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Summary 

The production and sale of agricultural goods undergo intense global competition. To 

alleviate the price pressure resulting from heightened competition, farmers are encouraged to 

allocate existing resources as optimally as possible. By doing so, they act in accordance with 

the entrepreneurial goal of profit maximization. In daily business, this often involves 

decisions that need to be made at the production level. The question arises as to what level of 

intensity and with which combination of production factors a certain output should be 

targeted. In crop production, this question applies to fertilization, among other things. With 

the large share of the variable costs of crop production, this area certainly holds high potential 

for optimization. Therefore, farmers and consultants constantly seek farm-specific and cost-

efficient fertilization strategies. “Fertilizer strategy” refers to the selection of a fertilizer and 

its temporal and quantitative placements within a crop rotation. To achieve a cost-efficient 

fertilizer strategy, additional aspects must be considered simultaneously: (i) the optimal 

intensity of all relevant nutrients, (ii) the cost-minimal selection of fertilizers, and (iii) the 

application costs. Due to continuous changes in the initial situation (e.g., price changes), the 

outlined optimization problem may not be optimally solvable without assistance. 

In relation to this problem, this dissertation seeks to identify cost-efficient fertilizer strategies 

at the farm level. Four independent studies, which are embedded in the fundamentals of 

production theory and operations research, take up this question and deal with the 

development and evaluation of a decision support system. 

In the first study, different possibilities are investigated and evaluated to appropriately 

implement application costs into a mathematical system, with the aim of achieving the 

economic optimization of fertilizer strategies. Special attention is given to individual on-farm 

infrastructure. In the first approach, the optimal routing is conducted by solving the 

underlying split delivery vehicle routing problem. A regression function, which was derived 

from this problem, was estimated to determine the transportation time. Then, the influence on 

the selection of fertilization strategies was investigated for both options and a scenario in 

which transportation costs were completely ignored. The results show that the derived 

regression function for estimating individual transport costs is preferable in terms of 

reliability and computational power. 

The second study embeds the overarching question of the cost-efficient fertilizer strategy in 

the associated production theory. This study follows the approach of operations research all 

the way to the final developed decision support system called “IoFarm.” Considering the 
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application-oriented literature, a nonformal model was developed and subsequently 

transformed into a mathematical optimization model. Compared to the participants of a 

fertilization experiment, IoFarm shows an average cost advantage of €66 per hectare, with the 

same fertilization intensity. 

Study three investigates the agronomic effects resulting from a cost-efficient fertilization 

strategy. For this purpose, a field trial was set up at three locations in Bavaria (Southern 

Germany) over several years, after which the fertilization strategy of IoFram was compared 

with a site-typical fertilization strategy. The statistical analysis did not reveal any significant 

differences in yield and quality. 

Study four first focuses on identifying the differences between cost-efficient and inefficient 

fertilization strategies. For this purpose, the data from the aforementioned experiment were 

statistically analyzed. Results show that the largest influence on the design of the fertilizer 

strategy can be attributed to the relative price differences of the fertilizers. Thus, other 

differences that have been identified are not meaningful to derive general recommendations. 

In the second part, using IoFarm as a simulation model under changed farm conditions, farm-

level influencing factors are investigated according to the ceteris paribus principle. Results 

clearly reveal that that the influence of the on-farm infrastructure on the optimal fertilization 

strategy is relatively small. 

This dissertation contributes to the optimization of fertilization strategies at the farm level. 

