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Abstract—The increasing popularity of cloud-native
approaches has led to their wide adoption in the
telecommunications industry. 5G Core Networks (5GCN)

are developed to take advantage of cloud-native design
principles, with a high degree of functional decomposition
and distributed deployment. This results in implications in
inter-Network Function (NF) dependencies that need to be
studied. This work focuses on investigating the effect that these
dependencies have in how the resources are utilized from the
5GCN NFs.

We consider a private cloud environment where a reference
5G Core implementation, namely Free5GC, is deployed and
orchestrated with Kubernetes. In addition, a gNB & UE Emulator
is developed to allow for the execution of different control plane
procedures. Our evaluations highlight the importance of catering
for the inter-NF dependencies in achieving efficient resource
utilization as well as avoiding deployments where a single NF
can bottleneck the entire SGCN.

Index Terms—S5G, Cloud-Native, VNF, Kubernetes

I. INTRODUCTION

Advancements in virtualization and softwarization technolo-
gies have enabled a paradigm shift in how mobile networks are
designed and operated. High service availability, cost efficient
operation and management, and on-demand service deploy-
ment are considered to be key aspects in developing future-
proof 5th Generation (5G) and beyond mobile communication
networks.

Following the trends in other information technology ser-
vices, cloud-native deployments have gained increasing popu-
larity in the field of telecommunications. Reasons for this be-
ing the high resiliency, high scalability and flexible orchestra-
tion that these environments offer. Therefore, mobile and wire-
less networks are leveraging cloud-native design approaches
and are increasingly deployed in cloud environments.

In this regard, the 5G Core Network (SGCN) is defined
as a Service-Based Architecture (SBA) [1]. Two key features
of SBA are the high degree of functional decomposition
and the distributed deployment of Network Functions (NFs).
Therefore, adopting SBA results in tight dependencies between
the NFs. Understanding these dependencies is a crucial task
in order to achieve efficient resource allocation, avoid poten-
tial bottlenecks, improve scalability and optimize the scaling
policies.

In light of this, in this work we investigate the inter-
NF dependencies within SGCN. For this, we orchestrate a
FreeSGC [2] deployment in a Kubernetes (K8s) [3] cluster and

‘— Data Control ‘

[AusF| [ uDm
Nausf Nudm

INSSF| | NEF | | NRF |
Nnssf Nnef Nnrf

Namf Nsmf Npcf Nuadr
[ AvF | | smF | | PCF | [ UDR

N4

N1 N2
T o}

N9

Fig. 1. 5G Core Service-Based Architecture. The dashed lines show control
plane interfaces while continuous lines show data plane connections. In SGCN
control plane, inter-NF communication is performed using SBIs.
evaluate the resource utilization and Procedure Completion
Times (PCTs) for Registration and Deregistration procedures
under different CPU resource allocation scenarios.

The remainder of this paper is structured as follows: Section
IT provides background information on 5G Core Networks
and the tools utilized in this work. Related work is presented
in Section III. Section IV describes the system set up for
the evaluations, while Section V summarizes the evaluation
results. Section VI concludes the paper.

II. BACKGROUND
A. 5G Core Architecture

After several years of specification work, a standardized
version of the 5G Mobile Core Architecture was introduced
by 3GPP in Release 15 [1]. With scalability, flexibility,
virtualization, and automation being the core principles, the 5G
Mobile Core Network brings together two important concepts:
i) Control and User Plane Separation (CUPS), and ii) Service-
Based Interfaces (SBIs).

The increased number and types of connected user de-
vices, and availability of high resource demanding applications
have caused scalability and flexible deployment issues in
the networks that feature integrated Control Plane (CP) and
User Plane (UP) functions. CP-UP splitting has thus been
introduced to address such issues firstly in the Evolved Packet
Core (EPC) architecture in 3GPP Release 14 [4] where the
Serving Gateway (SGW) and Packet Data Network Gateway
(PGW) entities were decomposed into their respective control
and user plane functions. Contrary to being an add-on feature
in EPC, 5G is built on — and therefore mandates the adoption
of — CUPS principles.



