 1 results in no 

multi-rail usage. Furthermore, it handles the fragmentation of messages. If all 

preparations are made, it passes the message via the underlying UCT layer to the 

selected hardware. UCP consists of several interfaces, providing functionality for the 

different communication models [27][29]: 

• Initialization: These interfaces collect information about the used hardware and 

initialize the UCP endpoints, which get used as source and destination by the 

messages. 

• RMA: Here single-sided communication functions get provided, needed by the 

OpenSHMEM library for example. 

• AMO: These interfaces enable atomic operation on remote memory, needed by 

PGAS models. 

• Tag Matching: These provide the ability to give messages tags to make 

messages distinguishable, which is needed by MPI models. 

• Active message: These enable callback functions to be executed by a receiver if 

it gets a message. 

• Collectives: These interfaces provide synchronization operations and group 

communication like broadcasting and all-to-all exchange, needed by MPI models. 

• Stream: In these interfaces the data gets treated as a stream flowing over the 

transportation layer, implying ordered data. This is needed by BSD-socket-based 

models. 

UCT (Transport), the low-level API: UCT represents the transport layer, which gets used 

by the UCP for the actual transportation. It supports several connection types like PCIe 

and NVIDIAs NVLink. To minimize performance losses overusing the designated 

transport directly, UCT relies on hardware drivers provided by hardware manufacturers. 

It provides 3 communication types: The short operation, for small messages, which can 

be sent completely at once. For bigger messages, it provides buffered copy and send 

operations, where the message gets sent in several parts via a buffer. This also provides 

an option for non-contiguous transportation. Direct memory to memory communication 

is supported via zero-copy operations. 

UCS (Services), the service layer: UCS provides utilities for efficient communication like 

commonly used data structures and memory management tools. 

All three APIs can be used independently as they were designed to work together but 

not rely on each other. To configure UCX after installation the user can modify a variety 
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of environment variables. UCX is included in OpenMPI and MPICH (another open-source 

implementation of MPI) since version 3.0 (OpenMPI) and version 3.3 (MPICH) 

respectively. 
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3. Implementation 

SeisSol relies on two libraries for the GPU offloading: The Device2 library, which was 

designed to provide a common interface for different GPU APIs, and GemmForge, 

generating custom kernel and GPU kernel launcher functions for gemms. Both libraries 

already existed before the thesis and got extended and modified during the thesis. 

3.1. The Device library 

As mentioned, the C++ Device library provides an interface that passes the GPU-related 

calls to the currently needed GPU API depending on the hardware. SeisSol as the caller 

does not need to handle GPU API calls as the Device library handles all the GPU API-

related work and returns platform-independent error messages and memory pointers to 

SeisSol.  

3.1.1. Consideration of using HIP 

At the first glance, the HIP library can be considered as a good substitution for the Device 

library, since it is designed to support both AMD and NVIDIA GPUs. However, HIP does 

not support all of CUDA's functionality. For example, the CUDA function 

cudaMemPrefetchAsync is not supported by HIP and thus would not be available if HIP were 

used. The Device library uses the CUDA function for usage on NVIDIA hardware and 

provides a workaround for AMD GPUs. Hence the Device library can maximize 

performance for each platform if the related API provides a better implementation of 

functionalities. Secondly, the Device API includes additional functionality around the 

GPU API calls, which get explained in chapter 3.1.3. If HIP were used instead, these 

additions would have to be implemented in a separate library resulting in a Device-like 

library without the advantages of the Device library. Furthermore, the Device library is 

extendable for a new GPU interface or hardware in the future, for example, OneAPI i.e., 

the Intel implementation of SYCL standard. A new interface just needs to implement the 

functionality required by the Device library as well as the compilation process needs to 

be configured for the new API. SeisSol itself would require no changes in the code to 

use a new API or hardware. 

 

2 https://github.com/SeisSol/Device/ 
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3.1.2. Design 

The design of the Device library is based on a mixture of two structural patterns. It 

provides the AbstractAPI struct, which acts as both Facade [31] and Adapter [32]. The 

platform-dependent declaration is made in a separate subclass for each platform. These 

classes implement only access to those GPU API functions that are necessary for 

SeisSol, therefore acting as a facade to the GPU APIs. This gets achieved by wrapping 

functions that require no special datatypes. For functions requiring special datatypes, it 

enables access without the need to include the GPU APIs, thus acting as an adapter. It 

converts GPU-specific datatypes to standard C++ datatypes or manages the actual 

control of these data types and provides control functions to the user. The actual 

implementation of the subclasses is made in several classes, each covering one aspect 

of functionality, for example, memory allocation or copying data between host and 

device. For access to the AbstractAPI struct, the library provides the DeviceInstance 

singleton. Singleton is a design pattern, where only one object of the class can exist at 

any given time in the context of a running program [33]. If the program tries to create a 

new, separate object, it will receive a reference to the already existing object. Based on 

the singleton pattern of the DeviceInstance, only one object of the platform-dependent 

implementation of AbstractAPI exists at any given time. This is important for the additional 

functionality provided by the Device library, which gets described in the next chapter.  

For the HIP support, a new subclass of AbstractAPI and a set of classes containing the 

implementation were added in the scope of the thesis. Most of the code was portable 

using hipify-perl since mostly only prefix cuda needed to be replaced with hip. But some 

parts required workarounds due to missing HIP counterparts. A special case is the usage 

of NVToolsExt, which is an additional API provided by NVIDIA [30]. It improves logging 

and visualization for the analysis of CUDA programs. Since no HIP alternative could be 

found, functions relying on it were left empty. This poses no problem for the functionality 

since the API is only used for performance analysis. 

The compilation process of the library is modeled using CMake. The process can be split 

up into three phases shown in the following figure:  
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Figure 3: The Device compilation process 

Setup: During the first phase CMake checks if the desired variables are set. The user 

must define the variables REAL_SIZE_IN_BYTES and DEVICE_BACKEND. The first one determines 

the used precision whereas the second variable describes the used programming API 

and takes CUDA or HIP as correct values. For further optimization, during the 

compilation, the user must also define the DEVICE_SUB_ARCH. This variable takes the 

version label of the SM or CU of the targeted GPU architecture as values. 

Compilation: As the name indicates, this phase covers the actual compilation. 

Depending on the values of DEVICE_BACKEND the progress shifts either to CUDA or HIP 

compilation. While the HIP path got added during this thesis, the CUDA path already 

existed upfront.  

The CUDA path firstly loads the CUDA CMake package, containing CMake settings 

specialized for CUDA compilation. Then it tries to find the library NVToolsExt. If it is not 

found, the Device library gets compiled without the support for NVToolsExt. Afterward, 

the compilation flags for the nvcc compiler get set. To compile the CUDA implementation 

of AbstractAPI, the nvcc compiler gets invoked by the cuda_add_library. Lastly, some 

CUDA specific include libraries and paths get set. 