Optimal strategies increase profits and save management time, which are particularly relevant 

for farmers and consultants. This work provides an important and new contribution to the 

understanding of cost-efficient fertilization strategies at the farm level from a scientific 

perspective. By modifying the objective function of IoFarm, climate-friendly fertilizer 

strategies can also be particularly identified. As a result, an important contribution to society 

can be achieved. 
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Zusammenfassung 

Landwirtschaftliche Güter stehen in einem globalen Wettbewerb. Der daraus resultierende 

Preisdruck, aber auch das unternehmerische Ziel der Profitmaximierung, treiben Landwirte 

dazu an vorhandene Ressourcen möglichst optimal zu nutzen. Im Tagesgeschäft geht es dabei 

häufig um Entscheidungen die auf Ebene der Produktionsverfahren zu treffen sind. Es stellt 

sich regelmäßig die Frage mit welcher Intensität und mit welcher Kombination an 

Produktionsfaktoren ein bestimmter Output anzustreben ist. In der Pflanzenproduktion trifft 

diese Fragestellung unter anderem auf die Düngung zu. Mit einem großen Anteil an den 

variablen Kosten der Pflanzenproduktion birgt dieser Bereich durchaus hohes 

Optimierungspotential. Landwirte und Berater stellen sich daher mehrmals pro Saison die 

Frage nach der betriebsindividuellen, kosteneffizienten Düngestrategie. Unter Düngestrategie 

ist die Auswahl eines Düngemittels, als auch dessen zeitliche und mengenmäßige Platzierung 

innerhalb einer Fruchtfolge zu verstehen. Damit daraus eine kosteneffiziente Düngestrategie 

wird, sind zusätzliche Aspekte simultan zu beachten: (i) optimale Intensität sämtlicher 

relevanter Nährstoffe; (ii) kostenminimale Auswahl der Düngemittel; (iii) Berücksichtigung 

von Ausbringkosten. Aufgrund andauernder Veränderungen der Ausgangssituation, z.B. 

durch Preisveränderungen, ist das skizzierte Optimierungsproblem ohne Hilfsmittel 

vermutlich nicht optimal lösbar. 

Diese Dissertation beschäftigt sich mit der Suche nach der kosteneffizienten Düngestrategie 

auf Ebene des landwirtschaftlichen Betriebes. Vier eigenständige Studien, eingebettet in die 

Grundlagen der Produktionstheorie, als auch des Operations Research, greifen diese 

Fragestellung auf und befassen sich mit der Entwicklung und Evaluierung eines 

Entscheidungshilfesystems. 

In der ersten Studie werden unterschiedliche Möglichkeiten gesucht und evaluiert, mit denen 

sich Ausbringkosten angemessen in ein mathematisches System zur ökonomischen 

Optimierung von Düngestrategien implementieren lassen. Besondere Beachtung verdient die 

individuelle innerbetriebliche Infrastruktur. Die Identifikation der optimalen Routenführung 

erfolgt durch Lösung des zugrundeliegenden Split-Delivery Vehicle Routing Problem. 

Abgeleitet davon, konnte eine Regressionsfunktion zur Bestimmung der Transportzeit 

geschätzt werden. Für beide Möglichkeiten, als auch für ein Szenario in dem Transportkosten 

gänzlich ignoriert werden, wird der Einfluss auf die Auswahl von Düngestrategien untersucht. 

Die Ergebnisse zeigen, dass die abgeleitete Regressionsfunktion zur Abschätzung 
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individueller Transportkosten mit Blick auf Zuverlässigkeit und Rechenleistung vorzuziehen 

ist. 

Die zweite Studie bettet die übergeordnete Frage nach der kosteneffizienten Düngestrategie in 

die dazugehörige Produktionstheorie ein und folgt der Vorgehensweise des Operations 

Research bis hin zum fertig entwickelten Entscheidungshilfesystem IoFarm. Auf Basis 

anwendungsorientierter Fachliteratur wird ein non-formales Model entwickelt und 

anschließend in ein mathematisches Optimierungsmodell überführt. Im Vergleich mit 

Teilnehmern eines Dünge-Experiments zeigen sich für IoFarm im Mittel Kostenvorteile von 

66 € pro Hektar, bei gleicher Düngeintensität. 

Studie drei geht der Frage agronomischer Auswirkungen nach, die sich möglicherweise durch 

eine kosteneffiziente Düngestrategie ergeben. Hierzu wurde an drei Standorten in Bayern 

(Süddeutschland) ein mehrjähriger Feldversuch angelegt in welchem die Düngestrategie von 

IoFarm mit einer standorttypischen Düngestrategie verglichen wurde. Die statistische 

Auswertung konnte keine signifikanten Ertrags- und Qualitätsunterschiede feststellen. 

