
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Interactive learning - A Scalable and Adaptive

Learning Approach for Large Courses

Dr. rer. nat. Stephan Krusche

Habilitation

Chair: Univ.-Prof. Dr. Tobias Nipkow
Department of Informatics, Technical University of Munich

Examiner: 1. Univ.-Prof. Dr. Bernd Brügge
Department of Informatics, Technical University of Munich

2. Univ.-Prof. Dr. Maria Bannert,
School of Education, Technical University of Munich

Abstract

In university courses with hundreds of students, instructors cannot interact with each
student individually. This leads to the problem that students engage less or not at all
in the learning activities and build up misconceptions due to lack of guidance. Existing
teaching approaches such as blended learning, experiential learning, or active learning
focus on instructor-student interaction in smaller courses.

This habilitation introduces a new teaching philosophy called interactive learning, a
scalable and adaptive learning approach specifically for larger courses, and the associated
teaching platform Artemis. Interactive learning allows instructors to teach small pieces
of content in short cycles. Students can practice and reflect on the taught concepts in
real-time based on the instructor’s individual feedback. Interactive learning encourages
creativity and does not limit students to sample solutions. Artemis reduces the overhead
of correcting and providing feedback in exercises and exams. It automatically grades
programming and quiz exercises and uses a supervised machine learning approach to
grade modeling and text exercises based on similarity analysis semi-automatically.

Artemis has been deployed in 63 courses across ten universities and has been used
by 30,000 students in these courses. In addition, 8,500 students completed their ex-
ams on Artemis in 31 online examinations with realistic exercises based on constructive
alignment. Interactive learning and Artemis have been empirically evaluated in multiple
case studies in computer science courses using a design-based research process with four
hypotheses.

The case studies show that interactive learning is scalable to courses with more than
1,500 active students (H1) and increased student engagement by up to 165 % compared
to traditional courses (H2). Interactive learning improved the students’ learning outcome
in modeling exercises by up to 87 % (H3). The semi-automatic grading process with
individual feedback reduced the grading effort by up to 80 % (H4). These results show
that individual interaction between instructors and students is possible even in larger
courses. The teaching platform Artemis enables future research projects in the field of
learning analytics and adaptive learning.

iii

Zusammenfassung

In Universitätskursen mit Hunderten von Studierenden können die Lehrenden nicht auf
jeden einzelnen Teilnehmer eingehen. Dies führt zu dem Problem, dass sich die Studie-
renden weniger oder gar nicht auf die Lernaktivitäten einlassen und aufgrund mangelnder
Anleitung falsche Vorstellungen aufbauen. Bestehende Lehransätze wie integriertes Ler-
nen, erfahrungsbasiertes Lernen oder aktives Lernen konzentrieren sich auf die Interaktion
zwischen Lehrenden und Studierenden in kleineren Kursen.

Diese Habilitation stellt eine neue Lehrphilosophie namens interaktives Lernen vor, ein
skalierbarer und adaptiver Lernansatz speziell für größere Kurse, und die dazugehörige
Lehrplattform Artemis. Interaktives Lernen erlaubt es den Lehrenden, kleine Teile des
Inhalts in kurzen Zyklen zu vermitteln. Die Studierenden können die vermittelten Kon-
zepte auf der Grundlage des individuellen Feedbacks des Lehrenden in Echtzeit üben und
reflektieren. Interaktives Lernen fördert die Kreativität und beschränkt die Studierenden
nicht auf Musterlösungen. Artemis reduziert den Aufwand für Korrekturen und Feedback
in Übungen und Prüfungen. Es bewertet automatisch Programmier- und Quizaufgaben
und verwendet einen überwachten Ansatz zum maschinellen Lernen, um Modellierungs-
und Textaufgaben auf Basis einer Ähnlichkeitsanalyse halbautomatisch zu bewerten.

Artemis wurde in 63 Kursen an zehn Universitäten eingesetzt und von 30.000 Stu-
dierenden in diesen Kursen genutzt. Darüber hinaus haben 8.500 Studierende in 31
Online Klausuren mit realitätsnahen, auf konstruktivem Abgleich basierenden Übun-
gen ihre Prüfungen mit Artemis abgelegt. Interaktives Lernen und Artemis wurden in
mehreren Fallstudien in Informatikkursen empirisch evaluiert, wobei ein designbasierter
Forschungsprozess mit vier Hypothesen verwendet wurde.

Die Fallstudien zeigen, dass interaktives Lernen auf Kurse mit mehr als 1.500 akti-
ven Teilnehmern skalierbar ist (H1) und das Engagement der Studierenden im Vergleich
zu traditionellen Kursen um bis zu 165 % erhöht (H2). Interaktives Lernen verbesser-
te den Lernerfolg der Studierenden bei Modellierungsaufgaben um bis zu 87 % (H3).
Der halbautomatische Bewertungsansatz mit individuellem Feedback reduzierte den Be-
wertungsaufwand um bis zu 80 % (H4). Diese Ergebnisse zeigen, dass eine individuelle
Interaktion zwischen Lehrenden und Studierenden auch in größeren Kursen möglich ist.
Die Lehrplattform Artemis ermöglicht künftige Forschungsvorhaben im Bereich Lernana-
lytik und adaptives Lernen.

v

Acknowledgements

Many people influenced me during the four years of research and teaching while working
on the habilitation. I want to thank them and acknowledge their support.

First and foremost, I would like to express my deep gratitude to my mentor and
role model Bernd Brügge, who inspired me again and again with new ideas, endless
enthusiasm, and support during the time of my habilitation. You created an environment
of opportunity and growth, trusted me and my work, supported my thoughts, provided
valuable feedback, encouraged new ways of thinking, and always gave me opportunities
to grow and the freedom to try new approaches. I am excited to follow in your footsteps
and continue to develop our visions of excellent teaching.

I also want to thank Maria Bannert for accompanying my habilitation research and
for her valuable feedback, and Tobias Nipkow for chairing the habilitation project. I am
thankful to the dean and the faculty of Informatics for the possibility of writing this
habilitation. I would like to thank Manuela Fischer-Russenberger for her outstanding
support in all administrative questions regarding the habilitation.

I am very grateful to all members of the Chair for Applied Software Engineering.
I learned a lot from all of you, and I am thankful for all discussions, feedback, fun,
and encouragement. I want to thank Jan Philip Bernius, Andreas Seitz, Nadine von
Frankenberg, and Lara Marie Reimer for their great support in the different courses we
have taught. Without your help, it would not have been possible to improve education
and to win prizes. I want to thank Helma Schneider, Monika Markl, and Uta Weber for
their support in all administrative, financial and personal questions. I am also grateful
to Ruth Demmel, Andreas Jung, and the whole team of the computer operations group
(RBG) of the Informatics faculty for live streams, video recordings, and infrastructure
support for the operation of Artemis.

I also like to thank all co-authors of papers and articles who contributed to this
habilitation: Andreas Seitz, Anna Kovaleva, Bernd Brügge, Cecil Wöbker, Christopher
Laß, Dora Dzvonyar, Han Xu, Irina Camilleri, Jan Philip Bernius, Jürgen Börstler, Kirill
Krinkin, Lara Marie Reimer, Nadine von Frankenberg, and Sami Afifi.

Many people have contributed to the development of Artemis and I am indebted to
the following people (in alphabetical order) for their time and passion into developing the
teaching platform Artemis: Adem Khachnaoui, Alex Mardale, Alexander Karpp, Alexan-
der Ungar, Alexander von Trostorff, Andi Turdiu, Andreas Seitz, Anh Montag, Birtan
Gültekin, Can Sarpkaya, Christian Femers, Christian Ziegner, Christopher Lass, Clemens
Zuck, Daniel Crazzolara, David Otter, Dominik Fuchs, Dominik Münch, Filip Gregure-

vii

vic, Florian Glombik, Francisco De las Casas Young, Hanya Elhashemy, İsmet Melih
Özbeyli, Ivan Chimeno, Jan-Thilo Behnke, Johann Rottenfusser, Johannes Stöhr, Jonas
Petry, Jonas Schulte-Coerne, Josias Montag, Julian Christl, Julian Frielinghaus, Julian
Willand, Katie Sebina, Kilian Schulte, Linus Michel, Lukas Franke, Mai Ton Nu Cam,
Mario Amah, Marius Schulz, Martin Wauligmann, Matthias Linhuber, Maximilian Meier,
Minh Tran, Moritz Issig, Nadine von Frankenberg, Niclas Schümann, Nicolas Ruscher,
Patrik Zander, Philipp Bauch, René Lalla, Riccardo Padovani, Sascha Beele, Sebastian
Jagla, Simon Leiß, Stefan Klöss-Schuster, Stefan Kreuzer, Stefan Waldhauser, Tessa
Ruckstuhl, Tiffany Cauthen, Tobias Priesching, Tobias Schamel, Valentin Schlattinger,
and Varnika Tyagi.

I am grateful to all students who participated in courses and exams and who provided
valuable feedback. In addition, I would like to thank more than 300 tutors who have
supported these courses and made their first teaching steps.

Finally, I want to express my love and gratitude to my family and my wife Anke,
my daughter Lina, and my son Felix. Writing a habilitation requires even more than the
researcher’s full attention. I am indebted for your love and devotion, your understanding,
and your support. Without you, this habilitation would not have been possible!

viii

Contents

1 Introduction 1
1.1 Objectives . 3
1.2 Research Process . 4
1.3 Outline . 5

2 Background 8
2.1 Experiential Learning . 8
2.2 Active Learning . 9
2.3 Technology-enhanced Learning . 10
2.4 Team-based Learning . 11
2.5 Constructive Alignment . 12

3 Related Work 15
3.1 Learning Approaches . 15
3.2 Automatic Assessment Systems . 16

4 Interactive Learning 27
4.1 Interactivity . 28
4.2 Continuous Interactive Learning . 29
4.3 Examples . 33

5 Artemis 35
5.1 Functionalities . 35

5.1.1 Programming Exercises . 35
5.1.2 Modeling Exercises . 39
5.1.3 Quiz Exercises . 40
5.1.4 Text Exercises . 43

ix

5.1.5 Assessment . 45
5.1.6 Team Exercises . 49
5.1.7 Lectures . 53
5.1.8 Exam Mode . 55

5.2 System Architecture . 57
5.2.1 Top-Level Design . 57
5.2.2 Deployment . 59
5.2.3 Data Management . 62

6 Evaluation 65
6.1 Case Studies . 65

6.1.1 Introduction to Software Engineering (EIST) 66
6.1.2 Project Organization and Management (POM) 71
6.1.3 Patterns in Software Engineering (PSE) 74
6.1.4 Software Engineering Essentials (SEECx) 76
6.1.5 Dissemination of Artemis . 79

6.2 Results . 85
6.2.1 H1: Scalability . 85
6.2.2 H2: Engagement . 86
6.2.3 H3: Learning Outcome . 87
6.2.4 H4: Grading Effort and Feedback Quality 92

6.3 Threats to Validity . 93

7 Conclusion 95
7.1 Contributions . 95
7.2 Future Work . 97

8 Publications 100
8.1 Interactive Learning – Increasing Student Participation through Shorter

Exercise Cycles . 101
8.2 Experiences of a Software Engineering Course based on Interactive Learning112
8.3 Chaordic Learning: A Case Study . 122
8.4 ArTEMiS - An Automatic Assessment Management System for Interac-

tive Learning . 133
8.5 Software Theater—Teaching Demo-Oriented Prototyping 140

x

8.6 Increasing the Interactivity in Software Engineering MOOCs - A Case Study171
8.7 Stager: Simplifying the Manual Assessment of Programming Exercises . . 182
8.8 An Interactive Learning Method to Engage Students in Modeling 193
8.9 Towards the Automation of Grading Textual Student Submissions to

Open-ended Questions . 205
8.10 A Machine Learning Approach for Suggesting Feedback in Textual Exer-

cises in Large Courses . 216

A Licenses 227
A.1 IEEE . 228
A.2 ACM . 229
A.3 ScholarSpace . 230
A.4 CEUR . 231

List of Figures 232

List of Tables 234

Bibliography 235

xi

Publication Preface

This habilitation is based on the following 10 publications (in chronological order). The
four most significant publications are highlighted in blue. Chapter 8 provides an overview
of the publications and describes the main contribution of each paper for this habilitation.

1. Publication [KSBB17]

Stephan Krusche, Andreas Seitz, Jürgen Börstler, and Bernd Bruegge (2017). Inter-
active Learning – Increasing Student Participation through Shorter Exercise Cycles. In
Proceedings of the 19th Australasian Computing Education Conference. ACM.
DOI: https://doi.org/10.1145/3013499.3013513

2. Publication [KvFA17]

Stephan Krusche, Nadine von Frankenberg, and Sami Afifi (2017). Experiences of a
Software Engineering Course based on Interactive Learning. 15. Workshop Software
Engineering im Unterricht der Hochschulen.
Proceedings: http://ceur-ws.org/Vol-1790

3. Publication [KBC+17]

Stephan Krusche, Bernd Bruegge, Irina Camilleri, Kirill Krinkin, Andreas Seitz, and
Cecil Wöbker (2017). Chaordic Learning: A Case Study. In Proceedings of the 39th
International Conference on Software Engineering. IEEE.
DOI: https://doi.org/10.1109/ICSE-SEET.2017.21

4. Publication [KS18]

Stephan Krusche and Andreas Seitz (2018). ArTEMiS - An Automatic Assessment
Management System for Interactive Learning. In Proceedings of the 49th Technical
Symposium on Computer Science Education. ACM.
DOI: https://doi.org/10.1145/3159450.3159602

xiii

https://doi.org/10.1145/3013499.3013513
http://ceur-ws.org/Vol-1790
https://doi.org/10.1109/ICSE-SEET.2017.21
https://doi.org/10.1145/3159450.3159602

5. Publication [KDXB18]

Stephan Krusche, Dora Dzvonyar, Han Xu, and Bernd Bruegge (2018). Software Theater
— Teaching Demo Oriented Prototyping. Transactions on Computing Education. ACM
DOI: https://doi.org/10.1145/3145454

6. Publication [KS19]

Stephan Krusche and Andreas Seitz (2019). Increasing the Interactivity in Software
Engineering MOOCs - A Case Study. In Proceedings of the 31st Conference on Software
Engineering Education and Training (52nd Hawaii International Conference on System
Sciences). ScholarSpace.
DOI: https://doi.org/10.24251/HICSS.2019.915

7. Publication [LKvFB19]

Christopher Laß, Stephan Krusche, Nadine von Frankenberg, and Bernd Bruegge (2019).
Stager: Simplifying the Manual Assessment of Programming Exercises. 16. Workshop
Software Engineering im Unterricht der Hochschulen.
Proceedings: http://ceur-ws.org/Vol-2358

8. Publication [KvFRB20]

Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd Bruegge
(2020). An Interactive Learning Method to Engage Students in Modeling. In Proceed-
ings of the 42nd International Conference on Software Engineering. ACM.
DOI: https://doi.org/10.1145/3377814.3381701

9. Publication [BKKB21]

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge (2020). To-
wards the Automation of Grading Textual Student Submissions to Open-ended Ques-
tions. In Proceedings of the 4th European Conference on Software Engineering Educa-
tion. ACM.
DOI: https://doi.org/10.1145/3396802.3396805

10. Publication [BKB21]

Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge (2020). A Machine Learning
Approach for Suggesting Feedback in Textual Exercises in Large Courses. In Proceedings
of the 8th Conference on Learning at Scale. ACM.
DOI: https://doi.org/10.1145/3430895.3460135

xiv

https://doi.org/10.1145/3145454
https://doi.org/10.24251/HICSS.2019.915
http://ceur-ws.org/Vol-2358
https://doi.org/10.1145/3377814.3381701
https://doi.org/10.1145/3396802.3396805
https://doi.org/10.1145/3430895.3460135

Chapter 1

Introduction

“Tell me and I will forget. Show me and I will remember. Involve me and I will
understand. Step back and I will act.”

— Chinese Proverb

The demand for computer scientists has grown significantly in the last few years. As a
result, it is common to have more than 1000 students in bachelor courses and more than
500 students in master courses1. The high number of students makes it challenging for
the instructors to keep the quality of education high because it is impossible to interact
with all students individually and adapt lectures and exercises to heterogeneous student
groups.

In university courses with hundreds of students, instructors still tend to use a unidi-
rectional teaching approach. They only explain concepts and theory to students instead
of involving the students in the educational activities. The interaction between students
and instructors is then limited or non-existing, leaving students confused and lost if they
cannot ask clarification questions and do not receive feedback. In addition, content de-
livery in lectures and content deepening in exercises are separated, leading to a limited
learning experience.

There are learning approaches such as active learning [JJS91], computer-based learn-
ing [GK04], and experiential learning [Kol84], which try to overcome these problems.
However, their use by instructors in large courses is challenging and limited due to in-
creased effort and scalability problems. For example, while it makes sense to activate 20
students in a small classroom with a group discussion, it is impossible to have a group
discussion with 1.000 students distributed into multiple lecture halls that the instructor
still guides.

Nevertheless, there is clear evidence that guidance is essential to facilitate learning
and prevent misconceptions [KSC06]. Therefore, it is vital to involve students in the
learning activities, even in large courses. Exercises and examples are essential elements in
teaching and learning [Van96]. Carefully developed and integrated examples increase the

1The numbers of the computer science faculty of the Technical University of Munich show that
in the academic year of 2020/21, there are 2.508 first-year students: https://www.in.tum.de/en/
the-department/profile-of-the-department/facts-figures/facts-and-figures-2020

1

https://www.in.tum.de/en/the-department/profile-of-the-department/facts-figures/facts-and-figures-2020
https://www.in.tum.de/en/the-department/profile-of-the-department/facts-figures/facts-and-figures-2020

learning outcome [SC85,TR93]. In particular, in complex problem spaces, like software
development, “[l]earners may learn more by solving problems with the guidance of some
examples than solving more problems without the guidance of examples” [TR93, p. 42].

Computer science and software engineering are problem-solving activities that require
creativity, collaboration, and practical application of knowledge [Whi07,Sha04]. Current
higher education practices lead to a multitude of rules, guidelines, and order, which in
turn makes “motivated, creative teachers and students feel less and less in place” [Mul15,
p. 2]. Creative activities such as modeling are essential in software engineering but hard
to teach and assess, particularly in large courses. There is usually not only one correct
solution to a modeling exercise.

Much expertise is necessary to assess whether the model is complete, unambiguous,
and correct and whether it abstracts the essential aspects. In such cases, it would be
problematic only to distribute one sample solution and generic feedback. Students with
a different solution could assume that their solution is wrong, even if it is correct. This
reduces creativity and stimulates learning by heart instead of understanding the good and
problematic aspects of the solution and the iterative aspects of improving the solution
based on feedback.

Another problem is that large courses are typically not adaptive to heterogeneous
student groups. However, due to the increasing complexity in the world, there is a
need for diverse employee profiles. The number of study programs increases, while it is
impossible to offer specialized courses for each study program. Many courses are offered
for minor subjects where students might not fulfill all prerequisites of a course. This
leads to courses with heterogeneous participants who have varying prior knowledge and
interests in the course.

While there are approaches to individualizing students’ learning experience [Son05],
it is particularly challenging to implement them in large courses. In a classroom with
20 students and direct interaction, an instructor could identify weaker and stronger
students more efficiently and separate them into multiple, smaller groups. This is no
longer feasible for instructors who work with hundreds of students in different locations.

Instructors also face challenges during the assessment of students in large courses.
Many instructors focus on lower cognitive skills to reduce the grading effort because
exercises are easier to assess when students only need to repeat the concepts they
have learned before. The assessment of explanations, differentiations, or new creative
solutions to existing problems creates a high effort. However, not including exercises in
the final exams that request higher-level learning goals stimulates learning by heart and
reduces the students’ learning outcome for the desired competencies and skills.

The principles of constructive alignment [Big03] have been promoted as a powerful way
to circumvent these issues [HVVP21]. Nevertheless, instructors struggle to implement
constructive alignment because there is a gap between the taught learning outcomes,
the learning activities, and the assessment in the examination, which should be aligned
with each other. Paper-based exams force students to write little code on paper while
learning and practicing to implement more complex programs in integrated development
environments.

2

1.1 Objectives

To solve these challenges, we developed a new teaching philosophy interactive learn-
ing for larger courses, and the associated teaching platform Artemis which supports
interactive learning with individual feedback.

The main goal is that instructors can apply a student-focused teaching and learning
approach in courses with hundreds of participants to increase the involvement of students.
Instructors teach and exercise small chunks of content in short cycles using technology.
They provide immediate feedback so that students can reflect on the content and increase
their knowledge incrementally.

Immediate, individual feedback can increase the required effort for instructors in large
courses significantly. For example, instructors have to grade submissions with similar
aspects and repeatedly apply the same grading criteria. To prevent this and to increase
the quality, consistency, and fairness of individual feedback, Artemis should automate
repeated and cumbersome activities during the grading process. Then, instructors have
more time for direct interaction and communication with students.

A focus on lower cognitive skills in exercises and examinations can also reduce the
grading effort in larger courses but limit students’ learning outcomes and creativity.
However, it is essential that instructors can offer exercises based on higher cognitive skills
without increasing the grading effort significantly. Therefore, we want to investigate and
integrate supervised machine learning approaches. This approach would allow Artemis
to learn which aspects of an exercise are correct and wrong during manual assessments.
Based on similarity analysis, Artemis should then suggest feedback for similar elements
in other submissions. Using this approach, instructors could stimulate higher cognitive
skills, including creative aspects, while still providing individual feedback and allowing
multiple solutions.

Instructors should also be able to stimulate higher-order skills in examinations based on
constructive alignment. Otherwise, students would not be able to learn the competencies
needed when they start working after university. Therefore, Artemis should offer a digital
exam mode based on the same exercise types as the course. Instructors can then more
easily align the learning activities in the course with the assessment in the exam exercises.
In addition, automatic assessment can reduce the organization and grading effort in
exams. This would make it more likely that instructors choose examination exercises
with higher cognitive skills.

To address the challenge of a heterogeneous, large audience, we want to integrate
adaptive learning into Artemis. Students should be able to choose individual learning
paths based on their existing skills. Artemis should be able to offer exercises in multiple
difficulty levels. Inexperienced students should not lose the motivation to work on the
exercise. Experienced students should still feel challenged and learn new aspects. There-
fore, Artemis should be able to choose the correct exercise difficulty for each individual
student.

3

1.2 Research Process

This habilitation follows a design-based research process [Col92, Hoa02]. We develop
interactive learning and Artemis as interventions in a formative approach [Sta03] to
iteratively and incrementally apply them in case studies in actual courses to evaluate
and to enhance them. This allows refining the objectives for interactive learning and
the requirements for Artemis according to the feedback of the involved instructors and
students. This is necessary because the objectives and requirements can change over
time and based on user feedback. The research process includes the following activities
in no particular order due to its formative nature:

• Description of the teaching philosophy interactive learning
• Implementation of Artemis based on the objectives defined in the previous section
• Application of interactive learning and Artemis in multiple courses and case studies
• Dissemination of interactive learning and Artemis in other universities
• Empirical evaluation of the benefits of interactive learning and Artemis

After the initial description of interactive learning and the initial implementation of
Artemis, we will apply them in multiple instances of three large courses and one massive
open online course (MOOC) at the Technical University of Munich:

1. Project Organization and Management (POM)
2. Patterns in Software Engineering (PSE)
3. Introduction to Software Engineering (EIST)
4. MOOC: Software Engineering Essentials (SEECx)

The application of interactive learning and Artemis in actual courses (field studies)
reveals essential insights that help refine the teaching philosophy and further implement
the teaching platform. Instructors can use Artemis during the lecture period (around
three months) and refine it in the lecture-free period (around two months). This allows us
to empirically evaluate the benefits in natural settings that are not limited by the artificial
nature of experiments. The empirical evaluations analyze the effectiveness of interactive
learning concerning the scalability, engagement, learning outcome, grading effort, and
feedback quality. We design qualitative and quantitative evaluations to investigate the
following five hypotheses in the following courses:

H1 Scalability: Interactive learning can be used in large courses with more than 1,500
active students participating in exercises simultaneously.

H2 Engagement: Interactive learning increases the participation and motivation of
students.

H3 Learning outcome: Interactive learning improves the learning outcome for stu-
dents.

H4 Grading effort and feedback quality: Supervised machine learning reduces
grading effort while improving feedback quality.

H5 Adaptability: Interactive learning adapts the difficulty of a course to each indi-
vidual student by using machine learning.

4

To validate these hypotheses, we collect quantitative data based on the usage of
Artemis. We can then compare the final grades in exams with the exercise performance or
analyze the manual and automatic assessments to compare their quality and consistency.
In addition, interviews and surveys with the involved stakeholders and course evaluations
allow us to collect qualitative data and additional insights about the personal benefits
of instructors and students.

Positive validation of the hypotheses will enable the transfer to other disciplines out-
side our research group so that interactive learning is used practically in courses at other
universities and in industry, nationally and internationally. This enables an empirical
evaluation of the hypotheses where we have no direct influence on the intervention.
Furthermore, the dissemination of interactive learning and Artemis will prove that they
provide enough benefits so that other instructors at the same university or other univer-
sities apply them.

1.3 Outline

This habilitation is publication-based. Chapters 1 to 7 are a synopsis, i.e., a summary
of the most important contributions. Parts of the text of the synopsis are reused2 from
the publications referenced in Chapter 8.

The synopsis includes an overview of existing teaching approaches (Chapter 2) and
a description of related learning approaches and automatic assessment systems (Chap-
ter 3). It defines the teaching philosophy interactive learning (Chapter 4) and the asso-
ciated teaching platform Artemis (Chapter 5). Finally, it includes empirical evaluations
demonstrating the benefits of interactive learning and Artemis (Chapter 6), discusses
future research directions to extend the work (Chapter 7), and a reprint of the ten
publications at conferences, journals, and workshops (Chapter 8).

Chapter 2 provides an overview of existing teaching approaches that have influenced
interactive learning. We describe problem-based learning, cooperative learning, blended
learning, experiential learning, active learning, technology-enhanced learning, and team-
based learning. Finally, we introduce the framework constructive alignment, which pro-
poses to align learning goals with learning activities and assessments together with a
taxonomy of learning goals from lower-order complexity (e.g., remember) to higher-order
complexity (e.g., evaluate).

Chapter 3 describes the related work in terms of other learning approaches similar to
interactive learning and other automatic assessment systems that try to achieve similar
objectives. A variety of automatic assessment systems exists, all with slightly different
purposes. However, compared to existing systems, Artemis is unique in several aspects.
First, it focuses on multiple exercise types: programming, modeling, text, quiz, and file
upload. Second, it includes different assessment strategies: automatic, semi-automatic
based on machine learning to allow multiple correct solutions and hybrid assessment

2Reuse means that some text blocks (e.g., sentences or paragraphs) are copied from the publication
and enriched with additional details or reformulated to better fit into the context of the synopsis of the
habilitation.

5

approaches (e.g., first automatic, then manual feedback). Third, it integrates assess-
ment training, structured grading instructions, double-blind assessment, and assessment
leaderboards to improve the fairness and consistency of manual assessments. Fourth, it
integrates additional features such as team exercises, lectures, questions and answers,
plagiarism checks, and an exam mode.

Chapter 4 explains interactive learning as a teaching philosophy, allowing instructors
to teach small pieces of content in short cycles [KSBB17, KvFA17, KS19]. Interactive
learning integrates aspects of active learning [BE91], blended learning [GK04], and ex-
periential learning [Kol84]. It is based on constructive alignment [Big03] and includes
creative aspects [KBC+17] and team-based learning [MWCDF82]. We describe examples
for simple interactive exercises and more complex exercises spanning multiple lectures
such as software theater [KDXB18].

Chapter 5 describes the main features and the architecture of the teaching plat-
form Artemis3, which includes multiple subsystems and external components [KS18,
LKvFB19]. Artemis connects to a version control system and a continuous integration
server to realize programming exercises with automatic feedback independent of the
programming language. It offers quiz exercises with multiple-choice, drag and drop, or
short-answer questions that are evaluated automatically. Ares4 is a Junit testing frame-
work supporting instructors in writing test cases for programming exercises with helpful
feedback. Orion5 is an IntelliJ plugin that simplifies the participation of students in
programming exercises and the creation of programming exercises for instructors.

Modeling exercises are based on Apollon6, a lightweight and easy-to-use online model-
ing editor that supports seven UML diagrams and three other diagram types [KvFRB20].
Compass7 is integrated into Artemis and realizes semi-automatic assessments based on
supervised machine learning for modeling exercises using similarity analysis. Finally,
Athene8 is an external system connected to Artemis. It implements semi-automatic as-
sessments based on supervised machine learning and natural language processing for text
exercises [BKKB21,BKB21].

Among other additional features, Artemis offers an exam mode that supports digital
exams with exercise variants and plagiarism control. The exam mode allows instructors to
assess the same competencies the students have learned in the course before. Moreover,
students can participate from home even if the internet connection is not reliable.

3In Greek mythology, Artemis is the goddess of the hunt, the wilderness, wild animals, the moon,
and chastity. The Artemis teaching platform is open-source: https://github.com/ls1intum/Artemis

4In Greek mythology, Ares is the god of courage and war. He is one of the brothers of Artemis. The
Junit testing framework Ares is open-source: https://github.com/ls1intum/Ares

5In Greek mythology, Orion is a giant huntsman and a hunting partner of Artemis. The IntelliJ
plugin Orion is open-source: https://github.com/ls1intum/Orion

6In Greek mythology, Apollon is the god of oracles, healing, archery, music and arts, sunlight,
knowledge, herds and flocks, and protection of the young. He was one of the brothers of Artemis. The
online modeling editor Apollon is open-source: https://github.com/ls1intum/Apollon

7A compass is a tool that shows directions and can be used for navigation. Following Greek mythol-
ogy, Artemis uses a compass to find the right individual feedback automatically.

8In Greek mythology, Athene is the goddess of wisdom, handicraft, and warfare. She is one of the
sisters of Artemis. The system to support semi-automated assessment of textual exercises Athene is
open-source: https://github.com/ls1intum/Athene

6

https://github.com/ls1intum/Artemis
https://github.com/ls1intum/Ares
https://github.com/ls1intum/Orion
https://github.com/ls1intum/Apollon
https://github.com/ls1intum/Athene

Chapter 5 also explains the system architecture of Artemis and its related subsystems
and external components. The Artemis server subsystem can be scaled horizontally
and uses different mechanisms such as network file systems, shared caches, a registry
for monitoring, and a broker to distribute messages to maintain the consistency between
multiple server instances. The central server instance is responsible for scheduling events,
e.g., the start of a live quiz or removing write access in the version control reposito-
ries in online exams, while the other server instances allow handling many submissions
simultaneously.

Chapter 6 describes the design-based research process, consisting of case studies in
actual courses and multiple quantitative and qualitative evaluations. It also explains
and discusses the results found in these evaluations. Interactive learning is scalable
to courses with more than 1,500 active students submitting their exercise solutions
simultaneously. It increased student engagement in the last four lectures of one course
by 165 % compared to a previous traditional instance of the same course. It improved
students’ learning outcome in modeling exercises in another course by up to 87 % when
comparing the exam results with the previous course without the intervention. The
semi-automatic grading process in Artemis reduced the grading effort by up to 80 % in
text and modeling exercises.

Chapter 7 summarizes the main contributions of the habilitation and provides ideas
for future research directions. The main contributions are the description of a teaching
philosophy interactive learning specifically for larger courses, the development of an
associated teaching platform Artemis, and the empirical evaluation of both in the context
of multiple courses. Future research directions include integrating learning analytics to
let students reflect on their performance and allow instructors to reflect on whether
students have understood specific topics more easily.

Learning paths and exercises with different difficulty levels would build the first steps
towards adaptive learning. Machine learning could enable the automatic configuration
based on the individual skills of one student. From the technical perspective, it is
desirable to migrate Artemis from a monolithic architecture to microservices [New15]
and micro frontends [Gee20], allowing a more lightweight and flexible configuration
during the deployment. Kubernetes clusters could further improve the automatic scaling
and performance when many students use Artemis simultaneously [VSTK18].

Chapter 8 contains a summary and a reprint of the ten publications on which this
habilitation is based. We describe the primary research contribution for each publication,
explain how the publication relates to interactive learning, and mention how the author
of this habilitation contributed to the publication.

7

Chapter 2

Background

“Never stop learning, because life never stops teaching”
— Lin Pernille

This chapter provides an overview of the field of learning philosophies. It summarizes
the most important learning approaches, which have influenced interactive learning, and
presents constructive alignment.

Problem-based learning is a technique to learn about a subject through the experience
of problem-solving. Educators facilitate learning by supporting, guiding, and monitoring
this process. Working in groups, students identify what they know, what they need to
know, and how and where to access new information that leads to the resolution of the
problem [BF98].

Cooperative learning is an educational approach that aims to organize classroom ac-
tivities into social learning experiences. Students work in groups to complete tasks
collectively towards a common goal. The role of the teacher changes from giving infor-
mation to facilitating students’ learning. As a result, everyone succeeds when the group
succeeds [J+91].

Blended learning allows students to learn through the delivery of content and in-
structions via computer-mediated activities, digital media, and online media. While still
attending traditional teaching environments, face-to-face methods are combined with
computer-mediated activities. Thus, blended learning facilitates a simultaneous, inde-
pendent, and collaborative learning experience [GK04].

2.1 Experiential Learning

Experiential learning is the process of learning from experience, a methodology in which
educators engage with students in direct experience to increase knowledge, develop skills,
and clarify values [Kol84]. Aristoteles said: “For the things we have to learn before we
can do them, we learn by doing them.” John Dewey followed this idea with his statement

8

that “there is an intimate and necessary relation between the process of actual experience
and education” [Dew38, p. 6].

Experiential learning is considered to be more efficient than passive learning like read-
ing or listening. It is in contrast to academic learning, where students acquire informa-
tion through studying a subject without the necessity for direct experience. The main
dimensions of experiential learning are analysis, initiative, and immersion [Kol84]. Aca-
demic learning promotes the dimensions of constructive learning [Ver98] and reproductive
learning [JJWH06]. Both methods instill new knowledge, though academic learning uses
more abstract techniques, whereas experiential learning actively involves the student in
a concrete experience such as an exercise.

Experiential learning focuses on the learning process through reflection on doing
[Fel11]. Thus, the student takes an active role compared to didactic learning, where
the student plays a relatively passive role [Bea10].

Kolb developed the experiential learning cycle with four stages [Kol84].

1. Concrete experience: Work on a substantial task.
2. Reflective observation: Take a timeout from “doing” and step back from the

concrete task. Instead, review what has been done and experienced.
3. Abstract conceptualization: Make sense of what has happened. Interpret the

events and understand the relationships between them.
4. Active experimentation: Put the learning into practice, ideally regularly.

2.2 Active Learning

Active learning is an educational approach to increase student involvement and excite-
ment with the subject being taught [BE91]. Instead of students acting as receivers of
knowledge by passively listening, active learning emphasizes developing student skills and
engaging them in activities such as small group discussions or class games.

Grabinger and Dunlop emphasize that authentic contexts encourage students to take
more responsibility and engage them in learning activities that promote high-level think-
ing processes [GD95]. An authentic context in software engineering would, for example,
be the management of a project where students experience typical activities such as
meeting and task management. The students’ learning progress is supported and as-
sessed through realistic tasks such as planning and conducting a meeting or distributing
tasks within the team.

Michael Prince examined the evidence for the effectiveness of active learning and dis-
cussed its common forms [Pri04]. He concluded that active learning positively influences
knowledge transfer and student performance. Joel Michael reviewed the literature and
found that there is evidence that active learning improves the learning outcome compared
to more passive approaches [Mic06].

However, certain active learning approaches are not feasible for large classrooms. For
example, it is impossible to have a group discussion with 300 students in the same lecture

9

hall. In addition, it is essential that instructors “place a strong emphasis on guidance of
the student learning process” [KSC06, p. 1] to prevent misconceptions.

Active learning led to improved learning experiences on different cognitive skill levels
of Bloom’s taxonomy in university courses. It emphasizes developing skills through
active participation and engagement in activities. It moves away from teacher-centered
approaches, where teachers instruct and students listen passively, to a more student-
centered approach, where students play an active role.

Bonwell and Eison define active learning as “anything that involves students in doing
things and thinking about the things they are doing” [BE91, p. 19]. It requires students
to regularly assess their problem-solving skills and understanding of the taught concepts
[Mic06]. Brophy and Good identify four main premises of active learning [GB87]:

1. Students construct their meanings
2. New learning builds on prior knowledge
3. Learning is enhanced by social interaction
4. Learning develops through authentic tasks

Prince [Pri04] and Michael [Mic06] found support for all forms of examined active
learning in their studies. They conclude that active learning improves learning outcomes
compared to passive learning approaches.

2.3 Technology-enhanced Learning

Technology-enhanced learning (TEL) illustrates the application of information and com-
munication technologies to teaching and learning [KP14]. The term is broadly used: a
shared understanding has not been developed in higher education of what constitutes
enhancing the student learning experience. TEL is concerned with improving the quality
and outcomes of learning in all those varied circumstances where technology plays a
significant supportive role [GR10].

TEL uses technologies to support learning in local (e.g., in the lecture hall) or remote
(e.g., at home) locations. Traditionally, technologies have included instructional films,
radio, and television [Wes10]. Today, TEL focuses on computer-based technologies,
including smartphones and other smart devices.

Learning is a process whereby the student reviews concepts and ideas, assimilates
these through practice, and demonstrates mastery [SL19]. Enhancements of learning can
improve this practice and process. Modern technologies allow enhancements through the
facilitation of learning activities by technology in various forms. TEL can offer scalability,
flexibility, and new methods of facilitating learning.

Technology-enabled active learning (TEAL) is a variation established in a technology-
enhanced multimedia studio, emphasizing constructivist-oriented teaching and learning
[Shi12]. Benefits appear in different aspects: students are more interested in attending
lectures and are more active in participating in extracurricular activities. They are more
enthusiastic about and confident in helping other students. Achievements and positive
responses of students improve the dedication and confidence of the instructor.

10

A related concept is collaborative learning, e.g., in the form of computer-supported col-
laborative work (CSCW), which was incorporated into education and empirically studied
for many years [DJF09]. Collaborative learning is an approach to teaching and learning
that involves groups of students working together to complete a task, solve a problem,
or create a product [LL12]. Collaborative learning is used as a generic term for various
learning approaches involving students’ joint effort [GMT+92]. Students work in groups
of two or more, try to search for understanding, solutions, or meanings.

2.4 Team-based Learning

One variant of collaborative learning is team-based learning (TBL) which Larry Michaelsen
first introduced at the University of Oklahoma in the 1980s [MWCDF82]. The goal was
to give students the benefits of learning in small teams within a large class setting in
the business school environment [SYK+13]. TBL has been gaining traction at academic
institutions since, especially in medical and pharmaceutical education at colleges in the
US [ACF+13, HR20]. The main difference to collaborative learning is that students in
teams are more strongly connected, focusing on a specific outcome, a common goal,
which requires coordination over a more extended period [Ald77,FH+97].

The primary objective of TBL is to go beyond just covering the material of a course
and focus on engaging the students in practicing the course concepts by applying them
to solve problems. Thus, while students spent some time ensuring the mastery of course
content, most class time is dedicated to team assignments, usually divided into five to
seven central work units for the whole course.

One of the main challenges of TBL is the transition from learning about the course
concepts to applying them since this requires a role shift for both the instructor and the
students: The instructor is now no longer primarily dispensing information but instead
managing the instructional process. In contrast, the students change from passive re-
cipients of information to active participants in team-based exercises requiring them to
act upon the received information.

Michaelsen identifies four essential elements that instructors need to implement in his
eyes in order to achieve this transition successfully [MS08]:

1. Properly formed and managed groups: TBL intends the team formation
process to be strictly overseen by the instructor so that the following variables can be
controlled that will influence the effectiveness of the teams: Teams should have a similar
amount of resources to draw from when it comes to completing the assignments. This
means that each team should have an adequate balance concerning student character-
istics that would favor or hinder performing well in the course, such as having previous
course-related experience.

Team members should ideally be demographically diverse to bring in different perspec-
tives during the problem-solving phase. Although culturally homogeneous teams tend
to be more effective initially, this edge disappears after some time, with heterogeneous
teams even scoring higher in specific task metrics [WKM93].

11

Coalitions among members of a team should be avoided since they threaten the overall
development of the team. If a subset of team members already has a previous relation-
ship, likely, insider-outsider tension will negatively affect the team cohesiveness. Since
humans tend to seek out others similar to them, letting the students form teams by
themselves would almost certainly lead to potentially troubling subgroups [FD84].

Formed teams need to stay the same for the entire course duration since teams need
time to become high-performing and self-managed in their learning process.

2. Student accountability for individual and group work: Compared to the
normal mode of working on exercises individually and only being accountable to the
instructor, TBL demands more from the students in the sense that they are now ac-
countable also to their teammates, both for the quality and quantity of their work.

The first step is to ensure that students are individually accountable for the preparation
before a team exercise. If several team members are unprepared when starting the
exercise, the team will likely not succeed. The next step is to account for the individual
contribution of each team member to the joined work product. Finally, students evaluate
the contributions in a peer assessment process since they tend to be the only ones who
have enough information for an accurate assessment.

TBL suggests two factors for assessing the quality of the team’s work product: The
teams should develop a product that can be easily compared across teams, and such
comparisons should happen frequently and on time.

3. Frequent immediate student feedback: Students’ immediate feedback is seen
as a primary instructional lever in TBL. It is essential in the retention of content
[HT07] and advantageous for the development of the team [BM04].

4. Assignments that promote both learning and team development: When
designing exercises suitable for engaging students in teamwork, it is fundamental that
these exercises require team interaction. This is usually the case when course concepts
have to be used to make decisions based on many factors and report the result of their
decisions in a simple form.

If an exercise requires the students to produce a complex, lengthy work product, it
leads to less interaction among the students due to simply dividing up the individual
parts of the work product and then working on them alone [MS08].

2.5 Constructive Alignment

Constructive alignment proposes to align learning goals with learning activities and as-
sessment. It was introduced by John Biggs [Big03] and is derived from constructivism
and curriculum theory [MB97]. Figure 2.1 shows the three dimensions and their align-
ment. Biggs refers to the basic idea of constructivism that students construct their
learning through learning activities instead of passively receiving knowledge from the
instructor. Thus, all components in the learning system - the learning goals, the learning
activities, and the assessment tasks - are aligned.

12

Learning goals

Learning activities

Constructive  
alignment

Assessment

Figure 2.1: Constructive alignment proposes to align learning goals with learning activities and assess-
ment (adapted from [Big03]).

Bloom developed a framework to classify expectations of what students should learn
as the result of an instruction [BEF+56]. It serves as a common language about learning
goals. An example in software engineering would be that students can describe the
waterfall model. Bloom classified six major categories of cognitive processes ordered by
their complexity from lowest to highest: knowledge, comprehension, application, analysis,
synthesis, and evaluation [BEF+56].

1. Knowledge: Recalling fundamental facts, terms, or dates.
2. Comprehension: Understanding or translating the meaning of instructions and

problems based on prior learning.
3. Application: Solving problems in new situations by applying acquired knowledge.
4. Analysis: Examining and breaking information into parts by identifying motives

or causes to understand its structure.
5. Synthesis: Compiling parts together differently by combining elements in a new

pattern or proposing alternative solutions.
6. Evaluation: Judging the value of ideas or materials and defending opinions by

making judgments based on a set of criteria.

Krathwohl revised the original taxonomy and extended it by four knowledge dimen-
sions ordered from concrete to abstract knowledge: factual, conceptual, procedural, and
metacognitive [Kra02].

1. Factual: Basic knowledge to acquaint with a discipline and solve problems.
2. Conceptual: Connection of basic knowledge in a larger context.
3. Procedural: Methodology of knowledge application using skills, techniques, and

methods.
4. Metacognitive: Knowledge about the use of particular strategies for learning or

problem-solving.

The revised taxonomy includes six cognitive skills levels ranked from lower to higher-
order complexity:

1. Remember: Retrieve relevant knowledge from memory.
2. Understand: Determine the meaning of instructional messages.

13

3. Apply: Carry out or use a procedure in a given situation.
4. Analyze: Break material into its parts and detect how the parts relate to one

another.
5. Evaluate: Make judgments based on criteria and standards.
6. Create: Put elements together to form new knowledge.

14

Chapter 3

Related Work

“Education is the most powerful weapon which you can use to change the world.”
— Nelson Mandela

This chapter summarizes related work. Section 3.1 presents other learning approaches
and compares them to interactive learning. Section 3.2 presents alternative learning
management systems with automatic assessments and relates them to Artemis.

3.1 Learning Approaches

There are several courses in computer science that apply active learning techniques.
They report an increase in students’ learning, engagement, and performance.

Kurtz et al. describe an active learning approach using micro labs [KFT+14]. Students
perform short activities individually or in groups during a lecture and submit their answers
to an automated grading system. They receive constructive feedback and can revise
their answers. Kurtz et al. conclude that micro labs can increase the students learning
experience. Their approach is comparable to in-class exercises in interactive learning.
Students also have a time limit for activities and submit their solutions to an automated
grading system or upload them for manual assessment if no automated assessment is
possible. Both approaches have one thing in common: instructors use them in the
classroom during lectures. Heckman reports about an increase in student engagement
for the use of in-class labs [Hec15].

Another popular approach is think pair share (TPS), where students work on a problem
individually, then in small groups, and finally reflect on it with the whole class. Interactive
learning proposes a similar approach where students first experience a concept separately
and then apply it within a team. Kothiyal et al. describe a large programming course
that uses TPS [KMMI13]. The course includes programming labs and lectures with two
TPS activities: students worked on questions individually first and then in pairs, while
the instructor helps in case of questions. In addition, instructors facilitated class-wide
discussions concerning the former tasks. The study reports an average of 83 % student

15

engagement for TPS-based activities. This approach parallels the course set up in the
case studies since two courses introduce individual and team exercises, similar to the
think and pair phases. Interactive learning also covers the sharing stage, as students
could discuss with the instructor during the reflection.

Campbell et al. describe an approach based on the flipped classroom concept with
video lectures, labs, and assignments [CHCG14]. They also use quizzes, contributing
to the course grade as implemented in Artemis. However, the authors do not use in-
class exercises and report a low lecture attendance rate. Interactive learning implements
frequent homework assignments, as well as immediate feedback for activities to keep
students motivated. Campbell et al. suggest the use of such an approach instead of labs
for future improvement.

Gruenewald et al. focus on the challenge of conducting programming lectures as
MOOCs [GMTW13] integrating active experimentation and relating to concrete expe-
rience. They developed design guidelines for MOOCs to support experiential learning.
Practical exercises should improve the learning experience of students based on their
existing expertise. They describe different MOOC participants ranging from passive stu-
dents to meta-designing students who implement their material and share it with others.
Interactive learning promotes a similar approach. Instructors can use it in university
courses and online courses.

3.2 Automatic Assessment Systems

A variety of systems for automatic assessment exists [IAKS10,BFPS17]. Many of these
systems have been published in different conferences, journals, and workshops. For
example, the workshop “Automatische Bewertung von Programmieraufgaben” (English:
automatic evaluation of programming tasks) has been offered four times in the last
years1. Table 3.1 shows an overview of the systems found in a literature review in
alphabetical order. In addition, multiple surveys have been published, summarizing and
categorizing these systems. Ala-Mutka [AM05] and Douce et al. [DLO05] published
the first extensive survey on this topic. They describe multiple auto assessment tools,
categorize them into dynamic and static assessments, and differentiate between local
and web-based systems.

The survey by Ihantola et al. focuses on identifying key features of automatic assess-
ment tools, such as supporting different programming languages, allowing resubmissions,
or providing a sandbox environment to handle malicious submissions [IAKS10]. The au-
thors state that most systems are not open-source or available otherwise, even if a
publication describes the development of a prototype. A survey by Queiros says interop-
erability and compatibility to other services is a critical factor for automatic assessment
systems [QL12]. He concludes that many existing assessment tools do not consider this

1The proceedings of the workshops “Automatische Bewertung von Programmieraufgaben” are
available on http://ceur-ws.org/Vol-1067 (first workshop 2013), http://ceur-ws.org/Vol-1496 (second
workshop 2015), http://ceur-ws.org/Vol-2015 (third workshop 2017), and https://dl.gi.de/handle/20.
500.12116/27935 (fourth workshop 2019).

16

http://ceur-ws.org/Vol-1067
http://ceur-ws.org/Vol-1496
http://ceur-ws.org/Vol-2015
https://dl.gi.de/handle/20.500.12116/27935
https://dl.gi.de/handle/20.500.12116/27935

factor and that future solutions have to improve this. This section summarizes essential
systems mentioned in Table 3.1 and relates the described system to Artemis.

Name Website Publication
1 AA Framework [GHV+19]
2 Arena https://arena.kpi.fei.tuke.sk [MBP19]
3 ASB https://asb.hochschule-trier.de [BHS17]
4 ASSYST [JU97]
5 AuDoscore https://github.com/FAU-Inf2/AuDoscore [OKP17]
6 Aurora https://aurora.iguw.tuwien.ac.at [PL14]
7 Autograder.io https://github.com/eecs-autograder/autograder.io

8 Autolab https://github.com/autolab/Autolab

9 AutoLEP [WSM+11]
10 Autotool https://gitlab.imn.htwk-leipzig.de/autotool/all0 [Wal17]
11 BOSS https://www.dcs.warwick.ac.uk/boss/index.php [LJ95]
12 Codeboard https://codeboard.io [AHEAK+17]
13 CodeLab https://www.turingscraft.com [WBL06]
14 CodeOcean https://github.com/openHPI5codeocean [SKT+16]
15 CourseMarker [HGST05]
16 CTpracticals [GTR+10]
17 eduComponents [AFR08]
18 EduJudge [VRV+12]
19 EMSEL [Bal16]
20 FaSt-generator [RSZ15]
21 GAME [BGNM04]
22 GATE https://github.com/csware/si [SOP11]
23 Gradescope https://www.gradescope.com [SKGA17]
24 Graja https://graja.hs-hannover.de [Gar16]
25 JAssess [GTR+10]
26 InfoMark https://github.com/infomark-org/infomark

27 INGInious [DGR+15]
28 JACK https://jack-community.org [MSS+18]
29 Jutge.org [PRC+17]
30 KATTIS [EKN+11]
31 Marmoset [SHP+06]
32 Mooshak [LS03]
33 Online Judge [CKLO03]
34 OK https://github.com/okpy/ok [SHLD16]

17

https://arena.kpi.fei.tuke.sk
https://asb.hochschule-trier.de
https://github.com/FAU-Inf2/AuDoscore
https://aurora.iguw.tuwien.ac.at
https://github.com/eecs-autograder/autograder.io
https://github.com/autolab/Autolab
https://gitlab.imn.htwk-leipzig.de/autotool/all0
https://www.dcs.warwick.ac.uk/boss/index.php
https://codeboard.io
https://www.turingscraft.com
https://github.com/openHPI5codeocean
https://github.com/csware/si
https://www.gradescope.com
https://graja.hs-hannover.de
https://github.com/infomark-org/infomark
https://jack-community.org
https://github.com/okpy/ok

Name Website Publication
35 Oto [TGPS08]
36 PABS [IDDBI15]
37 Praktomat https://github.com/KITPraktomatTeam/Praktomat [KSZ02]
38 ProgTest [dSMB11]
39 PLWeb [TLL13]
40 RoboProf [Dal99]
41 SAC [ALSCiMP08]
42 SIETTE https://www.siette.org [CGM+04]
43 Submitty https://github.com/Submitty/Submitty [PTB+17]
44 Test My Code https://github.com/testmycode [VVLP13]
45 TRAKLA https://www.cse.hut.fi/en/research/SVG/TRAKLA2 [HM93]
46 ViLLE [KHK+15]
47 VIOPE [VA02]
48 VEA [Gus17]
49 Vocareum https://www.vocareum.com

50 VPL https://github.com/jcrodriguez-dis/moodle-mod_vpl [Thi15]
51 Web-CAT https://github.com/web-cat/web-cat-subsystem-Core [Edw03]

Table 3.1: Overview of systems with automatic assessment functionalities found in a literature review
(sorted in alphabetical order)

The AA Framework is an extension of the Code::Blocks open-source IDE2 [GHV+19].
It supports automatic assessments for C++ programs using a differential testing ap-
proach. It compares the output of the student’s solution against the predefined one of
the instructors by running multiple tests and then checking if the two program outputs
coincide. If a test fails, the oracle provides feedback and explains why the submitted
program is not correct. Artemis also uses output-based tests but offers higher flexibil-
ity because it is independent of the programming language and better integrates the
students’ workflows on a learning management system.

Galan et al. used used the AA Framework for several years involving 14,944 students
and found that the system prepares students to cope with more complex assignments.
In addition, completion of the assignments positively influences the final exam grades.
These findings are similar to the results that we found (see Chapter 6).

Arena is a system for testing and evaluating student programming assignments stored
in a Gitlab repository [MBP19]. The student creates a separate repository with a defined
structure for each exercise and commits and pushes the solution. Arena assesses the
latest student submissions in parallel at specific intervals (e.g., every 3 hrs) using workers
in containers. It first downloads the submission from the Gitlab repository, checks the
structure, compiles and tests the code in the container, and writes the results into a

2https://www.codeblocks.org

18

https://github.com/KITPraktomatTeam/Praktomat
https://www.siette.org
https://github.com/Submitty/Submitty
https://github.com/testmycode
https://www.cse.hut.fi/en/research/SVG/TRAKLA2
https://www.vocareum.com
https://github.com/jcrodriguez-dis/moodle-mod_vpl
https://github.com/web-cat/web-cat-subsystem-Core
https://www.codeblocks.org

database to display it to the students on a website. Artemis uses a similar approach for
programming exercises but is easier for students because it creates the git repositories
automatically based on predefined templates.

The ASB system is a web application used since 2006 at the University of Ap-
plied Sciences in Trier, which allows students to submit solutions to programming ex-
ercises [BHS17, SBOG17, GBSO17]. The system can automatically evaluate student
programs written in Java, Python, C++, and Android using dynamic tests and static
code analysis. It provides individualized feedback on submitted solutions. This enables
fast feedback on the correctness of the submission compared to requirements specified
by the instructor. The system is similar to Artemis, which also enables dynamic testing
and static code analysis of programming submissions. However, Artemis is independent
of the programming language and is based on version control and continuous integration.

ASSYST was one of the first systems developed in 1997 to support tutors assessing
programs [JU97]. It is a semi-automated assessment system that uses humans to mark
C and Ada programs. It offers a graphical user interface for all aspects of the grading
process and considers different grading criteria in the automatic assessment: correctness,
efficiency, style, complexity, test data adequacy. The system should support tutors in the
assessment. However, the human is still in charge and can refuse to accept the diagnosis
of the system. Jackson and Usher report that the experience with the system has been
encouraging. Artemis supports the assessment based on similar grading criteria and
offers a manual grading step after the automatic assessments, similar to the judgment
by tutors in ASSYST.

AuDoscore is an automatic grading system for Java and Scala programs used at the
Friedrich-Alexander University Erlangen-Nürnberg with up to 750 students in a course on
algorithms and data structures [OKP17]. It extends JUnit and supports the creation of
exercises and corresponding grading tests using lightweight annotations. Students need
to upload their solution in the web-based lecture management system called “Exercise
Submission Tool”. Public tests are provided as a smoke test to ensure that the student
solutions adhere to the expected interfaces. Secret tests check the submission in more
detail. Consequently, public and secret tests contribute to the grading. Artemis also
supports hidden and public tests. It additionally uses static code analysis, version control,
and continuous integration for the automatic assessment.

Aurora is a learning platform used at the Technical University of Wien that facili-
tates many activities to structure and conduct larger courses [PL14,Luc20]. It supports
contextual communication and interaction amongst students to engage with each other
and the course content. It includes a peer review module. Students can submit their
solutions and then review and evaluate the work of other students. Aurora follows a
constructivist learning approach based on active learning and encourages collaboration
between peers. Instructors act as facilitators. Artemis uses a similar learning approach
to activate the students. It also includes communication (questions and answers) and
collaboration features (team exercises) but not peer-review assessments. Instead, tutors,
experienced students who passed the course in the previous year, provide high-quality
feedback after review training.

19

Autograder.io is an open-source automated grading system for Python programming
exercises: instructors write test cases without worrying about running them. It was
developed at the Computer Science department of the University of Michigan, where it
supports 5,000 students per semester in multiple courses. It offers customizable feed-
back systems and flexible grading policies. In addition, it allows to manually grade and
annotate student source code for style and code quality. Students can work individually
or in groups. Artemis offers the same functionality independent of the programming
language and automatically assesses style and code quality based on static code analysis
while offering a subsequent manual grading step.

Autolab is a course management service initially developed by a team of students at
Carnegie Mellon University and is now used by multiple universities in the United States.
It enables instructors to offer auto-graded programming assignments to their students
in a large variety of programming languages. It includes a leaderboard to encourage
competition between students and allows instructors to annotate the student code man-
ually with feedback. In addition, it includes a plagiarism check based on Stanford’s
MOSS implementation [SWA03]. Artemis also supports many programming languages
with predefined templates but integrates JPlag [PMP+02] for plagiarism checks. While
Artemis does not include a leaderboard, students can see how they compare to the class
average for each exercise.

Autotool is an e-learning system used at HTWK Leipzig to automatically assess ex-
ercises on algorithms and data structure [Wal17]. The system consists of a stateless
semantics service for generating task instances and scoring solution attempts and pro-
vides a web interface. Instructors configure, manage and test exercises and configure
points, while students can view the exercises and edit their submission to an exercise.
Exercises, e.g., focus on heap-ordered trees, hash tables, or graphs. The student sub-
mits a textual representation of the solution. Intentionally, autotool does not integrate
a graphical input option to get students used to scientific notation through terms in an
appropriate signature. Instead, the input parsers generate helpful error messages. The
erroneous position is marked. Possible continuations are printed to the output so that
the student can understand the issues. Artemis does not focus on the textual represen-
tation of graphs, but instructors have used it in similar courses where students needed
to implement algorithms in the form of programming exercises. Apollon, the modeling
editor integrated into Artemis, supports the visual representation of graphs.

The BOSS online submission system is a course management tool developed starting
1993 by the computer science department at the University of Warwick [LJ95, JGB05].
It allows students to submit assignments and contains a selection of tools to allow
instructors to grade assignments. It also provides an automatic testing system based on
JUnit and code metrics capabilities. In addition, it integrates natural language plagiarism
detection based on Sherlock [JL99]. Unfortunately, the last version was released six
years ago, and BOSS is not actively maintained anymore. Artemis also uses JUnit for
automatic testing but integrates a different plagiarism checker JPlag [PMP+02].

Codeboard is an open-source and web-based IDE to teach programming in the class-
room [AHEAK+17]. It is cloud-based and uses regression testing. It allows students
to edit and submit source code in the browser to simplify participation. It can be in-
tegrated into existing learning management solutions based on the LTI (learning tools

20

interoperability) standard and is, e.g., used in MOOCs on the edX platform.. Artemis
also integrates an online code editor that instructors can use to set up an exercise. Tu-
tors can use it to review code and provide feedback manually. Students can use it to
participate in programming exercises. Artemis also offers integration based on LTI, is
used in MOOCs [KS19], and offers many additional features such as static code analysis.

CodeLab [WBL06], formerly known as WebToTeach [AB99], is now available as a
commercial product from the company Turingscraft. CodeLab is a web-based interac-
tive programming exercise system for introductory programming courses in Python, Java,
C++, C, and C# and supports short exercises. Each exercise focuses on a particular
programming idea or language construct. It provides instant feedback and can be inte-
grated into existing learning management systems. Instructors using the system state
that it leads to a better understanding of programming amongst the students. Artemis
is programming language independent and provides templates for more languages than
CodeLab. It additionally provides static code analysis and plagiarism detection and can
also be used for more complex assignments.

CodeOcean is an online system for programming exercises in MOOCs [SKT+16],
e.g., on the openHPI learning platform3. It integrates an online code editor with syntax
highlighting and the possibility to execute code directly in the browser. Code is executed
on the server. The output is shown on the students’ web browser. Students do not
need to set up an integrated development environment. CodeOcean includes unit tests
to provide feedback for students and test their code.

While the code of the unit tests is hidden, students can run their solution against
the unit tests and get feedback on whether the solution passes or fails the tests. If a
unit test fails, the result is shown with an error message defined by the instructors. A
manual review by instructors is not feasible, and peer review of source code has not been
implemented in CodeOcean. Artemis offers the same features: an online code editor with
instant feedback based on tests and the display of the output of the code. It provides
additional features such as static code analysis and manual grading. Both CodeOcean
and Artemis can be integrated into other learning management systems based on LTI.

CourseMarker (formerly known as CourseMaster) is a computer-based assessment
system at the University of Nottingham [HGST05]. It is an improved version of Ceilidh,
one of the first known automated assessment tools since 1989 [FTHS99]. CourseMarker
provides immediate results and feedback to students. Instructors can create a variety of
programming exercises that benefit the students learning experience. Students imple-
ment the program based on the problem description provided submit it. CourseMarker
compares the program output with the expected output and shows the results to the
students. Students can try to resolve the problem if it is not satisfactory, upon the
instructor’s permission. Artemis applies a similar iterative approach but uses unit tests
and static code analysis to verify the correctness of the student’s program in addition to
output checks.

eduComponents is a system that splits e-learning and e-assessment platforms into
separate systems, allowing independent deployment and easier adoption [AFR08]. Artemis
targets the same idea, but the goal is not to implement another assessment system. In-

3https://open.hpi.de

21

https://open.hpi.de

stead, Artemis reuses workflows provided by existing version control and continuous
integration tools to achieve similar results.

EMSEL is an exercise management system for e-learning to practice HTML and
JavaScript [Bal16]. It allows students to search exercises through specific criteria using
a search engine. EMSEL allows instructors to create exercises with a problem statement
and a solution. Students can submit their solutions and receive feedback to self-evaluate
their programming skills. EMSEL is an extensible system and can be used for other
programming languages such as XML, PHP, and C++. Artemis is independent of the
programming language and additionally offers static code analysis and manual assessment
possibilities.

GATE (generic assessment and testing environment) is an automatic assessment sys-
tem to support programming education developed at TU Clausthal [SOP11, MS13]. It
helps with the process of exercise management and assessment for large programming
classes at the university level. Furthermore, it allows students to assess their skills and
checks solutions for plagiarism. In addition, it provides additional special functions for
tasks from the areas of Java programming and UML modeling [SSLP12].

MFS is a GATE subsystem and uses an expert solution against which the modeling
submissions are compared but is flexible to accommodate variability characteristic to
modeling tasks. However, modeling is a creative activity where multiple solutions can
be correct. In contrast, Artemis uses a supervised machine learning approach to support
the assessment of modeling exercises that do not depend on one single expert solution.

Gradescope is a system geared toward the assessment of handwritten submissions
[SKGA17] by scanning papers. Instructors review the submissions online by dynamically
creating grading rubrics during the assessment. They group similar submissions so that
the same grade is applied or use the suggested grouping of the system. Artemis uses a
similar idea by sharing feedback with groups of answers in the semi-automatic assessment
approach for text and modeling exercises. However, Artemis groups individual text
segments or modeling elements, whereas Gradescope groups entire student submissions.
Artemis requires instructors to inspect every submission and suggests feedback that is
reused from previous similar submissions.

Neither system requires a training dataset of previously assessed answers. For exer-
cises with a limited number of possible answers, Gradescope allows the instructor to
review multiple (similar) submissions simultaneously and effectively reduces the number
of submissions to grade. However, this approach is unsuitable for highly creative ex-
ercises because the grouping will not work on the submission level. Then, instructors
would need to review many submission groups with only one or a few submissions.

Graja is a Grader for Java programming exercises that extends JUnit 4 by providing
helper classes for grading tasks and evaluating student programs’ observable behavior
[Gar16]. It uses annotations to improve the feedback shown to the students. It verifies
functional and non-functional requirements of simple Java code. It is based on test-
driven development. Graja also performs a static code analysis to provide feedback
about quality characteristics. Artemis offers similar functionalities independent of the
programming language. It is also based on test-driven development, where instructors

22

write tests and students write the actual source code so that the predefined tests pass.
It also includes static code analysis.

InfoMark is an open-source solution for programming courses supporting the auto-
matic assessment of programming assignments. It includes direct feedback for students
after unit testing their homework submissions automatically in a Docker4 sandbox. Stu-
dents can drag and drop homework solutions as zip files. InfoMark includes live metrics
to monitor submission failures and traffic. It has supported thousands of students and
several tutors during university courses in Tübingen. Tutors see the test output and can
add additional feedback.

InfoMark is language agnostic and is easy to install as it only requires Docker and
docker-compose. It is scalable with background workers that can be deployed on different
machines. The unit test workload will be distributed amongst the workers. Artemis
supports similar programming exercises features and runs the tests in lightweight Docker
containers on build agents. In contrast to InfoMark, students use version control to work
on programming exercises. Artemis additionally supports team exercises and static code
analysis.

JACK is an automatic exercise and examination system developed by the paluno
institute at the University of Duisburg-Essen [MSS+18]. It offers the possibility to
check programming tasks statically and dynamically and generate visualizations of data
structures. Furthermore, instructors can use other generic task types like multiple-choice
and cloze tests for exercises. Randomization of content and connection to computer
algebra systems is also possible.

JACK uses graph transformation rules on a graph generated from the submitted source
code. This approach allows an instructor to specify checks that a reasonable solution
must pass. This approach is powerful. However, it is also rather difficult for instructors
to develop these checks. JACK offers a variety of exercises types:

1. Form-based exercises for multiple-choice and cloze tasks: A form-based task re-
quires students to make entries in fields. It consists of one or more questions of
different types.

2. Automated essay scoring for text assignments. Several research prototypes of
checkers can evaluate the submitted texts automatically based on regular expres-
sions or trained models. However, these prototypes are not suitable for production
use without manual review.

3. The JAVA task type is intended for programming tasks. First, students download
program code templates and edit them locally. Then, they upload the files again
so that JACK can evaluate them.

4. The UML task type is intended for modeling tasks. Students cannot solve such
tasks directly in the browser. Instead, the instructor provides a potentially empty
model file that students can download and edit in a compatible modeling editor.
The students then upload the edited file so that JACK can evaluate it. So-called
checkers assess the modeling submission in the file.

4The tool Docker allows to create, deploy, and run applications in lightweight containers that can
be started faster than virtual machines: https://www.docker.com

23

https://www.docker.com

Artemis offers a similar variety of features and exercise types but is open-source and
based on modern software engineering principles such as version control and continuous
integration. It offers static code analysis and interactive exercise instructions and is
independent of the programming language. In contrast to JACK, Artemis offers semi-
automatic assessment for modeling and text exercises based on supervised machine
learning. Artemis also integrates a lightweight modeling editor directly in the browser,
and students do not need to download files, edit UML models in external tools, and
upload them again.

Marmoset focuses on information collected during the development process of stu-
dents [SHP+06]. The system takes regular snapshots of the students’ progress and
requires that students install custom tools on their workstations to submit solutions. It
allows the instructor to study the development process of the students and to identify
common bug patterns. By using version control systems and teaching its application,
Artemis achieves the same outcome. Students commit multiple iterations of their solu-
tion, resulting in a commit history that can be evaluated. This history allows instructors
to identify common mistakes and study problem-solving behavior.

Praktomat is a programming exercise management system for better quality con-
trol in practical programming courses [KSZ02, BHS17, KKS+20, EFF+21]. It was first
developed for practical programming courses at the University of Passau in 1998. The
Karlsruhe Institute of Technology (KIT) developed the open-source software and has
been using Praktomat in their first-semester programming course since 2008. Since
2011, a modern reimplementation based on the Django web framework has been used.
Praktomat automatically compiles and tests the solutions to programming exercises and
final tasks, mainly for Java assignments.

Administration and the automatic testing of other programming languages (e.g.,
Haskell or Isabelle/HOL) are also possible. In the winter semester of 2021, 862 stu-
dents and tutors have used it in the programming course at KIT. Praktomat supports
multiple variants of an exercise and allows mutual feedback among students. Artemis of-
fers similar functionality in a more modern user interface. In contrast to the Praktomat,
Artemis uses version control and continuous integration and offers interactive exercise
instructions. Notably, the KIT is currently migrating from Praktomat to Artemis.

RoboProf is an automatic assessment system that presents notes and exercises to
students [Dal99]. Students can upload submissions. RoboProf tests those submissions
against test data, provides immediate and minimal feedback, and archives the results. It
includes almost exclusively correct and incorrect statements about the output of student
code. RoboProf uses a modular grading engine. It lacks static code analysis and does
not measure code attributes such as size, speed, indentation, and commenting. On
the other hand, Artemis supports rich feedback messages based on dynamic tests and
static code analysis. It also allows tutors to provide additional feedback by reviewing the
student code.

SIETTE is an automatic assessment system for complex programming exercises based
on adaptive learning [CGM+04,CBB18]. The selection of the following question and the
decision to finish the evaluation is performed dynamically based on a student profile
created and updated during interaction with the system. SIETTE includes several types

24

of questions, from multiple-choice to open questions, and can assess mathematical con-
tent. It is extensible with user-defined plugins. In addition, it offers the assessment of
computer programs or complex tasks that require student interaction, like drawing or
music playing.

It uses classical test theory and item response theory to grade the results of different
items of evidence obtained from students’ results instead of heuristic assessment as in
other systems [CBB18]. The methodology considers program proofs as items, calibrates
them, and obtains the score using different procedures which measure overall validity,
reliability and diagnose the quality of each item. SIETTE collects and processes all data
to calculate the student knowledge level and adapts to the student’s ability level. It can
be integrated into Moodle5 using a plugin.

SIETTE offers optional manual assessment and plagiarism detection based on MOSS
[SWA03]. Additionally, gamification elements are under development. Artemis and
SIETTE share many features, such as automatic assessments of programming and quiz
exercises. However, Artemis uses a different, more deterministic approach. Artemis does
not yet offer adaptive learning, but this should be added as future work. In contrast,
Artemis implements semi-automatic grading for modeling and text exercises.

Submitty is an open-source course management system at Rensselaer Polytechnic
Institute [PTB+17,MPAC20]. It offers many features for a modern automatic assessment
system, is actively developed and maintained on Github, and is similar to Artemis in many
aspects. It can automatically assess programming submissions based on tests and static
code analysis and offers manual grading. It offers online exams, integrates discussion
forums, distributes course material, and offers peer grading. In contrast, Artemis offers
a question and answer functionality directly integrated next to the lecture or exercise to
capture the context of the question. Artemis does not offer peer grading but focuses
on reviewer training to increase quality and fairness. Submitty does not offer modeling
exercises and also does not offer interactive exercise instructions.

Test My Code is a suite of tools developed to make the lives of instructors and
students easier [VVLP13, PLVV13]. The system has been used at the University of
Helsinki and Aalto University. Instructors can use automatic bookkeeping facilities and
integrate automated guidance into programming exercises. As a result, they can spend
more time explaining and help students with complex concepts.

Test My Code provides support for downloading and submitting code within the IDE
NetBeans. Consequently, students can focus on programming, which is helpful in intro-
ductory courses, where students struggle to apply and practice what they just learned.
Artemis also offers a plugin Orion for IntelliJ that students can use to work on pro-
gramming exercises in the IDE directly. Interactive exercise instructions in Artemis are
comparable to the automated guidance in Test My Code. In addition, Artemis offers
static code analysis and optional manual grading for additional feedback on the code
quality of the students.

TRAKLA supports instructors in teaching data structures and algorithms by offering
individually tailored programming exercises of algorithm simulations [HM93, KMS03].

5Moodle is a popular open-source learning management system: https://moodle.org.

25

https://moodle.org

It does not assess programming coursework as such. Instead, TRAKLA automatically
assesses student solutions and presents them with feedback via email. Email-based
feedback is neither instant nor immediate. Artemis provides rich text feedback with
interactive instructions directly in the browser.

VPL (Virtual Programming Lab) is a plugin for Moodle that offers the automatic
assessment of programming exercises [Thi15]. VPL requires a separate execution server,
which is also called a jail server. This jail server runs the test cases on the programs
submitted by the students. If a student program crashes the jail server, Moodle is not
affected and can continue to perform normally. VPL supports any language with a
compiler or interpreter that runs on Linux with an executable that can output text that
VPL can evaluate. Instructors have been successfully implementing VPL assignments for
Python, Java, and Assembly. They can define the rubric of how the student program is
evaluated and graded. Artemis offers similar capabilities regarding programming exercises
and can also be integrated into Moodle using LTI. In contrast to VPL, it offers static
code analysis and manual grading.

WebCAT was first created in 2003 as one of the first automatic assessment tools
[Edw03]. It has been developed as open-source software and allows extensibility by
plugins. In terms of assessment, it supports student-written tests, test coverage, static
code analysis, and a combination of both automatic and manual grading. Artemis
covers most of the features of WebCAT while removing the dependence on a single
software product. Instead, it consists of multiple independent software systems that are
connected using standard interfaces. This approach leads to higher flexibility because
individual parts of the architecture can be replaced, for example, in favor of lower costs,
superior support, larger communities, or general management decisions.

26

Chapter 4

Interactive Learning

“Learning is not the product of teaching. Learning is the product of the activity
of learners.”

— John Holt

Interactive learning is a scalable and adaptive teaching philosophy based on the con-
structive alignment that puts the interaction with a student into the core of the educa-
tional activities. It integrates aspects of team-based learning and creativity to stimulate
problem-solving skills and soft skills.

Interactive learning decreases the cycle time between teaching a concept and practicing
it in class in multiple short iterations: Instructors teach and exercise small chunks of
content in short cycles and provide immediate feedback so that students can reflect on
the content and increase their knowledge incrementally. Interactive learning expects the
active participation of students and the use of computers (laptops, tablets, smartphones)
in classrooms. Figure 4.1 shows the iterative process of interactive learning, where each
iteration consists of five phases that are performed several times during lecture:

1. Theory: The instructor introduces a new concept and describes the theory behind
it. Students listen and try to understand it.

2. Example: The instructor provides an example so that students can refer the
theory to a concrete situation.

3. Practice: The instructor asks the students to apply the concept in a short exercise
adapted to the individual student’s existing knowledge and skills. The students
submit their solutions to the exercise.

4. Feedback: The instructor provides immediate feedback to the student submis-
sions using an automatic assessment system. Alternatively, the instructor can show
multiple exemplary solutions and discuss their strengths and weaknesses.

5. Reflection: The instructor facilitates a discussion about the theory and the exer-
cise to reflect on the first experience with the new concept.

In large education environments with hundreds of students who participate in a course
simultaneously, tutors help in the conduction of the exercises. Tutors walk through the

27

Practice

ExampleFeedback

Student

Reflection Theory

Figure 4.1: Interactive learning puts the individual student into the core of the learning activity and
follows an iterative process that is conducted multiple times in lectures.

classroom, answer questions and provide help if problems occur or exercise instructions
are unclear. The evaluation of the submitted solutions can be automated using tool
support or manual with the help of tutors who review the submitted solutions and
provide immediate feedback. The degree of automation depends on the exercise type
and the format of the solution. The evaluation of programming assignments can, e.g.,
be automated. Instructors can apply interactive learning in individual exercises and team
exercises. The degree of automation depends on the exercise type.

Interactive learning is a teaching philosophy that combines active learning, technology-
enhanced learning and includes team-based learning. It also integrates creative aspects
as described in [KBC+17] to emphasize the creativity of learning activities and stimulate
self-organization. This chapter defines the term “Interactivity” and then shows how in-
structors can integrate interactive learning into the course syllabus and lectures. We also
describe simple exercises and a more complex example using software theater [KDXB18]
that consists of multiple exercises spanning two lectures.

4.1 Interactivity

When an instructor says, ‘I am trying to make my classes more interactive’, the meaning
of interactive seems intuitive. However, an agreed-upon definition of interactivity is
hard to find. The term is used in the context of various fields, such as communication,
advertising, websites, the internet, and education, to name a few [LRJG09]. Since
Rafaeli’s statement “Interactivity is a widely used term with an intuitive appeal, but it
is an underdefined concept” [Raf88, p. 110], several attempts have been made to define
the concept of interactivity in its different contexts leading to the inconsistent use of the
term [May05].

The term interactivity is rooted in the term interaction. The Cambridge dictionary
defines interaction as “an occasion when two or more people or things communicate
with or react to each other.” Steffensen differentiates between interaction and interactiv-
ity: “whereas interaction captures a relation of dependence between separable systems,
interactivity explores their bidirectional coupling” [Ste13, p. 198].

28

Jones and Gerard propose that all social interaction is goal-oriented [JG67]. They dis-
tinguish four different types of interactions according to their influence on the interaction
partners:

1. Pseudo interaction: A sequence of actions follows predefined patterns. The
actions of an involved participant are not intended to be interpreted by the other
participant.

2. Asymmetrical interaction: One participant follows his or her intentions while
another party reacts complementarily to the previous actions.

3. Reactive interaction: The involved parties do not interpret the intentions of the
other party’s actions and react in an isolated form.

4. Interdependent symmetrical interaction: Aligning one’s action to the own
intentions while considering the intentions of the others in a reciprocal fashion.

Similarly, Rafaeli argues that interactivity is best defined by considering the degree of
responsiveness [Raf88]. He recognizes three levels of communication. Two-way (non-
interactive), reactive (quasi-interactive), and fully interactive communication. For an
interaction to be classified as two-way communication, messages must flow bilaterally.
If the messages cohere with previous messages, the interaction is at least reactive or
quasi-interactive. The third level, complete interactivity, references the content, nature,
or presence of earlier references. Rafaeli formally defines “interactivity is an expression
of the extent that in a given series of communication exchanges, any third (or later)
transmission (or message) is related to the degree to which previous exchanges referred to
even earlier transmissions” [Raf88, p. 111]. Domagk, Schwartz, and Plass [DSP10] and
Johnson et al. [JBK06] identified two fundamental conditions common in interactivity
research:

1. At least two participants interact with each other.
2. The actions of these participants are reciprocal1 and responsive2.

Yacci examined interactivity in the context of distance learning and computer-based
teaching. He identified primary interactivity attributes [Yac00]. First, interactivity is
a message loop whose messages must be mutually coherent. Second, the student’s
perspective is part of instructional interactivity with learning and affective benefits as
outputs.

4.2 Continuous Interactive Learning

Figure 4.2 shows the idea of continuous interactive learning3 that we adapted from
Scrum [Sch95] and experiential learning [Kol84]. The course syllabus consists of high-
level learning goals typically structured into lectures giving them meaningful boundaries

1Reciprocal means that actions of one participant trigger responses from the other and lead to
change in the first.

2Responsive means that actions and reactions are related and sustain the continuity of the interac-
tion.

3We started to integrate continuous interactive learning into courses in 2016 [KRTB16].

29

in the learning activities. Each lecture consists of more detailed learning goals based
on the students’ competencies following constructive alignment. The instructor teaches
each learning goal in a learning sprint, a cycle that starts with theory and examples.

Topic

Topic

Topic

Topic

Topic

Course syllabus

Practice

ExampleFeedback

Student

Reflection Theory

Learning sprint

Knowledge
increment

Learning gain

Learning goal

Learning goal

Lecture

Learning goal

Figure 4.2: Continuous interactive learning embedded into a course consisting of lectures, each with
a number of learning goals. Each learning goal is taught in a learning sprint through theory, example,
exercise, feedback and reflection and leads to a new knowledge increment (adapted from Scrum [Sch95]
and experiential learning [Kol84]).

Students then work on an exercise and receive immediate feedback building a second
small cycle (green in Figure 4.2) that allows them to improve their solution to the
exercise iteratively. After the exercise, the instructor stimulates reflection to relate their
experience in the exercise with the taught theory. This reflection phase closes the cycle
of the learning sprint and leads to a learning gain, which we call knowledge increment,
concerning the taught learning goal. This knowledge increment is comparable to the
potentially shippable product increment in Scrum.

Depending on the complexity of the concepts behind the learning goal and the ac-
companying exercises, a learning sprint can be between 20 minutes and 120 minutes.
Figure 4.3 shows an example of a lecture with three learning sprints and breaks in-
between.

8:15 9:15

15 min
Coffee break

9:00
45 min

Lecture unit 1

10:00
45 min

Lecture unit 2

11:00
45 min

Lecture unit 3

10:15

15 min
Coffee break

8:05

Good
morning  

quiz

Practice

ExampleFeedback

Student

Reflection Theory

Practice

ExampleFeedback

Student

Reflection Theory

Practice

ExampleFeedback

Student

Reflection Theory

Figure 4.3: Example of a lecture with three learning sprints and breaks in-between. The lecture starts
early in the morning and includes a good morning quiz about the lecture content of the previous lecture
so that the students get started exciting.

30

Figure 4.4 shows another lecture example with four learning sprints, two before and
two after the lunch break. Each lecture unit covers one learning goal (competency) and
includes practicing the newly learned knowledge.

10:10 11:00

10 min
Coffee break

12:20

40 min
Lunch break

13:10

10 min
Coffee break

10:50
40 min

Practice

ExampleFeedback

Student

Reflection Theory

Lecture unit 1

11:40
40 min

Lecture unit 2

13:00
40 min

Lecture unit 3

13:50
40 min

Lecture unit 4

Practice

ExampleFeedback

Student

Reflection Theory

Practice

ExampleFeedback

Student

Reflection Theory

Practice

ExampleFeedback

Student

Reflection Theory

Figure 4.4: Example of a lecture with four learning sprints and breaks in-between. The lecture has
two learning sprints before the lunch break and two learning sprints after the lunch break.

Examples and exercises are essential elements and play a central role in the early
phases of cognitive skill acquisition [Van96]. Carefully developed and integrated examples
increase the learning outcome [SC85, TR93]. Dynamic exercises with context-sensitive
feedback enable a richer learning experience. Continuous interactive learning focuses
on applying knowledge in various exercise types, e.g., programming and modeling with
instant feedback. This approach supports the cognitive skill acquisition [Van96] on all
levels of Bloom’s taxonomy shown in Figure 4.5.

Multiple-choice quizzes focus on the first two levels. Programming and modeling
address the four higher and more complex levels4. Instant and context-sensitive feed-
back at the end of the learning sprint provides guidance. If feedback can be generated
automatically (e.g., through test cases in programming exercises) or by other students
(e.g., through peer review in modeling exercises), it is scalable to many students. This
approach requires higher effort during the exercise creation but reduces the assessment
effort.

create }
}

programming,
modeling

creation effort

quizzes

evaluate

analyze

apply

understand

remember

cognitive skills

Figure 4.5: Mapping of exercises to cognitive skills

Depending on the type of the exercise, the student’s submission is automatically
assessed, or a manual review of the solution is carried out, potentially involving other

4While it might be possible to create multiple-choice tests for higher cognitive skills, it is difficult and
does not reflect software engineering working practices: software engineers do not answer multiple-choice
questions in their daily work when applying, analyzing, evaluating or creating something. Williams and
Haladyna recommend to limit multiple-choice tests to lower cognitive skills [WH82].

31

students (e.g., in peer reviews). The assessment leads to manual or automatic feedback,
which needs to be context-sensitive to be meaningful. Students can use it to improve
and submit another solution. Feedback motivates students and allows them to reflect
on their learning progress.

We developed the concept of interactive instructions that visually explain the problem
to be solved. Such instructions are dynamic and provide continuous and granular feed-
back with self-updating elements, e.g., tasks and UML diagrams concerning the structure
of the exercise. In addition, these elements respond to the interaction of students by
changing their color from red to green to indicate that the solution is correct, as shown
in Figure 4.6.

An interactive task is dynamically updated based on the student’s progress. Tasks are
associated with the assessment, e.g., a test or a peer review. For example, an interactive
task in a programming exercise is completed when all associated tests are passing. This
association allows referring the student to the problem in the source code when the user
clicks on the unfulfilled, red task. After completion, the task is displayed in green and
ticked off.

Figure 4.6: Interactive tasks provide immediate feedback to students about the correctness (red, green)
of their solution

As shown in Figure 4.7, an interactive diagram is dynamically created and updated
based on the student’s progress. A UML class diagram consists of multiple elements,
such as classes, attributes, or methods. A diagram element can be associated with an
assessment and a source file. The implementation of a method is, e.g., associated with
its method name in the class diagram. Based on the test results, the color of this diagram
element changes to green if all associated tests succeed or to red if at least one test
fails. Thus, students can immediately identify which parts of their exercise are correctly
or incorrectly solved. In addition, the associated feedback includes context-sensitive
information, why a test failed, and refers to the theory learned in lectures, slides, and
handouts.

32

Figure 4.7: Interactive UML diagrams provide immediate feedback to students about the correctness
(red, green) of their solution

4.3 Examples

Interactive exercises in lectures can have different types. Simple examples of four indi-
vidual exercises (1-4) and one team-based exercise (5) are:

1. A quiz with a couple of multiple-choice questions
2. Interactive tutorials with step by step instructions, e.g., the introduction of a

new technique that the instructor demonstrates during the lecture with a simple
example

3. Interactive coding challenges to solve programming assignments, e.g., a new pro-
gramming language concept demonstrated in the integrated development environ-
ment

4. An open-ended text exercise in which students explain the similarities and differ-
ences of two related techniques based on examples

5. Project work including communication and collaboration aspects, e.g., an exercise
in a team project for a given problem statement where students have to write
down the functional requirements

Instructors can also design more complex exercises with related parts that span multi-
ple learning goals or even multiple lectures. One example is software theater, a technique
taught in project-based courses. It outlines an approach to present visionary scenarios
using techniques borrowed from theater and film, including props and humor. We de-
scribe the whole idea of software theater in detail in the journal article [KDXB18]. It
involves a more engaging, dynamic way of presenting software prototypes to demonstrate
the context of the software usage.

Software theater consists of several steps integrated into a lecture following interactive
learning or solved as homework. The process starts with a visionary scenario that the
customer typically creates. The development team is then responsible for the following
steps:

1. Formalize the scenario
2. Create a demo backlog
3. Write a screenplay
4. Select the participating subsystems

33

5. Identify the participating methods
6. Identify the participating objects
7. Create action items
8. If the demo is too ambitious and not realizable, modify the screenplay and continue

in step 4
9. Realize (i.e., implement) the demo

10. Present the demo
11. Incorporate the feedback
12. If needed, modify the scenario and start a second iteration in step 1

Each step can be a lecture exercise or homework (e.g., between two lectures). The
whole software theater workflow is integrated into a team project. It is performed towards
the end of the project when the students have already implemented parts of the software.
It typically involves two lectures with examples and feedback.

34

Chapter 5

Artemis

“Learning is more than absorbing facts, it is acquiring understanding.”
— William Arthur Ward

Artemis is a teaching platform that supports interactive learning and is scalable to
large courses with immediate and individual feedback. It is open-source1 and used by
multiple universities and courses.

5.1 Functionalities

Artemis includes several functionalities to implement interactive learning. In the following
section, we present and discuss the essential features. Instructors can create different
exercises: programming, modeling, quiz, text, and file upload. Artemis offers different
assessment modes: automatic, semi-automatic, and manual. It automatically assesses
programming and quiz exercises and provides a semi-automatic assessment approach
based on machine learning for modeling and text exercises.

Artemis also integrates team-based learning by offering team exercises to work col-
laboratively on the solution to the given tasks. In addition, instructors can incorporate
live streams, recordings, and slides of lectures and embed exercises directly into them
using lecture units. Artemis also offers an exam mode for online exams. The exam
mode includes additional instructor functionalities, such as exercise variants, plagiarism
checks, and offline support.

5.1.1 Programming Exercises

Artemis implements programming exercises using version control and continuous inte-
gration. It uses generic interfaces to connect to an existing version control server such

1https://github.com/ls1intum/Artemis

35

https://github.com/ls1intum/Artemis

as Bitbucket Server2 and Gitlab3 and to connect to an existing continuous integration
server such as Bamboo4 and Jenkins5. Test cases and static code analysis assess the
student submissions automatically. This approach allows providing feedback to students
in real-time in interactive instructions that change their status and color based on stu-
dents’ progress. Completed tasks and correctly implemented model elements are marked
in green. Incomplete and not yet implemented ones are marked in red. This highlighting
helps students to identify which parts of the exercise they have already solved correctly
and improves the understanding of the source code on the model level. When they
submit their current solution, the interactive instructions dynamically update.

The programming exercise workflow is shown in a simplified dynamic model in Fig-
ure 5.1 and works as follows: An instructor sets up a version control repository containing
the exercise code (template) handed out to students and test cases to verify students’
submissions (template repository). It can include a small sample project with predefined
classes and dependencies to external libraries. The instructor stores the tests for the
auto-grading functionality in a separate test repository, which is not accessible to stu-
dents. A combination of behavioral (black-box), structural (white-box) tests, and static
code analysis allows checking for functionality, implementation details, and code quality
of the submitted code.