The HIP path has the same structure, but with major differences. Since HIP is not yet a 

part of the default CMake package, the path to the installation of HIP must be set 

manually. Additionally, the helper CMake files located in the HIP library must be included. 

In contrast to the CUDA path, the HIP path defines compiler flags for both CUDA and 

HIP, since HIP may be used to compile for an NVIDIA GPU. These flags get defined in 

dedicated variables for each platform and an additional variable for flags used by both. 

The variable CMAKE_HIP_CREATE_SHARED_LIBRARY must be set to ensure the correct 

compilation as a library and not as an executable file. The hipcc compiler gets invoked 

like nvcc using hip_add_library, which is included in the CMake helper files from the HIP 

library. Based on the platform the link to the hip library gets set in different ways, for 

CUDA it can be set via a property variable in CMake, for HIP a direct path to the library 

must be set. 
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Finalize: In the last stage compilation flags common to both paths get set. This includes 

a flag determining the desired precision. Lastly, platform-independent include directories 

get defined. 

3.1.3. Functionality 

The Device library includes additional functionality apart from the wrapping of GPU API 

calls. It gathers information about the amount of allocated memory and copied data. This 

gets collected by incrementing statistics variables after the invocation of GPU API calls. 

Furthermore, it performs error checks after each GPU API call, logging arising error 

messages. Aside from informative functionality, it provides functions for managing a 

temporary memory located on the GPU, which is organized as a stack. A set number of 

bytes get allocated on the GPU and managed by the library. The programmer can get a 

pointer to available temporary memory, which then gets marked as used. If the 

programmer does not need it anymore, the memory gets unmarked but not deallocated. 

Thus, the programmer does not need to allocate and deallocate memory for temporary 

usage and can potentially reduce the execution time, since less time is used on memory 

management. For access to GPU streams, the library provides a circular stream buffer. 

Streams are a concept for interweaving data copying from or to GPU and calculation on 

the GPU. This can result in an increased performance since due to hardware 

characteristics copies can be performed in parallel with computation on the GPU. Instead 

of using one block of data and one kernel, a program can issue several small kernels 

working on smaller pieces of data to different streams. The GPU can copy the data 

required by one stream during the execution of the kernel of another stream. The Device 

library can hold up to a predefined number 𝑛 of streams. If the program tries to access 

the stream 𝑛 + 1, it gets redirected to the first stream, hence it acts as a circular buffer. 

The library provides a function for synchronizing a single stream or all streams at once. 

In SeisSol streams are primarily used to launch several small kernels, which work on 

independent data. 

3.2. GemmForge 

For generating efficient kernels GPU SeisSol deploys the GemmForge3 library. It is 

written in python 3 and includes a generator for copy-add-scale operations and gemms 

(general matrix multiplication). It produces a program text for the kernel function and the 

corresponding kernel call function. Since the matrices involved in the computations are 

small, the maximum dimension used in this thesis is 56𝑥56, GemmForge can employ 

 

3 https://github.com/ravil-mobile/gemmforge/ 
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optimizations and thus outperform GPU standard libraries for matrix multiplication, as 

shown in [5]. GemmForge relies on the standard FP32 or FP64 cores, whereas NVIDIAs 

standard libraries often use Tensor cores for their matrix multiplication. For the 

computation of 𝐶 = 𝐴 ∗ 𝐵 + 𝐶, where 𝐴,𝐵 and 𝐶 are matrices, GemmForge loads matrix 

𝐵 in the shared memory, which is possible due to the small size of the matrix, for large 

matrices shared memory maybe not sufficient. Each thread loads one element of the 

same column of 𝐴 into its register. Thus, the column size of 𝐴 defines the number of 

active threads launched. Each thread performs the multiplication on the same row of 𝐵. 

This row now can be broadcasted to all threads from shared memory, which is faster 

than each thread accessing the row consecutively [5]. For further optimization, 

GemmForge relies on information about the used GPU provided before the compilation. 

It calculates how many matrix multiplications can be done by a single block based on 

estimations of available shared memory and registers. If possible, it launches kernels in 

a two-dimensional manner, where the size of the second dimension corresponds to the 

number of matrix multiplications in a block. The size of the first dimension is based on 

the number of threads needed for one column and is always a multiple of the warp or 

wavefront size. Hardware analysis and generation of a kernel are performed in the 

GemmGenerator class. To generate a kernel a programmer must provide hardware and 

matrix characteristics. Hardware characteristics contain manufacturer and specific GPU 

architecture. Matrix characteristics contain the dimensions of the involved matrices, 

which must be suitable for multiplication, otherwise, an error message gets printed. 

Furthermore, they contain scale factors for matrix 𝐴 and 𝐶, a Boolean for each matrix 

indicating if it should be transposed and an addressing mode, defining how pointers to 

matrix entries are assembled. For loading of shared memory and a possible 

transposition, GemmForge provides the loader module, which contains classes 

specifying the sizes and loading of the shared memory. Since GemmForge was originally 

designed only for NVIDIA GPUs, a way of supporting both HIP and CUDA was introduced 

for this thesis, which gets explained in the following two chapters. 

3.2.1. The Architecture class 

GemmForge uses the Architecture class defined in the file arch.py to hold hardware-

specific data and characteristics for different GPU architectures. The class provides 

produce function, which determines the used GPU by two strings, one containing the 

name of the manufacturer and the other containing the name of the GPUs architecture. 

Then it returns an Architecture object filled with the corresponding hardware 

characteristics. The class provides information about the size of warps or wavefronts, 

the sizes of the different memory types, and how many threads and blocks can be 
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launched on a single CU or SM. For AMD support the produce function got modified to 

distinguish between the two hardware manufacturers and the hardware characteristics 

of the Radeon Instinct MI50 and its successor Instinct MI100 got specified. The class 

can be easily extended for new architectures versions from NVIDIA or AMD, it only needs 

the specific hardware characteristics defined. For a new manufacturer, a new distinction 

must be included containing the characteristics of its GPUs. 

3.2.2. Architecture lexicons 

During the generation of the kernel in the GemmGenerator class, GemmForge used the 

hardcoded CUDA specific thread and block variables and kernel call. To support multiple 

manufacturer-specific APIs, the arch_lexic (an abbreviation of architecture lexicon) 

module got implemented. It is designed according to the Factory method design pattern. 