Simplification of inter-communication among Network
Functions (NFs) has been another key aspect that has been
tackled in SGCN via the adoption of SBI. Use of SBI together
with functional decomposition of the NFs has further evolved
the architecture to a Service-Based Architecture (SBA) (see
Fig. 1). In this concept, each NF exposes the set of services
that it provides via standardized Application Programming
Interfaces (APIs). These services can then be consumed by
the other NFs through the advertised SBIs. The inter-NF
communication therefore relies on the exposure and discovery
of the services which is done with the help of a separate entity
keeping registry for each service provided by NFs.

B. Free5GC

Being one of the first, well-maintained, and widely used
open-source implementations of the SGCN SBA, Free5SGC is
considered in this work. Free5GC conforms to 3GPP Release
15 while being continuously developed to comply with 3GPP
Release 16 [5] and beyond. Starting from v3.0.0, FreeSGC
offers a fully operational implementation of the Service-Based
5G Mobile Core. The NFs are developed as separate projects
and the available CP NFs include AMF, AUSF, NRF, NSSF,
PCF, SMF, UDM, and UDR, while a software implementation
of the UPF is also provided. Alongside the CP NFs, a
MongoDB [6] instance is deployed. This database is used to
store NF-related information after they register with the NRF,
as well as UE-related information such as authentication keys,
authentication status, policy data etc. All the NFs in FreeSGC
can be compiled and deployed separately, making it a suitable
candidate for evaluating the performance of distributed and
cloud-native deployments of the SGCN, as well as the inter-NF
communication. To make the deployment of FreeSGC easier
in Kubernetes environments, we have contributed to its source
code to enable the NFs to advertise Kubernetes Service IPs
when registering to NRF.

C. Kubernetes

As an open-source container orchestrator for cloud-native
applications, Kubernetes (K8s) is the most used framework
among public and private cloud operators for managing their
clusters. Typically, a K8s cluster consists of one Master node
and many Worker nodes. The Master has global view over the
cluster it manages and stores the state of each of the Workers
at all times. When new workload requests come from the
operator, the Master takes care of scheduling them into the
destination Workers. Flexible deployment of the workloads
inside the cluster is one of the key advantages of using a
container orchestrator such as K8s.

III. RELATED WORK

1) Cloud-Native Mobile Core: Following the design prin-
ciples of cloud-native solutions, works [7] and [8] propose
functionally decomposed architectures for the Mobility Man-
agement Entity (MME) in LTE networks. These microservice-
oriented designs are superior to their monolithic counterparts
with respect to resource efficiency, fault tolerance, scaling
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Fig. 2. System overview of our Free5GC deployment with Kubernetes.

and throughput. Authors in [9] propose a novel mobile core
network architecture suitable for deployments in hyper-scale
public clouds, promising higher availability than the consid-
ered telco solutions. Authors in [10] share their experience
with respect to the cloudification of mobile networks and
provide a comparison of the autoscaling mechanisms available
in two widely used cloud orchestrates, namely Kubernetes
and Mesos. In [11] the authors introduce Kube5SG, a service
platform for supporting cloud-native deployments of 4G/5G
networks.

2) SBA Evaluation: Authors in [12] provide a prototype
implementation of the 5G SBA using gRPC and propose a
load balancing scheme for distributing the CP load across
multiple NFs. In [13], a scaling mechanism based on Control
Theory is proposed for the AMF in order to maintain optimal
response times. However, the authors strictly focus on AMF
and do not consider any other NFs or the impact of inter-
NF communication. Lu et al. [14] propose an enhanced 5G
SBA design aiming to improve the inter-NF communication
by decoupling it from the business logic.

In comparison to state of the art, in this work we consider
the SGCN architecture as standardized in 3GPP Release 15
and focus on evaluating the inter-NF dependencies stemming
from its distributed deployment in a private cloud environment
orchestrated with Kubernetes. The control plane procedures
are considered independently and the evaluations of resource
utilization and latency are performed on a per-procedure basis.