Instructor System Student

1. Prepare
exercise

2.1 Start
exercise

2.2 Copy &
configure
repository

2.3 Copy &
configure
build plan

3. Clone
repository

4. Solve
exercise

5. Commit &
push solution

6. Build &
test code

7b. Review
test results

7a. Review
course
results

ok?

yes

no

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.1: Simplified process for conducting programming exercises with Artemis as a UML activity
diagram [KS18]. The instructor creates a programming exercise. Then, the students try to solve the
exercise and receive automatically generated feedback that helps them improve.

2https://www.atlassian.com/software/bitbucket
3https://about.gitlab.com
4https://www.atlassian.com/software/bamboo
5https://www.jenkins.io

36

https://www.atlassian.com/software/bitbucket
https://about.gitlab.com
https://www.atlassian.com/software/bamboo
https://www.jenkins.io

After setting up the template, test, and solution repositories, the instructor configures
the build plan on the continuous integration server. A build plan compiles and tests
the exercise code using the previously defined test cases and the static code analysis
configuration (template build plan). The build plan includes a task to pull the source
code from the template repository and the test repository whenever changes occur. It
combines both repositories and executes the compilation and tests in the second step.
A final task notifies Artemis about the new result.

A student starts an exercise with a single click, triggering the setup process: Artemis
creates a personal copy of the template repository (student repository) and grants access
only to this student. It also creates a personal copy of the template build plan (student
build plan) and configures it to be triggered when the particular student uploads changes
to this personal student repository. The students cannot access the build plan because
it is not required for their participation, so Artemis hides the complexity of continuous
integration from students. Personalized means that each student gets one repository
and one build plan. When 2,000 students participate in an exercise, Artemis creates
2,000 student repositories and 2,000 student build plans. Students only have access to
their repository. They cannot access other student repositories.

After the setup is complete, Artemis allows the student to work in a local IDE or
open the online editor’s exercise. When the student submits a new solution to the
personalized repository, the build plan compiles the code and executes the tests defined
by the instructor in a docker container. It uploads the results to Artemis in a few seconds
so that the students can immediately review the feedback and iteratively improve their
solution. In case of an incorrect solution, the feedback shows a failure message for each
failed test. The student can reattempt to solve the exercise and submit a new solution.
The instructor can review results, gain insights on the progress, and react immediately
to errors and problems. Instructors can add a manual review step. Reviewers can then
provide additional manual feedback (activity left out for simplicity in Figure 5.1).

Artemis includes an online editor that allows inexperienced students to participate in
exercises without dealing with the complex setup of version control and integrated devel-
opment environments. In addition, it supports the manual review of student submissions
after the due date Tutors can see the automatic feedback through tests and static code
analysis and enhance them with manual feedback. This manual review phase makes it
possible to automatically review aspects that are difficult to assess, e.g., the internal
structure and specific code quality issues.

Figure 5.2 visualizes how students participate in a programming exercise and receive
code quality feedback for their submissions. The actors in this process are the student
and Artemis. The student starts a programming exercise, which prompts Artemis to set
up the participation. Artemis copies the repository and the build plan of the template
participation to create a personal build plan and personal repository for the student. The
student accesses the code skeleton of the assignment by cloning this repository. The
option to access the personal repository using the online code editor is not depicted in
the diagram for simplicity. The student writes and submits code to solve the exercise.
The repository stores the files and initiates the creation of a submission. Simultaneously,
the update triggers the execution of the build plan.

37

Start
Exercise

Copy
Repository

Copy
Build Plan

Static Code Analysis?

Programming
Exercise

Student

Clone
Repository

Solve Exercise

Submit Code

Review Code
Quality Issues

Review Test
Case Feedback

no

yesok?

Personal
Repository

Personal
Build Plan

Update
Repository Submission

Execute Static
Code Analysis

Parse Report

Report

no

yes

 Participation

Calculate Score

Categorize Code
Quality Issues

Result

Code Quality
Issue

Static Code
Analysis Configuration

Test Case

Artemis

Static Code
Analysis Tool

Build code Run Tests
Test Case
Feedback

Files

Figure 5.2: The UML activity diagram shows the interactive feedback loop during a programming
exercise participation. Based on the configuration of tests and static code analysis, it grades the
submission. It grades the submission according to the test case and static code analysis configuration.
Students explore the feedback to improve their submissions and programming skills iteratively.

The build plan compiles the code. Then, it executes test cases to check the function-
ality of the resulting program. The build plan can also run static code analysis tools to
generate reports, which contain information about code quality issues. Artemis groups
these issues into categories according to the static code analysis configuration made by
the instructor, who can follow a default configuration. Artemis calculates the scores for
the test cases, deducts the penalties for code quality issues as defined in the static code
analysis configuration, and presents the result to the student. The student verifies that
the submission passes the test cases and can inspect the identified code quality issues.

38

The student stops working on the exercise if the result is satisfying. Otherwise, the stu-
dent attempts to solve the exercise again. This time the student benefits from feedback
that helps to improve the code and learn from mistakes. Thus, Artemis establishes a
feedback loop that continuously teaches students to write high-quality functional code.

5.1.2 Modeling Exercises

Artemis integrates an online modeling editor Apollon that is open-source6 and available
as a standalone and free web application7. Apollon supports seven UML diagrams: class
diagrams, object diagrams, activity diagrams, use case diagrams, communication dia-
grams, component diagrams, and deployment diagrams. It also supports three additional
diagram types: Petri nets, syntax trees, and flowcharts. Apollon is lightweight and easy
to use to lower the entrance barrier of digital modeling. It focuses on the learning ex-
perience of students. Figure 5.3 shows an example of a UML communication diagram.
Students drag the model elements from the right into the diagram and double-click on
an element to edit it in a small popup. They can create relationships (e.g., control flow)
between model elements.

Figure 5.3: The online modeling editor Apollon is integrated into Artemis and supports the easy
creation and assessment of digital models.

6https://github.com/ls1intum/Apollon
7https://apollon.ase.in.tum.de

39

https://github.com/ls1intum/Apollon
https://apollon.ase.in.tum.de

Instructors and tutors provide feedback directly in Apollon. They double click on
a model element and assess it in a popup with a score in points and with additional
feedback comments to explain why a model element is correct or wrong. In addition,
they can provide general feedback about the whole model or missing elements. Students
can see this feedback directly in place next to the model elements and learn from it.
Section 5.1.5 explains more details about assessing submissions to modeling exercises.

Apollon is also available as a standalone version on https://apollon.ase.in.tum.de for
free and without the need for an account. It should be as easy to use as possible
and reduce the barrier to get started with modeling. It omits complex menus and user
interfaces which make modeling complex. Beginners, who learn to model, e.g., as part
of their university program, should be able to use Apollon without detailed instructions
or user manuals. Figure 5.4 shows that students can select predefined patterns which
are then editable.

Figure 5.4: Users can choose predefined patterns as templates to get started. They can adapt the
created UML diagrams (based on the chosen pattern) to their own needs.

Students can adapt the created UML diagrams for the chosen patterns to their own
needs and integrate them into the problem they are working on. Figure 5.5 shows an
example of the observer pattern in Apollon.

Apollon allows working on models collaboratively. Figure 5.6 shows how users can
create a link to use the sharing functionality even without accounts. Users can create a
sharing link and ask others to edit a copy of the diagram. Students can use the sharing
functionality to ask tutors for feedback. After tutors have entered the feedback, they can
share the diagram again with the students. Another possibility is to work with multiple
users on the model simultaneously using the real-time collaboration mode.

5.1.3 Quiz Exercises

Artemis allows instructors to compose quizzes with different question types:

1. Short-answer question (cloze)
2. Drag and drop
3. Multiple-choice

40

https://apollon.ase.in.tum.de

Figure 5.5: The Apollon standalone modeling editor should be easy to use and lightweight. Users can
start directly without the need to create an account or log in.

Figure 5.6: Apollon allows to share models based on a link. Users can choose whether the receiver
can edit a copy of the model, provide feedback or see the inserted feedback.

Figure 5.7 shows an example of a short-answer question. Students need to fill the
correct text into the text boxes. Instructors can add multiple correct options for the
same text box and can determine whether typos or capitalization are considered in the
evaluation of correct answers.

Figure 5.8 shows an example of a drag and drop question. Instructors can easily create
the drop areas interactively. They can map the drag items (either text or an image) to
the drop areas. Artemis verifies that instructors do not enter an illegal mapping by
accident, making the quiz unsolvable for a student.

Artemis allows instructors to create modeling diagrams with Apollon, select the el-
ements for a drag and drop question, and automatically create a modeling drag and
drop exercise. This reduces the time to create such quizzes significantly and also allows
modifying the quiz question more easily later on, e.g., in case the quiz question will be
reused in an exam.

41

3)Architectural styles

Please read the given text carefully and fill in the blanks using one of the following

keywords: open, closed, coupling, cohesion.

You are creating an application to trade and monitor different stocks for a client using the

layered architectural style.

Because stock prices can change drastically within seconds the client requests real-time

operations support and thus you chose the

architectural style.

As a result, there is a high of different subsystems.

Points: 1

Figure 5.7: Example of a short-answer question in Artemis. Students need to fill the correct text into
the text boxes.

2)Abstraction
Abstraction is one of the necessary methodologies that have to be utilized when dealing with complex systems. This is because complex systems

are hard to deal with. One example is, when we have a collection of objects. By providing a structure, a superclass with common behaviour and

subclasses, which share the common behaviour in the superclass, but also differ from each other, we create a system that could be more easily

operated with. Assign the given classes to the empty spaces, so that you create such a system.

Points : 1

Drag & Drop: Place the suitable items on the

correct areas.

Car

- licensePlate: String

+ drive()

ElectricCar

- batertyLevel: int

+ charge()

Cat

- fuelLevel: int

+ fuel()

Figure 5.8: Example of a drag and drop question in Artemis. Students need to drag the text or image
items on the right to the correct areas on the left.

Figure 5.9 shows an example of a multiple-choice question. Instructors can define
the question and answer options using markdown, allowing basic formatting (e.g., bold,
italics, coloring).

They can provide hints and explanations why answer options are correct or wrong.
Hints are shown during the quiz, explanations only after the quiz has finished. Students
need to select the correct answers. Incorrect answers must not be selected.

Instructors can define how many points each question is worth and how long the whole
quiz should take. They can integrate live quizzes into their lecture, which are typically
between five and ten minutes long. All students answer live quizzes simultaneously. At

42

3)Techniques, methodologies or tools?
Which of the following mappings are correct?

Please choose all correct answer options

Points: 1

Insertion sort algorithm ➡ Methodology

Functional decomposition ➡ Technique

Source code editor ➡ Tool

Figure 5.9: Example of a multiple-choice question in Artemis. Students need to select the correct
answers. Incorrect answers must not be selected.

the end of the quiz, Artemis evaluates the results automatically and displays them to the
students to provide immediate feedback. Instructors can add hints and explanations and
decide if they would like to randomly show questions and answer options to make it more
difficult for students to work collaboratively. Artemis offers three scoring strategies:

1. All or nothing: Students get all points only if they have correctly selected all
options (or filled all answers). In case they have one mistake, they will get 0
points. There is no score in between.

2. Proportional with penalty: Every correct answer gives a fraction of points. Each
mistake subtracts the same fraction of points to avoid guesswork. For example:
if the score of the question is three and there are five options. Each correctly
selected answer option results in 0.6 points. Each wrongly selected answer option
subtracts 0.6 points. A student with three correctly and two wrongly selected
answers would then receive 0.6 points.

3. Proportional without penalty: Every correct answer gives a fraction of points.
No points are deducted for mistakes. For example: if the score of the question is
three and there are five options. Each correct answer option results in 0.6 points.
A student with three correct and two wrong answers would then receive 1.8 points.

After the live mode has ended, students can practice the quiz as often as they want
in the practice mode. This is particularly helpful for reviewing later (e.g., shortly before
the final exam) whether they have understood the concepts correctly. Results of the
practice mode are not included in the overall score calculation of the course.

5.1.4 Text Exercises

To work on text exercises, Artemis provides an integrated text editor shown in Fig-
ure 5.10. When creating text exercises, instructors define the problem statement and
configure how many points the exercise should give, which is weight-related to all other
exercises in the same course or exam. In addition, instructors define whether the text
exercises are included completely, as a bonus, or not in the overall score calculation.

43

Figure 5.10: Integrated text editor in Artemis. Students can read the problem statement on the right
side and answer the question on the left side.

Instructors can also create an example solution that shows one possible correct answer.
Artemis specifically does not call this a “sample solution” to avoid the misunderstanding
that only one solution can be correct. Instructors can also create example submissions
and assessments used for the reviewer training as soon as the manual or semi-automatic
assessment starts.

After the release of the exercise, students can work on it. The text editor is simple
to use and easy to navigate. There is no limit to the length of the submission. The
text editor automatically tracks the number of words and characters in the students’
submissions to indicate the length of the answer to the students. Students can read
the problem statement based on markdown formatting on the right side and answer the
question on the left side. In case they need more space, they can collapse the problem
statement.

Students cannot format the text using markdown to make it easier to read and parse
it for the semi-automatic assessment approach. Artemis allows students to submit the
text answer as often as they want until the due date In addition, Artemis saves the text
regularly to avoid getting lost when students navigate to a different page before pressing
the submit button.

Artemis automatically detects the language (e.g., German or English) of the answer.
This makes sure that reviewers can understand the answer and assess it accordingly.

44

5.1.5 Assessment

Artemis supports different assessment strategies. It automatically assesses programming
exercises based on tests and static code analysis rules. Instructors can define the weight
of individual tests to increase or decrease their influence on the score. Artemis supports
hidden tests that are not visible to students. Instructors can include or exclude specific
predefined static code analysis rules from a default configuration. They can also deter-
mine how many points the system should deduct if students do not fulfill specific rules.
Examples of static code analysis rules include coding style, class design, code smells,
duplicate code, security issues, size metrics (e.g., length of a method), and formatting.
Artemis allows instructors to add a manual assessment step after the automatic as-
sessment to provide additional feedback, e.g., related to implementation specifics and
aspects that cannot easily be assessed automatically by dynamic tests or static code
analysis.

Quiz exercises are also assessed automatically based on the scoring strategy. Instruc-
tors can re-evaluate quizzes, e.g., adding additional text options to short-answer quizzes
that they have not thought of when creating the quiz. In addition, instructors can set
questions or answer options to invalid if they have not been clearly formulated. Invalid
questions are counted as correctly answer questions. Invalid answer options are also
counted as students would have chosen the correct answer.

Artemis supports semi-automatic assessment based on supervised machine learning for
modeling and text exercises. During the manual assessment of reviewers, Artemis learns
which aspects are correct and which are wrong. Based on similarity analysis, Artemis
can then propose feedback for subsequent submissions.

The manual assessment mode of Artemis is tailored to the corresponding exercise type.
Reviewers select text segments and provide feedback for text exercises. For modeling
exercises, reviewers select modeling elements (e.g., attributes, methods, associations)
and provide feedback. In programming exercises, reviewers can provide feedback to
single lines of code or the whole file. Artemis includes reviewer training to improve the
consistency and fairness of grading in larger courses with many reviewers.

In addition, it implements double-blind reviews so that students do not know the
identity of the reviewer and reviewers do not know the student’s identity. This prevents
unconscious biases based on personal relationships or other aspects. Structured grading
instructions (comparable to grading rubrics) simplify the grading process. They include
predefined feedback and points. Reviewers can drag and drop the correct instruction to
the text, model element, or source code line to apply it. Students can rate the quality
of the feedback. Together with a reviewer leaderboard, this motivates the reviewers to
provide high-quality feedback that helps the students improve their understanding and
prevent misconceptions.

In the following, we describe the semi-automatic assessment of modeling exercises
in more detail. The semi-automatic assessment for text exercises is comparable but uses
different internal algorithms based on natural language processing. Those are explained
in more detail in [BKKB21,BKB21].

45

The Unified Modeling Language (UML) is the standard for visually describing software
systems [RJB99]. It consists of different diagram types, e.g., UML class diagrams to
describe the system’s structure. A model “captures the important aspects of the thing
being modeled from a certain point of view” [RJB99, p. 13]. Thus, it is an abstraction
and generalization and omits specific details. This makes models useful for software
engineering because both handle the complexity by focusing on relevant details and
leaving out the rest.

Teaching modeling to students is a difficult task. While the structural aspects follow
rules that can be learned by heart, it is challenging for students to map a realistic
problem statement to a concrete model. Including all semantics correctly is challenging
and sometimes not even possible due to abstraction and simplification. Students have
to decide on inevitable trade-offs when modeling a problem that includes higher-level
skills.

Bloom’s taxonomy classifies learning goals [BEF+56]. Modeling requires understand-
ing and analyzing a problem, evaluating different design solutions, and combining them
to create new knowledge. Designing a system and modeling it in UML allow for multiple
ways how to solve the problem. The freedom in creating UML models has an impact on
the assessment of modeling exercises.

When exercising modeling, multiple solutions can be correct and can show essentials
aspects of a problem. There is a risk in teaching that instructors focus on one partic-
ular sample solution and that students misunderstand that only this solution is correct
and all other solutions are wrong. However, the nature of modeling is abstraction by
hiding complex details. It is not always easy to decide which intricate details should be
hidden in a model and which aspects need to be shown to understand the core idea of
the problem. Even experienced modelers will develop different solutions, which is one
advantage of modeling because it stimulates discussion among the system and facilitates
communication. However, this is also a challenge in teaching, especially if instructors do
not have enough time to teach students these aspects of modeling, e.g., undergraduate
courses.

One sample solution cannot cover all relevant aspects of a problem and can constraint
the creativity of students. While it allows comparing, it is not easy to decide if a solution
is still partly correct if it differs from the sample solution. Furthermore, showing a sample
solution poses the risk that students learn one out of many representations of a system by
heart instead of using their creativity to develop their representation. Instead, students
should learn to address a problem with the help of modeling by applying the skill on their
own. Instructors then take over the task of providing an individual assessment for each
student.

“Formative assessments provide an opportunity for learners to demonstrate their de-
velopment toward the learning outcomes and provide constructive feedback to learners
about their progress to ensure they can achieve the intended outcomes by the end of
the course” [SH14, p. 54]. The assessment identifies gaps between the student’s under-
standing and the actual knowledge. “Feedback is information about the gap between
the actual level and the reference level of a system parameter which is used to alter the
gap in some way” [Ram83, p. 4]. Individual feedback includes information on why a

46

particular aspect of the solution is incorrect and facilitates learning. Students can use
the feedback to learn about their mistakes, improve their solutions and identify strengths
and weaknesses.

When instructors assess UML models, they typically scan the submitted model for
known model elements and groups of model elements and evaluate if they are correct in
their structure, semantics, and visual aspects. The result of the evaluation is individual
feedback for each student. In large courses, they face similar models frequently, leading
to recurring manual tasks when identifying model elements and evaluating them.

Automating such recurring tasks can reduce the correction effort. It can preserve that
multiple submissions are considered correct and would not limit the modeling creativity
of students. To support this idea, Artemis needs to learn from manual model grading
and apply the learned knowledge to correct other model submissions enabling a semi-
automatic assessment approach as shown in Figure 5.11.

ReviewerSystemStudent

Submit
solution

Review
assessment

Analyze
assessment

Model
submission

Assess
automatically

Assessment
Proposal

Knowledge

«use»

Review
assessment

Assess
manually

Adjust
assessment

Assessment

yes
ok?

Refine
solution

no

Figure 5.11: Semi-automatic assessment workflow with multiple submissions

Students submit their models as a solution to a specific exercise. In the beginning,
there is not enough knowledge for the system to assess automatically so that the as-
sessment proposal will be empty, and reviewers need to assess the complete solution
manually. The system analyzes the manual assessment and generates knowledge that
can be used to propose automatic assessments for subsequent submissions with similar
model elements. Then reviewers start with a partly assessed submission, as shown in
Figure 5.12. They can either confirm the proposed assessments if they are correct or
adjust them if they are wrong for the current submission, e.g., due to a different context.
Following an interactive learning approach, students can review the assessment and use
it to refine their model and submit another version to the same exercise if the due date
has not passed yet.

Two core concepts are necessary to enable the system to learn. First, the system
needs to decompose models into smaller model elements. For example, Figure 5.13
shows the four model elements in a UML class diagram: classes, attributes, methods,
and associations.

47

Proposed
assessment

Example
solution

Grading criteria

Figure 5.12: Assessment user interface in Artemis. The right side shows the instructions, including
the problem statement (collapsed), one example solution, and the grading criteria. The left part is the
assessment editor, which includes proposed assessments (highlighted in blue).

Figure 5.13: Taxonomy of model elements in UML class diagrams

Second, it needs to identify similar model elements in other submissions. Then, it
can apply the existing assessment of one model element to other model elements in the
same similarity set. Model elements are considered similarly based on their name and
their context.

Methods and attributes belong to the same similarity set if specified in the same
UML class and if they have a similar name. UML classes belong to the same similarity
set if they have a similar name, a similar kind (e.g., abstract, interface), and similar
associations to other classes. The last point includes the context of classes to make sure
that classes are only identified as similar if defined in the same context. Associations

48

belong to the same similarity set if they have the same source and target class, the same
kind, and similar multiplicities and roles with only minor deviations.

When a reviewer assesses one model element in a similarity set, the system learns
whether the model element is correct or not and can apply the same score and feedback
to all other model elements in the same set. Thus, each manual assessment creates
additional knowledge in the knowledge repository, which can be used for automatic
assessment proposals. The system can also suggest the following manual assessment,
where the most knowledge is gained by choosing the submission in which the least
amount of model elements would include an assessment proposal.

Figure 5.14 shows an example of how the system learns. The first two submissions are
manually assessed and produce enough knowledge so that the system can propose as-
sessments for all six model elements in the third submission. While it might be tempting
to submit the assessment of the third submission automatically, it makes more sense that
a reviewer inspects the model and takes the responsibility for the assessment. There are
several reasons for this: First, the context and similarity detection are not always correct.
Second, missing model elements cannot be identified with this approach. Third, even
if the scores (in the example expressed with green ticks and red crosses) are proposed
correctly, the textual feedback (not shown in Figure 5.14) might not fully apply.

1. Submission 2. Submission 3. Submission

Manual assessment Manual assessment
Proposed  

automatic assessment

Figure 5.14: Example of how two manual assessments (left, middle) lead to knowledge for a proposed
automatic assessment (right)

5.1.6 Team Exercises

Team exercises play an essential role in Artemis to support team-based learning and to
facilitate soft skills. Artemis supports team-based learning for programming, modeling,
text and file upload exercises. The activity diagram in Figure 5.15 shows the dynamic
model of a team’s participation in a programming exercise and highlights the different
activities from start to finish.

49

Start Programming
Team Exercise

Clone Repository

Solve Team
Exercise

Save Submission

Setup Remote
Repository

Update Remote
Repository

Receive
Assessment Sync Submission

Merge Changes

Resolve Conflicts

Finished?

No Yes

Does the remote
have changes that

do not exist locally?

No, Update accepted Yes, Update rejected

Merge conflicts?

Yes

No

Figure 5.15: The UML activity diagram shows how students can work together on a team programming
exercise in Artemis. One of the team members starts the exercise, which sets up a remote repository.
All team members are then able to clone this repository and work on the exercise locally. When they
save their changes to the remote repository, they might encounter a rejection, sync the submission
state, and resolve the conflicts first.

This activity triggers the repository setup, which Artemis performs in the background.
First, a repository will be created using the version control service. Next, the team
members can copy the URL of the newly created repository to clone the repository to
their local machine. Then, they can start working on the actual tasks of the programming
exercise using their preferred IDE. Once they have worked on the exercise, they save their
submission and push the changes to the remote repository.

There are two different scenarios now: In the first scenario, the other team members
have not pushed any of their work to the shared remote repository yet. The consequence
is that the push operation will be successful, and the student can continue writing code.
In the second scenario, the contents of the remote repository have changed between
cloning the repository and pushing the code. The remote repository will reject the push
operation. This scenario is new in team-based programming exercises due to multiple
students working on the same repository.

Technically, this case can also occur when students work alone, e.g., if they use
multiple machines or combine their local IDE and the online code editor. However, this
will usually not lead to merge conflicts. On the other hand, when working in a team,
merge conflicts are likely to occur and will potentially require communication between
the involved team members.

Students who pushed code after changes have been made to the remote repository
will face conflicts. They need to figure out how to resolve them and push their changes,

50

including the merge commit. Once the team finished the work and pushed all changes,
the team-based programming exercise is completed.

For modeling and text exercises, Artemis offers a real-time editing mode so that team
members can collaboratively work together. Figure 5.16 shows the modeling editor with
an information panel that lists all team members and shows their online status using a
green circle indicator.

4.3. SYSTEM MODELS

is a team exercise but it is also how students can continuously access their
team page that lists all team members with contact information.

The right action button has transformed into “Open text editor” in this
case. For other exercise types, this will look di↵erently although conceptu-
ally similar. The participation status informs the students that their team
had not made a submission yet. At this point, the behavior of the exercise
row is analogous to individual exercises, thus the rest of the participation
cycle (working on the submission, handing it in, waiting for the assessment,
examining the assessment, and potentially complaining or requesting more
feedback) will be omitted here.

Editor view The second location in the application where the students
are exposed to team-specific UI elements is in the editor view for team-
based modeling and text exercises. The nonfunctional requirement NFR8
and the functional requirement FR8 play a role here when it comes to the
user interface design.

Figure 4.10: Working together on a UML diagram in a team of students

NFR8 states that “[...] students must be able to see who of their team-
mates is online and/or currently editing the submission. This information

47

Figure 5.16: Multiple students working together on a UML diagram in a team.

Changes in those exercise editors automatically sync between the team members with-
out the need to press save. This enables real-time collaborative modeling and text editing.
Students see team-specific user interface elements next to the exercise submissions they
are currently working on. They can see which team members are online and are currently
editing the same exercise.

While users change the model (or text), Artemis indicates this with three points in
the information panel. Clicking on the change history icon reveals the relative time since
the last contribution by the respective team member.

Each team in Artemis is led by a team owner, e.g., an instructor or tutor in the
respective course. Team exercises include a team overview page, which shows all teams
with the team owner and all team members. Figure 5.17 shows how team owners
can create teams with multiple students. Each team is assigned to one team owner
who will act as the team’s mentor and follow the team’s progress across a set of team
exercises typically built upon each other. In addition, the team owner will review the
submissions of the teams and provide feedback. Using a double-blind assessment for
team exercises (see Section 5.1.5) would not be feasible in this case because the tutors
are closer to the team. However, it is crucial that they also consider the consistency
between multiple team exercises in team projects. Therefore, the same team owners also
evaluate complaints and feedback requests.

This tutor can, e.g., play the role of a customer, product owner, project leader, or
Scrum Master in the team and guide the team throughout a project which consists

51

4.3. SYSTEM MODELS

Figure 4.14 shows how the user interface has been designed for this pur-
pose. The tutor starts with entering a name for the team, that the team
students come up with. The short name is automatically filled in based on
the entered name and strips off whitespace or special characters. It can be
manually adapted if the short name already exists in the course which will
be shown as an inline error message if that is the case.

Figure 4.14: Dialog that allows a tutor to create a new team for an exercise

The team tutor will always be the tutor who is creating the team. In-
structors can create teams on behalf of tutors or re-assign teams to other
tutors. For them the tutor field is a select field that shows all tutors in the
course and let’s them search a tutor by name.

The main part of the modal dialog is the ability to search for students
that are not part of a team yet for the exercise and add them to the team
that is being created. Tutors can search for the student’s name or their
login identifier. An autocomplete dropdown with highlighting for the user’s
text input will appear once three or more characters have been entered.
The whole process can be performed using only the keyboard, consequently
fulfilling NFR1. Switching between the fields is done via TAB and selecting a
student from the dropdown can be done using the arrow keys and ENTER. It
is also important to note that the trash can icon to remove a student from
the team again is an HTML button element that can be focused and clicked
by pressing ENTER. A visual signal will indicate when it is in a focused state.

At the bottom of the modal, the team size recommendation is shown to

51

4.3. SYSTEM MODELS

Figure 4.14 shows how the user interface has been designed for this pur-
pose. The tutor starts with entering a name for the team, that the team
students come up with. The short name is automatically filled in based on
the entered name and strips off whitespace or special characters. It can be
manually adapted if the short name already exists in the course which will
be shown as an inline error message if that is the case.

Figure 4.14: Dialog that allows a tutor to create a new team for an exercise

The team tutor will always be the tutor who is creating the team. In-
structors can create teams on behalf of tutors or re-assign teams to other
tutors. For them the tutor field is a select field that shows all tutors in the
course and let’s them search a tutor by name.

The main part of the modal dialog is the ability to search for students
that are not part of a team yet for the exercise and add them to the team
that is being created. Tutors can search for the student’s name or their
login identifier. An autocomplete dropdown with highlighting for the user’s
text input will appear once three or more characters have been entered.
The whole process can be performed using only the keyboard, consequently
fulfilling NFR1. Switching between the fields is done via TAB and selecting a
student from the dropdown can be done using the arrow keys and ENTER. It
is also important to note that the trash can icon to remove a student from
the team again is an HTML button element that can be focused and clicked
by pressing ENTER. A visual signal will indicate when it is in a focused state.

At the bottom of the modal, the team size recommendation is shown to

51

Figure 5.17: Dialog that allows a tutor to create a new team for an exercise.

of multiple exercises. Teams in Artemis are exercise-specific but can be imported into
other exercises This creates duplicates using the same team name and team short name
so that Artemis can track teams over multiple exercises. In addition, it allows team
member changes between exercises, e.g., when a student joins the team late or when
one student drops the course. Finally, tutors can manage all submissions on the team
page in Artemis, as shown in Figure 5.18.

CHAPTER 4. REQUIREMENTS ANALYSIS

the source exercise for which there are no conflicts.
Finally, the modal footer gives a preview of what the import action will

result in. In the case of “Purge existing”, it shows how many teams will
be deleted and how many teams will have been imported from the source
exercise after clicking on the submit button. This is important to give the
user a better understanding of the consequences of his action. When the more
dangerous strategy “Purge existing” has been chosen, which will potentially
cause teams and student work to be deleted, the instructor is additionally
required to confirm the action by typing in the name of the exercise.

Team page The final UI element that shall be presented here is the Team
page. The team page performs a hybrid function: On the one hand, it allows
the students to see who their team members are and gives them a way to
contact them. Additionally, they can see the team’s participation for the
various team exercises in the course. On the other hand, it also provides
tutors with a way to assess the submissions for those participations of the
team.

Figure 4.16: Team page that lists all team members, shows the team’s participa-
tion in the course and lets the team tutor assess their submissions

As can be seen in figure 4.16, which is shown from an instructor account
but looks almost identical for tutors except for the delete button and ID
columns, the participation table contains a column “Assessment” that allows
the team tutor to assess the submissions of the team. Depending on the state
of the submission and the assessment, the button will have a di↵erent label
text to indicate the possible action on the part of the tutor. Clicking on
the button will for example open the text or modeling editor and show the
team’s work for the exercise, so that the tutor can grade it.

54

Figure 5.18: Team page that lists all team members, shows the team’s participation in the course,
and lets the team tutor assess their submissions.

The team page has several purposes. First, it allows the students to see who their
team members are and allows them to contact them. Second, they can see the team’s
participation in the various team exercises in the same course. Finally, it also provides
tutors with a way to assess the submissions for all team participants.

52

5.1.7 Lectures

Instructors can divide a lecture in Artemis into multiple lecture units following the inter-
active learning sprints. Figure 5.19 shows an example.

Figure 5.19: Instructors can divide a lecture in Artemis into multiple lecture units

Lectures consist of lecture units, either text, videos (live streams or recordings, e.g.,
stored on Youtube), or attachments (e.g., lecture slides). In addition, instructors can
link exercises (e.g., L02E01 Good Morning Quiz in Figure 5.19) to integrate them in the
interactive learning sprint and make it easier for students to find and participate in them
during the lecture.

Instructors can also connect learning goals to lecture units, as shown in Figure 5.20.
This allows instructors to make the progress of learning goals visible to students. Stu-
dents can then better understand which learning goals (i.e., competencies) they have
mastered.

53

Lecture

startDate

endDate

LectureUnit

name

releaseDate

TextUnit

markdownContent

VideoUnit

description

source

ExerciseUnitAttachmentUnit

content

Exercise

name

maxPoints

LearningGoal

title

description

Course

title
*

*

**
*

*

Figure 5.20: Structure and relationships of lectures and learning goals (UML class diagram)

Students can see the progress of all learning goals in the course statistics. Figure 5.21
shows an example of five high-level learning goals. Each learning goal covers multiple
exercises. The percentages shown in Figure 5.21 show the weighted average of all
related exercises. Instructors can decompose learning goals into smaller competencies.
In a future version of Artemis, they can also model the relationships between learning
goals.

3.4. SYSTEM MODELS

Learning Goals

Student View

Figure 3.15 shows the learning analytics dashboard section where students
can see the learning goals of the course. Each learning goal is shown in the
form of a card. The cards are arranged dynamically depending on the size
of the user’s screen. In the example, the instructor has defined five learning
goals for the course. The student’s learning goal mastery progress is shown
using circular progress bars.

Figure 3.15: Example of the learning goal section in the learning analytics dash-
board in the proposed system

When a student clicks on a goal card, a modal window opens with more
information. An example is shown in Figure 3.16. The student can see to
which lecture content the learning goal is linked to. In the example, these
are only exercises. The student gets an overview of his or her lecture content
completion progress. This progress is used to calculate the mastery progress
of the learning goal.

41

Figure 5.21: Progress of one student in five high-level learning goals.

Figure 5.22 shows the details of all exercises related to one learning goal. Students
can use this information to identify which exercises they have not finished yet. Learning
goal progress continuously measures the last result of the student. This can also be not
graded when they participate in the practice mode of quizzes or finish a programming
exercise after the due date. The progress is not meant as another assessment overview
(such as the course score) but should mainly visualize the learning progress. It does not
matter whether students have solved the exercise before or after the deadline.

54

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.16: Example of the modal that opens when a student clicks on a learn-
ing goal in the proposed system

42

Figure 5.22: Detailed progress page for one specific learning goal.

5.1.8 Exam Mode

Artemis supports an exam mode, which offers a digital way of assessing the performance
of students. Instructors can create exams for each course and register all or a selection
of the participating students. Within the exam, they can set up programming exercises,
modeling exercises, text exercises, file upload exercises, and quiz exercises or import
existing ones. Then, before releasing the exam to the students, they can perform test
runs to ensure all exercises are configured correctly.

Artemis supports individual working times in case of time extensions. To improve the
reliability for students, Artemis saves all changes locally and automatically synchronizes
every 30 seconds to avoid issues caused by unstable internet connections during the
conduction. Once the exam is over, instructors can assess the submissions in the as-
sessment dashboard, visualizing the assessment progress. They can choose to apply one
or two correction rounds. All the features of the course exercise assessments apply to
exams: double-blind reviews, reviewer training, leaderboards, structured grading criteria
(see Section 5.1.5).

Once all exams have been assessed, instructors can release the results and allow all
students to review their results online. If students believe they found a mistake in their
assessment, they can use the complaint feature to request a re-assessment. A second
reviewer will then re-assess the specific submission and decide whether to accept or
reject the complaint. Artemis also creates a statistical report of the exam to evaluate
and examine the students’ performance.

55

Artemis provides the possibility to create a unique exam for every student. Instructors
can create exercise groups that contain multiple exercise variants. The number of exercise
groups reflects the number of exercises for an exam. When generating a student’s exam,
Artemis selects one exercise randomly from each exercise group and combines those to
create a unique exam. Instructors can also randomize the exercise order. In addition,
they can distinguish between mandatory and optional exercises to create even more
randomness in the assignment. For example, Figure 5.23 shows two exercise groups,
both including two variants.

Figure 5.23: Instructor can create multiple exercise variants. Artemis randomly assigns a variant to
one student and tries to generate random student exams.

Artemis can support instructors in detecting plagiarism attempts. It analyzes the sim-
ilarities between all student submissions and highlighting those which exceed a given
threshold. Artemis integrates the open-source plagiarism tool JPlag [PMP+02] for pro-
gramming and text exercises and implements a custom comparison for modeling ex-
ercises. With the integrated plagiarism editor, instructors can compare all highlighted
submissions and confirm those actual plagiarism attempts cases. In addition, instructors
can download a report of accepted and rejected plagiarism attempts for further process-
ing on external systems, notify the students, and allow them to react to the accusation.
Figure 5.24 shows plagiarism checks for a modeling exercise.

The exam mode in Artemis is tolerant of internet connection issues. In case students
are not connected, they can continue working on text, quiz and modeling exercises. If the
internet connection recovers, Artemis will automatically send the locally saved state to
the server. Students can work on programming exercises in their integrated development
environment. Then, they only need to be online when they clone the repository and push
their commits to the remote repository, i.e., when they submit their solution.

56

Figure 5.24: Instructors can run automated plagiarism checks. They can then evaluated the automatic
findings manually to confirm or deny the plagiarism.

5.2 System Architecture

Artemis is a distributed system that consists of multiple subsystems running in processes
and on separate virtual machines. Administrators can tailor the concrete architecture
based on profiles and configuration settings to the specific needs of the Artemis installa-
tion. For example, they can use different implementations for the version control system
(VCS) and the continuous integration system (CIS). Artemis also offers flexibility when
it comes to scaling. Administrators can operate multiple Artemis servers (horizontal
scaling), synchronized using a broker and a discovery subsystem, a load balancer, and
a network file storage. Alternatively, they can operate a single Artemis server with a
lot of CPU and RAM resources (vertical scaling) which would be easier to operate be-
cause some subsystems (broker, discovery, load balancer, network file storage) are not
needed. In the following, we describe the top-level design, the deployment, and the data
management of Artemis in more detail.

5.2.1 Top-Level Design

Figure 5.25 shows the top-level design of Artemis, which is decomposed into an appli-
cation client (running as an Angular web app in the browser) and an application server
(based on Spring Boot). For programming exercises, the application server connects to
a version control system and a continuous integration system. Authentication is handled
by an external user management system (UMS).

57

Figure 5.25: Top level design of the architecture of Artemis (UML component diagram)

While Artemis includes generic adapters to these three external systems with a defined
protocol that can be instantiated to connect to any VCS, CIS, or UMS, it also provides
multiple concrete implementations for these adapters to connect to:

• VCS: Bitbucket Server or Gitlab
• CIS: Bamboo Server or Jenkins
• UMS: JIRA Server (more specifically Atlassian Crowd on the JIRA Server)

Artemis allows external applications (e.g., learning management systems such as Moo-
dle) to connect using LTI [SHH10]. The learning tools interoperability (LTI) standard
describes how to quickly and securely connect learning applications and tools with learn-
ing management systems. LTI is comprised of a central core and optional services to
add additional features and functions. The LTI core establishes a secure connection and
confirms the tool’s authenticity, while the extensions add features like the exchange of
assignment and grade data between external assessment tools and the learning manage-
ment system.

Figure 5.26 shows more details of the Artemis server architecture and its REST inter-
faces to the application client. The server application consists of three layers:

1. The web layer includes all REST and Websocket resources that handle the in-
coming and outgoing communication with the client. Classes in the web layer are
responsible for authentication and authorization checks. They check the incoming
data for validity and transform the outgoing data.

2. The application layer includes the logic for handling the incoming requests. For
example, the Exercise Participation Service makes sure that specific steps
are performed in the correct order when students start a programming exercise.

3. The data layer represents the facade to the database and includes database queries
and write operations to save or delete objects.

58

Figure 5.26: Artemis server architecture (UML component diagram)

5.2.2 Deployment

Figure 5.27 shows a typical deployment of the Artemis application server with one server
node and the application client, which is accessed multiple times from different users
(student, instructor, and tutor). The deployment focuses on the programming exercises
feature and displays external components such as the version control server needed to
conduct programming exercises. The student computers use a version control client and
the Artemis client, a web application executed in the browser (e.g., Google Chrome).

The Artemis server acts as a facade to the end users and delegates specific tasks to
the version control server (e.g. store repository with files, upload submissions, access
control) and to the continuous integration server (e.g., compile student code, execute
instructor tests, collect test case feedback). The continuous integration server typically
delegates the build jobs to local build agents within the university infrastructure or remote
build agents, e.g., hosted in the Amazon Cloud (AWS).

59

Artemis client

Local
Build Agent

Local
Build Agent

Local
build agent

University data center

Version
control server

Continuous
integration server

Artemis server

Version
control client

Remote
Build Agent

Remote
Build Agent

Remote
build agent

User
management

Student computer

LTI Interface

Figure 5.27: Deployment overview of Artemis (UML deployment diagram)

Figure 5.28 shows the deployment with multi-server nodes for horizontal scaling. The
system’s performance improves by adding more instances of the application server to
distribute the load. Different machines run the different subsystems of Artemis. However,
the client still communicates with the application server (through the load balancer).
This diagram focuses on the central newly added subsystems (load balancer and several
application server instances).

In this deployment, server administrators can perform maintenance work with less
impact on the users. They can perform several tasks (such as updating Artemis) on the
instances separately, allowing for higher availability. The redundancy also creates better
fault tolerance, as a failure of one instance of the application server does not affect the
whole system.

To allow for better scaling, all subsystems run on different virtual machines. For exam-
ple, the database server runs on a separate virtual machine to increase its performance.
The resources of this machine do not have to be shared with other subsystems anymore.
It is possible to scale this machine better vertically because it is possible to adjust the
resources for a database server.

Administrators are not limited by running several services with different requirements
on the same machine. If the database server would run on the same machine as the ap-
plication server, increased resource consumption would also impact the database server’s
performance. This setup would cause issues when several instances of the application
server try to access the database. Then, one instance could slow down all other instances
as they rely on the database server

The load balancer also runs on its own (virtual) machine to reduce the number of
subsystems on one machine and allow for better scaling. As it handles all traffic to and
from clients, the throughput of the network connection is essential. Memory and CPU
are not as relevant as the load balancer is very resource-saving.

60

Athene

Artemis client 

University data center

Version
control server

Continuous
integration server

Artemis Server  Artemis Server  Artemis server  

Version
control client

User
management

Student computer

LTI Interface

Apollon Compass

Broker

Discovery

Local
Build Agent

Local
Build Agent

Local
build agent

Remote
Build Agent

Remote
Build Agent

Remote
build agent

Load
balancer

Figure 5.28: Deployment overview with several application server instances, the load balancer subsys-
tem, and other related subsystems. The load balancer distributes requests from application clients to
different instances of the application servers (UML deployment diagram).

Instances of the application server should be running on individual virtual machines
so that they can neither affect each other nor different subsystems like the database
server by having a high resource usage. Administrators can assign different weights to
the different instances of the application server so that instances with more abundant
resources (like more CPU cores) get more requests than instances with fewer resources.
The application server is mainly CPU intensive. Therefore, its weight should depend on
the available computation power rather than other resources like system memory.

One machine can host both the broker and the discovery service as the discovery
service only requires minimal resources. The broker relays WebSocket messages between
all instances of the application server. Thus, it should have a reliable connection to the
machines running the application server.

Artemis uses a cache to reduce the load on the database server. Artemis uses Hi-
bernate8, a framework for object-relational mapping (ORM), that automatically maps
the objects used within Artemis to relations stored in the database [BK05]. Hibernate
offers different caching strategies and integrates with several caching providers [JF11].
The cache consists of different regions (e.g., all cached objects of a class form a region).
Developers can apply different configuration options for each region.

Artemis uses EhCache9, a commonly used cache provider for Hibernate [Win13]. It
uses Hazelcast10 as a cache provider because it supports distributed caching without
manual management of the cache. Figure 5.29 shows the shared usage of the database
and the cluster built by Hazelcast to offer a distributed cache. Hazelcast is an in-memory
data grid that uses a peer-to-peer architectural style [Joh13]. The discovery service
allows Hazelcast to form a cluster containing all instances of the application server.

8https://hibernate.org
9https://www.ehcache.org

10https://hazelcast.com

61

https://hibernate.org
https://www.ehcache.org
https://hazelcast.com

Hazelcast integrates into Spring and Hibernate and provides common data structures
like distributed hash maps that all instances of the cluster can access. Artemis uses
them for caching that is not directly integrated into Spring and Hibernate. For example,
they are used to store the submissions during live quizzes. All instances of the cluster
access the identical submissions so that in case one instance fails, other instances still
have a copy stored.

«subsystem»
:Database Server

«subsystem»
instance1:Artemis
Application Server

«component»
Cache

«subsystem»
instance2:Artemis
Application Server

«component»
Cache

«subsystem»
instance3:Artemis
Application Server

«component»
Cache

Figure 5.29: Shared usage of one database by three application server instances and communication
within the distributed caching cluster. Every instance of the application server communicates directly
with the database server and with all other instances to handle cache invalidation (UML component
diagram).

Every instance of the application server is connected to all other instances to broadcast
updates to the cache to ensure a consistent state. Thus, the cache acts as a proxy and
receives all requests that interact with the database. It can either provide the requested
data from the local cache (thus preventing a request to the database) or, if the data is
not present locally, request the data from the database (and store the data in the local
cache to prevent additional requests), implementing a proxy pattern.

5.2.3 Data Management

The Artemis application server uses a relational MySQL database. Figure 5.30 shows
the Java classes stored persistently (note that the figure does not include all entities,
attributes, and relationships).

Artemis supports multiple courses with multiple exercises. Each student in the student
group can participate in the exercise which creates one participation. For programming
exercises, a git repository and a continuous integration build plan will be created and
configured for the student (User) or the team. The initialization state variable (enum)
helps track this complex operation’s progress and allows recovery from errors.

A student can submit multiple solutions by committing and pushing the source code
changes to a given example code into the version control system or using the user
interface. The continuous integration server automatically tests each submission and
notifies the Artemis application server when a new result exists. For other exercise
types, students directly submit their solution to Artemis, which creates a submission

62

title
shortName
startDate
endDate
semester
onlineCourse
studentGroupName
taGroupName
instructorGroupName

Course

title
shortName
releaseDate
dueDate
maxScore
problemStatement
gradingInstructions
assessmentDueDate
mode
assessmentType

Exercise

ModelingExercise

QuizExercise

TextExercise

ProgrammingExercise

repositoryUrl
buildPlanId
initializationDate
presentationScore
intializationState

Participation

✱

1

exercises

✱

1exercise

participations

resultString
completionDate
successful
buildArtifact
score
rated
hasFeedback

Result

✱

1

result

submitted
submissionDate

Submission

text
detailText
reference
credits
gradingInstruction

Feedback

✱

1

result

feedbacks

login
password
firstName
lastName
email
activated
lastNotificationRead
registrationNumber

User

«enumeration»

AssessmentType

AUTOMATIC
SEMI_AUTOMATIC
MANUAL

assessmentType

1

student

✱

✱

1

assessor
✱

1submission

results

participation

course

name
shortName
image

Team

title
startDate
endDate
visibleDate
confirmationText
maxPoints
randomizeOrder
gracePeriod
registeredStudents

Exam

✱

1exams

course

title

ExerciseGroup

workingTime
started
submitted
startedDate
submissionDate
testRun

StudentExam

✱

1

exerciseGroups

exam

1

✱exerciseGroup

exercises

✱

teams

1

studentsowner

✱

1

✱

✱

exercises

✱1

complaintText
accepted
submittedTime
complaintType
student: User
team: Team

Complaint

1 result

responseText
submittedTime
reviewer: User

ComplaintResponse

1

complaint

✱

1

participation

submissions

Figure 5.30: Database model of Artemis (UML class diagram)

63

object. Tutors can review student submissions and create manual results with feedback.
Artemis distinguishes between different assessment types: automatic, semi-automatic,
and manual.

Students can complain or request more feedback if they think the result is wrong
or misses essential aspects. Then, a second tutor (complain) or the same tutor (feed-
back request) re-evaluates the submission and either accepts or rejects the complaint,
respectively provides more feedback.

A course can include multiple exams. Each exam consists of multiple exercise groups,
which allow the creation of multiple exercise variants. In addition, instructors generate
student exams with random exercise variant combinations for each registered student.
Student exams also allow instructors to grant individual working time extensions, e.g.,
when students provide a doctor’s certificate for a specific weakness. The actual data
model is more complex and supports more features such as versioning, lectures, student
questions, and static code analysis.

64

Chapter 6

Evaluation

“I never teach my pupils. I only attempt to provide the conditions in which they
can learn.”

— Albert Einstein

This chapter summarizes the empirical evaluations of interactive learning and Artemis
using a design-based research process [Col92,Hoa02].

Section 6.1 describes the courses EIST, PSE, POM, and SEECx offered at the Tech-
nical University of Munich (TUM) as case studies in which we have applied interactive
learning and Artemis as interventions. The findings in those case studies have helped
address the needs of students, tutors, and instructors and iteratively and incrementally
improve Artemis based on a formative development approach. We also describe the
dissemination of Artemis to other courses at TUM and nine other universities that have
started to apply interactive learning with Artemis.

Section 6.2 presents the essential evaluation results based on four of the five hypothe-
ses stated in Chapter 1. Section 6.3 discusses the threats to validity. More detailed
evaluations can be found in the individual publications in Chapter 8.

6.1 Case Studies

We applied interactive learning between 2015 and 2021 in four software engineering
university courses shown in Table 6.1. In previous instances of these courses, content
delivery (theory) and content deepening (exercises) were separated, i.e., students learned
a concept in the lecture and applied it a week later in a central exercise session. However,
in the first instance mentioned in Table 6.1, we applied interactive learning and combined
theory and exercises into interactive classes. As a result, students learned a concept
theoretically, then immediately practiced it in a short exercise and received feedback
about their progress following the interactive learning teaching philosophy described in
Chapter 4 and the cycles shown in Figure 4.1. In the following, we describe the four
courses in more detail.

65

Short Course Active
students

Program Instances

EIST Introduction to Software Engineering up to 2,100 Bachelor (2nd sem) SS19 - SS21
PSE Patterns in Software Engineering up to 600 Bachelor + Master WS16/17 - WS20/21
POM Project Organization and Management up to 400 Bachelor + Master SS15 - SS19
SEECx MOOC: Software Engineering Essentials up to 700 Anyone SS17 - WS20/21

Table 6.1: Courses with interactive learning used as case studies

6.1.1 Introduction to Software Engineering (EIST)

This section describes the undergraduate software engineering course EIST1 at the Tech-
nical University of Munich. The learning objectives of EIST are to familiarize students
with relevant concepts, workflows, and methods of software engineering and apply them
in all phases of software engineering projects. This includes analyzing and evaluating
problems, e.g., modeling the problem, reusing classes and components, and testing the
software. Concerning UML, students learn to communicate using models. They learn
how and when to apply which model. They understand the relationship between mod-
eling and programming and learn to abstract. Students learn to model and implement
concrete problems in software engineering.

EIST is a mandatory bachelor’s course offered in the second semester for a hetero-
geneous group of students from computer science, business informatics, business, and
other fields. A prerequisite of the course is that the students have essential program-
ming experience, such as having completed an introductory course in computer science
(e.g., CS1). Course instructors use constructive alignment [Big03] to align teaching and
assessment with the course objectives. For each lecture, a set of learning goals is defined
based on the six cognitive skills in Bloom’s taxonomy [BEF+56]. The course focuses on
higher cognitive skills so that students learn to apply the concepts in concrete situations.
Students cannot pass the course by simply memorizing the course material.

Organization

One lecturer and two to three exercise instructors organize and teach the course with
the help of around 45-60 student tutors. The tutors are bachelor and master students
who completed the course in previous years. The course takes place in the summer
semester over 12 weeks. Table 6.2 shows the course content together with the UML
models that are taught in the respective lecture. Up to 2,100 active students participate
in the course. There is no lecture hall with enough seats for all students. The course
uses a live stream and broadcasts the lecture to additional overflow lecture halls and
over the internet so that students can participate in the lecture from home.

Most students either participate actively in the main lecture hall or watch the live
stream at home. Therefore, the overflow lecture halls are closed after a few weeks. All
students (within the main lecture hall, overflow lecture halls, and live stream) can ask

1The course is called “Introduction to Software Engineering”, the abbreviation EIST is based on the
German translation “Einführung In die Software Technik

66

Week Content UML Model
1 Introduction Class
2 Model-based SE Use Case, Class
3 Requirements Analysis Object, Communication
4 System Design I Component, Deployment
5 System Design II Component, Deployment
6 Object Design I Class
7 Object Design II Class

8 Model Transformation
and Refactoring

State Chart

9 Software Lifecycle
Modeling

Activity

10 Software Configuration
Management

Activity

11 Testing Class
12 Project Management Class, Activity

Table 6.2: The course schedule of EIST includes 12 lectures. Each lecture includes specific UML
models.

questions using Slack’s chat platform2. Tutors answer these questions directly or pass
on a question to the lecturer to repeat and answer it for all students.

Design

Large courses present the challenge of keeping students motivated throughout the semester
(without, e.g., enforcing mandatory attendance). Students are easily distracted by off-
topic conversations with other students or social media and stop paying attention to
the lecture. The course includes interactive elements to activate the students and keep
students engaged in dealing with such situations. The interactive components include
in-class exercises, in-class quizzes, and group exercise sessions.

The university’s study program does not allow the inclusion of weekly assignments
when calculating the final grade. Therefore, the course uses a bonus system that moti-
vates students to participate in its exercises: students can earn bonus points for com-
pleting in-class and homework exercises. They need to present their homework twice in
tutor exercise sessions to get the bonus applied. The presentation requirement makes
sure that they have worked on the homework independently and improves their soft skills.

If they pass the final exam, their exercise points are mapped to exam points added
to their final exam score to improve it. The German grading system consists of marks
between 1.0 (similar to A in the US grading system) and 5.0 (similar to F in the US

2Slack is a cloud-based instant messaging platform: https://slack.com

67

https://slack.com

grading system), with 1.0 being the highest grade and 4.0 (similar to D in the US grading
system) being the passing grade. For instance, if students score 30 % of the bonus points,
they receive additional 3.0 points on top of their exam score, which improves their final
grade by 0.3. If they score 100 % of the bonus points, they can receive a total bonus of
1.0. For example, they can improve from a 2.3 to a 1.3. Students have reported that
this increases their motivation to participate in the exercise system actively.

The course includes quizzes, programming, modeling, and text exercises. In-class
exercises include quizzes to recapture previously learned content. They also include pro-
gramming and modeling exercises as guided tutorials. Tutors help with student questions
and problems during the in-class exercises. Group exercises mainly encompass modeling
exercises, small programming exercises, and text exercises that the students work out
together in small groups during their group exercise sessions. Homework assignments
include modeling, programming, and text exercises and enable students to deepen their
knowledge in self-study.

Modeling Exercises

Students model a solution to concrete problems using UML. Modeling exercises stimu-
late higher cognitive skills and force students to analyze, evaluate and create. Apollon
supports UML class, object, activity, use case, communication, component, and deploy-
ment diagrams. As shown in Table 6.2, each lecture includes different UML model types
aligned with the taught content. Apollon allows students to drag and drop the model el-
ements into the canvas, add attributes, methods, and define associations between them.
The advantage of Apollon is that students cannot use a UML element other than the
ones specified for the specific model type.

Quiz Exercises

Students repeat already learned content during lectures and test their knowledge. They
stimulate lower cognitive skills such as remembering and understanding the concepts.
A quiz question can be multiple-choice (MC), drag and drop (DnD), or short-answer.
For questions related to modeling, the quizzes include MC and DnD questions where
students drag elements to predefined spots on the canvas.

Programming Exercises

Students learn to make connections and see differences between models and their imple-
mentation in programming exercises. These connections stimulate their cognitive skills,
and students learn to apply the knowledge when implementing source code. A UML
class diagram, e.g., represents the general structure of the source code and can be used
as an interactive problem statement in Artemis. Red model elements indicate that they
are not implemented correctly, whereas green elements indicate correctly implemented
ones. These interactive elements further help students understand what UML models
should contain and what should be left out.

68

Text Exercises

Students need to answer questions about the learned concepts by writing open text
responses. They, e.g., need to explain similarities and differences between design patterns
in their own words and describe concrete situations when design patterns can be used.
These exercises stimulate analysis and evaluation skills.

Team Exercises

In addition to individual in-class exercises during the lectures, group exercises during the
tutor exercise sessions, and individual homework exercises, the course also includes team
projects since 2020. Team projects focus applying the learned content in a more realistic
example based on a short problem statement. Other exercises (in-class, group, and
homework) typically focus on many different examples and are limited in that students
might not understand the relationships between the taught concept, which is particularly
important in software engineering. A change in the analysis model, e.g., influences the
object design and the definition of test cases.

Team projects with freedom and creativity can teach those relationships to students.
If the students are responsible for the consistency between multiple software engineering
artifacts, they will recognize the influence of their own decisions and better understand
the relation between the taught concepts. Team-based learning also improves the soft
skills of the students, in particular communication and negotiation skills. Between 250
and 350 teams, each with three to five students, actively participate in the team exercises.
Tutors supervise and mentor the teams and provide feedback. Table 6.3 shows the phases
of the team project, which is aligned to the course schedule in Table 6.2.

Start End Phase
0 Week 1 Week 3 Team-building
1 Week 4 Week 5 Requirements analysis
2 Week 6 Week 7 System design
3 Week 8 Week 9 Object design & implementation
4 Week 10 Week 11 Testing
5 Week 12 Week 13 Build and release management

Table 6.3: Phases of the team exercises in EIST

In the team-building phase, students find peers and build a team. They choose one of
three vague problem statements that involve developing a simple single-player game in
Java. They have much freedom in specifying the exact requirements together with the
supervising tutor. Shortly before the end of the team project, the instructors (who play
the role of the customer) introduce change and ask the students to develop a multiplayer
game instead. The teams have to adapt the most important models of previous phases.
Late changes make the team exercises even more realistic because they also have to be
considered in real software engineering projects.

69

Communication

The course uses Slack as a communication tool to facilitate discussions between students
and teaching staff. Using instant messaging lowers the entrance barrier for students to
ask questions because it feels familiar to communicate (e.g., social media chats), and
students ask more questions if they notice that other students do the same. Students
can communicate with each other and send direct messages to tutors and instructors if
they have a question or require help during the lectures and at any other time. Slack
offers the ability to use channels with specific purposes:
#announcements — Instructors post course-wide announcements (students cannot
post here), e.g., reminders that a lecture is canceled on a public holiday
#organization — Questions about the organization of the course
#lecture — Questions regarding the lecture slides
#exercise — Questions regarding the exercises

The instructors further encourage students to answer questions themselves. This in-
creases a sense of belonging (which is hard to achieve in such a large setting) when stu-
dents communicate with each other but can also deepen their understanding of a topic,
e.g., in discussions that pursue questions. Students receive fast replies, which increases
the interactivity. Tutors help to moderate discussions and make sure all participants
respect the university and course code of conduct. They ensure a positive atmosphere,
reprimand, and prevent bullying. They answer questions and point students to previously
asked questions if it has already been asked before.

Tutor Exercise Sessions

45-60 tutors hold 80-100 weekly occurring tutor exercise sessions, each with around 15-
20 students. The main focus for tutors is to activate the students in these sessions,
moderate discussions, and explain the learned concepts again in case the students ask
questions. Tutors have the following responsibilities:

• Attend a weekly tutor meeting with the instructors3.
• Provide feedback to student submissions to exercises.
• Hold one or two tutor exercise sessions per week.

Tutors also help with moderating the Slack channels, answer questions on Artemis,
help students during in-class exercises, or review slides and exercise content.

In the tutor exercise sessions, students apply the knowledge acquired in the lecture.
Each tutor exercise session is structured as follows:

1. Review the previous lecture [5 - 10 min]: students discuss the learning goals,
outline, and summary.

2. Homework presentation [30 - 45 min]: students present their solution to home-
work exercises. Tutors ask questions about the solution, point out typical mistakes,
and provide additional feedback.

3Instructors discuss issues and present the subsequent group work and homework.

70

3. Group work [30 - 45 min]: Students work on predefined group exercises in groups
(3-6 students).

4. Discussion of the next homework [5 - 10 min]: the new homework exercises are
briefly discussed.

The tutor exercise sessions review a specific topic covered in the lecture before and
prepare the students for the next homework assignment. They help to deepen the un-
derstanding of the taught concepts. Group exercises show the application of the learned
methods with the help of concrete problems in the different phases of software engi-
neering. Homework assignments deepen the knowledge in self-study. Students receive
individual feedback on their homework submissions, which allows them to measure their
learning progress and improve their skills. In addition, the presentation of their solution
improves the students’ communication skills, an essential skill in software engineering.

For instance, in lecture Object Design II, the course covered the Strategy Design Pat-
tern [GHJV94] using an example and the general structure. In the corresponding tutor
exercise session, there was one group work, where students discussed the pattern’s prob-
lem, solution, benefits, and consequences. The students modeled a real-world example
of the strategy pattern as a UML class diagram in the subsequent group work. This
exercise was designed to teach students how to approach a concrete problem, analyze
it, and model this problem. In one homework assignment, the students were given a
similar problem: model different encryption strategies as a UML class diagram, using the
strategy pattern. In another assignment in a programming exercise, the students had to
implement sorting algorithms using the strategy pattern.

Grading

While programming and quiz exercises are automatically evaluated, modeling and text
submissions are graded manually. Artemis offers a double-blind grading system, which
opts for less bias while grading. Every week on Monday at noon, the homework is
published. The students then have one week to work on the exercise and submit their
solutions. In the following week, students present their homework in the tutor exercise
sessions. Tutors use example solutions and detailed grading criteria to provide individual
feedback. In the grading criteria, instructors point out that multiple solutions to modeling
exercises can be correct.

When students are given sample solutions, they often do not think about their solutions
but take the sample solution as the single truth. To encourage self-reflection and revision,
instructors do not distribute example solutions to students. The feedback students
receive about their own solutions is crucial for them to understand how they can improve.

6.1.2 Project Organization and Management (POM)

Up to 400 students with a heterogeneous background participate actively in POM, offered
in multiple study programs. Two distinct groups participated: (1) bachelor students
in information science, a few with experience in software engineering, and (2) master

71

students in computer science, some with existing experience in the taught topics. The
challenge of this heterogeneity was that students completed lecture exercises at different
rates. The exercises included optional tasks specifically for more experienced students to
improve this situation. In addition, the students had the opportunity to solve exercises
as homework if they could not finish them in the lecture. Some tasks and exercises were
also explicitly designed as homework.

The module description of POM describes the following intended learning outcomes:

1. Participants understand the fundamental concepts of software project manage-
ment.

2. They can write a software project management plan, initiate and manage a software
project, and tailor a software life cycle.

3. They are familiar with risk management, scheduling, planning, quality manage-
ment, build management, and release management, and can apply these tech-
niques to solve simple problems.

Table 6.4 shows the schedule and the content of the lecture.
Week Content

1 Team formation
2 Project organization
3 Software process models
4 Agile methods [KABW14]
5 Prototyping
6 Proposal management
7 Branch & merge management [KBB16]
8 Contracting
9 Continuous integration
10 Continuous delivery [KA14]
11 Risk and demo management
12 Global project management [LKLB16]
13 Project management antipatterns

Table 6.4: The course schedule of POM includes 13 lectures.

Students can earn bonus points for completing exercises successfully. They can use
these bonus points to improve their final exam mark. If they, e.g., earn between 60 %
and 80 % of the total points, their mark in the final exam is improved by one grade. This
possibility motivates the students to participate in individual and team-based exercises.
The instructors use the exercise types: quizzes, interactive tutorials, and project work.

Interactive Tutorial

Students solve individual tasks on their computers. They cooperate with the instructor,
tutors, and fellow students to solve particular problems. They learn from their experience
in exercises and reflect on the concepts they just learned a few minutes before. The
instructor conducts four extensive interactive tutorials in POM using dedicated tools:

72

1. Agile Methods (Atlassian JIRA4)
2. Branch and Merge management (Atlassian Bitbucket Server5)
3. Continuous Integration (Atlassian Bamboo6)
4. Continuous Delivery (HockeyApp7)

In these interactive tutorials, the instructor introduces concepts and immediately ap-
plies them in short exercises. The students complete the exercises on their computers
using the mentioned tools in the browser. Students look at the detailed slides handed
out at the beginning of the exercise or watch how the instructor conducts the exercise
on the presentation computer. Tutors walk through the lecture hall and help students
by answering questions directly.

Each interactive tutorial consists of three to five exercises which were decomposed
into smaller tasks. In summary, the students have to solve between twelve and twenty
small tasks in one tutorial. The instructor synchronizes the speed of the tutorial several
times by asking students about their progress and by checking the number of participants
and results in the tools. If more than 90 % were able to complete particular tasks, the
instructor proceeded to the next exercise.

One example is executing the two exercises on continuous integration and delivery
based on a release management workflow [KA14]. The instructor maps an exemplary
delivery process for a mobile application to the continuous integration server Bamboo.
Each student first forks a preconfigured git repository and clones a preconfigured build
plan to simplify the exercises. Then, the students adapt and configure the build plan, fix
existing test cases and write additional test cases. A change in the software requirements
leads to a bug that is detected by Bamboo during a regression test. The students have
to fix the bug so that all tests pass again at the end of the exercise. Then, they can
deliver the software to their fellow students who play the role of test users and provide
user feedback.

Project Work

In addition to individual exercises, students participate in a team project with five team
members, a simplified version of the team projects described by Bruegge et al. [BKA15],
including creative exercises such as software theater [KDXB18]. The goal of the project
is that students experience the learned concepts in a more realistic environment. The
instructor plays the role of the customer and provides three short problem statements
about the development of mobile applications. The teams choose one of the problem
statements (flight app, lecture app, reservation app) and a development environment
and target platform, either Android, iOS, or Java.

The instructor arranges the students into different teams according to their self-
assessment. The goal is to have balanced teams concerning the skill level of the students.
Team-based exercises are also built on experiential learning techniques. However, they

4https://www.atlassian.com/software/jira
5https://www.atlassian.com/software/bitbucket
6https://www.atlassian.com/software/bamboo
7https://hockeyapp.net

73

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/bitbucket
https://www.atlassian.com/software/bamboo
https://hockeyapp.net

have a stronger focus on problem-based and cooperative learning. For example, software
engineering is a collaborative activity [Whi07]. Therefore, teamwork is an essential skill
the students have to learn. The teams use Rugby [KABW14] as an agile and continuous
process model with an initial warm-up phase called Sprint 0 and five development sprints.
Table 6.5 shows the team project schedule.

Start End Phase
0 Week 1 Week 3 Sprint 0
1 Week 4 Week 5 Sprint 1
2 Week 6 Week 7 Sprint 2
3 Week 8 Week 9 Sprint 3
4 Week 10 Week 11 Sprint 4
5 Week 12 Week 13 Sprint 5

Table 6.5: Phases of the team exercises in POM

In addition, students only receive a vague description of the exercises that deliberately
miss detailed instructions so that the teams have to think on their own about how to solve
the exercise and incorporate their ideas [KBC+17]. Students first learn and experience
concepts in individual exercises. Then, they apply the knowledge in team exercises based
on one project context to understand the relationships between the taught concepts and
improve their long-term memory. Finally, they have to tailor the concepts to their
concrete team situation and agree on different decisions in their team, which facilitates
communication, collaboration, and conflict handling. Later in the course, students reflect
on their team experiences, e.g., using sprint review and sprint retrospective meetings.

6.1.3 Patterns in Software Engineering (PSE)

Up to 600 students participate actively in PSE. The course includes critical concepts
of different types of patterns used during software development, particularly design pat-
terns, architectural patterns, testing patterns, antipatterns, and organizational patterns.
Students’ learning goals are to understand patterns to describe reusable knowledge for
analysis, system design, object design, and software project management activities. Given
a problem, they can identify the applicability of a pattern that addresses the problem,
describe the pattern in UML and map it to Java source code. Bachelor and master
students mainly in the field of computer science attend the course. Table 6.6 shows the
schedule and the content of the course.

During the 13 lectures, instructors conducted around 40 exercises: most were in-
class exercises, and a few were homework. The course includes the exercises types
interactive coding challenge and interactive modeling challenges. It also carries out
quizzes and interactive tutorials. In the homework exercises, students further deepened
their knowledge. Exercise participation was optional for the students.

74

Week Content
1 Introduction and pattern definition
2 Basic concepts

3, 4, 5 Design patterns
6, 7 Architectural patterns
8, 9 Antipatterns

10, 11 Testing patterns
12 Pattern-based reengineering
13 Global software engineering

Table 6.6: Overview of the course content in PSE

Interactive Coding Challenge

The participants have to write new source code or adjust existing code, commit their
changes to a version control system that automatically triggers test cases on a continuous
integration server to verify the given solution. The instructor rewards the first three
students who submit a correct solution with gummy bears or donuts to increase the
extrinsic motivation. In addition, there is a wildcard winner, which is randomly picked
and acknowledged without being among the first three correct submissions.

After introducing the theory and explaining the problem, the students start to work
on the exercise. Artemis makes sure that all students start working on the exercise
simultaneously and have the same timeframe for solving the problem. The instructors
determine the timeframe to submit the exercise, and the elapsed time during the exercise
is visualized on a big stop clock on one of the projectors. Once the deadline has passed,
the instructors provide a sample solution and discuss it with the students. Winning
students also have the opportunity to explain their solution and why they came up with
this approach. Due to the use of Artemis, it is possible to track and validate the students’
results in real-time.

One example of an exercise is the application of the state design pattern in lecture
4. After the introduction and explanation of the state design pattern, the exercise for
the students is to implement a basic remote control for a TV with four states. Next,
they need to apply the state pattern to implement the transition between the appropriate
states. Then, the instructors provide a standard Java Eclipse project with existing source
code unrelated to the state pattern. Finally, a UML state diagram visualizes the problem
with the different state transitions and their limitations.

The instructor sets the timeframe to solve this exercise to 15 minutes, released the
exercise on Artemis, and the students start to work on the exercises. During the exercise,
tutors help the students if there are questions. Students can ask for help by raising their
hands or by asking questions on Slack. After 5 minutes, the instructors give a hint using
a class diagram representing the implementation of the state pattern. Each submission
leads to a compilation and the execution of 20 test cases. When the deadline for working
on the exercise has passed, the first three correct submissions and the wildcard winner

75

are honored. Finally, the instructors discuss a sample solution with the students to reflect
on the learned concepts.

6.1.4 Software Engineering Essentials (SEECx)

The MOOC Software Engineering Essentials (SEECx) applies interactive learning on
edX8. The goal in the creation of the course was to make it as interactive as possible.
The MOOC was launched in May 2017 as a course over nine weeks and offered several
times.

Learning Goals

It is an intensive online course with interactive exercises that go beyond the learning
experience of existing software engineering MOOCs. It has the following learning goals:
Students get to know methods and techniques to develop software for different domains
and platforms using agile techniques in the context of change. First, starting from a
problem statement, instructors teach the participants how to analyze requirements and
transform them into models based on textual analysis. Next, participants model multiple
representations of the system consistently, understand and identify patterns. Finally, they
map models to source code, integrate it into an app, and deliver it using build and release
management techniques.

Course Structure

Two instructors and three to five tutors organize the course. It includes eight sections
(comparable to lectures) covering eight major topics: project organization and manage-
ment, software configuration management, object-oriented programming, requirements
analysis, system design, object design, testing, build and release management. All sec-
tions consist of three to five units, each covering a concrete learning goal. Thus, the
whole course includes 34 units. Table 6.7 shows the eight sections of the course and
their content.

Units include a video with the theory of the topic and an example, followed by an
exercise and a summary to reflect on the learned concepts. The duration of the videos
ranges from 3 to 15 minutes (mean: 8.2 min). The videos are kept short to enable the
students to apply the newly acquired knowledge in practice in the exercises. In addi-
tion to slide-based lecture videos, instructors added short clips with animations in an
explanation style and real-world scenes into the video to make them more entertaining
and rich in variety. Such videos make the thinking process visible and support cognitive
apprenticeship [CBH91]. After each unit, there is a quiz to assess whether the students
can remember and explain the learned concepts (levels 1 and 2 in Bloom’s taxonomy).
Students get immediate feedback on their responses and test their newly acquired knowl-
edge. They can try each quiz two times in the course, so even if they failed initially, they

8https://www1.in.tum.de/seecx or https://www.edx.org/course/software-engineering-essentials

76

https://www1.in.tum.de/seecx
https://www.edx.org/course/software-engineering-essentials

Section Course content Units MC SA DD Model. Progr.
S1 Project Organization and Management 6 14 0 1 1 0
S2 Software Configuration Management 4 14 0 1 0 1
S3 Object-Oriented Programming 4 10 2 0 0 2
S4 Requirements Analysis 5 6 0 1 1 1
S5 System Design 4 6 2 0 0 1
S6 Object Design 3 6 0 3 0 1
S7 Testing 5 5 2 2 0 2
S8 Build and Release Management 3 13 0 1 0 1

Sum 34 74 6 9 2 9

Table 6.7: The course schedule of SEECx is eight weeks long, corresponding to 8 sections, and
consists of 34 units. Each section has at least one interactive exercise (model. = modeling, progr. =
programming) in addition to quizzes (MC = multiple-choice, SA = short-answer text input, DD = drag
& drop).

can have another look at the video and then score the total points in the assessment.
This keeps the students motivated.

Each section also includes programming and modeling exercises that focus on higher
cognitive skills. Those exercises assess if students can apply the previously obtained
knowledge, analyze a problem, evaluate different solution strategies and create new
solutions to given problems (level 3 - 6 in Bloom’s taxonomy).

In order to pass the course, students have to achieve at least 60 % of all available
points (400). By participating in the interactive exercises, students can earn up to 60 %
of the total points (240), 30 points for each section. At the end of the course, students
can participate in a final assessment which accounts for the remaining 40 % of the total
points (160).

The instructors use different exercises to make the course interactive and rich in variety,
following the learning goals. For example, they use multiple-choice, text input, and drag
& drop questions to support learning goals on levels 1 and 2 of Bloom’s taxo. In addition,
they integrate interactive programming and modeling exercises.

All programming and modeling exercises are based on a common problem statement
about the University App, also used for examples in the videos. This allows the students
to recognize relationships between the topics (e.g., between the requirements and system
design) and makes it easier to understand the context of the problem.

Interactive Programming Exercises

Students submit their exercise solutions directly in Artemis and receive immediate feed-
back through structural and behavioral tests. They can use this feedback to improve
their solution iteratively. Artemis uses the LTI (Learning Tool Interoperability) interface
of edX.

The online editor of Artemis includes assignments using interactive tasks and inter-
active diagrams. After each submission through the Commit & Run Tests button,

77

students’ code is assessed automatically. The result is shown immediately, and the in-
teractive tasks and diagrams are updated accordingly. In addition, students can see
detailed, individual feedback on why their solution is wrong by clicking on the result.
This helps to identify which tasks the students have already solved and which parts of
their program do not work as expected.

Modeling Exercises

The ability to understand and create models is an important learning goal for software
engineers. Therefore, modeling is an essential part of the course. However, it is chal-
lenging to correct models automatically because there are different correct solutions.
Modeling is a creative activity, and students should not be limited in the creative think-
ing processes [KBC+17]. One learning goal of the course is that participants can review
models given a set of quality criteria. Therefore, the instructors use the concept of
peer reviews consisting of the following steps: (1) upload response, (2) learn to assess
responses, and (3) assess peers.

Students first create a solution to a given problem and upload it. Then, they review
sample solutions towards a given set of criteria to learn how to assess other solutions.
Finally, they assess multiple other students’ solutions to evaluate each model by at least
three reviewers (other students). The final score is the average of three reviews. As
a result, students receive valuable feedback about their models and can improve their
modeling skills in the future.

While peer reviews lead to additional effort for students, they stimulate higher cognitive
skills: by assessing other solutions, students reflect on alternative solution approaches
and evaluate if they are correct concerning the given problem statement. This activity
is beneficial, but it should be used carefully not to overload the students. There are two
peer review exercises in the course: creating low-fidelity mockups for the university app
and creating an analysis object model.

Project Work

In addition, the course also offers project work which allows the students to experience the
complete software engineering process from analysis over the design to implementation,
testing, and delivery. Table 6.8 shows the project work exercises related to the sections
of the course. For example, a second problem statement allows students to apply and
transfer their knowledge to a different problem domain. Project work focuses on Bloom’s
taxonomy’s upper two cognitive skill levels, where students should create and evaluate a
new solution to a problem. The project work starts in the fourth section and allows the
students to evaluate how their own decisions, e.g., the requirements analysis, influence
the system design and implementation.

Examples of project work exercises are the analysis of the problem domain, the design
of the software architecture, sketches of user interfaces up to the implementation, testing,
and delivery of a small app. The system cannot assess such exercises automatically
because it should not limit the creativity of students. It is essential to motivate the

78

Section Project Work
1, 2, 3 n.a.

4 Requirements elicitation and analysis of the problem domain
5 Design of the systems with a focus on subsystem decomposition and

hardware-software mapping
6 Implementation of the system with a focus on the usage of design pattern
7 Testing of the system with automated unit tests
8 Setup of continuous integration and delivery

Table 6.8: Project work exercises in the sections of the SEECx course. Sections 1, 2, and 3 did not
include project work, as students first had to get familiar with basic concepts and theories.

students to discuss their solutions with us and each other. Project work is optional for
students. They can pass the course without active participation. Nonetheless, it is highly
recommended to participate and allow the students to deepen their knowledge and gain
practical experience.

Communication

MOOCs should foster social interaction and frequent contact between the students
[KS19]. Therefore, it makes sense to use a chat for instant and direct communication in-
stead of discussion forums to further improve the interaction between course participants
and instructors. Many existing MOOCs rely on discussion forums, which are limited in
interactivity. Instead, SEECx promotes the exchange with and between students based
on a chat system. Instructors and tutors are active in the chat. Students can provide
feedback and ask for help.

SEECx uses Slack as an instant messaging service because it has a lower entry barrier
than discussion forums. Students can get in touch with each other and write direct
messages to instructors and tutors if they need help. They ask questions more easily
without having to pay attention to the exact wording and phrasing. Instructors add
repeating questions to a question and answer page. The channels #questions, #general,
and #feedback were the most important ones. In the channel #questions, students asked
questions. In the channel #feedback, they stated how to improve the learning material.
Instructors and tutors answer questions within one working day to keep the interactivity
high.

Clear communication of learning goals, expectations, and deadlines is essential. The
course description clarifies what the students can expect and what they must accomplish
to pass the course.

6.1.5 Dissemination of Artemis

Interactive learning and Artemis have been applied in the four courses EIST, POM,
PSE, and SEECx, and many other courses. Table 6.9 shows all courses on the Artemis

79

platform of the Technical University of Munich with the respective semester, the number
of exercises, students, tutors, and instructors. Some of the courses, e.g., Introduction
to Software Engineering before summer 2019, also used Artemis for homework exercises,
but not necessarily interactive learning.

Course Module Sem Ex Stu Tu In
1 Introduction to Software Engineering IN0006 SS16 4 676 20 10
2 Patterns in Software Engineering IN2081 WS17 34 388 12 10
3 Software Engineering Essentials IN1504 WS17 16 30 4 10
4 Software Engineering Essentials IN1504 SS17 14 299 3 7
5 Introduction to Software Engineering IN0006 SS17 7 1,066 23 2
6 Project Organization and Manage-

ment
IN2083 SS17 1 271 9 10

7 Patterns in Software Engineering IN2081 WS18 36 418 13 4
8 Software Engineering Essentials IN1504 WS18 14 176 3 7
9 Introduction to Software Engineering IN0006 SS18 33 1,472 48 9
10 Protein Prediction 1 IN2322 SS18 9 275 0 6
11 Project Organization and Manage-

ment
IN2083 SS18 33 296 13 2

12 Hochschule München Software Engi-
neering I

HM WS19 11 94 2 2

13 Hochschule München Softwareen-
twicklung 1

HM WS19 3 49 2 2

14 Patterns in Software Engineering IN2081 WS19 38 431 13 5
15 Hochschule München Software Ar-

chitektur
HM SS19 10 79 2 2

16 Hochschule München Softwareen-
twicklung 2

HM SS19 6 52 0 2

17 Protein Prediction 1 IN2322 SS19 16 174 0 7
18 Introduction to Software Engineering IN0006 SS19 76 1,682 43 6
19 Project Organization and Manage-

ment
IN2083 SS19 46 323 2 6

20 Software Engineering Essentials IN1504 SS18 14 680 3 7
21 Introduction Programming Digital

Health
SG160445 WS20 1 83 0 4

22 Praktikum: Grundlagen der Program-
mierung

IN0002 WS20 90 1,813 95 12

23 Grundlagen: Betriebssysteme IN0009 WS20 17 998 3 11
24 Patterns in Software Engineering IN2081 WS20 32 540 8 13
25 Grundlagen der Künstlichen Intelli-

genz
IN2062 SS20 2 859 2 5

26 Introduction to Software Engineering IN0006 SS20 88 1,779 50 15
27 Protein Prediction I IN2322 SS20 16 114 0 5
28 Programmierung für Sozialwis-

senschaftler
POL20100 SS20 2 11 0 2

29 Grundlagen: Algorithmen & Daten-
strukturen

IN0007 SS20 12 1,304 3 6

30 Seminar JavaScript Technology IN4790 SS20 7 16 0 1

80

Course Module Sem Ex Stu Tu In
31 Grundlagen: Betriebssysteme IN0009 WS21 22 980 16 8
32 Nachqualifikation Inf-GY ST - WS21 12 48 2 2
33 KIU Fundamentals of Programming KIU WS21 56 150 3 9
34 Praktikum: Grundlagen der Program-

mierung
IN0002 WS21 70 2,043 85 11

35 Techniques in Artificial Intelligence IN2062 WS21 4 766 7 4
36 Einführung in die Rechnerarchitektur IN0004 WS21 15 1,217 12 4
37 Functional Programming and Verifi-

cation
IN0003 WS21 38 977 22 6

38 Patterns in Software Engineering IN2081 WS21 52 776 21 21
39 Betriebssysteme & HW Program-

mierung
IN0034 WS21 17 125 0 3

40 Software Engineering Essentials IN1504 WS21 11 46 0 6
41 Software Engineering Business Appli-

cations
IN2085 WS21 18 296 5 3

42 IoT Remote Lab EI78049 WS21 7 41 0 2
43 Nachqualifikation Inf-GY AD - WS21 8 48 2 4
44 Introduction to Programming Comp.

Eng.
- WS21 42 184 10 7

45 Repetitorium Einführung in die Infor-
matik

IN0001 WS21 14 209 0 2

46 Introduction to Software Engineering IN0006 SS21 92 2,097 68 5
47 Protein Prediction I IN2322 SS21 1 85 0 5
48 Grundlagen: Algorithmen & Daten-

strukturen
IN0007 SS21 13 1,610 23 4

49 Security Engineering IN2178 SS21 32 228 0 4
50 KIU Functional Programming & Veri-

fication
KIU SS21 42 80 0 6

51 Praktikum Data Science u. Masch.
Lernen

- SS21 11 19 0 3

52 IoT Remote Lab EI78049 SS21 6 37 1 2
Sum 1,271 28,510 653 311

Table 6.9: Overview of 52 courses on the Artemis instance at the Technical University of Munich with
the semester (Sem) number of exercises (Ex), number of students (Stu), number of tutors (Tu), and
number of instructors (In). Some courses (KIU and HM) have been offered to students from other
universities.

The courses range from smaller ones with only 11 students to huge ones with up
to 2,097 students. Some courses use more extensive and fewer exercises, e.g., IN0007.
Others have many small exercises, e.g., IN0002. The number of instructors varies because
some courses allow tutors to create exercises and therefore promote them to instructors.
Artemis recently introduced the new role editor to overcome this issue, which has access
rights between tutors and instructors. Sometimes, new instructors of follow-up courses
also get instructor rights for previous instances to import exercises into the new course.
Thus, there are only two to five actual instructors in most courses, even if the numbers
in Table 6.9 have other values.

81

Interactive learning and Artemis are also used in other universities. Table 6.10 shows
the universities that also contribute to the Artemis community, e.g., by participating in
the open-source development or providing feedback. Artemis is used in five universities
in Germany and five universities in Austria as part of the Codeability project, led by
Michael Breu. In addition, one company uses Artemis for industry-related education.
The Austrian universities share the same Artemis instance, while the German universities
all use and administer their own Artemis instance.

University URL Main Administrator
1 Technical University of Munich https://artemis.ase.in.tum.de Stephan Krusche
2 University of Innsbruck https://artemis.codeability.uibk.ac.at Michael Breu
3 University of Salzburg https://artemis.codeability.uibk.ac.at Michael Breu
4 Johannes Keppler University Linz https://artemis.codeability.uibk.ac.at Michael Breu
5 University of Klagenfurt https://artemis.codeability.uibk.ac.at Michael Breu
6 Technical University Wien https://artemis.codeability.uibk.ac.at Michael Breu
7 University of Stuttgart https://artemis.sqa.ddnss.org Steffen Becker
8 University of Bonn https://alpro.besec.uni-bonn.de Alexander Von Trostorff
9 University of Passau https://artemis.se2.fim.uni-passau.de Christian Bachmaier
10 Karlsruhe Institute of Technology https://artemis.praktomat.cs.kit.edu Dominik Fuchß
11 University 4 Industry (company) https://artemis.university4industry.com Deryk Hopley

Table 6.10: Use of Artemis in universities and companies

Only the Artemis instance at the Technical University of Munich uses the setup with
JIRA, Bitbucket, and Bamboo. All other Artemis instances in Table 6.10 use the setup
with Gitlab in Jenkins. Some of them use internal user management and allow students
to register. Others use integrations using Shibboleth9 to connect users with the central
university user management.

Notably, in the Karlsruhe Institute of Technology, Artemis replaced the existing system
Praktomat (see Chapter 3 for an explanation) used for several years because it was not
actively maintained anymore and lacked critical new features.

Table 6.11 shows the courses that have been offered in external universities. While
the number of students is generally lower than at TUM, most courses have more than
50 students. All courses focus on the use of programming exercises and their automatic
assessment. Most instructors use Java to teach the respective concepts in software
engineering and programming. For example, two courses in Innsbruck and Salzburg
teach Python, one course in Innsbruck teaches C/C++. The exercises range from four
larger ones in Stuttgart, Passau, and Innsbruck to 120 small ones in Klagenfurt. This
shows that instructors apply interactive learning and Artemis quite differently.

Artemis has also been used for online exams. Starting with the repeat exam period
of the winter semester 2019/20, which was delayed due to the Corona pandemic, three
courses have offered online examinations on Artemis, including programming exercises.

9Shibboleth is a standard for single sign-on that enables people from multiple institutions to access
services shared in a circle of trust known as a federation. Shibboleth is one possible implementation of
SAML (Security Assertion Markup Language): https://www.shibboleth.net.

82

https://artemis.ase.in.tum.de
https://artemis.codeability.uibk.ac.at
https://artemis.codeability.uibk.ac.at
https://artemis.codeability.uibk.ac.at
https://artemis.codeability.uibk.ac.at
https://artemis.codeability.uibk.ac.at
https://artemis.sqa.ddnss.org
https://alpro.besec.uni-bonn.de
https://artemis.se2.fim.uni-passau.de
https://artemis.praktomat.cs.kit.edu
https://artemis.university4industry.com
https://www.shibboleth.net

University Course Language # Ex # Stu # Tu # In
1 University of Bonn Algorithmen und Programmierung Java 30 483 7 1

2 University of Stuttgart Programmierung und
Softwareentwicklung

Java 4 617 37 1

3 University of Passau Software Testing Java 4 60 1 1
4 University of Innsbruck Einführung in die Programmierung C/C++ 38 70 1 2
5 University of Innsbruck Software Architektur Java 3 120 0 4

6 University of Innsbruck Einführung in die Programmierung:
Programmieren mit Python

Python 4 60 0 1

7 University Linz Einführung in die Softwareentwicklung Java 70 50 3 2

8 University of Klagenfurt Einführung in die strukturierte und
objektbasierte Programmierung

Java 120 13 1 3

9 University of Salzburg Python Kurs Python 12 120 0 6
10 University of Salzburg Einführung in die Programmierung Java 11 120 3 9

11 Karlsruhe Institute
of Technology

Programmieren Java 20 192 14 3

Sum 316 1,905 67 33

Table 6.11: Artemis courses in external universities with the number of exercises (# Ex), number of
students (# Stu), number of tutors (# Tu), and number of instructors (# In).

Table 6.12 shows the number of registered participants, how many students have started,
and how many have submitted the exam.

Course Module Exam Date Participants Started Submitted
1 Functional Programming and Verification IN0003 Repeat 04.07.20 240 240 194
2 Einführung in die Informatik IN0001 Repeat 06.07.20 413 413 352
3 Praktikum: Grundlagen der Programmierung IN0002 Repeat 08.07.20 173 173 136

Sum 826 826 682

Table 6.12: Overview of all exams on Artemis in the winter term 2019/20 (WS1920)

In the exam period of the summer semester 2020, two courses have offered the final and
repeat exam on Artemis, as shown in Table 6.13. The number of students who submitted
started and submitted their exam is relatively high compared to exams written on paper.
90 % of the registered participants started the exam. From these, 98 % completed and
submitted the exam. The general feedback about the use of Artemis for online exams
was positive and encouraged the development.