Studie vier konzentriert sich zuerst auf die Identifikation von Unterschieden zwischen 

kosteneffizienten und inneffizienten Düngestrategien. Hierzu werden die Daten aus dem 

bereits genannten Experiment statistisch analysiert. Der größte Einfluss auf die Ausgestaltung 

der Düngestrategie ist auf relative Preisunterschiede der Düngemittel zurückzuführen. Davon 

werden andere Unterschiede, die ebenfalls identifiziert wurden überschattet und eignen sich 

nur eingeschränkt um generelle Handlungsempfehlung abzuleiten. Im zweiten Teil werden 

betriebliche Einflussfaktoren nach dem ceteris paribus Prinzip untersucht, in dem IoFarm als 

Simulationsmodell unter veränderten betrieblichen Gegebenheiten eingesetzt wird. Dabei 

wird klar, dass der Einfluss der innerbetrieblichen Infrastruktur auf die optimale 

Düngestrategie gering ausfällt. 

Diese Dissertation leistet einen Beitrag um Düngestrategien auf Betriebsebene zu optimieren. 

Dadurch werden Gewinne gesteigert und Managementzeit eingespart, was besonders hohe 

Relevanz für Landwirte und Berater hat. Aus wissenschaftlicher Sicht leistet diese Arbeit 

einen wichtigen und neuen Beitrag zum Verständnis kosteneffizienter Düngestrategien auf 

Betriebsebene. Durch Modifikation der Zielfunktion von IoFarm lassen sich auch besonders 

klimafreundliche Düngestrategien identifizieren. Auf diesem Weg kann zusätzlich ein 

wichtiger gesellschaftlicher Beitrag erzielt werden. 
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1 Introduction 

This work seeks to identify cost-efficient fertilization strategies at the farm level. Since 

prehistorical times and early history, this question has already been considered by mankind. 

At the beginning of this chapter, the history of fertilization from the early times all the way to 

the current research fields is discussed. Then, the research problem, its relevance, the aims of 

this study, and the structure of this thesis will be presented in more detail. 

1.1 An ongoing story: The optimization of fertilization  

Mankind has been engaged in fertilizing crops for thousands of years. Bielecke (1934, p. 7) 

dates the first purposeful fertilization measures back to 5000 BC or earlier. At that time, 

fertile land was obtained using slash-and-burn technique and used for three to four years. 

Albrecht Conrad Thaer (1881) reported that, in 3000 BC, organic fertilizers were used to 

increase yields in Egypt, which can also be proven by archaeological findings (Widmann, 

2007, p. 157). Once the yield-increasing effect of fertilization was recognized, scientists 

began to unravel the mystery behind it and set out to find what we know today as nutrients. 

Around 350 BC, Aristotle proposed the “humus theory” in which he assumed that plants feed 

on substances that are similar to them. This theory was taken up again and expanded by 

Albrecht Daniel Thaer in 1809 (Bielecke, 1934). 

Previous research on fertilization was based on practical experience. It was not until the 

introduction of the mineral theory of Carl Sprengel (1828) that fertilization began to be 

examined from a scientific perspective. Sprengel revolutionized humus theory and found that 

minerals were needed for plant nutrition. In his publication in 1828, he also wrote the 

following: 

“...denn es ist nicht zu bestreiten, wenn eine Pflanze 12 Stoffe zu ihrer Ausbildung 

bedarf, so wird sie nimmer aufkommen, wenn nur ein einziger an dieser Zahl fehlt, 

und stets kümmerlich wird sie wachsen, wenn einer derselben nicht in derjenigen 

Menge vorhanden ist, als es die Natur der Pflanze erheischt”
1
 

Later (1855), building on the same findings, Justus von Liebig formulated the “Law of the 

Minimum,” which laid down the foundation for the linear-limitational production function 