IV. SYSTEM DESIGN
A. Framework overview

Fig. 2 offers an overview of the testbed deployed for the
purpose of carrying out the evaluation of the inter-NF depen-
dencies within SGCN. The goal is to provide an environment
similar to private cloud deployments, hence the selection of
Kubernetes for orchestrating the FreeSGC deployment. The
testbed consists of a cluster of 11 hardware nodes, each used
for one of the following purposes:

o K8s Master and Measurements Sink Node - As a K8s

master, it manages the cluster of K8s workers and orches-



trates the deployment of NFs. Furthermore, it hosts an
HTTP/REST server application that collects measurement
data obtained from the Emulator and NF nodes.

e 5GCN NF Node - Each control and user plane NF is
deployed in a separate worker node. This approach i)
avoids resource sharing between the NFs inside a single
node, and ii) provides comparable network latency for
NFs as the communication traverses the same network
infrastructure. For the second point to hold true, the nodes
are interconnected using a 1G switch, meaning that the
deployment is done in an isolated environment. Since our
5GCN setup consists of 9 NFs (see Sec. II-B), a total of
9 NF Nodes are deployed.

e gNB & UE Emulator Node - The emulator tool instances
are deployed in a separate node from the SGCN NFs for
the same reasons as explained above.

To ensure consistency throughout the evaluation process,
the K8s Worker Nodes cluster (where the NFs are deployed)
is homogeneous, consisting of DELL OptiPlex 9020 worksta-
tions equipped with an octa-core Intel i7-4770 CPU running
at 3.40GHz and 16GB of RAM. All the nodes run Ubuntu
18.04.4 LTS with kernel version 5.0.0-23-generic. Further-
more, all the nodes run Docker v19.03.12 and Kubernetes
v1.17.17. As for Free5SGC, we deploy v3.0.5.

B. gNB & UE Emulator.

The gNB and User Equipment (UE) emulator is a tool
developed within the scope of this project for the purpose of
evaluating the SGC deployment. It is implemented in Go lan-
guage and it allows the emulation of UE-related CP procedures
for an arbitrary number of UEs. Currently, the tool supports the
emulation of the following CP procedures: i) Registration, ii)
Deregistration, iii) PDU Session Establishment, and iv) PDU
Session Release.

The workflow of the emulation tool can be summarized in
5 steps, as follows:

1) The configuration file is parsed which defines the follow-

ing types of parameters:

o Emulation-specific parameters including the number of
UEs to be emulated, the CP procedure type etc.

e 5GCN-specific parameters such as AMF and database
IP addresses, Mobile Country Code (MCC), Mobile
Network Code (MNC), etc.

o UE-specific parameters such as ciphering and integrity
algorithms.

2) The UE contexts are prepared and unique International
Mobile Subscriber Identities (IMSIs) and authentication
keys are generated, as well as unique identifiers for each
UE within the gNB (RAN_UE_NGAP_ID) are assigned.

3) UE information is added to the database. This consists of
information related to Authentication, Access and Mobil-
ity, SMF Selection, etc. This information is necessary as it
is then queried by the SGCN NFs during CP procedures.

4) Sequential execution of the CP procedures is performed.
The execution is considered sequential because the emu-
lator handles the procedures only for one UE at a time.
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Fig. 3. Sequence diagram of the communication flows for the Registration
and Deregistration procedures.
5) After the execution of the procedures for all the UEs has
finished, Procedure Completion Times are reported to the
HTTP/REST server for post-processing.

Regarding the sequential execution of the emulation, it was
a design choice made due to an observed limitation of AMF
in Free5GC. Initially the emulator executed CP procedures
for many UEs simultaneously but with an increased degree of
parallelism we observed a buffer overflow in the SCTP sockets
as the AMF was unable to process all the incoming messages
at once. This eventually led to the crash of AMF. To mitigate
this problem without affecting the evaluation results, we scale
the input traffic by simultaneously spawning multiple emulator
instances with each of them executing CP procedures for one
UE at a time.