In the factory function, a direct creation of an object of the desired type, in this case, 

lexicons, gets replaced by a factory function, which returns the correct object depending 

on the current context, in this case, hardware manufacturer. The module defines the 

abstract superclass AbstractArchLexic, which defines the needed variable names and 

functions for accessing and combining them into often needed combinations. Platform-

dependent implementation is realized in subclasses, containing the corresponding 

variable names for the thread and block variables. Furthermore, subclasses implement 

a function for creating kernel launch function call. For the creation of an ArchLexic object, 

the factory function arch_lexic_factory is provided, which returns a lexicon corresponding 

to the used platform. The module can be easily extended for new APIs, if the new APIs 

programming model is a CUDA-like programming model, using thread and blocks to 

organize the distribution of the threads created by the kernel on the hardware. The 

arch_lexic module got introduced in several already existing classes, replacing the 

hardcoded CUDA-specific strings. The arch_lexic is used in several places – i.e., 

GemmGenerator, CsaGenerator, and loaders, which allows to fully get rid of all CUDA 

hardcoded keywords and thus make GemmForge more flexible and extensible for future 

changes. 
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4. Evaluation 

For evaluation of the implementation, we examine the libraries GemmForge and Device. 

Thereby we assess if the kernels generated by GemmForge work properly and measure 

and evaluate delivered performance on the AMD Radeon Instinct MI50. The measured 

performance gets compared to results measured on NVIDIAs Tesla V100 to evaluate the 

delivered performance of the AMD GPU. To assess if the extension of the Device library 

was successful, we created a benchmark by implementing a Jacobi solver. This 

benchmark serves furthermore as an evaluation of the combination of HIP and OpenMPI, 

to ensure SeisSol could get executed on multi-GPU systems and leverage available 

performance. 

4.1. Roofline Model 

For performance evaluation of the kernel functions generated by GemmForge, we use 

the Roofline model presented in [34]. This model requires measurements of bandwidth 

and kernels performance, for which GemmForge provides benchmark tests. For the 

thesis, these tests got ported to HIP. This chapter first describes the theoretical 

background of the Roofline model and then its application to the gemms. 

4.1.1. Theoretical background 

The Roofline model provides a method for evaluating the performance of programs 

running on multicore systems. Originally designed for multicore CPUs in 2008, it can also 

be used for the analysis of programs using GPUs for computation since it is based on 

concepts occurring in both CPU and GPU, namely floating-point and memory 

performance. The model can be divided into two steps: Firstly, the creation of a 

hardware-dependent graph based on measurements taken on the processor. Secondly, 

derivation of the program into a form useable by the model and measuring the 

performance of the program.  

The graph defines the upper bound (roofline) for achievable performance on the 

hardware. It is plotted on a two-dimensional domain where the y-dimension depicts 

performance in FLOP/s. The x-dimension represents the operational intensity of the 

program in FLOP/byte, which is going to be explained shortly. The graph is derived from 

a combination of two hardware characteristics: maximum performance of the multicore 

system in FLOP/s and achievable bandwidth for memory movement between main 

memory and caches of the processor cores in byte/s. The maximum performance is 

represented as a horizontal line at 𝑦 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒. The bandwidth however 
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corresponds not directly to one of the axes, but can be represented by a combination of 

both axes: 

𝐹𝐿𝑂𝑃
𝑠𝑒𝑐𝑜𝑛𝑑
𝐹𝐿𝑂𝑃
𝑏𝑦𝑡𝑒

=

1
𝑠𝑒𝑐𝑜𝑛𝑑

1
𝑏𝑦𝑡𝑒

=
𝑏𝑦𝑡𝑒

𝑠𝑒𝑐𝑜𝑛𝑑
 

Thus, the bandwidth is represented by 𝑦 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ 𝑥. The combination 

of both functions results in the graph 𝑔(𝑥), which can be described as followed, where 

𝑥𝑐 donates x coordinate of the intersection of both functions: 

𝑔(𝑥) = {
 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ 𝑥 𝑖𝑓 𝑥 < 𝑥𝑐

 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The values of 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 can be theoretical 

limits or measured by benchmarks. If a graph is constructed for given hardware it can be 

used for all program evaluations run on this hardware. For new hardware, a new graph 

must be constructed. 

For performance evaluation of the program, the operational intensity of the kernel must 

be calculated first. The operational intensity 𝐼𝑘 of a kernel can be described as: 

𝐼𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑚𝑜𝑣𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑎𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑛𝑑 𝑐𝑎𝑐ℎ𝑒
 

But since we work on GPUs, we use arithmetic intensity instead of operational intensity 

and thus define 𝐼𝑘 as followed:  

𝐼𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑚𝑜𝑣𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑃𝑈 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑛𝑑 𝐺𝑃𝑈 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠
 

The arithmetic intensity is used since the data is already resident on the GPU during 

execution of the kernel since it gets copied onto GPU memory before the invocation of 

the kernel. If the intensity 𝐼𝑘 of the kernel is known, a measurement in FLOP/s can be 

made and plotted in the graph as the point 𝑥𝑘: 

𝑥𝑘 = (𝐼𝑘;𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

If the measured performance is significantly lower than 𝑔(𝐼𝑘), i.e.,𝑥𝑘 is not near the 

graph, the model indicates that the kernel function can be optimized further. 
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4.1.2. Application to AMD's Radeon Instinct MI50 

For the application of the Roofline model on the kernels generated by GemmForge, the 

graph 𝑔(𝑥) must be created for AMDs Radeon Instinct MI 50. As maximum performance, 

the theoretical performance of 13.41 TFLOP/s provided by [16] is used. The maximum 

bandwidth gets measured on the Radeon Instinct MI50. Therefore, the ported version of 

the bandwidth benchmark created for measurements of the NVIDIA Tesla V100 in [5] 

gets used. In the benchmark, a predefined amount of GB gets allocated twice on the 

GPU. A kernel copying the data from one allocation to the other gets executed. The 

execution time of the kernel gets measured to achieve a GB/s value. To even out 

performance peaks and lows the kernel gets repeatedly executed and the measured time 

averaged depending on the number of repeats. For the port, the file global.cu got a HIP 

equivalent called global.cpp. The file contains the explained kernel function and 

additional utility for measurements. Furthermore, the compilation process got a new path 

for HIP compilation. To start a test the number of repeats and number of GBs must be 

defined in an input file. To establish a bandwidth value for the Roofline model the 

benchmark got executed with different combinations of GBs and number of repeats. The 

number of GBs ranged from 0.5 to 8 GBs, incrementing in steps of 0.5 GBs, whereas 

the number of repeats ranged from 100 to 1000, incrementing in steps of 100 repeats, 

resulting in 160 tests in total. The test parameters are widespread to generate a result 

that is not restricted to a single use case but to get a more uniform value for different use 

cases. A selection of test results is shown in the following figure: 

 

Figure 4: Selection of bandwidth measurements 

The results are spread in a small range with only a few outliers. The average bandwidth 

of all tests was about 580 GB/s, which is about 56,6% of the theoretical performance of 



27 

1024 GB/s documented in [16]. Reasons for this discrepancy require deeper 

investigation, which goes beyond the scope of the thesis. 