Course Module Exam Date Participants Started Submitted
1 Introduction to Software Engineering IN0006 Final 27.07.20 1,377 1,297 1,276
2 Networks for Monetary Transactions IN2161 Final 03.08.20 564 482 477
3 Introduction to Software Engineering IN0006 Repeat 28.09.20 452 393 380
4 Networks for monetary transactions IN2161 Repeat 29.09.20 278 236 236

Sum 2,671 2,408 2,369

Table 6.13: Overview of all exams on Artemis in the summer term 2020 (SS20)

In the exam period of the winter semester 2020/21, even more courses have used
Artemis for final and repeat exams. Table 6.14 shows the 20 exams with more than
5,000 submitting students that have been conducted between January and April 2021.

83

The participation was relatively high again. 85 % of the registered participants started
the exam. From these, 96 % completed and submitted the exam. In the largest exam,
the final exam of the course IN0001, 1,595 students submitted the exam simultaneously.
This shows that Artemis is scalable to many students. In the summer semester of 2021,
the instructors of the course IN0002 expect an even larger final exam with more than
2,000 students.

Course Module Exam Date Participants Started Submitted
1 Fundamentals of Programming KIU-FOP Final 20.01.21 91 84 65
2 Introduction to Computer Science KIU-I2CS Final 22.01.21 113 109 102
3 Fundamentals of Programming KIU-FOP Repeat 03.02.21 50 46 42
4 Introduction to Computer Science KIU-I2CS Repeat 05.02.21 51 50 50
5 Einführung in die Informatik 1 IN0001 Final 13.02.21 1,763 1,606 1,595
6 Scientific Data Processing SG8100044 Final 19.02.21 58 44 44
7 Microprocessors IN2075 Final 23.02.21 53 39 38
8 Advanced Topics of Software Engineering IN2309 Final 24.02.21 220 167 153
9 Functional Programming and Verification IN0003 Final 26.02.21 796 629 591
10 Virtualization Techniques IN2125 Final 01.03.21 42 32 32
11 Program Optimization IN2053 Final 02.03.21 97 67 66
12 Computer Architecture and Networks IN2189 Final 03.03.21 56 47 47
13 Parallel Programming Systems IN2365 Final 04.03.21 33 19 18
14 Patterns in Software Engineering IN2081 Final 05.03.21 454 385 368
15 Einführung in die Rechnerarchitektur IN0004 Final 06.03.21 1,001 865 819
16 Praktikum: Grundlagen der Programmierung IN0002 Repeat 26.03.21 258 225 220
17 Einführung in die Informatik 1 IN0001 Repeat 29.03.21 395 326 321
18 Functional Programming and Verification IN0003 Repeat 31.03.21 413 331 326
19 Advanced Topics of Software Engineering IN2309 Repeat 06.04.21 81 51 47
20 Einführung in die Rechnerarchitektur IN0004 Repeat 06.04.21 337 261 243

Sum 6,362 5,383 5,187

Table 6.14: Overview of all exams on Artemis in the winter term 2020/21 (WS2021)

The administrators of one external university, the University of Bonn, have reported
using Artemis for four online exams. Table 6.15 shows how many students have been
registered and have submitted.

Exam Type Registered Submitted
1 Exam 1.1 Final 227 202
2 Exam 1.2 Final 32 25
3 Exam 2.1 Repeat 99 76
4 Exam 2.2 Repeat 27 10

Sum 385 313

Table 6.15: Exams in the University of Bonn

The administrators of external universities reported that Artemis was perceived well
by the instructors and students. Therefore, they plan to keep using it in the subsequent
semesters.

84

6.2 Results

We performed several evaluations in EIST, POM, PSE, and SEECx. We summarize
the most important evaluations and results here. More detailed evaluations and results
can be found in the individual publications in Chapter 8 which are cited in the relevant
subsections.

Table 6.16 shows that the three university courses POM, EIST, and PSE received
very good grades in the standardized evaluations performed by the student council. The
average grades of other large university courses with traditional teaching approaches are
typically lower between 2.5 and 3.0.

Course Title Short Semester Course Grade Instructor Grade
1 Project Organization and Management POM SS17 1.7 1.6
2 Introduction to Software Engineering EIST SS19 1.9 1.6
3 Patterns in Software Engineering PSE WS20/21 1.4 1.2

Table 6.16: Overview of the grades in the evaluations in the three courses based on interactive learning

Students appreciate the interactivity of the courses, the mix between theory and ex-
ercises, and the possibility of receiving a bonus for the final exam. In the free-text
comments, many students stated the following or similar comments:

• “I think Artemis is a very good and helpful tool.”
• “Really a great course. I think you are doing really well! Especially the interactive

exercises on Artemis, where you can already collect points for the exam, encourage
you to learn continuously! In my opinion, the best course at TUM by far.”

• “Best course so far in master regarding practical relevance.”
• “Best lecture in the Informatics faculty.”

The following subsections are structured according to the hypotheses stated in Chap-
ter 1. We describe the experiments and results for four of the five hypotheses. While the
implementation of adaptive learning has started in Artemis, we did not use it in courses
yet and have therefore not evaluated H5. It will be part of future work.

6.2.1 H1: Scalability

The use of Artemis in very large university courses with up to 2,000 students and very
large exams with more than 1,500 participants has shown that interactive learning is
scalable. For example, we have reported on multiple interactive modeling exercises during
lectures in the course EIST 2019 with more than 1,000 participants in [KvFRB20]. In
the course EIST 2021, there have been up to 1,673 simultaneous participants in the
offered in-class exercises.

The deployment with multi-server nodes for horizontal scaling, as shown in Figure 5.28,
allows to scale the approach technically. In addition, we have shown in multiple case
studies that the teaching philosophy interactive learning is applicable to very large au-
diences and improves the interactivity of lecture-based courses significantly. By using

85

Artemis, instructors can interact with each student on an individual level, even in large-
scale courses.

6.2.2 H2: Engagement

Figure 6.1 shows the participants per lecture in a traditional course compared to the
participants per lecture in a subsequent instance of the same course one year later, when
the course was based on interactive learning as published in [KSBB17]. The participation
rate increased significantly by 165 %, from 17 % in the last four lectures of the traditional
course to 46 % in course’s last four lectures based on interactive learning [KSBB17].

Habilitation | Stephan Krusche | Interactive learning - A Scalable and Adaptive Learning Approach for Large Courses

H2: Engagement

20

0

100

200

300

400

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15

63716244
87109123

222

104

199

103
149

192
125

199

Participating students per lecture in POM 2014

Registered students: 345 58% 36% 56% 43% 30% 58% 30% 64% 36% 32% 25% 13% 18% 21% 18%

0

100

200

300

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

112128143160149
183180191196173154

Participating students per lecture in POM 2015

Registered students: 294
52% 59% 67% 65% 61% 62% 51% 54% 49% 44% 38%

Lectures

Traditional course

Course with  
interactive learning

~17% Participation

~46% Participation

Lectures

Increase
by 165%

[KSBB17]Figure 6.1: Participation in a traditional course (top) and a course based on interactive learning
(bottom) with a 165 % increase in the last four lectures.

We observed similar changes in the other courses, but due to the lack of participation
numbers before the introduction of interactive learning, we have not compared them.
This means that the students are more motivated to participate in lectures and engage
with the content and exercises in courses based on interactive learning.

We tried to measure the students’ motivation in additional studies with pre-tests
and online questionnaires in the course POM. We wanted to use regression analysis
to find correlations between participation, motivation, and students’ learning outcome.
However, we faced significant challenges because we could not control the different
variables that influence the students’ engagement in the actual course (field study), and
there have been too many different situations that led to outliers.

The sample size of students who participated in the pre-test, the online questionnaires,
and the post-test (the final exam) was below 50 % and did not represent the whole
course population. For example, some students, e.g., did not seriously participate in
the final exam because the course was elective, which led to a negative learning gain
(delta between post-test and pre-test). Other students were not satisfied with their
performance during the exam and handed in early or crossed out their solutions. The
variance in the measured motivation in the online questionnaires was very low (between
70 % and 100 %) because students typically only participate in voluntary questionnaires
if they are motivated and tend to overestimate their motivation. The conclusion was

86

that the course was too heterogeneous. There were too many issues in the evaluation to
find anything meaningful. Therefore, we used different evaluations with fewer variables.

6.2.3 H3: Learning Outcome

We conducted quantitative evaluations to investigate the learning outcome in three
university courses POM, EIST, and PSE. The quantitative measurement focused on the
relationship between exercise performance and the final exam score of the students. We
calculated the exercise points in the courses for each participating student and correlated
them with the final exam grade. We grouped the students after the relative exercise
points into five categories (0 %-20 %, 20 %-40 %, 40 %-60 %, 60 %-80 %, 80 %-10 %),
calculated the final exam score for each category and computed the correlation using
a χ2 test. Details of the concrete methodology for the POM and PSE course can be
found in [KSBB17].

Figure 6.2 shows the correlation between exercise performance (x) and average exam
score (y) in three different courses POM, EIST, and PSE. The average score in the exam
without a bonus significantly increases from left to right.

Habilitation | Stephan Krusche | Interactive learning - A Scalable and Adaptive Learning Approach for Large Courses

H3: Learning outcome

21

40 %

50 %

60 %

70 %

63 %
61 %

57 %
55 %

46 %

65 %

55 %

49 %

41 %

36 %

61 %
59 %

53 %

41 %

36 %

POM EIST PSE

Exercise performance

20 % 40 % 60 % 80 % 100 %0 %

Average exam score (without bonus)

Strong correlation between exercise performance (x) and average exam score (y)

[KSBB17]

Course POM EIST PSE
Participants 294 1,128 324
χ2 (0,99;16) 83 547 48

p 5.8e-11 2.2e-16 4.7e-05

Cramer V 0,265 0,348 0,192
Pearson C 0,468 0,571 0,359

Figure 6.2: Correlation between exercise performance (x-axis) and average exam score (y-axis) in three
different courses

The results show a correlation between two variables but do not state anything about
a causal relationship because not all the variables such as motivation and students’
existing knowledge have been measured. It could, e.g., be that motivation has a stronger
influence on the exam score and that motivated students also participate more often in
exercises. The results only indicate that higher exercise performance is related to a
higher average exam score. However, online questionnaires in these courses confirm the
findings [KSBB17].

Table 6.17 shows the details of the χ2 test of the course POM with 294 students who
completed the exam. 75 students had an exercise performance between 0 % and 20 %.
They reached an average exam score of 36 %, corresponding to a grade point average of

87

3.9 (sufficient). Thus, 56 % of those students passed the exam, while 44 % failed. Nine
students were in the highest category with an exercise performance between 80 % and
100 %, reaching a grade point average of 2.4 (good to satisfactory) and 1.4 (very good
to good), including the bonus. All nine students passed the exam. The data shows a
moderate correlation.

Exercise
performance

Students Average
exam score

GPA GPA
with bonus

Passed Failed

0 % - 20 % 75 (26 %) 36 % 3.9 3.9 56 % 44 %
20 % - 40 % 66 (22 %) 41 % 3.6 3.4 73 % 27 %
40 % - 60 % 88 (30 %) 53 % 2.9 2.3 90 % 10 %
60 % - 80 % 56 (19 %) 59 % 2.5 1.7 98 % 2 %
80 % - 100 % 9 (3 %) 61 % 2.4 1.4 100 % 0 %

Total 294 47 % 3.2 2.8 79 % 21 %

Table 6.17: Correlation details in the course POM (GPA = grade point average, in Germany, lower
grades are better)

Table 6.18 shows the details of the χ2 test of the course EIST with 1,128 students
who completed the exam. 223 students had an exercise performance between 0 % and
20 %. They reached an average exam score of 36 %, which led to a grade point average
of 4.2 (sufficient). Only 44 % of these students passed the exam, 56 % failed it. On the
other range of the table, 379 students had a high exercise performance between 80 %
and 100 %. They had an average exam score of 65 %, corresponding to a grade point
average of 2.5 (good to satisfactory). The grade point average with a bonus was 1.6
(very good to good). With 98 %, almost all students passed the exam, and only 2 % did
not pass. This course EIST showed the highest correlation between exercise performance
and average exam score.

Exercise
performance

Students Average
exam score

GPA GPA
with bonus

Passed Failed

0 % - 20 % 223 (20 %) 36 % 4.2 4.2 44 % 56 %
20 % - 40 % 108 (10 %) 41 % 3.9 3.8 63 % 37 %
40 % - 60 % 111 (10 %) 49 % 3.5 3.2 75 % 25 %
60 % - 80 % 307 (27 %) 55 % 3.1 2.4 93 % 7 %
80 % - 100 % 379 (34 %) 65 % 2.5 1.6 98 % 2 %

Total 1,128 53 % 3.2 2.7 80 % 20 %

Table 6.18: Correlation details in the course EIST (GPA = grade point average, in Germany, lower
grades are better)

Table 6.19 shows the details of the χ2 test of the course PSE with 324 students who
completed the exam. 146 students (45 %) had an exercise performance between 0 % and
20 %. We assume the following reasons for this: (1) PSE is an elective course mostly for

88

master students or advanced bachelor students who typically work as working students
besides the company. Not all the students have enough time to work on exercises. (2)
In the observed instance of PSE in WS2015/16, the instructors did not offer a bonus to
improve the exam grade. (3) Most exercises in PSE are programming exercises. Students
knew that such exercises could not be included in the paper-based exam. Therefore, the
motivation to participate was low. (4) Students knew that the course offers a relatively
easy exam focusing on knowledge instead of the application. In total, 90 % of the
students passed the exam.

81 students had an exercise performance between 20 % and 40 % and scored signif-
icantly better than the students in the last category. They received an average exam
score of 55 % or a grade point average of 2.5 (good to sufficient). All 38 students with
an exercise performance between 0 % and 20 %, and all 16 students with more than
80 % passed the exam. However, the average score and grade point average did not
significantly improve compared to the students in the lower exercise performance cate-
gories. PSE showed the weakest correlation between exercise performance and average
exam scores among the analyzed courses. However, the correlation is still considered
moderate.

Exercise
performance

Students Avgerage
exam score

GPA Passed Failed

0 % - 20 % 146 (45 %) 46 % 3.1 81 % 19 %
20 % - 40 % 81 (25 %) 55 % 2.5 96 % 4 %
40 % - 60 % 43 (13 %) 58 % 2.3 95 % 5 %
60 % - 80 % 38 (12 %) 61 % 2.1 100 % 0 %
80 % - 100 % 16 (5 %) 63 % 2.0 100 % 0 %

Total 324 54 % 2.6 90 % 10 %

Table 6.19: Correlation details in the course PSE (GPA = grade point average, in Germany, lower
grades are better)

Table 6.20 shows the statistical values for the correlation shown in Figure 6.2. The χ2

are all highly significant with very small p-values. The computed values for CramerV
and the adjusted contingency coefficient show a moderate correlation between the two
values for POM and PSE [Cra46]. They show a higher correlation for EIST, which also
had the highest amount of participants.

Course POM EIST PSE
Participants 294 1, 128 324
χ2(0.99; 16) 83 547 48

p 5.8e−11 2.2e−16 4.7e−05

CramerV 0.265 0.348 0.192
Adjusted contingency coefficient 0.523 0.639 0.402

Table 6.20: Statistical values of the correlation between exercise performance and average exam score

89

To further analyze the learning outcome, we carried out a quasi-experiment with
post-testing of two student groups, i.e., students who took EIST in 2018 and students
who took EIST in 2019, by comparing their scores in the modeling tasks of the final
exam [KvFRB20]. Both course instances in 2018 and 2019 had the same learning goals,
the same course schedule with the same content, and the same exercise structure ex-
cept for modeling exercises: In 2018, EIST did not use the interactive learning method
for modeling exercises and instead relied on practicing modeling only in homework. In
2019, EIST used the interactive learning method and introduced in-class modeling ex-
ercises. Thus, in terms of the quasi-experiment, the interactive learning method is the
intervention. Apart from that, there were no substantial differences in other variables.

The control group is comprised of the 2018 students, the experimental group of the
2019 students. We did not execute a pre-test. We assumed that students from both
groups had similar knowledge regarding modeling before taking part in the EIST course,
mainly because most of both student groups were second-semester bachelor students,
with both groups following the same curriculum. In both years, the course was attended
by over 1000 students. Thus, a normal distribution of the results can be assumed. Both
exams included five similar modeling tasks:

1. Functional model: Create a UML use case diagram based on a given problem
statement (easy)

2. Structural model: Create an analysis object model using a UML class diagram
based on a given problem statement (medium)

3. Dynamic model: Create an UML activity diagram (2018) / UML communication
diagram (2019) based on a given problem statement (medium)

4. Architecture: Create a UML communication diagram of an architectural style
(2018, medium) / model the architecture based on a given problem statement
using a UML component diagram (2019, hard)

5. Model refactoring: Analyze an existing model, propose a model refactoring and
explain the reasoning (easy)

In the post-test, we compared these five modeling assignments in two-sample one-
tailed t-tests to evaluate whether the 2019 students performed significantly better than
the 2018 students. For all model tasks, the null hypothesis is that the 2019 students
performed less or equal than the 2018 group with a significance level of α = 0.01.
1128 students completed the exam in 2018, 1225 completed the exam in 2019. We
calculated the average score and standard deviation as relative values to make the results
comparable (two tasks differed by one point).

Figure 6.3 shows the average scores per exercise and improvements between the ex-
ercises in the 2018 exam with 1,128 participants (orange, above) and the 2019 exam
with 1,125 participants (blue, below). Each exam assignment included a UML modeling
task. The 2018 average scores (orange, above) correspond to the control group with-
out interventions, the 2019 average scores (blue, below) correspond to the experimental
group with the interactive learning intervention.

Except for the exercise about refactoring, where students received 4 % fewer points on
average in 2019 (78 %) than in 2018 (81 %), the students performed better in the SE1

90

78 %

25 %

54 %

55 %

87 %

81 %

16 %

52 %

29 %

69 %

2018 exam (n=1128) 2019 exam (n=1225)

1) Functional model

2) Structural model

3) Dynamic model

4) Architecture model

5) Model refactoring

Improvement: 26 % (p = 2.2e-16, 𝛼 = 0.01)

Improvement: 87 % (p = 2.2e-16, 𝛼 = 0.01)

Improvement: 55 % (p = 6.4e-15, 𝛼 = 0.01)

Figure 6.3: Average score of five similar modeling assignments in the 2018 exam vs. the 2019 exam.
In three of the five assignments, the average score significantly increased by up to 87 %.

2019 exam than in the 2018 exam in the analyzed modeling tasks. For the functional
model, the average score is 87 %, 26 % higher than in the 2018 exam, where students
received 69 % of available points on average. In the structural model, students received
55 % of the points on average, 87 % more than in 2018, where they received 29 %
on average. The results for the dynamic model are 4 % higher (54 %) than in 2018
(52 %). The average score of the architecture exercise is 55 % higher in 2019, with
25 % compared to 16 % in 2018.

Model x2018 x2019 σ2018 σ2019 p
Functional 0,689 0,867 0,334 0,237 2,2e-16

Structural 0,293 0,549 0,265 0,310 2,2e-16

Dynamic 0,519 0,538 0,327 0,365 0,09
Architecture 0,161 0,249 0,273 0,278 6,4e-15

Refactoring 0,812 0,776 0,281 0,208 0,99

n2018 = 1128, n2019 = 1225 α = 0, 01

Table 6.21: Statistical values of the t-tests of the EIST 2018 and EIST 2019 results underline that
the 2019 students were significantly better for functional, structural, and architecture models.

To evaluate the significance of the results, we performed a two-sample one-tailed t-
test with a significance level of α = 0.01. The results of the t-tests per exercise are
depicted in Table 6.21. If the p-value for the exercise was below alpha, we rejected the
null hypothesis and considered the results from 2019 as significantly better than 2018.
For the functional and structural models, we calculated a p-value of 2,2e-16 and for the
architecture model a p-value of 6,4e-15, which means that students were significantly
better in the 2019 exam for the same model type in 2018. For the dynamic model, we
calculated a p-value of 0,09. For the refactoring, the p-value was 0,99. This means that
the 2019 results were not significantly better than in 2018.

Additionally, we performed an online questionnaire in EIST 2019 with 954 participants
(response rate: 68 %). The findings of the questionnaire can be found in [KvFRB20].

91

They support the findings of the quasi-experiment and let us conclude that interac-
tive learning improves students’ learning outcomes. This is also based on the higher
engagement caused by interactive learning, as found in H3.

6.2.4 H4: Grading Effort and Feedback Quality

In addition to the engagement and learning outcome, we also investigated how the grad-
ing effort and feedback quality change using Artemis. Due to the automatic assessment
of programming and quiz exercises, the effort for those exercises was significantly re-
duced. The gained time can be spent to improve the wording of the quiz questions and
to design test cases with valuable feedback.

For modeling and text exercises, the assessment cannot be fully automated. Artemis
implements a semi-automatic assessment approach based on supervised machine learn-
ing. We wanted to know how much grading effort can be reduced and how this affects
the quality and consistency of the feedback. Instructors activated the semi-automatic
assessment approach in several exercises on Artemis. During the assessment process,
Artemis tacked whether feedback was created manually or automatically proposed. A
third possibility was that proposed feedback was automatically adapted, e.g., to fix typos,
extend it with additional information, or change it because it was wrong.

We retrieved the classification of the reviews from the Artemis database using SQL
queries. Multiple researchers verified the correctness. More details about the results for
text exercises can be found in [BKB21]. Figure 6.4 shows six exemplary exercises: three
modeling exercises and three text exercises together with the grading effort divided into
manual effort (orange, right) and automatic effort (green, left). Feedback which was
proposed automatically and then adjusted manually is shown in the middle in yellow (also
compare the related activities “assess automatically”, “assess manually”, and “adjust
assessment” in Figure 5.11).

Model 1 (Reverse engineer tables, n=887)

Model 2 (Build & release workflow, n=877)

Model 3 (Analysis object model, n=836)

Text 1 (Requirements, exam, n=446)

Text 2 (Use cases, exam, n=425)

Text 3 (Unified process and Scrum, n=959) 65 %

50 %

30 %

25 %

15 %

17 %

5 %

8 %

14 %

10 %

5 %

7 %

30 %

42 %

56 %

65 %

80 %

76 %

Automatic Adjusted Manual

Figure 6.4: The automatic and manual assessment distribution for six exemplary text and modeling
exercises that have used the semi-automatic assessment workflows based on supervised machine learning.
The rate of automatic (green, left), adjusted (yellow, middle), and manual (orang, right) assessments
is shown. Depending on the exercise type, the automatic rate varies between 30 % and 80 %. Adjusted
feedback includes extensions with additional explanations and changes due to wrongly assigned feedback.

The results show that the semi-automatic assessment workflows leads to less effort
manual effort. Up to 80 % of the feedback could be proposed automatically for modeling
exercises, up to 65 % for text exercises. The adjustment rate is relatively low for most

92

exercises. A manual inspection revealed that many adjustments only included typo fixes
and extensions.

To measure the quality of the feedback, we analyzed the number of complaints about
these exercises and compared them with exercises that have been graded entirely man-
ually. We found that, on average, the complaints have been lower. However, this result
should be taken with caution, as several aspects may influence whether or not a student
complains.

Artemis allows students to rate the feedback. The instructors asked students to rate
their received feedback on a 5-star scale. The students rated a total of 396 reviews
out of 10,240 total assessments [BKB21]. Artemis presents the rating input underneath
the feedback and asks, “How useful is the feedback for you?” In the study, 85 % of
the ratings were either 1-star or 5-star ratings. Students with semi-automatic feedback
were more likely to give a 5-star rating (72 %) when compared to students who received
manual feedback (62 %). On the same page, semi-automatic feedback received 1-star
ratings less often (14 %) than manual feedback (25 %). On average, students giving a
5-star rating (92 % and 89 %, respectively) had better scores than students giving 1-star
ratings (69 % and 66 %, respectively).

Comparing purely manual assessments vs. semi-automatic assessments shows anec-
dotal evidence that the perceived quality has at least the same quality or is even higher
for semi-automatic assessments [BKB21]. However, this also has to be analyzed fur-
ther because the number of ratings was relatively low and influenced by the student’s
satisfaction with the score.

In the end, the automatic assessments are based on the manual input of the reviewers.
If the manual reviews have lousy quality, Artemis cannot magically produce high-quality
automatic feedback proposals. Therefore, it is also essential to apply reviewer training
and regularly assess the average rating and the number of complaints of individual
reviewers.

From the results in the evaluations, we can conclude that semi-automatic assessment
based on supervised machine learning can significantly reduce the grading effort while
increasing the perceived quality, which supports H4.

6.3 Threats to Validity

The evaluations and findings shown in this habilitation and the accompanying publica-
tions have limitations that we want to summarize in the following.

Internal validity

The evaluations do not measure all variables that could lead to higher engagement and
an improved learning outcome. For example, existing knowledge, intrinsic motivation,
the exact wording of exercises and exam questions, and other external factors might
influence how students perform a task in an exam and how much they learn. In addition,

93

exam results are only indications of the learning outcome of students. For example,
a good exam result does not necessarily mean that the student has understood the
concepts.

The internal validity of the results in the evaluations might therefore be limited
[RHRR12]. However, the exercises and exam questions are constructively aligned and
focus on higher cognitive skills, which are typically perceived as more challenging to
receive high scores without the obtained skills. Online questionnaires and data analysis
also support the findings.

The author of this habilitation and co-authors of the associated publications have been
involved in organizing several courses and might have influenced the empirical evaluation.
However, they tried to separate the research and instructor perspectives.

External validity

EIST, PSE, POM, and SEECx are specific examples of courses at the Technical University
of Munich. The results might not be generalizable to other institutions’ courses due
to different study programs and study regulations. However, when discussing Artemis
with instructors of other universities, we received much positive feedback. Thus, the
first observations confirm these results in other environments. However, more thorough
evaluations are necessary to confirm the results.

EIST is a mandatory course with UML modeling as a learning goal offered to many
students, who may differ in their field of studies and their previous experiences. We
assume that the interactive learning method can be successfully applied in other software
engineering courses and is generalizable. However, other study programs and regulations
might make it challenging to adopt the approach.

Construct validity

The validity of the used questionnaires might be affected by the wording of the questions
or because students like getting feedback, which does not necessarily improve their
learning outcome. We carefully designed the questions, used Likert scales as answer
options, and asked multiple researchers to review the wording to limit the influence.
The measures in the quantitative experiments and the data analysis of the experiments
support the findings of the questionnaires.

The validity of ratings might be affected by the question’s wording and by the score
that the students received. Students with a higher score are more satisfied and less
likely to complain about the quality of the feedback. However, a good rating does not
necessarily mean that the feedback had a good quality. Another limitation could be
the fact that students like the approach of getting feedback. Ratings only measure the
perceived quality, which is subjective. We can only infer the quality based on the ratings.
Therefore, we consider the findings on the quality of the feedback in H4 as anecdotal
evidence. It has to be investigated in more detail in the future.

94

Chapter 7

Conclusion

“Learn continually - there’s always ‘one more thing’ to learn!”
— Steve Jobs

With interactive learning and Artemis, we have shown that individual interaction be-
tween instructors and students is possible even in larger courses. We established a
teaching philosophy that allows instructors to teach small pieces of content in short,
iterative, and agile cycles. Students practice and reflect on the taught concepts in real-
time based on individual feedback. In addition, interactive learning encourages creativity
and does not limit students to sample solutions. In this chapter, we summarize the
contributions of this habilitation and propose future work.

7.1 Contributions

This habilitation includes five significant contributions.

1. The teaching philosophy interactive learning
2. The teaching platform Artemis
3. Application of both in multiple courses and case studies
4. Dissemination of both in other universities
5. Empirical evaluations based on five hypotheses

Interactive learning is a scalable and adaptive teaching philosophy based on con-
structive alignment. Instructors can embed it into the course syllabus It puts the in-
teraction with students into the core of the educational activities. It integrates aspects
of team-based learning and creativity to stimulate problem-solving skills and soft skills.
Instructors integrate exercises into lectures to activate students and to increase their en-
gagement with the taught concepts. Individual feedback and reflection allow to prevent
misconceptions and improve the competencies of the students.

Artemis is a teaching platform based on interactive learning. It integrates many
modern features, particularly the automatic assessment of programming and quiz ex-
ercises that provide immediate feedback to students and allow them to iteratively and

95

incrementally improve their knowledge. It uses supervised machine learning to enable
a semi-automatic assessment approach that reduces grading and increases consistency,
quality, and fairness. An integrated training process for reviewers based on example
submissions and example assessments ensures that reviewers have enough knowledge to
properly assess submissions and provide feedback. Double-blind grading improves the
overall fairness in larger courses and prevents unconscious bias due to personal rela-
tionships or other reasons, enhancing the equity, diversity, and inclusion of the whole
teaching platform. Structured grading instructions that can be dragged and dropped
include predefined and standardized feedback, making it easier and faster to provide
feedback. Ratings and a leaderboard motivate the reviewers to participate in the grad-
ing process and provide high-quality feedback, valuable for the learning process.

Artemis includes an exam mode that allows instructors to use the same activities as
in the course before (constructive alignment). Team-based exercises enable students to
work with peers and to improve their soft skills. Lecture units can embed live streams,
recordings, exercises, attachments, and text explanations next to the lecture content.
Questions and answers directly next to an activity allow students to capture the context
of their inquiries, help tutors or other students to answer these questions more efficiently,
and prevent duplications.

Application: We applied interactive learning and Artemis in multiple instances of
large courses as case studies in the context of computer science, in particular software
engineering. Up to 2,100 active students participated in the 2nd-semester bachelor course
Introduction to Software Engineering. The course Project Organization and Management
included up to 400 active students in a heterogeneous distribution, including bachelor
students who had to take the course and master students who participated voluntarily.

Patterns in Software Engineering attracted up to 600 active students as a purely
elective course for bachelor and master students. We offered the massive open online
course Software Engineering Essentials multiple times on the edX platform and reached
many worldwide students. In the university evaluations, students consistently rated these
courses with excellent grades. Many reported that these were the best courses in their
studies and appreciate the interactive style with the individual interaction and feedback.

Dissemination: Another contribution is the use of Artemis by other instructors and
universities. Multiple instructors at the Technical University of Munich have chosen to
use Artemis after students have asked them. In addition, we helped educators from
other German and Austrian universities to set up Artemis in their environment. As a
result, 63 courses across ten universities used Artemis and interactive learning to benefit
from automatic assessments and individual feedback. More than 30,000 students used
Artemis in these courses. In addition, 8,500 students took their exams on Artemis in 31
online examinations with realistic exercises based on constructive alignment.

Empirical evaluations: We empirically evaluated interactive learning and Artemis in
the courses mentioned above as case studies based on five hypotheses regarding scala-
bility (H1), engagement (H2), learning outcome (H3), and grading effort and feedback
quality (H4). We started with the implementation of adaptability (H5) but could not im-
plement all objectives and evaluate it within this habilitation scientifically. The analysis
of the results shows promising findings:

96

1. Interactive learning is scalable to courses with 1,500 participants submitting their
exercise solutions simultaneously (H1).

2. It increased the student engagement in the last four lectures of one course by
165 % compared to a previous traditional instance of the same course (H2). More
students are motivated to participate in exercises, and more students complete the
exercises.

3. An analysis between the exercise performance and the exam results shows moderate
to high correlations in the three analyzed courses (H3).

Combining these results means that more students will receive better results in the
examination. Therefore, as the examinations followed the constructive alignment ap-
proach, we can conclude that interactive learning improves the learning outcome.

Another evaluation found that interactive learning improved students’ learning out-
comes in modeling exercises in one course by up to 87 % when comparing the exam
results with the previous course without interactive learning (H3). In addition, the semi-
automatic grading process in Artemis reduced the grading effort by up to 80 % in text
and modeling exercises (H4).

7.2 Future Work

Future research directions include integrating learning analytics to let students reflect on
their performance and allow instructors to identify whether students have understood
specific topics. Instructors could use the information to identify knowledge gaps and
misunderstandings of the students. They could clarify those issues in upcoming lectures
or announcements. Students can use learning analytics to identify the competencies in
which they still have deficiencies.

Artemis will provide instructors with the possibility to explicitly model the intended
acquisition of competencies (learning goals) of a course and link it to the interventions of
the learning platform (e.g., watching videos, reading texts, answering questions, solving
tasks). Artemis can use this information to create learning paths. For example, stu-
dents can voluntarily activate a learning assistant that analyzes their interactions with
the learning platform (indirect conclusions through learning analytics and direct findings
through analysis of the answers). Based on this, the learning assistant gives students
feedback on their learning progress. The instructor also receives feedback on the progress
of the students and the effectiveness of the interventions offered. Students and instruc-
tors can use this information to understand better which learning steps and activities are
beneficial. This feedback creates control loops to improve and supplement teaching and
learning, make the processes more adaptive, and individualize the learning experience.

Learning paths and exercises with different difficulty levels would build the first step
towards adaptive learning. Artemis could create a student profile based on pre-tests (e.g.,
quizzes) and previously completed courses. User profiles could enable the automatic
configuration of individual paths through the course content based on the unique skills
of one student. It could also help students to deepen the content that is required as
a prerequisite for a course. Artemis would then automatically propose the concepts

97

and exercises in which the students need to practice. Instructors could create multiple
versions of exercises with different difficulty levels (e.g., easy, medium, difficult). Artemis
could propose more straightforward exercises for weaker students and more challenging
exercises for stronger students to improve their motivation. However, one issue would be
the influence of the assessment on the students’ grades because students could consider
exercises with different difficulty levels unfair.

Further improvements in the semi-automatic assessment of modeling and textual exer-
cises would include reusing knowledge of existing exercises from previous course instances
or other instructors of other universities. This knowledge exchange would also involve
a synchronization between multiple universities in an exercise repository. One chal-
lenge then would be to store the knowledge about correct and wrong solution aspects
in exchangeable graphs. Another one would be how much knowledge would stay valid
when instructors include minor variations, e.g., in the formulation or the used problem
statement.

Artemis includes team-based exercises. However, we did not have the chance to study
the effect of such exercises on the technical and soft skills of the students using Artemis.
An empirical evaluation of the benefits of team-based exercises in larger courses would
be interesting, particularly when it comes to the diverse background of students and the
collaboration between team members. For example, would it make sense to force all team
members to contribute to the team solution towards an exercise, or could the students
circumvent such rules? How is the influence of pair programming or pair modeling in
such cases?

From the technical perspective, it is desirable to migrate Artemis from a monolithic ar-
chitecture to microservices and micro frontends, allowing a more lightweight and flexible
configuration during the deployment. Microservices are also known as the microservice
architectural style. They structure an application as a collection of services that are eas-
ier to maintain and test, loosely coupled, and independently deployable [New15]. Thus,
the microservice architecture enables the rapid, frequent and reliable delivery of large,
complex applications.

Micro frontends deliver the same improved flexibility and maintainability to browser-
based client applications that microservices provide for server applications [Gee20]. By
adopting the micro frontends approach and designing the Artemis client application as
a system of features, we can deliver faster feature development and easier upgrades.
Figure 7.1 shows an overview of the possible decomposition of features into smaller
client applications (i.e., micro frontends) and microservices on the server-side that all
connect to the same database.

Kubernetes clusters could improve the automatic scaling and performance when many
students simultaneously use Artemis’s new microservice-based architecture [VSTK18].
These deployment improvements could further enhance the robustness in situations with
multiple hundreds of submissions simultaneously (e.g., at the end of an online exam with
2,000 participants). They would also simplify the operation of multiple server nodes.
Furthermore, by splitting the features of Artemis into microservices, only the services
that are used often could be started numerous times. One challenge will be synchronizing

98

Figure 7.1: Overview of a potential future Artemis architecture based on microservices and micro
frontends with exemplary features in the client (top) and the server (bottom).

services based on scheduled tasks in the emerging distributed systems architecture to
avoid race conditions and illegal application state.

99

Chapter 8

Publications

“Teaching is more than imparting knowledge, it is inspiring change.”
— William Arthur Ward

This chapter contains a copy of the ten publications of this habilitation in chronological
order. It first summarizes the publication and then includes a reprint of it. Every
publication has been peer-reviewed by at least two expert reviewers of the respective
scientific community. The research presented has been used to refine interactive learning
and Artemis. The four most significant publications are highlighted in blue in Table 8.1.
The last column of the table includes the acceptance rate. Each section of this chapter
shows more details on the respective publication, such as the exact paper type and the
DOI.

Year Type Authors Title Venue Publisher Acc.
Rate

1 2017 Conf S. Krusche, A. Seitz,
J. Börstler, and B. Bruegge

Interactive Learning – Increasing Student
Participation through Shorter Exercise Cycles

ACE ACM 39%

2 2017 WS S. Krusche, N. von Frankenberg,
and S. Afifi

Experiences of a Software Engineering
Course based on Interactive Learning

SEUH CEUR 75%

3 2017 Conf S. Krusche, B. Bruegge, I. Camilleri,
K. Krinkin, A. Seitz, and C. Wöbker

Chaordic Learning: A Case Study ICSE IEEE 24%

4 2018 Conf S. Krusche and A. Seitz ArTEMiS - An Automatic Assessment
Management System for Interactive Learning

SIGCSE ACM 29%

5 2018 Jour S. Krusche, D. Dzvonyar,
H. Xu and B. Bruegge

Software Theater — Teaching Demo
Oriented Prototyping

TOCE ACM 12%

6 2019 Conf S. Krusche and A. Seitz Increasing the Interactivity in Software
Engineering MOOCs - A Case Study

CSEE&T ScholarSpace 57%

7 2019 WS C. Laß, S. Krusche,
N. von Frankenberg, and B. Bruegge

Stager: Simplifying the Manual Assessment
of Programming Exercises

SEUH CEUR 75%

8 2020 Conf S. Krusche, N. von Frankenberg,
Lara Marie Reimer, and B. Bruegge

An Interactive Learning Method to
Engage Students in Modeling

ICSE ACM 24%

9 2020 Conf J. Bernius, A. Kovaleva,
S. Krusche, and B. Bruegge

Towards the Automation of Grading Textual
Student Submissions to Open-ended Questions

ECSEE ACM 63%

10 2021 Conf J. Bernius, S. Krusche,
and B. Bruegge

A Machine Learning Approach for Suggesting
Feedback in Textual Exercises in Large Courses

L@S ACM 30%

Table 8.1: Overview of the publications this habilitation is based on (Conf = Conference, Jour =
Journal, WS = Workshop, Acc. Rate = Acceptance Rate). The four most significant publications are
highlighted in blue.

100

8.1 Interactive Learning – Increasing Student Partic-
ipation through Shorter Exercise Cycles

This conference paper was an essential milestone in the research for this habilitation.
Interactive learning is based on active learning, experiential learning, and computer-based
learning. It aims to decrease the time between content delivery and content deepening in
large university courses to a few minutes, allowing for flexible and more efficient learning.
In addition, shorter exercise cycles allow students to apply and practice multiple concepts
per teaching unit directly after they first heard about them. An empirical evaluation in
two large courses shows that students’ learning experience and exam grades correlate
with increased participation due to interactive learning. The publication formalized the
learning approach and formed the basis for several subsequent research initiatives. We
further analyzed the correlation to find causal effects between interactive learning as an
intervention, the motivation of the students, and the learning outcome.

Authors S. Krusche, A. Seitz, J. Börstler and B. Bruegge
Conference 19th Australasian Computing Education Conference
Publisher ACM
Pages 10
Type Conference: Full Research Paper
Review Peer Reviewed (3 Reviewers)
Year 2017
Citation [KSBB17]
DOI https://doi.org/10.1145/3013499.3013513

101

https://doi.org/10.1145/3013499.3013513

Interactive Learning – Increasing Student Participation
through Shorter Exercise Cycles

Stephan Krusche
Technische Universität

München
Munich, Germany

krusche@in.tum.de

Andreas Seitz
Technische Universität

München
Munich, Germany

seitz@in.tum.de
Jürgen Börstler

Blekinge Institute of
Technology

Karlskrona, Sweden
jurgen.borstler@bth.se

Bernd Bruegge
Technische Universität

München
Munich, Germany

bruegge@in.tum.de

ABSTRACT
In large classes, there is typically a clear separation between
content delivery in lectures on the one hand and content
deepening in practical exercises on the other hand. This
temporal and spatial separation has several disadvantages.
In particular, it separates students’ hearing about a new
concept from being able to actually practice and apply it,
which may decrease knowledge retention.

To closely integrate lectures and practical exercises, we
propose an approach which we call interactive learning: it is
based on active, computer based and experiential learning,
includes immediate feedback and learning from the reflection
on experience. It decreases the time between content delivery
and content deepening to a few minutes and allows for flexible
and more efficient learning. Shorter exercise cycles allow
students to apply and practice multiple concepts per teaching
unit directly after they first heard about them.

We applied interactive learning in two large software engi-
neering classes with 300 students each and evaluated its use
qualitatively and quantitatively. The students’ participation
increases compared to traditional classes: until the end of
the course, around 50% of the students attend class and
participate in exercises. Our evaluations show that students’
learning experience and exam grades correlate with the in-
creased participation. While educators need more time to
prepare the class and the exercises, they need less time to
review exercise submissions. The overall teaching effort for
instructors and teaching assistants does not increase.

Keywords
Active Learning, Experiential Learning, Feedback, Reflection,
Computing Education, Software Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACE ’17, January 31-February 03, 2017, Geelong, VIC, Australia
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4823-2/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3013499.3013513

1. INTRODUCTION
When teaching large classes with hundreds of students,

there is typically a significant delay between delivery of con-
tent in lectures and deepening and practicing of that content
in follow-up exercises. The delay between lectures and exer-
cises is usually a few days, up to a week (see Figure 1).

Traditional Learning
in large class rooms

Exercise

Delay (week)

Figure 1: Delay between lectures and exercises in
traditional learning in large classrooms

During this time, learners forget content that was discussed
in the lecture. Participation, learning and knowledge reten-
tion might be reduced in both quantity and quality, when
students are not cognitively active during content delivery
and when there is a large time span between the content’s
delivery and actively dealing with it. This might lead to
unnecessary knowledge gaps for the learners, especially if the
interaction between educators and learners is low.

Delay (day)

Computer based Learning
Experiential Learning

Exercise

Figure 2: Reduced delay through the use of com-
puter based and experiential learning

Computer based learning [8] and experiential learning [14]
are approaches to reduce the delay between lectures and
exercises as shown in Figure 2. Computer based learning
supports students’ learning in digital exercises and online
media. Experiential learning creates opportunities to reflect

on experience, a methodology in which educators engage
with students to increase knowledge and develop skills.

Active learning is an educational approach to increase
student involvement and excitement with the subject being
taught by engaging students in activities [3]. Interactive
learning is based on active learning, integrates computer
based learning and experiential learning, immediate feedback
and reflection. It tightens the relationship between content
delivery and problem solving in class by integrating multi-
ple, small units of content delivery and content deepening
through exercises. By combining lectures and exercises into
interactive classes, it reduces the delay to a few minutes (see
Figure 3). Students reflect on the learned content immedi-
ately and increase their knowledge incrementally through
a couple of short cycles covering theory, example, exercise,
solution and reflection. Our hypothesis is that reducing the
delay between lectures and exercises as proposed in interac-
tive learning increases student participation in exercises and
thereby improves the learning experience.

Interactive Learning

delay
(min)

Figure 3: Interactive learning combines lectures and
exercises into interactive classes and further reduces
the delay to minutes

The paper is organized as follows: In Section 2, we describe
the foundations in the areas of experiential and active learn-
ing. Section 3 presents the idea of interactive learning as an
iterative process that combines lectures and exercises into
short cycles. Section 4 shows a case study about two large
software engineering courses, in which we applied interactive
learning. In Section 5, we present the findings of qualitative
and quantitative evaluations in these courses. Section 6 dis-
cusses related work and Section 7 summarizes the paper and
presents the conclusion.

2. FOUNDATIONS
Exercises and examples are important elements in teach-

ing and learning: “[E]xamples appear to play a central role
in the early phases of cognitive skill acquisition” [27]. Just
letting learners solve more problems is, however, not the
most effective way to support learning. Carefully developed
and integrated examples increase the learning outcome more
than just letting learners solve more problems [25, 26]. In
particular, in complex problem spaces, like software develop-
ment, “[l]earners may learn more by solving problems with
the guidance of some examples than solving more problems
without the guidance of examples” [26].

Software engineering is an activity that requires collabo-
ration and practical application of knowledge [29, 24]. Edu-
cators struggle when teaching it in traditional lecture based
environments where activities take place in the front of the
classroom. Lectures are usually similar to broadcasting,
where essential education interactions take place initiated by
the educator with only limited participation on the learners
side. Self-guided learning, personal responsibility, practical

relevance and individualization are important elements of a
great learning experience. Several pedagogic theories have
been developed that include these elements.

Problem based learning is a technique to learn about
a subject through problem solving. Educators facilitate by
supporting, guiding, and monitoring this process [4]. While
working in groups, learners identify what they know, what
they need to know, and how and where to access new infor-
mation that leads to the resolution of the problem.

Cooperative learning is an educational approach which
aims to organize classroom activities into social learning expe-
riences: learners work in groups to complete tasks collectively
towards a common goal [11]. The educators role changes from
giving information to facilitating learners’ learning. Everyone
succeeds when the group succeeds.

Experiential learning is the process of learning from
experience, a methodology in which educators engage with
learners in direct experience to increase knowledge, develop
skills, and clarify values [14]. Aristoteles said: “For the things
we have to learn before we can do them, we learn by doing
them”. John Dewey followed this idea with his statement
that “there is an intimate and necessary relation between the
process of actual experience and education”.

Experiential learning is considered to be more efficient than
passive learning like reading or listening. It is in contrast
to academic learning where students acquire information
through the study of a subject without the necessity for di-
rect experience. The main dimensions of experiential learning
are analysis, initiative, and immersion. Academic learning
promotes the dimensions of constructive learning [28] and
reproductive learning [12]. Both methods instill new knowl-
edge, though academic learning makes use of more abstract
techniques, whereas experiential learning actively involves
the learner in a concrete experience such as an exercise.

Active learning is an educational approach to increase
student involvement and excitement with the subject being
taught [3]. Instead of students acting as receivers of knowl-
edge by passively listening, active learning puts the emphasis
on developing student skills and engaging them in activities
such as small group discussions or a class game. Grabinger
and Dunlop emphasize that authentic contexts encourage
students to take more responsibility and engage students in
learning activities that promote high level thinking processes
[9]. An authentic context in software engineering would
e.g. be the management of a project where students experi-
ence typical activities such as meeting and task management.
Their learning progress is supported and assessed through
realistic tasks such as planning and conducting a meeting or
distributing tasks within the team.

Michael Prince examined the evidence for the effectiveness
of active learning and discussed its common forms [23]. He
concluded that active learning positively influences knowledge
transfer and student performance. Joel Michael reviewed
the literature and found that there is evidence that active
learning improves the learning outcome compared to more
passive approaches [22]. However, certain active learning
approaches are not feasible for large classrooms. It is not
possible to have a group discussion with 300 students in the
same lecture hall. In addition, it is important that instructors
“place a strong emphasis on guidance of the student learning
process” to prevent misconceptions [13].

While the combination of these learning techniques leads to
a more complex experience and to more effort for educators,

it lowers their stress and leads to higher satisfaction [2]. A
Chinese proverb, first mentioned by Confucius and adapted
by Benjamin Franklin describes the underlying philosophy of
experiential and active learning. In recent publications [15]
an extended version of the proverb is mentioned: “Tell me
and I will forget. Show me and I will remember. Involve me
and I will understand. Step back and I will act.”
“Tell me and I will forget” describes that explaining a con-

cept only theoretically does not give learners the possibility
to apply it. “Show me and I will remember” includes the
idea of cognitive apprenticeship: an apprentice observes the
skills of a master who shows how a concept works in practice,
e.g. in a tutorial. Clarifying the thinking process behind the
application of the concept makes it easier for the apprentice
to imitate the behavior [7].
“Involve me and I will understand” includes aspects of ac-

tive learning. Involving learners in the learning process allows
them to apply a concept on their own, possibly in a different
way that fits to their own techniques. It helps learners to un-
derstand a concept together with its application. “Step back
and I will act” refers to self-guided learning, self improvement
and problem based learning. Learners take the responsibility
to solve a certain problem on their own using the concepts
they learned before. This proverb is the foundation of our
teaching approach: interactive learning.

3. INTERACTIVE LEARNING
Interactive learning aims to decrease the cycle time be-

tween teaching a concept and exercising it by combining
lectures and exercises into interactive classes with multiple,
short iterations. Thus, the typical separation between lec-
tures and exercises disappears. We define interactive learning
as follows: Educators teach and exercise small chunks
of content in short cycles and provide immediate
feedback so that learners can reflect on the content
and increase their knowledge incrementally. Interac-
tive learning expects active participation of learners and the
use of computers (laptops, tablets, smartphones) in classes.
Instructors provide guidance during the learning process to
facilitate learning and to prevent misconceptions.

Figure 4 shows the iterative process of interactive learning,
where each iteration consists of five phases:

1. Theory: The educator introduces a new concept and
describes the theory behind it. Learners listen and try
to understand it.

2. Example: The educator provides an example, so learn-
ers can refer the theory to a concrete situation.

3. Exercise: The educator asks the learners to apply the
concept in a short exercise. The learners submit their
solution of the exercise.

4. Solution: The educator provides a sample solution
and explains it to the learners. The educator can also
show some exemplary solutions, submitted by learners
and discuss their strengths and weaknesses to provide
immediate feedback.

5. Reflection: The educator facilitates a discussion about
the theory and the exercise so that the learners reflect
on their first experience with the new concept.

In large education environments with hundreds of learners
who participate in a course at the same time, teaching assis-
tants (TAs) help in the conduct of the exercises. TAs walk
through the classroom, answer questions and provide help

in case problems occur or exercise instructions are unclear.
The evaluation of the submitted solutions can either be au-
tomated using tool support or manually done by the TAs
reviewing the submitted solutions and providing immediate
feedback to the learners. The degree of automation depends
on the exercise type and the format of the solution. The eval-
uation of programming assignments can e.g. be automated
using continuous integration and test cases.

Exercise

Example

Solution

Learner

Reflection

Theory

Figure 4: Interactive learning as iterative process

Interactive learning can be applied in individual exercises
and in team exercises:

Individual exercises

E1 Quizzes with multiple choice questions (automatic eval-
uation through a quiz system)

E2 Interactive tutorials with step by step instructions
(semi-automatic evaluation, degree depends on the ex-
ercise)

E3 Interactive coding challenges to solve programming
assignments (automatic evaluation through test cases)

E4 Interactive modeling exercises (manual evaluation)

Interactive tutorials help students to directly experience a
new concept. They are very detailed and include step-by-step
instructions so that even beginners are able to conduct the
exercise. The instructor conducts the tutorial live in-class so
that students can follow the tutorial on their own computer.
He asks the students several times during a tutorial how
many can follow to synchronize the speed. TAs walk around
and help students with problems. The instructor uploads
slides with detailed screenshots before class, so that students
can look up steps on the slides if they could not follow in the
given time. More experienced students are kept motivated
with optional challenges. Students who miss a class can catch
up the exercise at home.

Team based exercises

E5 Project work that includes communication and col-
laboration aspects (semi-automatic evaluation, degree
depends on the exercise)

Team based exercises also incorporate the concepts of peer
learning and cooperative learning. They repeat topics of
individual exercises to deepen and retain the knowledge by
applying the learned concept in a different setting. Students
have to transfer the knowledge they learned before to the

concrete team situation and have to tailor the concepts. This
facilitates self-guided learning and promotes the idea of self
organization.

4. CASE STUDY
In 2015 and 2016, we applied interactive learning in two

software engineering university courses “Software Engineer-
ing II: Project Organization and Management” (POM) and
“Patterns in Software Engineering” (PSE). In previous in-
stances of these courses, content delivery (theory) and content
deepening (exercises) were separated, i.e. students learned
a concept in the lecture and applied it a week later in a
central exercise session. In POM 2015 and in PSE 2015/16,
we applied interactive learning and combined theory and
exercises into interactive classes. Students learned a concept
theoretically, then immediately applied it in a short exercise
and received feedback about their progress.

4.1 Project Organization and Management
We taught POM in summer 2015 with 294 students. Typ-

ically, between 100 and 200 students attended class and
participated in the exercises. They formed a heterogeneous
group because the course was offered in multiple programs.
Two distinct groups participated: (1) bachelor students in
information science, a few with experience in software engi-
neering, and (2) master students in computer science, some
with existing experience in the taught topics. The challenge
of this heterogeneity was that students completed class ex-
ercises at different rates. To improve this situation, the
exercises included optional tasks specifically for more experi-
enced students. In addition, the students had the opportunity
to solve exercises as homework if they were not able to finish
them in class. Some tasks and exercises were also explicitly
designed as homework.

The module description of POM describes the following
intended learning outcomes. Participants understand the
key concepts of software project management. They are
able to deal with problems such as writing a software project
management plan, initiating and managing a software project
and tailoring a software lifecycle. They are familiar with
risk management, scheduling, planning, quality management,
build management and release management, and can apply
these techniques to solve simple problems. Table 1 shows
the schedule and the content of the lecture.

Week Content

1 Team formation

2 Project organization

3 Software process models

4 Agile methods [18]

5 Prototyping

6 Proposal management

7 Branch & merge management [19]

8 Contracting

9 Continuous integration

10 Continuous delivery [17]

11 Risk and demo management

12 Global project management [21]

13 Project management antipatterns

Table 1: Overview of the course content in POM

Students can earn bonus points for completing exercises
successfully. They can use these bonus points to improve
their final exam mark. If they e.g. earn between 60% and
80% of the total points, their mark in the final exam is im-
proved by one grade. This possibility motivates the students
to participate in the individual and team based exercises.
In POM, we used the exercise types: quizzes (E1), interac-
tive tutorials (E2) and project work (E5), as described in
Section 3.

Interactive Tutorial
Students had to solve individual tasks on their computer.

They cooperated with the instructor, TAs and fellow stu-
dents to solve particular problems. They learned from their
experience in exercises and reflected on the concepts they had
just learned. The instructor conducted four large interactive
tutorials in POM using dedicated tools:

1. Agile Methods (Atlassian JIRA1)
2. Branch and Merge management (Atlassian Bitbucket2)
3. Continuous Integration (Atlassian Bamboo3)
4. Continuous Delivery (HockeyApp4)

In these interactive tutorials, the instructor introduced
concepts and immediately applied them in short exercises.
The students completed the exercises on their own computer
using the mentioned tools in the browser. During each
tutorial, the students either looked at the detailed slides that
were handed out at the beginning of the exercise or watched
how the instructor conducted the exercise on the presentation
computer. In addition, TAs walked through the lecture hall,
helping students by answering questions directly.

Each interactive tutorial consisted of three to five exercises
which were decomposed into smaller tasks. In summary,
the students had to solve between twelve and twenty tasks
in one tutorial. The instructor synchronized the speed of
the tutorial several times by asking students about their
progress and by checking the number of participants and
results in the tools. If more than about 90% were able to
complete a particular tasks, the instructor proceeded to the
next exercise.

As an example, we describe the execution of the two exer-
cises about continuous integration and continuous delivery
based on the release management workflow described by
Krusche et al. [17]. The instructor mapped an exemplary
delivery process for a mobile application to the continuous
integration server that was used in class, Bamboo. To sim-
plify the exercises, each student first forked a preconfigured
source code repository and cloned a preconfigured build plan.
Then, the students adapted and configured the build plan,
fixed existing test cases and wrote additional test cases. A
change in the requirements of the software led to a bug that
was detected by Bamboo during a regression test and fixed
by the students so that all tests passed again at the end of
the exercise and the students could deliver the software to
their fellow students who played the role of test users.

Project Work
In addition to the individual exercises, the students par-

ticipated in a team project (exercise type E5) with five team

1http://www.atlassian.com/software/jira
2http://www.atlassian.com/software/bitbucket
3http://www.atlassian.com/software/bamboo
4http://hockeyapp.net

members, a simplified version of the team projects described
by Bruegge et al. [5]. The goal of the project was that the
students experience the learned concepts in a more realistic
environment. The instructor played the role of the customer
and provided three short problem statements about the devel-
opment of mobile applications. The teams had to choose one
of the problem statements and a development environment
and target platform, either Android, Windows Phone or iOS.

The instructor arranged the students into different teams
according to their self-assessment. The goal was to have
balanced teams with respect to the skill level of the students.
Team based exercises also built on experiential learning tech-
niques. However, they had a stronger focus on problem based
and cooperative learning. Software engineering is a collabo-
rative activity [29], therefore team work is an important skill
students have to learn. The teams used Rugby [18] as agile
and continuous process model with an initial warm-up phase
and five development sprints.

In addition, students only received a vague description of
the exercises that deliberately missed detailed instructions
so that the teams have to think on their own about how to
solve the exercise. This approach follows the principle “Step
back and I will act” of the Chinese Proverb in Section 2.

Students first learned and experienced concepts in indi-
vidual exercises. Then, they applied the knowledge in team
exercises to improve their long term memory. They had to
tailor the concepts to their concrete team situation and had
to agree on different decisions in their team which facilitates
communication, collaboration and conflict handling. In later
classes, students reflected on their team experiences.

4.2 Patterns in Software Engineering
We taught PSE in winter 2015/16 with 324 students. Typ-

ically, between 150 and 250 students attended class and par-
ticipated in the exercises. The course included key concepts
of different types of patterns that can be used during soft-
ware development, in particular design patterns, architectural
patterns, testing patterns, antipatterns, and organizational
patterns. The learning goals are that students understand
patterns as a way to describe reusable knowledge for analysis,
system design, object design and software project manage-
ment activities. Given a problem, they are able to identify
the applicability of a pattern that addresses the problem,
describe the pattern in UML and map it to Java source code.
The course was attended by bachelor and master students
mainly in the field of computer science. Table 2 shows the
schedule and the content of the course.

Week Content

1 Introduction and pattern definition

2 Basic concepts

3, 4, 5 Design patterns

6, 7 Architectural patterns

8, 9 Antipatterns

10, 11 Testing patterns

12 Pattern based reengineering

13 Global software engineering

Table 2: Overview of the course content in PSE

During the 13 classes, we conducted 39 exercises in total:
29 of them were in-class exercises, 10 of them were home-
work. In contrast to POM, we did not conduct any team

exercises (E5) in PSE. We focused on the exercises types:
interactive coding challenge (E3) and interactive modeling
challenges (E4). We also carried out quizzes (E1) and inter-
active tutorials (E2). In the homework exercises, students
further deepened their knowledge. Exercise participation
was optional for the students.

Interactive Coding Challenge
The participants had to write new source code or adjust ex-

isting code, commit their changes to a version control system
which then automatically triggered test cases on a continuous
integration server to verify the given solution. To increase
the extrinsic motivation, the first three students submitting
a correct solution were rewarded by the lecturer in the form
of gummy bears or donuts. In addition, there was a wild-
card winner which was randomly picked and acknowledged
without being among the first three correct submissions.

We applied continuous integration with unit tests to verify
the submitted solutions of the students automatically and
immediately. Coding exercises were distributed with a ver-
sion control system. We used Atlassian Bitbucket as the
repository server and Atlassian Bamboo as the integration
server. The required material for the specific exercise was
provided before the lectures in a repository accessible to all
students. To synchronize the working time on the exercise,
access to the material was secured by a password.

After introducing the theory, explaining the problem and
providing the corresponding password, the students started
to work on the exercise. With this approach, we made sure
that all students started working on the exercise at the same
time and had the same timeframe for solving the problem.
The timeframe to submit the exercise was determined by
the instructors and the elapsed time during the exercise was
visualized on a big stop clock on one of the projectors. Once
the deadline had passed, the instructors provided a sample
solution and discussed it with the students. Winning students
also had the opportunity to explain their solution and why
they came up with this approach. Due to the fact that we
used a version control system and continuous integration,
it was possible to track the participation and validate the
results of the students in real time.

As an example we describe the conduct of an exercise
regarding the state design pattern that we conducted in
lecture 4. After the introduction and explanation of the
state design pattern, the exercise for the students was to
implement a basic remote control for a TV with four states.
The exercise was to apply the state pattern to implement the
transition between the appropriate states. The instructors
provided a standard Java Eclipse project with existing source
code, unrelated to the state pattern itself. The problem was
visualized in a UML state diagram describing the different
state transitions and its limitations.

The instructor set the timeframe to solve this exercise to
15 minutes, released the password and the students started
to work on the exercise. During the work on the exercise,
the TAs helped the students in case there were any questions
regarding the exercise. Students could ask for help by raising
their hand. After 5 minutes, a hint was given to the students
in the form of a class diagram representing the implementa-
tion of the state pattern. In this exercise, 145 students took
part using 145 repositories and 145 automatically configured
build plans. Each submission led to an execution of 20 test
cases, resulting in 2900 test results within 15 minutes. As

the deadline for working on the exercise had lapsed, the
first three correct submissions and the wildcard winner were
honored. The instructors discussed a sample solution with
the students to reflect on the concept of the state pattern.

5. EVALUATION
In both courses, we evaluated the effects of interactive

learning by investigating whether there is a correlation be-
tween exercise participation and the students’ grade in the
final exam, which represents the competence and gained
knowledge of students in the taught topic. In addition, we
conducted an online questionnaire in POM, where we asked
students about their personal opinion on their improvements
in a specific technique and their confidence to apply the
technique in a later situation.

5.1 Study Design
We state the following three hypotheses with respect to

interactive learning:

H1 Participation: Interactive learning increases the par-
ticipation of students in classes.

H2 Improved Learning: Interactive learning leads to an
improved learning experience for students.

H3 Scalability: Interactive learning is scalable to large
classes with 300 students.

We validated the hypotheses with a qualitative evalua-
tion in POM and quantitative evaluations in both courses.
The qualitative evaluation was conducted as an online ques-
tionnaire. We investigated the students’ improvements and
confidence in the techniques that we applied in the individ-
ual and team based exercises. After the end of POM, we
invited 294 students, who completed the final exam of the
course, to participate in the questionnaire. The anonymous
questionnaire consisted of six closed questions, took about
five minutes and was not mandatory for the students.

The first two questions were about personal data, field of
study and degree. The third question asked whether stu-
dents participated in specific individual exercises, the fourth
question asked whether they applied specific techniques in
their team project. The last two questions used a five point
Likert type scale with the answers strongly disagree, disagree,
neutral, agree, strongly agree to measure either negative, neu-
tral or positive responses. The fifth question measured if
students were able to improve their skills in these techniques
and the sixth question measured if students were confident
to apply these six techniques in their next team project.

We conducted the survey in July 2015 and gave students
two weeks to participate in it. We created personalized tokens
and sent them to the students, who completed the exam.
The open source survey tool LimeSurvey5 guarantees that
the answers are still anonymous by strictly separating token
and answer tables in the database. We sent two reminders to
the students who had not yet participate. We combined the
responses of the results into a three point Likert type scale
with positive responses (strongly agree and agree), neutral
and negative responses (strongly disagree and disagree) to
minimize positive and negative outliers.

We conducted two quantitative evaluations to investigate
the learning experiences in both courses. The quantitative

5http://www.limesurvey.org

measurement focused on the relationship between exercise
participation and the final grade of the students. We calcu-
lated the exercise points in POM and the exercise participa-
tion in PSE for each participating student and correlated it
with the final exam grade. We grouped the students after the
relative exercise points / participation into five categories,
calculated the grade point average for each category and
computed the correlation using a χ2 test.

5.2 Findings
We first present the qualitative findings of the online ques-

tionnaire. 223 out of 294 students (76%) participated in
the questionnaire at the end of POM. As described in more
detail in Section 4, the students first learned concepts in
individual exercises conducted in class. Then, they applied
these concepts in team exercises. The questionnaire asked
the students whether they participated in four individual
exercises and whether they applied these four techniques in
their team: agile methods, branch and merge management,
continuous integration and continuous delivery.

The questionnaire included the following two statements
for each of these techniques:

1. Improved: In the exercises, I was able to improve my
skills in the technique

2. Confident: I am confident to apply the technique in
my next team project

In the following, we describe the answers to these state-
ments for students who participated in individual exercises
and who applied the technique in their team.

Figure 5 shows that 85% of the students perceived that
they improved their skills in agile methods and that 88% of
the students were confident to apply agile methods in their
next team project. This result confirms the strong focus of
the exercises on agile methods and shows that students feel
prepared for the management of their next agile project.

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in

agile methods

I am confident to apply
agile methods

in my next team project

2.6%3.1%
9.3%11.9%

88.1%85.1%

Agree Neutral Disagree

Agile methods (3-Likert)

Figure 5: Perceived improvements and confidence
in agile methods in POM

Figure 6 shows that 78% of the students perceived that
they improved their skills in branch and merge management.
87% of the students were confident to apply it in their next
team project. These results show that branch and merge
management have become teachable. Students are able to
handle multiple branches and can deal with merge conflicts.

Figure 7 shows that 76% of the students perceived that
they improved their skills in continuous integration. The

Content
(1) Individual exercise (2) Team based exercise (3) Both exercise types

#
Agree

improved
Agree

confident
#

Agree
improved

Agree
confident

#
Agree

improved
Agree

confident

Agile methods 209 83.7% 87.1% 198 84.8% 88.4% 194 85.1% 88.1%

Branch & merge management 197 75.6% 81.7% 162 75.9% 85.8% 155 78.1% 86.5%

Continuous integration 166 71.7% 73.5% 138 70.3% 73.9% 119 75.6% 76.5%

Continuous delivery 149 71.8% 71.8% 118 73.7% 73.7% 98 77.6% 78.6%

Table 3: Percentage of students who participated in exercises and perceived that they improved their skills
respectively perceived that they are confident to apply the technique in their next project

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in

branch and merge management

I am confident to apply
branch and merge management

in my next team project

4.5%5.2% 9.0%
16.8%

86.5%
78.1%

Agree Neutral Disagree

Branch and merge management (3-Likert)

Figure 6: Perceived improvements and confidence
in branch and merge management in POM

students could experience the benefits of immediate feedback
about integration and test failures after they committed their
changes to the source code repository. 77% feel confident to
apply continuous integration in their next team project.

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in
continuous integration

I am confident to apply
continuous integration

in my next team project

9.2%
4.2%

14.3%
20.2%

76.5%75.6%

Agree Neutral Disagree

Continuous integration (3-Likert)

Figure 7: Perceived improvements and confidence
in continuous integration in POM

Figure 8 shows that 78% of the students perceived that
they improved their skills in continuous delivery. In the
corresponding exercise, they configured continuous delivery
for a mobile application and applied it in their team project as
well. 79% of the students were confident to apply continuous
delivery in their next team project.

In Table 3, we summarize the evaluation results of the
questionnaires for the four techniques. The table shows that
the participation in individual exercises was higher than in

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in

continuous delivery

I am confident to apply
continuous delivery

in my next team project

6.1%4.1%

15.3%18.4%

78.6%77.6%

Agree Neutral Disagree

Continuous delivery (3-Likert)

Figure 8: Perceived improvements and confidence
in continuous delivery in POM

team based exercises. While 209 students (71%) participated
in the individual exercise on agile methods, 198 students
(67%) participated in the team exercise, and 194 students
(66%) in both exercises.

In one of the last exercises about continuous delivery, there
were still 149 students (51%) participating in the individual
exercise, 118 students (40%) in the team exercises and 98
students (33%) in both exercises. The numbers were lower,
because the exercise was more challenging in complexity and
required more effort by the students. Table 3 includes the
following three different filters:

(1) Individual exercise: We considered students who re-
ported that they participated in the individual exercise
of the corresponding technique.

(2) Team based exercise: We considered students who
reported that they applied the concept in their team
project.

(3) Both exercise types: We considered students who re-
ported that they participated in the individual exercises
and who applied the technique in their team. These
are the same results as shown in Figure 5 - Figure 8.

In addition to the qualitative evaluation, we also looked
at attendance rates. Figure 9 shows that the number of
participants per lecture was relatively stable throughout the
POM course in 2015. The number of students decreased
from 61% on average in the first seven weeks of the course to
47% on average in the last five weeks of the course, although
classes started at 8:15 am in the morning and the in-class
quizzes were conducted in the beginning of the class6.

6Some students missed these quizzes as they came late to the
8:15 am classes, so the actual attendance rate was higher.

0

50

100

150

200

250

300

2 3 4 5 6 7 9 10 11 12 13

112128143
160149

183180191196
173

154

Number of students who participated in the in-class quizzes (POM 2015)

LectureTotal participants: 294

52% 59% 67% 65% 61% 62% 51% 54% 49% 44% 38%

Figure 9: Number of participants per lecture in
POM in summer term 2015

The attendance rate in 2015 was higher than in the previous
instance of the course offered in 2014 (compare Figure 10),
when the number of students who visited a lecture dropped
to below 20% on average in the last five weeks of the course7.
The attendance rates in 2014 are more in line with other
courses at our faculty that are taught in a more traditional
way. This indicates that interactive learning might help to
increase the participation of students in classes (H1). The
increase in participation might, however, be a result of other
factors. Further investigations are therefore needed.

0

70

140

210

280

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

63716244
87

109123

222

104

199

103
149

192

125

199

Number of students who participated in class (POM 2014)

LectureTotal participants: 345

58% 36% 56% 43% 30% 58% 30% 64% 36% 32% 25% 13% 18% 21% 18%

Figure 10: Number of participants per lecture in
POM in summer term 2014

We evaluated whether there is a correlation between ex-
ercise participation and the average grade of the students
in the final exam. The students could receive up to 600
bonus points through the participation in quizzes, individual
exercises and team based exercises.

We grouped the 294 students, who completed the exam,
into five categories with equal distances describing their
participation in the exercises, see Table 4 and Table 5. For
instance, the first category in POM contains 75 students
who obtained less than 20% of the exercise points and the
second category contains 66 students who obtained between
20% and 40% of the exercise points. Figure 11 show that
students with lower exercise participation have worse grades
(i.e. higher grades in our grading system) than students with
a higher participation, who have better, i.e. lower, grades.

In fact, students who successfully participated in less than
20% of the exercises have a grade point average (GPA) of
3.9 in POM and a GPA of 3.1 in PSE. Students with more
than 60% have a GPA of 2.5 or better in POM8 and a GPA
of 2.1 or better in PSE.

7Some lectures in 2014, e.g. 1, 3, 6 and 8, were between
12:15 and 13:45 and had higher attendance rates than the
other ones starting at 8:15 am.
8The GPA in Figure 11 and Table 4 does not include bonus
that students could obtain through exercise participation.

1.5

2

2.5

3

3.5

4

2.02.1
2.3

2.5

3.1

2.4
2.5

2.9

3.6

3.9

GPA in POM GPA in PSE

Exercise participation

20 % 40 % 60 % 80 % 100 %0 %

Figure 11: GPA (grade point average) of the final
exam of POM (blue) and PSE (yellow) grouped by
students’ exercise participation. Final exam grades
vary between 1.0 and 5.0 and do not include any
bonuses; lower grades are better.

A χ2 test [1] shows that there is a strong and highly
significant correlation between exercise participation and the
grade in the final exam in POM (χ2 = 82.53; p < 0.0001)
as well as in PSE (χ2 = 48.01; p < 0.0001), see Table 4 and
Table 5. Students who participate more in the exercises tend
to achieve better grades in their final exams. This might
indicate a positive effect of interactive learning (H2).

However, it could also mean that stronger students (with
good grades) tend to participate more in the exercises com-
pared to weaker students (with lower grades). We have no
data from previous courses to evaluate the effects of other
factors such as motivation or previous experience of students
on exercise participation and exam results. Further studies
are therefore needed. From the number of students in our
two case studies, we also conclude that instructors can apply
interactive learning (as implemented in our setting) in large
courses with 300 students, which supports H3.

5.3 Limitations
In our qualitative evaluation in POM in summer 2015,

one threat to the validity is that the personal opinion of
students might not reflect on the real situation, because it
is subjective. Most students were beginners in the taught
concepts and reported about their perceived improvements.
A student without previous knowledge in an area will improve
his knowledge, even if he only learns a limited amount of
concepts. Beginners might not be able to objectively estimate
their improvements in a subject. The confidence to apply a
concept does not necessarily mean that the student is really
able to apply it.

Other variables of the course, such as an open atmosphere
towards feedback, have a positive influence on the evaluation
result. If a student likes interactive exercises, it does not
necessarily mean that he improves his skills. We were not able
to exclude these variables in the evaluations of the case study.
To alleviate these threats, we additionally evaluated the
participation in the exercises and the correlation of students
exercise participation and exam results quantitatively.

In the quantitative measurements, we recognize the fol-
lowing threats to validity. The participation in interactive
exercises might be one reason for the found correlation that
leads to the improvement of the final exam grade, but the

Exercise points (relative) 0 - 20% 20 - 40% 40 - 60% 60 - 80% 80 - 100% All
Number of students with very good grade (1.0 - 1.3) 0 0 8 10 2 20
Number of students with good grade (1.7 - 2.3) 5 11 22 21 3 62
Number of students with satisfactory grade (2.7 - 3.3) 23 21 35 12 2 93
Number of students with sufficient grade (3.7 - 4.0) 14 16 14 12 2 58
Number of students who failed (4.3 - 5.0) 33 18 9 1 0 61
Number of students who completed the exam (Sum) 75 66 88 56 9 294
Grade point average (GPA) without bonus (all students) 3.9 3.6 2.9 2.5 2.4 3.2

Table 4: Correlation between exercise participation and GPA in the final exam in POM: students who
successfully completed more exercises received more exercise points and scored significantly better in the
exam (grades vary between 1.0 and 5.0; a lower grade is better, a higher is worse).

Exercise participation (relative) 0 - 20% 20 - 40% 40 - 60% 60 - 80% 80 - 100% All
Number of students with very good grade (1.0 - 1.3) 9 13 12 9 4 47
Number of students with good grade (1.7 - 2.3) 45 34 15 18 7 119
Number of students with satisfactory grade (2.7 - 3.3) 44 25 8 8 5 90
Number of students with sufficient grade (3.7 - 4.0) 20 6 6 3 0 35
Number of students who failed (4.3 - 5.0) 28 3 2 0 0 33
Number of students who completed the exam (Sum) 146 81 43 38 16 324
Grade point average (GPA, all students) 3.1 2.5 2.3 2.1 2.0 2.7

Table 5: Correlation between exercise participation and GPA in the final exam in PSE: students who partic-
ipated in exercises scored significantly better in the exam (grades vary between 1.0 and 5.0; a lower grade is
better, a higher is worse).

correlation does not necessarily show this causality. Other
causes of the correlation might be the motivation or the pre-
vious knowledge of the students. Students who participate
in exercises more frequently usually also have a higher moti-
vation to learn the theory for the exam, or they might have
more previous experience. We were not able to measure these
variables in the presented courses or to exclude them and
therefore more detailed studies are necessary to investigate
the actual effects of them on the learning outcomes.

6. RELATED WORKD
There are several courses in computer science that apply

active learning techniques. They report an increase in stu-
dents’ learning, engagement, and performance. We look at
three approaches and compare them with our approach.

Kurtz et al. describe an active learning approach using
microlabs [20]. Students perform short activities during a
lecture, either individually or in groups, and submit their
answers to an automated grading system. They receive
constructive feedback, and can revise their answers. Kurtz
et al. conclude that microlabs can increase the students
learning experience. Their approach can be compared with
in-class exercises in interactive learning. In our case, students
also have a time limit for exercises and submit their solutions
to an automated grading system, or upload them for manual
assessment if no automated assessment is possible. Both
approaches have one thing in common: that they are used
in class during lectures. Heckman reports that there is “a
large increase in student engagement” for the use of in-class
labs [10].

Another popular approach is think pair share (TPS), where
students work on a problem individually, then in small groups
and finally reflect on it with the whole class. We propose a
similar approach where students first experience a concept
individually and then apply it within a team. Kothiyal et al.
describe a large programming course which uses TPS [16].

The course includes programming labs and lectures with two
TPS activities: students worked on questions individually
first, and then in pairs, while the instructor helps in case of
questions. Class wide discussions were facilitated concerning
the former tasks. The study reports an average of 83%
student engagement for TPS based activities. This approach
shows parallels to our course setup, since we introduced
individual and team exercises, similar to the think and pair
phases. Interactive learning also covers the share phase, as
students could join a discussion with the instructor.

Campbell et al. describe an approach based on the flipped
classroom concept with video lectures, labs and assignments
[6]. They also used quizzes, contributing to the course grade
as we propose for our approach. However, the authors do not
use in-class exercises and report a low lecture attendance rate.
Our approach implements frequent homework assignments,
as well as immediate feedback for exercises to keep students
motivated. Campbell et. al. suggest the use of such an
approach instead of labs for future improvement.

7. CONCLUSION
In this paper we described interactive learning, an ap-

proach based on active learning, computer based learning
and experiential learning for large classrooms with guidance
and immediate feedback. In interactive learning, the educator
delivers small chunks of content and exercises incrementally,
in short cycles, so that learners reflect on the content immedi-
ately. This can increase students’ participation, can support
knowledge deepening and can improve knowledge retention.
By reducing the delay between theory, example, exercise, so-
lution and reflection to a few minutes, we establish a tighter
integration of lectures and exercises leading to interactive
classes.

We applied and evaluated interactive learning in two large
software engineering classes with 300 students each. In the
quantitative evaluations, we found a strong and highly sig-

nificant correlation between exercise participation and the
final exam grade. Students who participated more in the
exercises also achieved better grades in their final exams.
A qualitative evaluation shows that students perceive that
they improve their skills and feel able to apply these skills in
later projects. This indicates that interactive learning might
improve students’ learning experience and learning outcomes.
More studies are, however, necessary to investigate the role
of interactive learning in those results.

Our case studies show that interactive learning is scalable
and applicable to large classes without increasing the teach-
ing effort significantly. We will introduce interactive learning
into more courses. We believe it can help to bring an inter-
active component to massive open online courses (MOOCs)
where we want to mix videos and fully automated interactive
exercises to improve the students’ learning experience and
the adaptability of the course with respect to heterogeneous
student groups.

8. REFERENCES
[1] M. Abramowitz, I. A. Stegun, et al. Handbook of

mathematical functions. Applied mathematics series,
55:62, 1966.

[2] R. Ben-Ari, R. Krole, and D. Har-Even. Differential
effects of simple frontal versus complex teaching
strategy on teachers’ stress, burnout, and satisfaction.
International Journal of Stress Management, 2003.

[3] C. Bonwell and J. Eison. Active Learning: Creating
Excitement in the Classroom. ASHE-ERIC Higher
Education Reports., 1991.

[4] D. Boud and G. Feletti. The challenge of problem-based
learning. Psychology Press, 1998.

[5] B. Bruegge, S. Krusche, and L. Alperowitz. Software
engineering project courses with industrial clients.
ACM Transactions on Computing Education, 2015.

[6] J. Campbell, D. Horton, M. Craig, and P. Gries.
Evaluating an inverted cs1. In Proceedings of the 45th
technical symposium on Computer science education,
pages 307–312. ACM, 2014.

[7] A. Collins, J. S. Brown, and A. Holum. Cognitive
apprenticeship: Making thinking visible. American
educator, 1991.

[8] R. Garrison and H. Kanuka. Blended learning:
Uncovering its transformative potential in higher
education. The internet and higher education, 2004.

[9] S. Grabinger and J. Dunlap. Rich environments for
active learning: A definition. Research in learning
Technology, 3(2), 1995.

[10] S. Heckman. An empirical study of in-class laboratories
on student learning of linear data structures. In
Proceedings of the 11th annual International
Conference on International Computing Education
Research, pages 217–225. ACM, 2015.

[11] D. Johnson, K. Smith, and R. Johnson. Cooperative
learning: increasing college faculty instructional
productivity. ASHE-ERIC higher education reports.,
1991.

[12] S. Jong, A. Jan, R. Wierstra, and J. Hermanussen. An
exploration of the relationship between academic and
experiential learning approaches in vocational
education. British Journal of Educational Psychology,
76(1):155–169, 2006.

[13] P. Kirschner, J. Sweller, and R. Clark. Why minimal
guidance during instruction does not work: An analysis
of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based
teaching. Educational psychologist, 41(2):75–86, 2006.

[14] D. Kolb. Experiential learning: Experience as the
source of learning and development, volume 1. Prentice
Hall, 1984.

[15] J. Korthagen, Fredand Kessels, B. Koster, B. Lagerwerf,
and T. Wubbels. Linking practice and theory: The
pedagogy of realistic teacher education. Routledge, 2001.

[16] A. Kothiyal, R. Majumdar, S. Murthy, and S. Iyer.
Effect of think-pair-share in a large cs1 class: 83%
sustained engagement. In Proceedings of the 9th annual
international conference on International computing
education research, pages 137–144. ACM, 2013.

[17] S. Krusche and L. Alperowitz. Introduction of
Continuous Delivery in Multi-Customer Project
Courses. In Proceedings of the 36th International
Conference on Software Engineering, pages 335–343.
IEEE, 2014.

[18] S. Krusche, L. Alperowitz, B. Bruegge, and M. Wagner.
Rugby: An agile process model based on continuous
delivery. In Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering,
pages 42–50. ACM, 2014.

[19] S. Krusche, M. Berisha, and B. Bruegge. Teaching Code
Review Management using Branch Based Workflows. In
Companion Proceedings of the 38th International
Conference on Software Engineering. IEEE, 2016.

[20] B. Kurtz, J. Fenwick, R. Tashakkori, A. Esmail, and
S. Tate. Active learning during lecture using tablets. In
Proceedings of the 45th technical symposium on
computer science education, pages 121–126. ACM, 2014.

[21] Y. Li, S. Krusche, C. Lescher, and B. Bruegge.
Teaching global software engineering by simulating a
global project in the classroom. In Proceedings of the
47th SIGCSE, pages 187–192. ACM, 2016.

[22] J. Michael. Where’s the evidence that active learning
works? Advances in Physiology Education,
30(4):159–167, 2006.

[23] M. Prince. Does active learning work? a review of the
research. Journal of Engineering Education,
93(4):223–231, 2004.

[24] D. Shaffer. Pedagogical praxis: The professions as
models for postindustrial education. Teachers College
Record, 106(7):1401–1421, 2004.

[25] J. Sweller and G. A. Cooper. The use of worked
examples as a substitute for problem solving in learning
algebra. Cognition and Instruction, 2(1):59–89, 1985.

[26] J. G. Trafton and B. J. Reiser. Studying examples and
solving problems: Contributions to skill acquisition.
Technical report, Naval HCI Research Lab,
Washington, DC, USA, 1993.

[27] K. VanLehn. Cognitive skill acquisition. Annual Review
of Psychology, 47:513–539, 1996.

[28] J. D. Vermunt. The regulation of constructive learning
processes. British journal of educational psychology,
68(2):149–171, 1998.

[29] J. Whitehead. Collaboration in software engineering: A
roadmap. FOSE, 7(2007):214–225, 2007.

8.2 Experiences of a Software Engineering Course based
on Interactive Learning

This workshop paper describes experiences in a software engineering course on project
management and organization (POM). It was one of the first courses taught with the idea
of interactive learning. The paper describes POM in detail and includes an evaluation
of the teaching philosophy. The main result was that interactive learning increases
the participation of students. The findings show that students are more engaged and
motivated if they apply and exercise the previously learned theory in class. Furthermore,
by providing students with theoretical foundations and practical exercises, their learning
experience improves.

Authors S. Krusche, N. von Frankenberg and S. Afifi
Conference 15. Workshop Software Engineering im Unterricht der Hochschulen
Publisher CEUR
Pages 9
Type Workshop Paper
Review Peer Reviewed (3 Reviewers)
Year 2017
Citation [KvFA17]
Link http://ceur-ws.org/Vol-1790

112

http://ceur-ws.org/Vol-1790

Experiences of a Software Engineering
Course based on Interactive Learning

Stephan Krusche, Nadine von Frankenberg, Sami Afifi

Technische Universität München, Munich, Germany

krusche@in.tum.de, nadine.frankenberg@tum.de, afifi@mytum.de

Abstract
Learning to apply software engineering requires prac-
tical experience, and can not be taught through tra-
ditional theory-based lectures. Interactive learning is
an approach that combines lectures and exercises into
multiple iterations of theory, example, exercise, solu-
tion and reflection. It is based on active, computer
based and experiential learning and on immediate
feedback to improve the learning experience in large
classes. It includes hands-on activities with the goal
to increase students’ motivation and engagement.

This paper describes an interactive learning course
design that includes multiple choice quizzes and inter-
active tutorials as in-class exercises and a team project
in which students apply their knowledge in a different
setting. Based on this course design, we present a case
study with 300 students in 2016. An evaluation shows
that students are more engaged and motivated, if they
practically apply and exercise the previously learned
theory in the classroom. By providing students with
both, theoretical foundations and practical exercises,
their learning experience improves.

1 Introduction
Software engineering (SE) requires practical appli-
cation of knowledge (Connolly et al., 2007; Shaffer,
2004), because it is an interactive and collaborative
activity (Whitehead, 2007). In particular, project man-
agement in SEering is an activity that requires practi-
cal experience. The learning experience of students
is low when educators disregard the practical rele-
vance of SE and do not handle real problems in a
course (Cunliffe, 2002). Interaction with students is
limited if the learning activities focus on the educator
in front of the classroom. Then, students’ participa-
tion and motivation are low and the learning outcome
decreases.

Educators can apply self-guided learning, personal
responsibility, practical relevance and individualiza-
tion to overcome this problem. Several pedagogic
theories have been developed that include these el-
ements: Problem-based learning teaches a subject
through the experience of problem solving. Educators

support, guide, and monitor this process (Boud and
Feletti, 1998). Cooperative learning organizes class-
room activities into social learning experiences: Stu-
dents complete exercises in groups towards a common
goal (Johnson et al., 1991). Computer based learning
allows students to learn through computer-mediated
activities (Garrison and Kanuka, 2004). Experiential
learning is the process of learning from experience and
reflecting about it (Kolb, 1984). Active learning pro-
motes that students actively participate in the learning
process (Bonwell and Eison, 1991). Instead of only
passively listening, they are involved in exercises and
engaged in solving problems.

We developed a course that includes a mix of these
approaches and teaches SE concepts through inter-
active learning (Krusche et al., 2017). The course
includes interactive tutorials and quizzes as activating
in-class exercises where students immediately receive
feedback to reflect about their performance. It also
integrates team based exercises in which students ap-
ply the knowledge in a different situation to deepen
their understanding and to increase their knowledge
retention.

While the integration of multiple learning theories
and exercise types increases the effort for educators,
it can lower their stress and it can lead to higher sat-
isfaction for educators and learners (Ben-Ari et al.,
2003). We base our teaching methodology on a Chi-
nese proverb: “Tell me and I will forget. Show me and I
will remember. Involve me and I will understand. Step
back and I will act” (Korthagen et al., 2001). It empha-
sizes that involving students into the learning process,
activating them in the classroom, is the key for their
understanding. Self-guided and problem-based learn-
ing let students take responsibility to solve a problem
on their own, using concepts they learned before.

The paper is organized as follows: Section 2 de-
scribes active learning and the Revised Bloom’s Tax-
onomy as foundations of the learning theories in our
course. In Section 3, we present the course design
that follows an interactive learning approach with an
iterative process combining lectures and exercises into
short cycles. Section 4 presents a case study about a
large software engineering course with 300 students

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 32

in which we applied interactive learning. In Section 5,
we present the findings of an evaluation of this case
study. Section 6 discusses related work and Section 7
concludes the paper.

2 Foundations
Active learning is an educational approach to increase
student involvement with the subject being taught. In-
stead of students acting as receivers of knowledge by
passively listening to lectures, active learning puts the
emphasis on developing student skills and engaging
them in activities. Bonwell and Eison define active
learning as “anything that involves students in doing
things and thinking about the things they are doing”
(Bonwell and Eison, 1991). The active learning ap-
proach draws from constructivist learning theories
and can be summarized in four main premises (Bro-
phy and Good, 1994):

1. Learners construct their own meanings
2. New learning builds on prior knowledge
3. Learning is enhanced by social interaction
4. Meaningful learning develops through “authentic”

tasks

Grabinger and Dunlap emphasize that authentic
contexts encourage students to take more responsi-
bility and engage them in learning activities that pro-
mote high level thinking processes (Grabinger and
Dunlap, 1995). In SE education, an authentic con-
text would be a software project where students have
to develop an application: they experience typical
development workflows and tools such as software
configuration management.