C. Control Plane Procedures

For the purpose of evaluation, in this work we consider
two of the most common procedures in 5G, namely Regis-
tration and Deregistration. Both these procedures are initi-
ated from the UE by sending a Registration_Request
and Deregistration_Request respectively. After that,
a series of inter-NF communication events is triggered within
5GCN, as illustrated in Fig. 3. Note that due to limited space,
the interactions with the database are not depicted in this
diagram. As mentioned in Section IV, the emulator is able to
execute PDU Session Establishment and PDU Session Release
as well. However, we observed that UPF was not able to
handle the increased number of simultaneous procedures being
emulated. Thus, they are left out of this work and will be
investigated in future work.

V. EVALUATION, RESULTS AND DISCUSSION
A. Evaluation Methodology

For the performance evaluation we consider two deployment
scenarios:
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Fig. 4. CPU utilization of SGCN NFs for Registration procedure for different
number of gNB & UE Emulators running in parallel.

o Scenario I: Baseline scenario where each NF has enough
resources allocated to avoid becoming a bottleneck. No
resource limitations are introduced during deployment
and the NFs can utilize all the resources of the nodes
that host them.

o Scenario II: A bottleneck is introduced by limiting the
available resources of a single NF, part of the Service
Function Chain (SFC) of the executed CP procedure.

Selected KPIs and their definitions are as follows:

o CPU Utilization - It is used for analyzing the CPU
profiles of each SGCN NF through the baseline scenario
and consequently for deducing the values for the resource
limitation in Scenario II. To measure the utilization of
each of the NFs, a Python script that collects data every
200ms is deployed in each node. As the NFs are deployed
in workstations with 8 CPU cores, the maximum possible
CPU utilization is 800%. At the end of the execution, the
measurements are reported to the Sink Node.

e Procedure Completion Time (PCT) - It is defined as the
time it takes for the CP procedure to complete. The PCTs
are measured from the emulator instances on a per-UE
granularity. For the Registration procedure it represents
the time from the moment RegistrationRequest is
sent, until RegistrationComplete is acknowledged
from AMF. For the Deregistration procedure it represents
the time from the moment DeregistrationRequest
is sent to AMF, until UEContextReleaseComplete
is acknowledged from AMF (see Fig. 3).

Since most of the NFs are stateless, we observed that they
showed a somewhat static memory usage; therefore, it is
not considered as a KPI in this work. Network I/O, on the
other hand, is an important KPI which can provide us useful
information on how the NF’s placement should be performed.
Thus, it will be investigated in future work.

The measurements are performed for four different config-
urations, with the number of emulator instances varying be-
tween [5, 10, 20, 30]. To cater for the effect the database’s size
in the evaluation process, the number of UEs is kept constant
at 4500 and they are distributed evenly among the spawned
emulator instances; e.g., 5 emulators with 900 UEs/emulator,
10 emulators with 450 UEs/emulator, etc. The number of these
emulator instances corresponds to the number of UEs being
served simultaneously.

Number of Emulators in parallel.

Fig. 5. Ratios of Average CPU Ultilization values for Registration procedure
w.r.t. the number of gNB & UE Emulators running in parallel.

B. CPU Utilization Profiles

As illustrated in the sequence diagrams in Fig. 3, different
CP procedures trigger different NFs. This can be seen also
from the CPU utilization profiles shown in Fig. 4 and Fig. 6 for
the Registration and Deregistration procedures respectively.
As MongoDB utilization quickly reaches ~ 600% (see Fig.
4), we do not further scale the input traffic in order to avoid
scenarios where MongoDB would become a bottleneck. As the
CP procedures have different computational demands, these
profiles differ not only in terms of the involved SFCs but also
on the resource utilization of individual NFs.