                                                 
1
 “… if a plant needs 12 nutrients for growth, it is undeniable that it will not grow if one of them is missing and 

grow poorly if only one of these nutrients is not present in sufficient quantity.” (translation by the author) 
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still being used today. Justus von Liebig (1843) also provided the first comprehensive concept 

on mineral plant nutrition, stating that: 

“Als Prinzip des Ackerbaus muss angesehen werden, dass der Boden in vollem Maße 

wiedererhalten muss, was ihm genommen wurde; in welcher Form dies Wiedergeben 

geschieht, ob in der Form von Exkrementen, oder von Asche oder Knochen, dieses ist 

wohl ziemlich gleichgültig. Es wird eine Zeit kommen, wo man den Acker, wo man 

jede Pflanze, die man darauf erzielen will, mit dem ihr zukommenden Dünger 

versieht, den man in chemischen Fabriken bereitet. ”
2
 

After discovering which substances could be used for plant nutrition, Europe began to import 

sodium nitrate (Chile saltpeter) and Guano. Gradually, other fertilizers were developed and 

industrially produced, such as superphosphate (1843), various potash fertilizers from mining 

(1860), the first artificially produced nitrogen fertilizers (1890), and ammonia synthesis 

(Haber, 1908) with the Haber-Bosch process up to the first NPK compound fertilizer (1927).  

Parallel to the development and production of fertilizers, research on their use was pushed 

forward. Hence, around the same time, the first research institutes were founded in Europe. Of 

particular importance was the “law of action of growth factors” formulated by Mitscherlich 

(1909), who found that yield growth declined with increasing fertilizer intensity. Such a 

discovery inevitably raised the question of the economically optimal fertilization intensity. 

Thus, Mitscherlich triggered a worldwide interest in researching agricultural yield functions.  

However, it was only after the end of World War II that intensive use of fertilizers in 

agriculture began (Finck, 1991). Initially, the desired success did not always occur. The 

importance of secondary and trace nutrients, along with soil reaction, had not yet been 

established in practice or had to be investigated in greater detail. Despite this approximately 

7000-year history of fertilization, numerous fields of research are still being identified and 

studied currently. 

One of these research areas deals with basic agronomic issues related to the application of 

fertilizers. For example, Vilsmeier and Amberger (1980) investigated the conversion of 

various forms of nitrogen in the soil. Today, the slow-release nitrogen fertilizers or 

nitrification inhibitors play an increasingly important role in the field of agriculture, as 

evidenced by numerous papers (Chen et al., 2015; Mi et al., 2019; Ni et al., 2014; Noellsch et 

                                                 
2
 “It must be regarded as a principle of agriculture that the soil must receive back to the full extent what has 

been taken from it; in which form this restitution takes place, whether in the form of excrements, or of ashes 
or bones, is probably quite irrelevant. There will be a time when the field and the plants grown on it will be 
provided with fertilizer produced in chemical factories.” (translation by the author) 
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al., 2009; Herbst et al., 2006; Zerulla et al., 2001). In this context, it is also worth mentioning 

the research on the Cultan fertilization (Sedlář et al., 2011; Kozlovský et al., 2009). Other 

studies in this field include those on gaseous conversion losses associated with nitrogen 

fertilization (Vinzent et al., 2018; Kreuter et al., 2014; Sommer and Jensen, 1994), plant 

growth models, and models used to estimate biophysical and biochemical processes in soil, 

among others. The application of these models aims to optimize farm management, and 

although the specific objectives vary, they share similar primary objectives in terms of yields 

and environmental impacts of crop production. 