Students experience collaborative learning through
learning communities that involve both peer students
and instructors. Their learning progress is supported
and assessed through realistic tasks such as planning
and conducting a meeting. There is broad support for
the benefits of active learning on knowledge transfer
and student performance (Prince, 2004). Active learn-
ing has an improved learning outcome compared to
more passive approaches (Michael, 2006).

Bonwell and Eison propose a set of activities that
align with the principles of active learning (Bonwell
and Eison, 1991). Examples are:

• Think-Pair-Share: Students think and discuss
about a topic in pairs.

• Simulation: Classroom activities resemble real-
life situations.

• Working in group: Collaborative or cooperative
group work requires high involvement of students.

• Case studies: Practical examples encourage stu-
dents to integrate knowledge from class with real-
life.

While keeping active learning principles in mind,
instructors can use the Revised Bloom’s Taxonomy

(RBT) to classify curricular objectives and exercises
(Krathwohl, 2002). The RBT identifies six cognitive
process categories (remember, understand, apply, an-
alyze, evaluation, create) and four knowledge cate-
gories, ordered from concrete to abstract knowledge:

• Factual: Basic knowledge to acquaint with a dis-
cipline and to solve problems.

• Conceptual: Connection of basic knowledge in a
larger context.

• Procedural: Methodology of knowledge applica-
tion using skills, techniques, and methods.

• Metacognitive: Knowledge about the use of par-
ticular strategies for learning or problem solving.

The cognitive process dimension together with the
knowledge dimension help to formulate learning ob-
jectives. Learning activities that require higher order
cognitive processes and that lead to acquisition and
construction of more abstract knowledge can be classi-
fied as active learning. Figure 1 shows the RBT matrix
classifying more active and more passive learning ap-
proaches.

remember understand apply analyze evaluate create

factual
knowledge

conceptual
knowledge

procedural
knowledge

metacognitive
knowledge

higher order thinkinglower order thinking

concrete

abstract

active learning

passive learning

Figure 1: Classification of more active and more pas-
sive learning approaches in the matrix of the Revised
Bloom’s Taxonomy (adapted from (Krathwohl, 2002))

3 Course Design
With the aforementioned pedagogical foundations in
mind, we designed a course to teach software project
management by mixing lectures with engaging in-
class and homework activities, such as hands-on tu-
torials, multiple choice quizzes, team exercises and
team projects. To activate students, we put emphasis
on the interactivity of the course.

3.1 Learning Objectives
The course has the following intended learning out-
comes: Participants understand the key concepts of
software project management. They learn and apply
the basic techniques and methods of project orga-
nization that are used when complex software sys-
tems are developed such as task, issue and meeting
management. The course focuses on agile models
as preferred software lifecycle, in particular Scrum
(Schwaber, 1995) and Kanban (Anderson, 2010).

Students communicate and collaborate in team
projects, learn to estimate tasks and to schedule a

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 33

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

project. They learn how to model software life-cycles
and how to write an agile contract. They design user
interfaces, create prototypes and evaluate these using
typical usability heuristics. Student apply software
configuration management including change, branch,
merge and review management using git (Chacon,
2009) and pull requests (Krusche et al., 2016). They
apply build and release management by implementing
typical continuous integration and continuous deliv-
ery workflows (Krusche and Alperowitz, 2014).

Students do not only get familiar with the theory
of each topic, but also get practical experience. They
get to know specific cases and learn how to use each
concept in different settings.

3.2 Organization

The course is designed for large audiences with more
than 100 students. One instructor teaches the course
with the help of teaching assistants (TAs). Besides
helping the students, the TAs also act as intermediaries
between the students and the instructor. To maintain
a high level of interactivity, informal communication
channels encourage students to interact with other
course participants, with their team members and
with the instructor. A learning management system is
used for formal information sharing.

During class, TAs monitor a question channel of a
chat tool, and respond when necessary. This gives
students the opportunity to clarify questions through
informal communication. People respond and com-
municate more frequently when using an informal
communication tool (Kraut et al., 1990), such as a
chat application. During class, TAs can inform the
instructor about issues that are of interest for other
students. Then, the instructor can clarify issues and
answer questions in front of all students. In addition,
the instructor encourages students to ask questions in
the lecture hall as well.

Lectures and exercises are combined into interactive
classes to encourage students to attend. Students are
expected to actively participate: they must bring their
own laptop, tablet or smartphone and use it in class
for computer based exercises. To motivate students to
participate in these exercises, students can earn bonus
points to improve their grade in the final exam. In
addition, students can participate in a team project
to apply the learned knowledge in another setting.
This team project includes with five team members
and is a simplified version of the team projects de-
scribed by Bruegge and his colleagues (Bruegge et al.,
2015): there is no real customer and students have
less deliverables, but the applied process model is the
same. While the team projects are not mandatory to
the students, the instructor encourages them to take
part, because students learn important communica-
tion and negotiation skills when it e.g. comes to task
distribution and meeting management.

3.3 Interactive Learning
Figure 2 shows the iterative process of interactive
learning. Each lecture has multiple iterations of the
following five phases (Krusche et al., 2017):

1. Theory: The instructor introduces a new concept
and describes the theory behind it. Students listen,
try to understand it and ask questions.

2. Example: The instructor provides an example so
that students can refer to a concrete situation.

3. Exercise: The instructor asks the students to ap-
ply the concept in a small exercise. The students
submit their solution to the exercise.

4. Solution: The instructor provides a sample so-
lution, explains it to the students and discusses
exemplary student submissions to provide imme-
diate feedback and guidance.

5. Reflection: The instructor facilitates a discussion
about the theory and the exercise so that students
reflect about the concept.

Exercise

Example

Solution

Student

Reflection

Theory

Figure 2: Iterative process of interactive learning per-
formed multiple times during lectures (Krusche et al.,
2017)

While the theory helps to build factual knowledge
and conceptual knowledge, exercises can build proce-
dural and metacognitive knowledge.

3.4 Exercises
TAs help in the conduction of the exercises: they walk
through the classroom, answer questions and provide
help in case problems occur or exercise instructions
are unclear. The assessment of the submitted solu-
tions can either be automated using tool support, or
manually done by the TAs who review the submit-
ted solutions and provide immediate feedback to the
students. The degree of automation depends on the
exercise type and the solution’s format. The course in-
cludes individual exercises and team based exercises:

Individual exercises

E1 Quizzes with drag and drop questions or multiple
choice questions (automatic evaluation through a
quiz system).

E2 Interactive tutorials with step-by-step instructions
(automation degree depends on the exercise).

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 34

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

In each class, theory is followed by short in-class
quizzes, serving as self-assessment so that students
can instantly check whether they understood the main
concepts or not. Therefore, quizzes help to increase
factual and conceptual knowledge by repeating and
connecting the learned theory.

Interactive tutorials include detailed, step-by-step
instructions so that even beginners are able to con-
duct the exercises. They are helpful to experience a
concept for the first time. The instructor performs
these tutorials live in class so that students can follow
on their own laptops. He uploads the presentation
slides with detailed screenshots before class, so that
students can look up the steps of the exercise on the
slides if they cannot follow in the given time.

He asks the students several times during a tutorial
how many of them can still follow. If not enough
students raise their hand, he waits and explains the
current step again in more detail. If more than around
80 % raise their hand, the instructor continues. More
experienced students are kept motivated with optional
challenges. Interactive tutorials help to build proce-
dural knowledge by involving the students into the
methodology of knowledge application and by build-
ing skills, techniques and methods to solve particular
tasks.

All tutorials are self-contained and do not depend
on previous exercises. They are based on the same
common problem statement provided in the beginning
of the class, so students know the context and can
follow exercises more easily. The instructor does not
have to introduce a new problem statement in each
class and saves time. If students miss a class, they can
also catch up with the exercise at home.

Team based exercises

E3 Project teamwork that includes communication
and collaboration aspects (automation degree de-
pends on the exercise).

Team based exercises incorporate the concepts of
peer learning and cooperative learning. They repeat
the topic of individual exercises to deepen and retain
the knowledge by applying the learned concepts in
a different setting. Students transfer the previously
learned knowledge to the concrete team situation
and tailor the concepts. This facilitates self-guided
learning and promotes the idea of self-organization,
an important management aspect.

To create a context for their project, the teams
choose a problem statement and a development envi-
ronment in the beginning of the course. In team based
exercises, students need to transfer the previously-
learned factual, conceptual and procedural knowl-
edge into a concrete situation. They need to adapt the
learned skills, techniques and methods or find new
ones to solve the problem collaboratively while taking
responsibility because the instructor steps aside. This
helps to build metacognitive knowledge.

4 Case Study
The following case study describes the university
course "Software Engineering II: Project Organization
and Management" (POM) that implements interactive
learning. We evaluated the course in summer 2016,
amongst others by means of a questionnaire that in-
cluded free text fields in which the students stated
their thoughts. The detailed evaluation is discussed
in Section 5.

4.1 Course Format
The course had a heterogeneous distribution of 300
students with two groups standing out: around half
of the students are bachelor students with major in
information system who have to take this course in
their studies. The other half are master students in
computer science and take the course by their own
choice. The challenge is to keep the lecture content
easy enough for less experienced students, but also
stimulating enough for more experienced ones.

The course took place in one semester over 13
weeks in the summer 2016, with a three hour time
slot for lectures and exercises between 8:15 am and
11:30 am, including a 15min break. A single instructor
taught the course with the help of 9 teaching assis-
tants. Table 1 shows the schedule and the content of
each lecture.

Week Class content

1 Team Formation

2 Project Organization

3 Software Lifecycle Models

4 Agile Methods (Krusche et al., 2014)

5
Prototyping & Usability Management

(Bruegge et al., 2012)

6 Proposal Management

7
Branch, Merge & Review

Management (Krusche et al., 2016)

8 Contracting & Estimation

9 Continuous Integration

10
Continuous Delivery (Krusche and Alperowitz, 2014)

Feedback Management (Krusche and Bruegge, 2014)

11 Risk and Demo Management

12 Global Project Management

13 Project Management Antipattern

Table 1: Overview of the course content

In large courses, students get easily distracted, may
no longer pay attention to the lecture, or may engage
in off-topic conversations with each other. Therefore,
our main goal was to design and structure each class
so that students are engaged and motivated using
interactive learning.

As additional motivation, students were able to earn
bonus points (BP) for participating in exercises. If they
earned enough BPs, their grade in the final exam was
improved accordingly. Students reported in a survey

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 35

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

that the bonus was a “strong motivation to be active in
the course”. In the following, we illustrate the course
concept in more detail.

4.2 Quizzes
During each class, multiple choice quizzes gave stu-
dents the opportunity to revise the covered theory, and
to earn BPs. To motivate students to attend class, we
performed the quizzes dynamically during the class
after certain lecture content was completed. Thus,
only students present in class could participate in the
quizzes. On average, 181 students participated in the
quizzes per class.

We optimized the creation of quiz questions during
the course using an iterative feedback approach to
minimize misunderstandings and ambiguities. Two
TAs created the quizzes based on the lecture content,
then all TAs reviewed the questions to find errors and
misunderstandings. On average, there were three
quizzes per class. A quiz consisted of three questions
with three to four answer choices each, an example of
a question is shown in Figure 3.

Question: What are key characteristics of the Waterfall Model?

✓ 1. Progress is measured by the number of tasks that have  
 been completed.

✓ 2. At the end of each activity, a verification step prevents the  
 deletion or unwanted introduction of requirements.

X 3. The Waterfall Model allows the repetition of activities if  
 requirements change unexpectedly.

X 4. Traditional managers do not like waterfall-based models, 
 since fixed milestones are bad for progress measurement.

Figure 3: Example question with four answer choices

To prevent cheating during the quiz, students could
see their results only after the quiz was closed. Ques-
tions and answer choices were randomly interchanged
in the learning management system which included
an automated quiz grading component that showed
the overall quiz performance. As a result, there was
no correction overhead.

Most students liked the concept of using quizzes di-
rectly after the lecture content, and stated in a survey
that it was ”good to use quizzes to see right away what
I learned”. The quiz performance of all participating
students was available instantly to the instructor, and
provided information on how well the students could
follow the lecture. After each quiz, the instructor
shortly reviewed and discussed questions and answers
with the students. This offered the opportunity to
repeat key points of the taught theories. Students also
had the chance to give feedback about the quiz.

In the beginning of the course, some students re-
ported “too little time to read and answer some ques-
tions”. We considered this when designing subse-
quent quizzes. Other students’ reported inconsisten-
cies in the quizzes and helped to improve the ques-
tions. There was controversial feedback concerning
the quizzes, as some students felt that they “put too

much pressure” on them. Most students appreciated
the quizzes as a direct control of their learning out-
come. One student reported: “I like the quizzes a lot.
They really help me to understand the topics faster
and better”. Another one stated in the Slack1 chan-
nel that was open during class: “quizzes wake me up
better than coffee” as shown in Figure 4.

Figure 4: Slack channel with students’ comments dur-
ing the lecture

4.3 Exercises and Homework
In the first class, students organized themselves into
51 teams, with 5 students per team, to participate in
a team project. Each team chose one of three distinct
problem statements, and had the task to implement
a small mobile app until the end of the course, while
applying project management methodologies. The stu-
dents had to include at least one experienced and one
unexperienced team member to give unexperienced
students the opportunity to learn from more experi-
enced ones, following the master apprentice approach
(Collins et al., 1991). Experienced students could also
benefit, since they deepened their knowledge, and
were challenged by optional harder tasks.

The first team exercise was an icebreaker in the first
class where all teams participated in a small competi-
tion, the marshmallow challenge (Wujec, 2010) in the
lecture hall as part of the team formation class. The
teams had 18 minutes to build the tallest structure
using spaghetti sticks, tape, rope and a marshmallow.
Figure 5 shows how the teams built the spaghetti tow-
ers in the classroom. After the exercise, each team
had to measure its own tower according to specific
rules and upload the picture to a shared space. The
TAs evaluated the tower and the measurement and
awarded the best team with small prices.

The instructor performed in-class exercises live on
a computer shown on a projector. A second projector
showed the corresponding lecture slides with detailed
screenshots. The TAs walked through the lecture hall
and helped if necessary. However, TAs did not explic-
itly tell students the solutions to the exercises, but

1Slack is a popular free team chat service that we used in class to
improve the communication between instructor, TAs and students:
https://slack.com.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 36

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

Figure 5: Icebreaker with about 200 students in 51
teams in the lecture hall

rather pointed them into the right direction, so that
they worked out the solutions themselves.

Immediate feedback was an important factor for the
exercises. Students could review sample solutions on
the projector, and were assisted by TAs. The exercise
tools and the screenshots in the lecture slides provided
additional feedback. If the student’s screen looked
identical to the screenshot on the slide after a task, or
the tool reported a success message, the students knew
that they performed the exercise correctly. We used
several workflows and tools that are used in industry
in order to demonstrate practical usage (Klepper et al.,
2015). Most students found this approach helpful, and
liked that the “exercises were practical and relevant”.

To deepen the students’ understanding, each lecture
included a team project exercise to learn and apply
management concepts, following a learning by doing
approach. Students e.g. learned agile methods, and
had to apply them throughout the team project. They
performed self-organized meetings and documented
their meetings, including a meeting-selfie of all partic-
ipants to add a fun factor to the exercise. Another ex-
ample is that they formed pairs in class, implemented
a small feature, and then reviewed their partner’s pull
requests to understand the code review workflow (Kr-
usche et al., 2016). Students then followed this pull
request workflow when implementing the mobile app
in the team projects. While the team projects were
not mandatory, students could earn 50 % of the bonus
points. Therefore, many students were motivated to
participate in the team projects.

Multiple TAs reviewed the exercises that could not
be assessed automatically. The students received feed-
back at the latest two weeks after the submission dead-
line. As Kothiyal and his colleagues point out, “prompt
and descriptive feedback on their [the students] un-
derstanding” enables both, students and instructor,
to “use this feedback to modify their learning and
teaching respectively” (Kothiyal et al., 2013). Stu-
dents found fast feedback motivating and helpful. For
each exercise, students could see the current grad-

ing status and deadline so that they had an overview
which exercises were due in the current week. They
could see which TA graded their exercise to directly
communicate with the TA to clarify questions.

5 Evaluation
This section describes the study design, the findings
and the limitations of an evaluation of the course POM
in summer 2016.

5.1 Study Design
We state the following hypotheses:

H1 Participation: Interactive in-class exercises in-
crease the participation of students.

H2 Improved Learning: The mix of theory, quizzes
and exercises in class leads to an improved learn-
ing experience for students.

We validate the hypotheses with a quantitative and
a qualitative evaluation. In the quantitative evalua-
tion, we measured the participation of students by
counting how many students attended class and com-
pleted specific exercises.

In the qualitative evaluation, we investigated the
students’ improvements in topics that we applied in
individual and team based exercises using an online
survey. We asked about their opinion on the exercise
concept. The questionnaire consisted of 14 questions,
took about 10 minutes and was not mandatory for
the students. It included questions about personal
data, the participation in individual exercises, and
application of techniques in the team project. We also
wanted to know if students improved their skills in
techniques and if they felt confident to apply tech-
niques in their next team project. Finally, we asked in
an open question how the course can be improved.

We conducted the survey in July 2016 and gave
the students two weeks to complete it. We created
personalized tokens and asked the 272 students, who
completed the final exam of the course, to participate
in the anonymous survey. The open source survey
tool LimeSurvey2 guarantees that the answers are
anonymous by strictly separating token and answer
tables in the database. We received 190 responses,
which corresponds to a response rate of 70 %.

5.2 Findings
The quantitative evaluation shows that more students
participated in POM in summer 2016 than in a previ-
ous instance of the course without interactive learning
in summer 2014 or in other courses of the same faculty.
Figure 6 shows that the number of participants per
class in 2016 was around 80 % in the beginning and
around 60 % in the end of the course, although the
class started early at 8:15 am in the morning. Figure 7
shows that in the same course in 2014, the attendance
rate steadily decreases to less than 20 % until the end

2http://www.limesurvey.org

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 37

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

of the course. On average, 71 % of all participants
of the course completed the team exercises, whereas
72 % completed the individual exercises. From these
numbers, we have first anecdotal evidence that H1 is
supported: interactive in-class exercises increase the
participation of students.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13

154142149153
175168

192185186
217211221

203

Number of students who participated in the in-class quizzes

ClassTotal Participants: 272

75% 81% 78% 80% 68% 68% 71% 62% 64% 56% 55% 52% 57%

Figure 6: Number of participants per class in POM in
summer 2016 with interactive learning

0

70

140

210

280

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

63716244
87

109123

222

104

199

103
149

192

125

199

Number of students who participated in class (POM 2014)

LectureTotal participants: 345

58% 36% 56% 43% 30% 58% 30% 64% 36% 32% 25% 13% 18% 21% 18%

Figure 7: Number of participants per lecture in POM
in summer 2014 without interactive learning

The qualitative evaluation showed that on average
80 % of the students, who participated in an indi-
vidual and team exercise, agree (or strongly agree)
that they improved their knowledge and that they are
confident to apply the knowledge in their next team
project. Table 2 shows results of the qualitative evalua-
tion, i.e. whether students agreed to given statements
in the qualitative evaluation. 80 % of the students
agreed that the use of interactive learning increased
their learning success (S1), and 71 % agreed that it
improved their understanding of the theory during
class (S2).

In-class exercises motivated 76 % of the students to
attend the lecture (S3) and quizzes motivated 54 % of
the students to listen to the lecturer (S4). Interactive
tutorials helped 65 % of the students to learn new
concepts and also 65 % were able to deepen their
knowledge in team exercises. These answers can be
considered as anecdotal evidence that H2 is supported:
the mix of theory, quizzes and exercises in class leads
to an improved learning experience of the students.

Formulating multiple choice quiz questions and
their respective answer possibilities unambiguously
proved to be challenging, especially when asking ques-
tion that are beyond simple definitions. At the begin-
ning of the course, we varied the number of questions

per class, the number of answer choices per ques-
tion, and the time per question. After the quizzes, we
presented the correct solutions and discussed them
quickly with the students. In the first half of the course
the average number of quizzes per lecture session was
higher: on average, we had five quizzes with 3 ques-
tions each, leading to 15 questions per class.

In an intermediate evaluation, we found that the
number of quizzes per class was too high, so we re-
duced it to three quizzes and nine questions on aver-
age per class. The available time per questions was
between 60 and 120 seconds depending on its diffi-
culty and length. Additionally, we evaluated each quiz
regarding the students’ response rate. This helped us
to extract weak and misleading factors of the ques-
tions and answers, e.g. when many students selected
a wrong answer choice due to misinterpretation.

In total, many students reported that this course
was their favorite course in the semester and that they
wish that more courses would be rich in variety and
activation during class.

5.3 Limitations
A limitation of the qualitative evaluation is that per-
sonal opinions of students might not reflect the real
situation, because they could be subjective. Beginners
cannot estimate objectively about their real improve-
ment, and the confidence to apply a concept does not
necessarily mean that the student is in fact able to
apply it.

Other positive effects of the course, such as the open
atmosphere towards feedback, might have a positive
influence on the evaluation result. Only if students
like interactive exercises, this does not necessarily
mean that their skills improve. To alleviate these
threats, we additionally evaluated the participation
in the lectures and exercises quantitatively in a more
objective manner.

6 Related Work
Active learning techniques applied in computer sci-
ence show an increase in students’ learning, engage-
ment, and overall performance. A popular approach
is Think-Pair-Share (TPS), where students first work
on a problem individually, then in small groups and
finally with the whole class.

Kothiyal and his colleagues describe a setting that
uses TPS in a large level-1 programming course
(Kothiyal et al., 2013). The course included lectures
and programming labs. The lectures had two TPS
activities, where students first worked on questions
individually, and then with a subsequent task in pairs,
while an instructor could be asked for help. Finally,
class-wide discussions were facilitated concerning the
former tasks. The study reports an average of 83 %
student engagement for TPS-based courses. This ap-
proach shows some parallels to our course setup, since
we introduced individual and team exercises, similar

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 38

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

Statement
Strong
Agree

Agree Neutral Disagree
Strong

Disagree
S1 The mix of theory, quizzes and exercises in class con-

tributed to my learning success
36 % 44 % 13 % 4 % 3 %

S2 The mix of theory, quizzes and exercises improved my
understanding of the theory during class

33 % 38 % 16 % 10 % 3 %

S3 In-class exercises motivated me to attend the lecture 35 % 41 % 14 % 6 % 4 %
S4 Quizzes motivated me during class to actively listen to

the lecturer
19 % 34 % 23 % 15 % 9 %

S5 Interactive tutorials were particularly helpful to under-
stand concepts that I did not know before

24 % 41 % 24 % 9 % 2 %

S6 Team exercises helped me to apply the concept in a differ-
ent setting to deepen my knowledge and understanding

16 % 49 % 26 % 6 % 3 %

Table 2: Evaluation results with Likert scale typed responses whether students agree to given statements

to the think and pair phases. The share phase is also
present, as students could join discussions with the
instructor.

Kurtz and his colleagues describe an active learn-
ing approach using microlabs (Kurtz et al., 2014).
Students perform 5-10min activities during lectures,
either individually or in groups, and submit their an-
swers to an automated grading system, using tablets
as delivery mechanism. Students receive constructive
feedback, and can revise their answers. The study
concludes that microlabs can increase the students’
learning gains. This approach can be compared with
the in-class exercises we performed. Students had a
pre-defined time limit for the exercises and submitted
their solutions to an automated grading system, or to
an online documentation tool. The key point is, that
both approaches are used during lectures.

Campbell and his colleagues describe a flipped class-
room approach with video lectures, labs and assign-
ments (Campbell et al., 2014). Similar to our ap-
proach, quizzes were used and contributed to the
course grade. However, the authors do not give credit
for in-class exercises, and report a low lecture atten-
dance rate. Our course design includes homework
assignments as team exercises, as well as immediate
feedback for in-class exercises to keep students moti-
vated.

Heckman reports, there is “a large increase in stu-
dent engagement” for the use of in-class laboratories
(Heckman, 2015). His approach is similar to our in-
class exercises, but not used in large classes.

7 Conclusion
In this paper we described our experiences with an
interactive learning course in project management in
software engineering. Interactive learning is based on
active, computer based and experiential learning: the
instructor combines lectures and exercises into mul-
tiple iterations of theory, example, exercise, solution
and feedback. The course includes multiple choice

quizzes and interactive tutorials as in-class exercises
and an additional team project where students ap-
ply their knowledge in a different setting. This mix
supports different knowledge dimensions.

We applied and evaluated interactive learning in a
large course with 300 students. We found that inter-
active learning increases the participation of students.
Our findings show that students are more engaged
and motivated, if they practically apply and exercise
the previously learned theory in class. By providing
students with theoretical foundations and practical
exercises, their learning experience improves.

References
Anderson, D. (2010). Kanban: Successful Evolutionary

Change for Your Technology Business. Blue Hole
Press.

Ben-Ari, R., Krole, R., and Har-Even, D. (2003). Dif-
ferential effects of simple frontal versus complex
teaching strategy on teachers’ stress, burnout, and
satisfaction. International Journal of Stress Manage-
ment.

Bonwell, C. and Eison, J. (1991). Active Learning:
Creating Excitement in the Classroom. ASHE-ERIC
Higher Education Reports.

Boud, D. and Feletti, G. (1998). The challenge of
problem-based learning. Psychology Press.

Brophy, J. and Good, T. (1994). Looking in Classrooms.
HarperCollins College Publishers.

Bruegge, B., Krusche, S., and Alperowitz, L. (2015).
Software engineering project courses with industrial
clients. ACM Transactions on Computing Education.

Bruegge, B., Krusche, S., and Wagner, M. (2012).
Teaching Tornado: from communication models
to releases. In Proceedings of the 8th edition of the
Educators’ Symposium, pages 5–12. ACM.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 39

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

Campbell, J., Horton, D., Craig, M., and Gries, P.
(2014). Evaluating an inverted cs1. In Proceed-
ings of the 45th technical symposium on Computer
science education, pages 307–312. ACM.

Chacon, S. (2009). Pro git. Apress.

Collins, A., Brown, J., and Holum, A. (1991). Cogni-
tive apprenticeship: Making thinking visible. Amer-
ican educator.

Connolly, T., Stansfield, M., and Hainey, T. (2007).
An application of games-based learning within soft-
ware engineering. British Journal of Educational
Technology, 38(3):416–428.

Cunliffe, A. (2002). Reflexive dialogical practice
in management learning. Management learning,
33(1):35–61.

Garrison, R. and Kanuka, H. (2004). Blended learning:
Uncovering its transformative potential in higher
education. The internet and higher education.

Grabinger, R. and Dunlap, J. (1995). Rich environ-
ments for active learning: A definition. Research in
Learning Technology, 3(2):5–34.

Heckman, S. (2015). An empirical study of in-class
laboratories on student learning of linear data struc-
tures. In Proceedings of the 11th annual confer-
ence on International Computing Education Research,
pages 217–225. ACM.

Johnson, D. et al. (1991). Cooperative Learning: In-
creasing College Faculty Instructional Productivity.
ASHE-ERIC Higher Education Report. ERIC.

Klepper, S., Krusche, S., Peters, S., Bruegge, B., and
Alperowitz, L. (2015). Introducing continuous de-
livery of mobile apps in a corporate environment:
A case study. In Proceedings of the 2nd International
Workshop on Rapid Continuous Software Engineering,
pages 5–11. IEEE/ACM.

Kolb, D. (1984). Experiential learning: Experience as
the source of learning and development. Prentice
Hall.

Korthagen, F., Kessels, J., Koster, B., Lagerwerf, B., and
Wubbels, T. (2001). Linking practice and theory: The
pedagogy of realistic teacher education. Routledge.

Kothiyal, A., Majumdar, R., Murthy, S., and Iyer, S.
(2013). Effect of think-pair-share in a large cs1
class: 83% sustained engagement. In Proceedings of
the 9th annual conference on International computing
education research, pages 137–144. ACM.

Krathwohl, D. (2002). A revision of bloom’s taxonomy:
An overview. Theory into Practice, 41(4):212–218.

Kraut, R., Fish, R., Root, R., and Chalfonte, B. (1990).
Informal communication in organizations: Form,
function, and technology. In Human reactions to
technology: Claremont symposium on applied social
psychology, pages 145–199. Citeseer.

Krusche, S. and Alperowitz, L. (2014). Introduction
of Continuous Delivery in Multi-Customer Project
Courses. In Proceedings of the 36th International
Conference on Software Engineering, pages 335–343.
IEEE.

Krusche, S., Alperowitz, L., Bruegge, B., and Wagner,
M. (2014). Rugby: An agile process model based
on continuous delivery. In Proceedings of the 1st In-
ternational Workshop on Rapid Continuous Software
Engineering, pages 42–50. ACM.

Krusche, S., Berisha, M., and Bruegge, B. (2016).
Teaching Code Review Management using Branch
Based Workflows. In Companion Proceedings of the
38th International Conference on Software Engineer-
ing. IEEE.

Krusche, S. and Bruegge, B. (2014). User feedback in
mobile development. In Proceedings of the 2nd Inter-
national Workshop on Mobile Development Lifecycle,
pages 25–26. ACM.

Krusche, S., Seitz, A., Börstler, J., and Bruegge, B.
(2017). Interactive learning: Increasing student
participation through shorter exercise cycles. In
Proceedings of the 19th Australasian Computing Edu-
cation Conference. ACM.

Kurtz, B., Fenwick, J., Tashakkori, R., Esmail, A., and
Tate, S. (2014). Active learning during lecture using
tablets. In Proceedings of the 45th technical sympo-
sium on computer science education, pages 121–126.
ACM.

Michael, J. (2006). Where’s the evidence that active
learning works? Advances in Physiology Education,
30(4):159–167.

Prince, M. (2004). Does active learning work? a
review of the research. Journal of Engineering Edu-
cation, 93(4):223–231.

Schwaber, K. (1995). Scrum development process.
In Proceedings of the OOPSLA Workshop on Business
Object Design and Information.

Shaffer, D. (2004). Pedagogical praxis: The profes-
sions as models for postindustrial education. Teach-
ers College Record, 106(7):1401–1421.

Whitehead, J. (2007). Collaboration in software engi-
neering: A roadmap. FOSE, 7(2007):214–225.

Wujec, T. (2010). The Marshmallow Challenge - TED
Talk. Retrieved January 08, 2016 from http://
marshmallowchallenge.com.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017 40

Stephan Krusche, Nadine von Frankenberg und Sami Afifi - Experiences of a Software Engineering Course based on Interactive Learning

8.3 Chaordic Learning: A Case Study

This conference paper describes chaordic learning, a self-organizing, adaptive, and non-
linear learning approach, stimulating students’ creative thinking. Instructors provide
structure and guidance and integrate freedom for self-organization and self-guided learn-
ing and embrace innovation and creativity. Deviations are opportunities, and failures are
possibilities for students to learn and improve. The paper presents two case studies on
courses that use chaordic learning: a games development course and a joint advanced
student school. Students in these courses report increased intrinsic motivation, a higher
level of self-organization, and more room for creativity leading to an improved learn-
ing experience and more fun. Chaordic learning complements interactive learning and
emphasizes the creative aspects of learning.

Authors S. Krusche, B. Bruegge, I. Camilleri, K. Krinkin, A. Seitz and C.
Wöbker

Conference 39th International Conference on Software Engineering
Publisher IEEE
Pages 10
Type Conference: Full Research Paper
Review Peer Reviewed (2 Reviewers)
Year 2017
Citation [KBC+17]
DOI https://doi.org/10.1109/ICSE-SEET.2017.21

122

https://doi.org/10.1109/ICSE-SEET.2017.21

Chaordic Learning: A Case Study
Stephan Krusche

Technische Universität München
Munich, Germany
krusche@in.tum.de

Kirill Krinkin
Saint Petersburg Electrotechnical University

St. Petersburg, Russia
kirill.krinkin@fruct.org

Bernd Bruegge
Technische Universität München

Munich, Germany
bruegge@in.tum.de

Andreas Seitz
Technische Universität München

Munich, Germany
seitz@in.tum.de

Irina Camilleri
Technische Universität München

Munich, Germany
irina.camilleri@tum.de

Cecil Wöbker
Technische Universität München

Munich, Germany
woebker@in.tum.de

Abstract—Software engineering is an interactive, collaborative
and creative activity that cannot be entirely planned. Inspection
and adaption are required to cope with changes during the
development process. Software engineering education requires
practical application of knowledge, but it is challenging and time
consuming for instructors to evaluate the creation of innovative
solutions to problems. Current higher education practices lead
to a multitude of rules, guidelines and order. Instructors see
deviations of students as failures and limit the creative thinking
processes of students.

In this paper we describe chaordic learning, a self-organizing,
adaptive and nonlinear learning approach, to stimulate the
creative thinking of students. Instructors provide structure and
guidance, but also integrate freedom for self-organization and
self-guided learning and embrace innovation and creativity. De-
viations are seen as opportunities and failures as possibilities for
students to learn and improve. We introduced chaordic learning
into a games development course and a joint advanced student
school and describe the chaordic process of these courses as
case studies. Students in these courses report about an increased
intrinsic motivation, a higher level of self-organization and more
room for creativity leading to an improved learning experience
and more fun.

Keywords-Experiential Learning, Agile Methods, Creativity,
Chaos, Order, Self-guided Learning, Self-organization

I. INTRODUCTION

Software engineering (SE) has undergone several funda-
mental shifts since the term was first proposed in the 1960s
when software systems became larger and more complex to
develop [1]. Initially, the focus was on defined process control
and ordered processes to mimic established manufacturing
processes [1]. In recent years, the emphasis changed towards
empirical process control that embraces frequent inspection
and adaption to react to changing environments [2]. Software
development consists of experimental knowledge work where
creativity is important [3]. SE is the process of creating
software solutions that have - in their entirety - not been
developed before.

SE education requires practical application of knowledge
[4], [5], in particular interaction and collaboration [6]. Cur-
rent higher education practices lead to a multitude of rules,

guidelines and order, which in turn “makes creative teachers
and students feel less and less in place” [7]. University courses
focus too much on analytical and logical thinking, because this
is easier to teach and to grade.

Instructors follow a defined teaching approach and see de-
viations of students as failures. They prematurely set up struc-
tures (e.g. assignment requirements, syllabus, instructions)
without taking time to determine the desired learning outcomes
and how the process of learning should be conducted. When
all educational activities are well defined, students only follow
instructions, but do not use their creative and intuitive thinking
processes and do not learn to act themselves.

Some instructors even sanction creativity if students’ so-
lutions to exercises do not follow correctness criteria, even
if they include innovative aspects. In such cases, there is no
room for self-organization, as instructors fear this might lead
to chaos, in particular if students are unexperienced. This leads
to a gap between skills that current SE education provides and
skills that are required in industry and research.

Chaordic learning is an approach to overcome these prob-
lems by balancing education between chaos and order. Instruc-
tors define the learning environment and high-level learning
goals to provide structure and order. Students have the freedom
to choose the concrete learning activities and the solution
approaches to given problems to allow creativity, innovation
and self-guided learning. Instead of defining all learning steps,
instructors provide guidance in this approach and give feed-
back to the students’ learning progress. Examples of courses
following this idea are capstone courses as described in [8],
[9], and [10]. Capstone courses provide students with a real-
life experience to prepare them for their future career [11].

The paper is structured as follows. Section II provides
background information, defines the term chaordic, describes
the learning organization that focuses on individuals, and
presents agile methods as concrete practice for a chaordic
development process. In Section III, we define the chaordic
learning approach, which is based on a design process, and we
present its properties and its benefits. Section IV shows two
case studies, in which we applied chaordic learning, a games

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-SEET.2017.21

84

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-SEET.2017.21

86

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-SEET.2017.21

87

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering Education and Training Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-SEET.2017.21

87

development course and a joint advanced student school.
In Section V, we discuss other chaordic learning courses,
constructivism and design thinking as related work. Section VI
concludes the paper.

II. FOUNDATIONS

In the 1960s, software systems became larger and more
complex to develop [1]. Projects failed because development
concepts and methods were missing and teams worked to-
gether in rather chaotic and unstructured ways. The term
software engineering (SE) “was deliberately chosen as being
provocative, in implying the need for software manufacture to
be [based] on the types of theoretical foundations and practical
disciplines[,] that are traditional in the established branches of
engineering” [12], [1]. Detailed process models emerged that
describe the process of engineering software, resulting in a
structured software process. The aim was to bring order and
control into the development approach following strict rules
and avoiding deviations, which were seen as errors that need
to be corrected.

In the following years, software developers increasingly
recognized that too much order and control is counterpro-
ductive and that the essence of SE is to deal with changes:
defined process models are not capable of addressing this
need [13]. SE consists of experimental knowledge work where
creativity is important, including unexpected events, incidents
and uncertainty [3]. Software development is a complex pro-
cess with random variables, that cannot be defined completely
deterministic: “It is typical to adopt the defined (theoretical)
modeling approach when the underlying mechanisms by which
a process operates are reasonably well understood. When
the process is too complicated for the defined approach, the
empirical approach is the appropriate choice” [2].

As response, agile methods emerged with the philosophy
that software development should follow an empirical ap-
proach: still structured, but not entirely planned, and thus
providing more freedom to adapt to changes. Deviations, errors
and failures are seen as opportunities to inspect, adapt and
improve the methodology. If random variables such as uncer-
tainty and change are allowed, the process control is stochastic
(nondeterministic) and allows chaos. Stochastic control is not
solved analytically and deals with the existence of uncertainty
and chaos [14]. Empirical process control balances between
chaos (stochastic control) and order (defined control).

A. Software Engineering Education

Several pedagogic theories have been developed and inte-
grated into education. Educators recognized that SE education
requires practical application of knowledge [4], [5], in par-
ticular interaction and collaboration [6]. Experiential learning
is a methodology in which educators engage with learners in
direct experience to increase knowledge, develop skills, and
clarify values [15].

Problem-based orientation allows students to identify what
they know, what they need to know, and how and where
to access new information that leads to the resolution of a

particular problem [16]. It is one important aspect in capstone
courses [17].

The introduction of computers in education enables students
to learn through the delivery of content and instructions via
computer mediated activities, digital and online media [18]. It
promotes simultaneous, independent and collaborative learning
experiences.

In cooperative learning approaches, students work in groups
to complete tasks collectively towards a common goal and the
educator’s role changes from giving information to facilitating
learning [19].

Active learning is an educational approach to increase
involvement and excitement with the subject being taught.
Instead of learners acting as receivers of knowledge by pas-
sively listening to lectures, active learning puts the emphasis
on developing learner skills and engaging them in activities.

B. Chaordic

In 1995, Hock first coined the term chaord1 [20]. This
neologism is the combination of the words chaos and order,
meaning a state in between that adapts the principles and
properties of both. Hock shares his experiences in managing
organizations and concludes that a chaordic approach is
required in complex situations in order to facilitate innovation
and creativity.

“By chaord, I mean any self-organizing, adaptive,
non-linear complex system, wether physical, bio-
logical, or social, the behavior of which exhibits
characteristics of both order and chaos or loosely
translated to business terminology, cooperation and
competition.” [20]

Complex systems arise and thrive on the edge of chaos
with just enough order to give them pattern [21]. Chaord is
a universal concept that can be applied to different systems
and environments. The core principles of chaos and order
are essential for a chaordic system. There is an aversion to
disorder in today’s world [22], because disorder means a loss
of control. Since chaos can lead to disorder, it is important to
overcome the fear against disorder to make a positive use of
chaos, which is central to the idea of chaord. Chaos is used
to increase responsiveness and adaptivity to the environment
and order is used to keep the system stable and to make sure
that its boundaries are not violated.

Chaordic means organizing and shaping a system in a way
to be able to adapt to a changing environment. It can be applied
to different types of contexts [21]:

• Organization: working environment that is governed by
both structure and chaos leading to more innovation

• Business: organization that harmoniously blends charac-
teristics of competition and cooperation

• Leadership: combining induced and compelled behavior
in the relationship between a leader and a follower

• Education: approach that seamlessly blends theoretical
and experiential learning

1“Chaord” is a substantive, “chaordic” is the corresponding adjective.

85878888

CHAORD (kay-ord)

ORDERCHAOS CONTROL

Fig. 1. Chaord is a state between chaos and order (adapted from
http://www.chaordic.org)

Organizational forms are still following industrial principles
defined more than a century ago [23]. Structure and order are
essential in these traditional organizational forms and are often
seen as more important than individuals which are treated
like gearwheels that either function or get replaced [20].
A chaordic organization however includes characteristics of
chaos and order at the same time. It focuses on the individual
people in the organization and allows them to innovate and to
think out of the box [24]. How decisions are managed plays
an important role in governing the organization effectively
[21]. Governance in chaordic organizations is distributed to
many different people and stakeholders. This is contrary to the
traditional, more hierarchical view of organizational structure.

A chaordic system, or a chaordic organization in particular,
is defined by the following characteristics [20]: power and
function of the system are distributed. There is no single
person controlling the whole system or governing all or-
ganizational functions. The system is self-organizing: there
is no external system or individual required to make the
original system last and function correctly. Collaboration and
competition are both integrated into the system. The system is
malleable and durable: it can adapt while staying successful in
a changing environment. The system is owned cooperatively
and equitably: everyone is involved in the system’s continuing
success.

C. Learning Organizations

The learning organization is “a form of organization that
enables the learning of its members in such a way, that
it creates positively valued outcomes, such as innovation,
efficiency, better alignment with the environment and com-
petitive advantage” [25]. While there used to be a divide
between individuals and their associated organizations, there is
now a consensus that being successful requires collaboration
with one another [26]. Individuals play a more important
role in today’s organizations and especially in how those
organizations learn and adapt. This has become important
since workers increasingly look for more flexible working
arrangement which in turn can increase their satisfaction and
commitment [27].

By adapting to the needs of individuals and helping them
produce knowledge, organizations can profit themselves. They
need to continuously listen to the wishes of their people and

transform accordingly. The individual’s knowledge can be used
to improve organizations or the products and services they
provide. The success of the individual is directly linked to the
success of the organization as a whole, because knowledge is
created when people interact with each other [26].

Learning is an activity of interdependent people working
collaboratively with each other [28]. A learning organization
is a place where people are “continually discovering how
they create their reality. And how they can change it” [29].
Companies applying the principles of learning organizations
act between chaos and order, so they are in a chaordic
state [20]. Enabling people to learn in these organizations
depends on two key factors. Organizations have to provide
the possibility and the options for their people to advance
themselves, while also providing the culture to learn in the
first place [29]. When organizations follow these principles,
both the organization itself and its individuals benefit from the
chaordic approach. By ensuring that the individual can learn
in a chaordic environment, the organization itself can become
a learning organization and can improve its efficiency. This is
especially important to be successful in the long-run.

D. Agile Methods

In the 1990’s, agile development methods emerged with
the philosophy that software developement should follow an
empirical process model. The empirical model for Scrum
described by Schwaber [30] is based on Ogunnaike’s definition
of a stochastic model [2]. It handles changes and failures as
opportunities: a quick reaction to these can lead to advantages
compared to competitors. The agile manifesto (visualized
between chaos and order in Figure 2) identified new ways
of developing software by moving the focus from complete
order in traditional development processes towards a more
lightweight methodology in between chaos and order [31].

Agile methods play an increasing role in SE [32] and in
its education [33]. They allow developers to stay creative
while working on complex problems and projects. A team
that applies agile methods is self-organizing: the team decides
about the concrete procedures, and learns from problems, risks,
and failures allowing a more chaotic way of thinking. There
are also members in the team, such as the scrum master, who
have control over the process by moderating and negotiating
with the rest of the team, leading to an ordered course of
action. The acceptance of failure is an important aspect of agile
methods. Realizing that a mistake has been made, learning
from it and iterating on the solution to fix the mistake is of
importance to the success in a complex software project.

Due to the application of empirical process control which
could also be called chaordic process control, agile methods
shifted the focus in SE from order (defined process control)
towards chaos (stochastic process control). They include a mix
of order and chaos and balance between both. On the one
hand, they provide a structured framework with principles such
as daily meetings with specific questions or procedures how
to organize iterations. On the other hand, they are open to
concrete methods, tools and workflows suggested by devel-

86888989

Individuals and
 interactions

Working
software

 Customer
collaboration

Responding to
 change

Light/agile

Chaord

Chaos

Processes
and tools

Comprehensive
documentation

 Contract
negotiation
Following
 a plan

Heavy

Order

Fig. 2. Agile methods are an instance of a chaordic setup in between order
and chaos.

opers, allow changes and facilitate creativity. Therefore, agile
methods are a concrete instance of a chaordic setup that has
a direct application and impact on the software development
process. The goal is to give freedom to the development team
while setting the necessary boundaries to control it and to lead
it into the right direction.

III. CHAORDIC LEARNING

Chaordic learning is an educational approach that “seam-
lessly blends theoretical and experimental learning” [20] and
includes aspects of order and chaos. In this context, structured
courses with detailed instructions represent order, while exper-
imental learning and educational innovation represent chaos.

While chaordic learning moves control to students, instruc-
tors still provide guidance2 to ensure that students understand
theory in the right way and to avoid misconceptions. Chaordic
learning puts the instructor and the students on the same level
to remove hierarchies and to improve collaboration. It includes
the idea of cognitive apprenticeship [35]: an apprentice (the
learner) observes the skills of a master (the educator) who
shows how a concept works in practice. Clarifying the thinking
process behind the application of the concept makes it easier
for the apprentice to imitate the behavior.

Chaordic learning does not require the abandonment of
structured learning, but a shift from traditional educational
approaches would require creating room for chaos. This can be
achieved by promoting creative problem solving experiments,
where students apply principles learnt in theory or propose
own new ideas. Experimentation and collaboration should be
rewarded, while instructors focus on personalization, cooper-
ation and informal learning.

Software development is the process of creating software
solutions that have never been created before in the same
concrete configuration. Within the context of SE education, de-
velopment of creative problem solving skills is not addressed
properly. We believe chaordic learning can bridge the gap
between the skills current education provides and those the
SE discipline requires. The encouragement of experimental
learning (chaos) teaches the creative skills required in SE. A
chaordic balance can be introduced in the form of project
courses, where instructors provide a rough structure for the

2Chaordic learning is not to be confused with unguided or minimal guided
learning approaches that fail to improve the learning experience [34].

learning environment and the learning goals and students work
in a self-organizing, adapting way to achieve them.

A. The Chaordic Design Process

We propose the following chaordic design process including
six steps to help instructors facilitate the creation of chaordic
learning environments. These steps were adapted, to an ed-
ucational context, based on the work of Hock on creating a
chaordic organization. It is important to point out that such
environments cannot be created by instructors alone, but rather
through collaboration between students and instructors, where
students take charge of their own learning.

1) Purpose: Define the learning objectives of the course
and a common understanding of what students aim to gain
upon completion. Questions, such as “Why are you here?”
often help illuminate purpose. This component is the key to
motivating students - educational efforts must feel meaningful.
Flexibility in course structure should allow for student input.
Depending on the content, students can be asked to narrow
down a set of requirements or choose technologies they feel
are suitable or wish to explore.

2) Principles: Discuss the fundamental beliefs of how
students and instructors shall conduct themselves in pursuit
of new knowledge. An example would be emphasis on the
positive outcome of learning from failure. Thus, experimenta-
tion can be seen as more valuable than a perfect solution. The
grading scheme should also reflect these principles whereby
students are not penalized for failure.

3) People: Identify people and institutions necessary to
achieve the defined purpose. Chaordic principles encourage
collaboration across program and institutional boundaries, with
government and industry, both national and international.
Students should consider engaging the broader community.
This mindset helps students appreciate the full context of their
learning experience, e.g. the context their software is being
developed in. A concrete example taken from agile practices
is the inclusion of the customer as participant of the team.

4) Concept: Create key guidance for interaction among
the participants in a generally flat chaordic hierarchy. Being
the chaordic equivalent of an organizational chart, it includes
forming teams and introducing student support mechanisms
(e.g. teaching assistants). Students can conceive a new orga-
nizational structure that is effective with respect to all team
members and that defines how work is distributed internally.
Teaching staff should be seen as facilitators and should explain
who, how and when students can ask for help. Individual roles
- such as those borrowed from agile practices, (e.g. scrum
master) could rotate.

5) Structure: Embed the learning goals, roles and responsi-
bilities in the course’s official structure. In a higher-education
context, it is the course description, assignment requirements,
due dates and credits awarded for completion. Assignment re-
quirements should be flexible to allow room for incorporating
new ideas or specifying detailed requirements. The grading
scheme should reflect and encourage experimentation.

87899090

6) Practices: Decide on the activities participants are re-
quired to undertake. There should be an emphasis to pro-
mote activities inspiring innovation. Mechanisms whereby
instructors negotiate with students about their work should be
established (e.g. by discussing status, impediments, promises).
Work itself e.g. could be organized by using a software
configuration management component, such as version control,
with changes being reviewed through pull requests [36]. A
series of meeting practices helps disseminate information.
A course-wide meeting could be used for teams to share
their progress, while regular team meetings allow internal
discussions of problems or ideas. Teaching staff can guide
students to employ best practices, but individual students or
teams are allowed to choose own internal team practices.

The chaordic design process is iterative and adaptive, so a
decision in each step should be reflected in all other steps.
Modifications or refinements of elements may shed light on
changes required in other elements. Over time, the environ-
ment is established when all elements are defined. Figure 3
shows the six steps of the chaordic design process combined
in a creative figure that exemplifies its ideation aspect.

Chaordic Learning
Environment

Purpose

Principles

PeopleStructure

Concept

Practices

Fig. 3. The chaordic design process includes six steps to facilitate the creation
of the chaordic learning environment.

The key to applying chaordic principles in an educational
setting is negotiating each of these steps with the students.
Students can choose to not use provided infrastructure, adopt
own practices or team roles. That way each of the choices
being made follows a deeper understanding of the options
and the rationale behind them. Instructors act as enablers and
moderators, who help students explore, rather than showing
them a well-trodden path. A quote by Hock also reflects this
well: “In the chaordic age success will depend less on rote
and more on reason; less on authority of the few and more
on the judgement of many; less on compulsion and more on
motivation; less on external control of people and more on
internal discipline” [21].

B. Properties

While these six steps in the chaordic design process help
to create chaordic courses, they do not necessarily include
chaotic properties and instructors might still focus too much
on structure and order. It is important to understand the
chaotic nature and to include it into the course. There are five
principles of chaos [37] that are prevalent in chaordic learning:

1) Consciousness: The essential ground state of learning
is mind, more than matter. Ideas are primary and drive the
learning experience of students.

2) Connectivity: The learning experience is related to its
environment and its context and cannot be seen as independent
element. Educators and learners interact and collaborate with
each other towards a common goal.

3) Indeterminacy: Learning cause and effect are inter-
twined. There is no single entity that can completely plan or
control what exactly is learned. While the learning process
is framed, no one is able to predict the exact next action in
the learning process. Guidance and feedback by instructors
determine the right direction.

4) Emergence: The learning experience is constantly grow-
ing more complex, more coherent and more differentiated,
but at the same time not descending into chaos. Students
create coherent networks and relationships between knowledge
through self-organization.

5) Dissipation: Small learning peer groups are being formed
and dissolved based on purpose creating dialogues between
students and instructors and generating new knowledge.

These chaos properties provide a mindset that should be
included in the design of chaordic courses. They make sure
that students evolve their creative skills. However, instructors
can not only focus on chaos properties, they also need to
incorporate structure into the courses, e.g. with milestones, in-
termediate deadlines and control points where students obtain
feedback and where they can evaluate their learning progress.
Examples would be daily or weekly meetings where students
report about their progress, their challenges and their promises,
while instructors listen and provide feedback and guidance.

C. Benefits

In our experience, chaordic learning leads to the following
benefits when it is applied properly in SE education:

1) Increased motivation: Students who can influence the
learning subject, methods and process, have a higher intrin-
sic motivation because they have control over their learning
experience and over the learning outcome.

2) Increased self-organization: As the instructor steps
aside, students have to act, organize themselves and are re-
sponsible for the progress. They have to find the right learning
activities and actively ask for feedback.

3) Less hierarchies: Students are treated on the same level
as instructors, leading to an improved discussion between
students and instructors. Students then come up with new ideas
and suggestions to form the learning process.

4) Improved learning from failures: Instructors create a
culture of successful failures: they emphasize that students are

88909191

allowed to make failures and to learn from these failures. This
lowers the pressure and allows students to experiment new
approaches and to think out of the box.

5) More room for creativity: Decreased pressure to suc-
ceed in every step facilitates out of the box thinking and the
application of new, innovative approaches.

It is important that instructors facilitate the chaordic learning
approach and provide guidance. In particular, unexperienced
students will not be able to immediately self-organize them-
selves. Instructors need to clearly communicate the chaordic
learning environment and the focus towards self-organization,
innovation and creativity. They ask students in the beginning of
the course to actively organize themselves and make the self-
organization part of the assessment. In the first weeks, they
help unexperienced students to organize themselves without
taking over the organization. Frequent inspection and adaption,
as in empirical process control, is required to control the
learning outcome and to prevent misconceptions.

IV. CASE STUDY

In this section, we present two courses in which we applied
chaordic learning to improve the learning experience of stu-
dents. The first course is on mobile games development, the
second course is an international student school on software
development for mobile platforms and the internet of things.

A. Games Development Course

The games development course is a two-week block course
with up to 40 students. We described the structure of this
course in [38]. In this paper, we summarize the course and
focus on its chaordic learning characteristics. We describe
course design and learning objectives using the six steps of
the chaordic design process and the outcome of the course.

1) Chaordic Design Process: While the course is structured
in the first week where students learn programming and games
development, it provides a lot freedom and facilitates self-
organization in the second week.

Purpose: The course is focused on learning games de-
sign and iOS app development using the Swift programming
language. It includes various topics students get to explore:
programming, use of platform specific frameworks, distributed
version control, game design, application of design and archi-
tectural patterns, and user interface design for games.

Depending on previous experience and interest, students
participate in the beginner or advanced modes. The beginner
mode targets students who have no experience with Swift and
iOS development. However, the course assumes that beginners
have basic knowledge of an object-oriented programming
language and UML. During the first week, the focus for these
students is on learning Swift, the use of iOS frameworks
and the Xcode IDE. In the second week, students apply their
knowledge in small team projects.

In advanced mode, students participate as teaching assistants
(TAs) who have already acquired knowledge of the devel-
opment environment, including programming language and
tool chain. The objectives for TAs include specializing in a

technical topic, such as sprite animation within games, and
helping beginners during the course. To achieve this, TAs
prepare an interactive tutorial on their chosen topic under the
supervision of an instructor and present this during the first
week of the course. They also guide teams and individuals to
apply games development practices in their projects to learn
from known methods that achieve best results.

All students practice social and non-technical skills such
as working in a team, presenting, communicating and being
proactive. Learning objectives and assessment structure of the
course are made clear on the first day. During the introduction
round, students share “Why are they here?” and what they wish
to gain from attending the course. This helps choose topics of
interest, set personal goals and illuminate the purpose for the
students.

Principles: Students can choose their own game idea and
select the programming concepts, frameworks and technolo-
gies they want to apply for their game. This increases the
motivation of the students because they can try their own ideas
without limiting their creativity. Ambitious students might go
for more complex 3D technologies, while others prefer the
development of simple jump and run games in 2D.

In addition, they have the ability to adapt the game idea
during the development. Instructors and TAs provide guidance:
students should implement a simple game with easy to apply
technologies that is extensible with new features later on.
This guidance should prevent them from starting with overly
complex games they would not be able to implement in a
week. It facilitates the prototyping idea that is important in
today’s SE practices. In the intermediate milestone in the
second week, the teams present the game idea and justify the
chosen technologies. They obtain feedback and decide on their
own whether and how to include it.

While the first week provides basic knowledge about
game development techniques, students need to obtain further
knowledge on their own for details of a specific technique by
reading references or by using further tutorials. Students also
need to organize their work in teams on their own.

People: Students have to interact with instructors, TAs and
their peer students. Two instructors organize the course, one
is responsible for introducing Swift, the other one is familiar
with games development. Instructors select students, prepare
presentations and set up infrastructure. Four to six TAs help
in the organization. Game experts from industry provide help
for the design of graphics and animations.

Concept: The course promotes a flat hierarchy between
instructors, TAs and students and facilitates feedback in both
directions, from students to teaching staff and from teaching
staff to students. This increases the commitment and the
motivation of students and decreases communication barriers.

Structure: The structure of the course is defined by its
schedule in the first week and its milestones in the second
week. In the first week, instructors and TAs give three tutorials
per day based on interactive learning [39] that are required
for games development. These tutorials are 90 min long and
include a mix of theory, examples, exercises, sample solutions

89919292

and reflections about the taught concept and its usefulness in
different programming situations. During a tutorial, TAs walk
around and help students if they face problems. After a tutorial,
students get 30 min to solve an exercise on their own that is
based on the tutorial content.

In the second week, students build teams to develop their
own game idea. They face several milestones: start of devel-
opment, intermediate feedback and final presentation. These
milestones are made clear on the first day. Otherwise, the stu-
dents can freely choose when, how and where to develop their
game providing freedom and a necessity to self-organization.
The intermediate milestone is two days after the start of the
second week, where the teams informally present their ideas
and current progress.

The course phase ends with the final presentations of all
teams, which are recorded. Students receive the videos and
obtain feedback on content and delivery from the TAs and
the instructors. Students are assessed on the following criteria
in a descending emphasis: originality and complexity of the
game, how well it is implemented, how it was designed
and on an additional documentation where the students show
UML diagrams and explain those. Students can receive the
best grade with both - an unfinished game using complex
technologies and a simple game with completed functionality.
This assessment scheme is made clear to the students in
the beginning of the course, so students are encouraged to
experiment knowing that the difficulty of their choices is taken
into account during assessment.

Practices: The course does not formally present project
management techniques such as the agile methodology Scrum
[30] to avoid an increase of its complexity. Instead, only some
of the practices, such as stand-up meetings, are introduced to
students. These are used to stay organized by presenting the
minimum viable products throughout the day. Students work in
pairs for one week which encourages the cooperative and self-
guided learning process: they work towards a common goal
and have the freedom to organize themselves however they
want. This gives them the confidence in their programming
abilities, required to build larger applications, while at the
same time not limiting them to mere implementation of small
programming assignments.

2) Outcome: At the end of the course, each team presents
their game in a short Pecha Kucha presentation [40] showing
20 slides, each in 20 seconds with automatic transitions.
During the presentation, they focus on the game idea, the
proposed game features, the software architecture, the object
design, the used technologies and frameworks, status and
outlook. In addition, they include a demo of the game where
they show the most interesting features.

After the course, instructors encourage and further accom-
pany students to finalize and submit their game to the iOS
AppStore. Until now, 18 teams published their games.

Our evaluations show that students appreciate a great learn-
ing experience with practical aspects that they can further
use in their career, as well as the possibility to work self-
organized and to integrate their own ideas. They improve their

SE abilities, in particular object-oriented programming, and
their soft skills with the help of games development and they
have a lot of fun.

B. International Student School

The second course is a one week course with 20 students
and four instructors. The course on SE in the Joint Advanced
Student School (JASS) has been conducted for the third time
in March 2016, in St. Petersburg, Russia in the office of
JetBrains3, following two previous courses in 2008 and 2012.
The idea is to bring together students with different cultural
background (Germany and Russia), to work together on inno-
vative topics in SE in a chaordic manner. 10 German students
from Munich and 10 Russian students from St. Petersburg
participated in 2016. We describe course design and learning
objectives using the six steps of the chaordic design process
and the outcome of the course.

1) Chaordic Design Process: The topic of JASS 2016 was
“software development for mobile platforms and the internet of
things (IoT)”. Students are organized into balanced teams, each
with four students (two Russian and two German students), to
work on small projects relevant to this topic for one week
while also spending time on sightseeing and team formation.
While the project topics are roughly defined by the instructors,
the teams have the freedom to adapt the topics and to include
their own ideas.

Purpose: Students learn to develop innovative apps for
mobile and IoT platforms and get in contact with technologies,
such as iOS, Android, micro-controllers, drones, and sensors.
This combination enables new scenarios and requires the
ability to connect sensors of IoT devices with visualization
components and sensors on mobile devices. Students acquire
soft skills, gain experiences with international teams and
become familiar with latest innovations and technologies.
Participants collect experiences in global SE by working in
international teams.

Principles: At the core of the educational offering is a
more engaging teaching method that comes with less control
and moderation and facilitates creativity. The freedom of
choice with regards to tools, processes and technologies forces
students to organize themselves as a team and to overcome the
problems on their own. Students can choose the project topic
and influence the problem statement and the requirements.
This allows them to include their own ideas and to try out
new, innovative approaches.

People: Four instructors organize the course. They arrange
the travel, housing, working environment and catering. Al-
though the project environment is established, no strict rules,
nor processes of how the projects should evolve are defined.
Students apply for the school by providing personal details
and a short motivational letter. The instructors review these
applications and select a heterogenous group of students with
different levels of experience.

3JetBrains Research: https://research.jetbrains.org

90929393

Concept: The course promotes a flat hierarchy between
instructors and students and facilitates feedback in both di-
rections. This increases commitment and motivation and de-
creases communication barriers: No hierarchies within the
team and flat hierarchies between instructors and students.

Structure: The course is scheduled for six days. Students
spend about four days for development and two days for
sightseeing and self-organized team formation events. The
course starts with a short introduction round of the partici-
pants, followed by the presentations of the project ideas.
The projects are framed upfront by the instructors in a short
problem statement that is handed out to the students.

Instructors emphasize that the given problem statements are
only starting points and that the students can integrate their
own ideas. Relevant hardware and software needed to work
on the different projects (e.g. drones, sensors, beacons and
mobile devices) are provided to the students. After the team
assignment, instructors conduct an icebreaker to lower barriers
between team members. Teams organize themselves, choosing
which tools and processes to use, and distributing responsibili-
ties. Teams receive regular feedback in a daily standup meeting
where they report on progress and impediments, and promise
what they will achieve until the next standup meeting. These
meetings are similar to standup meetings in Scrum [30].

In a rotating manner each team member reports on its
team’s progress. The discussion with instructors and other
team members is considered as valuable feedback. On the last
day of the school, each team presents their project including
the design of the system, problem description, motivation,
introduction of team members and a live demo. Assessment
is based on the final presentation and demonstration of the
app functionality. As with the games development course’s
assessment structure, difficulty reflected in students’ choices
with respect to technology and functionality is rewarded.
Aspects like motivation, personal progress, team skills and
quality of the final presentation are also considered in addition
to the project functionality. The course is not part of the
curriculum: all students participate voluntarily.

Practices: In line with the agile manifesto, the school fo-
cuses more on individuals and interactions, than processes and
tools and aims for a working prototype instead of documen-
tation. Daily standup meetings structure the communication
between instructors and students. Instructors are available for
additional questions and guidance. Social activities are an
important aspect of the course. All participants have breakfast,
lunch and dinner together and go out in the evenings. This
motivates the students and strengthens the international teams.
The school does not focus on formal management processes,
so it is up to the students to organize themselves and work as
team to present a viable product at the end of the school.

2) Outcome: After a week of design, development and
integration, all teams presented their projects. Students also
produce a short, creative trailer to visualize the project idea.
The following five projects were presented in 2016:

Multimodel iNTeraction (MiNT): A modeling tool which
facilitates real-time collaboration on models during early stage

requirements engineering. MiNT allows to collaborate on
the creation and editing of informal models, and enables
collaborative modeling across iOS and Android devices.

Quadcopter Autopilot: The goal of this project was the
creation of an app that allows to capture dynamic scenes using
a quadcopter autopilot in several operation modes.

KneeHapp - Rehabilitation Monitoring on the Wrist: Knee-
Happ is a smart knee bandage that aims to support patients
suffering from ligament ruptures. Patients perform required
exercises correctly and provide relevant metrics to a doctor
over a smartphone app to enable better treatment decisions
[41]. KneeHapp Watch extends the smartphone app with a
component for the Apple Watch. The smart watch enables the
display of real time exercise data directly on a patient’s wrist
improving the user experience during exercises.

Octopus - Mobile First Responder for Emergencies: Oc-
topus is a sensor system for optimizing the treatment in
emergency situations. Octopus consists of a set of hardware
sensors (e.g. heart rate, breathing, brain activity sensor) and
mobile devices that are used to collect patient data inside the
ambulance while the patient is transported to the hospital.

Geo Quest Travel Game: The smartphone app helps trave-
lers to plan city trips with regard to points of interest and
food recommendations. It creates individual quests to make
city trips more informative and interesting.

C. Discussion
Chaordic courses benefit from flat hierarchies, but also

need trust to function properly. Instructors need to be able
to move control over the teaching and learning process to
students, while still providing enough guidance to keep the
learning outcome on a qualitatively high level. It is essential
for instructors to provide guidances and feedback to students to
control the learning outcome [34]. Instructors need to identify
situations where students are learning incorrect approaches.
Then, they need to interrupt the process and guide the students
back to the correct path. Students need to be comfortable with
openness and self-organization to benefit from the chaordic
education approach. If students prefer structured courses where
all instructions are provided, the chaordic approach will fail.

To summarize, it is essential for students to actively partici-
pate in the process and to contribute their own opinions and
ideas to the course. Shy students may have an issue with the
chaordic approach and should be especially treated to get out
of their comfort zone to make sure that they also succeed. We
evaluated the case studies in informal discussions and have
received many positive comments about the chaordic learning
approach. Students have reported an increased motivation,
higher level of self-organization and more room for creativity.
They appreciate the openness of the courses and the low
hierarchies between instructors and students. In particular, they
like that they can try out new approaches and have the freedom
to make failures and to learn from successful failures.

V. RELATED WORK

In this section, we relate our chaordic learning approach
to another chaordic learning context, describe the relation

91939494

between chaordic learning and constructivism and show how
design thinking relates to chaordic learning.

A. Chaordic Learning Context

Leigh argues that “structured activities have the potential to
create unpredictable learning contexts” [22]. Simulations and
games can be used in cooperation with chaordic approaches
inside of a traditional classroom setting. Like in our case study,
instructors shift from an orchestrating role to a supporting one.

Leigh uses open simulations, which come with a high
uncertainty regarding the possible outcome. She focuses how
the chaos framework can be useful in understanding com-
plex interactions. These complex interactions can occur when
giving up control over the learning process. Furthermore,
Leigh describes what it means to give control away as an
instructor and how trying to reestablish order can actually
hinder the process of chaordic learning itself. Depending
on how instructors react to chaotic circumstances within the
chaordic learning experience, the approach can either fail or
succeed. It might be difficult to create a positive experience
for instructors since they have to adapt their teaching style to
a new approach and since transferring control to students can
be intimidating.

Our paper focuses on SE education in particular and the dif-
ferent organizational structures that surround it. Furthermore,
we directly apply the chaordic organization principles by Hock
to the learning contexts and focus on how to give control to
students. One of the key aspects is how instructors can steer
this process and which decisions they allow the students to
make on their own. The students in our chaordic courses have
freedom to choose different aspects in a software project and
can also choose their own responsibilities in this process. The
distribution of the decisions, between instructors and students,
play a major role in a chaordic learning approach.

B. Chaordic Learning and Constructivism

Desouza identified the role of ‘Radical Engineers‘ in [42],
who are dealing with chaotic requirements, opportunities and
problems; they allow projects to incorporate innovative ideas
and tools. In this work, the authors do not use the term
chaordic, but incorporate the idea behind it. Their conclusion
is that working in a chaordic manner is essential for software
development projects to provide flexibility to students and to
develop a corresponding set of skills. The learning process
itself has a chaordic nature. Vygotskii in his works [43]
pointed that chaos (and chaos ordering) is a base for learning
and acquiring new knowledge.

The growing trend in SE is that development happens
under conditions of notable uncertainty. There are no standard
rules or methods for setting up the development process itself
because it is hard to define the concrete roles which are
distributed in the team. Veli-Pekka [44] suggested the follow-
ing organizational pattern: “develop the development culture
before process” and after that let people be self organized.

Uncertainty in requirements and environment requires to ex-
periment not only before the development process was set up,

but even during the development. According to Thomke [45],
an innovative process (and we believe, that software develop-
ment is about innovation) encompasses success and failure; it
is an iterative process of understanding what does work and
what does not. The obvious consequence is that the learning
process should have a similar chaordic structure, i.e. incorpo-
rate failures and successes and learn from experimentation to
create successful failures.

Learning by experimentation is a philosophical viewpoint
covered in the constructive approach that tries to describe
the nature of learning [46], [47]. It focuses on hands-on ap-
proaches where students experiment with concrete problems,
try out methods and techniques and learn from the reflection
about their usage. Students then make their own inferences,
discoveries and conclusions and adapt the behavior. As such,
constructivism promotes the chaos side of the chaordic learn-
ing process and influences the idea of the chaordic learning
approach described in this paper.

C. Design Thinking

Design thinking was originally explored and developed as
a human-centric methodology to solve complex creative prob-
lems closely associated with conceptual design [48]. Different
versions of the design thinking process exist. All describe
iterative phases that are not necessarily ordered and can occur
simultaneously. One of the latest views of the process proposed
by Meinel and Leifer has five phases: (re)defining the problem,
need-finding and benchmarking, ideating, building, testing. In
the past decade, design thinking has gained attention as a
meta-disciplinary methodology relevant in a wide range of
contexts beyond the traditional preoccupation of designers
[49]. It has been proposed as a “team-based learning process
[which] offers teachers support towards practice-oriented and
holistic modes of constructivist learning in projects” [50].

Design thinking is an iterative process that guides the
teacher to “realize what is recommended theoretically in con-
structivist theory” [50]. In this sense, design thinking is similar
to chaordic learning and can also be applied to SE courses
to include creativity and innovation. In order to reconcile
the relation between chaordic learning and design thinking,
as applied in education, we consider chaordic learning as an
overarching educational approach. Design thinking is a process
that could be employed as one of the practices (described
in Section III-A) when the chaordic learning environment is
being established. In our courses, we use agile methods within
the practices of the chaordic design process.

VI. CONCLUSION

Chaordic learning is an approach to balance education
between order and chaos to stimulate analytical and creative
thinking processes. Instructors provide structure and guidance,
but also integrate freedom for self-organization and self-
guided learning and embrace innovation and creativity, so
that students learn important management and communication
skills. The chaordic approach is similar to agile methods
following empirical process control. It allows instructors to

92949595

react to specific situations, while providing an overall plan in
their teaching approach. When integrating chaordic learning
into their courses, instructors still control the learning outcome
and avoid misconceptions.

Chaordic learning is particularly helpful in SE education,
where practical application of knowledge, interaction and
collaboration is required. Instructors view deviations as oppor-
tunities and failures as possibilities for students to learn and
improve. We introduced chaordic learning into two courses,
a games development course and a joint advanced student
school. Students report an increased intrinsic motivation, a
higher level of self-organization and more room for creativity
which led to an improved learning experience and more fun.

REFERENCES

[1] M. Mahoney, “The roots of software engineering,” CWI Quarterly,
vol. 3, no. 4, pp. 325–334, 1990.

[2] B. A. Ogunnaike and W. H. Ray, Process Dynamics, Modeling, and
Control. Oxford University Press, 1994, vol. 1.

[3] V. Basili, “The role of experimentation in software engineering: past,
current, and future,” in Proceedings of the 18th international conference
on Software engineering. IEEE, 1996, pp. 442–449.

[4] T. Connolly, M. Stansfield, and T. Hainey, “An application of games-
based learning within software engineering,” British Journal of Educa-
tional Technology, vol. 38, no. 3, pp. 416–428, 2007.

[5] D. Shaffer, “Pedagogical praxis: The professions as models for postin-
dustrial education,” Teachers College Record, vol. 106, no. 7, pp. 1401–
1421, 2004.

[6] J. Whitehead, “Collaboration in software engineering: A roadmap,”
Future of Software Engineering, vol. 7, pp. 214–225, 2007.

[7] I. Mulder, “A pedagogical framework and a transdisciplinary design ap-
proach to innovate hci education,” Interaction Design and Architecture(s)
Journal, no. 27, pp. 115–128, 2015.

[8] J. Tomayko, “Teaching a project-intensive introduction to software
engineering,” DTIC Document, Tech. Rep. CMU/SEI-87-TR-20, 1987.

[9] B. Bruegge, J. Cheng, and M. Shaw, “A software engineering project
course with a real client,” Carnegie Mellon University, Software Engi-
neering Institute, Tech. Rep. CMU/SEI-91-EM-4, 1991.

[10] B. Bruegge, S. Krusche, and L. Alperowitz, “Software engineering
project courses with industrial clients,” ACM Transactions on Computing
Education, vol. 15, no. 4, pp. 17:1–17:31, 2015.

[11] A. Dutson, R. Todd, S. Magleby, and C. Sorensen, “A review of liter-
ature on teaching engineering design through project-oriented capstone
courses,” Journal of Engineering Education, vol. 86, no. 1, pp. 17–28,
1997.

[12] P. Naur, B. Randell, and J. Buxton, Software engineering: concepts and
techniques: proceedings of the NATO conferences. Petrocelli/Charter,
1976.

[13] M. Lehman and L. Belady, Program evolution: processes of software
change. Academic Press, 1985.

[14] M. Kellner, “Software process modeling support for management plan-
ning and control,” in Proceedings of the 1st International Conference
on the Software Process. IEEE, 1991, pp. 8–28.

[15] D. Kolb, Experiential learning: Experience as the source of learning
and development. Prentice Hall, 1984, vol. 1.

[16] D. Boud and G. Feletti, The challenge of problem-based learning.
Psychology Press, 1998.

[17] J. Dunlap, “Problem-based learning and self-efficacy: How a capstone
course prepares students for a profession,” Educational Technology
Research and Development, vol. 53, no. 1, pp. 65–83, 2005.

[18] R. Garrison and H. Kanuka, “Blended learning: Uncovering its transfor-
mative potential in higher education,” The internet and higher education,
2004.

[19] D. Johnson et al., Cooperative Learning: Increasing College Faculty
Instructional Productivity. Higher Education Report. ERIC, 1991.

[20] D. Hock, “The chaordic organization: Out of control and into order,”
World Business Academy Perspectives, vol. 9, no. 1, pp. 5–18, 1995.

[21] D. Hock, “The art of chaordic leadership,” Leader to leader, vol. 15,
no. Winter, pp. 20–6, 2000.

[22] E. Leigh and L. Spindler, “Simulations and games as chaordic learning
contexts,” Simulation & Gaming, vol. 35, no. 1, pp. 53–69, 2004.

[23] F. W. Taylor, The principles of scientific management. Harper, 1914.
[24] D. Hock, Birth of the chaordic age. Berrett-Koehler Publishers, 1999.
[25] M. Huysman, “Balancing biases: A critical review of the literature on

organizational learning,” SAGE Publications, 1999.
[26] J. Pfeffer and J. Veiga, “Putting people first for organizational success,”

The Academy of Management Executive, vol. 13, no. 2, pp. 37–48, 1999.
[27] C. Kelliher and D. Anderson, “Doing more with less? flexible working

practices and the intensification of work,” Human Relations, vol. 63,
no. 1, pp. 83–106, 2010.

[28] R. Stacey, “Learning as an activity of interdependent people,” The
Learning Organization, vol. 10, no. 6, pp. 325–331, 2003.

[29] F. van Eijnatten and G. Putnik, “Chaos, complexity, learning, and the
learning organization: towards a chaordic enterprise,” The Learning
Organization, vol. 11, no. 6, pp. 418–429, 2004.

[30] K. Schwaber, “Scrum development process,” in Proceedings of the
OOPSLA Workshop on Business Object Design and Information, 1995.

[31] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” The Agile Alliance, 2001.

[32] VersionOne, “9th annual state of agile development survey,” 2015,
retrieved January 08, 2016 from https://www.versionone.com/pdf/
state-of-agile-development-survey-ninth.pdf.

[33] D. Rico and H. Sayani, “Use of agile methods in software engineering
education,” in Agile Conference, 2009, pp. 174–179.

[34] P. Kirschner, J. Sweller, and R. Clark, “Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching,”
Educational Psychologist, vol. 41, no. 2, pp. 75–86, 2006.

[35] A. Collins, J. S. Brown, and A. Holum, “Cognitive apprenticeship:
Making thinking visible,” American educator, 1991.

[36] S. Krusche, M. Berisha, and B. Bruegge, “Teaching Code Review
Management using Branch Based Workflows,” in Proceedings of the
38th International Conference on Software Engineering. IEEE, 2016.

[37] L. Fitzgerald, “Chaos: The lens that transcends,” Journal of Organiza-
tional Change Management, vol. 15, no. 4, pp. 339–358, 08 2002.

[38] S. Krusche, B. Reichart, P. Tolstoi, and B. Bruegge, “Experiences from
an experiential learning course on games development,” in Proceedings
of the 47th ACM Technical Symposium on Computing Science Education
(SIGCSE). ACM, 2016, pp. 582–587.

[39] S. Krusche, A. Seitz, J. Börstler, and B. Bruegge, “Interactive learning:
Increasing student participation through shorter exercise cycles,” in
Proceedings of the 19th Australasian Computing Education Conference.
ACM, 2017, pp. 17–26.

[40] A. Beyer, “Improving student presentations pecha kucha and just plain
powerpoint,” Teaching of Psychology, 2011.

[41] J. Haladjian, Z. Hodaie, H. Xu, M. Yigin, B. Bruegge, M. Fink, and
J. Hoeher, “Kneehapp: A bandage for rehabilitation of knee injuries,”
in Proceedings of the International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 2015, pp. 181–184.

[42] K. Desouza and Y. Awazu, “Managing radical software engineers:
Between order and chaos,” in Human and Social Factors of Software
Engineering. ACM, 2005, pp. 1 – 5.

[43] L. S. Vygotsky and R. W. Rieber, The collected works of LS Vygotsky:
Volume 1: Problems of general psychology, including the volume Think-
ing and Speech. Springer Science & Business Media, 1988, vol. 1.

[44] V.-P. Eloranta, “Patterns for controlling chaos in a startup,” in Proceed-
ings of the 8th Nordic Conference on Pattern Languages of Programs.
ACM, 2014, pp. 1:1–1:8.

[45] S. H. Thomke, Experimentation Matters: Unlocking the Potential of New
Technologies for Innovation. Boston, MA, USA: Harvard Business
School Press, 2003.

[46] D. Jonassen, K. Peck, and B. Wilson, Learning with technology: A
constructivist perspective. Prentice Hall, 1999.

[47] T. Duffy and D. Jonassen, Constructivism and the Technology of
Instruction: A Conversation. Psychology Press, 1992.

[48] P. Rowe, “Design thinking,” 1987.
[49] L. Kimbell, “Rethinking design thinking: Part I,” Design and Culture,

vol. 3, no. 3, pp. 285–306, 2011.
[50] A. Scheer, C. Noweski, and C. Meinel, “Transforming constructivist

learning into action: Design thinking in education,” Design and Tech-
nology Education: An International Journal, vol. 17, no. 3, 2012.

93959696

8.4 ArTEMiS - An Automatic Assessment Manage-
ment System for Interactive Learning

This conference paper describes Artemis, an automated assessment management system
for interactive learning. It automatically assesses solutions to programming exercises
and provides instant feedback so that students can iteratively solve the exercise. It
is open-source and highly scalable based on version control, regression testing, and
continuous integration. The paper describes the early use of Artemis in three university
courses and one online course and reports about the experiences. Artemis is suitable
for beginners. It helps students to realize their progress and to improve their solutions
gradually. It reduces the effort of instructors and enhances the learning experience of
students. Artemis is one integral part of the research in this habilitation because the
learning platform enables further research in team-based learning, gamification, learning
analytics, and semi-automated assessment using machine learning.

Authors S. Krusche and A. Seitz
Conference 49th Technical Symposium on Computer Science Education
Publisher ACM
Pages 6
Type Conference: Full Research Paper
Review Peer Reviewed (6 Reviewers)
Year 2018
Citation [KS18]
DOI https://doi.org/10.1145/3159450.3159602

133

https://doi.org/10.1145/3159450.3159602

ArTEMiS - An Automatic Assessment Management System
for Interactive Learning

Stephan Krusche
Technische Universität München

Munich, Germany
krusche@in.tum.de

Andreas Seitz
Technische Universität München

Munich, Germany
seitz@in.tum.de

ABSTRACT
The increasing number of students in computer science courses
leads to high efforts in manual assessment of exercises. Existing
assessment systems are not designed for exercises with immediate
feedback in large classes. In this paper, we present an AuTomated
assEssment Management System for interactive learning.

ArTEMiS assesses solutions to programming exercises automat-
ically and provides instant feedback so that students can itera-
tively solve the exercise. It is open source and highly scalable based
on version control, regression testing and continuous integration.
ArTEMiS offers an online code editor with interactive exercise
instructions, is programming language independent and applica-
ble to a variety of computer science courses. By using it, students
gain experiences in version control, dependency management and
continuous integration.

We used ArTEMiS in 3 university and 1 online courses and report
about our experiences. We figured out that ArTEMiS is suitable for
beginners, helps students to realize their progress and to gradually
improve their solutions. It reduces the effort of instructors and
enhances the learning experience of students.

CCS CONCEPTS
• Social and professional topics→ Software engineering ed-
ucation; Computer science education; • Applied computing →
Interactive learning environments; Learning management
systems;

KEYWORDS
Automated Assessment, Programming Exercises, Continuous Inte-
gration, Version Control, Instant Feedback, Online Editor, Interac-
tive Exercise Instructions, Online Courses, In-class Exercises.
ACM Reference Format:
Stephan Krusche and Andreas Seitz. 2018. ArTEMiS - An Automatic Assess-
ment Management System for Interactive Learning. In SIGCSE ’18: SIGCSE
’18: The 49th ACM Technical Symposium on Computing Science Education, Feb-
ruary 21–24, 2018, Baltimore, MD, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3159450.3159602

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore, MD, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159602

1 INTRODUCTION
The amount of students in university classes and online courses
is increasing. The number of freshmen at our computer science
department increased by 67 % between 2013 (1110) and 2016 (1840).
In addition, the number of enrollments in online courses such as
MOOCs is increasing as well. Class Central recently reported 35
million students which have signed up for at least one MOOC.
With such large numbers of students, manual assessment of pro-
gramming exercises in computer science and software engineering
courses is no longer feasible. Yet, programming exercises are essen-
tial in computer science education [17].

While automatic assessment is an established concept, large
courses raise new challenges for instructors and tools. Automated
assessment must be scalable to handle a large number of students
and provide immediate feedback. The effort for an instructor con-
ducting an programming exercise has to be independent of the
number of participating students. Instant feedback to students is
required to allow resubmissions and learning from failures. This
is particularly important in courses based on active learning [3],
where the programming exercises happen in-class in specific time
frames. During the exercise, instructors need to be able to get an
overview of submitted solutions and typical problems to react and
guide the students.

There are many existing tools for automatic assessment and
grading but most of them are custom tailored solutions for specific
programming languages and requirements (compare Section 5).
This makes it particularly hard to integrate them into existing
infrastructure and use them in large scale courses.

Continuous integration (CI) is an approach allowing to detect
defects and failures in programs [7]. This idea can be used for pro-
gramming exercises to validate the correctness and completeness
of source code with test cases. Students upload their solution to a
version control system (VCS) and receive instant feedback about
the result of their submissions from the CI server. While doing the
exercise, they get used to VC and CI, which are important skills in
software development.

In this paper, we describe our experienceswith ArTEMiS, an open
sourceAuTomated assEssmentManagement System for interactive
learning. In Section 2, we cover the basic background behind the
methodology and tools for our approach. Section 3 presents the
approach behind and the use of ArTEMiS inmore detail.We describe
its scalability and show the applicability of the system within large
university courses and an online course in a multi case study in
Section 4. We analyze the participation of students in the case study
and provide insights. Section 5 relates and differentiates ArTEMiS
to other automated assessment tools. In Section 6, we conclude the
paper and provide directions for future work.

Paper Session: Auto-graders SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

284

2 FOUNDATIONS
ArTEMiS uses version control (VC) and continuous integration
(CI) to automatically assess programming exercises in interactive
learning environments. This sections describes its foundations.

2.1 Interactive Learning
Interactive learning combines lectures and exercises into interactive
classes with multiple iterations of theory, example, exercise, solu-
tion and reflection [12]. Educators teach and exercise small chunks
of knowledge in short cycles. They focus on immediate feedback
to exercises to improve the learning experience in large classes so
that students reflect and increase their knowledge incrementally.

Hands-on activities in class increase students’ motivation and
engagement and allow continuous assessment over the course [13].
This approach expects active participation of learners and the use
of computers (laptops, tablets, smartphones) in the classroom. In-
structors provide guidance during the learning process to prevent
misconceptions and to facilitate the learning process.

2.2 Continuous Integration
CI was first described by Grady Booch as concept to avoid risky late
integrations [4]. Martin Fowler defines CI as follows: “Continuous
Integration is a software development practice where members of a
team integrate their work frequently, usually each person integrates
at least daily – leading to multiple integrations per day” [7].

Each developer works on a local copy of a shared code base. After
implementing source code, the developer integrates the changes
into the shared code base. An automated build (including test cases)
verifies each integration to detect compile, test, and integration
errors as soon as possible [7]. The build is triggered on the devel-
oper’s machine or on a central CI server. While CI does not require
special tools, developers use dedicated servers to perform it.

Figure 1 illustrates a common CI workflow. (1) The process starts
with a developer committing code changes to a VCS. (2) The CI
server regularly checks the VCS for code changes and (3) automat-
ically triggers the build and test process on every commit. Tests
can range from small unit tests over larger integration tests to com-
plete system tests. (4) After the build has either succeeded or failed,
the developer is notified about the build result. Every commit trig-
gers a build, so the developer responsible for the failure is notified
immediately to fix the problem.

Version	
Control	
Server

Developer Continuous	
Integration	
Server

Commit Check	for	changes
Compile,
run	tests

Notify	developer

1 2
3

4

Figure 1: Typical continuous integration workflow

2.3 Automatic Assessment
“The [manual] assessment of [programming] assignments places
significant demands on the instructor’s time and other resources”
[5]. To solve this problem and due to the logical character of pro-
gramming, the task of assessing programming exercises can be
automated. A first example was a grading program for punch card

programs by Hollingsworth [9]. Since then, many automatic assess-
ment tools (e.g. [6], [11], [15]) have been developed, together with
guidelines on how programming exercises should be assessed.

Automatic assessment systems provide feedback on students’
solutions for programming exercises [19]. Compared to manual
assessment, they are able to provide consistent feedback for ev-
ery student without bias while significantly reducing the effort
for instructors and TAs. Ala-Mutka describes different types of
assessments [1]. The historically most common type is dynamic
assessment. Its main aspects are to assess functionality, efficiency,
and testing skills by executing a program with test input data and
checking the output for correctness. Another type is static analysis,
which provides feedback on style, programming errors or software
metrics by analyzing the code without executing it.

Students using automatic assessment tools achieve important
learning goals: they develop a clean and reusable code style, reflect
critically on errors and establish a testing culture. These goals are
achieved by multiple methods, e.g. varying the amount of feedback
provided or allowing to work incrementally on a solution. They can
be effectively implemented using different assessment techniques
such as black-box testing, white-box testing or peer reviews.

3 APPROACH
We identified the following goals for ArTEMiS by analyzing the
applicability of existing tools for large interactive courses:

Independence of programming language: different program-
ming languages are taught in university courses [17]. The system
should work independently of a specific programming language.

Scalability: the system should be scalable usable in university
classes and online courses. It should work with hundreds of partici-
pating students at the same time, e.g. during an interactive class.
The workload for preparing and grading exercises must be inde-
pendent of the number of participating students.

Instant feedback: the system should provide instant feedback
for submitted solutions and describe why the particular solution is
correct or wrong so that students can improve it.

Learning from failures: students can learn, reflect and iter-
atively submit new solutions even if they fail initially. Students
should have the chance to resubmit their solutions as often as they
want (potentially limited to a specific time frame).

Different exercise types: the system allows programming ex-
ercises in different areas of the software engineering process in-
cluding programming basics, system design, object design, testing
and build and release management.

Different assessment ways: the system should allow different
ways to assess submissions. For programming exercises the sys-
tem has to support different test types (e.g. structural, behavioral,
runtime, performance or functional tests).

Traceability: the systemmust ensure traceability for instructors
and for students. With regards to team exercises, the contribution
of each team member should be accountable. Traceability enables
early detection of difficulties for the students in the assignment and
lets the instructor react accordingly.

Immediate evaluation: solutions and results are easily acces-
sible and evaluable for instructors enabling them to remove ambi-
guity, answer open questions, or extend the given working time.

Paper Session: Auto-graders SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

285

Interactive exercise instructions: dynamic tasks and UML
diagrams visualize the current progress of students. They update
their color from red (incomplete) to green (complete) when students
submit their solution and when associated test cases pass.

Easy to use online editor: to simplify the participation and
improve the learnability, programming beginners can work on
programming exercises in an interactive and lightweight online
editor. They can submit their solutions with just one button click.