Since both maximum bandwidth and performance are known, the value of 𝑥𝑐 can be 

calculated as: 

𝑥𝑐 =
13.41

𝑇𝐹𝐿𝑂𝑃
𝑠𝑒𝑐𝑜𝑛𝑑

0.58
𝑇𝐵

𝑠𝑒𝑐𝑜𝑛𝑑

≈ 23.1 
𝐹𝐿𝑂𝑃

𝐵𝑦𝑡𝑒
 

And thus, the function 𝑔(𝑥) can be expressed as: 

𝑔(𝑥) = {
 0.58 ∗ 𝑥 𝑖𝑓 𝑥 <  23.1

 13.41 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

For the performance measurement of the kernels, the benchmark as designed in [5] is 

used. The benchmark calculates the following term, where 𝐿 and 𝐴 are 56𝑥9 sized 

matrices, whereas matrix 𝐵 has the dimension 9𝑥9 and matrix 𝐷 56𝑥56: 

𝐿 = 𝐷 ∗ 𝐴 ∗ 𝐵 + 𝐿 

Since GemmForge only generates kernels of the form 𝐶 = 𝐴 ∗ 𝐵 + 𝐶, computation is 

realized in two kernels, where the first kernel computes 𝑇 = 𝐴 ∗ 𝐵 and stores the result 

in the 56𝑥9 sized matrix 𝑇. The second kernel finalizes the result with the computation 

𝐿 = 𝐷 ∗ 𝑇 + 𝐿. For the plotting of measured results, the arithmetic intensity of both kernels 

must be calculated first. The intensity 𝐼𝑘1 of the first kernel can be described as followed, 

where 𝑝 is 4 𝐵𝑦𝑡𝑒 =
32 𝑏𝑖𝑡

8
 (float) or 8 𝑏𝑦𝑡𝑒 =  

64 𝑏𝑖𝑡

8
 (double) depending on precision: 

𝐼𝑘1 =
9 ∗ 9 ∗ 2 ∗ 56 

(2 ∗ 56 ∗ 9 + 9 ∗ 9) ∗ 𝑝
  

The devisor can be derived from the dimensions of the involved matrices, where 𝐴, which 

gets loaded from global memory into registers, and 𝑇, which gets written back to global 

memory, are 56𝑥9, hence 2 ∗ 56 ∗ 9. The matrix 𝐵, which is also loaded from global 

memory, has the dimension 9𝑥9, thus the addition of 9 ∗ 9. The multiplication with 𝑝 

translates the result into a number of bytes. For the determination of the dividend the 

computational part of the generated kernel must be considered. Pointer arithmetic does 

not contribute to the total number of floating-point operations, since they are integer 

operations: 
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1. if (hipThreadIdx_x < 56) { 
2.       float Results[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; 
3.       float Value; 
4.       for (int k = 0; k < 9; ++k) { 
5.         Value = GlobMatA[hipThreadIdx_x + 56 * k]; 
6.         for (int n = 0; n < 9; ++n) { 
7.           Results[n] += Value * ShrMatB[k + 9 * n]; 
8.         } 
9.       } 
10.       for (int n = 0; n < 9; ++n) { 
11.         GlobMatC[hipThreadIdx_x + 56 * n] = Results[n]; 
12.       } 
13.  } 

The floating-point operations are in line 7, one addition and one multiplication. These 2 

operations are embedded in a nested for-loop in line 6, which is repeated 9 times. The 

superior for-loop in line 4 is also repeated 9 times. The if statement in line 1 causes 

execution of the loop in line 4 for 56 times since it represents the parallelization in HIP 

fashion. The loop in line 10 does not contribute to the number of floating-point operations 

since it only contains variable assignments and no computation. Thus, the whole number 

of floating-point operations accumulates to 2 ∗ 9 ∗ 9 ∗ 56 for the first kernel.  

The arithmetic intensity 𝐼𝑘2 of the second kernel is calculated in a similar fashion. The 

devisor can be derived from involved matrices too, but with some special cases: matrix 

𝐷 can be ignored since it is the same for all work items in the wavefront. Matrix 𝐿 appears 

two times in the calculation since it gets loaded from global memory and after 

computation back into it. Thus, the number of elements in the devisor can be expressed 

as 3 ∗ 56 ∗ 9, since both 𝐿 and 𝑇 have the dimension 56𝑥9. The dividend is again derived 

from the generated kernel: 

1. if (hipThreadIdx_x < 56) { 
2.       float Results[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; 
3.       float Value; 
4.       for (int k = 0; k < 56; ++k) { 
5.         Value = GlobMatA[hipThreadIdx_x + 56 * k]; 
6.         for (int n = 0; n < 9; ++n) { 
7.           Results[n] += Value * ShrMatB[k + 56 * n]; 
8.         } 
9.       }       
10.       for (int n = 0; n < 9; ++n) { 
11.         GlobMatC[hipThreadIdx_x + 56 * n] = Results[n] + 
12.   GlobMatC[hipThreadIdx_x + 56 * n]; 
13.       } 
14.  } 

Again 2 floating-point operations are in line 7, but this time the superior loop in line 4 is 

repeated 56 times. The embedded loop in line 6 is repeated 9 times like in the first kernel. 

In this case, the loop in line 10, which gets repeated 9 times contributes to the number 

of operations since it contains an addition. The loops in lines 4 and 10 get both executed, 

like in the first kernel, 56 times. Thus, the dividend can be represented as 

56 ∗ (2 ∗ 56 ∗ 9 + 9) and the formula for 𝐼𝑘2 as: 
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𝐼𝑘2 =
56 ∗ (2 ∗ 56 ∗ 9 + 9)

(3 ∗ 56 ∗ 9) ∗ 𝑝
 

For performance measurement of both kernels, the simple-gemm benchmark of 

GemmForge was used. The benchmark generates a kernel function via GemmGenerator 

class of GemmForge for a given precision and matrix dimensions of the three matrices 

used in the kernel function. Precision and dimensions must be defined before compilation 

since the generation of the kernel gets invoked during the compilation process and if 

another precision or dimension is required, the benchmark must be recompiled. 

Additionally, the user can define, like in the bandwidth benchmark, the number of repeats 

for the kernel and the number of GBs, which determines depending on the used matrices 

the number of elements on which the kernel gets applied. The benchmark checks the 

correctness of the kernel function results by comparing them to a computation on CPU. 