To serve the Registration procedure, a big SFC is triggered
inside SGCN, with NRF and AMF being the most critical NFs.
Fig. 4 shows that the increased number of simultaneously-
served UEs results in increased CPU utilization of the NFs.
Furthermore, due to the tight inter-NF dependencies, the CPU
Utilization profiles seem to follow the same trend among the
different configurations. To better illustrate this, we refer to
Fig. 5 where the ratios of the average CPU utilization of
the NFs for the Registration procedure are shown. AUSF and
PCF are not considered in this plot because their utilization is
low and small fluctuations can lead to inaccurate observations.
Therefore, we consider UDM as the baseline to calculate the
ratios. We observe from the plot that there are only small
fluctuations of the ratios as we scale the number of UEs being
served in parallel, thus confirming that the SGCN NFs are
tightly coupled. For this reason, we argue that when orches-
trating cloud-native deployments of SGCN, the SFC should be
considered together, rather than orchestrating separate NFs.

Similarly, we refer to Fig. 6 which illustrates the CPU uti-
lization profiles for the Deregistration procedure. Comparing
the measurements with Fig. 4, we see that the Deregistra-
tion procedure triggers a smaller and less-demanding SFC
resource-wise. Nonetheless, while the input traffic is scaled up
by deploying more emulators in parallel, the inter-NF utiliza-
tion ratios are maintained, as shown in Fig. 7. If we compare
these ratios with the ones in Fig. 5, we see that there are
differences between ratios of the same NFs, e.g. AMF/UDM is
~1.6 for Registration and ~2.2 for Deregistration. Therefore,
we argue that the orchestration of cloud-native deployments
would benefit from a per-procedure SFC orchestration of the
5GCN. In such scenarios, SGCN can be deployed as a set
of SFCs, each of which would handle only one type of CP
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Fig. 7. Ratios of Average CPU Utilization values for Deregistration procedure
w.r.t the number of gNB & UE Emulators running in parallel.

procedure. The resource allocation can then be done based
on the requirements of the procedure they serve. This way we
can obtain more granularity when allocating the resources and
avoid single-NF bottlenecks within the SFCs.

C. Impact of a Bottlenecked NF

Since the NFs demonstrated a highly correlated CPU utiliza-
tion, we evaluated the impact that a single bottlenecked NF can
have on the performance. Therefore, we artificially introduce
a bottleneck by limiting the available CPU resources of one
NF. Fig. 8 shows how the PCTs for Registration procedure
change for two different deployments, where: i) no bottleneck
in introduced in the network, and ii) UDM’s CPU resources
are limited to 1 core. This limit corresponds to the average
utilization value observed during the execution of Registration
procedure with 10 emulators deployed in parallel. We observe
that by limiting the resources of a single NF we can bottleneck
the entire SGCN and considerably degrade its performance,
while also leading to inefficient resource utilization as the
other NFs cannot take advantage of their available resources.
The above scenario can be avoided if the inter-NF resource
utilization ratios are taken into consideration during the re-
source allocation process. Measurements were performed also
for configurations where other NFs were limited but due to
space limitations they are left out of this work. However, the
same behavior as in Fig. 8 was observed.

VI. CONCLUSION AND FUTURE WORK

The focus of this work is the investigation of inter-
NF dependencies in SGCN resulting from the adoption of
SBA. For this we consider a private cloud deployment of
Free5GC, orchestrated with Kubernetes. For the purpose of
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Fig. 8. Comparison of PCTs for Registration procedure for scenarios where: i)
no limitation of resources is performed during deployment, and ii) UDM CPU
resources are limited to 1000m (1 Core). This limitation causes a bottleneck
in the 5GCN leading to decreased performance and increased PCTs.

evaluating the deployment, a gNB & UE Emulator able to
execute different control plane procedures was developed. In
the evaluated control plane procedures, we observed a very
high correlation in resource utilization between the NFs that
took part. Furthermore, we showed that incorrect resource
allocation can lead to any NF becoming a bottleneck, and
consequently degrading the performance of SGCN as a whole.
As a future work, we aim to tackle these problems by
developing mechanisms that deploy and orchestrate SGCN on
a per-procedure basis. Moreover, we will evaluate SFC scaling
mechanisms that try to address inter-NF dependencies and
compare them with baseline NF scaling implementations.
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