ArTEMiS fulfills these goals by using the concepts of VC and
CI. Each student works with a given template code in his own
repository and has a build plan which executes test cases after
each commit. Students can solve the programming exercise in an
online editor, on the local computer using an IDE or with a mix of
both. When using the online editor, they don’t need to setup a VC
client and an IDE. If they work on their own computer, they need
to apply version control and install an IDE (e.g. Eclipse) and have
more functionalities in the code editor (e.g. auto completion, error
highlighting, etc.). Conducting a programming exercise consists of
7 steps distributed among instructor, ArTEMiS and students:

1. Instructor prepares exercise: set up a base repository con-
taining the exercise code and test cases. Set up a base build
plan on the CI server, and create the exercise on ArTEMiS.

2. Student starts exercise: click on Start Exercise on ArTEMiS.
This automatically generates a copy (fork) of the base reposi-
tory with the exercise code and a copy of the base build plan.
ArTEMiS sets the permissions so that students can only see
their personal repository.

3. Student clones repository: optionally clone the personal-
ized repository from the remote VCS to the local machine.

4. Student solves exercise: Solve the exercise with an IDE of
choice on the local computer or in the online editor.

5. Student submits solution: upload source code changes
to the VCS by committing and pushing them to the remote
server or by clicking Commit & Run Tests in the online editor.

6. CI server verifies solution: verify the student’s submis-
sion by executing the test cases (see step 1) and provide
feedback which parts are correct or wrong.

7a. Instructor reviews course results: review overall results
of all students, and react to common errors and problems.

7b. Student reviews personal result: review build result and
feedback using ArTEMiS. In case of a failed build, reattempt
to solve the exercise (step 4.).

Figure 2 shows this approach as UML activity diagram. CI server,
VCS, and ArTEMiS are combined in the System actor. The approach
consists of 2 phases, exercise preparation and exercise execution.

Exercise preparation: an instructor sets up a VC repository
containing the exercise code (template) handed out to students
and test cases to verify students’ submissions (base repository).
This repository typically includes a small sample project including
some predefined classes, dependencies to external libraries, e.g. a
testing framework, and test cases. A combination of behavioral
(black-box) and structural (white-box) tests allows to check for
both functionality and implementation details of the submitted
code. In addition, the instructor stores the tests separately in a test
repository, which is not accessible to students, to prevent that they
adapt the test cases. It can make sense to completely hide the tests
from the students to prevent reverse engineering the solution.

Instructor System Student

1. Prepare
exercise

2.1 Start
exercise

2.2 Copy &
configure
repository

2.3 Copy &
configure
build plan

3. Clone
repository

4. Solve
exercise

5. Commit &
push solution

6. Build &
test code

7b. Review
test results

7a. Review
course
results

ok?

yes

no

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2: Process for automated assessment in ArTEMiS

After setting up the base and test repositories, the instructor
configures the build plan on the CI server which compiles and
tests the exercise code using the previously defined test cases (base
build plan). This build plan includes a task to pull the source code
from the base repository and the test repository whenever changes
occur, and to combine them so that the tests can be executed in the
second step. A final task, which is also executed when compilation
or test execution fails, notifies ArTEMiS about the new result. The
instructor finally creates an exercise on ArTEMiS by selecting the
preconfigured base repository of the VCS and the preconfigured
base build plan of the CI server.

Exercise execution: a student starts an exercise with a single
click, triggering the setup process: ArTEMiS creates a personal copy
of the base repository, the student repository, and provides access
only to this student. It creates a personal copy of the base build
plan, the student build plan, and configures it to be triggered when
the particular student uploads changes to this personal student
repository. The student can usually not access the build plan to
hide its complexity. Personalized means that each student gets one
repository and one build plan. When 200 students participate in an
exercise, ArTEMiS creates 200 student repositories and 200 student
build plans. Students only have access to their personal reposi-
tory, they cannot access other student repositories. This prevents
cheating, because students cannot access code of each other.

After the setup is complete, ArTEMiS displays the clone URL
and/or allows the student to open the exercise in the online edi-
tor. The student clones the repository to the local computer and
starts working on the exercise. When the students uploads a new
solution to the personalized repository, the personalized build plan
of the student assesses the solution. Students upload solutions by
committing and pushing changes in their source code to their per-
sonal repository or by submitting their changes in the online editor
(which triggers a commit and a push operation in the background).
The new commit on the personal repository triggers the personal
build plan to assess the solution on a build agent. The build agent
pulls the submitted code from the personal repository and the tests
from the test repository, and combines them in a working directory.
It compiles the code, executes the tests and uploads the results to
ArTEMiS in a few seconds, so that the student can immediately
review the feedback and iteratively improve their solution.

In case of an incorrect solution, the feedback includes how many
tests failed and the corresponding failure message for each failed

Paper Session: Auto-graders SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

286

Figure 3: Screenshot of the ArTEMiS online editor with interactive exercise instructions on the right

test. The student can now reattempt to solve the exercise and submit
a new solution. The instructor can review the results, gain insights
on the exercise progress and react immediately to errors and prob-
lems during the exercise. ArTEMiS acts as facade to the CI process
and hides complex details, which enables less experienced students
to participate in the exercise. Every student has a personalized build
plan, so the approach can be used to teach the concepts of CI. Then,
students get access to their build plan and have to configure it on
their own. Students can only see, edit and adjust their personalized
build plan. They cannot inspect build plans of their fellow students.

ArTEMiS includes an online editor that allows unexperienced
students to participate in exercises without dealing with the com-
plex setup of VC and IDEs. Figure 3 shows the online editor with
interactive and dynamic exercise instructions on the right side. In-
teractive instructions change their color depending on the progress
of students. Already completed tasks are marked with a green tick,
incomplete tasks are marked with a red cross. This helps students
to identify which parts of the exercise they have already solved
correctly. When they submit their current solution with the Com-
mit & Run Tests button in the upper right corner, the interactive
instructions dynamically update. The exercise tasks and the UML
diagram elements are referenced by the predefined test cases. They
change their color from red to green when all test cases associated
with the task or diagram element pass. This allows the students
to immediately recognize which tasks are already fulfilled and is
particularly helpful for beginners.

Figure 4 shows the system architecture of ArTEMiS. A student
uses the ArTEMiS Application Client (a browser) and a VC Client of
his choice to obtain the exercise code and to submit solutions. VC
Server, CI Server, Local Build Agents, and the ArTEMiS Application
Server run on the university’s infrastructure. TheCI Server delegates
the builds to local and/or remote agents, e.g. on Amazon Web
Services, depending on how much capacity is required for the
number of participating students. This makes it easy to scale the
approach by adding additional build agents. ArTEMiS uses the

university’s User Management System. The components VC Server
and CI Server are exchangeable, resulting in a flexible system which
can be adapted to the specific requirements of instructors.

<<device>>
Student Machine

<<component>>
ArTEMiS

Application Client

<<component>>
Version Control

Cl ient

<<infrastructure>>
University Data Center

<<component>>
ArTEMiS

Application Server

<<component>>
Continuous

Integration Server

<<component>>
Version Control

Server

<<component>>
Local Build Agent

<<infrastructure>>
Iaas Provider Data Center

<<component>>
Remote Build

Agent

<<component>>
User Management

System

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4: System Architecture of ArTEMiS
The use of CI leads to several benefits: the programming language

for programming exercises is freely configurable. Compilation and
testing of student solutions is not a matter of ArTEMiS, it only
depends on the configuration of the build system. Students learn the
concepts and workflows of VC, CI and testing, all important skills in
software development. The system is scalable and can react to the
number of assessments to be handled with a corresponding number
of build agents. Adding more build agents allows more students to
submit their solution at the same time and still receiving instant
feedback. This is crucial for interactive learning based exercises
that are integrated into a class.

4 CASE STUDY
We use ArTEMiS in 3 large university course (UC) and in a MOOC:

(1) UC - Introduction to Software Engineering: mandatory
subject, 1400 bachelor students (2nd semester), 6 exercises,
814 students participated

(2) UC - Patterns in Software Engineering: elective subject,
400 master students, 34 exercises, 334 students participated

Paper Session: Auto-graders SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

287

(3) UC - Project Organization and Management: manda-
tory subject for business informatics, elective subject for
computer science, about 300 bachelor and master students,
1 exercise, 224 students participated

(4) MOOC - Software Engineering Essentials: 300 active stu-
dents, 10 exercises, 257 students participated

In the beginning of these courses, we go through a short inter-
active tutorial together with the students to show them how to
use ArTEMiS. In all these courses, we recommend to use Eclipse as
IDE and SourceTree as VC client (git). Students could individually
decide which VC client to use to retrieve the assignment, and hand
in their solution. We describe 4 typical exercises from our courses:

(1) Programming: write source code for a problem statement
or UML model. Typical examples are the implementation of
the quick sort algorithm or the strategy pattern. Test cases
assess the correctness of the solution.

(2) Testing: write test cases for the given program code and
mock parts of the program. The instructor creates test cases
that assess the test cases of the students with the given
correct program code and by injecting wrong program code
to review if the tests of the students are correct.

(3) Merge conflict: experience a merge conflict in git and have
to resolve it.

(4) Release management: learn how commits trigger the CI
server, which produces new build artifacts. Students get
direct access to their personalized build plan to be able to
view its configuration in detail.

By automizing all setup steps, we decreased the effort for stu-
dents and instructors. The instructor can dynamically adapt the
working time for different assignments based on the students’
progress in class. This allowed students to actively think about
the exercises instead of just following along with the solution.

4.1 Results
In simulations with 800 students and 2000 submissions over a period
of 10 minutes, ArTEMiS assessed solutions in an average of 10
seconds. In our courses, we measure the average assessment time.
This allows us to constantly evaluate whether ArTEMiS fulfills its
scalability goals under real classroom conditions. In a quantitative
analysis, we found the following results:

(1) Scalability: ArTEMiS can handle 200 submissions per minute.
(2) Feedback: ArTEMiS provides feedback within 10 seconds.
(3) Usability: Programming beginners are able to use ArTEMiS.
Table 1 displays an overview of the number of students and

submissions for each exercise together with the average assessment
time. The number of submissions per student varies from 1.6 to
4.3 on average. In one exercise, where students could only use the
online editor, this number was higher: 7.2. If students participate in
the exercise and submit solutions, most of them also successfully
solve the exercise. The assessment time, i.e. the time for students
to wait from the moment they submit their solution until they see
the test results and the feedback, varies from 5.1 to 10.3 seconds on
average depending on the complexity of the exercise, the number
of tests and the number of external dependencies. In exercises
with more complex tests, e.g. asynchronous client-server tests with
timeouts, this number can increase. In such cases, it makes sense
to distribute tests to students so that they can also execute them

on their computer. ArTEMiS uses a separate test repository so that
students who try to cheat and change tests locally, e.g. to let all tests
pass immediately without solving the exercise, can be detected.

We asked the students for feedback regarding the use of ArTEMiS.
Most students had less experience in the areas of distributed VC
and CI, nonetheless they had no issues working with ArTEMiS.
They stated, that the test results and the feedback was helpful to
solve the exercises, they enjoyed working with it and preferred
the usage of ArTEMiS over the previous process where there was
no automatic and instant feedback. In an online questionnaire, we
found that more than 90 % of the students consider the interactive
exercise instructions helpful in solving the exercise. They are par-
ticularly valuable in online courses, where students are distributed
and instructors cannot guide them directly in case of problems.

(1) Pro-
gramming

(2)
Testing

(3) Merge
conflict

(4) Release
management

Participating students 317 167 224 248
Submitting students 209 (66%) 109 (65%) 211 (94%) 149 (60%)
Successful students 200 (96%) 108 (99%) 183 (87%) 135 (91%)
Overall submissions 340 340 904 285
Correct submissions 236 236 291 198
Test cases 12 12 2 0
Assessment time* 10.3 s 8.3 s 5.1 s 9.6 s
Submissions per student* 1.6 3.1 4.3 1.9

Table 1: Numbers in typical exercises (* on average)

4.2 Discussion
ArTEMiS provides flexibility in how instructors conduct exercises.
It allows them to distribute assessment tests to students so that
they can find their own errors during debugging easier. However,
this might facilitate that students only work on getting the tests
passed and do not take the time to understand the actual problem
and solve it on their own. In such cases, instructors can hide the
tests and only show the test results on ArTEMiS.

Another choice is the use of the online editor vs. the use of
an IDE on the local computer. While the online editor lowers the
entrance barrier, it has limited features. In a comparison, we found
that students prefer the local IDE if they are already familiar with it,
as it offers more features such as syntax and error highlighting, auto
completion and debugging. In an experiment, we forced them to use
the online editor, however some students copied the code file by file
into their local IDE, solved the exercise there, and copied the code
back. An open question at this point is whether providing features
such as auto completion is beneficial to the learning experience.
Novice programmers often heavily depend on such features [18].
This may make students reliant on them and may prevent learning
the correct syntax of the programming language. It could be a viable
strategy to provide only minimal features in a code editor.

ArTEMiS supports in-class exercises with hundreds of students
and can additionally be used for homework exercises. We use it
in online courses where students are distributed and rely on the
exercise instructions and in university classes where instructors can
guide the students in addition. The costs of providing the system
are not negligible. We could use already existing, self-hosted CI and
VC systems. These are hosted at our institution, but we have to take
care of the maintenance. Alternatively, cloud-based solutions such
as GitHub Education, GitLab or Bitbucket Cloud can be used. These
usually offer attractive opportunities for educational institutions.

Paper Session: Auto-graders SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

288

5 RELATEDWORK
A variety of systems for automatic assessment exists. Multiple sur-
veys have been published, summarizing and categorizing these
systems. The first extensive surveys on this topic were done by
Ala-Mutka [1] and Douce et al. [5]. They describe multiple auto
assessment tools and categorize them into dynamic and static as-
sessment and differentiate between local and web based systems.

The survey by Ihantola et al. focuses on identifying key fea-
tures of automatic assessment tools, such as supporting different
programming languages, allowing resubmissions, or providing a
sandbox environment to handle malicious submissions [10]. The
authors state most systems are not open source or available other-
wise, even if a publication describes the development of a prototype.
A survey by Queiros states interoperability and compatibility to
other services is a key factor for automatic assessment systems [14].
He concludes that this factor is not considered for many existing
assessment tools and that future solutions have to improve this.
Our approach fulfills many of the stated features by connecting to
university user management or providing interfaces to VCS.

From those surveys, we identified multiple publications related
to our system. WebCAT was first created in 2003 and is arguably
one of the most complete automatic assessment tools [6]. It has been
developed as open-source software and allows extensibility by plu-
gins. In terms of assessment, it supports student written tests, test
coverage, static code analysis and a combination of both automatic
and manual grading. Our approach covers most of the features
of WebCAT, while removing the dependence on a single software
product. Instead, our approach consists of multiple independent
software systems that are connected using common interfaces. This
leads to a higher flexibility as individual parts of the architecture can
be replaced, for example in favor of lower costs, superior support,
larger communities or general management decisions.

Marmoset focuses on information collection during the develop-
ment process of students [16]. The system takes regular snapshots
of the students’ progress. It allows the instructor to study the de-
velopment process of the students and to identify common bug
patterns. By using VCS and teaching its application, we achieve
the same outcome. Students commit multiple iterations of their
solution, resulting in a commit history that can be evaluated. This
allows to identify common mistakes and study problem solving
behavior. Amelung et al. propose a system thats splits e-learning
and e-assessment platforms into separate systems, allowing inde-
pendent deployment and easier adoption [2]. Our approach targets
the same idea, but our goal is not to implement another closed
source assessment system. Instead, we reuse workflows provided
by existing CI tools to achieve similar results.

Gruenewald et al. focus on the challenge of conducting program-
ming lectures as MOOCs [8] integrating active experimentation
and relating to concrete experience. Those aspects are considered
in ArTEMiS as well. In recent years, commercial products have be-
come available for automatic grading, including Vocareum, Turing
Craft, etc. An open source and free alternative is Codeboard, devel-
oped by ETH Zurich. These online tools are cloud based and use
regression testing, a technique used for quality control in software
development. They allow students to edit and submit source code
in the browser to simplify the participation.

6 CONCLUSION
ArTEMiS combines VC and CI with automated assessment of pro-
gramming exercises and immediate feedback. This enables high
flexibility and scalability in large classes. Our experiences in 3 uni-
versity courses and 1 online course show that programming begin-
ners are able to use the system, improve their solutions iteratively
with immediate feedback and increase their learning experience.

Dynamic and interactive exercise instructions are particularly
helpful for beginners to immediately recognize which tasks are
resolved. The effort for instructors and TAs is reduced. They can
evaluate student results immediately during the exercise to help
students when problems occur. ArTEMiS is free and open source
on https://github.com/ls1intum/ArTEMiS, so that other instructors
can use it in their courses. We will support additional interactive
exercises in the future, in particular quizzes and modeling.

ACKNOWLEDGMENTS
We want to thank Dominik Münch, Andreas Greimel and Josias
Montag who participated in the development of ArTEMiS.

REFERENCES
[1] K. Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for Pro-

gramming Assignments. Computer Science Education (2005), 83–102.
[2] M Amelung, P. Forbrig, and D. Rösner. 2008. Towards Generic and Flexible Web

Services for E-Assessment. SIGCSE Bulletin (June 2008), 219–224.
[3] C. Bonwell and J. Eison. 1991. Active Learning: Creating Excitement in the Class-

room. ASHE-ERIC Higher Education Reports.
[4] G. Booch. 1991. Object Oriented Design with Applications. Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA, USA.
[5] C. Douce, D. Livingstone, and J. Orwell. 2005. Automatic Test-Based Assessment

of Programming: A Review. Journal on Educ. Resources in Computing (2005).
[6] S. Edwards. 2003. Improving student performance by evaluating how well Stu-

dents test their own programs. Journal on Educ. Resources in Computing (2003).
[7] M. Fowler. 2006. Continuous Integration. http://www.martinfowler.com/articles/

continuousIntegration.html. (2006).
[8] F. Grünewald, C. Meinel, M. Totschnig, and C. Willems. 2013. Designing MOOCs

for the Support of Multiple Learning Styles. In European Conference on Technology
Enhanced Learning. Springer, 371–382.

[9] J. Hollingsworth. 1960. Automatic Graders for Programming Classes. Commun.
ACM (1960), 528–529.

[10] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. 2010. Review of Recent
Systems for Automatic Assessment of Programming Assignments. In Koli Calling
Conference on Computing Education Research. ACM, 86–93.

[11] M. Joy, N. Griffiths, and R. Boyatt. 2005. The BOSS Online Submission and
Assessment System. Journal on Educational Resources in Computing (2005).

[12] S. Krusche, A. Seitz, J. Börstler, and B. Bruegge. 2017. Interactive Learning:
Increasing Student Participation through Shorter Exercise Cycles. In Proceedings
of the 19th Australasian Computing Education Conference. ACM, 17–26.

[13] S. Krusche, N. von Frankenberg, and S. Afifi. 2017. Experiences of a Software
Engineering Course based on Interactive Learning. In Proceedings of the 19th
Workshop on Software Engineering Education in Universities. 32–40.

[14] R. Queirós and J. Leal. 2012. Programming Exercises Evaluation Systems – An
Interoperability Survey. In Conference on Computer Supported Education. 83–90.

[15] R. Singh, S. Gulwani, and A. Solar-Lezama. 2013. Automated feedback generation
for introductory programming assignments. SIGPLAN Notices (2013), 15–26.

[16] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, . Hollingsworth, and N. Padua-Perez.
2006. Experiences with Marmoset: Designing and Using an Advanced Submission
and Testing System for Programming Courses. SIGCSE Bulletin (2006), 13–17.

[17] T. Staubitz et al. 2015. Towards Practical Programming Exercises and Automated
Assessment in Massive Open Online Courses. In International Conference on
Teaching, Assessment, and Learning for Engineering. 23–30.

[18] A. Vihavainen, J. Helminen, and P. Ihantola. 2014. How novices tackle their first
lines of code in an IDE: Analysis of programming session traces. In Koli Calling
Conference on Computing Education Research. ACM, 109–116.

[19] M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kuncak. 2013. Software Verifi-
cation and Graph Similarity for Automated Evaluation of Students’ Assignments.
Inf. Softw. Technol. 55, 6 (2013), 1004–1016.

Paper Session: Auto-graders SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

289

8.5 Software Theater—Teaching Demo-Oriented Pro-
totyping

This journal paper describes one example of a more extensive team exercise called soft-
ware theater based on interactive learning. The paper shows the usage in two courses:
the capstone course iPraktikum with 100 students and the lecture-based course Project
Organization and Management (POM) with 400 students. The creation and conduc-
tion of software theater focus on students’ creativity. The workflow consists of multiple
steps that combine teaching the concepts and immediately practicing them in a larger
project-based context with realistic problem statements. An evaluation shows that soft-
ware theater is more creative, memorable, dynamic, and engaging. Moreover, it brings
fun into education.

Authors S. Krusche, D. Dzvonyar, H. Xu and B. Bruegge
Conference Transactions on Computing Education
Publisher ACM
Pages 30
Type Journal Article
Review Peer Reviewed (4 Reviewers)
Year 2018
Citation [KDXB18]
DOI https://doi.org/10.1145/3145454

140

https://doi.org/10.1145/3145454

10

Software Theater—Teaching Demo-Oriented Prototyping

STEPHAN KRUSCHE, DORA DZVONYAR, HAN XU, and BERND BRUEGGE,
Technische Universität München

Modern capstone courses use agile methods to deliver and demonstrate software early in the project. How-
ever, a simple demonstration of functional and static aspects does not provide real-world software usage
context, although this is integral to understand software requirements. Software engineering involves capa-
bilities such as creativity, imagination, and interaction, which are typically not emphasized in software engi-
neering courses. A more engaging, dynamic way of presenting software prototypes is needed to demonstrate
the context in which the software is used. We combine agile methods, scenario-based design, and theatrical
aspects into software theater, an approach to present visionary scenarios using techniques borrowed from
theater and film, including props and humor.
We describe the software theater workflow, provide examples, and explain patterns to demonstrate its

potential. We illustrate two large case studies in which we teach students with varying levels of experience to
apply software theater: a capstone course involving industrial customers with 100 students and an interactive
lecture-based course with 400 students. We empirically evaluated the use of software theater in both courses.
Our evaluations show that students can understand and apply software theater within one semester and that
this technique increases theirmotivation to prepare demonstrations even early in the project. Software theater
is more creative, memorable, dynamic, and engaging than normal demonstration techniques and brings fun
into education.

CCSConcepts: • Social andprofessional topics→ Software engineering education; Information technol-
ogy education; • Software and its engineering→ Agile software development; Software prototyping;
Rapid application development; Object oriented development;

Additional Key Words and Phrases: Agile methods, visionary scenarios, scenario-based design, collaborative
learning

ACM Reference format:
Stephan Krusche, Dora Dzvonyar, Han Xu, and Bernd Bruegge. 2018. Software Theater—Teaching Demo-
Oriented Prototyping. ACM Trans. Comput. Educ. 18, 2, Article 10 (July 2018), 30 pages.
https://doi.org/10.1145/3145454

1 INTRODUCTION
Software engineers have to cope with uncertainties and constantly changing requirements
(Lehman and Belady 1985). Many educators teach software engineering in a setting close to the
real world with industrial customers, which enables students to experience such challenges and
prepares them for their later career in industry (Tomayko 1987; Shaw et al. 1991; Bruegge et al.

Authors’ addresses: S. Krusche (corresponding author), D. Dzvonyar, H. Xu, and B. Bruegge, Chair of Applied Software En-
gineering, Department of Computer Science, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany;
emails: {krusche, dzvonyar, xuh, bruegge}@in.tum.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 1946-6226/2018/07-ART10 $15.00
https://doi.org/10.1145/3145454

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:2 S. Krusche et al.

2015). Modern capstone courses use agile methods such as Scrum (Schwaber and Beedle 2002) to
address uncertainty through an incremental process: software is delivered and demonstrated early
in the project in the form of potential product increments or prototypes.
However, a simple demonstration of the functional and static aspects of a prototype fails to

provide enough context of real-world software usage, although this is integral to fully understand
the software requirements (Shaw et al. 2006). Clarifying requirements is particularly important in
exploratory projects with emerging technologies where the real requirements are often unclear
until they are met (Carroll 2000). Software engineering involves experimental knowledge work
(Basili 1996) such as creativity, imagination, and interaction, but these are typically not empha-
sized in education. A more engaging, dynamic way of presenting software prototypes is needed
to demonstrate the context in which the software is used.
To address this problem, we combine agile methods, scenario-based design (Carroll 1995), and

theatrical concepts into a technique called software theater (Xu et al. 2015). Software theater
is a way to present and evaluate scenarios with a demo of the software under development us-
ing techniques borrowed from theater and film, including props1 and humor. The creation of the
demo is based on the Tornado model (Bruegge et al. 2012): developers demonstrate and evaluate
requirements, user experience, and the design of the system even if the software is not yet fully re-
alized. Model-based demonstration and the mock object pattern (Mackinnon et al. 2000) allow the
simulation of subsystems and objects that collaborate in the demo, but are not yet implemented.
The use of scenarios enables developers to reflect and reason about the requirements before they

are realized, by focusing on concrete usage situations in the problem domain and by inspecting
them from different perspectives (Carroll 2000). With regular demonstrations, developers can iter-
atively validate their development progress and technical decisions with the customer and avoid
having to change their software at a later stage, which would require higher effort (Hazzan 2002;
Shaw et al. 2006).

To examine the benefits of software theater, we investigated the following two hypotheses in
two university courses, a capstone course and a lecture-based course:

H1 Increased motivation: software theater increases the motivation of students to prepare
a demonstration early in the project.

H2 Higher creativity: demonstrations using software theater are more creative than nor-
mal2 demonstrations (without software theater).

The remainder of this article is structured as follows: Section 2 describes innovation manage-
ment, interaction design, informal modeling, prototyping, scenario-based design, and the Tornado
model as the foundations of software theater. Section 3 illustrates the software theater workflow
including all steps from the customer’s visionary scenario to the developers’ actual demonstra-
tion. It introduces the idea of model-based demonstration using the mock object pattern. Section 4
shows an example including all the artifacts created during the workflow. Section 5 presents three
recurring patterns: students use a narrator to tell the story behind the system, they use software
theater to explain complex technical details of a system, and they make an abstract concept more
relatable using a metaphor from a different domain.

1The term “prop” is taken from the theater world and describes a theatrical property, an object used on stage or on screen
by actors during a performance. It is anything movable or portable on a stage, distinct from the actors, scenery, costumes,
and electrical equipment and can be seen as proxy for non-digital objects.
2In a normal or traditional demonstration (without software theater), a developer goes through the user interface of an
application explaining the functionality of the different user interface elements and the implemented logic (e.g., client
server communication) behind it without providing real-world usage context.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:3

We illustrate two case studies in which we taught students with varying levels of experience
how to apply software theater. (1) Section 6 describes a large capstone course involving industrial
customers with up to 100 students and 10–12 teams per semester (Bruegge et al. 2015). In this
course, 60 teams have performed software theater demos in their intermediate and final presenta-
tions since 2011. (2) Section 7 presents an interactive lecture-based course about software project
management with up to 300 students (Krusche et al. 2017), in which 40 teams have performed soft-
ware theater demos since 2015. We describe how we teach software theater in both course formats
to enable other educators to adopt it in their own courses, and show the results of an empirical
evaluation on the use of software theater in both case studies. Section 8 discusses these results
with respect to the two hypotheses and provides best practices for instructors who consider to
adopt the approach. Section 9 describes related work. Section 10 concludes the article.

2 BACKGROUND
In this section, we describe innovation management, interaction design, informal modeling, pro-
totyping, scenario-based design, and the Tornado model as the foundation of software theater.

2.1 Innovation Management
Software development deals with the improvement of changing and uncertain environments and
can be considered as an enabler to innovation management. Innovation is considered as “complex,
uncertain, and subject to changes of many sorts” (Kline and Rosenberg 1986). Software projects
deal with innovation because the user3 needs, the technology, and the project environment can
change due to external factors. Iterative and incremental approaches allow to start with a man-
ageable set of requirements and to keep improving through validation and refinement cycles.
Validation is a crucial step in the iterative development of software systems; it ensures that

innovation goes in the right direction and addresses the correct user needs, integrates the right
technology, and provides the best project environment. It reviews whether the user understands
the system as it is designed, or vice versa, whether the system is designed as expected by the users
(Nielsen 1994). During validation, developers/designers and users need to communicate with the
appropriate medium (text, picture or video, story-telling) and pattern (scenario based or not; from
the system’s viewpoint or from the user’s).

2.2 Interaction Design
This communication is necessary so that designers understand how users interact with software
systems. Sharp defines interaction design as “designing interactive products to support people in
their everyday and working lives” (Sharp 2003). Norman introduced the terms Design model and
User model to describe the mental understanding of designers and users and their interaction
with the system (Norman and Draper 1986).
The Design model describes the designer’s mental model of how the user will use the system

through its user interface. A mental model is based on tacit (as opposed to explicit) knowledge
and is difficult to transfer to other persons by means of writing or verbalization. Since the user
only interacts with the user interface of the system, the design model focuses on the interface and
interaction between user and system.
The User model presents the user’s mental model of how the system will work from the usage

perspective. While a user can have existing knowledge about the problem domain, this model is
also formed by interacting with the system and by reading the documentation (e.g., user manuals).

3A user is an external stakeholder using the system. Different roles and types of users can be distinguished.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:4 S. Krusche et al.

Fig. 1. The relationship between mental models and system under development (adapted from Norman and
Draper (1986)).

Figure 1 shows these two mental models and their relation with the Interface model and the
underlying System model.

The Interface model helps to emphasize the system components that are relevant to the end
user and is separated from the system model. It hides the underlying details that are invisible to
the user and is about the user-visible aspects of the system.
The System model provides an abstraction of the implementation and is used as a convention

for communication among the developers. System modeling allows to focus only on the interest-
ing aspects of a complex system and ignore irrelevant details (Bruegge and Dutoit 2009). System
models are typically documented and conveyed in the form of Unified Modeling Language (UML)
diagrams.
Design model and user model are mental models, i.e., “conceptual models formed through expe-

rience, training, and instruction” (Norman 2013). In a well-usable software system, the user model
is consistent with the design model and is addressed by the interface model and the system model.
User involvement helps to achieve usable systems in the software design process. It aims to evalu-
ate the design and obtain feedback from users about the consistency of the design model with the
user model.

2.3 Informal Modeling
Models are used for different purposes such as specification and documentation, but also facili-
tate the communication between developers. Formal models, such as UML diagrams, are used to
specify and document the software system completely, consistently, and correctly. However, the
creation of such formal models is usually time-consuming. Developers resist to change the model
if they have invested a lot of time to create it. Small changes can lead to huge effort if all formal
models have to be updated to ensure consistency. If changes occur, the time spent to create the
formal model might have been worthless. Formal models are difficult for users without a technical
background to understand (Pressman 2009). They cannot be used to validate the user model and
the design model.
Informal models can be created faster and changed easier because they do not focus on com-

pleteness, consistency, correctness, and formality. They might not follow formal notations and
include inconsistencies or vagueness for parts of the design that have not yet been realized. They
are adapted incrementally and iteratively and are often used in agile methodologies to reduce the
effort for comprehensive documentation as they focus more on communication (Beck et al. 2001).

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:5

They typically describe the look-and-feel and the interaction with the system from the user’s point
of view (Bruegge et al. 2012). Examples of informalmodels include sketches, paper prototypes, low-
fidelity user interfaces, storyboards, and text-based and video-based scenarios (Xu et al. 2013).

2.4 Prototyping
Prototypes are examples of informal models and can be used to validate if the requirements are
understood correctly. There are different prototyping techniques and tools to “involve an early
practical demonstration of relevant parts of the desired software” (Floyd 1984). Demonstrating the
design to stakeholders and expecting feedback from them provides validation at different levels:
requirements, user experience design, and technical architecture design. The demonstration can
be conducted based on prototypes of different fidelity levels depending on which is appropriate
in the given situation. Ideally, the design should be demonstrated and evaluated when there is a
change that may cause significant consequences.
Compared to fully implemented systems, prototypes allow to evaluate design ideasmore quickly

and at lower costs. This is achieved by defining appropriate focus and choosing the right form of
prototype for the given situation (Arnowitz et al. 2010). As prototypes alone do not provide enough
context of the usage, scenarios can be used as a complement (Weidenhaupt et al. 1998). Scenarios
are concrete descriptions of the system usage and are helpful in making sound design decisions by
focusing on both the problem space and the solution space (Jarke and Pohl 1993; Jarke et al. 2010).

2.5 Scenario-based Design
Another example for informal models are scenarios, which are used as examples for illustrating
common use cases and requirements of the system. Their focus is on understandability and com-
munication. Different types of scenarios exist. Visionary scenarios describe a future system: they
are used by developers to refine their ideas and as a communication medium to elicit require-
ments from users. They can be viewed as an inexpensive prototype. As-is scenarios describe an
existing system or a current situation. They can be validated for correctness and accuracy with
the users of the corresponding system/approach. Demo scenarios focus on the demonstration of
a system/approach: they describe a future system that is currently implemented and needs to be
validated.
Scenario-based design is a development approach that uses scenarios to design the future

system. It focuses on the users of the system and their interaction with the system. Rolland and
his colleagues state that “people react to ‘real things’ and ... this helps in clarifying requirements”
(Rolland et al. 1998). Scenarios are intuitive and suitable for communication and validation. The
story-like description with context information makes it easier for stakeholders to understand
abstract concepts in the system design. Scenarios are cheap to create and enable quick iterations.
In a changing environment, the design of the system often takes several revisions to reach a
“stable” state. Scenarios are also open-ended and stimulate the user’s imagination. They enable the
users to come up with more specific requirements and help “the analysts to consider contingencies
they might otherwise overlook” (Carroll 2000). There are different ways to use prototypes with
scenarios depending on who actually demonstrates the scenario. It can be user-performed, where
users are provided with scenarios as description of tasks and are told how to use the prototype
to perform the task (Pohl 2010), or developer-performed, where scenarios provide a context in
which the prototype demonstrates how to achieve specific tasks (Sutcliffe 1997). Weidenhaupt
and his colleagues report that combining the development of scenarios and prototypes enables
stakeholders to check, discuss, and update scenarios and prototypes at the ground level, and can
lead to better customer satisfaction (Weidenhaupt et al. 1998). This is particularly important in
innovative applications based on emerging technologies (such as wearable computing, Internet

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:6 S. Krusche et al.

Fig. 2. Tornado model: wide in analysis, narrow in implementation with multiple releases funneling down
and feedback as updrafts (Bruegge et al. 2015).

of Things, augmented reality, virtual reality) because the desired applications have not been seen
or even imagined by users before. The IKIWISI (I’ll know it when I see it) principle (Boehm 2000;
Cao and Ramesh 2008) must be considered.

2.6 Tornado Model
The Tornado model, shown in Figure 2, describes how visionary scenarios can be transformed into
demo scenarios in order to show an executable system that represents the vision under evaluation
(Bruegge et al. 2012). It is a demo-oriented development process aiming to deliver “touchpoints,” a
metaphor for creating executable prototypes that evaluate design ideas and obtain feedback from
the stakeholder. Informal models are good at closing the communication gap between developers
and users because they are easier to create, understand, and revise. The Tornado model highlights
the importance of informal models in addition to formal models. This is also expressed with the
idea of yin-yang balance in software development (Xu et al. 2013).

Visionary scenarios represent design ideas of systems, and are used for requirements brain-
storming. They require several rounds of iterations to reach a stable version. The main task at this
stage is exploring the problem space, so low-fidelity prototypes are sufficient. Demo scenarios are
refinements of visionary scenarios for reviews and presentations. They provide a demonstration
how the core of the problem is realized when using the system and can be played out in a demo.
Demo scenarios are based on a (partially) working system and take advantage of mockups for
cost-efficiency reasons.
The Tornado model describes an evolutionary scenario-based design process. The initial ver-

sion of the design is depicted using low-fidelity prototypes, used in the early stages to obtain user
feedback about the user interaction design. This enables the user to explore possible design alter-
natives and reformulate the initial requirements. In the middle of the project, when more stable
design alternatives have been chosen, interactive prototypes (e.g., created with Balsamiq4) are used
for a more tangible and reliable evaluation. At the end of the project, the finally adopted design is
implemented and delivered using the tornado metaphor: A tornado is wide in the clouds (vision),
but only a part of it funnels down and hits the ground at its touchpoint (demo). The touchpoint is
where an executable demo system is created and presented. Feedback, obtained through the demo,
influences the visionary scenario as updrafts of the tornado.

4Balsamiq is a digital low-fidelity mockup tool with support for executable prototypes: http://balsamiq.com.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:7

Fig. 3. Main activities and artifacts in the software theater workflow divided into three phases represented
with swim lanes (UML activity diagram). The blue elements are explained in further detail in Figure 4.

3 SOFTWARE THEATERWORKFLOW
Similarly to performing a prototype based on predefined scenarios, software theater is performed
based on a theater screenplay. The screenplay describes the event flow of the demo, the cast
(participating actors), and the props required for the demo. The purpose of software theater is to
demonstrate how end users would benefit from the new product in a real-world context. Figure 3
shows the full workflow for creating a demo using software theater. The workflow is divided into
three phases represented with UML swim lanes: preparation, implementation, and presentation.

3.1 Preparation
In the beginning of the project, the customer creates the problem statement, which includes
Visionary scenarios. The development team prioritizes these visionary scenarios with the
customer. Each scenario is formalized using a template with six components: scenario name,
participating actors, flow of events, entry conditions, exit conditions, and quality requirements.
A Formalized scenario is the basis for the demonstration. It describes the same content
as the visionary scenario, but in a structured way (Bruegge and Dutoit 2009): “Formalization
helps to identify areas of ambiguity as well as inconsistencies and omissions in a requirements
specification.”

3.2 Implementation
After the preparation, the developers start to implement the demonstration. This phase consists of
the activities Create demo backlog, which involves multiple sub-activities and Realize demo.
Figure 4 shows the detailed actions and artifacts for the activity Create demo backlog.
The team writes the Screenplay (called demo script) based on the event flow as well as the par-

ticipating actors of the formalized scenario, and identifies the props and stage directions needed
for the scene. The developers select the subsystems and services that are required to realize the
demo based on the system architecture. The focus of the demo is on subsystems that require tech-
nical validation (e.g., performance-critical or features related to user experience).5 Less critical
subsystems can be mocked to save development time for the demo.
The team identifies participating methods and participating objects in the selected subsystems

by inspecting the flow of events in the formalized scenario. It uses textual analysis (e.g., Ab-
bott’s technique) to identify nouns as candidates for classes (participating objects) and verbs as

5The selected subsystems are highlighted in the subsystem decomposition (UML component diagram).

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:8 S. Krusche et al.

Fig. 4. Detailed actions and artifacts for the Create demo backlog activity (UML activity diagram).

Fig. 5. Model-based demonstration using the mock object pattern: the demo model with mocks replaces
participating objects that are not implemented yet.

candidates for operations (participating methods) (Abbott 1983). This identification can be per-
formed in parallel and includes the creation of a UML class diagram that includes these objects
and methods. Mocked subsystems, objects, and methods are highlighted in the class diagram so
that all developers are aware of the decision.
Developers apply the mock object pattern (Mackinnon et al. 2000) in which real collaborators

(i.e., participating objects) are replaced by mock collaborators as shown in Figure 5. Based on the
concept of model-based testing (Apfelbaum and Doyle 1997), we call this techniquemodel-based
demonstration. It allows to focus on the implementation of the identified objects and methods
(System under demo) and tomock other parts of the system that are not relevant. The dependency
injection pattern (Martin 1996) allows to switch between mock and real implementations during
development.
The resulting Demo backlog contains all the action items for the implementation of partici-

pating objects and methods and represents the task model and management aspects behind the
workflow. The demo backlog also includes the generation of collaborating mock objects and the
preparation of props. After the creation of the demo backlog, the developers assign the action items
and estimate if they are able to realize all action items before the demonstration.
If they answer this question with “Yes,” they start with realizing the demo. Otherwise, they

need to modify the screenplay and leave out certain aspects in the demonstration or mock addi-
tional subsystems, objects, and methods. The realization of the demo app can follow a continu-
ous integration and continuous delivery process. During the realization, the developers tick off

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:9

Fig. 6. Software theater’s main concepts and relationships in an analysis object model (UML class diagram).

finished action items or further refine the demo backlog. After the realization and the delivery, the
workflow proceeds to the presentation phase.

3.3 Presentation
During the presentation, team members assume the roles of the actors of the screenplay. After the
demo, the team collects feedback and incorporates it by modifying the visionary scenarios. Typical
feedback includes user interface issues and conceptual aspects of the system; it usually leads to
changes in the prioritization of the visionary scenarios. Sometimes, it even requires a change of
the used technologies.
Figure 6 shows all artifacts of the software theater workflow as objects in an analysis object

model. This illustrates how these artifacts are related to each other. For instance, the action items
are connected to participating methods that need to be realized for the demo. The action items
therefore connect the task model (demo backlog) with the object model of the developed system
that is visualized in a UML component diagram (participating subsystems) and in a UML class
diagram (participating object and participating methods).

4 SOFTWARE THEATER EXAMPLE
To exemplify this workflow, we show an example taken from our capstone course (cf. Section 6).
It includes all artifacts of the software theater workflow for one concrete project of the course.
The project was done in collaboration with Zeiss Meditec,6 an industry partner in the field of

medical technology. Its goal was to develop the Zeyes app to digitize the process of stock taking
and re-ordering of lenses for cataract surgeries at hospitals around the world. One of the visionary
scenarios received from the customer was as follows:

The sales representative for Mexico is in charge of managing several customers. The
sales process of consumables involves much more operational activities for the sales
representative than the sales of devices. She needs to visit each customer regularly to
initiate replenishment orders for the customer and to conduct stock checks.

6Zeiss Meditec is a department of Zeiss, specializing in medical technologies: https://www.zeiss.com/meditec.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:10 S. Krusche et al.

Fig. 7. Formalized scenario for the stock taking demo with the flow of events as basis for the screenplay.

Both processes are quite manual today and reduce the time she can talk to the
customer about new products and application related questions during her visit. The
manual process introduces errors in stock taking.
She already works with her smartphone for the customer account management, so

she would appreciate if she could also use it for ordering and stock management. This
would be desirable because mistakes in stock taking introduce organizational issues
and costs, and every minute that she saves in this process can be used to have value
added discussions with the customer.

The team selected parts of this scenario for their demonstration and formalized it. Figure 7 shows
the formalized scenario with name, participating actors, flow of events with user and system steps,
as well as entry and exit conditions (Bruegge and Dutoit 2009). This concludes the artifacts of the
“preparation” phase of the workflow.
The team wrote a corresponding screenplay for their demonstration. It chose to have a narrator

who leads the audience through the scene and two employees who perform the stock taking pro-
cess. During the theater, Christina manually takes the stock and gets frustrated by its inefficient
and confusing nature, while Matthias uses the Zeyes application, which enables him to scan the
products by barcode, see which products are missing in the inventory, and send a report with the
results. Figure 8 shows this story as screenplay. After writing the screenplay, the students contin-
ued with the selection of participating subsystems, and the identification of participating objects
and methods. They serve as basis for creating the demo backlog. The team did not document these
steps, as they onlywent through them informally. Therefore, we used their systemmodels to create
possible representations of the artifacts in this phase of the workflow to complete this example.
Figure 9 shows a simplified version of the subsystem decomposition that focuses on the com-

ponents included in the demo. The Smartphone App runs on the customer representative’s smart-
phone at the customer location (e.g., a hospital). It uses the Smartphone Camera to identify items
by barcode and an NFC Reader (near field communication) to scan items by NFC tag. It commu-
nicates with the Customer Service Hub to retrieve necessary customer information, to submit
reports, and to place orders as a result of stock taking.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:11

Fig. 8. Excerpt of the screenplay for the stock taking demo with the narrator, Christina, and Matthias as
actors. The screenplay starts on the left side and continues on the right side.

Fig. 9. Selected participating subsystems for the stock taking demo (UML component diagram). Not partic-
ipating subsystems are shown in grey. The blue subsystem NFC Reader is mocked.

The demo scenario at hand did not include submitting an order, which means that the Order
Manager and the Order Subsystem are not relevant for preparing the demo and are thus greyed
out in the UML model in Figure 9. The team knew already that they would mock the NFC Reader
because they would not have the necessary accessory to read NFC tags on the iPhone. By realizing
early which parts of their system are most relevant for the demo, the team could concentrate on
implementing the critical functionality. The next step of the workflow involved the identification

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:12 S. Krusche et al.

Fig. 10. Identified participating objects and methods for the stock taking demo (UML class diagram). Blue
elements are mocked.

of participating objects and methods. Starting from the selected demo-critical subsystems, the
developers identified the corresponding objects in these subsystems that they needed to implement
for the demo. Figure 10 shows the result of this step, simplified to include only the two components
of the Zeyes app that are required for the demo.
The developers decided which objects and methods can be mocked for demonstration purposes.

For instance, they might need to mock a component because they do not have the time to fully
implement it or because there is a technological constraint which keeps them from implementing
it. Another reason could be that they want to reduce the risk of demo failures, e.g., in complex
setups with distributed components. The team mocked the component NFC Reader because it
did not have a reader to connect to the iPhone at the time. It implemented a mock object NFC
Connector, which always indicates that the reader is available and returns the same, pre-defined
data when scanning items.
The developers also mocked the interface getInventory provided by the Stock Taking

Subsystem in the Customer Service Hub (cf. Figure 9) because the data of real server responses
contained cryptic item names. They changed the getInventory method in the Inventory object
to return more understandable item names for their live demo. The mocked elements are marked
in blue in Figure 10.

After identifying the participating methods and objects, the team created the demo backlog
including implementation tasks and organizational tasks. These tasks should be small enough so
that they can be easily distributed to individual team members. Figure 11 shows an excerpt of the
demo backlog for this demonstration, including action items for implementation, for the creation
of mocks, and for the preparation of props.
The team performed their demonstration on February 2, 2017. Figures 12 and 13 show scenes

of the live demonstration where two sales representatives interacted with the developed software
and with each other.7

7A recording of the demo is available at http://youtu.be/MTayd0kyY6Y (the demo starts at 06:30).

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:13

Fig. 11. Demo backlog with tasks to realize for the stock taking demo.

Fig. 12. Software theater demo: actors Christina and
Matthias perform the scenarios for manual and dig-
ital stock taking (Zeiss Meditec project).

Fig. 13. Software theater demo: Matthias explains
to Christina the advantages of the Zeyes app that
enables digital stock taking (Zeiss Meditec project).

5 SOFTWARE THEATER PATTERNS
Based on the patterns idea (Alexander et al. 1977), we identified three software theater patterns
that highlight the creativity and flexibility of software theater demonstrations.

5.1 Narrative Pattern
The narrative pattern describes the role of a narrator in the software theater scene. Teams typically
use this pattern to leverage its capability for detailed explanation: for instance, the narrator can
set the scene and explain how and why the system solves a problem in the particular situation.
An example of the application of the narrative pattern was the Zeiss Industrial Measuring Tech-

nology (ZIMT) project. It addressed the problem of monitoring expensive machines shipped to the
customer around the world using multiple transport methods such as trucks, container ships, and
sometimes even elephants. To know whether the shipping company is liable for a damage of the
machine upon arrival, the customer accompanies each machine with a sensor, measuring shocks
in all three axes, as well as deviations in temperature and humidity. The team developed a corre-
sponding smartphone application. A Zeiss service mechanic can use it to read the sensor data and
get a first clue on where to start inspecting the damaged machine.
The demonstration showed the machine in a closed box and the collection of sensor data was

not an instantly visible process. Therefore, the team made the problem more obvious by involving
a narrator who explained what was happening from the perspective of the machine. They even
used the first person to make the situation more relatable. For instance, the scene started with the
machine introducing herself and arguing: “Because of my high value, I have a sensor with me. It

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:14 S. Krusche et al.

tracks shocks and extreme temperature values. Zeiss uses it to keep an eye on my status.” As a
result, the actors could play their parts without explaining the rationale behind their actions.8

5.2 Explanation Pattern
The explanation pattern shows a technical detail of the system within a software theater scene.
Some teams illustrate an algorithm, while others explore the details of a particular technology. An
example for this is the Allianz project in the winter semester 2014/15. The application involved
the identification of intrusions at home with the help of multiple sensor readings. The team used
the blackboard architectural pattern (Buschmann et al. 1996) to detect an intrusion such as a bur-
glary from the sensor readings. They brought in a superhero named AllianzMan symbolizing the
intelligence of the system to explain how this pattern works.
AllianzMan coordinated several experts, illustrating the specialized knowledge sources of the

blackboard pattern, such as a sensor change expert or an occupant identification expert. Each
of these experts was played by a team member. In their demo, an intruder accessed the building
while the home owner was away, leading to unusual sensor readings such as opening doors, lifting
valuable objects, and raising noise levels. The experts took turns passing the values back and forth,
analyzing and discussing them to combine their knowledge, and getting closer and closer to a
solution under uncertain conditions. When they decided that this was likely an intrusion into the
home, they alerted the home owner. Figure 14 shows a scene of the demo.9

5.3 Metaphor Pattern
Another software theater pattern is the use of a metaphor (e.g., a concept of a different domain)
to explain the purpose of the system in a relatable way. This pattern is typically used when the
system addresses a problem that only occurs in a certain field or for a particular kind of user, or if
the concept behind the system is abstract and not easily understandable.
The BSH project in the winter semester 2016/17 used this pattern in their demonstration of their

system called “Scentdipity.” The app was built to help people design perfumes from home, intro-
ducing personalization and new opportunities for creativity. To illustrate the concept of creating
a perfume out of solvents and scents coming from different olfactive families, the team chose to
demonstrate their system with a blender mixing smoothies.
They adapted their application to show only scents based on fruits and explained why it was im-

portant that the system hides bad combinations of ingredients, or helps to select the right amount
of solvent (symbolized by a carton of milk) for the perfume. This made it easier for end users to cre-
ate a favorable result and to feel like the product is their own creation at the same time. The actress
also showed how the Scentdipity machine (illustrated by the blender) could mix small amounts of
the desired perfume for testing purposes. Figure 15 shows an impression of the demo.10

6 CASE STUDY 1: CAPSTONE COURSE
We teach software theater in our regular capstone course “iPraktikum,” which takes place twice
per year at the Technical University of Munich. In this course, 80–100 students develop systems
involving a mobile component for a real customer from industry. The course is based on a multi-
customer organization (Bruegge et al. 2015) with 10–12 projects running at the same time, and a
continuous process model, Rugby (Krusche 2016). Rugby extends Scrum with continuous delivery
workflows and was adapted for university courses to account for part-time developers.

8A recording of the demo is available at http://youtu.be/enpEO6bGaZQ (the demo starts at 01:55).
9A recording of the demo is available at https://youtu.be/efHEQQaVp6U (the demo starts at 04:20).
10A recording of the demo is available at http://youtu.be/85goFfxUkuk (the demo starts at 03:50).

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:15

Fig. 14. Illustrating the knowledge sources of the black-
board pattern with software theater using the explana-
tion pattern (Allianz project).

Fig. 15. Borrowing concepts from other do-
mains in software theater using themetaphor
pattern (BSH project).

6.1 Course Description
Each project team consists of a project leader, who is responsible for the project outcome as well
as grading the participants. The project leader works together with a team coach; this is a student
who has previously participated in the course as developer, assumes the role of a scrum master,
and takes care of day-to-day problems and agile processes. Each team consists of six to eight
developers, some of which take an additional functional role, involving tasks or workflows such
as modeling, release management, or merge management that are important across all projects.
Functional teams meet regularly to discuss their respective topic and bring the knowledge back
into their project team. In course-wide lectures, we cover topics concerning all participants, e.g.,
software theater.
We describe the structure and workflows of the course in more detail in Bruegge et al. (2015).

Setting and structure of the course are very close to industry and address the majority of the gaps
identified by Nurkkala and Brandle (Nurkkala and Brandle 2011). We have held 12 iterations of
the course, including over 110 distinct projects with different customers from industry,11 since its
introduction in 2008.
We studied the use of software theater during a capstone course running from October 2016

to February 2017. In this instance, 91 students (80 developers and 11 coaches) participated in the
course, andwere distributed into 11 teams, each between 8 and 9 participants.We started the course
with a kickoffmeeting on October 20, 2016, in which the industry partners presented their problem
to all participants. We then allocated the students to teams based on their project priorities and
prior experience, taking into account the importance of balanced teams for learning (Bruegge et al.
2015). An excerpt of the organizational chart with five teams of the course is shown in Figure 16.
In the following 2–3 weeks, each team went through a Sprint 0, an iteration where the focus is not
on development, but on understanding and analyzing the problem (Bruegge et al. 2012; Dzvonyar
et al. 2014).
Eight weeks after the beginning of the course, all teams presented the results of their require-

ments analysis and system design activities in the design review, an intermediate milestone. While
we emphasized the importance of showing the architecture and technical details of the system, we
encouraged the participants to also incorporate a demonstration using software theater in their
presentation. We believe that the demonstration of an executable prototype early in the project
leads to a better understanding of the project status and more realistic feedback from clients and

11Descriptions and videos for all projects: https://www1.in.tum.de/lehrstuhl_1/projects/all-projects#iOS.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:16 S. Krusche et al.

Fig. 16. Excerpt of the organizational chart of the capstone course in the winter semester 2016-17.

other stakeholders. The teams can use this feedback to refine the requirements for the following
iterations (Bruegge et al. 2015).

To teach the participants the necessary knowledge about software theater, we held a course-
wide lecture in which we introduced the software theater workflow, showed them examples, and
provided recommendations and best practices on how to prepare their demo. This lecture took
place 3 weeks before the design review so that the students had enough time to apply the workflow
and to iterate over their demo and presentation. The teams rehearsed the theater play multiple
times and iteratively adapted the interaction between the users and the developed demo app. We
used Prototyper (Alperowitz 2017), which allows the repeated delivery of executable prototypes
to the target environment, in our case the demo apps to the theater stage. We provided feedback
on their presentation in a dry run one week before the design review.
After the design review, the teams continued development for another 7 weeks and presented

the final outcome of their project in the client acceptance test on February 2, 2017. In these pre-
sentations, we asked the teams to focus on a meaningful demonstration of their system that is
understandable to a broad audience. We also encouraged them to perform regular demonstrations
to their customers using software theater in-between the course-wide events. The presentation
recordings of the design review and client acceptance test are available on our web site.12

6.2 Evaluation Design
We closely observed the teams during our capstone course in the winter semester 2016/17 to ana-
lyze the impact of software theater. We measured the following variables at our main events, the
design review, and client acceptance test:

12http://www1.in.tum.de/ios1617.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:17

Table 1. Overview of Software Theater Usage for Each Team in the Design Review
and the Client Acceptance Test

Team name Allianz BMW BSH iHaus LMU McKin Quart T-Sys ZIMT Zeyes ZF
Number of developers 8 7 7 8 8 7 7 7 7 7 7

Design review

Application yes yes no yes yes yes yes no yes yes yes
Demo length [min] 2.6 3.6 3.6 2.1 2.4 2.6 2.3 0 3.4 2.8 1.1
Demo participants 2 3 1 4 3 3 4 0 2 2 5
Integration no yes no yes no no no no no no no

Application yes yes yes yes yes yes yes yes yes yes yes
Client acceptance Demo length [min] 4.4 2.6 5.4 2.5 3.3 3.5 3.7 9.1 6.2 3.5 3.2
test Demo participants 3 3 3 4 6 3 4 4 4 2 3

Integration no no no yes no no no yes yes no yes

(1) Application: whether teams used software theater for their demonstration
(2) Demo length: the length of the demonstration in minutes
(3) Demo participants: the number of participants in the demonstration
(4) Artifacts: which artifacts of the software theater workflow the team produced and doc-

umented
(5) Integration: the integration of the demo into the presentation

We regularly verified our observations in the development tools the teams used for commu-
nication and documentation. For instance, we checked whether the teams documented software
theater artifacts in their team wiki. In addition to these observations, we evaluated the usage of
software theater and the personal opinions of the students in an online questionnaire. After the
client acceptance test, we sent out a survey to 80 developers and 11 team coaches who participated
in the course. The survey included questions about the demonstrations in both major presenta-
tions. In particular, we had the following areas of interest:

(6) Role: the respondent’s role at each event (demo participant, presenter, or none)
(7) Preparation time: the amount of time the respondent spent on the preparation of each

demonstration
(8) Mocks: whether parts of the system were mocked and, if yes, why they were mocked
(9) Software theater value: a comparison of a demo using software theater to a normal

demonstration
(10) Software theater characteristics: opinion on software theater as an approach to real-

istic demonstrations

We combined the observation and the questionnaire to get both a first-hand account of the
students’ experience using software theater, and a more reliable and complete overview of the
usage of the approach in the case study.

6.3 Evaluation Results
We analyzed the demonstrations andmeasured the above variables for each of the 11 teams. Table 1
summarizes the results of the evaluation for both events: Design review and Client acceptance
test.
In the design review, the teams dedicated on average 2.4 minutes out of the 10 minutes of pre-

sentation time to perform a live demonstration of their early software prototype. Nine out of the

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:18 S. Krusche et al.

Fig. 17. Percentage of teams who produced software theater artifacts in the capstone course (grouped by
event).

eleven project teams used software theater. Team BSH chose to narratively walk through their
current state with only one demo participant. Team T-Systems skipped the demonstration because
they felt they had not made enough progress with the software due to hardware challenges they
needed to overcome in the first weeks of their project. Two of the teams designed their presen-
tation from ground up with the demonstration in mind, integrating it into their story in multiple
parts. For instance, team iHaus performed the first part of the demo and then interrupted it to
explain a technical detail of their application before carrying on with their software theater. This
allowed them to use the practical demonstration of their system to support their arguments and
explanations in the presentation.
In the client acceptance test, all teams used software theater, with an average demo length of

4.3 minutes, which accounted for almost half of their presentation time. Team T-Systems, who had
not included a demonstration in the design review, now chose to perform their whole presentation
with software theater, explaining their requirements and project state through their role play. The
number of teams that interweaved demo and presentation doubled in the client acceptance test,
with teams using their live demo to explain technical details of their system in depth as described
with the explanation pattern in Section 5.2. Team ZF performed their software theater in three
parts, with interruptions explaining their algorithms for the detection of dangers while driving
(detection and warning of intersections, gaze detection, and alert of distracting audio levels in the
car). All teams had at least two demo participants; one team had six (3.5 on average).
Figure 17 shows how many teams produced software theater artifacts throughout the project.

The majority of the teams (89%) wrote a screenplay and up to 64% created a formalized scenario
as well as a demo backlog.
In the survey, we received 80 responses (70 developers and 10 team coaches, response rate:

88%). We were interested in the amount of preparation that went into the demonstration at each
event, including producing the artifacts of the software theater workflow, preparing mock data,
practicing the demonstration, preparing props, and iterating over the demo or giving feedback
to fellow team members. Figure 18 shows the responses to this question. For the design review,
36% of respondents indicated that they spent 3 hours or less to prepare for the demo, while 24%
invested 10 or more hours. The preparation time increased for the client acceptance test: 37% of
participants prepared more than 10 hours, while 29% spent less than 3 hours on the demo.
We asked the developers and coaches to compare a demonstration with software theater to

a normal software demo using a pre-defined set of adjectives. As illustrated in Figure 19, over
80% of respondents think that a demonstration using software theater is more creative, fun, and
memorable than a demo without the technique, and two-thirds think that it is more dynamic

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:19

Fig. 18. Survey responses: preparation time for the client acceptance test was higher than for the design
review.

Fig. 19. Survey responses: the majority of students thinks that software theater is more creative, fun, mem-
orable, dynamic, engaging, and understandable compared to a normal demo.

and engaging. Less students, 58%, think that software theater makes a demonstration more
understandable.
This is also visible in the responses to the set of 3-point Likert-scale questions shown in

Figure 20: while most participants agree with having an improved understanding of other teams’
systems through software theater, their opinions are divided concerning their own team. 34% of
respondents agreed that software theater helped them to understand their own project’s require-
ments, with roughly the same amount of neutral responses and disagreeing participants. More
participants disagree than agree that software theater helped them to communicate with their
client. However, 55% agree that their demonstration using software theater gave them confidence
about their system’s usefulness, and the majority of respondents will use the approach to create
future demonstrations.
71% of the respondents indicated that they mocked parts of their system using the mock object

pattern. Among the most frequently stated reasons were the following:

(1) No access to components necessary to realize a certain functionality, e.g., NFC reader,
sensors, or an external machine to communicate with.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:20 S. Krusche et al.

Fig. 20. Survey responses: disagreement (red) and agreement (green) with software theater characteristics
on a 3-point Likert scale.

(2) Fallbacks for connectivity issues, e.g., mocking server responses in case the internet con-
nection fails during the demo.

(3) Fallbacks for complex computation, e.g., complex sensor data analysis, which would have
taken too long for the demo.

(4) Access to data that is not possible to get during the demo, e.g., historical GPS data, which
would otherwise not be present on the demonstration device.

We discuss these findings in Section 8.

6.4 Threats to Validity
One limitation of our evaluation is that we did not have a control group within the same course,
because all teams in our capstone course use software theater. Another threat is that we used
Likert scales, which may be subject to distortion (Garland 1991). For instance, respondents may
have avoided using extreme response categories (central tendency bias) and they may have agreed
with statements as presented (acquiescence bias). They also may have tried to portray themselves
or our course in a more favorable light (social desirability bias) because they were afraid that this
would influence their grades and were thus trying to please the instructors. We addressed this
threat by collecting the responses anonymously and by preventing multiple responses from the
same student.
Novelty bias is an additional validity threat. The fact that most students interact with software

theater the first time in their studies could cause an increased interest. We think that this threat
is low because students who participate in the capstone course twice are equally motivated about
software theater during their second time. To alleviate the threat of selection bias, we asked stu-
dents in which team they worked: in each team, at least half of the team members responded
in the online survey. We also analyzed the results on a team basis. While there are small devia-
tions between the different teams, the general positive opinion about software theater is present
in all teams. In addition, we found similar results in informal, personal interviews that support the
statements we found in the questionnaire. Therefore, we think that the threat of selection bias is
low.
Another threat to the validity in the evaluation is that most students were beginners in the

taught concepts andmostly reported about their perceived experiencewithin the course. Beginners

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:21

Table 2. Overview of the Schedule and Content in the Course POM

Week Content
1 Team formation
2 Project organization
3 Software process models
4 Agile methods
5 Prototyping
6 Proposal management
7 Branch & merge management (Krusche et al. 2016)
8 Contracting
9 Continuous integration
10 Continuous delivery (Krusche and Alperowitz 2014)
11 Software theater
12 Global project management (Li et al. 2016)
13 Project management antipatterns

might not be able to objectively generalize their experience to other situations. Other variables of
the course, such as an open atmosphere toward feedback, can have a positive influence on the
evaluation result. If a student likes the capstone course, it does not necessarily mean that software
theater was helpful. We were not able to exclude these variables in the evaluations of the case
study. To alleviate these threats, we also analyzed how the students used software theater and
these results support the findings of our study.
Our findings apply to a multi-customer software engineering course that was set up at our

university. In other universities with different curricula and environments, it might not be possible
to instantiate our course format and apply the software theater workflow easily.

7 CASE STUDY 2: INTERACTIVE LECTURE-BASED COURSE
In 2015 and 2016, we applied software theater in the university course “Software Engineering II:
Project Organization and Management” (POM). We taught the course POM in the summer se-
mester of 2015 with 294 students and in the summer semester of 2016 with 272 students who
completed the final exam. 200 students regularly attended class and participated in exercises. Two
distinct groups participated in the course: (1) bachelor students in information science, a few with
experience in software engineering, and (2) master students in computer science, some with ex-
isting experience in the taught topics. The challenge of this heterogeneity was that students had
different prior knowledge and completed in-class exercises at different speeds.

7.1 Course Description
The course POMhas the following learning goals: participants understand the key concepts of soft-
ware project management, in particular agile methodologies. They are able to deal with problems
such as writing a software project management plan, initiating and managing a software project,
and tailoring a software lifecycle. They are familiar with risk management, scheduling, planning,
quality management, and build and release management. They can apply different techniques to
solve development and management problems. Table 2 shows the schedule and the content of the
lecture.
The course is based on active learning to increase student involvement and excitement with

the subject being taught (Bonwell and Eison 1991). It integrates individual and team exercises into

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:22 S. Krusche et al.

the lectures (Krusche et al. 2017). Students participate in a team project with five team members, a
simplified version of the projects in our capstone course (cf. Section 6). The goal of the project is to
experience and apply the learned concepts in a more realistic environment. The instructor played
the role of the customer and provided three short problem statements about the development of
mobile applications. The teams had to choose one of the problem statements and one mobile app
development environment: Android, iOS, or Xamarin.
Students formed teams with five team members on their own in the first lecture, following

requirements to create balanced teams with respect to experience, nationality, and gender. In 2015,
the students formed 58 teams, and in 2016, the students formed 51 teams. Software engineering is
a collaborative activity (Whitehead 2007); therefore, team work is an important development skill
students have to learn in the course. The teams used Rugby (Krusche et al. 2014) as an agile and
continuous process model with an initial warm-up phase and five development sprints of 2 weeks
each.
While individual in-class exercises are described in detail so that students can follow step by step,

students receive a more vague description of the exercises in their team project that deliberately
misses detailed instructions. The teams have to bring in their own ideas on how to solve the team
project and apply the techniques they learned in individual exercises earlier in the course. For
instance, we show them how to create low-fidelity prototypes with the tool Balsamiq in a detailed
step-by-step tutorial in the individual in-class exercise. The corresponding exercise in the team
project intentionally only states that the team should create prototypes: they can then choose
their own preferred tool and tailor the prototype creation to their specific problem statement.
We introduced software theater in the 11th week of the course. In the class, we introduced stu-

dents to the workflow and they applied the first steps directly in class within the context of their
team project. They wrote the initial version of the demo scenario and the screenplay. As home-
work, they refined these artifacts, filmed the demo using their smartphones, and then uploaded
a recording to the learning management system so that instructors and teaching assistants could
review it.

7.2 Evaluation Design
We investigated the students’ improvements in the exercises using an optional online question-
naire. We also asked them about their opinion on the exercise concept. It included questions about
personal data, the participation in individual exercises, and application of techniques in the team
project. We wanted to know if students improved their skills in software theater and if they felt
confident to apply software theater in their next team project. Students could also comment on
how the course can be improved.
We conducted the survey in July 2016 and gave the students of the 2016 course 2 weeks to

complete it. Personalized tokens allowed the 272 students who completed the final exam of the
course to participate exactly once in the anonymous survey.13 We received 190 responses, which
amounts to a response rate of 70%. In addition, we evaluated the use of software theater in 2015
and 2016 and analyzed the software theater artifacts of all teams who participated in the exercise.
We counted how many teams delivered certain artifacts and how the teams scored in the exercise.

7.3 Evaluation Results
We analyzed the results of the online questionnaire and the uploaded artifacts of all teams who
participated in the exercises. In the online questionnaire, 48% of the survey respondents stated

13The open source survey tool LimeSurvey (http://www.limesurvey.org) guarantees that the answers are anonymous by
strictly separating token and answer tables in the database.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:23

Fig. 21. Survey responses: disagreement (red) and agreement (green) with perceived improvements and con-
fidence in software theater on a 3-point Likert scale.

Table 3. Number of Software Theater Artifacts Uploaded by the Participating
Teams in the Lecture-based Course

Year Teams
Formalized
scenario Screenplay

UML
component
diagram

UML
class

diagram
Demo
backlog Video

Feed-
back

2015 58 45 (78%) 39 (67%) 18 (31%) 24 (41%) 31 (53%) 20 (34%) -14

2016 51 44 (86%) 43 (84%) 16 (31%) 23 (45%) 27 (53%) 20 (39%) 12 (24%)

that they participated in the in-class exercise about software theater and used it in their team
project. Figure 21 shows that from these exercise participants, 70% agree that they were able to
improve their skills in demo management (including software theater) and 73% agree that they
were confident to apply software theater in their next team project.
In the statements about the exercise concept, students stated that software theater integrates

creativity, interactivity, and fun into a lecture-based course, which is not common to most other,
usually more static, lectures. The creation of a software theater demo improved their personal
learning experience about software development and project management.
We evaluated how many teams participated in the software theater exercise and created the

artifacts of the software theater workflow in both course instances in 2015 and 2016. The results
are shown in Table 3.
The numbers in both courses in 2015 and 2016 were similar with a slightly higher participation

in 2016. More than 80 teams participated in the software theater exercise: 78% of the teams in 2015
and 86% of the teams in 2016 created a formalized scenario; 67% (2015) and 84% (2016) created
a screenplay. 53% of the teams created a demo backlog. Less than half of the teams created and
uploaded UML diagrams. In both years, more teams created UML class diagrams than UML com-
ponent diagrams. In total, 40 teams (34% in 2015 and 39% in 2015) performed the software theater
demo, recorded a video, and uploaded it; 12 teams (24%) obtained feedback from other students in
2016. In 2015, we did not ask the students to collect feedback. Eleven teams (22%) in 2015 and seven
teams (14%) in 2016 were able to complete all artifacts. We discuss these findings in Section 8.

7.4 Threats to Validity
Most of the limitations mentioned in Section 6.4 also apply for the lecture-based course, because
we used similar evaluation techniques. We addressed social desirability bias by collecting the re-
sponses anonymously and by preventing multiple responses from the same student. Other vari-
ables of the course, such as the high rate of interactivity or an open atmosphere toward feedback,
can have a positive influence on the evaluation result. If a student likes the lecture-based course,
it does not necessarily mean that software theater was helpful. We were not able to control these

14We did not ask the teams in 2015 to collect feedback.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:24 S. Krusche et al.

Table 4. Findings of the Evaluations in Relation to the Stated Hypotheses

ID Hypothesis Result
H1 Increased motivation: software theater increases the motivation of

students to prepare a demonstration already early in the project.
Supported

H2 Higher creativity: demonstrations using software theater are more
creative than normal demonstrations (without software theater).

Supported

variables in the evaluations of the case study. However, the evaluation results indicate that soft-
ware theater can also be taught successfully in a lecture-based course.

8 DISCUSSION
In this section, we discuss the results of the two case studies with regard to our hypotheses men-
tioned in Section 1.We also provide best practices for other instructors whowant to teach software
theater.

8.1 Findings
Our case studies revealed that software theater can be taught to students in different types of
courses. We found anecdotal evidence that software theater increases fun, motivation, and creativ-
ity in education, and is a technique to make software demos more relatable. Table 4 summarizes
that our findings support the two proposed hypotheses: software theater increases the motivation
of students to prepare a demonstration already early in the project (H1) and demonstrations using
software theater are more creative than demonstrations without the technique (H2).
The hypothesis H1 is supported by our measures, both in the capstone course and the lecture-

based course. While we encourage live demonstration in the design review of the capstone course
and required it for the client acceptance test, we did not demand the usage of software theater
for the demo. Nevertheless, 9 out of 11 teams used it to demonstrate a very early software pro-
totype at the first event, and all teams used it in their final presentation. Although most teams
could only show a rough first version of their system, their demo took up almost 25% of their
maximum presentation time of only 10 minutes, and 24% of survey respondents spent 10 hours or
more preparing it. This time investment shows recognition for the importance of a live demon-
stration using software theater at an early stage. However, as we do not have a control group that
never learned about software theater, a further case study would be needed to fully examine this
hypothesis.
In our lecture-based course, more than 70% of the students who applied software theater re-

ported in the online questionnaire that they improved their skills in demo management and they
are confident to apply software theater in their next team project. The number of participating
students in the software theater exercise was relatively high, considering that it was one of the
last exercises in the semester and required high effort. In both lecture-based courses in 2015 and
2016, more than a third of all teams performed the software theater and uploaded a video of their
performance.
Hypothesis H2—software theater makes demonstrations more creative—is supported both by

the survey and our observations during the case studies. 87% of respondents think that a demon-
stration with software theater is more creative than without, and the majority of them would
employ the approach in future projects. We also observed a wide variety of creative techniques
used in the demonstrations, such as the explanation of complex technological concepts with a nar-
rator, through the theater play itself, and the use of metaphors from other domains to illustrate

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:25

the requirements of a system. Some teams also interweaved their demo with the presentation to
support their arguments with a representation of their system in the usage context. While we do
not have sufficient empirical data to back up this hypothesis, discussions with coaches, developers,
and clients led us to the conclusions that software theater is a creative technique to demonstrate
software systems, including early prototypes.
In addition, we observed that software theater demos help us in finding new customers for the

capstone courses in the following semesters. We show potential customers the most creative parts
and provide examples of what they can expect from the students. Customers can use the videos in
their company to promote the collaboration with the university. The videos convince the industry
partners about the application-oriented teaching and research at our department.
Another interesting aspect is that students share the software theater videos with family and

friends to explain to them in an easy way what they achieved in their field of study. The students
report that their relatives and friends without information technology background also understand
how the developed software systems can help to improve specific problems. Software theater then
generates a shared understanding between people with and without an information technology
background and has a social relevance to facilitate digitalization and innovation. However, we do
not have empirical evidence about this aspect yet.
Developers and team coaches agreed that software theater facilitates understanding of other stu-

dent projects and increases confidence about their own projects in front of external parties. How-
ever, the opinions were divided about improved understanding concerning team-internal stake-
holders, especially in communication with the client. We suspect that this is due to the setup of the
capstone course: clients specify the project requirements in a problem statement and are usually
strongly involved in the project: they regularly attend teammeetings and review executable proto-
types. With an already good knowledge of the requirements and up-to-date information about the
current project state, a demonstration with software theater becomes less necessary because the
added usage context does not provide further value. Thus, it is logical that teams do not prepare
a demonstration using software theater for typical client meetings, but resort to a normal demon-
stration, which requires less preparation. In order to explore the improvement of understanding
further, more data is needed on stakeholders who are less involved in the project, e.g., clients from
other departments of the organization.
If a team chose to use software theater for their demo, we did not require them to go through

every step of the workflow, but merely provided them with examples for each step and gave them
the freedom to deviate. A majority of teams produced a screenplay for both events of the capstone
course and the proportion of teams to produce a formalized demo scenario and a demo backlog
increased between design review and client acceptance test. This implies that the students real-
ized the usefulness of these artifacts for the software theater workflow and created them by choice
because they helped them in their demo preparation. Over 70% of respondents indicated that they
mocked parts of their system for the demonstration and the reasons stated for using mocks corre-
spond to the recommendations we communicated during the lectures. Therefore, we can conclude
that our teaching approach combining lectures, team coaching, and regular feedback in team ses-
sions and dry runs leads to an improved understanding of the software theater workflow.

8.2 Best Practices
Having taught software theater in capstone courses since 2012 and in a lecture-based course since
2015, we have iteratively refined both our workflow and the approach of teaching it. We want
to share the most relevant learnings for educators who want to adopt the method in their own
courses.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:26 S. Krusche et al.

Communicate knowledgemultiple times:Our courses run over 3 months and students have
to absorb a large amount of information in a relatively short amount of time. We aim to communi-
cate themost important topics several times and through varying channels to ensure that everyone
understands it correctly. In our capstone course, for instance, we give a general overview over soft-
ware theater in a lecture, in which we combine theory with hands-on examples. The team coaches
reiterate the workflow again, concentrating on the aspects that are most important for their spe-
cific team. We also revisit parts of the workflow in the cross-project teams and give feedback to
each team how they apply software theater in their dry run before the real presentation.
Emphasize iteration: Students need multiple iterations to make sure that their demonstration

represents their system and integrates nicely with the rest of their story in their presentation.
Therefore, we introduce software theater at least three weeks before they first need to perform
a demonstration, giving the teams enough time to prepare. We encourage them to go through
multiple iterations of their screenplay. In our capstone course, we also hold a dry run in the week
before each main event to give feedback to demo and presentation. To reduce the workload of the
instructors, the team coaches help in the preparations and give feedback multiple times. The teams
also help each other by commenting on others’ presentations and demonstrations.
When it comes to the dry runs for the design review, our first event in the capstone course, it

is common that teams receive challenging feedback from the instructors leading to fundamental
changes in their demo. Our experience shows that the dry runs for the client acceptance test,
our second event, require less input from instructor side. We believe that our course participants
learn most about software theater by experiencing it in the first presentation. Therefore, we would
recommend to give students at least two opportunities to perform a live demonstration during a
course and to introduce mechanisms of peer feedback to keep instructor workload manageable.
Encourage creativity: It is helpful to show several examples of the application of software

theater and to include cases in which a technical detail is explained (cf. Section 5.2), or where a
team uses concepts from other fields to explain an abstract concept (cf. Section 5.3). We found that
this not only shows students what is possible, but also motivates them to get creative and imagine
how software theater would benefit the demonstration of their own system.
Stress the importance of preparation: In a demonstration, a lot of things can go wrong.

We make sure to show common points of failure (e.g., a failed network connection) and to stress
the importance of having a fallback. Most of the teams decide to mock parts of their system and
prepare backup slides showing a video recording of the demo in case something goes wrong.
Document learnings: According to our experience, delivering a demo with software theater

leads to an improved understanding of the technique itself. We encourage our student teams to
perform a retrospective after their first presentation, discussing and documenting how it went and
what they would like to improve. Changes in the adoption of software theater between the design
review and the client acceptance test (e.g., more preparation time, more integrated demonstrations)
shown in Section 6.3 are based on these learnings.

9 RELATEDWORK
In the beginning of the 1990s, Brenda Laurel presented the idea that usability alone would not be
enough in the development of successful computer systems (Laurel 1993). She described a theory
of interaction, combining her experience in human computer interaction with knowledge of the-
ater. “The real issue,” she claims, is “How can people participate as agents within representational
contexts? Actors know a lot about that, and so do children playing make-believe.” Her hypoth-
esis is that the vocabulary of traditional theater is similar to the vocabulary in human computer
interaction. Laurel’s work is based on Aristotle’s poetics for dramatic theory, and explains how
concepts such as catharsis, engagement, and agency can be applied in digital contexts.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:27

The users’ enjoyment must be a design consideration, which requires an awareness of dramatic
theory and technique. She claims that effective design of interactive systems, like effective drama,
must engage the users directly in an experience involving both thought and emotion: “Even in
task-oriented applications, there is more to the experience than getting something done in the real
world, and this is the heart of the dramatic theory of human-computer interaction.” Our approach
of software theater is based on Laurel’s ideas and introduces theater into software engineering
education to teach students the importance of interaction and emotion.
Mahaux and Maiden (2008) and Mahaux et al. (2010) proposed improvisational theater to sup-

port team-based innovation in the requirements engineering process. The commonality of their
improvisational theater and software theater is that they both employ the form of theater as an
effort to improve stakeholder communication and increase mutual understanding. But they differ
in several aspects.
First, the purpose of improvisational theater is to generate creative ideas in the requirements

engineering process, while the purpose of software theater is to demonstrate and evaluate design
ideas for innovative software projects in education. Second, improvisational theater, as its name
suggests, takes advantage of unplanned improvisational performance to stimulate the creativity
of team members, while software theater emphasizes a pre-defined screenplay to set a framework
for the demonstration. Third, software theater presents not only the applicability of user require-
ments, but also the feasibility of system requirements such as architecture design and hardware
performance. Software theater is used in combination with specific software process and proto-
typing techniques, in our case the Tornado model. The Class, Responsibilities, and Collaborators
(CRC) cards were introduced by XP practitioners Kent Beck and Ward Cunningham in 1989 as
a teaching tool for object-oriented programming (Beck and Cunningham 1989). Instructors have
used CRC cards for role-playing: each student plays the role of a specific class. They interact with
other students representing collaborating classes to understand their responsibilities. While soft-
ware theater is based on actors taking one or more roles, it is not designed to teach role-oriented
programming (Kristensen 1995). Its purpose is to teach the demonstration of a system developed
during a course. Rice and his colleagues used forum theater (a kind of interactive theater) to elicit
requirements in the development of new technologies (Rice et al. 2007). They discovered the use-
fulness of storytelling through theater and video in promoting user involvement because it is easier
for users (e.g., elderly people) that are not familiar with the state-of-the-art technologies to under-
stand the system. They conclude that the technique “can increase designer empathy towards end
users.”

10 CONCLUSION
Software engineering is creative, imaginative, and interactive. However, simple demonstrations of
the functional and static aspects of software do not provide the real-world usage context that is
integral to understand the software requirements. We therefore advocate for a more dynamic way
of presenting software prototypes. In this article, we described software theater, a combination of
agile methods, scenario-based design, and theatrical aspects, as a way to demonstrate visionary
scenarios in a more relatable and creative way, even if the software is not yet fully realized. The
creation of the demo is based on the Tornado model and allows the validation of requirements,
design, and technology decisions. We explained the software theater workflow in detail, including
all steps from the customer’s visionary scenario to the developers’ actual demonstration.
We illustrated the artifacts of one example and showed three common software theater pat-

terns. We taught software theater in a capstone course with industrial customers and in an in-
teractive lecture-based course, described both courses as case studies, and explained our teaching
approach. In empirical evaluations in these two courses, we found that software theater motivates

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:28 S. Krusche et al.

the students to prepare demonstrations even early in the project. Students acquire the ability to
apply software theater within one semester and perceive software theater demonstrations as more
creative, more memorable, more dynamic, and more engaging than normal techniques. While we
found first anecdotal evidence that software theater improves the understanding of external stake-
holders about the developed system, we further need to investigate this aspect.
Rise and his colleagues pointed out that theater “may not be equally well suited for very early

requirements gathering, or later, more specific prototype evaluation” (Rice et al. 2007). We hy-
pothesize that software theater can also be used as requirements elicitation technique and want
to evaluate this in the future. We started to use it in other course formats such as short summer
schools (1–2 weeks), but have not yet collected data about its usage and benefits in these shorter
courses. Another research area is the further formalization of the described software theater pat-
terns as well as the identification of further patterns.Wewant to use a common scheme such as the
one proposed by the Gang of Four (Gamma et al. 1995) to describe different educational software
theater patterns including their motivation, applicability, context, forces, and consequences.

ACKNOWLEDGMENTS
We want to thank all students of the capstone courses and the interactive lecture-based courses.
We also thank our colleagues for management support, filming, and technical support and our
industry partners for providing interesting problem statements.

REFERENCES
Russell Abbott. 1983. Program design by informal English descriptions. Commun. ACM 26, 11 (1983), 882–894.
Christopher Alexander, Sara Ishikawa,Murray Silverstein, JoaquimRomaguera i Ramió,Max Jacobson, and Ingrid Fiksdahl-

King. 1977. A Pattern Language. Gustavo Gili.
Lukas Alperowitz. 2017. ProCeeD—A Framework for Continuous Prototyping. Ph.D. Dissertation. Technical University Mu-

nich, Germany.
Larry Apfelbaum and John Doyle. 1997. Model based testing. In Proceedings of the Software Quality Week Conference. 296–

300.
Jonathan Arnowitz, Michael Arent, and Nevin Berger. 2010. Effective Prototyping for Software Makers. Morgan Kaufmann.
Victor Basili. 1996. The role of experimentation in software engineering: Past, current, and future. In Proceedings of the 18th

International Conference on Software Engineering. IEEE, 442–449.
K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R.

Jeffries, and others. 2001. Manifesto for agile software development. The Agile Alliance (2001). http://agilemanifesto.org.
Kent Beck and Ward Cunningham. 1989. A laboratory for teaching object oriented thinking. In Sigplan Notices, Vol. 24.

ACM, 1–6.
Barry Boehm. 2000. Requirements that handle IKIWISI, COTS, and rapid change. Computer 33, 7 (2000), 99–102.
Charles Bonwell and James Eison. 1991. Active Learning: Creating Excitement in the Classroom. ASHE-ERIC Higher Educa-

tion Reports.
Bernd Bruegge andAllenDutoit. 2009.Object Oriented Software Engineering Using UML, Patterns, and Java (3rd ed.). Prentice

Hall.
Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. 2015. Software engineering project courses with industrial clients.

ACM Transactions on Computing Education 15, 4 (2015), 17:1–17:31.
Bernd Bruegge, Stephan Krusche, and Martin Wagner. 2012. Teaching tornado: From communication models to releases.

In Proceedings of the 8th Edition of the Educators’ Symposium. ACM, 5–12.
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, andMichael Stal. 1996. A system of patterns: Pattern-

oriented software architecture. Addison Wesley.
Lan Cao and Balasubramaniam Ramesh. 2008. Agile requirements engineering practices: An empirical study. IEEE Software

25, 1 (2008), 60–67.
John Carroll. 1995. Scenario-based Design: EnvisioningWork and Technology in System Development. JohnWiley & Sons, Inc.
John Carroll. 2000. Making Use: Scenario-based Design of Human-computer Interactions. MIT Press.
Dora Dzvonyar, Stephan Krusche, and Lukas Alperowitz. 2014. Real projects with informal models. In Proceedings of the

10th Edition of the Educators’ Symposium.
Christiane Floyd. 1984. A systematic look at prototyping. In Approaches to Prototyping. Springer, 1–18.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

Software Theater—Teaching Demo-Oriented Prototyping 10:29

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley.

Ron Garland. 1991. The mid-point on a rating scale: Is it desirable. Marketing Bulletin 2, 1 (1991), 66–70.
Orit Hazzan. 2002. The reflective practitioner perspective in software engineering education. Journal of Systems and Soft-

ware 63, 3 (2002), 161–171.
Matthias Jarke, Ralf Klamma, Klaus Pohl, and Ernst Sikora. 2010. Requirements engineering in complex domains.

Graph Transformations and Model-driven Engineering (2010), 602–620. http://dblp.uni-trier.de/rec/bibtex/conf/birthday/
JarkeKPS10.

Matthias Jarke and Klaus Pohl. 1993. Establishing visions in context: Towards a model of requirements processes. In Pro-
ceedings of the 14th ICIS.

Stephen Kline and Nathan Rosenberg. 1986. An overview of innovation. In The Positive Sum Strategy: Harnessing Technology
for Economic Growth. National Academy Press, 275–305.

Bent Bruun Kristensen. 1995. Object-oriented modelling with roles. In OOIS. 57–71.
Stephan Krusche. 2016. Rugby - A Process Model for Continuous Software Engineering. Ph.D. Dissertation. Technical Univer-

sity Munich, Germany.
Stephan Krusche and Lukas Alperowitz. 2014. Introduction of continuous delivery in multi-customer project courses. In

Proceedings of the 36th International Conference on Software Engineering. IEEE, 335–343.
Stephan Krusche, Lukas Alperowitz, Bernd Bruegge, and Martin Wagner. 2014. Rugby: An agile process model based on

continuous delivery. In Proceedings of the 1st International Workshop on Rapid Continuous Software Engineering. ACM,
42–50.

Stephan Krusche, Mjellma Berisha, and Bernd Bruegge. 2016. Teaching code reviewmanagement using branch based work-
flows. In Companion Proceedings of the 38th International Conference on Software Engineering. IEEE, 384–393.

Stephan Krusche, Andreas Seitz, Jürgen Börstler, and Bernd Bruegge. 2017. Interactive learning: Increasing student partic-
ipation through shorter exercise cycles. In Proceedings of the 19th Australasian Computing Education Conference. ACM,
17–26.

Brenda Laurel. 1993. Computers as Theatre (2nd ed.). Addison-Wesley.
Meir Lehman and Laszlo Belady. 1985. Program Evolution: Processes of Software Change. Academic Press.
Yang Li, Stephan Krusche, Christian Lescher, and Bernd Bruegge. 2016. Teaching global software engineering by simulating

a global project in the classroom. In Proceedings of the 47th SIGCSE. ACM, 187–192.
Tim Mackinnon, Steve Freeman, and Philip Craig. 2000. Endo-testing: Unit testing with mock objects. In Extreme Program-

ming Examined. ACM, 287–301.
Martin Mahaux, Patrick Heymans, and Neil Maiden. 2010. Making it all up: Getting in on the act to improvise creative

requirements. In Proceedings of the 18th International Requirements Engineering Conference. IEEE, 375–376.
Martin Mahaux and Neil Maiden. 2008. Theater improvisers know the requirements game. IEEE Software 25, 5 (2008), 68.
Robert Martin. 1996. The dependency inversion principle. C++ Report 8, 6 (1996), 61–66.
Jakob Nielsen. 1994. Usability Engineering. Elsevier.
Donald Norman. 2013. The Design of Everyday Things (Revised and Expanded Edition). Basic Books.
Donald Norman and Stephen Draper. 1986. User centered system design: New perspectives on human-computer

interaction. CRC Press.
Tom Nurkkala and Stefan Brandle. 2011. Software studio: Teaching professional software engineering. In Proceedings of the

42nd ACM Technical Symposium on Computer Science Education. ACM, 153–158.
Klaus Pohl. 2010. Requirements Engineering: Fundamentals, Principles, and Techniques. Springer.
Roger Pressman. 2009. Software Engineering: A Practitioner’s Approach. McGraw-Hill.
Mark Rice, Alan Newell, and Maggie Morgan. 2007. Forum theatre as a requirements gathering methodology in the design

of a home telecommunication system for older adults. Behaviour & Information Technology 26, 4 (2007), 323–331.
Colette Rolland, C. Ben Achour, Corine Cauvet, Jolita Ralyté, Alistair Sutcliffe, Neil Maiden, Matthias Jarke, Peter Haumer,

Klaus Pohl, Eric Dubois, and P. Heymans. 1998. A proposal for a scenario classification framework. Requirements Engi-
neering 3, 1 (1998), 23–47.