After the correctness check, the kernel gets executed the user-defined number of times 

and averages measured performance over the number of repeats. The averaged results 

get printed in GFLOP/s. For the usage of the extended GemmForge library, the python 

file invocating GemmGenerator got extended with a new command-line argument that 

determines the manufacturer. The creation of the generated filename got modified via 

an if-else statement to differ between manufacturers and add the corresponding file 

ending. Additionally, the generated file gets the correct include statement inserted, 

depending on the manufacturer. The file containing the actual invocation of the kernel 

needed no editing due to the design of the benchmark. It only must include the generated 

header file, which contains the declaration of the generated kernel call function. The 

compilation process got extended with a separate HIP compilation path. 

The benchmark got executed with 500 repeats and a number of GBs which correspond 

to 250000 elements, to get a reliable measurement for the Roofline model. The number 

of GBs must be changed depending on precision and the executed kernel. Both kernels 

got measured in single and double precision. The measurement was repeated 20 times 

for each configuration and the result averaged over the number of repeats. To achieve 

optimal performance, the kernel call was tweaked for each of the four configurations via 

the GPU properties defined in the arch.py file. This results in different y-dimensions in 

the wavefronts for each configuration, as depicted in table 2. 

 Single precision Double precision 

1st kernel 1 16 

2nd kernel 16 8 

Table 2: The different y-dimensions of the wavefronts 
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With measured performances and arithmetic intensities calculated, the point 𝑥𝑘 can be 

created for each configuration: 

𝑥𝑘1−𝑆𝑃 = (𝐼𝑘1−𝑆𝑃 = 2.08,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1.339) 

𝑥𝑘1−𝐷𝑃 = (𝐼𝑘1−𝐷𝑃 = 1.04,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 0.619) 

𝑥𝑘2−𝑆𝑃 = (𝐼𝑘2−𝑆𝑃 = 9.41,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 3.989) 

𝑥𝑘2−𝐷𝑃 = (𝐼𝑘2−𝐷𝑃 = 4.70,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1.851) 

Combined with 𝑔(𝑥) created with the bandwidth test, these result into the Roofline model 

depicted in figure 5: 

 

Figure 5: Roofline model analysis for the AMD Radeon Instinct MI50. 

In comparison to the Roofline model predicted maximum performances the measured 

performances of the first kernels surpass the expectation. For single-precision, the 

measured average performance of 1.339 TFLOP/s is about 11% higher than the 

predicted maximum performance 𝑔(𝐼𝑘1−𝑆𝑃) = 1.2064 𝑇𝐹𝐿𝑂𝑃/𝑠. For double-precision, 

the difference is smaller. The measured performance is only 1% higher than the 

predicted 𝑔(𝐼𝑘1−𝐷𝑃) = 0.6032 𝑇𝐹𝐿𝑂𝑃/𝑠.  

The second kernels however achieve a significantly lower performance than the 

predicted performance. Single precision performance is about 27% lower than the 

predicted 𝑔(𝐼𝑘2−𝑆𝑃) = 5.4578 𝑇𝐹𝐿𝑂𝑃/𝑠. The difference for double precision is even 

bigger with about 33% lower than 𝑔(𝐼𝑘2−𝐷𝑃) = 2.726 𝑇𝐹𝐿𝑂𝑃/𝑠. 
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4.1.3. Comparison to NVIDIAs Tesla V100 

For the comparison between the manufacturers, a Roofline model analysis for NVIDIAs 

Tesla V100 with the same kernels is needed. Such an analysis was already performed 

in [5] and the measured values are used to create the Roofline model depicted in the 

following figure: 

 

Figure 6: Roofline model analysis for the NVIDIA Tesla V100 

As described in chapter 2.1.3, the maximum performance of the Tesla V100 is higher 

than the Radeon Instinct MI50s. But in both cases, maximum, achievable performance 

is limited by the measured bandwidth of the respective GPU since the arithmetic 

intensities of the kernels are located under the slope in the figures. Maximum theoretical 

performance is not important for the comparison of these results. The measured 

bandwidth of the Tesla V100 is significantly higher than Radeon Instinct MI50s although 

both have a similar theoretical maximum bandwidth. The NVIDIA GPU achieves about 

69.7% of its theoretical performance, whereas the Radeon Instinct MI50 only achieves 

56.6%. Thus, the kernels can achieve higher performance on the Tesla V100. This 

assumption is confirmed by the measured values in [5]: 

𝑥𝑘1−𝑆𝑃 = (𝐼𝑘1−𝑆𝑃 = 2.08,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1.722) 

𝑥𝑘1−𝐷𝑃 = (𝐼𝑘1−𝐷𝑃 = 1.04,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 0.861) 

𝑥𝑘2−𝑆𝑃 = (𝐼𝑘2−𝑆𝑃 = 9.41,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 6.768) 

𝑥𝑘2−𝐷𝑃 = (𝐼𝑘2−𝐷𝑃 = 4.70,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 3.210) 
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Also, measured values for the second kernels are better compared to the predicted 

values of the Roofline model, they only have about 10% lower performance for single 

precision and 14% for double precision. In contrast, the second kernels on the Radeon 

Instinct MI50 show about 30% lower performance. The measurements of the first kernels 

have a similar ratio to the anticipated performance for both GPUs. The comparison 

shows that the kernels perform better on the Tesla V100. If the low bandwidth of the 

AMD GPU would be increased, the GPU may yield a comparable performance, since 

performance is limited by bandwidth in both cases. 

4.2. Jacobi Solver 

To ensure the correct functionality of the Device library, a Jacobi solver, as a good 

parallelizable algorithm, got implemented in the Device library in the scope of the thesis. 

The implementation uses OpenMPI combined with UCX to enable the distribution of the 

problem onto several processors. Thus, the Jacobi solver serves additionally as a 

benchmark for using multiple GPUs for computation. Like the Device library itself, Jacobi 

solver can be compiled for single or double precision. For compilation, the user must 

define the required precision, GPU manufacturer, and used GPU architecture. 

Furthermore, the solver can be compiled with or without MPI. During the compilation 

phase, both the CPU and the GPU solver get compiled and can be selected during the 

invocation of the program. 