A crop growth model that has become popular in recent years is the decision support system 

for agro technology transfer (DSSAT) (Jame and Cutforth, 1996). It has been adapted in 

numerous studies to investigate the impacts of fertilization on yield (Araya et al., 2019; 

Übelhör et al., 2015). Mandrini et al. (2021) used the simulation model called “Agricultural 

Production Systems sIMulator” (Holzworth et al., 2014) as part of their study on optimal 

nitrogen management in corn production. Other models, such as “Model for Nitrogen and 

Carbon in Agro-ecosystems” (MONICA) (Nendel, 2014), “DAISY” (Abrahamsen and 

Hansen, 2000), “Water and Agrochemicals in the soil, crop and Vadose Environment” 

(WAVE) (Vanclooster et al., 1996), or “HERMES” (Kersebaum, 1989), are mainly used to 

represent the complex nitrogen dynamics in the soil as accurately as possible in order to 

investigate various influencing factors found in the environment. In the context of nitrogen 

fertilization, nitrate leaching has been frequently addressed in several publications (Heumann 

et al., 2013, p. 399; Zhou and Butterbach-Bahl, 2014; Anger et al., 2002; Büchert et al., 

2001). 

Another major area of research, to which this dissertation also contributes, studies the 

microeconomic optimization of fertilization at the farm level. The optimal intensity of 

fertilization remains a relevant question in the current literature (Sihvonen et al., 2018; Xu et 

al., 2017; Chuan et al., 2013; Rajsic and Weersink, 2008), even though it has become a 

persistent concern for many decades (Kling, 1985; Baule, 1954; Mitscherlich, 1909). Other 

authors, meanwhile, have focused on the least-cost combination of fertilizers. For instance, 

Babcock (1984) developed a linear optimization model for creating least-cost blended 

fertilizers, while Mínguez et al. (1988) used goal programming for least-cost fertilizer 

combinations in sugar beet cultivation. In more recent studies, decision support systems have 

been developed to cover not only the subsections of a farm but rather provide whole-farm 

fertilizer strategies based on the principle of least-cost combination. These include FertiliCalc 

(Villalobos et al., 2020), Fertilizer Optimizer (Jansen et al., 2013), Smart Fertilizer (Smart 
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Fertilizer Management), Ecofert (Bueno-Delgado et al., 2016), and Optifer, (Pagán et al., 

2015). 

Another important research area is the technology of fertilizer application. Studies have also 

introduced the possibility of variable-rate fertilization using application maps or via real-time 

sensor data or remote sensing. Many authors have made relevant contributions to the 

development and advancement of this technology (Cummings et al., 2021; Lu et al., 2019; 

Fitzgerald et al., 2010). Meanwhile, other authors reported on the applicability or utility to 

practice (Guerrero et al., 2021; Evangelou et al., 2020; Stamatiadis et al., 2018). In some 

cases, they do so from specific economic perspectives (Scharf et al., 2011; Koch et al., 2004; 

Smit et al., 2000). 

This overview shows the enormous range in which the topic of “fertilization” has been and is 

still being dealt with from an agricultural perspective. The following section outlines the open 

questions addressed by this dissertation and the overall relevance of the underlying topic. 

1.2 Relevance of the topic and open questions to continue the “story” 

Currently, agricultural goods are traded on a large scale worldwide, resulting in a strong 

competition and cost pressure due to the high degree of substitutability and the large number 

of producers. Related to this, farmers are forced to constantly adapt and improve their 

production systems. Essentially, the aim is to optimally allocate readily available production 

factors to ultimately achieve the entrepreneurial goal of profit maximization. In the medium 

term, this also affects the production program. In the short term, however, the focus is on the 

optimum factor input quantity and the least-cost combination of substitutable inputs. In this 

respect, the issue of fertilization is highly relevant for farmers. In many cases, fertilization 

accounts for a considerable proportion of production costs while also determining the yield 

and the quality of products. In Bavaria (Southern Germany), fertilization costs accounted for 

29% of the variable production costs of winter wheat in 2019 (Schätzl et al., 2019). This high 

share clearly emphasizes the economic importance of having an optimal fertilizer strategy. 