Ken Schwaber and Mike Beedle. 2002. Agile Software Development with Scrum. Prentice Hall.
Helen Sharp. 2003. Interaction Design. John Wiley & Sons.
Mary Shaw, Bernd Bruegge, and John Cheng. 1991. A software engineering project course with a real client. Carnegie

Mellon University Pittsburgh Software Engineering Institute.
Mary Shaw, Jim Herbsleb, Ipek Ozkaya, and Dave Root. 2006. Deciding what to design: Closing a gap in software engi-

neering education. 28–58.
Alistair Sutcliffe. 1997. A technique combination approach to requirements engineering. In Proceedings of the 3rd Interna-

tional Symposium on Requirements Engineering. IEEE.

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

10:30 S. Krusche et al.

James Tomayko. 1987. Teaching a Project-intensive Introduction to Software Engineering. Technical Report CMU/SEI-87-TR-
20. DTIC Document.

Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, and Peter Haumer. 1998. Scenarios in system development: Current prac-
tice. IEEE Software 15, 2 (1998), 34–45.

Jim Whitehead. 2007. Collaboration in software engineering: A roadmap. FOSE 7, 214–225.
Han Xu, Oliver Creighton, Naoufel Boulila, and Bernd Bruegge. 2013. User model and system model: The yin and yang in

user-centered software development. In Proceedings of the International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward!). ACM, 91–100.

Han Xu, Stephan Krusche, and Bernd Bruegge. 2015. Using software theater for the demonstration of innovative ubiquitous
applications. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering. ACM, 894–897.

Received April 2017; accepted August 2017

ACM Transactions on Computing Education, Vol. 18, No. 2, Article 10. Publication date: July 2018.

8.6 Increasing the Interactivity in Software Engineer-
ing MOOCs - A Case Study

This conference paper describes the application of interactive learning and Artemis in a
software engineering online course, an important milestone in the habilitation. It shows
that instructors can also integrate the teaching philosophy into massive open online
courses (MOOC) while keeping the course interactive and maintaining an interactive
atmosphere with social aspects. The paper defines an interactivity model and describes
best practices for online education. It shows how the different aspects of online courses
contribute to learning success and highlights the helpfulness of feedback and chat-based
communication. The conference nominated the manuscript for the best paper award.

Authors S. Krusche and A. Seitz

Conference 31st Conference on Software Engineering Education and Training
(52nd Hawaii International Conference on System Sciences)

Publisher ScholarSpace
Pages 10
Type Conference: Full Research Paper
Review Peer Reviewed (5 Reviewers)
Year 2019
Citation [KS19]
DOI https://doi.org/10.24251/HICSS.2019.915

171

https://doi.org/10.24251/HICSS.2019.915

Increasing the Interactivity in Software Engineering MOOCs - A Case Study

Stephan Krusche
Technische Universität München

krusche@in.tum.de

Andreas Seitz
Technische Universität München

seitz@in.tum.de

Abstract

MOOCs differ from traditional university courses:
instructors do not know the learners who have a diverse
background and cannot talk to them in person due
to the worldwide distribution. This has a decisive
influence on the interactivity of teaching and the
learning success in online courses. While typical online
exercises such as multiple choice quizzes are interactive,
they only stimulate basic cognitive skills and do not
reflect software engineering working practices such as
programming or testing. However, the application
of knowledge in practical and realistic exercises is
especially important in software engineering education.

In this paper, we present an approach to increase
the interactivity in software engineering MOOCs.
Our interactive learning approach focuses on a
variety of practical and realistic exercises, such as
analyzing, designing, modeling, programming, testing,
and delivering software stimulating all cognitive skills.
Semi-automatic feedback provides guidance and allows
reflection on the learned theory. We applied this
approach in the MOOC software engineering essentials
SEECx on the edX platform. Since the beginning of
the course, more than 15,000 learners from more than
160 countries have enrolled. We describe the design of
the course and explain how its interactivity affects the
learning success.

1. Introduction

Massive open online courses (MOOCs) offer new
possibilities. Learners can participate in courses of
interest with higher flexibility and are not bound to
schedules, locations, or university costs. Universities
can reach larger audiences outside of organizational
boundaries [1]. With the help of the internet,
education can be brought to countries with lower social
and educational standards. MOOCs are becoming
increasingly popular and more and more universities
offer them in professional programs and micro masters.

However, it is not sufficient to replicate standard
university lecture courses to design a MOOC [2]. It
is not possible to promote an active learning process in
online courses, only by broadcasting video recordings
of lectures [1]. This poses the risk of students becoming
passive and unmotivated. While embedding discussions
and offering multiple choice quizzes can increase the
interactivity, they typically do not stimulate higher
cognitive skills [3, 4]. Most activities in existing online
courses focus on lower cognitive skills, testing only
the degree of understanding of the main concepts and
forcing the learner to face recurrent mistakes [4].

Due to these limitations, simple software
engineering MOOCs do not yet support the acquisition
of higher cognitive skills such as applying, analyzing,
evaluating and creating. However, software engineering
is an activity that requires collaboration and practical
application of knowledge [5, 6], in particular interaction
and collaboration [7]. Video lectures, simple quizzes
and reading material are not sufficient [8] because they
do not reflect working practices such as programming,
modeling and testing. The creation of new software
depends on higher cognitive skills including application
of knowledge, analysis, evaluation and creation.

Active learning engages course participants in the
learning process by involving them into learning
activities, e.g. into problem solving. It is used in more
and more university courses [9], positively influences
knowledge transfer and learners’ performance, and leads
to an improved learning experience [10]. However,
instructors need to guide learners in these activities
to facilitate learning and prevent misconceptions [11].
With several thousand learners in MOOCs, it is
challenging to guide all learners.

In summary, MOOCs face the following three
problems:

(P1) Lecture recordings are too static
(P2) Quizzes only stimulate basic cognitive skills
(P3) Guidance is challenging to scale

We present an interactive learning approach for
software engineering MOOCs that addresses these

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60197
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7592

problems by using a variety of practical exercises.
These interactive exercises go beyond multiple choice
questions and stimulate cognitive skill acquisition on all
levels. They provide individual guidance to learners
through feedback and scale to a large number of
students. The focus of the paper is not a discussion
whether MOOCs can or will replace university courses.

The remainder of the paper is structured as
follows: Section 2 describes active learning, Bloom’s
taxonomy for cognitive skills and existing definitions for
interactivity as the foundations of this paper. Section 3
shows our interactive learning approach with different
exercise types that stimulate all cognitive skills. In
Section 4, we present a case study, in which we applied
this approach in a software engineering online course.
Section 5 discusses our learnings in this course and
describes best practices for other instructors who want
to adopt our approach. Section 6 presents related work
and Section 7 concludes the paper.

2. Foundations

“MOOCs mostly replicated the standard lecture,
an uninspiring teaching style but one with which the
computer scientists were most familiar” [2].

2.1. Bloom’s Taxonomy

Bloom developed a framework to classify
expectations of what students should learn as the
result of an instruction [12]. It serves as common
language about learning goals. An example would be:
“learners are able to describe the waterfall model”.
Bloom classified six major categories of cognitive
processes ordered by their complexity from lowest
to highest: knowledge, comprehension, application,
analysis, synthesis and evaluation.

Constructive alignment proposes to align learning
goals with activities and assessment. It was introduced
by John Biggs [13] and is derived from constructivism
and curriculum theory [14]. Biggs refers to the basic
idea of constructivism that learners construct their
own learning through learning activities, instead of
passively receiving knowledge from the instructor. All
components in the learning system - the learning goals,
the learning activities, and the assessment tasks - are
aligned to each other.

2.2. Active Learning

Active learning led to improved learning experiences
on different cognitive skill levels of Bloom’s taxonomy
in university courses. It emphasizes on developing
skills through active participation and engagement

in activities. It moves away from teacher-centered
approaches, where teachers instruct and learners listen
passively, to a more learner-centered approach, where
learners play an active role. Bonwell and Eison define
active learning as “anything that involves students in
doing things and thinking about the things they are
doing” [15]. It requires learners to regularly assess their
own problem-solving skills and their understanding of
the taught concepts [16]. Brophy and Good identify four
main premises of active learning [17]:

1. Learners construct their own meanings
2. New learning builds on prior knowledge
3. Learning is enhanced by social interaction
4. Learning develops through ‘authentic’ tasks

Prince [10] and Michael [16] found support for
all forms of examined active learning in their studies.
They concluded that active learning improves learning
outcomes compared to passive learning approaches.

2.3. Interactivity

When an instructor says ‘I am trying to make my
classes more interactive’, the meaning of interactive
seems clearly intuitive, however an agreed-upon
definition of interactivity is hard to find. The term
is used in the context of various fields, such as
communication, advertising, websites, internet and
education to name a few [18]. Since Rafaeli’s statement
“Interactivity is an underdefined concept” [19], a
number of attempts have been made to define the
concept of interactivity in its different contexts leading
to the inconsistent use of the term [20].

The term interactivity is rooted in the term
interaction. The Cambridge dictionary defines
interaction as “an occasion when two or more
people or things communicate with or react to each
other”. Steffensen differentiates between interaction
and interactivity: “[...] interaction captures a relation
of dependence between separable systems, interactivity
explores their bidirectional coupling” [21].

Jones and Gerard propose that all social interaction
is goal-oriented [22]. They distinguish four different
types of interactions according to their influence on the
interaction partners:

1. Pseudo interaction: A sequence of actions
that follow predefined patterns. The actions of
an involved participant are not intended to be
interpreted by the other participant.

2. Asymmetrical interaction: One participant
follows his or her intentions while another party
reacts complementarily to the previous actions.

Page 7593

3. Reactive interaction: The involved parties do not
interpret the intentions of the actions of the other
party and react in an isolated form.

4. Interdependent symmetrical interaction:
Aligning one’s action to the own intentions while
considering the intentions of the others in a
reciprocal fashion.

Similarly, Rafaeli argues that interactivity is best
defined by considering the degree of responsiveness
[19]. He recognizes three levels of communication.
Two-way (non-interactive), reactive (quasi-interactive)
and fully interactive communication. For an interaction
to be classified as two-way communication, messages
must flow bilaterally. If the messages cohere with
previous messages, the interaction is at least reactive
or quasi-interactive. The third level, full interactivity,
adds a reference to the content, nature or presence
of earlier references. Rafaeli defines interactivity as
“an expression of the extent that in a given series
of communication exchanges, any third (or later)
transmission (or message) is related to the degree
to which previous exchanges referred to even earlier
transmissions.” Domagk, Schwartz and Plass [23]
and Johnson et al. [24] identified two fundamental
conditions common in interactivity research: (1) At least
two participants interact with each other. (2) Actions of
these participants are reciprocal1 and responsive2.

Yacci examined interactivity in the context of
distance learning and computer-based teaching
and identified major interactivity attributes [25].
Interactivity is a message loop, whose messages must
be mutually coherent. Instructional interactivity occurs
from the learner’s perspective. Its outputs are content
learning and affective benefits.

3. Interactive Learning Approach

Interactive learning combines theory and practice
into interactive classes with multiple, small iterations of
theory, example, exercise, solution and reflection [26].
It is based on active, computer based and experiential
learning [27] and focuses on immediate feedback to
provide guidance and improve the learning experience
in large university classes. Hands-on activities in
class increase motivation and engagement and allow
continuous assessment.

Instructors teach and exercise small chunks of
knowledge in short cycles. Learners reflect and
increase their knowledge incrementally. This approach

1Reciprocal means that actions of one participant trigger responses
from the other and lead to change in the first.

2Responsive means that actions and reactions are related and
sustain the continuity of the interaction.

expects active participation and the use of computers.
Instructors provide guidance to prevent misconceptions
and to facilitate the learning process. Considering
the existing definitions of interactivity in literature, we
define interactivity in terms of MOOCs as follows:

Interactivity means a reciprocal and
responsive communication which is
addressed in a context-sensitive way by the
learning management system as a whole,
so that learners can construct meaningful
knowledge increments.

This definition focuses on automatic feedback using
a learning management system, but also allows
instructors, teaching assistants (TAs) and peer learners
to respond to communication initiated by learners. The
purpose of semi-automatic, context-sensitive feedback
is guidance and reflection to prevent misconceptions.
Communication in MOOCs can be initiated by
instructors, e.g. when motivating students using course
announcements or emails. It can also be initiated by
learners when they ask questions or face problems.

Figure 1 shows the idea of continuous interactive
learning3 that we adapted from Scrum [28] and
experiential learning [27]. The course syllabus consists
of high-level learning goals that are typically structured
into lectures giving them meaningful boundaries in
the learning activities. Each lecture consists of more
detailed learning goals. The instructor teaches each
learning goal in a learning sprint, a cycle that starts
with theory and examples. Learners then work on
an exercise and receive immediate feedback building
a second small cycle that allows them to iteratively
improve their solution to the exercise. After the exercise,
the instructor stimulates reflection so that students relate
their experience in the exercise with the taught theory.
This closes the cycle of the learning sprint and leads to a
learning gain, which we call knowledge increment, with
respect to the taught learning goal.

Examples and exercises are important elements
and play a central role in the early phases of
cognitive skill acquisition [30]. Carefully developed
and integrated examples increase the learning outcome
[31, 32]. Dynamic exercises with context-sensitive
feedback solve P1 and enable a richer learning
experience. Continuous interactive learning focuses on
the application of knowledge in a variety of exercise
types, e.g. programming and modeling exercises with
instant feedback. This supports the cognitive skill
acquisition [30] on all levels of Bloom’s taxonomy
shown in Figure 2 and solves P2. Multiple choice

3We first integrated continuous interactive learning into a
classroom course on games development [29] in 2016.

Page 7594

Section
Unit 1

Video Quiz

Lecture

Knowledge
Increment

Unit 2
Video Quiz

Unit n
Video Quiz…

Interactive Exercise

Lecture

Lecture
Learning Goal

Learning Goal

Learning Goal

Exercise

ExampleFeedback

LearnerReflection Theory

Course Syllabus Lecture Learning Sprint Learning Gain

Figure 1. Continuous interactive learning embedded into a course consisting of lectures, each with a number of

learning goals. Each learning goal is taught in a learning sprint through theory, example, exercise, feedback and

reflection and leads to a new knowledge increment (adapted from Scrum [28] and experiential learning [27]).

quizzes focus on the first two levels, programming and
modeling address the four higher and more complex
levels4. The sample solution and the instant and
context-sensitive feedback in the end of the cycle
provide guidance. If feedback can be generated
automatically (e.g. through test cases in programming
exercises) or by other learners (e.g. through peer review
in modeling exercises), it is scalable to a large number
of learners and solves P3. This might require a higher
effort for the creation of exercises, but reduces the effort
during the conduction of the course.

create }
}

programming,
modeling

creation effort

quizzes

evaluate

analyze

apply

understand

remember

cognitive skills

Figure 2. Mapping of exercises to cognitive skills

Depending on the type of the exercise, the learner’s
submission is automatically assessed or a manual review
of the solution is carried out, involving other learners
(peer review). The assessment leads to manual or
automatic feedback which needs to be context-sensitive
to be meaningful. Learners can use it to improve and
submit another solution. Feedback motivates learners
and allows them to reflect their learning progress.

We developed the concept of interactive instructions
that visually explain the problem to be solved. Such
instructions are dynamic and provide continuous and
granular feedback with self-updating elements, e.g.
tasks and UML diagrams with respect to the structure of

4While it might be possible to create multiple choice tests
for higher cognitive skills, it is difficult and does not reflect
software engineering working practices: software engineers do not
answer multiple choice questions in their daily work when applying,
analyzing, evaluating or creating something. Williams and Haladyna
recommend to limit multiple choice tests to lower cognitive skills [3].

the exercise. These elements respond to the interaction
of learners by changing their color from red to green to
indicate that the solution is correct as shown in Figure 3.

An interactive task is dynamically updated based
on the learner’s progress. It is associated with the
assessment, e.g. a test or a peer review. An interactive
task in a programming exercise is completed when all
associated tests are passing. This association allows
to refer the learner to the problem in the source code
when the user clicks on the unfulfilled, red task. After
completion, the task is displayed in green and ticked off.

An interactive diagram is dynamically created and
updated based on the learner’s progress. It consists
of multiple elements, such as classes, attributes, or
methods in a UML class diagram. A diagram element
can be associated with an assessment and a source file.
The implementation of a method is e.g. associated with
its method name in the class diagram. Based on the
test results, the color of this diagram element changes to
green, if all associated tests succeed, or to red, if at least
one test fails. Learners can immediately identify which
parts of their exercise are correctly solved and which
are still incorrect. In addition, the associated feedback
includes context-sensitive information, why a test failed
and refers to the theory learned in videos and handouts.

Figure 3. Interactive assignments (with UML

diagrams) provide immediate feedback to learners

about the correctness (red, green) of their solution

Page 7595

4. Case Study

We describe the application of interactive learning
for the design, creation, implementation and execution
of the MOOC Software Engineering Essentials (SEECx)
that we offer on edX5. Our goal was to make the course
as interactive as possible. The MOOC was launched in
May 2017 as instructor-paced course over 9 weeks. We
repeated the course in October 2017. Since May 2018,
the course is available as self-paced course. In all three
instances, 15,276 students enrolled in total until now.

It is an intensive course with interactive exercises
that go beyond the learning experience of existing
software engineering MOOCs. It has the following
learning goals: Learners get to know methods and
techniques to develop software for different domains
and platforms using agile techniques in the context of
change. Starting from a problem statement, we teach the
participants how to analyze requirements and transform
them into models using textual analysis. They model
multiple representations of the system consistently,
understand and identify patterns. They map models to
source code, integrate it into an app and deliver this app
using build and release management techniques.

4.1. Course Structure

4 instructors and 7 TAs organized the course. It
includes 8 sections (comparable to lectures) covering
8 major topics: project organization and management,
software configuration management, object oriented
programming, requirements analysis, system design,
object design, testing, build and release management.
All sections are decomposed into smaller topics and
consists of 3 to 5 units, each covering a concrete learning
goal. The whole course includes 34 units.

A unit includes a video in which the theory of
the topic is taught and an example is shown, followed
by a small exercise with feedback and a summary
to reflect on the learned concepts. The duration of
the videos ranges from 3 to 15 minutes (mean: 8.2
min). The videos are kept short in order to enable
the learners to apply the newly acquired knowledge in
practice in the exercises. In addition to slide-based
lecture videos, we added short clips with animations
in an explanation style and real world scenes into the
video to make them more entertaining and rich in
variety. Such videos make the thinking process visible
and support cognitive apprenticeship [33]. After each
unit, there is a quiz to assess whether the learners can
remember and explain the learned concepts (level 1

5www1.in.tum.de/seecx or www.edx.org/course/
software-engineering-essentials

and 2 in Bloom’s taxonomy). Learners get immediate
feedback on their response and test their newly acquired
knowledge. Learners can try each quiz two times in
the course, so even if they failed initially, they can have
another look at the video and then score the full points
in the assessment. This keeps the learners motivated.

Each section also includes programming and
modeling exercises which focus on higher cognitive
skills. They assess if learners can apply the previously
obtained knowledge, analyze a problem, evaluate
different solution strategies and create new solutions to
given problems (level 3 - 6 in Bloom’s taxonomy).

In order to pass the course, learners have to achieve
at least 60 % of all available points (400). By
participating in the interactive exercises, learners can
earn up to 60 % of the total points (240), 30 points
for each section. At the end of the course, students
can participate in a final assessment which accounts the
remaining 40 % of the total points (160).

4.2. Participation

In the following, we want to show how learners
participated in the first instance (instructor-paced) of the
course between May and July 2017. Figure 4 shows that
in the beginning, our course had 786 active learners6

and 620 learners who scored in at least one exercise
(in section 1). In the last section 8, 47 % of the
learners were still active and 15 % scored in exercises.
Between section 1 and 3, there was a drop of 33 %
of the active learners and 68 % of the learners who
scored. We attribute this to the increased complexity
of the exercises. In addition, multiple instructors of
other software engineering courses initially participated
in our course due to advertisement on typical software
engineering mailing lists such as SE World and
SIGCSE. They tried out some videos and exercises, but
were not interested in completing the course. Towards
the end of the course, the dropout rate decreased.

0

100

200

300

400

500

600

700

800

900

1000

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8

96105122127
209198

374

620

334362380
430

502525

707
786

Active learners Scored in at least one exercise

Figure 4. Number of active learners (blue) and

learners who scored in at least one exercise (green)

for each section in the first instructor-paced instance.

6Learners who visited at least one page in the course content.

Page 7596

4.3. Interactive Exercises

We use different types of exercises to make the
course interactive and rich in variety following the
learning goals. We used multiple choice, text input and
drag & drop questions to support learning goals on level
1 and 2 of Bloom’s taxonomy. In addition, we integrated
interactive programming and modeling exercises.

We based all programming and modeling exercises
on a common problem statement about the “University
App”, which we also used for examples in the videos.
This allows the learners to recognize relationships
between the topics (e.g. between the requirements and
system design) and makes it easier to understand the
context of the problem. In the following, we explain
the different exercise types in more details.

4.3.1. Interactive Programming Exercises
We use an automated assessment system ArTEMiS

for programming exercises based on version control
and continuous integration [34]. Learners submit
their exercise solution and receive immediate feedback
through structural and behavioral tests. Learners
can use this feedback to iteratively improve their
solution. ArTEMiS automatically assesses the learners’
submissions and provides context-sensitive feedback on
their submissions.

The online editor of ArTEMiS includes assignments
using interactive tasks and interactive diagrams. After
each submission through the Commit & Run Tests
button, the code of the learner is assessed. The result
is shown immediately and the interactive tasks and
diagrams are updated accordingly. In addition, learners
can see detailed, individual feedback why their solution
is wrong by clicking on the result. This helps to identify,
which tasks the learners have already solved and which
parts of their program does not work as expected.

4.3.2. Modeling Exercises
The ability to understand and create models is

an important learning goal for software engineers.
Therefore, modeling is an essential part of our course.
However, it is difficult to automatically correct models
because there are different correct solutions. Modeling
is a creative activity and we do not want to limit
the creative thinking processes of students [35]. One
learning goal of the course is that participants can review
models given a set of quality criteria. Therefore, we used
the concept of peer reviews consisting of the following
steps: (1) upload response, (2) learn to assess responses,
and (3) assess peers.

Learners first create a solution to a given problem
and upload it, then they review sample solutions towards
a given set of criteria to learn how to assess other
solutions. Finally, they assess multiple other learners’
solution, so that each model is evaluated by at least three
reviewers (other learners). The final score is the average
of three reviews. Learners receive valuable feedback
about their models and can improve their modeling skills
in the future. While edX’s peer review system does not
allow to improve the model according to the feedback,
we are working on an interactive system that allows
learners to iterate on their model solution.

While peer reviews lead to additional effort for
learners, they stimulate the acquisition of higher
cognitive skills: by assessing other solutions, students
reflect about alternative solution approaches and
evaluate if they are correct with respect to the given
problem statement. This is particularly helpful, but it
should be used carefully to not overload the learners.
We include two peer review exercises in the course, one
on creating low-fidelity mockups for the university app,
and another one on creating an analysis object model.

4.3.3. Project Work
In addition, we also offer project work which allows

the students to experience the full software engineering
process from analysis over design to implementation,
testing and delivery. A second problem statements
allows learners to apply and transfer their knowledge
to a different problem domain. The exercises in the
project work focus on the upper two cognitive skill
levels in Bloom’s taxonomy where learners should
create and evaluate a new solution to a problem. The
project work starts in the fourth section and allows the
learners to evaluate how their own decisions, e.g. in the
requirements analysis, influence the system design and
the implementation.

Examples of project work exercises are the analysis
of the problem domain, the design of the software
architecture, sketches of user interfaces up to the
implementation, testing and delivery of a small app.
We cannot assess such exercises automatically because
we do not want to limit the creativity of learners. We
motivated the learners to discuss their solutions with
us and each other to get feedback on their solutions
and the TAs provided timely feedback. Project work is
optional for learners, they can pass the course without
active participation. Nonetheless, we highly recommend
to participate and give the learners the opportunity to
deepen their knowledge and gain practical experience.

Page 7597

4.4. Communication

Guàrdia describes that designing a MOOC is to
”[s]et up a space to foster social interaction and
frequent contact between the learners.” This results
in our approach using a chat for instant and direct
communication instead of discussion forums to further
improve interactivity between course participants and
instructors. Many existing MOOCs rely on discussion
forums, which are limited in interactivity. We promote
the exchange with and between learners. Both
instructors and TAs can be approached directly in the
chat, learners can provide feedback and ask for help.

We use Slack as instant messaging service because
it has a lower entry barrier than discussion forums.
Learners can get in touch with each other and write
direct messages to instructors and TAs in case they need
help. They ask questions more easily without having
to pay attention to the exact wording and phrasing.
We add repeating questions to a question and answer
page. In total, 754 learners regularly used Slack
to get in touch and already sent 14,282 messages.
The #questions, #general and #feedback channels were
the most important ones. In the #questions channel,
learners asked question, in #feedback, they stated how
to improve the learning material. Instructors and TAs
answer questions within one working day to keep the
interactivity high.

Clear communication of learning goals, expectations
and deadlines is important. The course description
clarifies what the learners can expect and what they have
to accomplish to pass the course.

4.5. Survey Results

We evaluated our approach using two surveys, an
entry and an exit survey. The entry survey covered the
background and motivation of learners. 83 % of the
participants are male, 17 % are female. The median
learner age is 28 and most learners are between 20
and 40 years old. 3 % are pupils at school, 31 % are
students in university or college, 51 % are employees
in a company and 15 % are unemployed or searching
for a job. 51 % have already participated in another
software engineering course before. 86 % have already
participated in another programming course before.
Regarding motivation, 27 % need the certificate of the
course, 96 % are interested in the topic, 84 % need to
know the concepts taught in the course for their career
and 66 % assume the course is fun.

The exit survey asked about the opinion on the
interactivity of the course. 67 learners took part in

both surveys and allowed us to compare their existing
knowledge and motivation with their results.

We asked the learners how the different components
of the course contributed to their learning. Figure 5
shows that all components of the contribute. Videos
play an essential role in the transfer of knowledge, as
they impart the theoretical content to learners. Learners
indicate that the contribution of programming exercises
is higher (82 %) to their learning than in quizzes (62 %).
Modeling exercises also have a high contribution with
65 %. We attribute the smaller numbers of modeling
exercises to the higher complexity that peer reviews
entail.

We also evaluated the helpfulness of immediate
feedback in programming exercises, as well as the
usefulness of Slack. 83 % of the respondents agree
that feedback in programming exercises is helpful (left
diagram in Figure 6). 57 % of the participants agree
to prefer Slack over traditional discussion forums (right
diagram in Figure 6).

These results represent first anecdotal evidence.
Further studies are required to evaluate the approach.
Due to the small amount of participants in the
exit survey, selection bias is a threat to validity.
The participants opinion might not be generalizable.
Nevertheless, the first survey results show that our
approach improves the learning experience: there are
ways to make MOOCs more interactive and to reduce
the gap to interactive classroom courses.

5. Discussion

This section discusses both the approach and the
experience we have gained in developing and carrying
out a software engineering MOOC. We first discuss the
learnings before we derive best practices that can be
useful for other MOOC instructors.

We faced a trade-off between too detailed and
superficial feedback. Too detailed feedback has the risk
of including the actual solution which might prevent
learning. However, if the feedback is too superficial, it
does not help learners and demotivates them. Especially
at the end of the course, when the exercises became
more demanding, less learners participated. As the
difficulty increases, so does the amount of time spent
by the learners. Many learners are not willing to invest
this extra time in solving difficult exercises.

We experienced that learners who have completed
the course, look back positively on the varied exercises,
even if they were sometimes more demanding. One
learner stated: “The lectures include both practical and
theoretical videos and explanatory test cases. The final
exam, quizzes, peer review projects and programming

Page 7598

Table 1

How much did the
following
elements
contribute to your
learning in this
course? [Video
lectures]

How much did the
following
elements
contribute to your
learning in this
course?
[Explanation
videos]

How much did the
following
elements
contribute to your
learning in this
course? [Quizzes]

How much did the
following
elements
contribute to your
learning in this
course?
[Programming
exercise]

How much did the
following
elements
contribute to your
learning in this
course? [Peer
review exercises]

High 58 88 % 53 80,3030303030303 % 41 62,1212121212121 % 54 81,8181818181818 % 42 64,6153846153846 %
Medium 6 9 % 10 15,1515151515152 % 17 25,7575757575758 % 8 12,1212121212121 % 8 12,3076923076923 %
Low 2 3 % 3 4,54545454545455 % 8 12,1212121212121 % 4 6,06060606060606 % 15 23,0769230769231 %

Do you agree to
the following
statements about
the programming
exercises? [The
immediate
feedback was
helpful for solving
the tasks.]

Do you agree to
the following
statements about
the course? [The
usage of Slack
instead of the
discussion forum
was good.]

0

Agree 52 0,825396825396825 36 0,571428571428571

Neutral 9 0,142857142857143 22 0,349206349206349

Disagree 2 0,0317460317460317 5 0,0793650793650794

0 %

25 %

50 %

75 %

100 %

High Medium Low

3 %9 %

88 %

High Medium Low

12 %
26 %

62 %

Video Lectures Quizzes

High Medium Low

6 %12 %

82 %

Programming
Exercises

High Medium Low

23 %
12 %

65 %

Modeling  
Exercises

0 %

25 %

50 %

75 %

100 %

Agree Neutral Disagree

3 %
14 %

83 %

0 %

25 %

50 %

75 %

100 %

Agree Neutral Disagree

8 %

35 %

57 %

The feedback was helpful for  
solving programming exercises

The usage of Slack instead of the
discussion forum was good

High Medium Low

5 %
15 %

80 %

Explanation Videos

�1

Figure 5. Answer distribution of learners about the contribution to their learning in the course.

Table 1

How much did the
following
elements
contribute to your
learning in this
course? [Video
lectures]

How much did the
following
elements
contribute to your
learning in this
course?
[Explanation
videos]

How much did the
following
elements
contribute to your
learning in this
course? [Quizzes]

How much did the
following
elements
contribute to your
learning in this
course?
[Programming
exercise]

How much did the
following
elements
contribute to your
learning in this
course? [Peer
review exercises]

High 58 88 % 53 80,3030303030303 % 41 62,1212121212121 % 54 81,8181818181818 % 42 64,6153846153846 %
Medium 6 9 % 10 15,1515151515152 % 17 25,7575757575758 % 8 12,1212121212121 % 8 12,3076923076923 %
Low 2 3 % 3 4,54545454545455 % 8 12,1212121212121 % 4 6,06060606060606 % 15 23,0769230769231 %

Do you agree to
the following
statements about
the programming
exercises? [The
immediate
feedback was
helpful for solving
the tasks.]

Do you agree to
the following
statements about
the course? [The
usage of Slack
instead of the
discussion forum
was good.]

0

Agree 52 0,825396825396825 36 0,571428571428571

Neutral 9 0,142857142857143 22 0,349206349206349

Disagree 2 0,0317460317460317 5 0,0793650793650794

0 %

25 %

50 %

75 %

100 %

High Medium Low

3 %9 %

88 %

High Medium Low

12 %
26 %

62 %

Video Lectures Quizzes

High Medium Low

6 %12 %

82 %

Programming
Exercises

High Medium Low

23 %
12 %

65 %

Modeling  
Exercises

0 %

25 %

50 %

75 %

100 %

Agree Neutral Disagree

3 %
14 %

83 %

0 %

25 %

50 %

75 %

100 %

Agree Neutral Disagree

8 %

35 %

57 %

The feedback was helpful for  
solving programming exercises

The usage of Slack instead of the
discussion forum was good

High Medium Low

5 %
15 %

80 %

Explanation Videos

�1

Figure 6. Helpfulness of feedback (left), Slack over

discussion forums (right)

exercises are well thought and help in understanding
and reviewing the core concepts of each week.“ This
statement confirms the right mix of theory and practice
contributing to learning success.

5.1. Learnings

We initially used a rather serious tone in the
communication with the learners, but during the course
we have moved further away from it. We approached
the learners personally and asked them about their
experiences via mail and Slack. This removes the
barrier between instructors and learners and facilitates
interactivity. We made clear why it is important
for learners to participate in the interactive exercises.
The typical MOOC learner is not accustomed to
this multitude of varied exercises. Therefore, we
communicate clearly from the beginning that our
MOOC is an intensive course in which we expect active
participation in exercises and discussions on Slack.

As a consequence of the learners’ feedback, we
have changed several aspects already during the first run
of the MOOC. We extended the time for all exercises
from one to two weeks to allow all participants to
complete the exercises. This alleviated the stress factor,
in particular for learners who worked in a full-time job
and had families. In a further step, we increased the
number of attempts for all quizzes from 1 to 2. This
gives learners the opportunity to study the theory again
after a wrong answer and motivates them. They can
improve their knowledge and try the quiz a second time.
It is important that learners receive feedback on their

given answers, regardless of whether they are correct
or incorrect. Only then, they can reflect on the theory
again. We want learners to internalize the acquired
knowledge. The feedback must be motivating and can
include a sense of humor.

We also introduced a question and answers page
and summary pages for each section. Many questions
reached us multiple times via Slack, so we decided to
collect the most frequently asked questions on a separate
FAQ page. The section summary ensures that learners
fully grasp the learning objectives of each section and
connect the units with each other. This allows learners
to reflect on the contents of the whole section again.

5.2. Best Practices

Make sure that all exercises are aligned with the
learning goals in terms of constructive alignment.
Double check the consistency of all exercises, especially
with regard to difficulty and comprehensibility. Plan
the learning goals before the production of the videos
and adapt the exercises accordingly. Use the same
working example throughout the course, ideally by
using a problem statement that relates to the personal
experience of the learners. Explain learners what
they did wrong and why they did it wrong in the
exercises using context-sensitive feedback. However,
the feedback should not directly contain the solution,
instead it should explain aspects of the theory related to
the exercise. Learners have to come up with the correct
solution themselves.

Be open to change and listen to the wishes and
preferences of your learners. With small iteration cycles
in interactive MOOCs, changes and wishes can be
addressed easily. Small iteration cycles are only possible
if the length of videos is limited. Address learners
personally in videos to overcome the barriers in the
beginning of the unit. Include animations and real world
scenes in the videos and do not only rely on lecture
style slides with too many text and bullet points. In
programming exercises, write test cases to assess the
behavior of the learners’ solution and make sure the
feedback in the assertions of the tests is understandable.

Page 7599

6. Related Work

In [36] and [37], we describe the application of
interactive learning in the classroom. In the following,
we focus on online courses.

Alario-Hoyos et al. describe their MOOC for
introduction to programming with Java [4]. The authors
state that they designed the course to enhance the
learners’ activity with learning contents. They found
that traditional multiple choice quizzes only assess the
two lower levels of Bloom’s taxonomy. In addition to
quizzes, they also rely on peer review and programming
exercises, which they carried out with the help of the
external tools Blockly, Codeboard and Greenfoot.

Daun et al. integrate conceptional modeling into
their MOOC [38] by using ambiguous exercises and
sketching multiple solutions in brief whiteboard-style
videos. They state that it enables the students to assess
their own solutions and fulfills their educational needs.
In contrast, we use peer reviews to allow the students to
receive feedback on their model solutions.

Kloos et al. use MOOCs as out-of-class-activities
in addition to normal interactive classes following
the inverted classroom approach [39]. They argue
that more time can then be spent in interactive
participation and on-site interaction leading to more
effective learning. This confirms that MOOCs need to
become more interactive in order to achieve a better
learning experience for learners.

Krugel et al. describe their experiences on
designing an interactive MOOC about object-oriented
programming [40]. In addition to traditional quizzes,
the authors rely on interactive programming exercises
in order to put the theoretical knowledge into practice.
They use various external tools, such as SVG-edit,
trinket, Java-Tutor, and Codeboard. Kolas et al.
introduce interactive modules [41], which are either
videos or presentations to motivate and activate learners.
In contrast to our approach, the authors do not focus on
exercises.

Gruenewald et al. focus on the challenge
of conducting interactive programming lectures as
MOOCs [42]. They integrate active experimentation
and relate to concrete experience. Existing literature
shows that interactivity plays a role in online courses.
Nevertheless, as far as we know, no one has yet defined
what interactivity means in the context of MOOCs.

7. Conclusion

MOOCs can complement university courses and
provide education to places that would otherwise have
no access. However, they also face challenges in terms

of interactivity, the stimulation of all cognitive skills
and the provision of context-sensitive guidance to a
large number of learners. We introduced an interactivity
model for MOOCs that addresses these challenges. It
includes a variety of practical exercises, in particular
programming and modeling, which are typical learning
goals in software engineering.

Learners can participate multiple times in exercises
and learn from their failures and the context-sensitive
feedback. We found first evidence that this improves
the learning success. The different exercise types,
the division into small learning sprints, direct
communication and immediate feedback increase
the interactivity and improve the learning experience.

In the future, we want to integrate semi-automatic
assessment of modeling exercises using machine
learning. It allows multiple solutions to be assessed
as correct and does not limit the creative thinking of
students. Using this approach, we can integrate more
modeling exercises. In addition, we plan to integrate
code reviews as described in [43]. It is important that
students do not only learn to write correct programs, the
code also needs to be understandable.

References

[1] T. Daradoumis, R. Bassi, F. Xhafa, and S. Caballé, “A
review on massive e-learning (MOOC) design, delivery
and assessment,” in 8th International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing,
pp. 208–213, IEEE, 2013.

[2] R. Ubell, “How the pioneers of the mooc got it wrong,”
IEEE Spectrum, 2017.

[3] R. Williams and T. Haladyna, “Logical operations for
generating intended questions (logiq): A typology for
higher level test items,” A technology for test-item
writing, pp. 161–186, 1982.

[4] C. Alario-Hoyos, C. Kloos, I. Estévez-Ayres,
C. Fernández-Panadero, J. Blasco, S. Pastrana, and
J. Villena-Román, “Interactive activities: the key to
learning programming with MOOCs,” Proceedings of
the European Stakeholder Summit on Experiences and
Best Practices in and Around MOOCs, 2016.

[5] T. Connolly, M. Stansfield, and T. Hainey, “An
application of games-based learning within software
engineering,” British Journal of Educational Technology,
vol. 38, no. 3, pp. 416–428, 2007.

[6] D. Shaffer, “Pedagogical praxis: The professions as
models for postindustrial education,” Teachers College
Record, vol. 106, no. 7, pp. 1401–1421, 2004.

[7] J. Whitehead, “Collaboration in software engineering: A
roadmap,” FOSE, vol. 7, no. 2007, pp. 214–225, 2007.

[8] T. Staubitz et al., “Towards Practical Programming
Exercises and Automated Assessment in Massive
Open Online Courses,” in International Conference on
Teaching, Assessment, and Learning for Engineering,
pp. 23–30, 2015.

[9] S. Freeman, S. Eddy, M. McDonough, M. Smith,
N. Okoroafor, H. Jordt, and M. Wenderoth, “Active

Page 7600

learning increases student performance in science,
engineering, and mathematics,” Proceedings of the
National Academy of Sciences, vol. 111, no. 23,
pp. 8410–8415, 2014.

[10] M. Prince, “Does active learning work? a review of the
research,” Journal of Engineering Education, vol. 93,
no. 4, pp. 223–231, 2004.

[11] P. Kirschner, J. Sweller, and R. Clark, “Why minimal
guidance during instruction does not work: An analysis
of the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching,” Educational
psychologist, vol. 41, no. 2, pp. 75–86, 2006.

[12] B. Bloom, M. Engelhart, E. Furst, W. Hill, and
D. Krathwohl, “Taxonomy of educational objectives:
The classification of educational goals,” 1956.

[13] J. Biggs, “Aligning teaching and assessing to course
objectives,” Teaching and learning in higher education:
New trends and innovations, vol. 2, pp. 13–17, 2003.

[14] F. Marton and S. Booth, Learning and awareness.
Psychology, 1997.

[15] C. Bonwell and J. Eison, Active Learning: Creating
Excitement in the Classroom. ASHE-ERIC Higher
Education Reports, 1991.

[16] J. Michael, “Where’s the evidence that active learning
works?,” Advances in physiology education, vol. 30,
no. 4, pp. 159–167, 2006.

[17] T. Good and J. Brophy, Looking in classrooms. Harper
& Row, 1987.

[18] P. Lowry, N. Romano, J. Jenkins, and R. Guthrie, “The
CMC interactivity model: How interactivity enhances
communication quality and process satisfaction in
lean-media groups,” Journal of Management Information
Systems, vol. 26, no. 1, pp. 155–196, 2009.

[19] S. Rafaeli, “From new media to communication,” Sage
annual review of communication research: Advancing
communication science, vol. 16, pp. 110–134, 1988.

[20] R. Mayer, The Cambridge handbook of multimedia
learning. Cambridge university press, 2005.

[21] S. Steffensen, “Human interactivity: problem-solving,
solution-probing and verbal patterns in the wild,” in
Cognition beyond the brain, pp. 195–221, 2013.

[22] E. Jones and H. Gerard, “Foundations of social
psychology,” 1967.

[23] S. Domagk, R. Schwartz, and J. Plass, “Interactivity in
multimedia learning: An integrated model,” Computers
in Human Behavior, vol. 26, no. 5, 2010.

[24] G. Johnson, G. Bruner, and A. Kumar, “Interactivity and
its facets revisited: Theory and empirical test,” Journal
of Advertising, vol. 35, no. 4, 2006.

[25] M. Yacci, “Interactivity demystified: A structural
definition for distance education and intelligent CBT,”
Educational Technology, vol. 40, no. 4, pp. 5–16, 2000.

[26] S. Krusche, A. Seitz, J. Börstler, and B. Bruegge,
“Interactive learning: Increasing student participation
through shorter exercise cycles,” in Proceedings of the
19th Australasian Computing Education Conference,
pp. 17–26, ACM, 2017.

[27] D. Kolb, Experiential learning: Experience as the source
of learning and development, vol. 1. Prentice Hall, 1984.

[28] K. Schwaber, “Scrum development process,” in
Proceedings of the OOPSLA Workshop on Business
Object Design and Information, 1995.

[29] S. Krusche, B. Reichart, P. Tolstoi, and B. Bruegge,
“Experiences from an experiential learning course
on games development,” in Proceedings of the 47th
SIGCSE, pp. 582–587, 2016.

[30] K. VanLehn, “Cognitive skill acquisition,” Annual
Review of Psychology, vol. 47, pp. 513–539, 1996.

[31] J. Sweller and G. Cooper, “The use of worked examples
as a substitute for problem solving in learning algebra,”
Cognition and Instruction, vol. 2, no. 1, pp. 59–89, 1985.

[32] J. Trafton and B. Reiser, “Studying examples and solving
problems: Contributions to skill acquisition,” tech. rep.,
Naval HCI Research Lab, 1993.

[33] A. Collins, J. Brown, and A. Holum, “Cognitive
apprenticeship: Making thinking visible,” American
educator, 1991.

[34] S. Krusche and A. Seitz, “ArTEMiS - An Automatic
Assessment Management System for Interactive
Learning,” in Proceedings of the 49th SIGCSE, ACM,
2018.

[35] S. Krusche, B. Brügge, I. Camilleri, K. Krinkin, A. Seitz,
and C. Wöbker, “Chaordic learning: A case study,” in
Proceedings of the 39th ICSE, pp. 87–96, 2017.

[36] A. Seitz and B. Bruegge, “Teaching pattern-based
development,” in Proceedings of the 1st Workshop on
Innovative Software Engineering Education, pp. 20–23,
2018.

[37] S. Krusche, N. von Frankenberg, and S. Afifi,
“Experiences of a software engineering course based on
interactive learning.,” in Proceedings of the 15th SEUH
Workshop, pp. 32–40, 2017.

[38] M. Daun, J. Brings, P. Obe, K. Pohl, S. Moser,
H. Schumacher, and M. Rieß, “Teaching conceptual
modeling in online courses: Coping with the need
for individual feedback to modeling exercises,” in 30th
Conference on Software Engineering Education and
Training, pp. 134–143, 2017.

[39] C. Kloos, C. Alario-Hoyos, I. Estévez-Ayres,
P. Muñoz-Merino, M. Ibáñez, and R. Crespo-Garcı́a,
“Boosting interaction with educational technology,”
in Global Engineering Education Conference,
pp. 1763–1767, April 2017.

[40] J. Krugel and P. Hubwieser, “Computational thinking
as springboard for learning object-oriented programming
in an interactive mooc,” in IEEE Global Engineering
Education Conference, pp. 1709–1712, 2017.

[41] L. Kolås, H. Nordseth, and J. Hoem, “Interactive
modules in a mooc,” in 15th International Conference
on Information Technology Based Higher Education and
Training, pp. 1–8, Sept 2016.

[42] F. Grünewald, C. Meinel, M. Totschnig, and C. Willems,
“Designing MOOCs for the Support of Multiple
Learning Styles,” in European Conference on
Technology Enhanced Learning, pp. 371–382, 2013.

[43] S. Krusche, M. Berisha, and B. Bruegge, “Teaching code
review management using branch based workflows,” in
Proceedings of the 38th ICSE, pp. 384–393, 2016.

Page 7601

8.7 Stager: Simplifying the Manual Assessment of
Programming Exercises

This workshop paper describes an approach to simplify the manual assessment of pro-
gramming exercise submissions. The approach increases the consistency, removes late
submissions, and combines the changes of students in the version control system to one
changeset. It was first developed independently of Artemis in an external tool called
Stager. It was later integrated into Artemis to make it easier to use.

Christopher Laß proposed the approach and implemented it. The author of this ha-
bilitation supervised Christopher Laß throughout the development of the approach and
writing the paper.

Authors C. Laß, S. Krusche, N. von Frankenberg and Bernd Bruegge
Conference 16. Workshop Software Engineering im Unterricht der Hochschulen
Publisher CEUR
Pages 10
Type Workshop Paper
Review Peer Reviewed (2 Reviewers)
Year 2019
Citation [LKvFB19]
Link http://ceur-ws.org/Vol-2358

182

http://ceur-ws.org/Vol-2358

Stager: Simplifying the Manual
Assessment of Programming Exercises

Christopher Laß, Stephan Krusche, Nadine von Frankenberg, Bernd Brügge

Technische Universität München

christopher.lass@tum.de, krusche@in.tum.de, nadine.frankenberg@in.tum.de, bruegge@in.tum.de

Abstract
Assessing programming exercises requires time and ef-
fort from instructors, especially in large courses with
many students. Automated assessment systems re-
duce the effort, but impose a certain solution through
test cases. This can limit the creativity of students and
lead to a reduced learning experience. To verify code
quality or evaluate creative programming tasks, the
manual review of code submissions is necessary. How-
ever, the process of downloading the students’ code,
identifying their contributions, and assessing their
solution can require many repetitive manual steps.

In this paper, we present Stager, a tool designed
to support code reviewers by reducing the time to
prepare and conduct manual assessments. Stager
downloads multiple submissions and adds the stu-
dent’s name to the corresponding folder and project,
so that reviewers can better distinguish between dif-
ferent submissions. It filters out late submissions and
applies coding style standards to prevent white space
related issues. Stager combines all changes of one
student into a single commit, so that reviewers can
identify the student’s solution more quickly.

Stager is an open source, programming language
agnostic tool with an automated build pipeline for
cross-platform executables. It can be used for a va-
riety of computer science courses. We used Stager
in a software engineering undergraduate course with
1600 students and 45 teaching assistants in three sep-
arate programming exercises. We found that Stager
improves the code correction experience and reduces
the overall assessment effort.

1 Introduction
The number of students in university courses is in-
creasing. The number of new undergraduate students
at our computer science department increased by 81 %
between 2013 (1110 students) and 2017 (2005 stu-
dents)1. Practical programming exercises are essential
in computer science education and help students ac-
quire important skills in software development [Staub-
itz et al., 2015]. However, a manual assessment of

1https://www.tum.de/die-tum/die-universitaet/
die-tum-in-zahlen/studium

programming exercises in large courses can take a
considerable amount of time and effort. Automatic
assessment systems (also called auto-graders) aim at
flexibility and scalability in large courses, and allow
to integrate exercises into lectures [Krusche et al.,
2017b]. These systems utilize, among others, version
control systems (VCS) to store the code solutions of
students in repositories and test cases that are exe-
cuted on a continuous integration server to assess
the solution to a programming exercise automatically
[Heckman and King, 2018; Krusche and Seitz, 2018].

While automated assessment systems significantly
reduce manual assessment effort, they have draw-
backs. Predefined test cases cannot cover all possible
solutions and therefore impose a certain solution on
the students. Some students are limited in their pro-
gramming skills, while other students can exploit the
test cases by repetitive trial-and-error submissions.
Especially first year students who are new to program-
ming often experience problems when trying to for-
mulate their solution and thoughts as an executable
computer program [Robins et al., 2003]. Such sub-
missions can be overly complicated, and assessment
systems cannot (yet) provide enough useful feedback
in that regard. Furthermore, some programming exer-
cises cannot be assessed automatically. The automated
grading of creative assignments with open problem
statements is hardly possible because different solu-
tions exist [Knobelsdorf and Romeike, 2008; Krusche
et al., 2017a]. An example for such an assignment
is to implement a creative collision strategy in a 2D
racing game. Automated test cases could be able to
validate a collision, but are incapable of assessing
the creativity or code quality of the solution. As a
result, manual assessment can be beneficial, even in
large courses that have fully implemented automated
grading solutions.

However, the process of manually assessing multi-
ple students’ solutions requires repeated manual steps.
Tasks such as finding the next student’s repository,
downloading the source code, and renaming the fold-
ers and projects names for standardization can be
time-consuming and error-prone. Determining a stu-
dent’s contribution is challenging when the exercise
builds upon a provided code template and when the

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 34

students use multiple commits in their code repository.
Then it becomes difficult to separate the provided
template and the final solution.

In this paper, we present Stager, a tool that is de-
signed to support the manual assessment of program-
ming exercises. Reviewers, e.g. teaching assistants or
instructors, can automate the manual steps that are
necessary to prepare the students’ code repositories,
for instance download all repositories at once, and
thereby reduce the manual assessment time. The idea
for Stager evolved during an undergraduate university
course with 1600 students and 45 teaching assistants.
An initial implementation was used for three separate
programming assignments.

The remainder of the paper is organized as follows.
We describe related work focusing on existing auto-
mated assessment solutions and the limitations of
automated assessment approaches in Section 2. In
Section 3, we cover Stagers’ approach to automat-
ing the recurring manual steps during the correction
of programming exercises. We describe design deci-
sions, the exercise workflow with Stager, the configu-
ration possibilities of the tool, and the concrete tasks
of Stager, e.g. the Download repositories task. We ana-
lyze the improved code assessment experience of the
teaching assistants by means of an experience report
in Section 4, where we also present the results of a
quantitative analysis of Stager’s use in three program-
ming exercises. Section 5 concludes the paper and
provides directions for future work.

2 Related Work
Several automated assessment system approaches for
programming assignments exist [Heckman and King,
2018; Knobelsdorf and Romeike, 2008; Krusche and
Seitz, 2018; Pieterse, 2013]. Advantages include a de-
crease in the workload of course instructors and timely
feedback for students [Pieterse, 2013]. Automated
systems work well to grade programming assignments
consistently and evaluate specific aspects, e.g. the
functionality [McCracken et al., 2001] or efficiency of
a system [Jackson and Usher, 1997]. However, they
are missing the benefit of personal feedback which
a manual grading approach could provide. The test
cases used by such systems cannot assess the code
quality and “elegance” of the solution [Poženel et al.,
2015].

Building a robust automated assessment system
amounts to a heavy workload, whereby the definition
of the test cases is (usually) the most time consuming
activity [Cerioli and Cinelli, 2008]. This workload is
amplified when designing tasks with some degree of
freedom of solutions [Chen, 2004]. The degree of free-
dom of solutions indicates the difficulty of the exercise
[Striewe and Goedicke, 2013], meaning that a diffi-
cult exercise has more possible solutions and therefore
has an increased workload to design the automated
assessment system. Depending on the class size, it

can therefore be less time consuming to manually as-
sess solutions rather than to design the automated
assessment system [Ala-Mutka, 2005].

Further, students can become distracted by au-
tomated feedback. For instance, students may be
tempted to fix only the failing tests instead of focus-
ing on the assignment [Heckman and King, 2018].
Automated assessment systems circumvent the de-
tection of frequent mistakes or misunderstandings
among students. The understanding and resolution
of common errors is an essential learning experience
for students. Semi-automated systems combine the
mentioned aspects by providing automated grading,
as well as manual feedback. Such systems offer per-
sonalized feedback to some extent, for instance the
instructor can annotate a static assessment [Gerdes
et al., 2017]. Other systems give the student instant
feedback if the student’s solution is correct. If it is
not, the instructor reviews each solution and can give
additional feedback if required [Insa and Silva, 2015].
Many systems focus on the grading itself, but not on
the process the instructor has to follow to obtain the
students’ solutions.

Some commercially available systems and tools that
are used in computer science (CS) courses offer fea-
tures that aim at simplifying this process. In 2000,
Jackson proposed an approach that pre-processes stu-
dent submissions (sent via e-mail) by removing irrele-
vant information or unpacking files [Jackson, 2000].
For submissions via repositories, pull requests (also
called merge requests) in GitHub2, GitLab3, or Bit-
bucket4 allow students to commit their changes into
separate branches. After requesting the code to be
merged into the main branch, i.e. a submission, re-
viewers can highlight the student’s contribution as
difference to the template code and provide feedback
by requesting changes. While pull requests can also
be integrated with continuous integration systems,
e.g. using TravisCI5 to detect compile errors and to
run automated tests, reviewers might still need to
download the source code and execute it to verify if
all requirements of the problem statement have been
solved.

GitLab introduced a “Squash and Merge” option
which “applies all of the changes in a merge request
as a single commit, and then merges that commit us-
ing the merge method set for the project”6. This cleans
up the commit history and can make it easier to iden-
tify the contribution of one particular student. Tools
and services, such as Gerrit7, support code reviews
that enable the reviewer to see the code difference,
and provide the option to leave in-line comments.

2https://github.com
3https://gitlab.com
4https://bitbucket.org
5https://travis-ci.org
6https://docs.gitlab.com/ee/user/project/merge_

requests/squash_and_merge.html
7https://www.gerritcodereview.com

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 35

However, such tools primarily focus on continuous
feedback rather than assessing a student’s solution.

3 Stager’s Approach
This section presents an approach that automates man-
ual steps during the correction of programming ex-
ercises in order to prepare student repositories for
easier assessment. We show how code reviewers can
use Stager. Furthermore, we explain the different
tasks that are automatically executed by Stager.

Figure 1 illustrates the exercise workflow including
the manual assessment with the help of Stager as a
UML activity diagram. As precondition for this work-
flow, every student must have their own repository
with the code template for the exercise in a VCS8. Af-
ter the students complete the exercise, they commit
and push their solutions to the VCS (action 1.3).

Before reviewers start to work, they need to config-
ure Stager (action 2.1). Then, they trigger Stager to
process different tasks (actions 3.1 ... 3.6), such as
Download repositories or Normalize code style. Finally,
the reviewer can manually assess the pre-processed
submissions and give qualitative feedback (action 4.2
and 5.) to the students in any arbitrary form (e.g.
uploading the feedback into an exercise management
system such as Moodle9).

The action 2.1 Configure Stager of the Reviewer is
described in Section 3.1. Stager’s actions are described
as tasks in Section 3.2. The numbering in Section 3.2
aligns with the corresponding action in Figure 1.

3.1 Stager’s Setup
Stager is free, open source, and available under the
MIT license10. It is platform independent and pro-
gramming language agnostic, making Stager univer-
sally applicable. It is written in the Go programming
language11 and makes use of the distributed version
control system git12. Cross-platform executables can
be downloaded from the automatic build pipeline or
compiled from the source code.

Stager’s configuration is separated into two files
students.csv and config.json, based on how frequently
the settings change. The list of students in students.csv
might not change during the course duration, while
config.json changes for every exercise. The configu-
ration procedure must be completed after the code
template was finished and before Stager is executed.
Stager or its configuration does not add any precon-
ditions or constraints on the students. The following
settings can be edited:

1. Credentials: Remote git repositories can be ac-
cessed via the SSH or HTTP protocols [Lawrance et
al., 2013]. For HTTP, the JSON keys username and

8There are multiple tools available that automate this step, e.g.
ArTEMiS, Github Classroom, etc.

9https://moodle.org
10https://github.com/arubacao/stager
11https://golang.org
12https://git-scm.com

Reviewer

2.2. Trigger
Stager

4.1 Manually
assess

prepared
repositories

4.2 Give
qualitative
feedback

Stager

3.1 Download
repositories

3.2 Rename
folders

3.4 Rename
projects

3.5 Normalize
code style

3.3 Filter late
submissions

3.6 Combine
commits

Student

1.2 Solve
exercise

1.1 Receive
exercise and

code template

5. Receive
qualitative
feedback

2.1 Configure
Stager

1.3 Commit and
push solution

Figure 1: Exercise workflow with Stager: students
complete the exercise and upload their solutions to a
VCS. The reviewer configures and triggers Stager to
process different tasks, e.g. 3.1 Download repositories.
Afterwards, the reviewer manually assesses the pre-
pared repositories and gives qualitative feedback to
the students.

password have to be set with valid credentials and
access rights to the VCS. For SSH, Stager uses the
operating system’s global SSH settings and therefore
does not require further configuration.

2. Latest commit hash of a programming exer-
cise template: The programming exercises that are
distributed to the students build upon a given code
template. The SHA hash of the latest commit for
the code template, meaning the latest code changes
the reviewer included, must be set for the JSON key
squash_after. This setting is required for Stager to
distinguish between the given code by the reviewer
and code written by the student. This configuration
option is used by the task Combine commits and is
further elaborated in Section 3.2.

3. Deadline for homework submission: Students
have to submit their homework in a given time-frame.

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 36

For example, the homework must be submitted by
Sunday midnight because the programming exercises
will be discussed in class on Monday morning. How-
ever, VCSs have limitations when it comes to time-
based repository access. As described in more detail
in Section 3.2, the task Filter late submissions allows
to overcome these VCSs limitations. The deadline for
students submitting their homework is set with the
JSON key deadline. The standard datetime format
YYYY-MM-DD HH:MM:SS must be used. For example,
2018-08-31 23:59:59 is valid.

4. Remote repository URL schema: Each student
has a personal repository that can be accessed with
a unique URL. A general URL schema can be derived
from these unique URLs, where the students’ identi-
fiers are substituted by a placeholder. For example, for
the repository URL (1) of student 10001, the derived
general URL schema is (2). If the repositories are ac-
cessed using HTTP as in the example, two additional
placeholders must be set for the reviewer’s credentials
(3). The resulting schema is set for the key url.

https://repo.uni/cs101/exercise01-10001.git (1)

https://repo.uni/cs101/exercise01-%s.git (2)

https://%s:%s@repo.uni/cs101/exercise01-%s.git (3)

5. List of students: In addition to the mentioned
settings, Stager requires a list of students the reviewer
wants to assess. The students’ names and identifiers
are defined in the students.csv file with the format
shown in Listing 1. All mentioned people and courses
in this paper are placeholder names and do not exist
in reality.

Listing 1: Sample students.csv
name , id
John Doe,10001
Jane Roe ,10002

After configuration, the Stager executable, con-
fig.json, and students.csv are placed in a dedicated
and empty folder. Stager can then be executed via a
double click or from the terminal. Listing 2 illustrates
this workflow. After Stager terminates, the students’
repositories are locally available and prepared by the
tasks described in the following Section 3.2.

Listing 2: Folder setup and execution of Stager
$ cd ~/cs101 / assessment3
$ l s
con f i g . j son s t age r s tudent s . csv
$. / s t age r

3.2 Stager’s Tasks
Stager provides an extendable framework which
makes it easy to add or remove tasks according to
the reviewer’s requirements. Tasks are functions that
modify the repository or its contents and have a single

purpose. For example, the Rename folders task ap-
pends the student’s name to the corresponding folder.
Stager is composed of multiple tasks (shown in the
Stager swimlane in Figure 1) that adhere to certain
rules and are sequentially performed during the tool’s
execution. The implementation allows a clear distinc-
tion of tasks, such that each task addresses a separate
purpose. Therefore, it is easy to add new tasks or re-
move existing ones conceptually and implementation-
wise in the future. For example, when the reviewer
does not need a certain task, only one line of code
within the array of tasks has to be removed. Fur-
thermore, tasks must be idempotent, meaning that
multiple executions of the task lead to the same out-
put. Even though tasks are independent, they are
processed sequentially, i.e. the order of the tasks is
relevant. For instance, repositories first have to be
downloaded before other tasks have local file access.

The goal of Stager is to simplify the manual assess-
ment of programming exercises by modifying source
code, files, and repositories. Repetitive manual steps
that are required for the reviewer to start the assess-
ment should be reduced or eliminated by Stager. We
identified the following relevant tasks (listed accord-
ing to the order of execution) and describe each of
them in detail in the following:

1. Download repositories

2. Filter late submissions

3. Rename folders

4. Rename projects

5. Normalize code style

6. Combine commits

1. Download repositories: In order to better de-
termine the software quality and verify if all require-
ments of the problem statement have been solved by
the students’ submissions, it is necessary for the re-
viewer to compile and execute their homework source
code locally. Hence the repositories must be available
on the reviewer’s computer. The initial task clones all
repositories of the predefined students as-is and all at
once to a given folder on the reviewer’s computer. This
first task takes potential existing local repositories into
account and overwrites them. It ensures that each lo-
cal repository is in sync with the remote repository
and in a clean state.

The following tasks modify files and therefore
require write access to the repositories. These
modifications can only be performed when the
repositories are locally available. Consequently, the
Download repositories task must be first.

2. Filter late submissions: Homework submis-
sions are tied to a hard deadline. With web-based
VCSs like Bitbucket or GitLab, it is hardly possible to
block student commits after a given deadline. Stu-
dents could exploit this situation and extend their

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 37

time to finish the exercise as shown in Figure 2. The
Filter late submissions task analyzes the commit times-
tamps and sets the repository to the state of the pre-
configured deadline in config.json. Commits after the
deadline are not considered anymore. This way time-
based limitations of web-based VCSs are bypassed.
However, this procedure is not fully forgery-proof,
since commit timestamps can be manipulated.

File changes made prior to this task would be
striped out, since the repository is set to the state
of the pre-configured deadline. Therefore, the Fil-
ter late submissions task must be executed before any
other task can modify files.

Figure 2: Filter late homework submissions by exclud-
ing commits after the homework submission deadline.
The two commits above the red line are after the
deadline while the two commits below the red line
are before the deadline.

3. Rename folders: Depending on the naming
convention, only the student’s identifier is used for
the repository name. The resulting folders can be
hard to keep separate and to associate with the correct
student. For obfuscation and identity protection this
is reasonable, but counterproductive on the reviewer’s
local system since it is easier to identify a student
by their name and not through their id. Once the
repositories are locally available, the Rename folders
task appends the student’s name to the corresponding
folder as illustrated in Figure 3.

Figure 3: Append names to folders to better distin-
guish between students. Without the names john_doe
and jane_roe, it would be difficult to identify which
folder belongs to which student.

4. Rename projects: As precondition of Stager,
each student must have their own repository for each
published exercise. The content of these repositories
is always identical. As a result, the project names
are also identical for all students. This leads to the
problem that reviewers could only import one project
at the same time into Eclipse in order to review and
execute the code. Renaming all projects manually is
time-consuming and error-prone. Analogue to the Re-
name folders task, a student’s name is prepended to the
corresponding project name. This makes it possible to

distinguish between students within source code edi-
tors or integrated development environments (IDEs),
e.g. Eclipse13 (Figure 4), and allows to import mul-
tiple projects at the same time. Eclipse, for instance,
does not allow to import multiple projects with iden-
tical names, which makes it impossible to compare
multiple solutions without renaming the projects.

Figure 4: Prepend student names to projects so that
the submissions of multiple students can be imported
into Eclipse and reviewed at the same time. Jane
Roe and John Doe are prepended to the project name.
Otherwise the reviewer could only import one Eclipse
project at the same time.

5. Normalize code style: The encoding and code
style of the provided code template and the final
student’s contribution should be consistent. Windows
and Unix-based systems use different line breaks for
code files by default. Windows uses carriage return
and line feed “\r\n” as a line ending, whereas Unix
based systems use just line feed “\n”. Also, IDEs
might automatically enforce a different code style
standard than desired. As illustrated in Figure 5, this
could lead to non-relevant changes and obscured
code differences in commits, thereby making it harder
to assess the submission. To avoid these non-relevant
file changes by the student, Stager invokes a linter
that automatically normalizes the code to the same
standards as the initial template. This means that all
white space related changes, e.g. line breaks, empty
spaces and tabs are removed, so that the reviewer
does not need to analyze them. Each programming
language has its own linting strategies, utilizing
existing tools like eslint14 for Javascript or checkstyle15

for Java. This hides pure white space and encoding
changes and allows code reviewers to focus on the
actual contributions by the students.

6. Combine commits: Reviewers provide code
templates as a starting point for the programming
exercise, in which the student has to make changes
across multiple files. These changes can be small com-
pared to the provided template and consequently hard
to identify by the reviewer. In order to determine the
student’s contribution more effectively, it is helpful to
see the exact difference between the template and the
final submission instead of only looking at the final
submission. VCSs provide easy comparison methods

13https://www.eclipse.org
14https://github.com/eslint/eslint
15https://github.com/checkstyle/checkstyle

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 38

Figure 5: There is no visual change in the two code
blocks in this figure. However, non-visible line breaks
cause the comparison tool to show these lines. This
can make it time-consuming for the reviewer to iden-
tify relevant changes.

where the difference made by a single commit is vis-
ible. However, a submission can consist of multiple
commits. The reviewer would have to compare each
commit and memorize the changes themselves, which
makes the standard comparison method impractical
and error-prone.

The combine commits task combines the students
commits into one single commit. The reviewer does
not need to review multiple changes within the same
code line and can omit changes that have been added
in one commit and removed again in a later commit.
This single commit also contains all Stager related
changes (e.g. white space changes). As a result, it is
easy for the reviewer to quickly identify the student’s
contribution and to decide if the solution is correct.
In addition to the existing branches with the complete
commit history, Stager adds the combined commit into
a separate branch. Thus, information is only added
and not removed from the repository and the reviewer
could still see the whole commit history. Web-based
VCSs like GitHub also offer a squash feature, however,
the reviewer would have to trigger it manually for
each repository.

Figure 6 illustrates this process with an example
student John Doe and an Instructor. The Instructor
provides a code template. John Doe works on the
given exercise. Over a period of one day, John submits
his work separated across multiple commits. As seen
in the bottom right corner of Figure 6, one assignment
was to Add new car types to the game. Since John
submitted multiple code changes and removed the
“TODO” lines within the code, the reviewer would
have to actively scan all nine commits to identify
John’s solution. Stager solves this time-consuming
process by combining all student commits into one
single commit that includes all changes by John. This
single commit is selected in the top of Figure 6. The
reviewer can see every file that has been modified by
the student and quickly identify, whether John has
completed the assignment correctly.

4 Experience Report
The following experience report describes the lecture-
based course Introduction to Software Engineering
(EIST16) in which we used Stager to improve the man-
ual assessment of programming exercises. EIST is a
second semester bachelor’s course with a heteroge-
neous group of students including computer science,
business informatics, and business students.

The course assumes that students have successfully
completed an introductory course in computer science
(e.g. CS1) and are familiar with object-oriented pro-
gramming in Java. The course’s learning goals are
that students are able to apply relevant concepts and
methods in all phases of software engineering projects
including analysis, design, implementation, testing,
and delivery. Further, students know the most im-
portant terms and concepts and can apply them in
modeling and programming tasks. They are aware
of the problems and issues that generally have to be
considered in software engineering projects. Table 1
shows the schedule and the content of the course.

Week Content

1 Introduction

2 Model-Based Software Engineering

3 Requirements Elicitation and Analysis

4 System Design I

5 System Design II

6 Object Design

7 Model Transformations and Refactorings

8 Pattern-Based Development

9 Lifecycle Modeling

10 Software Configuration Management

11 Testing

12 Project Management

13 Repetitorium

Table 1: The course Introduction to Software Engineer-
ing lasts 13 weeks.

1600 students were registered for the course in
2018. One lecturer and three exercise instructors
were involved in the organization of the course. 45
teaching assistants were responsible for holding 74
exercise group sessions per week. Teaching assistants
were mainly bachelor students in the fourth semester,
who successfully completed the same course in the
previous year.

The course design is based on interaction and as-
sumes active participation from students. The interac-
tive parts include in-class exercises, in-class quizzes,
and exercise sessions. Students need to bring their
laptops to the class and to exercise sessions. Stu-
dents can earn bonus points for completing in-class
and homework exercises successfully. They can use
these bonus points to improve their final exam grade.

16The German title is “Einführung in die Softwaretechnik”.

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 39

Figure 6: Student commits are combined into one discrete change set: the commit at the top highlighted in
blue. This commit displays the difference between a provided code template by the instructor and the submitted
solution by the student. All commits of the student John Doe are still available.

For instance, if they score more than 90 % of the to-
tal exercise points, their grade in the final exam is
improved by 1.0. This possibility motivates the stu-
dents to participate in the in-class exercises and in
the homework exercises. In-class exercises consist
of quizzes (similar to the quiz exercises described in
[Krusche et al., 2017c]), modeling and programming
exercises. Homework exercises include modeling, text
and programming exercises.

4.1 Programming Exercises

Between 600 and 1200 students have actively partici-
pated in each programming exercise throughout the
semester which is shown in Figure 7 and Figure 8. In
each exercise, the students had to write new source
code or adjust existing code based on a given prob-
lem statement. All students worked on the existing
template code of an exercise in their individual git
repository. The exercises were based on a 2D rac-
ing game called Bumpers. In the game, cars collide
with each other and each collision has a winner. The
course is designed so that each week’s exercises focus
on a different part of Bumpers in accordance with the
lecture’s content, e.g. in week 8, “Pattern-Based De-
velopment”, exercises include the implementation of

different design patterns to make the game extensible
for new requirements.

To submit their solutions, the students commit their
changes to a version control system. This automati-
cally triggers test cases on a continuous integration
server to verify the given solution. After the submis-
sion of their solution, students can automatically see
the test results as individual feedback and improve
their solution according to this feedback.

0

500

1000

1500

H01 H02 H07 H08 H11

637
794824

1.1041.070

Participations in Homework Programming Exercises

Figure 7: Number of students who submitted solutions
to homework programming exercises

However, not all aspects of a problem statement
can be automatically tested. Either it is difficult to test
a certain aspect of a solution, for instance complex
behavior tests, or the problem statement provides a

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 40

0

500

1000

1500

L02 L07 L08 L10 L11

765776863896

1.213

Participations in In-Class Programming Exercises

Figure 8: Number of students who submitted solutions
to in-class programming exercises

high degree of freedom which makes it difficult to
write test cases, e.g. open or visionary questions.

The following three homework programming ex-
ercises required manual assessment by the teaching
assistants. The second and third exercises were graded
semi-automated.
1. Collision Detection: The task was to implement
a creative collision detection algorithm for cars in
Bumpers. The students were given executable tem-
plate code and had to extend it with a new class that
included their solution. This exercise required manual
correction to test whether the new collision algorithm
performed as intended. Additionally, the most creative
solutions were awarded and shown in class.
2. Serialization of Code: The students had to in-
stantiate objects from two classes in Java. The main
task was to serialize and deserialize these object using
JSON. An automated assessment system was used to
test the input and output of the serialization. How-
ever, the students wrote their own serialization code,
so their solutions varied, e.g. in the naming of the ob-
jects or methods. This required the teaching assistants
to assess the implementations manually.
3. Adapter Pattern: Based on a code template, the
assignment was to extend the 2D car racing game
Bumpers with legacy code using the adapter pattern.
The legacy code for an existing analog speedome-
ter panel was provided separately. An automated
assessment system graded the students’ solution. In
addition, the teaching assistants had to verify if the
speedometer panel was shown in the game user inter-
face and displayed the velocity correctly.

4.2 Results
In order to determine how many manual steps during
a homework assessment can be automated by Stager,
we conducted a quantitative analysis for these three
programming exercises. For the qualitative analysis
we focused on:

1. Number of commits per student

2. Number of commits after the exercise deadline

3. Source code changes where only white spaces
have been added or removed

Table 2 displays an overview of the number of par-
ticipating students for each exercise together with

submission metrics. The number of commits per stu-
dent varies from 1.81 to 5.91 on average. Stager’s
combine commits task will combine student commits
into one single commit so that reviewers can distin-
guish the difference between the provided code tem-
plate and code submitted by the student immediately.
There are respectively 34, 8, and 7 late submissions
for the observed exercises. Stager will automatically
filter commits that are contributed after the defined
exercise deadline. There are between 118 and 183
students that submitted at least one commit where
they only changed white spaces. While reviewing the
student contributions, white space related changes
are visually distracting to the reviewer (see Figure 5),
since these changes are not relevant to the exercise.

In informal discussions, seven teaching assistants
reported that Stager reduced their reviewing effort
significantly. The workflow without Stager required
the teaching assistants to first filter the repositories
by student, then to check the commit dates and times,
clone or download the code, and to fix potential white
space problems in order to be able to assess the actual
sumbission. Depending on the amount of exercise ses-
sions, teaching assistants had to perform this manual
workflow for up to 50 student submissions. Further,
the repository names only include the student’s iden-
tifiers, not names, so that mix-ups could occur when
importing the solutions into an IDE.

4.3 Discussion
While using Stager, we identified four main advan-
tages: (1) Combining commits is particularly helpful
to review all changes of one student at a glance. This
allows the reviewer to immediately identify whether
the student has understood the problem statement
and has implemented a proper solution. (2) Renam-
ing the projects simplifies the assessment and compar-
ison of multiple solutions. The reviewer can import
multiple solutions at the same time with one click into
an IDE. It increases the confidence of the reviewers, so
that the assessment is associated with the correct stu-
dent. (3) While most students follow the deadline of
an exercise, some students have committed changes
after the deadline. It would be possible to remove
write permissions for all student git repositories at the
given deadline, but this might be hard to realize. En-
forcing the deadlines in Stager is easier and filters the
cases where students try to circumvent the deadline.
(4) Stager only depends on using git repositories for
programming exercises and other instructors can use
it without adaptions in their courses, e.g. in GitHub
Classroom or other git environments17. As Stager is
open-source, other instructors can adapt it to their
own needs.

While Stager is easy to use as a standalone tool,
reviewers need to configure it for each exercise as
described in Section 3.1. It would further simplify the

17https://classroom.github.com

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 41

Metric 1. Collision Detection 2. Serialization of Code 3. Adapter Pattern

Total submission count 1104 657 794

Total commit count 1998 3880 2447

Average amount of commits per student 1.81 5.91 3.08

Total commits after exercise deadline 34 8 7

Total submission count with at least

one white space related change
125 118 183

Table 2: Quantitative analysis of submission metrics for three programming exercises of the course

configuration if Stager would be integrated into the
exercise management system, where the instructor
sets up the programming exercise. Then Stager would
automatically know the submission deadline, the lat-
est commit of the instructor in the code template, and
the remote repository URL. This would make the use
of Stager easier and seamlessly.

4.4 Limitations
Our experience report only included three exercises
that used Stager for code reviews. It would be in-
teresting to analyze the concrete time-savings with a
comparison and to use Stager throughout the whole
course. While we have first indications, we did not
evaluate whether the quality of the reviews improved
through the use of Stager.

In addition, Stager’s implementation currently has
the following limitations: (1) Reviewers have to man-
ually search for each student repository’s key the first
time they use Stager, before being able to use Stager
for the remaining steps. The previously mentioned
integration of Stager into an exercise management
system would overcome this step. (2) For every exer-
cise, the config.json file has to be changed accordingly
with the deadline, URL-schema, and commit of the
instructor. This could also be adapted to be automat-
ically included when creating exercises by means of
an exercise management system. (3) Reviewers have
to install Stager on their computer and start it via a
double-click or the command line interface. A web-
based solution or a plugin into an IDE (e.g. Eclipse)
in which the reviewers import the code would provide
a more user-friendly experience.

5 Conclusion
Manual code reviews are important for the learning
experience of students. While automatic tests can find
typical problems and check whether code works as
intended, they cannot find all problems, code smells,
and implementation issues. Automatic assessment
imposes certain solutions on the students and might
limit their creativity. Stager supports code review-
ers by automating steps in the manual assessment of
programming exercises to reduce effort for the prepa-
ration and the conduction of code reviews. Stager
downloads multiple students’ submissions, renames
folders and projects, filters out late submissions, and

fixes typical white space problems. All commits of one
student are combined into one discrete change-set
that is easier to review. Code reviewers can better dis-
tinguish between the submissions of multiple students
and identify students’ contributions more quickly.

Our experience in a course with 1600 students and
45 teaching assistants shows that Stager reduced the
reviewing effort and time for teaching assistants. The
reviewers used the saved time to write better reviews
and give more detailed feedback to the students. This
improved the student’s learning. A quantitative analy-
sis in three programming exercises shows that Stager
identifies several late submissions and fixes many
white space issues.

Stager is free, open source, and available under the
MIT license, so that other instructors can use it in their
courses18. We will continue the development and aim
to integrate the tool into the automated assessment
system ArTEMiS [Krusche and Seitz, 2018]. Our fu-
ture work also includes the integration of code quality
metrics to support the actual code assessment. This
could make it easier for reviewers to spot code quality
issues in the students’ solutions and be included, e.g.
as a text file, into the feedback pipeline.

In addition, we would like to evaluate the quality
of the code reviews when using Stager compared to
pure manual reviews with respect to the completeness,
helpfulness, and understandability of the review. De-
pending on the results of this evaluation, we could in-
tegrate strategies to semi-automatically propose com-
mon code review feedback. Automatic suggestions
would further reduce the effort of reviewers but al-
low them to tailor these suggestions to the concrete
situation.

References
[Ala-Mutka 2005] ALA-MUTKA, Kirsti M.: A Survey

of Automated Assessment Approaches for Program-
ming Assignments. In: Computer Science Education
15, pages 83–102, 2005.

[Cerioli and Cinelli 2008] CERIOLI, Maura ; CINELLI,
Pierpaolo: GRASP: Grading and Rating ASsistant
Professor. In: Proceedings of the Informatics Educa-
tion Europe III Conference, 2008.

18https://github.com/arubacao/stager

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 42

[Chen 2004] CHEN, P. M.: An automated feedback
system for computer organization projects. In: IEEE
Transactions on Education 47, pages 232–240, 2004.

[Gerdes et al. 2017] GERDES, Alex ; HEEREN, Bas-
tiaan ; JEURING, Johan ; BINSBERGEN, L. T. van:
Ask-Elle: an Adaptable Programming Tutor for
Haskell Giving Automated Feedback. In: Interna-
tional Journal of Artificial Intelligence in Education
27, pages 65–100, 2017.

[Heckman and King 2018] HECKMAN, Sarah ; KING,
Jason: Developing Software Engineering Skills Us-
ing Real Tools for Automated Grading. In: Pro-
ceedings of the 49th ACM Technical Symposium on
Computer Science Education, pages 794–799, 2018.

[Insa and Silva 2015] INSA, David ; SILVA, Josep:
Semi-Automatic Assessment of Unrestrained Java
Code: A Library, a DSL, and a Workbench to Assess
Exams and Exercises. In: Proceedings of the Con-
ference on Innovation and Technology in Computer
Science Education, pages 39–44, 2015.

[Jackson 2000] JACKSON, David: A semi-automated
approach to online assessment. In: SIGCSE Bulletin
32, pages 164–167, 2000.

[Jackson and Usher 1997] JACKSON, David ; USHER,
Michelle: Grading Student Programs Using ASSYST.
In: Proceedings of the 28th Technical Symposium on
Computer Science Education, pages 335–339, 1997.

[Knobelsdorf and Romeike 2008] KNOBELSDORF,
Maria ; ROMEIKE, Ralf: Creativity As a Pathway
to Computer Science. In: Proceedings of the 13th
Annual Conference on Innovation and Technology in
Computer Science Education, pages 286–290, 2008.

[Krusche et al. 2017a] KRUSCHE, Stephan ;
BRUEGGE, Bernd ; CAMILLERI, Irina ; KRINKIN, Kir-
ill ; SEITZ, Andreas ; WÖBKER, Cecil: Chaordic
Learning: A Case Study. In: Proceedings of the 39th
International Conference on Software Engineering:
Software Engineering Education and Training Track,
pages 87–96, IEEE, 2017.

[Krusche and Seitz 2018] KRUSCHE, Stephan ;
SEITZ, Andreas: ArTEMiS: An Automatic Assess-
ment Management System for Interactive Learning.
In: Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education, pages 284–289,
2018.

[Krusche et al. 2017b] KRUSCHE, Stephan ; SEITZ,
Andreas ; BÖRSTLER, Jürgen ; BRUEGGE, Bernd: In-
teractive Learning: Increasing Student Participation
through Shorter Exercise Cycles. In: Proceedings of

the 19th Australasian Computing Education Confer-
ence, pages 17–26, 2017.

[Krusche et al. 2017c] KRUSCHE, Stephan ; VON

FRANKENBERG, Nadine ; AFIFI, Sami: Experiences of
a Software Engineering Course based on Interactive
Learning. In: Tagungsband des 15. Workshops "Soft-
ware Engineering im Unterricht der Hochschulen",
pages 32–40, 2017.

[Lawrance et al. 2013] LAWRANCE, Joseph ; JUNG,
Seikyung ; WISEMAN, Charles: Git on the Cloud
in the Classroom. In: Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
pages 639–644, 2013.

[McCracken et al. 2001] MCCRACKEN, Michael ;
ALMSTRUM, Vicki ; DIAZ, Danny ; GUZDIAL,
Mark ; HAGAN, Dianne ; KOLIKANT, Yifat Ben-
David ; LAXER, Cary ; THOMAS, Lynda ; UTTING,
Ian ; WILUSZ, Tadeusz: A Multi-national, Multi-
institutional Study of Assessment of Programming
Skills of First-year CS Students. In: Working Group
Reports on Innovation and Technology in Computer
Science Education, pages 125–180, 2001.

[Pieterse 2013] PIETERSE, Vreda: Automated As-
sessment of Programming Assignments. In: Proceed-
ings of the 3rd Computer Science Education Research
Conference, pages 45–56, 2013.

[Poženel et al. 2015] POŽENEL, Marko ; FÜRST,
Luka ; MAHNIČ, Viljan: Introduction of the auto-
mated assessment of homework assignments in a
university-level programming course. In: 38th In-
ternational Convention on Information and Commu-
nication Technology, Electronics and Microelectronics,
pages 761–766, IEEE, 2015.

[Robins et al. 2003] ROBINS, Anthony ; ROUNTREE,
Janet ; ROUNTREE, Nathan: Learning and teaching
programming: A review and discussion. In: Com-
puter Science Education 13, pages 137–172, 2003.

[Staubitz et al. 2015] STAUBITZ, Thomas ; KLE-
MENT, Hauke ; RENZ, Jan ; TEUSNER, Ralf ; MEINEL,
Christoph: Towards practical programming exer-
cises and automated assessment in Massive Open
Online Courses. In: Teaching, Assessment, and Learn-
ing for Engineering, pages 23–30, IEEE, 2015.

[Striewe and Goedicke 2013] STRIEWE, Michael ;
GOEDICKE, Michael: Analyse von Programmier-
aufgaben durch Softwareproduktmetriken. In:
Tagungsband des 13. Workshops "Software Engineer-
ing im Unterricht der Hochschulen", pages 59–68,
2013.

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 43

8.8 An Interactive Learning Method to Engage Stu-
dents in Modeling

This conference paper is the most significant contribution to the habilitation. Engaging
students in modeling is challenging, especially in very large introductory courses. The
paper describes an easy-to-use online modeling editor Apollon integrated into Artemis.
Based on interactive learning, students learn modeling in guided tutorials in the lecture
right after the theory is introduced and deepen their skills in group work and homework
exercises. The instructors applied interactive learning in modeling in the introductory
course Introduction to Software Engineering (EIST) with more than 1000 students. An
empirical evaluation of the method demonstrated that the students learning outcome
in modeling improved by up to 87 % compared to the previous year without interactive
learning. As a result, students are motivated to use models in their future projects
and understand how to approach problems with models. This publication includes the
empirical evidence found in a largescale study that interactive learning can significantly
improve students’ learning outcomes.

Authors S. Krusche, N. von Frankenberg, L. Reimer and B. Bruegge
Conference 42nd International Conference on Software Engineering
Publisher ACM
Pages 11
Type Conference: Full Research Paper
Review Peer Reviewed (3 Reviewers)
Year 2020
Citation [KvFRB20]
DOI https://doi.org/10.1145/3377814.3381701

193

https://doi.org/10.1145/3377814.3381701

An Interactive Learning Method to Engage Students in Modeling
Stephan Krusche
krusche@in.tum.de

Technical University of Munich
Munich, Germany

Nadine von Frankenberg
nadine.frankenberg@in.tum.de
Technical University of Munich

Munich, Germany

Lara Marie Reimer
laramarie.reimer@tum.de

Technical University of Munich
Munich, Germany

Bernd Bruegge
bruegge@in.tum.de

Technical University of Munich
Munich, Germany

ABSTRACT
Modeling is an important skill in software engineering. However,
it is often not tangible for students and not appreciated. Students
prefer coding because they receive immediate feedback from the
compiler. Engaging students in modeling is difficult, especially in
large introductory courses.

We have developed an interactive learning method for modeling
which is based on an easy to use online editor. Students learn
modeling in guided tutorials in the lecture right after the theory
is introduced and deepen their modeling skills in group work and
homework exercises. This learning method was applied in a large
introductory course with more than 1000 students.

An empirical evaluation of the method demonstrated that the
students’ learning outcome in modeling improved significantly by
up to 87 %. Students are motivated to use models in their future
projects and understand how to approach problems with models.
The use of interactive models in programming exercises improves
their understanding of the taught concepts.

CCS CONCEPTS
• Social and professional topics→ Software engineering ed-
ucation; • Applied computing → Interactive learning envi-
ronments; Learning management systems.

KEYWORDS
Software Engineering, Education, Learning Management System,
Online Editor, Modeling, Learning Success, Interactive

ACM Reference Format:
Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An Interactive Learning Method to Engage Students in
Modeling. In Software Engineering Education and Training (ICSE-SEET’20),
May 23–29, 2020, Seoul, Republic of Korea.ACM,NewYork, NY, USA, 11 pages.
https://doi.org/10.1145/3377814.3381701

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7124-7/20/05. . . $15.00
https://doi.org/10.1145/3377814.3381701

1 INTRODUCTION
Software engineering requires practical application of knowledge
[6, 10, 34]. Modeling a system in the Unified Modeling Language
(UML) is an important practical skill to facilitate communication
between software engineers. Students typically get in touch with
UML modeling in undergraduate courses in university. While exam-
ples and exercises play a central role in the early phases of cognitive
skill acquisition [37], it is time consuming for instructors to create
and assess modeling exercises that stimulate all cognitive skills,
including creativity. Carefully developed and integrated examples
improve the learning outcome [35, 36]. Providing individual feed-
back and allowing students to improve their knowledge through
formative assessments are essential elements in learning [14, 15],
so that students can improve their skills.

However, with the rising numbers of students in introductory
courses, it is nearly impossible for instructors to teach the creative
aspects of modeling and to provide individual feedback. Courses
with hundreds of students create enormous efforts for instructors,
especially in the correction of exercises and exams, and make it
impossible to interact with each student on an individual level [26].
Modeling is a creative task where multiple solutions are possible
and it is difficult to judge immediately whether a solution is correct
or not [19, 24, 25]. It is not feasible to define all possible correct
solutions for a modeling exercise. The choice of the modeling tool
has many implications. The use of existing modeling tools such as
Visual Paradigm, Gliffy, or draw.io overwhelms and demotivates
students due to their complexity. Assessing models with these tools
is not possible.

To overcome these problems, we designed an interactive learn-
ing method, where students start modeling in an easy to use online
editor that focuses on learnability. In this online editor, students
receive individual feedback directly next to the model elements
in order to avoid media breaks. Students use modeling techniques
such as UML to abstract ideas, reduce complexity, improve com-
munication, and to solve concrete problems. The instructor of the
course introduces different types of UML diagrams when they are
first needed in the software lifecycle.