4.2.1. The Math 

The Jacobi solver is an iterative method to approximate the solution of a linear system: 

𝐴𝑥 = 𝑏 

Hereby matrix 𝐴 contains the coefficients of the linear system, whereas vector 𝑥 contains 

the unknowns and 𝑏 the solutions of the single terms. For approximation, matrix 𝐴 gets 

decomposed into two matrices 𝐷 and 𝐿𝑈 via 𝐴 =  𝐷 +  𝐿𝑈. 𝐷 is a diagonal matrix 

containing the diagonal entries of 𝐴 and 𝐿𝑈 is a combination of the lower and upper 

triangle part of 𝐴. Computation of a single step can then be expressed as: 

𝑥𝑘+1 = 𝐷−1 ∗ (𝑏 − (𝐿𝑈 ∗ 𝑥𝑘)) 

For the first step 𝑘 = 0 the first solution 𝑥0 must be guessed. The steps can be repeated 

a defined number of times or until a predefined discontinuation criterion is reached. For 

this implementation, the criterion is defined as: 
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𝑏 − (𝐴 ∗ 𝑥k) < 𝜀 

This term describes that solution 𝑥𝑘 of the current step, 𝑘 is sufficiently close to the actual 

solution 𝑥, where maximum difference is defined via 𝜀. 

4.2.2. The CPU implementation 

The solver got implemented in two steps: firstly, a version computing only on the CPU 

got implemented. This implementation got modified to use GPUs via kernel functions for 

parts of computation in the second step. The CPU implementation serves as a 

correctness comparison for the GPU port. 

The implementation uses sparse ELLPACK form [35] for the representation of involved 

matrices. This form only saves non-zero entries of the matrix and corresponding indices 

in two vectors. Furthermore, additional information like the dimension of the matrix and 

the maximum number of non-zero entries per row is required for representing the original 

matrix. The advantages of the format are a smaller amount of used storage and a shorter 

iteration over elements since only non-zero entries get traversed. But the advantages 

only apply for sparse matrices, nearly filled matrices do not benefit from representation 

in sparse ELLPACK form. For this implementation of a Jacobi solver, only quadratic 

matrices get used. For parallelization, vectors and matrices get split up and equally 

distributed onto the single MPI processes. The distribution is shown in figure 7, where 

the first MPI process works on the first 𝑘 entries of the vector and the next MPI process 

in the next portion. Finally, the last MPI process works on the last portion. 

 

Figure 7: Distribution of problem domain onto MPI processes 

The actual Jacobi solver using the CPU is implemented in the solver function of the 

namespace host. The function takes the involved matrix and vectors as parameters. 

Additionally, information for the controlling like the maximum number of repeats, the 

specified 𝜀, etc. gets passed to the function. The function sets up the matrices 𝐷−1 and 

𝐿𝑈 and starts the computation of the approximation. The computation is split into the 

three steps 𝑡𝑚𝑝 = 𝐿𝑈 ∗ 𝑥𝑘, 𝑥𝑘  =  𝑏 –  𝑡𝑚𝑝 and 𝑥𝑘+1 = 𝐷−1 ∗ 𝑥𝑘, where 𝑡𝑚𝑝 represents 

a variable for storing the results of the first step. The steps are realized in two functions, 

one for the matrix-vector multiplication and one for the vector arithmetic. The third 

computation step get computed using vector manipulation function instead of matrix 
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multiplication function, since the matrix 𝐷−1 can be represented as a vector, which 

contains the diagonal entries of 𝐷−1. Since all other entries of 𝐷−1 are zero, no 

information is lost by representation as a vector. After completion of the three 

computation steps all entries of the new 𝑥𝑘 gets collected from all MPI processes and 

redistributed between the MPI processes. This gets realized by the collective MPI 

operation MPI_Allgatherv. These steps get repeated until either a predefined maximum 

number of repeats is reached, or approximation is sufficiently close to the result. 

To check the proximity of the current approximation 𝑥𝑘 the program calculates every 𝐼 

steps the value of 𝑟 = 𝑏 − (𝐴 ∗ 𝑥k). The value of 𝐼 must be set before the invocation of 

the computation. For the computation of 𝑟 the function calculates 𝑏 − (𝐴 ∗ 𝑥k)  and takes 

the entry with the highest absolute value of the resulting vector as value for 𝑟. If 𝑟 <  𝜀, 

the computation can be stopped since the next step will not provide a significant 

improvement of the result. Furthermore, the program takes the opportunity to print out 

the number of the current iteration and the value of 𝑟 to give the user an update about 

the progress. If the computation has stopped, the resulting 𝑥k and the duration of the 

computation gets printed out to the user. 

The solver can work without MPI if desired to measure the impact of the communication 

through MPI on the duration of the program. Therefore, the duration of the computation 

and the communication get separately measured. 

4.2.3. The GPU port 

For the port to the GPU, a new Jacobi solver got implemented in the Solver class in the 

namespace gpu. The GPU solver follows roughly the structure of the original solver with 

slight changes and additions. It relies on the same input parameters as the CPU version 

and follows the same distribution method for the problem domain shown in figure 7. 

Hereby each MPI process gets one GPU assigned, which executes the kernel functions 

for its MPI process. The access to GPU API functions gets realized with the Device 

library, whereas the invocation of kernel functions is handled by platform independently 

declared kernel call functions. Thus, only the implementation of the kernel itself and the 

definition of the corresponding call function must be implemented for NVIDIA and AMD, 

the remaining code can be used for both manufacturers. 

The GPU solver starts the same way as the original with the setup of the matrices, but 

computation cannot be started immediately after setup since data must first be copied to 

GPU memory. This is handled by a separate function, which uses the Device library for 

a platform-independent code. But before the invocation of this function, the program must 

select the right GPU. For the selection, a Device function is used with the rank of the 

current MPI process as selection criteria. After completion of the copies, the solver can 
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be started. As in the CPU, version computation is dissected in three steps. These steps 

get realized in kernel functions, where a version of each kernel is implemented once for 

NVIDIA GPUs and once for AMD GPUs. The GPU parallelism is hereby realized by 

concurrent access on the vector entries by the GPU threads instead of a loop iteration 

over them. For the matrix-vector multiplication, concurrent access is applied to the rows 

of the matrix. For each kernel function, a kernel call function is implemented, which 

specifies the number of threads per block, or work items per wavefront in AMD 

terminology. To cover the whole vector and matrices, the appropriate number of those 

blocks or wavefronts get calculated and used during the launch of the kernel. Like in the 

CPU version the computed result gets collected and distributed between the MPI 

processes. Hereby the data gets directly shared between the involved GPUs. Likewise, 

the computation of 𝑟 combined with an output of the value and the current number of 

iterations follows a predefined interval of repeats. In contrast to the original solver, the 

computation is realized mainly by using kernel functions. Only the selection of the highest 

absolute entry for the value of 𝑟 gets executed on the host side. 

After the computation is completed, which follow the same conditions as the original, the 

computed approximation 𝑥k gets copied back to the host side. Afterward, allocated 

memory on the GPUs gets freed using a separate function, which uses Device functions 

for deallocation. 

4.2.4. Test Results 

Since this Jacobi solver is used for testing, it always runs with the same values for 𝐴,𝑥0 

and the solution 𝑥 for the linear equation: 

𝐴 =

[
 
 
 
 
 
 

2 −1 0
−1 2 −1
0 −1 2

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
2 −1 0

−1 2 −1
0 −1 2 ]

 
 
 
 
 
 

      𝑥0 = [ 

−10
−10

⋮
−10

 ]     𝑥 = [ 

1
1
⋮
1

 ] 

The vector 𝑏 gets computed by 𝑏 = 𝐴 ∗ 𝑥 at the start of the program. The user can define 

the number of rows for 𝑥0, which automatically defines the dimensions of the quadratic 

matrix 𝐴. Furthermore, the solver type to be used, CPU or GPU, the maximum number 

of iterations, the number of iterations after which the output gets printed, and the value 

of 𝜀 must be defined in an input file. The program shows a correct behavior if the output 

vector 𝑥𝑘 converges to vector 𝑥. If the used solver is compiled with MPI, the user must 

define the number of MPI processes during the invocation of the program. If the solver 

is compiled without MPI, the solver always runs with one process. 
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For our first tests, we chose 100000 as the maximum number of iterations and 10000 as 

the number of iterations for the intermediate output. The discontinuation criterion is set 

to 𝜀 = 10−7. Only the number of rows got modified between the tests since parallelization 

of multiple MPI processes is performed on the rows as depicted in figure 9. Furthermore, 

GPU computation parallelizes the access to the rows too. Thus, with modifying the 

number of rows an impact of both parallelization types can be observed. For the tests, 

two versions of the Jacobi solver were used: one compiled without MPI and one compiled 

with MPI. Both versions got compiled for single precision. The comparison of both 

versions shows the impact of MPI on performance.  

 

Figure 8: Runtime of Jacobi solver with one process on the Radeon Instinct MI50 

Figure 8 shows measurements taken with an MPI and MPI-less version of the solver, 

arranged in four subfigures. Only one MPI process was used to keep the results 

comparable to the MPI-less solver since this only uses one process. OpenMPI was used 

as MPI implementation, using UCX for transportation of messages between MPI 

processes. The measurements were taken once with only CPU computing and once with 

GPU offloading. The used CPU is an AMD EPYC 7742 featuring 64 cores at 2.25 GHz 

base clock speed [36].  

Figure 8 a) shows the performance gain of GPU offloading. The runtime increases 

proportional to the number of rows for the MPI-less CPU version, whereas the MPI-less 

GPU version delivers nearly constant runtime at about seven seconds for all numbers of 

rows tested. In figure 8 c) the runtime of CPU versions with and without MPI gets 
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compared. The runtimes show insignificant differences for all test configurations, which 

is the desired behavior of MPI. Figure 8 b) compares the behavior of both MPI solvers. 

The GPU solver shows significantly worse performance than the CPU solver, which 

stands in contrast to the results of the MPI-less solvers depicted in figure 8 a). 

Furthermore, the MPI using GPU solver is about 42 times slower than the MPI-less GPU 

solver as depicted in figure 8 d). These bad results could indicate a problem in the 

combination of AMD GPUs and OpenMPI. 

To further investigate the problem, the performance of computation and communication 

got separately analyzed. Additionally, these performances got measured on an NVIDIA 

GPU as a comparison baseline. Furthermore, a second AMD GPU got used to check if 

the problem is confined to the Radeon Instinct MI50. AMD's Instinct MI100, as the current 

model of AMDs Instinct series, features twice the number of CUs than the Radeon 

Instinct MI50 and thus twice the number of VU lanes [37]. They operate at a lower clock 

speed than the Radeon Instinct MI50, namely 1000 MHz base and 1502 MHz boosted 

clock speed [38]. The theoretical single-precision performance of the MI100 reaches up 

to 23.1 TFLOPs [37]. For this comparison, the number of rows was changed, the number 

of iterations and discontinuation criterion remained the same as in the first tests. Fewer 

tests with bigger steps in the number of rows were performed. The tests with NVIDIAs 

Tesla V100 and AMDs Instinct MI100 were, like the tests with the Radeon Instinct MI50, 

performed with the MPI implementation OpenMPI and UCX. The kernel got invocated 

with the same launch dimensions on all three GPUs. For the examination of computation 

and communication, the time of computation and communication got separately 

measured, and the number of rows divided by the measured time. If several GPUs are 

involved, the number of updates per second got averaged over the number of GPUs. 

The measurements were performed with the ROCm version 4.1.0 for the Radeon Instinct 

MI50 and version 4.0.0 for the Instinct MI100. 
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Figure 9: Average throughput of GPUs without MPI 

Figure 9 shows the average compute throughput of the three GPUs with one process 

without MPI for different numbers of rows. The throughput increases with the problem 

size, which indicates that the GPUs perform more work in a similar time. A comparison 

of the AMD GPUs show, that the newer Instinct MI100 performs worse at small problem 

sizes, where the Radeon Instinct MI50 is up to 1.25 times faster. But at bigger problem 

sizes the newer GPU overtakes its predecessor. The Tesla V100 achieves higher 

throughput than both AMD GPUs, roughly 1.25 to 2 times the Radeon Instinct MI50. The 

different ratios of the results are depicted in table 3. These ratios serve as a baseline to 

which the computational ratios of the MPI solver can be compared to. 

Number of Rows 5000 10 000 50 000 100 000 500 000 1 000 000 

Tesla V100 to 

Radeon Instinct MI50 

1.90 2.01 2.05 2.04 1.42 1.25 

Tesla V100 to 

Instinct MI100 

2.02 2.38 2.75 2.75 1.39 1.09 

Instinct MI100 to 

Radeon Instinct MI50 

0.94 0.84 0.75 0.74 1.03 1.14 

Table 3: Throughput ratios for the GPUs without MPI 
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Figure 10: Throughput of GPUs with two MPI processes 

Figure 10 depicts the average throughput per GPU for computation and communication 

measured while employing two GPUs via two MPI processes. The value for 

computational throughput decreases since the value gets averaged over the number of 

used GPUs and each GPU works only on half the number of rows. 

Like in the MPI-less tests, the Instinct MI100 performs worse in computational throughput 

than its predecessor for the low number of rows. In almost all test configurations the 

Radeon Instinct MI50 is 2 times faster than its successor. Again, the NVIDIA GPU is 

faster than both AMD GPUs, the ratio is even bigger for the tested configurations, up to 

3 times than the Radeon Instinct MI50. For the communication, however, the GPUs show 

different behavior. Whereas the communicational throughput increases with each step 

for the NVIDIA GPU, the AMD GPUs show a constant throughput regardless of the 

number of rows. Hence, the ratio increases between the NVIDIA GPU and an AMD GPU 

with each step, up to 26.14 times between the Tesla V100 and Radeon Instinct MI50. 