Through guided tutorials and in-class exercises, students learn
the modeling notation of the respective UML diagram type in the
lecture. They further practice modeling in tutor exercise sessions.
Homework enables students to deepen their modeling skills in self-
study. The presentation of their own modeling solution in the ac-
companying tutor exercise sessions improves communication skills,

12

2020 IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Krusche, von Frankenberg, Reimer and Bruegge

which are essential in software engineering. Individual feedback
on homework allows students to measure their learning progress
and improve their skills further. In this paper, we investigate the
following hypotheses:
H1 Learning success: Interactive learning methods improve the

learning success in modeling.
H2 Engagement: Integrating modeling throughout the software

lifecycle increases student engagement in modeling.
H3 Understanding: Interactive models in programming exer-

cises improve students’ understanding of the concepts taught.
The remainder of the paper is structured as follows: Section 2

describes related work in relation to relevant learning concepts.
Section 3 describes the interactive learning method and the tool
support in detail. In Section 4, we present a large software engi-
neering introduction course with more than 1000 students in which
we used the interactive learning method. Section 5 outlines the
evaluation and its results consisting of an online questionnaire,
data analysis and a quasi experiment. Section 6 discusses the advan-
tages and disadvantages of the proposed learning method. Section 7
concludes the paper and proposes future work.

2 RELATEDWORK
Software engineering is an engaging, interactive, and collaborative
activity [38]. In the educational sector, creating engaging and inter-
active curricula is an important topic. Content delivery and content
exercise is often divided into lectures and exercises which can lead
to knowledge gaps. This concept is described by Ebbinghaus’s for-
getting curve which follows the psychological proposition “... who
learns quickly also forgets quickly” [12] and illustrates the knowl-
edge retention rate over time [31]. The forgetting curve implies that
after learning new information, within the first 24 hours, there is a
retention loss of 40 % to 60 % – if this information is not practiced
in short cycles.

Several pedagogical concepts of learning aim at closing this
gap of content delivery and practice. Common concepts include:
blended learning, a combination of E-learning with the traditional
lecturing style that offers the course content through multiple de-
livery channels [4]; experiential learning, a methodology where
students learn from experience [17]; active learning where students
participate actively in all learning activities, rather than solely lis-
tening passively to a lecturer; and interactive learning, which is
based on active and blended learning and further engages students
in interactive activities using technology [8, 22].

Engaging students throughout the whole learning process has
proved to improve the retention rate. Think-Pair-Share (TPS) is an
approach where students work on a problem first individually, then
in small groups, and eventually with the whole class [28]. In a study
that involved a large introductory programming course, Kothiyal et.
al found that a TPS approach yielded 83 % of student engagement
[18]. Krusche et. al propose to introduce multiple short iterations
between teaching and exercising concepts by combining lectures
and exercises into interactive classes [21, 23], and report similar
results as Kothiyal, an average of 80 % of student engagement
throughout the semester.

Interactive learning concepts involve the direct hands-on ap-
plication of knowledge, which is important for learning software

engineering concepts [34]. The aforementioned concepts are par-
ticularly relevant for teaching modeling to students, considering
modeling being an informal and creative activity in the software
engineering process [7, 11, 19], rather than a concept that should
be learned by heart. Some methodologies following this concept
focus on collaborative learning environments for UML modeling
[1, 9] which may help students to lower the entrance barrier to
modeling. Others target the quality assessment and correctness of
models [24, 27, 29, 30]. Few approaches propose tools for assessing
models or offer scientific evidence on using such tools in practice.

3 LEARNING METHOD
Engaging students in modeling can be challenging. In this section,
we describe an interactive learningmethod that integrates modeling
into software lifecycle activities and guides students through their
modeling experience.

The learning method is based on active learning [5] and com-
bines lectures and exercises into small iterations to overcome the
artificial separation of theory and practice often applied at univer-
sities. Instead, instructors introduce small chunks of theory and
allow students to exercise them directly. Each theory-exercise cycle
consists of five steps [22]:

Theory: The instructor explains a new modeling concept, e.g.,
a diagram type or modeling technique, and describes the theory
behind while students listen and try to understand it.

Example: The instructor shows examples. Students relate the
learned modeling concepts and techniques to a concrete situation.

In-class exercise: Students apply the concept in an exercise,
e.g., a guided tutorial, and submit their solution.

Feedback: Students receive individual feedback on their own
solutions. The instructor provides an example solution, e.g., within
the guided tutorial, and explains it to the students to prevent mis-
conceptions [16]. The instructor can also show exemplary student
solutions and can discuss their strengths and weaknesses.

Reflection: The instructor facilitates a discussion about the
theory and the exercise so that the students reflect on their first
experience with the new modeling concept or modeling technique.
This can be done, e.g., by discussing best practices, repeating ad-
vantages of a technique, or showing how the exercise instantiates
the abstract concept.

3.1 Deepening the Learning Content
In addition to in-class exercises, the learning method includes group
work exercises and homework. Small tutor exercise sessions with
15-20 students are supposed to deepen the understanding of the
concepts explained in the lecture by means of suitable group or
team exercises. Students experience the application of the taught
concepts and methods with the help of manageable problems in
the different phases of software engineering.

Homework exercises enable students to deepen their knowledge
in self-study. The teaching concept motivates the students to par-
ticipate in homework exercises by providing individual feedback
and by granting exercise points that can be used to improve the
final grade of the course. Individual feedback on homework allows
students to measure learning progress and improve their skills.

13

An Interactive Learning Method to Engage Students in Modeling ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

Students present their solution to group work and homework exer-
cises in the tutor exercise sessions. The presentation of the solution
improves communication skills, which are essential in software
engineering.

3.2 Tool Support with Artemis and Apollon
Artemis is an exercise systemwith individual feedback that supports
interactive learning and is scalable to large courses [20]. It is open
source1 and used by multiple universities and courses. Artemis
integrates an online modeling editor Apollon that is open source2
and available as standalone and free web application3. Apollon
supports seven UML diagrams: class diagrams, object diagrams,
activity diagrams, use case diagrams, communication diagrams,
component diagrams and deployment diagrams. It is lightweight
and easy to use to lower the entrance barrier of digital modeling.
It focuses on the learning experience of students. Figure 1 shows
an example of a UML communication diagram. Students drag the
model elements from the right into the diagram and double-click
on an element to edit it in a small pop-up. They can drag and drop
relationships (e.g. control flow) between model elements.

Figure 1: The online modeling editor Apollon is integrated
into Artemis and supports the easy creation and assessment
of digital models.

Instructors and teaching assistants assess models and provide
feedback directly in Apollon. They double click on a model element
and assess it in a popup with a score in points and with additional
feedback comments to explain why a model element is correct or
wrong. In addition, they can provide general feedback about the
whole model or missing elements. Students can see this feedback
directly in place next to the model elements and learn from it.
1https://github.com/ls1intum/Artemis
2https://github.com/ls1intum/Apollon
3https://apollon.ase.in.tum.de

Artemis includes an online code editor with interactive and
dynamic exercise instructions on the right [20]. Figure 2 shows a
screenshot. Interactive instructions change their color depending
on the progress of students. Already completed tasks and correctly
implemented model elements are marked in green, incomplete tasks
and not yet implemented model elements are marked in red. This
helps students to identify which parts of the exercise they have
already solved correctly and improves the understanding of the
source code on the model level. When they submit their current
solution, the interactive instructions update dynamically.

Figure 2: Online code editor with interactive instructions on
the right side which include an interactive UML class dia-
gram that changes the color from red to green after success-
fully completing the corresponding programming task.

4 COURSE
This section describes the undergraduate software engineering
course SE14 at the Technical University of Munich. The instructors
of SE1 introduce students to UML modeling using the interactive
learning method described in Section 3.

The learning objectives of SE1 are to familiarize students with
relevant concepts, workflows, and methods of software engineering
and to apply them in all phases of software engineering projects.
This includes analyzing and evaluating problems, e.g., modeling the
problem, reusing classes and components, and testing the software.
With respect to UML, students learn to communicate using models.
They learn how and when to apply which model. They understand
the relationship between modeling and programming and learn
to abstract. Students learn to model and implement concrete prob-
lems in software engineering, for instance with the help of design
patterns.

SE1 is a mandatory Bachelor’s course offered in the second se-
mester for a heterogeneous group of students from the fields of
computer science, business informatics, and business, as well as
students from other fields. A prerequisite of the course is that the
students have basic programming experience, such as having suc-
cessfully completed an introductory course in computer science
(e.g., CS1). Course instructors use constructive alignment [2] to
4The course is called “Introduction to Software Engineering”

14

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Krusche, von Frankenberg, Reimer and Bruegge

align teaching and assessment with the course objectives. For each
lecture, a set of learning goals is defined based on the six cognitive
skills in Bloom’s taxonomy [3]. The course focuses in particular on
higher cognitive skills so that students learn to apply the concepts
in concrete situations. Students cannot pass the course by simply
memorizing the course material.

4.1 Organization
One lecturer and two exercise instructors organize and teach the
course with the help of around 45 student tutors. The tutors are
bachelor andmaster studentswho successfully completed the course
in previous years. The course takes place in the summer semester
over 12 weeks. Table 1 shows the course content together with
the UML models that are taught in the respective lecture. Around
1600 students register for the course. There is no lecture hall with
enough seats for all students. The course uses a live stream and
broadcasts the lecture to two additional overflow lecture halls. Most
students either participate actively in the main lecture hall or watch
the live stream at home. Therefore, the overflow lecture halls are
closed after a few weeks. All students (within the main lecture hall,
in overflow lecture halls and in the live stream) can ask questions
using Slack5. Tutors answer these questions directly or pass on a
question to the lecturer to repeat and answer it for all students.

Week Content UML Model
1 Introduction Class
2 Model-based SE Use Case, Class
3 Requirements Analysis Object, Communication
4 System Design I Component, Deployment
5 System Design II Component, Deployment
6 Object Design I Class
7 Object Design II Class

8 Model Transformation
and Refactoring State Chart

9 Software Lifecycle
Modeling Activity

10 Software Configuration
Management Activity

11 Testing Class
12 Project Management Class, Activity

Table 1: Course Schedule: SE1 lasts 12 weeks. Each lecture
includes specific UML models.

4.2 Design
Large courses present the challenge of keeping students motivated
throughout the semester (without, e.g., enforcing mandatory at-
tendance). Students are easily distracted by off-topic conversations
with other students or social media, and stop paying attention to the
lecture. To deal with such situations, the course includes interactive
elements to activate the students and to keep students engaged
throughout the course. The interactive components include in-class
exercises, in-class quizzes, and group exercise sessions.

The study program of the university does not allow to include
weekly assignments in the calculation of the final grade. Therefore,
5Slack is a cloud-based instant messaging platform: https://slack.com

the course uses a bonus system that motivates students to partici-
pate in the course and its exercises: students can earn bonus points
for completing in-class and homework exercises successfully. They
need to present their homework twice in tutor exercise sessions to
get the bonus applied.

If they pass the final exam, their exercise points are mapped
to exam points that are then added to their final exam score to
improve it. The German grading system consists of marks between
1.0 (similar to A in the US grading system) and 5.0 (similar to F in
the US grading system), with 1.0 being the highest grade and 4.0
(similar to D in the US grading system) being the pass grade. For
instance, if students score 30 % of the bonus points, they receive
additional 3.0 points on top of their exam score, which improves
their final grade by 0.3. If they score 100 % of the bonus points,
they can receive a total bonus of 1.0, for instance, they can improve
from a 2.3 to a 1.3. Students have reported that this increases their
motivation to actively participate in the exercise system.

4.3 Exercises
The course includes quizzes, programming, modeling, and text ex-
ercises. In-class exercises include quizzes, to recapture previously
learned content. They also include programming and modeling ex-
ercises as guided tutorials. Tutors help with student questions and
problems during the in-class exercises. Group exercises mainly en-
compass modeling exercises, but also small programming exercises
and text exercises that the students work out together during their
group exercise sessions in small teams. Homework assignments
include modeling, programming, and text exercises and enable stu-
dents to deepen their knowledge in self-study.

4.3.1 Modeling Exercises. Students model a solution to concrete
problems using UML. Modeling exercises stimulate higher cogni-
tive skills and force students to analyze, evaluate and create. Apol-
lon supports UML class, object, activity, use case, communication,
component, and deployment diagrams. As shown in Table 1, each
lecture includes different UML model types, aligned with the taught
content. Figure 3 shows an example for a modeling exercise. Stu-
dents drag and drop the model elements into the canvas, can add
attributes, methods, and define associations between them. The
advantage of Apollon is that students cannot use a UML element
other than the ones specified for the specific model type.

4.3.2 Quiz Exercises. Students repeat already learned content dur-
ing lectures and test their knowledge. They stimulate lower cogni-
tive skills such as remembering and understanding the concepts. A
quiz question can either be a multiple choice (MC) question, a drag
and drop (DnD) question, or a short answer question. For questions
related to modeling, the quizzes include MC and DnD questions
where students drag elements to predefined spots on the canvas.

4.3.3 Programming Exercises. Students learn to make connections
and see differences between models and their implementation in
programming exercises. This stimulates their cognitive skills and
students learn to apply the knowledge when implementing source
code. A UML class diagram, e.g., represents the general structure
of the source code and can be used as interactive problem state-
ment in Artemis. Red model elements indicate that they are not
implemented correctly, whereas green elements indicate correctly

15

An Interactive Learning Method to Engage Students in Modeling ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 3: An example for a modeling exercise in Apollon.

implemented ones. This further helps students to understand what
UML models should contain and what should be left out.

4.3.4 Text Exercises. Students need to answer questions about the
learned concepts by writing open text responses. They, e.g., need to
explain similarities and differences between design patterns in their
own words and describe concrete situations how design patterns
can be used. These exercises stimulate analysis and evaluation skills.

4.4 Communication
The course uses Slack as communication tool to facilitate discus-
sions between students and teaching staff. Using instant messaging
lowers the entrance barrier for students to ask questions, because
it feels familiar to communicate (in reference to, e.g., social media
chats) and students ask more questions if they notice that other
students do the same. Students can communicate with each other
and send direct messages to tutors and instructors in case they have
a question or require help during the lectures and at any other time.
Slack offers the ability to use channels with specific purposes:
#announcements— Instructors post course-wide announcements
(students cannot post here), e.g., reminders that a lecture is can-
celled on a public holiday
#organization — Questions about the organization of the course
#lecture — Questions regarding the lecture slides
#exercise — Questions regarding the exercises

The instructors further encourage students to answer questions
themselves. This increases a ‘sense of belonging’ (which is hard
to achieve in such a large setting), when students communicate
with each other, but can also deepen their understanding of a topic,
e.g., in discussions that pursue questions. Students receive fast
replies, which increases the interactivity. Tutors help to moderate
discussions. They ensure a positive atmosphere, reprimand and
prevent bullying. They answer questions and point students to
previously asked questions, if it has already been asked before.

4.5 Tutor Exercise Sessions
45 tutors hold 80 weekly occurring tutor exercise sessions, each
with around 20 students. The main focus for tutors is to activate the
students in these sessions, to moderate discussions and to explain
the learned concepts again in case the students ask questions. Tutors
have the following responsibilities: attend a weekly tutor meeting
with the instructors6, assess exercises and hold one or two tutor
exercise sessions per week. Tutors also help with moderating the
Slack channels, answer questions on Artemis, help students during
in-class exercises, or review slides and exercise content.

In the tutor exercise sessions, students apply the knowledge
acquired in the lecture. Each tutor exercise session is structured as
follows:

(1) Review of previous lecture [5 - 10min]: students discuss
the learning goals, outline, and summary.

(2) Homework presentation [30 - 45min]: students present
their solution to homework exercises. Tutors asks questions
about the solution, point out typical mistakes and provide
additional feedback.

(3) Group work [30 - 45min]: Students work on predefined
group exercises in groups (3-6 students).

(4) Discussion of next homework [5 - 10min]: the new home-
work exercises are briefly discussed.

The tutor exercise sessions review a specific topic that was cov-
ered in the lecture before and prepare the students for the next
homework assignment. They help to deepen the understanding of
the taught concepts. Group exercises show the application of the
learned methods with the help of concrete problems in the different
phases of software engineering. Homework assignments deepen
the knowledge in self study. Students receive individual feedback
on their homework submission, which allows them to measure
their learning progress and improve their skills. The presentation
of their own solution improves the communication skills of the
students, an essential skill in software engineering.

For instance, in lecture Object Design II, the course covered the
Strategy Design Pattern [13] by means of an example and the gen-
eral structure. In the corresponding tutor exercise session, there
was one group work, where students discussed the pattern’s prob-
lem, solution, benefits, consequences, etc. In the subsequent group
work, the students modeled a real-world example of the strategy
pattern as a UML class diagram. This exercise was designed to teach
students how to approach a concrete problem, how to analyze it,
and how to model this problem. In one homework assignment, the
students were given a similar problem: to model different encryp-
tion strategies as a UML class diagram, using the strategy pattern.
In another assignment in a programming exercise, the students had
to implement sorting algorithms using the strategy pattern.

4.6 Grading
While programming and quiz exercises are automatically evaluated,
modeling and text submissions are graded manually. Each tutor
grades about 25 submissions per exercise per week. Artemis offers a
double-blind grading system, which opts for less bias while grading.
Every week on Monday at noon, the homework is published. The

6Instructors discuss issues and present the next group work and homework.

16

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Krusche, von Frankenberg, Reimer and Bruegge

students then have one week to create and upload their solutions.
In the following week, students present their homework in the
tutor exercise sessions. Tutors use example solutions and detailed
grading criteria to assess the students’ submissions and provide
individual feedback. In the grading criteria, instructors point out
that multiple solutions to modeling exercises can be correct.

When students are given sample solutions, they often do not
think about their own solutions, but tend to take the sample solution
as the single truth. To encourage self-reflection and revision, the
example solutions are not distributed to the students. The feedback
students receive about their solutions is crucial for them to under-
stand how they can improve. As shown in Figure 4, the feedback for
modeling exercises is comprised of the (1) points they receive for
one concrete element, (2) feedback for this element, and (3) general
feedback regarding the whole model.

Figure 4: An example for a modeling exercise with individ-
ual feedback.

5 EVALUATION
This section presents the evaluation of the interactive learning
method in the SE1 course in 2019 based on the hypotheses in Sec-
tion 1. We describe the research method, present the results and
discuss the findings and limitations.

5.1 Research Method
In order to test our hypotheses, we applied the following three
research methods:

(1) Online Questionnaire: we created an online questionnaire
and asked all participants of the SE1 course in 2019 to par-
ticipate.

(2) Data Analysis: we analyzed the participation and exercise
performance of the students in the modeling exercises in the
SE1 course in 2019.

(3) Quasi Experiment: we compared the results of modeling
tasks in the SE1 exams from 2018 and 2019. In 2018, the SE1
course did not include the interactive learning method for
modeling exercises and therefore serves as the control group.

5.1.1 Online Questionnaire. All participants of the course SE1 in
2019 were asked to complete a questionnaire about their experience
with the modeling exercises. The questionnaire consisted of four

main parts, each containing several questions: (1) demographic
information, in particular field of study, current semester, and the
student’s achieved prerequisites for SE1; (2) previous modeling
and programming experience (before taking SE1); (3) participation
in SE1; (4) modeling in SE1, including motivation, the interactive
learning method, and the tools being used.

5.1.2 Data Analysis. We analyzed the results of all modeling exer-
cises in SE1 in 2019. This includes a total of 17 modeling exercises;
9 of which were conducted as in-class exercises, the other 8 as
homework. Each of the modeling exercises was assigned a difficulty
level7 as well as a score. To analyze each modeling exercise, we
have created a dataset that contains all participating students as
well as their individual scores per exercise. Based on the scores of
the participating students, we calculated the average success rate
in % of the total score.

5.1.3 Quasi Experiment. We carried out a quasi experiment with
post-testing of two student groups, i.e., students who took SE1 in
2018 and students who took SE1 in 2019, by comparing their scores
in the modeling tasks of the final exam. Both course instances in
2018 and 2019 had the same learning goals, the same course sched-
ule with the same content and the same exercise structure except
for modeling exercises: In 2018, SE1 did not use the interactive
learning method and instead relied on practicing modeling only in
homework. In 2019, SE1 used the interactive learning method and
introduced in-class modeling exercises. In terms of the quasi exper-
iment, the interactive learning method is the intervention. Apart
from that, there were no substantial differences in other variables.

The control group is comprised of the 2018 students, the experi-
mental group of the 2019 students. We did not execute a pre-test.
Our assumption was that students from both groups had similar
knowledge regarding modeling before taking part in the SE1 course,
mainly because the majority of both student groups was comprised
of second-semester bachelor students, with both groups following
the same curriculum. In both years, the course was attended by
over 1000 students, so that a normal distribution of the results can
be assumed. Both exams included five similar modeling tasks:

(1) Functional model: Create a UML use case diagram based
on a given problem statement (easy)

(2) Structural model: Create an analysis object model using
a UML class diagram based on a given problem statement
(medium)

(3) Dynamic model: Create an UML activity diagram (2018) /
UML communication diagram (2019) based on a given prob-
lem statement (medium)

(4) Architecture: Create a UML communication diagram of an
architectural style (2018, medium) / model the architecture
based on a given problem statement using a UML component
diagram (2019, hard)

(5) Model refactoring: Analyze an existing model, propose a
model refactoring and explain the reasoning (easy)

In the post test, we compared these five modeling tasks in two-
sample one-tailed t-tests to evaluate, whether the 2019 students
performed significantly better than the 2018 students. For all model
tasks, the null hypothesis H0 is that the 2019 students performed
7Possible difficulty levels: E = easy,M = medium, or H = hard

17

An Interactive Learning Method to Engage Students in Modeling ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

less or equal as compared to the 2018 group with a significance level
of 𝛼 = 0.01. H1 hypothesizes that the 2019 results are better than the
results from 2018. 1128 students completed the exam in 2018, 1225
completed the exam in 2019. To make the results comparable (two
tasks differed by one point) we calculated the mean and standard
deviation as relative values.

5.2 Results
This subsection shows the results of the three research methods.

5.2.1 Online Questionnaire. In total, 954 students participated in
the online questionnaire (response rate: 68 %). 90 % of the students
are enrolled in a Bachelor’s program, while 10 % of the participants
are enrolled in a Master’s program. 69 % of the students take SE1
in their second semester, followed by 18 % forth-semester students.

The first question (Q1) refers to the experience the student’s had
with UML modeling before taking the SE1 course. Figure 5 depicts
the answer distribution of Q1. 50 % of the participants stated that
they have “somewhat experience”, which means that they have
modeled using UML once in a previous course, followed by 29 %
of students students that stated that they have “little experience”,
which means that they had heard about UML models before. 17 %
had no experience at all, only 4 % stated that they model regularly.

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
Much experience Somewhat experience Little experience No experience

n = 954

Q1: How much experience did you have with UML modeling before taking SE1?

50

Figure 5: Limited modeling experience before SE1.

Q2 refers to the frequency of participation in a tutor exercise
session. 52 % of the students stated that they always attend the
tutor exercise sessions, while 27 % stated that they visit them very
often. 12 % participate sometimes, 7 % rarely attend and 2 % never
participate. Figure 6 depicts the distribution of answers.

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
Always Very often Sometimes Rarely Never

n = 954

Q2: How often do you participate in the tutor exercise sessions?

2 %

Figure 6: Regular participation in tutor exercise sessions.

In Q3, students were asked how often they submit their solutions
to the modeling exercises. The majority, 74 %, stated that they
submit always, 10 % submit very often. 9 % submit sometimes,
while 5 % submit rarely, and 2 % have never submitted any modeling
exercise. The results are shown in Figure 7.

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
Always Very often Sometimes Rarely Never

n = 954

Q3: How often do you submit your solutions to modeling exercises?

2 %

Figure 7: Regular submissions of modeling exercises.

Q4 stated that the interactive models used in Artemis program-
ming exercises have helped the students to solve the exercises. The
rating was done by using a 5-point Likert scale as shown in Fig-
ure 8. 54 % strongly agree with the statement, 36 % agree. 6 % have
a neutral opinion on the statement, whereas 3 % disagree and 1 %
of the participants strongly disagree.

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
Strongly agree Agree Neutral Disagree Strongly disagree

n = 954

1 %54 % 36 % 6% 3%

Q4: The interactive models in Artemis have helped me to understand and solve
the programming exercises.

Figure 8: Interactive models in programming exercises.

Q5 asked whether students would use models in their future
projects using a 5-point Likert scale (shown in Figure 9). 24 % of
the students stated that they strongly agree, 51 % stated that they
agree with this statement. 20 % have a neutral opinion. 4 % of the
students disagree and 1 % strongly disagree.

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
Strongly agree Agree Neutral Disagree Strongly disagree

n = 954

1 %24 % 51 % 19 % 5 %

Q5: I would use modeling techniques in my own projects in the future.

Figure 9: Use of modeling in future projects.

Q6 analyzed towhich extent the students considered the different
exercise types as helpful (shown in Figure 10). Homework exercises
were rated most helpful for deepening and understanding modeling
after the theory was introduced (37 % strongly agree and 47 %
agree), followed by in-class exercises (28 % strongly agree, 49 %
agree). Group works were considered least helpful, with 13 % of
students strongly agreeing to the statement, 36 % agreeing, 31 %
neutral opinions, 16 % disagreeing and 4 % strongly disagreeing.

In-class

Group work

Homework
0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Strongly agree Agree Neutral Disagree Strongly disagree
n = 954

1 %28 % 49 % 16 % 6 %

4 %13 % 36 % 31 % 16 %

1 %37 % 47 % 11 % 4%

Q6: The exercises have helped me to deepen my understanding of
modeling after the theory was introduced.

Figure 10: Helpfulness of exercise types to deepen the un-
derstanding of modeling.

Q7 asked the participants to state their opinion on different
statements regarding the modeling exercises and concepts using
a 5-point Likert scale. Figure 11 shows the results. The exercises
and concepts especially helped the students to understand why to
use models (31 % strongly agree, 53 % agree) and improve their
modeling skills (32 % strongly agree and 53 % agree). 72 % state that
modeling helped them to understand how to approach problems in
software engineering.

18

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Krusche, von Frankenberg, Reimer and Bruegge

9%

18%

18%

31%

32%

20%

12%

28%

21%

51%

47%

60%

53%

53%

52%

42%

54%

54%

31%

24%

16%

12%

12%

21%

34%

14%

21%

8%

9%

5%

3%

2%

6%

11%

4%

3%

1%

2%

1%

1%

1%

1%

1%

1%

1%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Choose the correct model for the respective software engineering activity

Motivate me to use models in the future

Understand how to structure models

Understand why to use models

Improve my modeling skills

Understand how to approach problems in software engineering

Communicate a solution to a particular problem to my tutor/other…

Understand the connection to programming

Abstract the most important aspects of a system

Strongly agree Agree Neutral Disagree Strongly disagree n = 954

 Q7: The modeling exercises/concepts taught in SE1 have helped me to...

Figure 11: Helpfulness of modeling exercises in various aspects.

5.2.2 Data Analysis. In the second part of the evaluation, we an-
alyzed data from the Artemis system regarding the modeling ex-
ercises conducted during the SE1 2019 course. SE1 included 17
modeling exercises, 9 of them were guided tutorials done in the
lecture, 8 of them were executed by the students on their own as
homework. The results are summarized in Table 2.

Exercise Pts Diffi-
culty

Partici-
pations

Avg.
Score

1 L1 Modeling Tutorial 4 E 1147 97 %
2 H1 Use Case Model 4 E 1116 55 %
3 H2 Analysis Object Model 6 E 1090 75 %
4 L2 Communication Diagram 6 E 1136 88 %
5 H3 Communication Diagram 7 M 992 54 %
6 L3 Model View Controller 4 H 1070 99 %
7 L4 Component Diagram 3 M 1049 98 %
8 H4 Choose a Design Pattern 6 M 899 83 %
9 H5 Strategy Pattern 5 M 886 91 %
10 L5 Model Refactoring 2 E 950 90 %
11 L6 Java to UML 2 E 898 67 %
12 H6 Tables to a Model 4 M 851 74 %
13 L7 Scrum as Activity Diagram 5 M 860 89 %
14 H7 Activity Diagram 8 M 884 82 %
15 H8 Build & Release Manage-

ment Workflow
10 M 851 95 %

16 L8 Functional Model 4 E 819 62 %
17 L9 Analysis Object Model 6 M 810 74 %

Table 2: Students actively participate throughout the course.
They score more points in in-class exercises (L) than in
homework exercises (H) on average.

The table depicts the different exercises, including a unique iden-
tifier, e.g. L1, where “L” represents that the exercise was conducted
during a lecture. Exercises conducted as Homework are marked
with a leading “H”. All exercises are assigned a difficulty, there were
7 easy exercises, 9 medium ones and 1 hard one in the area of soft-
ware architectures. Each exercise in the table has a certain amount

of points (between 2 and 10) that the students can achieve, as well
as the number of participations and the average score achieved
in %. On average, the guided exercises performed in-class received
a higher average score (85 %) than the homework exercises, that
the students had to solve on their own (76 %).

5.2.3 Quasi Experiment. We compared the exam results SE1 in
2018 against the results of SE1 in 2019. Both exams covered the
same exercise types about functional, structural, dynamic, and ar-
chitecture models as well as refactoring of an existing model. We
calculated the average score the students reached in the exercises
and compared them against each other. The results are shown in
Figure 12.

69%

29%

52%

16%

81%

87%

55%

54%

25%

78%

0 20 40 60 80 100

Functional

Structural

Dynamic

Refactoring

2018 2019

Architecture

n2018 = 1128
n2019 = 1225

Figure 12: Students scored significantly better in 3 modeling
tasks in the 2019 exam than in the 2018 exam.

Except for the exercise about refactoring, where students re-
ceived 4 % fewer points on average in 2019 (78 %) than in 2018
(81 %), the students performed better in the SE1 2019 exam than in
the 2018 exam in the analyzed modeling tasks. For the functional
model, the average score is at 87 %, which is 26 % higher than in
the 2018 exam, where students received 69 % of available points
on average. In the structural model, students received 55 % of the
points on average, which is 87 % more than in 2018, where they

19

An Interactive Learning Method to Engage Students in Modeling ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

received 29 % on average. The results for the dynamic model are
4 % higher (54 %) than in 2018 (52 %). The average score of the
architecture exercise is 55 % higher in 2019 with 25 % compared to
16 % in 2018.

To evaluate the significance of the results, we performed a two-
sample one-tailed t-test with a significance level of 𝛼 = 0.01. The
results of the t-tests per exercise are depicted in Table 3. If the
p-value for the exercise was below alpha, we rejected H0 and con-
sidered the results from 2019 as significantly better than 2018. For
the functional and structural models, we calculated a p-value of
2,2e-16 and for the architecture model a p-value of 6,4e-15, which
means, that students were significantly better in the 2019 exam for
the same model type in 2018. For the dynamic model, we calculated
a p-value of 0,09, for the refactoring, the p-value was 0,99. This
means, that the 2019 results were not significantly better than in
2018.

Model 𝑥2018 𝑥2019 𝜎2018 𝜎2019 p

Functional 0,689 0,867 0,334 0,237 2,2e-16
Structural 0,293 0,549 0,265 0,310 2,2e-16
Dynamic 0,519 0,538 0,327 0,365 0,09
Architecture 0,161 0,249 0,273 0,278 6,4e-15
Refactoring 0,812 0,776 0,281 0,208 0,99
n2018 = 1128, n2019 = 1225 𝛼 = 0, 01

Table 3: T-tests of the SE1 2018 and SE1 2019 underline that
the 2019 students were significantly better for functional,
structural and architecture models.

5.3 Findings
SE1 serves as introduction to modeling for most students in the com-
puter science curriculum. The modeling experience of the students
before the course is low.

The results show that the interactive learning method motivates
the students to attend the tutor exercise sessions and submit their
modeling exercises. The performance in the modeling exercises
indicates that, depending on the individual exercises, the amount of
good and successful submissions is high, with an average score of
85 % for guided in-class exercises and 76 % in homework exercises.
The main reason for the differences in the success rates between in-
class and homework exercises lies in the fact that in-class exercises
are usually performed together with the instructor. The instructor
explains and performs the exercise together with the students using
a projector. The students are able to see the correct steps of creating
the model by following the instructions.

The in-class exercises serve as a tutorial and aim at giving the
students a first hands-on experience in the specific UML model
type. Later on, the students have to apply their new knowledge
on their own in the homework. There are no instructions other
than the exercise description, so that they have to find a solution
without the help of the instructor. As this is usually more difficult
and more error-prone than following tutorial steps, the average
score is lower. When comparing the examinations of SE1 in the
2019 with the control group in 2018, the results in the modeling

exercises were significantly better for the 2019 group, which used
the interactive learning method.

Finding 1: Interactive learning improves the learning suc-
cess in modeling.

SE1 covers different UMLmodels, that are being created through-
out the whole software lifecycle. The teaching schedule and model-
ing exercises are aligned to cover different types of modeling in the
corresponding lecture and following tutor exercise sessions and
homework exercises. The students get an overview about when to
use which UML model. The results show that most participating
students submit their modeling exercises every week or at least on
a regular basis.

The number of participations between the first (1147 participa-
tions) and the last modeling exercises (810 participations) stayed
on a high level compared to traditional courses, where usually only
about 25 % of the students still actively participate in the last lec-
tures and exercises. The results of the questionnaire show, that
students are highly motivated because of the interactive learning
method and the use of modeling throughout the whole software
engineering lifecycle. Higher motivation causes students to engage
more in the lecture.

Finding 2a: Integrating modeling throughout the whole soft-
ware lifecycle increases student engagement in modeling.

Finding 2b: Interactive learning increases student engage-
ment in modeling.

Most of the participating students in the survey reported that the
interactive learning method has helped them to approach different
problems in software engineering. They understand the connec-
tion between modeling and programming. Especially the usage of
the interactive UML class diagrams in the programming exercises
helped them to better understand the programming exercises and
find the correct solution.

Finding 3: Interactive models in programming exercises im-
prove the students’ understanding of the taught concepts.

Most of the students also state they would use modeling tech-
niques in their own projects in the future and that it helped them
to better understand how to approach problems in software engi-
neering. This is also emphasized by the success of the students in
the 2019 exam compared to their results in the 2018 exam, where
the interactive learning method was not used.

5.4 Threats to Validity
Internal validity: The evaluation does not measure all variables
that could lead to better exam results. Existing knowledge, moti-
vation, the exact wording of an exam question and other external
factors might influence how students perform a modeling task in
an exam. The internal validity of the results in the quasi experiment
might be limited [32]. However, the online questionnaire and the
data analysis support the findings.

20

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Krusche, von Frankenberg, Reimer and Bruegge

External validity: The SE1 course is one specific example of
courses, where modeling is taught. It is a mandatory course that
is offered to many students, who may differ in their field of stud-
ies as well as in their previous experiences. We assume that the
interactive learning method can be successfully applied in other
software engineering courses and is generalizable. However, other
study programs and regulations might make it difficult to adopt the
approach.

Construct validity: The validity of the questionnaire might be
affected by the wording of the questions or due to the fact that
students like the approach of getting feedback, which does not
necessarily improve their learning outcome. To limit the influence,
we carefully designed the questions, used Likert scales as answer
options and multiple researchers reviewed the wording. The mea-
sures in the quasi experiment and the data analysis support the
findings.

6 DISCUSSION
While individual feedback for modeling exercises improves the
students understanding and retention rate in terms of modeling
and problem solving, as shown in Section 5.3, assessing each model
submission increases the workload. Due to the amount of exercises
to be assessed, it is hard to provide meaningful and understandable
feedback comments, which can lead to partly incomprehensible
and insufficient feedback. We have observed that tutors take more
time at the beginning and take less time towards the end. Some
tutors lack the required expertise or motivation which can result
in inconsistent assessments in terms of fairness and correctness.

With either missing or insufficient feedback comments, students
may get confused and would require a more extensive feedback to
understand their faults. We have added a “request more feedback”
functionality to Artemis, so that students can ask specific questions
and another tutor answers them. A lack of feedback may also moti-
vate students to participate more in discussions during the group
work exercises, where they can ask their tutor for clarification.
Artemis helps to assess student submissions with less bias than
traditional methods, because student and tutor names are hidden.
A random allocation of assessments also improves the fairness of
assessments.

One of our main goals is to teach creativity in modeling which
can further enhance problem solving abilities as well as understand-
ing of object-orientated principles. For students new to modeling,
this can be difficult. First, students are used to solve programming
exercises where the compiler tells them exactly where they made
a mistake, in real-time. This allows students to find and fix mis-
takes easily. Second, students are often used to precise problem
statements and assume only one correct solution. They may have
trouble in understanding that multiple solutions can be correct,
which is the case in modeling. Third, students new to modeling
may also lack the confidence in creating, presenting and discussing
their own solutions with tutors or peer students. In our learning
method, we approach these challenges by instructing tutors to ac-
tively encourage discussions and asking students to present their
solutions to homework exercises at least twice during the tutor
exercise sessions in order to qualify for the bonus system.

There are certain benefits for modeling on paper first, rather than
using online editors, regarding syntax, semantic, and aesthetics [33].
Students may become used to using an online editor that already
provides the syntax. In the paper-based exam, they would have
to remember the syntax themselves and still draw their solutions
on paper. Online editors, on the other hand, offer the function to
change models easily, e.g., by adding a new element and replacing
existing elements. On paper, this can quickly become unreadable
and cumbersome.

Extrinsic motivation might also be a factor, because learning may
be affected by assessments and bonus points for their work, rather
than solely focusing on feedback and learning outcome. In our
experience, especially students in their first year can have trouble
in differing between learning and receiving feedback. The bonus
might motivate those students more to participate in the exercises
than the effect of practicing and improving their skills.

7 CONCLUSION
In this paper, we presented an interactive learning method that
teaches modeling in an interactive setting, where students learn the
problem solving aspects of modeling, can iterate through different
types of models, and discuss their results in tutor exercise sessions.
We present how Artemis and Apollon support students, instructors,
and tutors in learning and teaching modeling throughout the whole
software engineering lifecycle. We applied the interactive learning
method in a large introductory software engineering course with
more than 1000 students. Our empirical evaluation consisting of
an online questionnaire, data analysis, and a quasi experiment
shows that the interactive learning method improves the learning
success of the students significantly and increases their motivation
in modeling.

In the future, we want to integrate team projects with realistic
problem statements and modeling tasks in our courses that are sup-
ported by the interactive learning method. Modeling with real-time
synchronization in Apollon would allow students to collaborate
on the model creation even in distributed settings. We also want
to incorporate peer reviews for modeling exercises in Artemis so
that students also have to grade models and provide feedback to
other students because evaluating a model further improves the
own modeling skills.

REFERENCES
[1] Mohammed Basheri, Liz Burd, and Nilufar Baghaei. 2012. Collaborative software

design using multi-touch tables. In 4th International Congress on Engineering
Education. IEEE, 1–5.

[2] John Biggs. 2003. Aligning teaching and assessing to course objectives. Teaching
and learning in higher education: New trends and innovations 2, 13–17.

[3] Benjamin Bloom, Max Engelhart, Edward Furst, Walker Hill, and David Krath-
wohl. 1956. Taxonomy of Educational Objectives: The Classification of Educa-
tional Goals.

[4] Curtis Bonk and Charles Graham. 2012. The handbook of blended learning: Global
perspectives, local designs. John Wiley & Sons.

[5] Charles Bonwell and James Eison. 1991. Active Learning: Creating Excitement in
the Classroom. ASHE-ERIC Higher Education Reports.

[6] Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. 2015. Software Engi-
neering Project Courses with Industrial Clients. ACM Transactions on Computing
Education 15, 4, 17:1–17:31.

[7] Bernd Bruegge, Stephan Krusche, and Martin Wagner. 2012. Teaching Tornado:
from communication models to releases. In Proceedings of the MODELS Educators’
Symposium. ACM, 5–12.

[8] Doug Buehl. 2017. Classroom strategies for interactive learning. Stenhouse Pub-
lishers.

21

An Interactive Learning Method to Engage Students in Modeling ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

[9] Weiqin Chen, Roger Heggernes Pedersen, and Øystein Pettersen. 2006. CoLeMo:
A collaborative learning environment for UML modelling. Interactive Learning
Environments 14, 3, 233–249.

[10] Thomas Connolly, Mark Stansfield, and Thomas Hainey. 2007. An application of
games-based learning within software engineering. British Journal of Educational
Technology 38, 3, 416–428.

[11] Dora Dzvonyar, Stephan Krusche, and Lukas Alperowitz. 2014. Real Projects with
Informal Models. In Proceedings of the MODELS Educators Symposium. 39–45.

[12] Hermann Ebbinghaus. 2013. Memory: A contribution to experimental psychology.
Annals of neurosciences 20, 4, 155.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design
patterns: Abstraction and reuse of object-oriented design. In European Conference
on Object-Oriented Programming. Springer, 406–431.

[14] Richard Higgins, Peter Hartley, and Alan Skelton. 2002. The conscientious
consumer: Reconsidering the role of assessment feedback in student learning.
Studies in higher education 27, 1, 53–64.

[15] Alastair Irons. 2007. Enhancing learning through formative assessment and feed-
back. Routledge.

[16] Paul Kirschner, John Sweller, and Richard Clark. 2006. Why minimal guidance
during instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching. Educational
psychologist 41, 2, 75–86.

[17] Alice Kolb and David Kolb. 2005. Learning styles and learning spaces: Enhancing
experiential learning in higher education. Academy of management learning &
education 4, 2, 193–212.

[18] Aditi Kothiyal, Rwitajit Majumdar, Sahana Murthy, and Sridhar Iyer. 2013. Effect
of think-pair-share in a large CS1 class: 83% sustained engagement. In Proceedings
of the 9th annual international conference on International computing education
research. ACM, 137–144.

[19] Stephan Krusche, Bernd Brügge, Irina Camilleri, Kirill Krinkin, Andreas Seitz,
and Cecil Wöbker. 2017. Chaordic Learning: A Case Study. In 39th International
Conference on Software Engineering: Software Engineering Education and Training.
IEEE, 87–96.

[20] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. In Proceedings of the 49th Technical
Symposium on Computer Science Education (SIGCSE). ACM, 284–289.

[21] Stephan Krusche and Andreas Seitz. 2019. Increasing the Interactivity in Software
Engineering MOOCs - A Case Study. In 52nd Hawaii International Conference on
System Sciences. 1–10.

[22] Stephan Krusche, Andreas Seitz, Jürgen Börstler, and Bernd Bruegge. 2017. Inter-
active learning: Increasing student participation through shorter exercise cycles.

In Proceedings of the 19th Australasian Computing Education Conference. ACM,
17–26.

[23] Stephan Krusche, Nadine von Frankenberg, and Sami Afifi. 2017. Experiences of
a Software Engineering Course based on Interactive Learning. In Tagungsband
des 15. Workshops Software Engineering im Unterricht der Hochschulen. 32–40.

[24] Christian Lange and Michel Chaudron. 2004. An empirical assessment of com-
pleteness in UML designs. In Proceedings of the 8th International Conference on
Empirical Assessment in Software Engineering. 111–121.

[25] Christian Lange, Bart DuBois, Michel Chaudron, and Serge Demeyer. 2006. An
experimental investigation of UML modeling conventions. In International Con-
ference on Model Driven Engineering Languages and Systems. Springer, 27–41.

[26] Harold Leavitt and Bernard Bass. 1964. Organizational psychology. Annual
Review of Psychology 15, 1, 371–398.

[27] WenQian Liu, Steve Easterbrook, and John Mylopoulos. 2002. Rule-based detec-
tion of inconsistency in UML models. In Workshop on Consistency Problems in
UML-Based Software Development, Vol. 5.

[28] Frank Lyman. 1987. Think-pair-share: An expanding teaching technique.Maa-Cie
Cooperative News 1, 1, 1–2.

[29] Jacqueline McQuillan and James Power. 2006. On the application of software
metrics to UML models. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 217–226.

[30] Kashif Mehmood and Samira Si-Said Cherfi. 2009. Evaluating the Functionality
of Conceptual Models. In ER Workshops.

[31] Jaap Murre and Joeri Dros. 2015. Replication and analysis of Ebbinghaus’ forget-
ting curve. PloS one 10, 7.

[32] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case Study
Research in Software Engineering: Guidelines and Examples (1st ed.). Wiley Pub-
lishing.

[33] Doris Schmedding and Anna Vasileva. 2017. Reviews-ein Instrument zur Qual-
itätsverbesserung von UML-Diagrammen.. In SEUH. 8–19.

[34] David Shaffer. 2004. Pedagogical praxis: The professions as models for postin-
dustrial education. Teachers College Record 106, 7, 1401–1421.

[35] John Sweller and Graham A. Cooper. 1985. The use of worked examples as a
substitute for problem solving in learning algebra. Cognition and Instruction 2, 1,
59–89.

[36] J. Gregory Trafton and Brian J. Reiser. 1993. Studying Examples and Solving
Problems: Contributions to Skill Acquisition. Technical Report. Naval HCI Research
Lab, Washington, DC, USA.

[37] Kurt VanLehn. 1996. Cognitive Skill Acquisition. Annual Review of Psychology
47, 513–539.

[38] Jim Whitehead. 2007. Collaboration in Software Engineering: A Roadmap. FOSE
7, 214–225.

22

8.9 Towards the Automation of Grading Textual Stu-
dent Submissions to Open-ended Questions

The conference paper outlines an approach for the semi-automatic assessment of open-
ended textual exercises using supervised machine learning. Based on manual assess-
ments, the approach learns which aspects of solutions are correct and wrong. This
concept supports multiple correct solutions instead of only one sample solution. It en-
ables a wider variety of possible exercise types with automatic assessments, including
creative aspects. The approach uses natural language processing: topic modeling to
split student answers into text segments and language embeddings to transform those
segments. It then applies clustering to group the text segments by similarity. Finally, it
applies the same feedback to all text segments within the same cluster.

Jan Philip Bernius and Anna Kovaleva proposed the machine learning based approach
for open-ended textual exercises. The author of this habilitation supervised Jan Philip
Bernius throughout the development of the semi-automatic assessment approach and
writing the paper.

Authors J. Bernius, A. Kovaleva, S. Krusche and B. Bruegge
Conference 4th European Conference on Software Engineering Education
Publisher ACM
Pages 10
Type Conference: Full Research Paper
Review Peer Reviewed (4 Reviewers)
Year 2020
Citation [BKKB21]
URL https://doi.org/10.1145/3396802.3396805

205

https://doi.org/10.1145/3396802.3396805

Towards the Automation of Grading Textual Student
Submissions to Open-ended Questions

Jan Philip Bernius
Department of Informatics

Technical University of Munich
Munich, Germany

janphilip.bernius@tum.de

Anna Kovaleva
Department of Informatics

Technical University of Munich
Munich, Germany

anna.kovaleva@tum.de

Stephan Krusche
Department of Informatics

Technical University of Munich
Munich, Germany
krusche@in.tum.de

Bernd Bruegge
Department of Informatics

Technical University of Munich
Munich, Germany
bruegge@in.tum.de

ABSTRACT
Growing student numbers at universities worldwide pose new chal-
lenges for instructors. Providing feedback to textual exercises is
a challenge in large courses while being important for student’s
learning success. Exercise submissions and their grading are a pri-
mary and individual communication channel between instructors
and students. The pure amount of submissions makes it impossible
for a single instructor to provide regular feedback to large student
bodies. Employing tutors in the process introduces new challenges.
Feedback should be consistent and fair for all students. Addition-
ally, interactive teaching models strive for real-time feedback and
multiple submissions.

We propose a support system for grading textual exercises us-
ing an automatic segment-based assessment concept. The system
aims at providing suggestions to instructors by reusing previous
comments as well as scores. The goal is to reduce the workload for
instructors, while at the same time creating timely and consistent
feedback to the students. We present the design and a prototypical
implementation of an algorithm using topic modeling for segment-
ing the submissions into smaller blocks. Thereby, the system derives
smaller units for assessment and allowing the creation of reusable
and structured feedback.

We have evaluated the algorithm qualitatively by comparing au-
tomatically produced segments with manually produced segments
created by humans. The results show that the system can produce
topically coherent segments. The segmentation algorithm based on
topic modeling is superior to approaches purely based on syntax
and punctuation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7752-2/20/06. . . $15.00
https://doi.org/10.1145/3396802.3396805

CCS CONCEPTS
• Social and professional topics → Software engineering ed-
ucation; • Computing methodologies → Natural language pro-
cessing.

KEYWORDS
Software Engineering Education, Automatic Assessment, Textual
Exercise, Assessment Support Systems
ACM Reference Format:
Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge.
2020. Towards the Automation of Grading Textual Student Submissions
to Open-ended Questions. In European Conference on Software Engineering
Education (ECSEE ’20), June 18–19, 2020, Seeon/Bavaria, Germany. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3396802.3396805

1 INTRODUCTION
In the past, there has been a growing number of students enrolled at
universities worldwide1. Large courses have thousands of students
participating, especially when using virtual classrooms. Figure 1
shows a typical mixed classroom setup for 1.700 software engi-
neering students used in the summer semester 2019 at Technical
University of Munich (TUM).

In introductory computer science and software engineering
courses, classroom sizes with up to 1.700 students are no longer an
exception, with growth by factor five in the last ten years. The free
Stanford Massive Open Online Course (MOOC) "Intro to Artificial
Intelligence,"2 started in 2011, quickly reaching 160,000 students
[42]. Large lectures pose a problem for instructors when grading
textual exercises. This is partially solved in MOOCs by peer reviews
[19]. The main problem is the asynchronous assessment, which
usually requires a week, or even longer. A major disadvantage of
MOOCs is the delay between giving the exercise and grading. To
reduce this delay, we teach interactive lectures where we include
exercises live during the lectures, grade them immediately, and
provide quick feedback to students [24]. This increases student
1United Nations, "UN Global Assessment on Higher Education Reveals Broad
Socio-Economic, Gender Disparities," https://news.un.org/en/story/2017/04/555642-
un-global-assessment-higher-education-reveals-broad-socio-economic-gender, 2017.
2Peter Norvig and Sebastian Thrun, "Intro to Artificial Intelligence," https://www.
udacity.com/course/intro-to-artificial-intelligence--cs271, 2011.

61

ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

LivestreamLecture Hall 2

Video Transmission
(Local Area Network)

250 Students

Lecture Hall 1

Lecture Recording Lecturer

500 Students

Lecture Hall 3

250 Students

Video Transmission
(Internet)

700 Students

Video Transmission
(Local Area Network)

Figure 1: Mixed on-campus and virtual classroom setup em-
ployed in the summer semester 2019 at TUM for the "Intro-
duction to Software Engineering" course.

comprehension and deepens understanding [19, 24], "significantly
by up to 87 %" in the domain of modeling [25].

Technology to foster interaction and discussion within large
lectures does exist [19, 29], as well as a scalable exercise system for
programming and modeling exercises with automatic assessments
[22, 23]. Textual exercises are commonly used in the examination,
but no automatic assessment solution is available to instructors.

Conducting open answer questions requires time-consuming
activities from instructors, including designing exercises and man-
ual assessment, due to the high variability in student answers. To
reduce efforts, instructors tend to reuse exercises from previous
years. Grading is a repeatable process, instructors look for common
mistakes or predefined solution patterns. The students learning
success benefits from detailed and personalized feedback [37]. To
enable large scale courses, the need to reuse feedback comments
arises. Individual feedback can still rely on the domain expertise of
the teacher. A single instructor cannot provide regular individual
feedback due to large student bodies with more than 1.000 students.
Ofter, tutors are employed to distribute the workload. Multiple
graders require means to create consistent feedback for learners.
This holds especially if the assessments are relevant for the final
grade, e.g. as part of a grade bonus system.

This paper focuses on the segmentation of submissions into
topically coherent parts, to enable reuse of feedback. Section 2
describes foundations on assessment systems and Section 3 summa-
rizes related work on text segmentation. We present an algorithm
in Section 4 that learns the topics of the submissions and then
splits up the answers accordingly. The Evaluation in Section 5 ana-
lyzes the quality of the algorithm’s performance, in a study with 10
participants. Section 6 summarizes the paper and outlines future
work.

2 ASSESSMENT SYSTEMS
Assessment systems are a common tool used in universities. Soft-
ware systems available to instructors vary from simple submission
of work, over grade review, towards automated systems. We first

explore interactive learning, a teaching methodology that can be
supported by assessment systems. Second, we inspect Artemis as an
example of an assessment system geared towards automatic assess-
ment. Last, we look at an approach to apply automatic assessments
on textual exercises.

2.1 Interactive Learning
A traditional university approach based on real-time communica-
tion demands students to be present in the lecture hall to participate.
With growing numbers of enrollments in universities, the inter-
action in classes is getting more difficult as more staff is needed,
and new ways for communication in large audiences are required
[19]. One of the first approaches to incorporate technology into the
classroom was the introduction of clickers for answering questions
[29]. Mayer et al. describe a method for forcing interaction with the
help of "response systems". The proposed system allows students
to "click" an answer to a multiple-choice question. The instructor
can evaluate the answers and a discussion on the topic can follow.
Bonwell and Eison analyze the impact of in-class discussions and
questions during lectures and exercises [6]. They found out that
through constantly applying knowledge, students gain a deeper
understanding of the content. The interactive learning approach
combines theory, typically presented in lectures, with practical
exercises [23]. Reflections based on feedback help to comprehend
knowledge. In an iterative process, frequent feedback enables stu-
dents to resubmit and learn from their mistakes [24].

2.2 Artemis
Artemis3 is an automatic assessment management system devel-
oped at TUM [22]. It was built specifically to enable interactive
lectures, following the idea of interactive learning. The aim of this
system was primarily to allow students that are enrolled in soft-
ware engineering classes to participate in interactive programming
exercises. The system provides quick automatic feedback, thereby
helping the students to acquire knowledge better and, as a result,
achieve better grades in the final exam [24, 25]. During the past
years, the system constantly evolved and is now also used at other
educational institutions and in MOOCs. Programming exercises
can be submitted and assessed with the help of unit tests. Addi-
tionally, modeling exercises are supported by a UML editor and
a semi-automatized assessment component. The system provides
full support of multiple-choice quizzes, including creating, con-
ducting, and correcting them. For a deeper understanding of a
lecture’s theoretical basis, open-ended questions are more suitable
than multiple-choice questions [13]. Artemis allows us to conduct
textual exercises and submit answers, but instructors need to grade
student answers manually. This is a time-consuming process that
can lead to longer feedback loops, which decrease the students’
motivation. With a growing number of students, the number of
assessments increases, too. This results in bigger workloads for in-
structors and usually requires hiring more people. In this case, the
consistency of the assessment may decrease. While there is usually
only one sample solution, an unbound variety of students’ answers
exists. In mathematical problems or multiple-choice questions, the

3"Artemis: Interactive Learning with Individual Feedback," https://github.com/
ls1intum/Artemis, 2020.

62

Towards the Automation of Grading Textual Student Submissions to Open-endedQuestions ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany

Submit
answer

Student Artemis Instructor

no
yes

Automatic assessment
possible? Assess

manually

Manual
Feedback

Assess
automatically

Train Assessment
ModelReview

assessment

yes

no

Refine
answer

Satisfied?

«affects»

Answer

Assessment Calculate
Total Score

Assessment
Model

Automatic
Feedback

Preprocess
Answers

Figure 2: Workflow of the automatic assessment system for textual exercises. The "Preprocessing Answers" activity (Figure 4)
includes the algorithm presented in this paper. UML activity diagram based on Bernius and Bruegge [2].

correct solution is mostly unique, whereas, for open questions,
multiple interpretations are possible.

2.3 Automatic Assessment of Textual Exercises
Bernius and Bruegge describe a feedback concept built to produce
reusable and consistent feedback targeted for automatic assess-
ments of textual exercises [2]. Feedback is provided to topically
coherent text blocks, resulting in uniform and consistent feedback
across all assessments from multiple instructors. The concept aims
at reducing work for instructors and increasing consistency, reduc-
ing complaints from a peer-to-peer comparison between students.
In this approach, text blocks are manually highlightable by the
instructor, but this is not applicable to automated computations.
Splitting student answers based on delimiter characters4 is not a
reliable solution, because of missing punctuation, abbreviations, the
use of bullet point answers, or long sentences. Also, a single feed-
back item is sometimes more suitable for a whole paragraph or a
single clause or bullet point, which is not covered by the syntactical
separator approach and requires manual adjustments.

Based on this concept, we developed a system to reuse instructor
feedback across students by analyzing the similarity of text blocks
[2]. The system simplifies the grading process by providing grad-
ing suggestions to instructors. Feedback suggestions are based on
similarity between answers, allowing the training of an assessment
model used to automatically assess answers as depicted in Figure 2.
Training and using this system relies on topically coherent text
blocks so that feedback is well scoped and can be shared between
many submissions.

3 TEXT SEGMENTATION
Text segmentation is considered to be one of the tasks of Natural
Language Processing (NLP). The term is used differently in litera-
ture and is not clearly defined. For example, document processing to
extract typed or handwritten text by distinguishing it from graphics
and blank spaces is referred to as text segmentation [17]. In other

4Delimiter characters such as . : ; ? !

cases, text segmentation is the process of extracting text from video
in order to index the recordings in a database [26]. Pak and Teh
conducted an analysis of literature on text segmentation published
between 2007 and 2017 [34] and categorize different approaches
found in literature as depicted in Figure 3. The authors additionally
categorize the papers according to used documents, language, and
the goal of applying text segmentation. They identify the following
application domains for text segmentation: "emotion extraction,
sentiment mining, opinion mining, topic identification, language
detection and information retrieval" [34].

Text segmentation

Linear Hierarchical UnsupervisedSupervised

Segmentation result

Line OtherWord Text blockCharacter Topic

Hierarchy Supervision

Sentence

Figure 3: Taxonomy for text segmentation adapted fromPak
and Teh [34]. Text segmentation types relevant for this pa-
per are highlighted in blue color.

Information retrieval has many different applications, for ex-
ample, reducing large documents to relevant fragments based on
desired subtopics. The different desired results of text segmenta-
tion, the segment, is another interesting aspect Pak and Teh point
out. According to their analysis, a word is considered a segment
most often in literature, slightly less frequent are characters, topics,
sentences, lines. In other cases, phrases, paragraphs, or tags can be
used. We define the term "text block" in this paper as either clause,
bullet point, sentence, or paragraph.

Text segmentation can be additionally divided into linear, text
split into non-overlapping linear segments, and hierarchical, where
segments also have hierarchical relationships [9, 44]. The latter is
sometimes used for discourse retrieval. Along with most literature
on text segmentation, we only focus on linear text segmentation.

There also exists a differentiation based on the supervision of the
algorithm. Unsupervised approaches do not require any external

63

ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

information to be trained, whereas supervised algorithms learn
from big datasets, such as Wikipedia, for example [21].

3.1 Topic Modeling
Latent Dirichlet Allocation (LDA) was introduced by Blei et al. in
2003 [5]. LDA is used by many authors [7, 9, 32, 33] and proven to
be suitable when training data is from the same domain as test data
[32].

TopicTiling is an extension of Hearst’s TextTiling algorithm that
uses LDA to assign topic IDs to text blocks [15, 41]. Each block is
represented by a T-dimensional vector, where T is the number of
topics in the dataset. A coherence score is then calculated between
neighboring blocks inside of a ”window” with cosine similarity.
Depth scores of the smallest coherence scores are then calculated
depending on the highest coherence score to the left and the right.
The highest depth scores indicate sub-topic boundaries.

Chen et al. use LDA and a K-nearest neighbor algorithm to clas-
sify short texts which gives evidence that LDA can also be applied
to text consisting of only several words [7].

Tu et al. use LDA and word-embeddings to segment educational
texts for online learning with a domain-independent algorithm [43].
They train their model on a small dataset and state that LDA can
be used with a comparatively small number of topics. They also
compare different similarity measures, such as cosine similarity,
depth score, spectrum. They additionally analyze the impact of
different values of input parameters of LDA. A similar analysis is
done by Riedl and Biemann [40].

3.2 Keyword Extraction
Ramos uses Term Frequency Inverse Document Frequency (TF-IDF)
to determine whether of a word is significant to a user’s query when
searching documents [38]. Intuitively, a word’s frequency is linked
to its importance. TF-IDF proposes that not only the absolute fre-
quency is relevant, but also the number of occurrences in different
documents. If a word occurs often across many documents, it is
most probably not significant. In the previous section, the concept
of stop words, which deals with the same problem, is described. The
application of TF-IDF is rather straightforward: every document is
run through and the two relevant frequencies are computed. The
significance of a word is proportional to the frequency inside of the
document but decreases if the word is found across different texts.

Another way to extract keywords is by using a thesaurus [30].
This can be especially helpful when there is only one document,
thus, the TF-IDF approach is not suitable. A thesaurus also pro-
vides external knowledge which, on one hand, allows extracting
keywords without any training but, on the other hand, requires
additional maintenance and fails if there is no match available.

An ontology, a relational representation between concepts, can
also be used to extract topics from text [11]. Embley et al. take
unstructured documents and application ontology as input. Then
they use a "keyword recognizer" to spot keywords with the help of
regular expressions, afterward, restructuring the extracted infor-
mation with the help of the ontology. They use this approach, for
example, to extract information from car advertisements. This can
be a suitable solution if the domain is known, keeping in mind that
creating an ontology requires time. However, it is not applicable if

the algorithm is to be applied to many different domains, and the
main concepts are not known in advance.

Matsuo and Ishizuka propose another method for keyword ex-
traction that bases on the 𝜒2-measure [28]. They first count co-
occurrences of words and word sequences. "If a term appears fre-
quently with a particular subset of terms, the term is likely to
have an important meaning" [28]. Then a co-occurrence matrix is
calculated. To improve the 𝜒2-computation "variety of sentence
length and robustness of the 𝜒2-value" are considered. To improve
the quality of the 𝜒2-measure two types of clustering are applied.
Similarity-based clustering gathers words with similar roles in a
sentence, pairwise clustering picks words from the same domain.
The words with the largest 𝜒2-value are given as the result.

Most of the previous approaches only focus on the frequencies
but cannot detect synonyms, even different forms of a verb can
decrease the quality of the algorithms. Hulth adjusts the previ-
ous approaches by introducing syntactical information, such as
part-of-speech (PoS) tagging, and data preprocessing, for exam-
ple, stemming, stop words removal [16]. They introduce a pattern
approach: based on the training set, there is evidence that most
keywords have nouns and follow a particular pattern, for example,
"adjective noun" uncountable or in the singular [16]. To calculate
the relevance of a phrase four features are used: frequency within a
single document, frequency in the whole set of documents, the po-
sition where the term appears first in a document, and the PoS-tag.
The machine learning model is then based on a set of inductive rules
that are derived with the help of "recursive partitioning (or divide-
and-conquer), which has as the goal to maximize the separation
between the classes for each rule" [16].

3.3 Dataset
Most authors use labeled and segmented, often artificially gener-
ated datasets, such as Choi’s labeled dataset for evaluating their
algorithms [8]. Often news articles or news broadcast transcripts
are used as there are clear topic boundaries that can be then com-
pared [1, 7, 20, 35, 45]. The evaluation algorithm is often based on
the approach by Beeferman et al. [1, 12, 39].

In this paper, as part of a text grading application for a university
environment, we focus on data collected from the lecture "Patterns
in Software Engineering" (PSE) at TUM in 2018/19. The dataset
consists of two exercises with 121 and 124 student submissions.
The exercises were conducted in-class and were announced as a
mock exam.

4 SEGMENTING STUDENT ANSWERS
Based on the literature, several existing approaches were applied to
the proposed problem. For testing the approaches we used a set of
students’ answers from our dataset. The exercise on the difference
between patterns and anti-patterns received answers with an aver-
age length of 3.6 sentences. Tested approaches were, TopicTiling
[41] and Bayes-seg developed by Eisenstein and Barzilay [10]. The
first is based on topic modeling with LDA. The latter uses Bayesian
probabilities and entropy to segment the texts. However, these
algorithms could deliver no or only poor results on our dataset,
most probably because of the short length and specific vocabulary
distribution, which they are not fitted for.

64

Towards the Automation of Grading Textual Student Submissions to Open-endedQuestions ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany

Segment
Answers

Language
Embeddings

ClusteringText BlockText BlockText BlockAnswerAnswerAnswer VectorVectorVector Text ClusterText ClusterText Cluster

Figure 4: A detailed view into the "Preprocess Answers" activity (Figure 2) performed by the assessment system before the
grading, depicted using a UML activity diagram.

We abstracted the topic modeling approach and preserve the
idea that every answer is a collection of topics, and many topics
are distributed among different answers [5]. However, instead of
calculating a topic model, we claim that a topic can be reduced to a
keyword. This way, the scarcity of the words in the answers can
be compensated for. Another strategy adapted from other works is
the "vocabulary introduction" [15]. As soon as new keywords are
introduced, a new segment begins. The presented approach differs
from thesaurus or ontology in a way that we do not know what
the keywords are going to be, and they are calculated for every
problem separately.

In the assessment system, the algorithm is one step in a prepro-
cessing phase, depicted in Figure 4. Answers are segmented into
text blocks before language embeddings and clusters are computed.

The algorithm can be separated into three phases: Text Prepro-
cessing, Keyword Extraction, and Segmentation. Figure 5 depicts
the algorithm’s flow of events, which is described in detail in the
following sections.

4.1 Text Preprocessing
Most algorithms for NLP are applied to preprocessed text-data. In
the assessment context, data is of rather low quality and cannot be
preprocessed manually. The available data contains lots of typing
mistakes, poor formatting, missing punctuation, and misspelled
words. Student submissions must not be modified, formatting be-
ing the only exception. Applying existing algorithms to our data
showed that bullet points, wrong punctuation, such as using new-
lines instead of points, can quickly reduce the quality of the out-
come. Hence, we try to cover the most common irregularities and
transform them into a format suitable for further calculations.

4.1.1 Stop Words. Removing stop words from text is a very com-
mon way to clean textual data for NLP [15, 16, 41]. We use the set
of stop words provided as part of the Natural Language Toolkit for
Python (NLTK) [4]. The English collection consists of 179 words,
like "I", "the", "what", "did", that do not contain much lexical con-
tent and can, therefore, be removed from the corpus. Although
this implementation only supports students’ submissions written
in English, the German set of 232 words is also included because
occasionally students hand in answers in the German language.
This cannot provide full support of submissions in German but can
reduce their negative effect on further processing.

4.1.2 Lemmatization. Lemmatization is the process of reducing
a word to its meaningful root. Keeping in mind, that we want to
extract keywords from a text and that the stop words are already
removed, we now have a set of words where the most significant
terms need to be found. Naturally, we use different forms of a word:
either the plural or the singular, different tenses for verbs, degrees of
comparison for adjectives, etc. Without preprocessing, the system
would consider the words "view" and "views" as two different ones.

With the help of WordNet, which is provided as part of the NLTK,
the algorithm reduces the second word to "view" [4, 31].

The result of the text preprocessing is thereby a set of lemmatized
lower-case words without any punctuation or stop words.

4.2 Keyword Extraction
The chosen approach for segmenting the students’ answers into
text blocks is partially based on keyword extraction. We generalize
the idea of topic modeling that claims that every document is a dis-
tribution over topics, and every topic is distributed over words. We
claim that every student’s submission is a collection of topics, and
statements, that are common among different answers. However,
we do not calculate a topic model. As already described, existing
approaches based on topic modeling are not suitable for our kind of
data because of rather short answers (3.6 sentences long on average)
and very different vocabulary used among different submissions.
That is why we reduce a topic to a keyword, thereby, compensating
for the data scarcity.

For keyword calculation, we adopt an approach based on word
frequency5. We tested the frequently used TF-IDF approach [38],
which proved to be inefficient in our case. The reason for it is the
specific character of the data. The TF-IDF method assumes that
words, frequent among different documents, are not significant for
keyword extraction, as they are too common. In the considered
context, the important words, definitions, for example, are present
in most of the answers. Another examined approach was an exten-
sion of the word frequency measure [16, 39]. Instead of searching
for significant words, they consider n-grams. This method did not
suit the data either. We tested the algorithm with bi- and tri-grams,
the resulting segmentation was worse than with single words. The
resulting keywords are the 10 most frequently used words in the
texts. The number was chosen empirically based on our data. Dy-
namically determining the optimal number of keywords could be
researched in the future to improve the algorithm.

4.3 Segmentation
The segmentation of the texts is split up into two steps. First, the
answers are split up into initial text blocks. Then, adjacent text
blocks are considered and merged if there are no new keywords
introduced. The result of this is a set of segments for each answer
that can be used by the rest of the system.

4.3.1 Sentence Tokenization. For identifying sentences we use a
pre-trained model of "punkt tokenizer" from the NLTK [4, 18]. How-
ever, it cannot handle bulleted lists, that is why we need to addition-
ally split the text on new lines. We also want to work with clauses
if a sentence is long. We decided not to use any algorithm for that

5Sowmya Vivek, "Automated Keyword Extraction from Articles using NLP",
https://medium.com/analytics-vidhya/automated-keyword-extraction-from-
articles-using-nlp-bfd864f41b34, 2018.

65

ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

Segmentation

Text Preprocessing Keyword Extraction

Remove
punctuation

AnswerAnswerAnswer Convert to
lower-case

Remove stop
words

Lemmatize all
words

KeywordKeywordKeyword
Extract

keywords
Stem keywords

Segment
answers into
text blocks

SentenceSentenceSentence

Atomic Text
Segment

Atomic Text
Segment

Atomic Text
Segment

Search for
stemmed
keywords

TopicShift
[new keyword found]

[same keyword found]

Merge text
blocks between

topic shifts

TextBlockTextBlockTextBlock

Figure 5: The segmentation algorithms flow of events depicted using a UML activity diagram based on Bernius et al. [3].

but search for conjunctions. We use subordinating conjunctions
and assume that they indicate a new clause. This approach is not
complete and cannot be considered proper clause identification,
however, for this use case, we assume, it is enough. To minimize
false positives when identifying clauses, we only consider sentences
that are longer than 20 words.

4.3.2 Finding Segments. Before searching for keywords in the text
blocks, we use a stemmer from the NLTK [4], called PorterStemmer
[36]. Similarly to lemmatization, stemming is applied to avoid dif-
ferent forms of a word in a text. The latter, however, reduces a term
to a part, that in some cases may not be a correct word. An example
of this is "similarit", as the result of stemming the word "similarity".
Hence, it can be very helpful when searching for words, as you can
then find both "similarities" and "similarity".

For the definition of segments, we use the lexical cohesion ap-
proach and the vocabulary introduction method [14, 15]. The algo-
rithm iterates over all text blocks defined in a submission. We use
the original texts at this stage, not the preprocessed versions. In
every segment, stemmed keywords are sought. If two adjacent seg-
ments have the same keywords or the second text block has none,
they are merged into one block and the algorithm proceeds. As
soon as new keywords are introduced, the algorithm puts a segment
boundary before the current text block. This way the whole process
can be defined as a "divide & conquer" approach, because we first
divide the answer into initial text blocks, as small as possible, and
then merge them according to the defined boundaries.

5 EVALUATION
In order to evaluate the segmentation quality of the algorithm, we
conducted a qualitative study with 10 participants. We compare
the segmentation of the new algorithm with the existing approach
and the segmentation generated by the participants. We present
anecdotal evidence on the performance of the new algorithm.

5.1 Design
The evaluation is designed as a 15-minute interview. Participants
first get an introduction to semi-automatic text assessment, the
assessment concept [2] and segmentation. However, for reasons of
internal validity, no details of the segmentation algorithm or fur-
ther processing are given. The questionnaire consists of two parts:
segmentation tasks and questions about the subjective impressions
of the approach.

The first part requires five segmentation tasks. Participants are
given five student submissions from our dataset and asked to find
and mark topic shifts. The same task is performed by two systems,
one based on the syntactical separator approach and a second one
based on our topic modeling algorithm.

Each participant performs the task of finding and marking topic
shifts, as the system would do. These results are then quantitatively
analyzed and compared to the segmentation results of the existing
solution and the proposed algorithm. The performance measure
consists of the two criteria recall and precision [1]:

𝑟𝑒𝑐𝑎𝑙𝑙 =

number of estimated topic shifts that are actual topic shifts
number of true topic shifts

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

number of estimated topic shifts that are actual topic shifts
number of estimated topic shifts

The submissions are taken from the PSE dataset and are of var-
ious format that is common among students’ answers. There are
bulleted and numbered lists, as well as text mixed with bulleted
lists, also two submissions that consist of multiple sentences and
paragraphs are included. The submissions are taken with original
grammar and punctuation.

The third part addresses the impressions of the surveyed. They
are asked to state their personal opinion on the approach and give
their judgment whether this solution can improve the instructors’
and students’ experience with textual exercises. The possible an-
swers are on a five-point scale based on Likert [27].

The study was conducted with ten students from the Department
of Informatics at TUM, who previously passed software engineer-
ing courses from our chair four of which have previous experience
working as a tutor. These students have reasonable domain knowl-
edge to determine segments. Also, they are potential tutors for
future editions of the courses.

5.2 Objectives
We define the following hypotheses for the evaluation:

H1 The designed segmentation algorithm performs better than
the syntactical separator approach measured using the per-
formance criterion recall and precision.

H2 Students understand the approach and find it intuitive.

66

Towards the Automation of Grading Textual Student Submissions to Open-endedQuestions ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany

H3 Students consider the approach an improvement of their un-
derstanding of feedback and the comprehension of a lecture’s
content.

H4 The segmentation algorithm produces the same segmenta-
tion as humans.

5.3 Results
Based on the computed segmentations depicted in Figure 6, we
conducted a performance evaluation using recall and precision. A
topic shift position was considered if more than 50% of the students
marked the position. Results in Table 1 show an increased recall
and precision values for the topic modeling based algorithm.

Table 1: Performance analysis of the new topic modeling
based algorithm and the previous approach based on syntac-
tical separators measured according to precision and recall
[1].

Submission Topic Modeling Syntactical Separators
Recall, % Precision, % Recall, % Precision, %

S1 100 100 100 50
S2 75 60 100 67
S3 75 100 50 50
S4 100 100 100 100
S5 67 100 30 100

Average 83.4 92 76 73.4

We analyze the number of detected topic shifts in Figure 7. We
compare the number of topic shifts found by the proposed algorithm
and the current solution to the number of topic shifts marked by the
participants. We also depict statistics for the most frequent topic
shifts, meaning positions that were present in six or more answer
sheets.

In the questionnaire, nine out of ten students agreed that the pre-
sented approach of segmenting answers is intuitive (see Figure 8),
supporting our hypothesis H2. Students also claimed that finding
topic shifts’ positions was not very easy which can probably be
linked to the unambiguity of the task. The results also depend on
the style of the assessment of a participant. Therefore, we com-
pared the average number and the number of the most frequent
segments, where one can see that these two numbers sometimes
vary. Especially, for submission S2, where the proposed system
failed to improve the result of the current system, the difference
between the two numbers is big. This can also be justified with the
fact, that some participants tended to mark more positions than
other students for most of the submissions. The data shows that
the topic modeling-based algorithm resembles human perception
better than the syntactical separation approach.

Since most of the students stated to value the assessment of tex-
tual exercises as helpful, there were downsides like general or short
feedback, as well as long correction periods. Participants agree
that the assessment process can be accelerated by applying our
approach. All of our participants considered structured feedback to
be an improvement for the students’ comprehension, eight partici-
pants agree strongly. The responses support the third hypothesis
(H3).

S1

Differences: [S]
Antipatterns: [S]
-Have one problem [8] and two solutions [8] (one problematic [8] and one
refactored) [1-4, 7-10, S, T]
-Antipatterns are a sign of bad architecture [8] and bad coding [1-10, S, T]
Pattern: [S]
-Have one problem and one solution [1-5, 7, 9, 10, S, T]
-Patterns are a sign of elaborated architecutre and coding

S2

The main difference between patterns and antipatterns is, [8] that [6, 7]
patterns show you a good way to do something [8, 7] and antipatterns
show a bad way to do something. [1, 2, 4-10, S] Nevertheless [7] patterns
may become antipatterns in the course of changing understanding of how
good software engineering looks like. [1, 2, 5-10, S, T] One example for
that is functional decomposition, [5] which used to be a pattern and "good
practice". [1, 2, 5, 8, S, T] Over the time it turned out that it is not a goog
way to solve problems, so it became a antipattern. [1-10, S, T]

A pattern itsself is a proposed solution to a problem that occurs often and
in different situations. [1-3, 5-10, S, T]
In contrast to that a antipattern shows commonly made mistakes when
dealing with a certain problem. [2, 7-9, S, T] Nevertheless a refactored
solution is aswell proposed.

S3

1.Patterns can evolve into Antipatterns when change occurs [1-8, 10, S, T]
2. [S] Pattern has one solution, [2, 5-8, 10, T] whereas anti pattern can
have subtypes of solution [1, 3, 4, 6, 8, 10, S, T]
3. [S] Antipattern has negative consequences [8] and symptom, [2, 6-8, 10]
where as patterns looks only into benefits [8] and consequences

S5

Antipatterns are used when there are common mistakes in software

management [5] and development to find these, [1-10, T] while patterns by

themselves are used to build software systems [8] in the context of frequent

change [8] by reducing complexity and isolating the change. [1-10, S, T]
Another difference is that the antipatterns have problematic solution [5, 8]

and then refactored solution, [2, 5, 6, 8-10] while patterns only have a

solution.

S4

Patterns: A way to Model code in differents ways [1-10, S, T]
Antipattern: A way of how Not to Model code

Figure 6: Submissions S1-S5 from our PSE data set. The sub-
missions were segmented by two algorithms, as well as ten
participants. The detected segment borders are marked in-
line with the text in square brackets: Topic Modeling Algo-
rithm [T], Syntactical Separator Approach [S], and Partici-
pants [1-10].

67

ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

N
um

be
r o

f t
op

ic
 s

hi
fts

0

1

2

3

4

5

6

Submission 1 Submission 2 Submission 3 Submission 4 Submission 5

Number of topic shifts detected by the algorithm
Average number of topic shifts detected by the participants of the survey
Number of most frequent topic shifts (contained in 6 and more answers)
Number of topic shifts detected with current solution

�3Figure 7: Comparison of the number of detected topic shifts
by the current and proposed systems as well as the partici-
pants.

The topic modeling algorithm found 14 topic shifts in our sample
of five submissions. The participants derived 15 topic shifts. As
visible in Figure 6, 13 topic shifts (92%) are equally detected by the
newly proposed algorithm and a majority of the participants. Only
two topic shifts are not detected by the algorithm (false negative),
and one topic shifts detected by the algorithm in S2 has no majority
with the participants (false positive). This analysis does support the
fourth hypothesis (H4).

5.4 Discussion
We could test the performance of the proposed system and compare
it to the current solution based on the topic shifts’ positions marked
by students. Two interesting details could be discovered.

First, submission S2 was the only case where the proposed solu-
tion performed slightly worse than the existing approach. We can
explain this with the character of this submission. The student sub-
mitted a rather long answer. It consists of seven sentences whereas
the average number in our dataset is 3.6. In general, submissions
with a lot of sentences where the same information is repeated
multiple times can become a challenge. The student also gives an
example of an anti-pattern. Answers with examples can become a
problem for the proposed solution since there is an unbound set
of examples that can be provided and thus it is difficult to judge if
the keyword approach suits this case. A solution to this could be
dynamically determining the number of keywords.

Second, when reviewing the students’ segmentation, there were
several answer sheets with significantly more topic shifts than
found in other responses. This is usually because the participant
saw an "and" in a sentence and decided that there are two different
objects or verbs, hence, two different statements. One such case was
the following part of an answer: "Antipatterns are used when there
are common mistakes in software management and development
to find these". Some participants put a boundary between the words
"management" and "and". However, this kind of segmentation can
lead to problems for further processing and assigning feedback to
the text blocks. Though this part of the sentence does have two
objects and they could, for example, be correct and incorrect or the
other way around, the two resulting text blocks are both incomplete.
The first text block misses the "find these" part, the second one —

the subject of the sentence. This proves that it is possible to get
text blocks that do not make any sense without context. A possible
solution could be augmenting the parts of the sentence with the
subject or the object from the other part. This, however, demands a
deeper analysis of the sentence structure.

During the evaluation, we could make some interesting obser-
vations. There are two different types of text blocks that could be
treated in another way. First, phrases that express the student’s
personal opinion about the question or the lecture, like "I do not
understand this" or "oh, that’s easy", do not need to be assessed. A
possibility could be to discover them and exclude them from the
corpus to improve the quality of the data for further processing.
Incomplete sentences and clauses can also be treated differently.
Compound sentences with several clauses often contain multiple
different statements. Currently, we do not want to split them up.
A sentence like "I like apples and bananas" does have two objects,
but a text block "and bananas" does not make any sense without
context, the subject and the verb in this case. So a possible solution
could be augmenting incomplete text blocks with the correspond-
ing missing context. This could be addressed by implementing PoS
tagging.

5.5 Threats to Validity
One of the problems of the evaluation is the small size of the pop-
ulation. The validity could be improved by either increasing the
population to include more tutors with different experience levels
or by choosing a more experienced population of instructors. In ad-
dition, selected submissions for the segmentation task are a threat
to external validity since they are from a single lecture. Third, sub-
missions are chosen according to the formatting of the answer, as
we allowed different answering formats such as bullet points or full
sentences. The study therefore only provides anecdotal evidence
on the performance of the assessment algorithm.

6 SUMMARY
In this paper, we have formalized a new algorithm based on topic
modeling and text segmentation to segment student answers into
topically coherent text blocks. A prototypical implementation has
been integrated as part of the open-source Athene project6 into the
automatic assessment management system Artemis. A performance
evaluation with ten students has shown that the new algorithm
performs better than an algorithm using syntactical separators such
as delimiters.

6.1 Conclusion
The presented algorithm is a small building block towards a semi-
automated assessment support system for textual exercises, as well
as the vision of fully automated assessments of textual exercises.
Producing coherent text blocks from student submissions improves
the experience for instructors, tutors, and students:

For instructors, a structured form of feedback makes it easier to
compare against grading criteria. The increasing degree of automa-
tion reduces the workload necessary to conduct textual exercises.

6"Athene: A library to support (semi-)automated assessment of textual exercises,"
https://github.com/ls1intum/Athene, 2020.

68

Towards the Automation of Grading Textual Student Submissions to Open-endedQuestions ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany

8

4

8

2

1

2

8

1

51

40% 20% 0% 20% 40% 60% 80% 100%

I found the task intuitive.

I could easily find sensible boundaries.

The presented approach can make the assessment process faster for
tutors.

Structured feedback contributes more to a student's comprehension.

Strongly disagree Disagree Neither agree or disagree Agree Strongly agree

Figure 8: Participants response on their subjective impression of the approach ranked on a five-point scale based on Likert
[27]. (𝑛 = 10)

For tutors, the algorithm allows to automate the first step of the
grading process and removes some of the overhead related to the
segment-based assessment concept. Generated feedback sugges-
tions improve the value of each feedback element, as it can be easily
reused for multiple students, even by other tutors. Suggestions re-
duce the workload, as a partial assessment is already pre-filled. A
semi-automated system should encourage tutors to create extensive
and high-quality explanations.

For students, feedback will be more concise. A direct link be-
tween a segment of their submission and feedback helps students
to understand the feedback and their mistakes. They profit from
improvements for tutors, which we envision to lead to quicker and
more extensive feedback.

6.2 Future Work
The result of the algorithm’s application can be improved in two
areas: keywords and text blocks using statistical models, topic mod-
els, or decision trees. Additionally, a thesaurus could be used to
recognize synonyms.

The effect of the algorithm on the assessment system can be
evaluated in two aspects: The usability for tutors when grading
text blocks and the impact of the segmentation on the quality of
feedback suggestions.

REFERENCES
[1] Doug Beeferman, Adam L. Berger, and John D. Lafferty. 1997. Text Segmentation

Using Exponential Models. CoRR (1997). http://arxiv.org/abs/cmp-lg/9706016
[2] Jan Philip Bernius and Bernd Bruegge. 2019. Toward the Automatic Assessment

of Text Exercises. In 2nd Workshop on Innovative Software Engineering Education
(ISEE). Stuttgart, Germany, 19–22.

[3] Jan Philip Bernius, Anna Kovaleva, and Bernd Bruegge. 2020. Segmenting Stu-
dent Answers to Textual Exercises Based on Topic Modeling. In 17th Workshop
Software Engineering im Unterricht der Hochschulen (SEUH). Innsbruck, Austria,
72–73.

[4] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python (1st ed.). O’Reilly Media, Inc.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. The Journal of Machine Learning Research 3 (2003), 993–1022.

[6] Charles C. Bonwell and James A. Eison. 1991. Active Learning: Creating Excitement
in the Classroom. ERIC Clearinghouse on Higher Education.

[7] Qiuxing Chen, Lixiu Yao, and Jie Yang. 2016. Short text classification based on
LDA topic model. In 2016 International Conference on Audio, Language and Image
Processing (ICALIP). IEEE, 749–753. https://doi.org/10.1109/icalip.2016.7846525

[8] Freddy Y. Y. Choi. 2000. Advances in Domain Independent Linear Text Seg-
mentation. In Proceedings of the 1st North American Chapter of the Association
for Computational Linguistics Conference (Seattle, Washington) (NAACL 2000).
Association for Computational Linguistics, USA, 26–33.

[9] Jacob Eisenstein. 2009. Hierarchical Text Segmentation from Multi-Scale Lexical
Cohesion. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, Boulder, Colorado, 353–
361. https://www.aclweb.org/anthology/N09-1040

[10] Jacob Eisenstein and Regina Barzilay. 2008. Bayesian Unsupervised Topic Seg-
mentation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (Honolulu, Hawaii) (EMNLP ’08). Association for Computa-
tional Linguistics, USA, 334–343.

[11] David W. Embley, Douglas M. Campbell, Randy D. Smith, and Stephen W. Liddle.
1998. Ontology-based Extraction and Structuring of Information from Data-rich
Unstructured Documents. In Proceedings of the seventh international conference
on Information and knowledge management - CIKM '98. ACM Press, 52–59. https:
//doi.org/10.1145/288627.288641

[12] Pavlina Fragkou, Vassilios Petridis, and Athanasios Kehagias. 2004. A Dy-
namic Programming Algorithm for Linear Text Segmentation. Journal of In-
telligent Information Systems 23, 2 (2004), 179–197. https://doi.org/10.1023/b:
jiis.0000039534.65423.00

[13] Arthur C. Graesser, Peter Wiemer-Hastings, Katja Wiemer-Hastings, Derek Har-
ter, Tutoring Research Group Tutoring Research Group, and Natalie Person.
2000. Using Latent Semantic Analysis to Evaluate the Contributions of Stu-
dents in AutoTutor. Interactive Learning Environments 8, 2 (2000), 129–147.
https://doi.org/10.1076/1049-4820(200008)8:2;1-b;ft129

[14] Michael A. K. Halliday and Ruqaiya Hasan. 1976. Cohesion in English. Longman,
London.

[15] Marti A. Hearst. 1997. TextTiling: Segmenting Text intoMulti-Paragraph Subtopic
Passages. Computational Linguistics 23, 1 (1997), 33–64.

[16] Anette Hulth. 2003. Improved Automatic Keyword Extraction Given More Lin-
guistic Knowledge. In Proceedings of the 2003 conference on Empirical methods in
natural language processing -. Association for Computational Linguistics, 216–223.
https://doi.org/10.3115/1119355.1119383

[17] Anil K. Jain and Sushil Bhattacharjee. 1992. Text segmentation using gabor filters
for automatic document processing. Machine Vision and Applications 5, 3 (1992),
169–184. https://doi.org/10.1007/bf02626996

[18] Tibor Kiss and Jan Strunk. 2006. Unsupervised Multilingual Sentence Boundary
Detection. Computational Linguistics 32, 4 (2006), 485–525. https://doi.org/10.
1162/coli.2006.32.4.485

[19] Jan Knobloch and Enrico Gigantiello. 2017. AMATI: Another Massive Audience
Teaching Instrument. In 15th Workshop Software Engineering im Unterricht der
Hochschulen (SEUH). Hannover, Germany, 63–68.

[20] Takafumi Koshinaka, Ken ichi Iso, and Akitoshi Okumura. 2005. An HMM-based
text segmentation method using variational Bayes approach and its application
to LVCSR for broadcast news. In Proceedings. (ICASSP '05). IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2005., Vol. 1. IEEE, 485–488.
https://doi.org/10.1109/icassp.2005.1415156

[21] Omri Koshorek, Adir Cohen, Noam Mor, Michael Rotman, and Jonathan Berant.
2018. Text Segmentation as a Supervised Learning Task. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), Vol. 2. Association
for Computational Linguistics, 469–473. https://doi.org/10.18653/v1/n18-2075

[22] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. In 49th ACM Technical Symposium
on Computer Science Education. ACM, 284–289. https://doi.org/10.1145/3159450.
3159602

[23] Stephan Krusche and Andreas Seitz. 2019. Increasing the Interactivity in Software
Engineering MOOCs - A Case Study. In 31th Conference on Software Engineering
Education and Training (CSEE&T).