The ratios for all configurations are depicted in table 4. 
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 Number of Rows 1000 5000 10 000 50 000 100 000 

 

 

 

Computation 

Tesla V100 to  

Radeon Instinct MI50 

0.81 1.04 2.52 3.02 2.97 

Tesla V100 to 

Instinct MI100 

1.60 2.08 2.58 6.71 6.44 

Instinct MI100 to 

Radeon Instinct MI50 

0.50 0.50 0.98 0.45 0.46 

 

 

 

Communication 

Tesla V100 to  

Radeon Instinct MI50 

1.86 7.87 13.62 23.34 26.14 

Tesla V100 to 

 Instinct MI100 

4.08 9.12 15.31 26.08 29.04 

Instinct MI100 to 

Radeon Instinct MI50 

0.46 0.86 0.89 0.90 0.90 

Table 4: Throughput ratios for the GPUs with two MPI processes 

 

Compared to the ratios of the MPI-less tests depicted in table 3, the computational ratios 

of the test depicted in table 4 are worse for the AMD GPUs but still close. The bad ratios 

of the AMD GPUs in communication however clearly indicate a problem in the 

communication between the GPUs via OpenMPI. Thus, the bad performance of the MPI 

using the Jacobi solver observed in the first tests was mainly caused by the 

communication. 

To further investigate the communication problem, the collective communication used in 

the Jacobi solver gets compared to point-to-point MPI communication. Therefore, the 

OSU benchmarks for MPI get used [39]. Firstly, the OSU benchmark osu_allgatherv [39] 

covering the used MPI function MPI_Allgatherv was performed using the different GPUs. 

The benchmark measures latency for messages of increasing size between the 

communication participants [39]. A selection of the results is shown in table 5. 
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Message Size Tesla V100 Radeon Instinct MI50 Instinct MI100 

1 50.53 7.18 3.17 

32 50.34 12.15 7.68 

1024 51.46 135.27 115.85 

32768 75.29 2807.71 1718.21 

1048576 487.22 92183.18 53876.01 

Table 5: Average Latency of osu_allgatherv in µs 

These values show similar behavior to the Jacobi solver. For bigger message sizes the 

latency increases significantly for AMD GPUs, whereas the Tesla V100 shows only a 

moderate increase. At the biggest message size tested, the NVIDIA GPU has a 189.20 

times lower latency than the Radeon Instinct MI50 and 110.58 times lower than the 

Instinct MI100. To check the latency of point-to-point communication, the OSU 

benchmark osu_latency was performed, which measures the one-way latency of the 

communication [39].  

Message Size Tesla V100 Radeon Instinct MI50 Instinct MI100 

1 0.36 0.34 1.83 

32 28.54 3.53 3.76 

1024 29.38 9.13 54.18 

32768 52.06 13.56 8.34 

1048576 338.64 145.79 45.16 

Table 6: Average Latency of osu_latency in µs 

The measurements depicted in table 6 however show different behavior than the 

collective communication results. The AMD GPUs have lower latency than the NVIDIA 

GPU at bigger message sizes. The Radeon Instinct MI50s latency is 2.32 times lower, 

the Instinct MI100s 7.50 times. This behavior is reinforced by measurements taken with 

the osu_bw benchmark, which measures the bandwidth of point-to-point communication 

[39]. For communication, osu_bw uses non-blocking MPI functions [39]. 
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Message Size Tesla V100 Radeon Instinct MI50 Instinct MI100 

1 0.06 0.45 0.74 

32 2.02 11.59 9.65 

1024 63.36 91.06 18.87 

32768 1672.74 2868.30 3613.31 

1048576 5079.01 7575.60 46859.91 

Table 7: Measured point-to-point bandwidth using osu_bw in MB/s 

The measurements of the benchmarks show that the communication problem is 

restricted to collective communication and does not affect point-to-point communication. 

An enquire to the AMD support regarding the different behaviors of collective and point-

to-point communication with OpenMPI confirmed the observation. For point-to-point 

communication, OpenMPI can use the direct path between the AMD GPUs. But the 

collective communication via OpenMPI requires a feature, which is not yet implemented 

in the HIP library. Therefore, the messages get copied to the host side, which performs 

the collective communication and copies the results back to the GPUs. This intermediate 

step generates the observed latency. The required feature of HIP however is currently in 

development according to the AMD statement.  
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5. Conclusion and Future Work 

In this thesis, we extended the libraries Device and GemmForge, which cover the GPU-

related functionalities of SeisSol. The libraries are now compatible with AMD GPUs while 

retaining the ability to run on NVIDIA GPUs. For confirmation of the successful extension, 

we ran benchmarks for each library. Furthermore, these benchmarks evaluated the 

performance characteristics of an AMD GPU and served as a comparison to the existing 

NVIDIA implementation. Therefore, a comparable NVIDIA GPU, namely the Tesla V100, 

was used, which showed some advantages over AMD's Radeon Instinct MI50. 

The Roofline model analysis showed that the generated kernels perform worse on the 

Radeon Instinct MI50 than on the Tesla V100, but the performance was limited by low 

memory bandwidth. Comparable performance on the AMD GPU may be achieved by a 

further investigation of the deviation of the measured bandwidth to the theoretical. 

Furthermore, the performance of the kernels can be improved by increasing the 

arithmetic intensity. This can be achieved by combining several kernels into one to 

increase the number of floating-point operations at a similar rate of moved bytes, as 

proposed in [5].  

The Jacobi solver revealed a problem in the collective communication of AMD GPUs 

performed by using OpenMPI. However, the OSU benchmarks showed, that this problem 

is limited to collective communication and does not affect non-blocking point-to-point 

communication. This behavior got confirmed by AMD support. However, this 

communication problem does not affect SeisSol since the majority of MPI communication 

is realized by the unaffected non-blocking point-to-point communication. 

For running earthquake simulations using SeisSol on AMD GPUs, the next generation 

of AMD GPUs may pose an opportunity. Based on information from multiple online 

sources, e.g. [40], the Instinct MI200 is going to feature managed memory, which is used 

by SeisSol running on NVIDIA GPUs. 

Furthermore, the extension of both libraries poses an opportunity for further work. 

OneAPI4, which includes the SYCL programming model [41], is such a candidate, which 

unites different accelerator architectures, including GPUs, under a single API. 

 

 

 

 

4 https://www.oneapi.com/ 
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