69

ECSEE ’20, June 18–19, 2020, Seeon/Bavaria, Germany Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

[24] Stephan Krusche, Andreas Seitz, Jürgen Börstler, and Bernd Bruegge. 2017.
Interactive Learning: Increasing Student Participation Through Shorter Exer-
cise Cycles. In 19th Australasian Computing Education Conference. ACM, 17–26.
https://doi.org/10.1145/3013499.3013513

[25] Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An Interactive Learning Method to Engage Students in Modeling.
In Proceedings of the 42nd International Conference on Software Engineering -
Software Engineering Education and Training (ICSE-SEET’20). Seoul, South Korea.

[26] Rainer Lienhart and Wolfgang Effelsberg. 2000. Automatic text segmentation
and text recognition for video indexing. Multimedia Systems 8, 1 (2000), 69–81.
https://doi.org/10.1007/s005300050006

[27] Rensis Likert. 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology 22, 140 (1932), 1–55.

[28] Yutaka Matsuo and Mitsuru Ishizuka. 2003. Keyword Extraction from a Single
Document using Word Co-occurrence Statistical Information. International
Journal on Artificial Intelligence Tools 13, 01 (2003), 157–169. https://doi.org/10.
1142/s0218213004001466

[29] Richard E. Mayer, Andrew Stull, Krista DeLeeuw, Kevin Almeroth, Bruce Bimber,
Dorothy Chun, Monica Bulger, Julie Campbell, Allan Knight, and Hangjin Zhang.
2009. Clickers in college classrooms: Fostering learningwith questioningmethods
in large lecture classes. Contemporary Educational Psychology 34, 1 (2009), 51–57.
https://doi.org/10.1016/j.cedpsych.2008.04.002

[30] Olena Medelyan and Ian H. Witten. 2006. Thesaurus Based Automatic Keyphrase
Indexing. In Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Li-
braries (Chapel Hill, NC, USA) (JCDL ’06). Association for Computing Machinery,
New York, NY, USA, 296–297. https://doi.org/10.1145/1141753.1141819

[31] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39–41. https://doi.org/10.1145/219717.219748

[32] Hemant Misra, François Yvon, Olivier Cappé, and Joemon Jose. 2011. Text seg-
mentation: A topic modeling perspective. Information Processing & Management
47, 4 (2011), 528–544. https://doi.org/10.1016/j.ipm.2010.11.008

[33] Hemant Misra, François Yvon, Joemon M. Jose, and Olivier Cappe. 2009. Text
Segmentation via Topic Modeling: An Analytical Study. In Proceeding of the 18th
ACM conference on Information and knowledge management - CIKM '09 (Hong
Kong, China). ACM Press, 1553–1556. https://doi.org/10.1145/1645953.1646170

[34] Irina Pak and Phoey Lee Teh. 2017. Text Segmentation Techniques: A Critical
Review. In Innovative Computing, Optimization and Its Applications: Modelling

and Simulations. Springer International Publishing, 167–181. https://doi.org/10.
1007/978-3-319-66984-7_10

[35] Jay M. Ponte and W. Bruce Croft. 1997. Text segmentation by topic. In Research
and Advanced Technology for Digital Libraries. Springer Berlin Heidelberg, 113–
125.

[36] Martin F. Porter. 1980. An algorithm for suffix stripping. Program: electronic
library and information systems 14, 3 (1980), 130–137.

[37] Ann Poulos and Mary Jane Mahony. 2008. Effectiveness of feedback: the students’
perspective. Assessment & Evaluation in Higher Education 33, 2 (2008), 143–154.
https://doi.org/10.1080/02602930601127869

[38] Juan Enrique Ramos. 2003. Using TF-IDF to Determine Word Relevance in
Document Queries. In 1st instructional Conference on Machine Learning.

[39] Jeffrey C. Reynar. 1999. Statistical Models for Topic Segmentation. In Proceedings
of the 37th annual meeting of the Association for Computational Linguistics on
Computational Linguistics -. Association for Computational Linguistics, 357–364.
https://doi.org/10.3115/1034678.1034735

[40] Martin Riedl and Chris Biemann. 2012. Sweeping through the Topic Space: Bad
Luck? Roll Again!. In Proceedings of the Joint Workshop on Unsupervised and Semi-
Supervised Learning in NLP (Avignon, France) (ROBUS-UNSUP ’12). Association
for Computational Linguistics, USA, 19–27.

[41] Martin Riedl and Chris Biemann. 2012. TopicTiling: A Text Segmentation Algo-
rithm Based on LDA. In Proceedings of ACL 2012 Student Research Workshop (Jeju
Island, Korea) (ACL ’12). Association for Computational Linguistics, USA, 37–42.

[42] C. Osvaldo Rodriguez. 2012. MOOCs and the AI-Stanford like Courses: Two Suc-
cessful and Distinct Course Formats for Massive Open Online Courses. European
Journal of Open, Distance and E-Learning (2012).

[43] Yuwei Tu, Ying Xiong, Weiyu Chen, and Christopher Brinton. 2018. A Domain-
Independent Text Segmentation Method for Educational Course Content. IEEE
International Conference on Data Mining Workshops (2018). https://doi.org/10.
1109/icdmw.2018.00053

[44] Yaakov Yaari. 1997. Segmentation of Expository Texts by Hierarchical Agglomer-
ative Clustering. CoRR (1997). arXiv:9709015 [cmp-lg]

[45] Jon P. Yamron, Ira Carp, Larry Gillick, Steve Lowe, and Paul van Mulbregt. 1998.
A hidden Markov model approach to text segmentation and event tracking. In
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP '98 (Cat. No.98CH36181), Vol. 1. IEEE, IEEE, 333–336.
https://doi.org/10.1109/icassp.1998.674435

70

8.10 A Machine Learning Approach for Suggesting
Feedback in Textual Exercises in Large Courses

The conference paper is based on [BKKB21] and describes more details of the machine
learning approach for suggesting computer-aided feedback and the open-source applica-
tion Athene. It includes an empirical evaluation of Athene in 17 textual exercises across
two courses with 2.300 students and 53 tutors. The empirical evaluation results show
that Athene can suggest up to 70 % of the feedback with an average accuracy of 85 %.
Ratings provide the first indications that the perceived quality improves when compared
to purely manual assessments. The evaluation shows that the efficiency depends on the
type of textual exercise and the variability of the possible solutions. A higher variance
of correct solutions leads to less coverage because of fewer similarities in the student
answers.

Jan Philip Bernius implemented the approach in the open-source application Athene
and integrated it into Artemis. The author of this habilitation supervised Jan Philip
Bernius throughout the development of the semi-automatic assessment approach and
writing the paper.

Authors J. Bernius, S. Krusche and B. Bruegge
Conference 8th Conference on Learning at Scale
Publisher ACM
Pages 10
Type Conference: Full Research Paper
Review Peer Reviewed (3 Reviewers)
Year 2021
Citation [BKB21]
URL https://doi.org/10.1145/3430895.3460135

216

https://doi.org/10.1145/3430895.3460135

A Machine Learning Approach for Suggesting Feedback in
Textual Exercises in Large Courses

Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge
Department of Informatics

Technical University of Munich
Munich, Germany

janphilip.bernius@tum.de, krusche@in.tum.de, bernd.bruegge@tum.de

ABSTRACT
Open-ended textual exercises facilitate the comprehension of
problem-solving skills. Students can learn from their mistakes
when teachers provide individual feedback. However, courses
with hundreds of students cause a heavy workload for teachers:
providing individual feedback is mostly a manual, repetitive,
and time-consuming activity.

This paper presents CoFee, a machine learning approach de-
signed to suggest computer-aided feedback in open-ended
textual exercises. The approach uses topic modeling to split
student answers into text segments and language embeddings
to transform these segments. It then applies clustering to group
the text segments by similarity so that the same feedback can
be applied to all segments within the same cluster.

We implemented this approach in a reference implementa-
tion called Athene and integrated it into Artemis. We used
Athene to review 17 textual exercises in two large courses
at the Technical University of Munich with 2,300 registered
students and 53 teachers. On average, Athene suggested feed-
back for 26% of the submissions. Accordingly, 85% of these
suggestions were accepted by the teachers, 5% were extended
with a comment and then accepted, and 10% were changed.

Author Keywords
Software Engineering, Education, Interactive Learning,
Automatic Assessment, Grading, Assessment Support System,
Learning, Feedback

CCS Concepts
•Social and professional topics → Software engineering
education; •Computing methodologies → Natural lan-
guage processing;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S ’21, June 22–25, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-8215-1/21/06. . . 15.00

DOI: https://doi.org/10.1145/3430895.3460135

INTRODUCTION
The rise in student numbers in universities has led to an in-
crease in course management efforts, and made it challenging
to provide high-quality individual feedback to students [19].
Recent approaches, such as online platforms and live stream-
ing, allow teachers1 to cope and interact with a large amount
of students on an individual level, regardless of the respective
course size.

In particular, large university courses with hundreds of stu-
dents rely on teaching assistants to provide feedback on ex-
ercises, e.g., multiple-choice quizzes and textual exercises.
Multiple-choice quizzes are easy to assess, and tools are
broadly available in learning management systems (LMSs)
and for paper-based assessment. However, mastery of these
quizzes does not require problem-solving skills because they
typically target only lower cognitive skills, in particular, knowl-
edge recall and comprehension. Most quiz types include prede-
fined options and do not reflect work practices in industry. It is
difficult to create quizzes that stimulate higher cognitive skills,
such as problem-solving, which are important in computer
science [1, 32].

Open-ended textual exercises allow instructors to teach
problem-solving skills and allow students to improve their
knowledge. These exercises do not have a single correct solu-
tion, but rather allow answers within a particular solution space
which can be characterized by words and phrases. The search-
light theory of scientific knowledge [27] states that students
increase their knowledge through observations, especially ob-
servations that prove their assumptions wrong. Students profit
from having an individual feedback relationship with their
teachers [10]. Individual feedback and formative assessments
are essential elements in learning [11, 12]. Feedback on open-
ended exercises allows students to try out problem-solving and
to experience failure. Students need guidance in the form of
feedback in their learning activities to prevent misconceptions
[13].

1For this paper, we define teachers as both instructors and teaching
assistants (see Figure 1). Instructors are employees of the university
such as professors, lecturers, and doctoral candidates. Teaching
assistants are experienced students who have passed the same course
previously with a good grade and who are motivated to help in the
teaching process. Some universities also use the term “tutor” to refer
to a teaching assistant.

Student Teacher

Instructor Teaching
Assistant

System

Figure 1. Use case diagram of the Athene and Artemis system. Students
and teachers interact with the system. Teachers are instructors, employ-
ees of the university, or teaching assistants, who are previous students
hired to assist in teaching.

However, textual exercises lead to greater variability because
students need to formulate individual answers to problems.
This results in high manual effort when reviewing students’
answers. Assuring consistent feedback is difficult with a large
number of teaching assistants. In this paper, we present an ap-
proach for computer-aided feedback for textual exercises that
addresses these challenges. We implemented the approach in
an open-source reference implementation, used it in multiple
exercises, and evaluated its effects on the learning experience
of students. In particular, we investigated the following re-
search questions (RQ):

RQ1 Coverage: How much feedback can be automatically
suggested?

RQ2 Accuracy: How accurate is the suggested feedback?

RQ3 Quality: How do students perceive the quality of the
automatically suggested feedback?

The paper is organized as follows: Section 2 describes the
background of this work which consists of machine learning
concepts, in particular language models. In Section 3, we show
similar approaches and relate them to the approach presented
in this paper. Section 4 presents the approach computer-aided
feedback for textual exercises (CoFee) based on supervised
learning to deal with the greater variability in the student
answers. Language embeddings and clustering are used to pro-
vide individual feedback based on similarity. Section 5 shows
the open-source reference implementation Athene2 which is
integrated into the open-source LMS Artemis3. Section 6 de-
scribes the courses in which the approach was used, shows
the study design of the empirical evaluation with respect to
Bloom’s revised taxonomy [2], presents results and limitations,
and discusses the findings. Section 7 concludes the paper with
its main contributions and future work.

BACKGROUND: LANGUAGE MODELS
Assessing text submissions automatically requires comparing
segments of those submissions and identifying similar pieces

2Athene: https://github.com/ls1intum/Athene
3Artemis: https://github.com/ls1intum/Artemis

of text. Therefore, we need a measurable abstraction of a texts
meaning as an intermediate representation. This paper relies
on existing approaches and techniques from the domain of
natural language processing (NLP), most notably language
models and word embeddings, to convert a piece of text into
a comparable format. Student answers can contain unknown
words, incorrect use of grammar and punctuation, and false
statements.

Word embedding is a feature learning technique in NLP, where
words or phrases from the vocabulary are mapped to vectors of
real numbers (each word is associated with a point in a vector
space) [21]. The feature vector represents different aspects of
the word and consequently, words that have the same mean-
ing are assigned similar vector representations. Additionally,
word embeddings are capable of capturing word analogies
by examining various dimensions of the differences between
word vectors [24]. For example, the analogy “king is to queen
as man is to woman” should be encoded in the vector space
by the vector equation king − queen = man − woman.

The distributed representation is learned based on the usage
of the words. This allows words that are used in similar con-
texts to have similar representations, naturally capturing their
meaning. ELMo [26] is a word embedding constructed as a
task-specific combination of the intermediate layer represen-
tations in a bidirectional language model (biLM). It models
complex characteristics of words-use in the language dictated
by the syntax and semantics. It also captures how these uses
vary across linguistic contexts, which is important for address-
ing polysemy in natural languages.

In a deep language model (LM), the higher-level long short
term memory (LSTM) states are shown to capture context-
dependent aspects of word meaning while lower-level states
model aspects of the syntax. By constructing a representation
out of all the layers of the LM, ELMo is able to capture both
characteristics of the language. ELMo representations have
three main characteristics that allow them to achieve state-
of-the-art results in most common NLP downstream tasks.
First, ELMo representations are contextual: the representa-
tion for each word depends on the entire context in which it
is used. They are also deep: the word representations com-
bine all layers of a deep, pre-trained language model neural
network. Finally, ELMo representations are purely charac-
ter based, allowing the network to use morphological clues
to form robust representations for out-of-vocabulary tokens,
unseen in training.

RELATED WORK
Automated essay scoring (AES) computes scores on written
solutions based on previous submissions. AES systems require
a perfect solution to be available up front [23, 31]. They pri-
marily consider the distance to a perfect solution to determine
the grade. Feedback is not the focus. Manual clustering and
shared grading are concepts used in research [25] and com-
mercial tools (i.e., Gradescope). Managing clusters is hard at
scale, communicating the exact differences between clusters
between many graders.

Atenea is a computer-assisted assessment system for scoring
short answers in computer science [25] and is integrated into
a web-based application. Atenea uses a database of questions
with a correct sample solution for each, either written by a
teacher or taken from a highly graded student’s answer. When
a student accesses Atenea, a random question from this pool is
asked and compared to the given sample solution by utilizing
a hybrid for syntax as well as semantic similarity. The system
works by combining latent semantic analysis (LSA) and a mod-
ified bilingual evaluation understudy (BLEU) algorithm, with
the hypothesis that syntax and semantics complement each
other naturally. The combination of both NLP tools always
performs better (with a higher hit rate) than their individual
parts, with the authors believing that combinations of syntacti-
cal and semantical analysis can lead to even greater results for
automatic text assessment.

Atenea compares student answers to a set of predefined an-
swers. The grade is determined by its similarity to these
predefined answers. This approach is limited to exercises with
a narrow answer space where possible answers are known
beforehand. A high variability in answers requires a large set
of predefined answers, which limits the applicability of the
system. The focus of the Atenea system is grading, whereas
Athene is primarily focused on individual feedback. Athene
does not require a predefined solution but collects knowledge
on correct and incorrect solutions during the manual assess-
ment. The evaluation of the Atenea authors focuses on a
comparison of NLP techniques in the grading context and is
based on a dataset. We evaluate Athene by using it in multiple
courses and measuring its performance.

Powergrading is an automatic assessment approach [3]. In-
stead of solely focusing on providing a numerical score or a
right or wrong grade, Powergrading tries to justify a certain
given grade by providing feedback in the form of a comment
as to why an answer is right or wrong, similar to how a teacher
would do it in a classroom setting. Basu et al. propose a sys-
tem, that clusters similar answers to a question so that teachers
can “divide and conquer” the correction process by assigning
a whole cluster with the same score and comment, therefore
reducing the correction time significantly. Clustering answers
to a question should happen based on a distance function,
which is composed of different features and tries to learn a
similarity metric between two students’ answers automatically.
Some of the implemented and used features that are weighted
in developing this distance function used for clustering are,
e.g., the difference in length between two answers, the term
frequency-inverse document frequency (TF-IDF)4 similarity
of words, or the LSA vectorial score based on the entirety of
Wikipedia as a training text corpus. The authors have tested
their implementation with test data from the United States
Citizenship Exam in 2012 with 697 examinees and concluded
that around 97% of all submissions can be grouped into similar
clusters so that teachers would only have to provide feedback
for a single cluster and would still be able to reach and correct
multiple submissions at once, therefore reducing assessment
time significantly [3].

4TF-IDF: An information extraction statistic which indicates how
significant a word is to a document [28].

Powergrading is focused on short-answer grading, where a
typical answer does not exceed two sentences. Athene is not
limited to a certain answer length and uses segmentation to
work with multiple sentences or paragraphs. Similar to Power-
grading, Athene groups segments into clusters. Both systems
assume hierarchical cluster structures. Powergrading allows
teachers to grade clusters rather than submissions, whereas
Athene will use the cluster structure to suggest feedback for
following assessments.

Gradescope is a system geared toward the assessment of hand-
written homework and exam exercises [30] by scanning paper-
based work. Teachers review the submissions online. Grade-
scope allows the teacher to dynamically create grading rubrics
at the assessment time. For the assessment, teachers can group
similar submissions manually for shared grading or relay on
suggested groups.5

Athene follows a similar idea by sharing feedback with groups
of answers; however, Athene groups individual segments,
whereas Gradescope groups entire submissions. Gradescope
allows the grader to grade multiple submissions as one, similar
to Powergrading, whereas Athene shares individual feedback
elements across multiple submissions. Athene requires teach-
ers to inspect every submission and supports by suggesting
feedback items. Neither system requires a training dataset
of previously assessed answers. For exercises with a limited
answer spectrum, Gradescope does allow the grader to assess
several submissions efficiently as it reduces the number of so-
lutions to grade. However, for exercises with high variability
in answers (e.g., when asking for examples), this approach is
more limited as more groups with less elements need to be
reviewed.

APPROACH: COMPUTER-AIDED FEEDBACK (COFEE)
CoFee uses supervised machine learning to learn correct an-
swers and related feedback. Figure 2 shows the main workflow
how CoFee can automatically propose computer-aided feed-
back to students’ answers. CoFee learns which answers to
an exercise are correct and which are incorrect. For further
submissions, the learning platform can automatically generate
suggestions for similar answers or even evaluate the answers
fully automatically. In doing so, the learning platform uses the
knowledge of previous assessments by lecturers. The more
students participate in an exercise, the more knowledge is
generated and the better feedback the learning platform can
suggest.

Figure 3 shows the details of the activity “preprocess answers”
shown in Figure 2 and represents the basis for the three ob-
jectives mentioned above. The system analyzes incoming text
(responses) using NLP, divides them into text segments, and
uses them to create text clusters with similar text segments
from different responses. This is done using a combination of
segmentations and linguistic embeddings, in particular deeply
contextualized word representations (ELMo). This allows for
an understanding students’ responses and for the generation
of individualized feedback. In this way, a learning platform
can automatically reuse manual feedback for contributions

5https://gradescope.com

Student TeacherCoFee

S Submit
answer

[yes]

Automatic
assessment

possible?

Manually
review

feedback
suggestions

Manual review

Automatically
review

 answer

Learn from manual
reviewReview

feedback

[yes]

[no]

Improve
answer

Satisfied?

«influences»

Feedback

Assessment
knowledge

Automatic
feedback

Preprocess
answers

Feedback
suggestion[no]

«affects»

Answer Text Cluster

Figure 2. Workflow of automatic assessment of submissions to textual exercises based on the manual feedback of teachers. CoFee analyzes manual
assessments and generates knowledge for the suggestion of computer-aided (automatic) feedback (UML activity diagram).

Segmentation

Language Embedding

 Answer

ELMo

Remove
stop words

Lemmatize
Extract

keywords

Segment
answers into

text segments
Text segment

Clustering

Calculate
distance matrix

Compute
HDBSCAN
clustering

VectorText Segment
Cluster

Figure 3. Detailed overview of the machine learning activities as part of the “preprocess answers” activity in Figure 2. These are used to extract text
segments and build text clusters for scoring and similarity analysis (UML activity diagram).

from different students. This can reduce the workload for
teachers and increase the consistency and quality of feedback
to improve students’ understanding.

The goal is to increase the quality and quantity of the feedback
provided to students while decreasing the overall assessment
time. CoFee integrates into existing learning platforms that
need to provide an interface for students to submit their textual
answers. We utilize a segment-based feedback concept [5],
requiring assessors to provide feedback and score in relation
to a segment of student’s answer, resulting in relatable and
reusable feedback elements.

CoFee trains its assessment model with every feedback ele-
ment and thereby becomes more accurate with every new feed-
back element. After the assessment process, the system can
detect conflicting assessments in both comments and scores.
Therefore, CoFee computes the similarity among feedback
comments. We claim that the distance between two text seg-
ments should be proportional to the distance between the feed-
back comments. If this relation is violated, CoFee prompts the
teacher to review the pair of submissions and allows them to
update the assessment as needed. The learning platform may
only release the feedback to students after the teachers have
the chance to resolve inconsistencies.

Compared to existing work, our system segments and clusters
student solutions automatically. By training the system during
the assessment process, we do away with the need for a refer-
ence dataset before the assessment. Furthermore, by training
with highly and lowly scored solutions, we maintain a dataset
to provide helpful feedback comments to support the learning
process. Dynamically collecting the dataset during assessment
keeps the system independent of any domain and allows for
use of the system with new exercises to incorporate the latest
knowledge into teaching.

REFERENCE IMPLEMENTATION (ATHENE)
We implemented CoFee in a reference implementation called
Athene [4] that is integrated into the learning platform Artemis
[15]. After the exercise deadline, Artemis sends the students’
answers to Athene for processing. Athene will preprocess
the answers before the assessment begins and will identify
segments suitable for the same feedback. Figure 3 depicts the
preprocessing activities. This represents the basis for the three
objectives mentioned above. The system analyzes incoming
student answers using NLP, divides them into text segments,
and uses them to create text clusters with similar text segments
from different responses. Figure 4 depicts the top-level design
of the system which consists of three steps: segmentation,
language embedding and clustering.

First, Athene analyzes the answers to identify segments [6, 7].
Therefore, Athene identifies common topics described in the
answers from all students. A topic is represented by a keyword.
To identify the important topics for an exercise, Athene counts
the occurrences of lemmatized words across all students and
selects the 10 most common words [7]. Within each student
answer, Athene will break down all submissions into clauses.
Adjacent clauses that share the same topic, represented by the
use of a keyword and absence of a new keyword, are merged
to form a segment. If a new keyword appears an a following
clause, we identify a topic shift and start a new segment. This
results in a set of topically coherent segments.

Second, Athene uses an ELMo model to convert each segment
to vector form. ELMo vectors have 1,024 dimensions rep-
resenting the information extracted from the segment. The
vector representation allows for a comparison of segments and
for the identification of similarities. Athene uses a pre-trained
ELMo model [26] based on a dataset consisting of 5.5B tokens
from Wikipedia and news articles.6

Third, Athene employs the Hierarchical Density-Based Spatial
Clustering (HDBSCAN) clustering algorithm [22] to identify
classes of similar text segments. Within a cluster, Athene
shares manually created feedback as suggestions. The hier-
archical clustering algorithm allows for a determination of
the required number of clusters dynamically. Further, the hi-
erarchical structure is used to dynamically narrow or widen
the search radius depending on the availability of feedback.
Narrow clusters provide more accurate feedback on the one
side; however, they also limit the possible coverage. Larger
clusters increase the possibility to find existing feedback to
compose a suggestion; however, they also increase the risk of
false feedback.

During the manual assessment, Athene sorts submissions so
that it priorities submissions with the highest effect on auto-
mated grading. Submissions with several segments in clusters
without feedback are prioritized, maximizing the possible cov-
erage for automatic feedback suggestions. For each segment,
Athene searches their respective clusters for existing feedback
and suggests the closest feedback. Furthermore, credit points
associated with feedback are used to prioritize based on the
clusters’ credit average. Athene’s automatic feedback sugges-
tions are displayed to teachers within Artemis as part of the
review interface [5], as depicted in Figure 5. Teachers can
add additional feedback to unreviewed parts of the student
solution. They can either approve of the feedback suggestions
or update them as they see fit.

EVALUATION
After several teachers used Athene in initial experiments in
smaller courses with around 500 students, they found anecdo-
tal evidence that the system improves the quantity and quality
of feedback. The next step was to evaluate the approach in
multiple exercises in the course Introduction to Software Engi-
neering (SE1) with 1,800 students and 49 teaching assistants
and in a second course Networks for Monetary Transactions.
In this section, we describe the two courses and the study

6AllenNLP – ELMo: https://allennlp.org/elmo

Figure 4. Top-level design of Athene, which is decomposed into three
subsystems for segmentation, language embedding, and clustering and
offers an API to be used in existing LMS (UML component diagram).

Figure 5. Example of the teacher interface: Athene presents a feedback
suggestion for the first text segment with a feedback comment and a
score.

design of the evaluation. We show the results of the usage of
Athene and discuss the findings, implications, and limitations.

Courses
The course SE1 is an introductory software engineering course,
with around 1,800 registered students who are mainly com-
puter science bachelor’s students in their second semester. Stu-
dents with computer science as a minor can also enroll in the
course. The course covers software engineering concepts, such
as requirements analysis, system and object design, testing,
lifecycles, configuration management, and project manage-
ment and covers UML modeling [19]. To participate in the
course, students need to have fundamental programming expe-
rience (e.g., CS1). The instructors use constructive alignment
[8] to align the teaching concepts and exercises with the course
objectives. For each lecture, they define learning goals based
on six cognitive processes in Bloom’s revised taxonomy [2].
The course focuses on higher cognitive processes: students
apply the concepts in concrete exercises.

Following an interactive learning approach, SE1 teaches soft-
ware engineering concepts with multiple, small iterations of
theory, example, exercise, solution and reflection [16]. It
utilizes exercises to foster student participation [17] and to
motivate the students to attend the lectures [18]. The course
involves different kinds of exercises:

1. Lecture exercises as part of the (virtual) lectures
2. Group exercises solved in small ad hoc groups
3. Homework exercises to be solved throughout the week

individually

4. Team exercises to be solved in a team in five 2-week periods
5. Exam exercises to assess the students’ knowledge after the

course has finished in multiple variants

Students were asked to submit their solutions to all exercises
but group exercises to Artemis to receive an assessment with
feedback and points. The students could gain bonus points
for the final exam when participating in the exercises. To
train software engineering and problem-solving skills, the
instructors utilize programming, modeling, textual, and quiz
exercises in the course. Automatic assessment suggestions
based on Athene have been enabled for 11 textual homework
exercises and six textual exam exercises.

The course Networks for Monetary Transactions has the learn-
ing goals to understand and assess the fundamentals, archi-
tecture, and security of domestic and international payment
networks and their legal frameworks. Around 500 students
participated. The teachers used Artemis to conduct an online
exam during the COVID-19 pandemic. The exam consisted
of 11 quiz exercises and three text exercises. Automatic as-
sessment suggestions based on Athene were enabled for one
textual exam exercise: IT-Attacks.

Bloom created the taxonomy of educational objectives, defin-
ing six categories: Knowledge, Comprehension, Application,
Analysis, Synthesis, and Evaluation [9]. The revised taxonomy
shifts the focus from static educational objectives toward a
classification of cognitive processes students encounter when
solving exercises [2]. The exercises conducted as part of the
evaluation can be classified to train the cognitive processes
Remember, Understand, but Apply, and Analyze (see Figure 6).

Table 1 lists the textual exercises and includes the cognitive
process (as a category) that receives the most training in terms
of the revised taxonomy. Some exercises such as H09E02
and H10E01 facilitate understanding by asking student to
explain concepts. H10E01, e.g., states: “Name and explain
similarities and differences between the Unified Process and
Scrum in your own words”. Other exercises such as Exam 3
focus on the application of knowledge. Students need to apply
their requirements elicitation skills in order to create use case
descriptions based on a given problem statement.

Study Design
Figure 7 shows the study design of the evaluation that was
instantiated for each exercise in which Athene was used for
grading. The teacher defines the exercise in Artemis with a
problem statement, grading criteria, example solutions, and a
due date. The students can insert their solution in plain text
on Artemis. After the due date, Artemis sends all student
answers to Athene to preprocess the answers as described in
the Approach section. The teachers can start reviewing the
student answers as soon as Athene completes the preparation
and stores the text clusters. For every student answer, the
teachers create a review consisting of multiple feedback items.
During the review phase, the teachers used a chat room to
discuss the grading criteria as needed.

Every review can either be computer-aided, if at least one feed-
back item is suggested by the system, or manual. Furthermore,

ProceduralKnowledge

StaticKnowledge

«abstract»

CognitiveProcess

Create

Evaluate

Analyze

Apply

Understand

Remember

Figure 6. Exercises in the evaluation assess different cognitive processes.
This taxonomy, based on the revised Bloom’s taxonomy [2], depicts the
hierarchy of skills. Exercises test static knowledge by testing the remem-
ber and understand skills but also apply and analyze, e.g., by identifying
design issues from a system.

Athene stores intermediate versions of all feedback items to
evaluate how teachers work with feedback suggestions.

After the teachers completed the review, we retrieved the clas-
sification of the reviews from the Artemis database using SQL
queries. Two researchers verified the correctness of the queries.
We collected the statistics on the feedback items from Athene.
We inserted the measurements in a spreadsheet for further
analysis and graphing. Two researchers reviewed the results
for consistency and plausibility and took several samples to
check individual feedback entries.

Results
The presentation of the results is based on the research ques-
tions stated at the beginning of the paper on the coverage,
accuracy and quality of the approach.

Review Coverage
First, we classify the reviews into two categories: manual and
computer-aided. A review is considered computer-aided, if at
least one feedback item was suggested by Athene. Figure 8
depicts the classification of the reviews. On average, 26%
of all reviews were computer-aided. The system performed
best in exercise Exam 1, with 70% computer-aided reviews.
Exercises Exam 4 and Exam 6 have the least coverage, with
2% and 8% computer-aided reviews, respectively. However,
Athene was disabled for exercise Exam 4 after a few assess-
ments.

Finding 1: Coverage: Athene can cover up to 70% of reviews
with feedback suggestions without previous training data or a
predefined solution.

Exercise Title Category
H04E01 Coupling and Cohesion Understand

H04E02 Analysis Models &
System Design Analyze

H04E03 Design Goal Trade-offs Apply

H05E02 Centralized vs Decentralized
Designs Understand

H06E03 Specification & Implementation
Inheritance Apply

H06E04 Inheritance vs. Delegation Understand
H07E03 MVC & Observer Pattern Understand

H09E01 Advantages and Disadvantages
of Scrum Understand

H09E02 Unified Process and Scrum Understand
H10E01 Problems using Git Understand

H10E02 Merge Conflicts &
Best Practices Understand

Exam 1 Requirements Apply
Exam 2 Visionary Scenarios Apply
Exam 3 Use Cases Apply
Exam 4 Access Control Apply
Exam 5 Design Goal Trade-offs Apply

Exam 6 Centralized vs. Decentralized
Control Apply

Exam 7 IT-Attacks Remember
Table 1. Homework and exam textual exercises and their categorization
following Bloom’s revised taxonomy [2] used in the evaluation.

Feedback Accuracy
Second, we classified feedback items based on the interme-
diate versions collected during the review process. Feedback
items can be classified as follows:

1. A feedback suggestion that remains unchanged is classified
as automatic.

2. For changed suggestions, Athene computes the Levenshtein
distance [20] between feedback comments. Athene clas-
sifies a changed feedback as a typo fix for a Levenshtein
distance > 0.9.

3. Athene uses the longest common substring length and the
Jaro–Winkler distance [33] to recognize feedback sugges-
tions with a manual extended comment.

4. Feedback not classified in these metrics is considered as
changed.

We analyzed the teachers’ assessment work for two homework
and seven exam exercises. The results depicted in Figure 9
show that on average, 85% of computer-aided feedback com-
ment suggestions remained unchanged in their final assess-
ment or only had minor modifications, such as corrections to
typing mistakes. Furthermore, 5% of suggested comments
were extended with additional feedback at the end of the sug-
gestion to provide more details for the student. The remaining
10% of comments were changed. In these cases, the comment
was either rewritten from scratch or was heavily revised.

Finding 2: Accuracy: On average, 85% of the feedback
suggestions are accurate and can be published to students
without modification.

Researcher StudentTeacher

Define exercise

Submit answer

Run Athene system

Review
feedback suggestions

Rate feedback

Collect assessments

Classify feedback

Evaluate results

Accept

Change

Discard

Figure 7. Research approach depicted with the involved actors and flow
of events (UML activity diagram).

Perceived Quality
Third, we asked students to rate their received feedback on a
5-star scale. The students rated a total of 396 reviews out of
10,240 total reviews done by the teachers. Artemis presents
the rating input underneath the feedback and asks, “How useful
is the feedback for you?” Figure 10 depicts the distribution by
star rating. In the study, 85% of the ratings were either 1-star
or 5-star ratings. Students with computer-aided feedback were
more likely to give a 5-star rating (72%) when compared to
students who received manual feedback (62%). On the same
page, computer-aided feedback received 1-star ratings less
often (14%) than manual feedback (25%). Students giving
a 5-star rating on average (92% and 89%, respectively) had
better scores than students giving 1-star ratings (69% and 66%,
respectively).

Finding 3: Quality: The computer-aided feedback in Athene
has at least the same quality as manual feedback.

Limitations
This section discusses threats to the trustworthiness of the
presented results, and whether the results are biased based

75%

92%

87%

98%

50%

76%

30%

76%

68%

65%

67%

81%

64%

87%

80%

72%

83%

25%

8%

13%

2%

50%

24%

70%

24%

32%

35%

33%

19%

36%

13%

20%

28%

17%

0% 25% 50% 75% 100%

Exam 7 (n=477)

Exam 6 (n=405)

Exam 5 (n=414)

Exam 4 (n=461)

Exam 3 (n=425)

Exam 2 (n=411)

Exam 1 (n=446)

H10E02 (n=1013)

H10E01 (n=1029)

H09E02 (n=959)

H09E01 (n=1006)

H07E03 (n=933)

H06E04 (n=1027)

H05E02 (n=1013)

H04E03 (n=1103)

H04E02 (n=1032)

H04E01 (n=1125)

Manual Computer-aided

Figure 8. Exercises with their assessment ratios. Computer-aided re-
views received automated grading suggestions which were reviewed by a
teacher. On average, 26% reviews were computer-aided.

on the researchers’ subjective point of view. We distinguish
between three aspects of validity: internal validity, external
validity, and construct validity [29].

Internal Validity: The accuracy of the feedback suggestions is
measured by the acceptance of the teacher. A second review
from a control teacher would allow for a more accurate mea-
surement of accuracy. The teacher might be biased to confirm
a feedback suggestion as it requires less effort than providing a
new comment. We noticed that most teachers took the review
of the automatic feedback suggestions seriously, but we can-
not guarantee that some of the 49 involved teaching assistants
failed to fully review the automatic feedback suggestions.

Two of the authors of this paper have been involved in teach-
ing the course SE1 and might have influenced the empirical
evaluation. However, we tried to clearly separate the research
and instructor perspective. Two additional instructors have
been involved in the course SE1 who are not authors of this
paper, and the third author of the paper reviewed the results
carefully without being involved in the course. In addition,
we observed similar results in the second course, which was
taught by an independent instructor who was not involved in
the research.

External Validity: Most analyzed exercises have been in the
domain of software engineering and computer science in the
same university. While we believe that the approach is gen-

93%

79%

90%

80%

83%

82%

76%

89%

86%

1%

1%

1%

4%

7%

2%

13%

4%

1%

6%

4%

4%

7%

13%

7%

8%

12%

16%

14%

7%

10%

50% 60% 70% 80% 90% 100%

Exam 7 (n=477)

Exam 6 (n=405)

Exam 5 (n=414)

Exam 4 (n=461)

Exam 3 (n=425)

Exam 2 (n=411)

Exam 1 (n=446)

H10E02 (n=1014)

H09E02 (n=960)

Automatic Typo Extended Changed

Figure 9. On average, 85% of computer-aided feedback comments re-
mained unchanged (green) or only included minor typo fixes (blue). Fur-
thermore, 5% were extended (yellow), and 10% were changed (red).

eralizable for other domains, we have not shown this in this
study.

Construct Validity: The validity of the ratings might be af-
fected by the wording of the question and by the score that the
students received. Students with a higher score are typically
more satisfied and less likely to complain about the quality of
the feedback. Therefore, a good rating does not necessarily
mean that the feedback had a good quality. Another limitation
could be the fact that students like the approach of getting
feedback. The ratings measure the perceived quality which is
subjective. We can only infer the quality based on the ratings.
Therefore, we consider Finding 3 on the quality of the ratings
as anecdotal evidence.

Discussion
The review coverage of Athene is higher for exercises that do
not ask for examples, but rather require students to work based
on a given example. In the exercises Exam 1 and Exam 3,
students were asked to extract requirements or use cases from
a given problem statement. In those exercises, the coverage
was above the average with 70% and 50%, respectively. These
questions still require students to apply problem-solving skills,
but limit the variability of the answers. This leads to more
similar answers and more reusable feedback.

Exercises asking for examples, such as the SE1 homework ex-
ercises, have lower review coverage of between 17% and 36%.
This may be due to the increased variability of answers with
different examples. As Athene tries to find similar text seg-
ments, it is more difficult to find a group with shared segments
as students can describe all possible examples. Therefore, it is
less likely to find reusable feedback among students.

Athene reuses reviews from teachers. The quality of the feed-
back suggestions depends on the quality of the manual feed-

23%
4% 5% 6%

62%

14% 0%
6% 8%

72%
66% 67%

72%

91%

89%69%

85%

74%

92%

0%

25%

50%

75%

100%

★ ★★ ★★★ ★★★★ ★★★★★

Manual Feedback Computer-aided Feedback

Ø Score Ø Score

Figure 10. All ratings for SE1 homework (HXX) exercises by star rating.
In this figure, ratings are grouped by the assessment type Manual (n =
325) or Computer-aided (n= 71). The average score in percent is depicted
per rating and assessment type. In the study, 396 out of 10,240 reviews
were rated by students.

back provided during the teacher reviews. If teachers provide
incorrect manual feedback, Athene will not be able to pro-
vide correct feedback suggestions. In the example of SE1,
the teachers who review the submission consist primarily of
teaching assistants, who have limited experience in grading or
providing feedback.

Nevertheless, the approach can improve the review process
as it allows instructors to handle larger amounts of reviews or
to inspect examples. Other systems presented in the Related
Work section suggest comparing answers only with a sample
solution provided by an instructor [25], thus reducing the vari-
ability in the solution space, which might limit the creativity
of the students. However, creativity is an important aspect in
software engineering education [14].

CONCLUSION
This paper presents three main contributions:

1. The machine-learning based approach CoFee was pre-
sented to suggest feedback for textual exercises. The ap-
proach is based on segmentation and similarity-based clus-
tering. It reuses feedback on segments within the same
cluster and learns which aspects of student answers are
correct during the assessment.

2. Athene, a reference implementation of CoFee, using the
ELMo language model and the HDBSCAN clustering algo-
rithm was presented. Athene is integrated into Artemis and
published as open-source software under the MIT license.7

3. An empirical evaluation of Athene in two courses with
2,300 students and 53 teachers in 17 textual exercises was
conducted. The results of the quantitative evaluation in
these exercises show that Athene can suggest up to 70%
of the feedback with an average accuracy of 85%. Ratings
provide first indications that the quality improves when
compared to purely manual assessments.

7Athene: https://github.com/ls1intum/Athene

The evaluation also shows that these numbers depend on the
type of the textual exercise and on the variability of the pos-
sible solutions. A higher variance in correct solutions leads
to less coverage because of fewer similarities in the student
answers.

Athene does not require training data before the reviewing
process to learn correct answers and feedback suggestions.
Instead, it collects knowledge during the assessment. This
incremental process allows instructors to change or introduce
new exercises as needed, preventing students from submitting
solutions from previous years. However, when reusing past
exercises, Athene could profit from additional knowledge cap-
tured in these reviews. Future work needs to evaluate whether
training data from the same exercise in previous years can
improve the coverage or accuracy of feedback suggestions.

REFERENCES
[1] Carlos Alario-Hoyos, Carlos Kloos, Iria Estévez-Ayres,

Carmen Fernández-Panadero, Jorge Blasco, Sergio
Pastrana, and J Villena-Román. 2016. Interactive
activities: the key to learning programming with
MOOCs. European Stakeholder Summit on Experiences
and Best Practices in and Around MOOCs 319 (2016).

[2] Lorin W. Anderson, David R. Krathwohl, Peter W.
Airasian, Kathleen A. Cruikshank, Richard E. Mayer,
Paul R. Pintrich, James Raths, and Merlin C. Wittrock.
2001. A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives. Longmans Green.

[3] Sumit Basu, Chuck Jacobs, and Lucy Vanderwende.
2013. Powergrading: a clustering approach to amplify
human effort for short answer grading. Transactions of
the Association for Computational Linguistics 1 (2013),
391–402.

[4] Jan Philip Bernius. 2021. Toward Computer-Aided
Assessment of Textual Exercises in Very Large Courses.
In 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE ’21). 1386.

[5] Jan Philip Bernius and Bernd Bruegge. 2019. Toward
the Automatic Assessment of Text Exercises. In 2nd
Workshop on Innovative Software Engineering
Education. Stuttgart, Germany, 19–22.

[6] Jan Philip Bernius, Anna Kovaleva, and Bernd Bruegge.
2020a. Segmenting Student Answers to Textual
Exercises Based on Topic Modeling. In 17th Workshop
Software Engineering im Unterricht der Hochschulen
(SEUH). Stuttgart, Germany, 72–73.

[7] Jan Philip Bernius, Anna Kovaleva, Stephan Krusche,
and Bernd Bruegge. 2020b. Towards the Automation of
Grading Textual Student Submissions to Open-ended
Questions. In European Conference on Software
Engineering Education. ACM, 61–70.

[8] John Biggs. 2003. Aligning teaching and assessing to
course objectives. Teaching and learning in higher
education: New trends and innovations 2 (2003), 13–17.

[9] Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst,
Walker H. Hill, and David R. Krathwohl. 1956.
Taxonomy of educational objectives. The classification
of educational goals. Handbook 1: Cognitive domain.
Longmans Green.

[10] Richard P. Feynman. 1994. Six Easy Pieces.

[11] Richard Higgins, Peter Hartley, and Alan Skelton. 2002.
The conscientious consumer: Reconsidering the role of
assessment feedback in student learning. Studies in
higher education 27, 1 (2002), 53–64.

[12] Alastair Irons. 2007. Enhancing learning through
formative assessment and feedback. Routledge.

[13] Paul Kirschner, John Sweller, and Richard Clark. 2006.
Why minimal guidance during instruction does not work:
An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching.
Educational psychologist 41, 2 (2006), 75–86.

[14] Stephan Krusche, Bernd Bruegge, Irina Camilleri, Kirill
Krinkin, Andreas Seitz, and Cecil Wöbker. 2017a.
Chaordic Learning: A Case Study. In 39th International
Conference on Software Engineering: Software
Engineering Education and Training. IEEE, 87–96.

[15] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS:
An Automatic Assessment Management System for
Interactive Learning. In 49th ACM Technical Symposium
on Computer Science Education (SIGCSE). 284–289.

[16] Stephan Krusche and Andreas Seitz. 2019. Increasing
the Interactivity in Software Engineering MOOCs - A
Case Study. In 52nd Hawaii International Conference
on System Sciences. 1–10.

[17] Stephan Krusche, Andreas Seitz, Jürgen Börstler, and
Bernd Bruegge. 2017b. Interactive learning: Increasing
student participation through shorter exercise cycles. In
19th Australasian Computing Education Conference.
ACM, 17–26.

[18] Stephan Krusche, Nadine von Frankenberg, and Sami
Afifi. 2017c. Experiences of a Software Engineering
Course based on Interactive Learning. In Tagungsband
des 15. Workshops Software Engineering im Unterricht
der Hochschulen (SEUH). CEUR, 32–40.

[19] Stephan Krusche, Nadine von Frankenberg, Lara Marie
Reimer, and Bernd Bruegge. 2020. An interactive
learning method to engage students in modeling. In
International Conference on Software Engineering:
Software Engineering Education and Training. 12–22.

[20] Vladimir I. Levenshtein. 1966. Binary Codes Capable of
Correcting Deletions, Insertions, and Reversals. Soviet
Physics-Doklady 10, 8 (1966), 707–710.

[21] Yang Li and Tao Yang. 2018. Word Embedding for
Understanding Natural Language: A Survey. Springer
International Publishing, Cham, 83–104.

[22] Leland McInnes and John Healy. 2017. Accelerated
Hierarchical Density Based Clustering. In International
Conference on Data Mining Workshops. 33–42.

[23] Tom Mitchell, Terry Russell, Peter Broomhead, and
Nicola Aldridge. 2002. Towards robust computerised
marking of free-text responses. (2002).

[24] Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics, Doha, Qatar, 1532–1543.

[25] Diana Perez, Alfio Gliozzo, Carlo Strapparava, Enrique
Alfonseca, Pilar Rodríguez, and Bernardo Magnini.
2005. Automatic Assessment of Students’ Free-Text
Answers Underpinned by the Combination of a
BLEU-Inspired Algorithm and Latent Semantic
Analysis. 358–363.

[26] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word
Representations. In Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies.
2227–2237.

[27] Karl Raimund Popper. 1972. Objective Knowledge.

[28] Juan Ramos. 2003. Using TF-IDF to Determine Word
Relevance in Document Queries. In 1st instructional
conference on machine learning, Vol. 242. Piscataway,
NJ, 133–142.

[29] Per Runeson, Martin Höst, Austen Rainer, and Björn
Regnell. 2012. Case Study Research in Software
Engineering. John Wiley & Sons, Inc.

[30] Arjun Singh, Sergey Karayev, Kevin Gutowski, and
Pieter Abbeel. 2017. Gradescope: A Fast, Flexible, and
Fair System for Scalable Assessment of Handwritten
Work. In 4th Conference on Learning @ Scale. ACM,
81–88.

[31] Jana Sukkarieh, Stephen G Pulman, and Nicholas
Raikes. 2003. Automarking: using computational
linguistics to score short‚ free-text responses. (2003).

[32] Reed Williams and Thomas Haladyna. 1982. Logical
Operations for Generating Intended Questions (LOGIQ):
A typology for higher level test items. A technology for
test-item writing (1982), 161–186.

[33] William E. Winkler. 1990. String Comparator Metrics
and Enhanced Decision Rules in the Fellegi-Sunter
Model of Record Linkage. In Section on Survey
Research. 354–359.

Appendix A

Licenses

Multiple publications published through IEEE, ACM, ScholarSpace, and CEUR are the
basis for this habilitation. The author of the habilitation requested permission to reuse
all publication material from the co-authors and the publishers via email. All co-authors
and publishers granted permission for reuse. In addition, students of supervised bachelor
and master theses permitted the reuse of content (e.g., text, figures, and tables) in this
habilitation.

227

A.1 IEEE

Permission grants have been retrieved from the IEEE Xplore Digital Library, as shown in
Figure A.1.

Home Help Email Support Sign in Create Account

© 2021 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink

Chaordic Learning: A Case Study
Conference Proceedings:
2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering
Education and Training Track (ICSE-SEET)

Author: Stephan Krusche

Publisher: IEEE

Date: May 2017

Copyright © 2017, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Figure A.1: IEEE permission grant for the publication [KBC+17].

228

A.2 ACM

Content of the ACM-published conference papers [KSBB17], [KS18], [KvFRB20] and
[BKKB21]) and journal article [KDXB18] is used in this habilitation based on ACM Au-
thor Rights, which are available on https://authors.acm.org/author-resources/author-rights.
The relevant paragraphs are the following:

REUSE
Authors can reuse any portion of their own work in a new work of their own (and no

fee is expected) as long as a citation and DOI pointer to the Version of Record in the
ACM Digital Library are included.

• Contributing complete papers to any edited collection of reprints for which the
author is not the editor, requires permission and usually a republication fee.

• Authors can include partial or complete papers of their own (and no fee
is expected) in a dissertation as long as citations and DOI pointers to the
Versions of Record in the ACM Digital Library are included. Authors can
use any portion of their own work in presentations and in the classroom (and no
fee is expected).

• Commercially produced course-packs that are sold to students require permission
and possibly a fee.

229

https://authors.acm.org/author-resources/author-rights

A.3 ScholarSpace

The paper [KS19] has been submitted to the Hawaii International Conference on System
Sciences (HICSS), which hosted a special track on Software Engineering Education and
Training (as part of the CSEE&T community1). HICSS published the proceedings on
ScholarSpace, an open-access, digital, and institutional repository for the University of
Hawaii at Manoa community2.

HICSS papers have been submitted with Creative Commons licenses (CC-BY-NC-
ND3). Authors own the copyright of their papers. They can disseminate the paper freely
after the conference has taken place.

1https://conferences.computer.org/cseet
2https://scholarspace.manoa.hawaii.edu.
3https://creativecommons.org/licenses/by-nc-nd/2.0/

230

https://conferences.computer.org/cseet
https://scholarspace.manoa.hawaii.edu
https://creativecommons.org/licenses/by-nc-nd/2.0/

A.4 CEUR

The workshop papers [KvFA17] and [LKvFB19] have been published on CEUR Workshop
Proceedings (CEUR-WS.org), a free open-access publication service at Sun SITE Central
Europe operated under the umbrella of RWTH Aachen University. CEUR-WS.org is a
recognized ISSN publication series More information can be obtained on http://ceur-ws.
org/HOWTOSUBMIT.html.

The relevant paragraphs are the following:

• The copyright and any similar right for the proceedings and all included material
remain with the papers’ authors/owners (for the individual papers).

• User rights are expressed by the license dedication of a volume and its contents.
New volumes after summer 2019 adopt the Creative Commons Attribution (CC-BY
4.0) license. Older volumes permit the use for private and academic purposes. See
the appropriate license dedication in the volume and/or the digital artefact/paper
in a volume.

• Re-publication of material published in CEUR-WS.org volumes requires the per-
mission by the copyright holders, i.e. to the paper’s authors.

• CEUR-WS.org provides published proceedings and papers as ’open access’. CEUR-
WS.org employs no access control.

231

http://ceur-ws.org/HOWTOSUBMIT.html
http://ceur-ws.org/HOWTOSUBMIT.html

List of Figures

2.1 Constructive alignment . 13

4.1 Interactive learning sprint . 28
4.2 Continuous interactive learning . 30
4.3 Example of three learning sprints in one lecture 30
4.4 Example of four learning sprints in one lecture 31
4.5 Mapping of exercises to cognitive skills 31
4.6 Interactive tasks . 32
4.7 Interactive UML diagram . 33

5.1 Simplified process for conducting programming exercises 36
5.2 Process of programming exercises with static code analysis 38
5.3 Integration of modeling exercises in Artemis 39
5.4 Pattern templates in the Apollon standalone modeling editor 40
5.5 Apollon standalone modeling editor . 41
5.6 Share functionality in Apollon . 41
5.7 Example of a short-answer question in Artemis 42
5.8 Example of a drag and drop question in Artemis 42
5.9 Example of a multiple-choice question in Artemis 43
5.10 Integrated text editor in Artemis . 44
5.11 Semi-automatic assessment workflow with multiple submissions 47
5.12 Assessment user interface in Artemis 48
5.13 Taxonomy of model elements in UML class diagrams 48
5.14 Example of two manual assessments and one proposed automatic assess-

ment . 49
5.15 Team workflow for programming exercises in Artemis 50
5.16 Modeling editor for teams . 51

232

5.17 Dialog for the team creation . 52
5.18 Team page . 52
5.19 Lecture units . 53
5.20 Model of lectures and learning goals . 54
5.21 Progress in learning goals . 54
5.22 Detailed progress page for one specific learning goal. 55
5.23 Exercise variants in the exam mode . 56
5.24 Automated plagiarism checks . 57
5.25 Top-level design of the architecture of Artemis 58
5.26 Artemis server architecture . 59
5.27 Deployment overview of Artemis . 60
5.28 Deployment overview with multiple server instances 61
5.29 Shared database usage with distributed cache 62
5.30 Database model . 63

6.1 Comparison of participation in a traditional and and interactive course . . 86
6.2 Correlation between exercise performance and average exam score 87
6.3 Comparison of the average score of five modeling assignments in two exams 91
6.4 Distribution of automatic and manual assessment for six exemplary text

and modeling exercises . 92

7.1 Microservice and micro frontend architecture overview 99

A.1 IEEE permission grant for publication 228

233

List of Tables

3.1 Overview of systems with automatic assessment functionalities 18

6.1 Courses with interactive learning used as case studies 66
6.2 Course schedule of EIST . 67
6.3 Phases of the team exercises in EIST 69
6.4 Course schedule of POM . 72
6.5 Phases of the team exercises in POM 74
6.6 Overview of the course content in PSE 75
6.7 Course schedule of SEECx . 77
6.8 Project work exercises in the sections of the SEECx course 79
6.9 Artemis courses at TUM . 81
6.10 Use of Artemis in universities and companies 82
6.11 Artemis courses at external universities 83
6.12 Overview of all exams on Artemis in the winter term 2019/20 (WS1920) 83
6.13 Overview of all exams on Artemis in the summer term 2020 (SS20) . . . 83
6.14 Overview of all exams on Artemis in the winter term 2020/21 (WS2021) 84
6.15 Exams in the University of Bonn . 84
6.16 Overview of the grades in the evaluations 85
6.17 Correlation details in the course POM 88
6.18 Correlation details in the course EIST 88
6.19 Correlation details in the course PSE 89
6.20 Statistical values of the correlation between exercise performance and

average exam score . 89
6.21 Statistical values of the t-tests of the EIST 2018 and EIST 2019 results . 91

8.1 Overview of the publications this habilitation is based on 100

234

Bibliography

[AB99] David Arnow and Oleg Barshay. Webtoteach: an interactive focused
programming exercise system. In 29th Annual Frontiers in Education
Conference, volume 1, pages 12A9–39. IEEE, 1999.

[ACF+13] Rondall E Allen, Jeffrey Copeland, Andrea S Franks, Reza Karimi, Mari-
anne McCollum, David J Riese, and Anne YF Lin. Team-based learning in
us colleges and schools of pharmacy. American journal of pharmaceutical
education, 77(6), 2013.

[AFR08] M. Amelung, P. Forbrig, and D. Rösner. Towards Generic and Flexible
Web Services for E-Assessment. SIGCSE Bulletin, pages 219–224, 2008.

[AHEAK+17] Carlos Alario-Hoyos, Iria Estévez-Ayres, Delgado Kloos, Raquel M Crespo-
García, Julio Villena-Román, and Jorge Ruiz-Magaña. Integration of ex-
ternal tools to foster learner interaction in moocs: The example of code-
board. In Proceedings of the International Conference MOOC-Maker,
pages 1–10, 2017.

[Ald77] Clayton Alderfer. Group and intergroup relations. Improving life at work,
227:296, 1977.

[ALSCiMP08] Benjamin Auffarth, Maite López-Sánchez, Jordi Campos i Miralles, and
Anna Puig. System for automated assistance in correction of program-
ming exercises (sac). In International Congress University Teaching and
Innovation, pages 104–113, 2008.

[AM05] K. Ala-Mutka. A Survey of Automated Assessment Approaches for Pro-
gramming Assignments. Computer Science Education, pages 83–102,
2005.

[Bal16] Ziad Balaa. Developing an exercise management system for e-learning.
In Sixth International Conference on Digital Information Processing and
Communications, pages 93–96. IEEE, 2016.

[BE91] Charles Bonwell and James Eison. Active Learning: Creating Excitement
in the Classroom. ASHE-ERIC Higher Education Reports, 1991.

[Bea10] Colin Beard. The experiential learning toolkit: Blending practice with
concepts. Kogan Page Publishers, 2010.

235

[BEF+56] Benjamin Bloom, Max Engelhart, Edward Furst, Walker Hill, and David
Krathwohl. Taxonomy of educational objectives: The classification of
educational goals. 1956.

[BF98] David Boud and Grahame Feletti. The challenge of problem-based learn-
ing. Psychology Press, 1998.

[BFPS17] Oliver Bott, Peter Fricke, Uta Priss, and Michael Striewe. Automatisierte
Bewertung in der Programmierausbildung. Waxmann, 2017.

[BGNM04] Michael Blumenstein, Steve Green, Ann Nguyen, and Vallipuram
Muthukkumarasamy. Game: A generic automated marking environment
for programming assessment. In International Conference on Information
Technology: Coding and Computing, volume 1, pages 212–216. IEEE,
2004.

[BHS17] Joachim Breitner, Martin Hecker, and Gregor Snelting. Der Grader Prak-
tomat. In Automatisierte Bewertung in der Programmierausbildung, num-
ber 10, pages 159–172. Waxmann, 2017.

[Big03] John Biggs. Aligning teaching and assessing to course objectives. Teach-
ing and learning in higher education: New trends and innovations, 2:13–
17, 2003.

[BK05] Christian Bauer and Gavin King. Hibernate in action, volume 1. Manning
Greenwich, 2005.

[BKA15] Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. Software en-
gineering project courses with industrial clients. ACM Transactions on
Computing Education, 15(4):17:1–17:31, 2015.

[BKB21] Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. A Machine
Learning Approach for Suggesting Feedback in Textual Exercises in Large
Courses. In Proceedings of the 8th Conference on Learning at Scale.
ACM, 2021.

[BKKB21] Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge.
Towards the Automation of Grading Textual Student Submissions to
Open-ended Questions. In Proceedings of the 4th European Conference
on Software Engineering Education, pages 61–70. ACM, 2021.

[BM04] Carolyn Birmingham and Mary McCord. Group process research: Impli-
cations for using learning groups. Team-based learning: A transformative
use of small groups in college teaching, pages 73–93, 2004.

[CBB18] Ricardo Conejo, Beatriz Barros, and Manuel Bertoa. Automated assess-
ment of complex programming tasks using siette. IEEE Transactions on
Learning Technologies, 12(4):470–484, 2018.

[CBH91] Allan Collins, John Seely Brown, and Ann Holum. Cognitive apprentice-
ship: Making thinking visible. American educator, 1991.

236

[CGM+04] Ricardo Conejo, Eduardo Guzmán, Eva Millán, Mónica Trella, José Luis
Pérez-De-La-Cruz, and Antonia Ríos. Siette: A web-based tool for adap-
tive testing. International Journal of Artificial Intelligence in Education,
14(1):29–61, 2004.

[CHCG14] Jennifer Campbell, Diane Horton, Michelle Craig, and Paul Gries. Eval-
uating an inverted cs1. In Proceedings of the 45th technical symposium
on Computer science education, pages 307–312. ACM, 2014.

[CKLO03] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. On au-
tomated grading of programming assignments in an academic institution.
Computers & Education, 41(2):121–131, 2003.

[Col92] Allan Collins. Toward a design science of education. In New directions in
educational technology, pages 15–22. Springer, 1992.

[Cra46] Harold Cramer. Mathematical methods of statistics. Princeton, 1946.

[Dal99] Charlie Daly. Roboprof and an introductory computer programming
course. SIGCSE Bulletin, 31(3):155–158, 1999.

[Dew38] John Dewey. Experience & Education. IBM, 1938.

[DGR+15] Guillaume Derval, Anthony Gego, Pierre Reinbold, Benjamin Frantzen,
and Peter Van Roy. Automatic grading of programming exercises in a
mooc using the inginious platform. European Stakeholder Summit on
experiences and best practices in and around MOOCs, pages 86–91, 2015.

[DJF09] Pierre Dillenbourg, Sanna Järvelä, and Frank Fischer. The evolution of
research on computer-supported collaborative learning. In Technology-
enhanced learning, pages 3–19. Springer, 2009.

[DLO05] C. Douce, D. Livingstone, and J. Orwell. Automatic Test-Based Assess-
ment of Programming: A Review. Journal on Education Resources in
Computing, 2005.

[dSMB11] Draylson Micael de Souza, José Carlos Maldonado, and Ellen Francine
Barbosa. An environment for the submission and evaluation of program-
ming assignments based on testing activities. Conference on Software
Engineering Education and Training, 2011.

[DSP10] Steffi Domagk, Ruth Schwartz, and Jan Plass. Interactivity in multimedia
learning: An integrated model. Computers in Human Behavior, 26(5),
2010.

[Edw03] S. Edwards. Improving student performance by evaluating how well stu-
dents test their own programs. Journal on Education Resources in Com-
puting, 2003.

237

[EFF+21] Christina Ehrlinger, Thomas Fritsch, Michael Fruth, Franz Lehner, and
Stefanie Scherzinger. Toolunterstützung für den Übungsbetrieb in der
datenbanklehre: Erfahrungen mit der software praktomat. Datenbank-
Spektrum, pages 1–8, 2021.

[EKN+11] Emma Enström, Gunnar Kreitz, Fredrik Niemelä, Pehr Söderman, and
Viggo Kann. Five years with kattis—using an automated assessment
system in teaching. In Frontiers in Education Conference. IEEE, 2011.

[FD84] Susan Brown Feichtner and Elaine Actis Davis. Why some groups fail:
A survey of students’ experiences with learning groups. Organizational
Behavior Teaching Review, 9(4):58–73, 1984.

[Fel11] Patrick Felicia. Handbook of research on improving learning and motiva-
tion through educational games: Multidisciplinary approaches: Multidis-
ciplinary approaches. iGi Global, 2011.

[FH+97] Stephen Fisher, Terri Hunter, et al. Team or group? managers’ percep-
tions of the differences. Journal of Managerial Psychology, 1997.

[FTHS99] Eric Foxley, A Tsintsifas, CA Higgins, and Pavlos Symeonidis. Ceilidh, a
system for the automatic evaluation of students programming work. In
Proceedings of CBLISS, 1999.

[Gar16] Robert Garmann. Graja-autobewerter für java-programme. Techni-
cal report, Hochschule Hannover, 2016. Retrieved May 16, 2021
from https://serwiss.bib.hs-hannover.de/frontdoor/deliver/index/docId/
941/file/BerichtGraja20160331.pdf.

[GB87] Thomas Good and Jere Brophy. Looking in classrooms. Harper & Row,
1987.

[GBSO17] Florian Grummel, Ayla Brettle, David Schuster, and Rainer Oechsle. Au-
tomatic evaluation of python applications. In Proceedings of the 3rd
Workshop Automatische Bewertung von Programmieraufgaben, 2017.

[GD95] Scott Grabinger and Joanna Dunlap. Rich environments for active learn-
ing: A definition. Research in learning Technology, 3(2), 1995.

[Gee20] Michael Geers. Micro Frontends in Action. Manning Publications, 2020.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Pearson, 1994.

[GHV+19] Daniel Galan, Ruben Heradio, Hector Vargas, Ismael Abad, and Jose
Cerrada. Automated assessment of computer programming practices:
The 8-years uned experience. IEEE Access, 7:130113–130119, 2019.

[GK04] Randy Garrison and Heather Kanuka. Blended learning: Uncovering its
transformative potential in higher education. The internet and higher
education, 2004.

238

https://serwiss.bib.hs-hannover.de/frontdoor/deliver/index/docId/941/file/BerichtGraja20160331.pdf
https://serwiss.bib.hs-hannover.de/frontdoor/deliver/index/docId/941/file/BerichtGraja20160331.pdf

[GMT+92] Anne Goodsell, Michelle Maher, Vincent Tinto, Barbara Leigh Smith,
and Jean MacGregor. Collaborative learning: A sourcebook for higher
education. 1992.

[GMTW13] F. Grünewald, C. Meinel, M. Totschnig, and C. Willems. Designing
MOOCs for the Support of Multiple Learning Styles. In European Confer-
ence on Technology Enhanced Learning, pages 371–382. Springer, 2013.

[GR10] Peter Goodyear and Symeon Retalis. Technology-enhanced learning: De-
sign Patterns and Pattern Languages. Sense Publishers, 2010.

[GTR+10] Eladio Gutiérrez, María A Trenas, Julián Ramos, Francisco Corbera, and
Sergio Romero. A new moodle module supporting automatic verifica-
tion of vhdl-based assignments. Computers & Education, 54(2):562–577,
2010.

[Gus17] Helmar Gust. Der Grader VEA. In Automatisierte Bewertung in der
Programmierausbildung, number 14, pages 225–239. Waxmann, 2017.

[Hec15] Sarah Heckman. An empirical study of in-class laboratories on student
learning of linear data structures. In Proceedings of the 11th annual
International Conference on International Computing Education Research,
pages 217–225. ACM, 2015.

[HGST05] Colin Higgins, Geoffrey Gray, Pavlos Symeonidis, and Athanasios Tsintsi-
fas. Automated assessment and experiences of teaching programming.
Journal on Educational Resources in Computing, 5(3), 2005.

[HM93] Juha Hyvönen and Lauri Malmi. Trakla-a system for teaching algorithms
using email and a graphical editor. In HYPERMEDIA, Vaasa, pages 141–
147. 1993.

[Hoa02] Christopher Hoadley. Creating context: Design-based research in creating
and understanding cscl. 2002.

[HR20] Jimmy Ming Hong and Preman Rajalingam. Geographic trends in team-
based learning (tbl) research and implementation in medical schools.
Health Professions Education, 6(1):47–60, 2020.

[HT07] John Hattie and Helen Timperley. The power of feedback. Review of
educational research, 77(1):81–112, 2007.

[HVVP21] Telle Hailikari, Viivi Virtanen, Marjo Vesalainen, and Liisa Postareff. Stu-
dent perspectives on how different elements of constructive alignment
support active learning. Active Learning in Higher Education, 2021.

[IAKS10] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Re-
view of Recent Systems for Automatic Assessment of Programming As-
signments. In Proceedings of the 10th Koli Calling Conference on Com-
puting Education Research, pages 86–93. ACM, 2010.

239

[IDDBI15] Lukas Iffländer, Alexander Dallmann, Philip Daniel-Beck, and Marianus
Ifland. Pabs - a programming assignment feedback system. In Proceed-
ings of the 2nd Workshop Automatische Bewertung von Programmier-
aufgaben, 2015.

[J+91] David Johnson et al. Cooperative Learning: Increasing College Faculty
Instructional Productivity. ASHE-ERIC Higher Education Report. ERIC,
1991.

[JBK06] Grace Johnson, Gordon Bruner, and Anand Kumar. Interactivity and its
facets revisited: Theory and empirical test. Journal of Advertising, 35(4),
2006.

[JF11] Wang Jing and Rui Fan. The research of hibernate cache technique and
application of EhCache component. In 3rd International Conference on
Communication Software and Networks, pages 160–162. IEEE, 2011.

[JG67] Edward Jones and Harold Gerard. Foundations of social psychology. 1967.

[JGB05] Mike Joy, Nathan Griffiths, and Russell Boyatt. The boss online sub-
mission and assessment system. Journal on Educational Resources in
Computing, 5(3), 2005.

[JJS91] David Johnson, Roger Johnson, and Karl Smith. Active learning: Coop-
eration in the college classroom. Interaction Book Company, 1991.

[JJWH06] Stavenga Jong, A Jan, Ronny Wierstra, and José Hermanussen. An ex-
ploration of the relationship between academic and experiential learning
approaches in vocational education. British Journal of Educational Psy-
chology, 76(1):155–169, 2006.

[JL99] Mike Joy and Michael Luck. Plagiarism in programming assignments.
IEEE Transactions on education, 42(2):129–133, 1999.

[Joh13] Mat Johns. Getting Started with Hazelcast. Packt Publishing, 2013.

[JU97] David Jackson and Michelle Usher. Grading student programs using as-
syst. In Proceedings of the twenty-eighth technical symposium on Com-
puter science education (SIGCSE), pages 335–339, 1997.

[KA14] Stephan Krusche and Lukas Alperowitz. Introduction of Continuous De-
livery in Multi-Customer Project Courses. In Companion Proceedings of
the 36th International Conference on Software Engineering, pages 335–
343. IEEE, 2014.

[KABW14] Stephan Krusche, Lukas Alperowitz, Bernd Bruegge, and Martin Wagner.
Rugby: An Agile Process Model Based on Continuous Delivery. In Pro-
ceedings of the 1st International Workshop on Rapid Continuous Software
Engineering, pages 42–50. ACM, 2014.

240

[KBB16] Stephan Krusche, Mjellma Berisha, and Bernd Bruegge. Teaching Code
Review Management using Branch Based Workflows. In Companion Pro-
ceedings of the 38th International Conference on Software Engineering.
IEEE, 2016.

[KBC+17] Stephan Krusche, Bernd Bruegge, Irina Camilleri, Kirill Krinkin, Andreas
Seitz, and Cecil Wöbker. Chaordic Learning: A Case Study. In 39th
International Conference on Software Engineering: Software Engineering
Education and Training, pages 87–96. IEEE, 2017.

[KDXB18] Stephan Krusche, Dora Dzvonyar, Han Xu, and Bernd Bruegge. Soft-
ware Theater—Teaching Demo-Oriented Prototyping. Transactions on
Computing Education (TOCE), 18(2):1–30, 2018.

[KFT+14] Barry Kurtz, James Fenwick, Rahman Tashakkori, Ahmad Esmail, and
Stephen Tate. Active learning during lecture using tablets. In Proceedings
of the 45th technical symposium on computer science education, pages
121–126. ACM, 2014.

[KHK+15] Ville Karavirta, Riku Haavisto, Erkki Kaila, Mikko-Jussi Laakso, Teemu
Rajala, and Tapio Salakoski. Interactive learning content for introductory
computer science course using the ville exercise framework. In Interna-
tional Conference on Learning and Teaching in Computing and Engineer-
ing, pages 9–16. IEEE, 2015.

[KKS+20] Angelika Kaplan, Jan Keim, Yves Schneider, Maximilian Walter, Dominik
Werle, Anne Koziolek, and Ralf H Reussner. Teaching programming at
scale. In Tagungsband des 17. Workshops Software Engineering im Un-
terricht der Hochschulen (SEUH), pages 2–6. CEUR, 2020.

[KMMI13] Aditi Kothiyal, Rwitajit Majumdar, Sahana Murthy, and Sridhar Iyer. Ef-
fect of think-pair-share in a large cs1 class: 83% sustained engagement.
In Proceedings of the 9th annual international conference on International
computing education research, pages 137–144. ACM, 2013.

[KMS03] Ari Korhonen, Lauri Malmi, and Panu Silvasti. Trakla2: a framework
for automatically assessed visual algorithm simulation exercises. In Pro-
ceedings of the 3rd Koli calling international conference on computing
education research, pages 48–56. University of Joensuu and University of
Helsinki, 2003.

[Kol84] David Kolb. Experiential learning: Experience as the source of learning
and development, volume 1. Prentice Hall, 1984.

[KP14] Adrian Kirkwood and Linda Price. Technology-enhanced learning and
teaching in higher education: what is ‘enhanced’and how do we know?
a critical literature review. Learning, media and technology, 39(1):6–36,
2014.

241

[Kra02] David Krathwohl. A revision of bloom’s taxonomy: An overview. Theory
into practice, 41(4):212–218, 2002.

[KRTB16] Stephan Krusche, Barbara Reichart, Paul Tolstoi, and Bernd Bruegge.
Experiences from an experiential learning course on games development.
In Proceedings of the 47th Technical Symposium on Computer Science
Education (SIGCSE), pages 582–587, 2016.

[KS18] Stephan Krusche and Andreas Seitz. ArTEMiS: An Automatic Assess-
ment Management System for Interactive Learning. In Proceedings of the
49th Technical Symposium on Computer Science Education (SIGCSE),
pages 284–289. ACM, 2018.

[KS19] Stephan Krusche and Andreas Seitz. Increasing the Interactivity in Soft-
ware Engineering MOOCs - A Case Study. In 52nd Hawaii International
Conference on System Sciences, pages 1–10, 2019.

[KSBB17] Stephan Krusche, Andreas Seitz, Jürgen Börstler, and Bernd Bruegge.
Interactive Learning: Increasing Student Participation Through Shorter
Exercise Cycles. In Proceedings of the 19th Australasian Computing Ed-
ucation Conference, pages 17–26. ACM, 2017.

[KSC06] Paul Kirschner, John Sweller, and Richard Clark. Why minimal guidance
during instruction does not work: An analysis of the failure of construc-
tivist, discovery, problem-based, experiential, and inquiry-based teaching.
Educational psychologist, 41(2):75–86, 2006.

[KSZ02] Jens Krinke, Maximilian Störzer, and Andreas Zeller. Web-basierte pro-
grammierpraktika mit praktomat. Softwaretechnik-Trends, 22(3):51–53,
2002.

[KvFA17] Stephan Krusche, Nadine von Frankenberg, and Sami Afifi. Experi-
ences of a Software Engineering Course based on Interactive Learning.
In Tagungsband des 15. Workshops Software Engineering im Unterricht
der Hochschulen (SEUH), pages 32–40. CEUR, 2017.

[KvFRB20] Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. An Interactive Learning Method to Engage Students in Mod-
eling. In Proceedings of the 42nd International Conference on Software
Engineering: Software Engineering Education and Training, pages 12–22.
ACM, 2020.

[LJ95] Michael Luck and Mike Joy. Automatic submission in an evolution-
ary approach to computer science teaching. Computers & Education,
25(3):105–111, 1995.

[LKLB16] Yang Li, Stephan Krusche, Christian Lescher, and Bernd Bruegge. Teach-
ing global software engineering by simulating a global project in the class-
room. In Proceedings of the 47th ACM Technical Symposium on Com-
puting Science Education, pages 187–192. ACM, 2016.

242

[LKvFB19] Christopher Laß, Stephan Krusche, Nadine von Frankenberg, and Bernd
Bruegge. Stager: Simplifying the Manual Assessment of Programming
Exercises. In Tagungsband des 16. Workshops Software Engineering im
Unterricht der Hochschulen (SEUH), pages 34–43. CEUR, 2019.

[LL12] Marjan Laal and Mozhgan Laal. Collaborative learning: what is it?
Procedia-Social and Behavioral Sciences, 31:491–495, 2012.

[LRJG09] Paul Lowry, Nicholas Romano, Jeffrey Jenkins, and Randy Guthrie. The
CMC interactivity model: How interactivity enhances communication
quality and process satisfaction in lean-media groups. Journal of Man-
agement Information Systems, 26(1):155–196, 2009.

[LS03] José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-
site programming contest system. Software: Practice and Experience,
33(6):567–581, 2003.

[Luc20] Naemi Luckner. Enabling Peer Review in Large University Courses. PhD
thesis, TU Wien, 2020.

[May05] Richard Mayer. The Cambridge handbook of multimedia learning. Cam-
bridge university press, 2005.

[MB97] Ference Marton and Shirley Booth. Learning and awareness. Psychology,
1997.

[MBP19] Matej Madeja, Miroslav Biňas, and Lukáš Prokein. Continuous analy-
sis of assignment evaluation results from automated testing platform in
iterative-style programming courses. In 17th International Conference
on Emerging eLearning Technologies and Applications, pages 486–492.
IEEE, 2019.

[Mic06] Joel Michael. Where’s the evidence that active learning works? Advances
in physiology education, 30(4):159–167, 2006.

[MPAC20] Evan Maicus, Matthew Peveler, Andrew Aikens, and Barbara Cutler. Au-
tograding interactive computer graphics applications. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education,
pages 1145–1151, 2020.

[MS08] Larry K Michaelsen and Michael Sweet. The essential elements of team-
based learning. New directions for teaching and learning, 2008(116):7–27,
2008.

[MS13] Oliver Müller and Sven Strickroth. Gate-ein system zur verbesserung der
programmierausbildung und zur unterstützung von tutoren. In Proceed-
ings of the 1st Workshop Automatische Bewertung von Programmierauf-
gaben, 2013.

243

[MSS+18] Till Massing, Nils Schwinning, Michael Striewe, Christoph Hanck, and
Michael Goedicke. E-assessment using variable-content exercises in math-
ematical statistics. Journal of Statistics Education, 26(3):174–189, 2018.

[Mul15] Ingrid Mulder. A pedagogical framework and a transdisciplinary design ap-
proach to innovate hci education. Interaction Design and Architecture(s)
Journal, (27):115–128, 2015.

[MWCDF82] Larry K Michaelsen, Warren Watson, John P Cragin, and L Dee Fink.
Team learning: A potential solution to the problems of large classes. Ex-
change: The organizational behavior teaching journal, 7(1):13–22, 1982.

[New15] Sam Newman. Building microservices: designing fine-grained systems.
O’Reilly, 2015.

[OKP17] Norbert Oster, Marius Kamp, and Michael Philippsen. Audoscore: Au-
tomatic grading of java or scala homework. In Proceedings of the 3rd
Workshop Automatische Bewertung von Programmieraufgaben, 2017.

[PL14] Peter Purgathofer and Naemi Luckner. Aurora-exploring social online
learning tools through design. In Proceedings of The Seventh Interna-
tional Conference on Advances in Computer-Human Interactions, 2014.

[PLVV13] Martin Pärtel, Matti Luukkainen, Arto Vihavainen, and Thomas Vikberg.
Test my code. International Journal of Technology Enhanced Learning,
5(3-4):271–283, 2013.

[PMP+02] Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. Finding plagia-
risms among a set of programs with jplag. Journal of Universal Computer
Science, 8(11):1016, 2002.

[PRC+17] Jordi Petit, Salvador Roura, Josep Carmona, Jordi Cortadella, Jordi Duch,
Omer Gimnez, Anaga Mani, Jan Mas, Enric Rodrguez-Carbonell, Enric
Rubio, et al. Jutge.org: Characteristics and experiences. Transactions on
Learning Technologies, 11(3):321–333, 2017.

[Pri04] Michael Prince. Does active learning work? a review of the research.
Journal of Engineering Education, 93(4):223–231, 2004.

[PTB+17] Matthew Peveler, Jeramey Tyler, Samuel Breese, Barbara Cutler, and
Ana Milanova. Submitty: An open source, highly-configurable platform
for grading of programming assignments. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education,
pages 641–641, 2017.

[QL12] R. Queirós and J. Leal. Programming Exercises Evaluation Systems – An
Interoperability Survey. In Conference on Computer Supported Education,
pages 83–90, 2012.

244

[Raf88] Sheizf Rafaeli. From new media to communication. Sage annual review
of communication research: Advancing communication science, 16:110–
134, 1988.

[Ram83] Arkalgud Ramaprasad. On the definition of feedback. Behavioral Science,
28(1):4–13, 1983.

[RHRR12] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case Study
Research in Software Engineering: Guidelines and Examples. Wiley Pub-
lishing, 1st edition, 2012.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Mod-
eling Language. Reference Manual. Addison Wesley, 1999.

[RSZ15] Rohaida Romli, Shahida Sulaiman, and Kamal Zuhairi Zamli. Improving
automated programming assessments: User experience evaluation using
fast-generator. Procedia Computer Science, 72:186–193, 2015.

[SBOG17] David Schuster, Ayla Brettle, Rainer Oechsle, and Florian Grummel. Au-
tomatic evaluation of javafx applications. In Proceedings of the 3rd Work-
shop Automatische Bewertung von Programmieraufgaben, 2017.

[SC85] John Sweller and Graham Cooper. The use of worked examples as a sub-
stitute for problem solving in learning algebra. Cognition and Instruction,
2(1):59–89, 1985.

[Sch95] Ken Schwaber. Scrum development process. In Proceedings of the OOP-
SLA Workshop on Business Object Design and Information, 1995.

[SH14] Tina Stavredes and Tiffany Herder. A guide to online course design:
Strategies for student success. John Wiley & Sons, 2014.

[Sha04] David Shaffer. Pedagogical praxis: The professions as models for postin-
dustrial education. Teachers College Record, 106(7):1401–1421, 2004.

[SHH10] Charles Severance, Ted Hanss, and Josepth Hardin. IMS learning tools
interoperability: Enabling a mash-up approach to teaching and learning
tools. Technology, Instruction, Cognition and Learning, 7(3-4):245–262,
2010.

[Shi12] Ruey Shieh. The impact of technology-enabled active learning (teal) im-
plementation on student learning and teachers’ teaching in a high school
context. Computers & Education, 59(2):206–214, 2012.

[SHLD16] Sumukh Sridhara, Brian Hou, Jeffrey Lu, and John DeNero. Fuzz testing
projects in massive courses. In Proceedings of the Third ACM Conference
on Learning at Scale, pages 361–367, 2016.

[SHP+06] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, . Hollingsworth, and
N. Padua-Perez. Experiences with Marmoset: Designing and Using an
Advanced Submission and Testing System for Programming Courses.
SIGCSE Bulletin, pages 13–17, 2006.

245

[SKGA17] Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter Abbeel. Grade-
scope: a fast, flexible, and fair system for scalable assessment of hand-
written work. In Proceedings of the fourth Conference on Learning at
Scale, pages 81–88, 2017.

[SKT+16] T. Staubitz, H. Klement, R. Teusner, J. Renz, and C. Meinel. Codeocean
- a versatile platform for practical programming exercises in online envi-
ronments. In Global Engineering Education Conference, pages 314–323,
2016.

[SL19] Arkendu Sen and Calvin K. C. Leong. Technology-Enhanced Learning,
pages 1–8. Springer International Publishing, 2019.

[Son05] Nishikant Sonwalkar. Adaptive learning technologies: From one-size-
fits-all to individualization. EDUCAUSE Center for Applied Research,
Research Bulletin, 2005.

[SOP11] Sven Strickroth, Hannes Olivier, and Niels Pinkwart. Das gate-system:
Qualitätssteigerung durch selbsttests für studenten bei der onlineabgabe
von Übungsaufgaben? In 9. E-Learning Fachtagung Informatik DELFI,
2011.

[SSLP12] Joachim Schramm, Sven Strickroth, Nguyen-Thinh Le, and Niels
Pinkwart. Teaching uml skills to novice programmers using a sample
solution based intelligent tutoring system. In FLAIRS Conference, 2012.

[Sta03] Robert Stake. Standards-based and responsive evaluation. Sage, 2003.

[Ste13] Sune Steffensen. Human interactivity: problem-solving, solution-probing
and verbal patterns in the wild. In Cognition beyond the brain, pages
195–221. 2013.

[SWA03] Saul Schleimer, Daniel Wilkerson, and Alex Aiken. Winnowing: local al-
gorithms for document fingerprinting. In Proceedings of the International
Conference on Management of Data, pages 76–85, 2003.

[SYK+13] Manabu Suno, Toshiko Yoshida, Toshihiro Koyama, Yoshito Zamami,
Tomoko Miyoshi, Takaaki Mizushima, and Mitsune Tanimoto. Effective-
ness of team-based learning (tbl) as a new teaching approach for pharma-
ceutical care education. Yakugaku zasshi: Journal of the Pharmaceutical
Society of Japan, 133(10):1127–1134, 2013.

[TGPS08] Guy Tremblay, F Guérin, A Pons, and Aziz Salah. Oto, a generic and
extensible tool for marking programming assignments. Software: Practice
and Experience, 38(3):307–333, 2008.

[Thi15] Dominique Thiébaut. Automatic evaluation of computer programs using
moodle’s virtual programming lab (vpl) plug-in. Journal of Computing
Sciences in Colleges, 30(6):145–151, 2015.

246

[TLL13] Sho-Huan Tung, Tsung-Te Lin, and Yen-Hung Lin. An exercise manage-
ment system for teaching programming. Journal of Software, 8(7):1718–
1725, 2013.

[TR93] Gregory Trafton and Brian Reiser. Studying examples and solving prob-
lems: Contributions to skill acquisition. Technical report, Naval HCI
Research Lab, 1993.

[VA02] Esa Vihtonen and Eugene Ageenko. Viope-computer supported environ-
ment for learning programming languages. In International Symposium
on Technologies of Information and Communication in Education for En-
gineering and Industry, pages 371–372. Citeseer, 2002.

[Van96] Kurt VanLehn. Cognitive skill acquisition. Annual Review of Psychology,
47:513–539, 1996.

[Ver98] Jan Vermunt. The regulation of constructive learning processes. British
journal of educational psychology, 68(2):149–171, 1998.

[VRV+12] Elena Verdú, Luisa M Regueras, María J Verdú, José P Leal, Juan P
de Castro, and Ricardo Queirós. A distributed system for learning pro-
gramming on-line. Computers & Education, 58(1):1–10, 2012.

[VSTK18] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and
Ferhat Khendek. Deploying microservice based applications with kuber-
netes: experiments and lessons learned. In 11th international conference
on cloud computing, pages 970–973. IEEE, 2018.

[VVLP13] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel.
Scaffolding students’ learning using test my code. In Proceedings of the
18th ACM conference on Innovation and technology in computer science
education, pages 117–122, 2013.

[Wal17] Johannes Waldmann. Generating and grading exercises on algorithms
and data structures automatically. In Proceedings of the 3rd Workshop
Automatische Bewertung von Programmieraufgaben, 2017.

[WBL06] Gita Williams, Richard Bialac, and Yi Liu. Using online self-assessment
in introductory programming classes. Journal of Computing Sciences in
Colleges, 22(2):115–122, 2006.

[Wes10] Wim Westera. Technology-enhanced learning: review and prospects.
Serdica Journal of Computing, 4(2):159–182, 2010.

[WH82] Reed Williams and Thomas Haladyna. Logical operations for generating
intended questions (logiq): A typology for higher level test items. A
technology for test-item writing, pages 161–186, 1982.

[Whi07] Jim Whitehead. Collaboration in software engineering: A roadmap.
FOSE, 7(2007):214–225, 2007.

247

[Win13] Daniel Wind. Instant Effective Caching with Ehcache. Packt Publishing,
2013.

[WKM93] Warren Watson, Kamalesh Kumar, and Larry Michaelsen. Cultural di-
versity’s impact on interaction process and performance: Comparing ho-
mogeneous and diverse task groups. Academy of management journal,
36(3):590–602, 1993.

[WSM+11] Tiantian Wang, Xiaohong Su, Peijun Ma, Yuying Wang, and Kuanquan
Wang. Ability-training-oriented automated assessment in introductory
programming course. Computers & Education, 56(1):220–226, 2011.

[Yac00] Michael Yacci. Interactivity demystified: A structural definition for dis-
tance education and intelligent CBT. Educational Technology, 40(4):5–
16, 2000.

248

	Introduction
	Objectives
	Research Process
	Outline

	Background
	Experiential Learning
	Active Learning
	Technology-enhanced Learning
	Team-based Learning
	Constructive Alignment

	Related Work
	Learning Approaches
	Automatic Assessment Systems

	Interactive Learning
	Interactivity
	Continuous Interactive Learning
	Examples

	Artemis
	Functionalities
	Programming Exercises
	Modeling Exercises
	Quiz Exercises
	Text Exercises
	Assessment
	Team Exercises
	Lectures
	Exam Mode

	System Architecture
	Top-Level Design
	Deployment
	Data Management

	Evaluation
	Case Studies
	Introduction to Software Engineering (EIST)
	Project Organization and Management (POM)
	Patterns in Software Engineering (PSE)
	Software Engineering Essentials (SEECx)
	Dissemination of Artemis

	Results
	H1: Scalability
	H2: Engagement
	H3: Learning Outcome
	H4: Grading Effort and Feedback Quality

	Threats to Validity

	Conclusion
	Contributions
	Future Work

	Publications
	Interactive Learning – Increasing Student Participation through Shorter Exercise Cycles
	Experiences of a Software Engineering Course based on Interactive Learning
	Chaordic Learning: A Case Study
	ArTEMiS - An Automatic Assessment Management System for Interactive Learning
	Software Theater—Teaching Demo-Oriented Prototyping
	Increasing the Interactivity in Software Engineering MOOCs - A Case Study
	Stager: Simplifying the Manual Assessment of Programming Exercises
	An Interactive Learning Method to Engage Students in Modeling
	Towards the Automation of Grading Textual Student Submissions to Open-ended Questions
	A Machine Learning Approach for Suggesting Feedback in Textual Exercises in Large Courses

	Licenses
	IEEE
	ACM
	ScholarSpace
	CEUR

	List of Figures
	List of Tables
	Bibliography