At the same time, changing environmental conditions and dynamic changes in input and 

output prices mean that fertilizer strategies must be constantly re-evaluated. For this reason, 

almost all farmers in the world would regularly ask themselves whether, how, and in what 

form the supply of nutrients to crops can be ensured. However, behind this question lies a 

very complex optimization problem, simultaneously searching for the optimal intensity of 

nutrient input (of all relevant nutrients) as well as the least-cost combination of the fertilizers 
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available for this purpose. Numerous external influencing factors and supplementary 

requirements can drastically exacerbate the complexity. These include, among others, crop, 

legal and operational requirements for fertilization, field-specific transport costs, volatile 

prices, changing environmental conditions, various available single and compound fertilizers, 

and the storage function of the soil and the associated flexibility to place nutrients, in some 

cases completely freely, within the crop rotation. Furthermore, it can be safely assumed that 

the complexity of this optimization problem (Figure 1-1) exceeds the cognitive abilities of a 

human decision maker. 

• Determination of 

fertilization dates (effects 

and losses) 

• Estimation of the yield 

potential 

• Attention to fertilizer and 

product prices 

• Determination of the 

fertilizer requirement  

(N, P, K, …) 

• Pre-purchase of fertilizers 

(Storage capacity) 

• Permanent adjustment of 

the fertilization strategy 

during growing season 

• Attention to the crop 

development 

• Selection of particular 

fertilizers (nutrients, 

effects, and losses) 

• Preliminary fertilization 

with basic nutrients 

• Use of compound 

fertilizers 

• Weather and soil 

conditions 

 

• Compliance with 

guidelines and legal 

requirements 

Figure 1-1: Optimization problem of the cost-efficient fertilization strategy (without 

claim to completeness). 

Source: Own compilation. 

To solve this optimization problem, some open questions must be addressed first:  

• What influence do application costs have on the cost-efficient fertilizer strategy?  

• How can fertilizer application costs be integrated into a mathematical optimization 

model for individual farms?  

• What are the computational and data requirements of different methods to do so?  
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• What are the agronomic, legal, and operational requirements of a model designed for 

cost-efficient fertilizer strategies?  

• What does the associated mathematical optimization model look like?  

• What is the savings potential of such an optimization model compared to a 

fertilization strategy defined in the usual way?  

• Does a cost-efficient fertilization strategy lead to undesirable agronomic effects?  

• How does a cost-efficient fertilizer strategy differ from an inefficient one?  

• What influence do different farm conditions have on the design of the cost-efficient 

fertilization strategy? 

The answers to these questions would be highly relevant for farmers and consultants, as they 

have a direct impact on production costs and management time in crop production. 

Furthermore, the findings of this work can help reduce production efforts and increase 

transparency about the price worthiness of alternative fertilizers. Fertilizer producers are faced 

with a situation wherein farmers seek to find maximum price transparency. However, 

fertilizer producers can also take advantage of this knowledge and adjust their product 

portfolio accordingly. 

This thesis aims to provide an important and new contribution to the understanding of cost-

efficient fertilizer strategies at the farm level from a scientific perspective. Cost-efficient 

fertilization uses scarce resources efficiently, making it an important part of sustainability 

efforts (Tröster and Sauer, under review). This also means that the current study has social 

relevance that can be further extended, that is, if one applies fertilizer emissions in terms of 

CO2 equivalents instead of market prices, it is possible to identify particularly low-emission 

fertilization strategies. 

1.3 Aims and structure of this thesis 

The goal of this dissertation is to develop a decision support system (DSS) that satisfies the 

optimization problem shown in Figure 1-1. The DSS is designed to suggest a cost-efficient 

fertilizer strategy that can be used by farmers several times per season to improve farm profit 

and save management time. Another objective of this work is to assess the economic and 

agronomic performance of the DSS under development and to identify the potential features 

of a cost-efficient fertilizer strategy (e.g., in the selection of fertilizers). 
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In the first part of this thesis (Part I), the introduction to the research topic, an overview of the 

theoretical framework, and the research methods used are presented. The main part (Part II) 

contains four independent studies, which are presented in Chapters 3–6, respectively. A brief 

summary is provided at the beginning of each chapter. The first study (Chapter 3) focuses on 

integrating farm-specific fertilizer application costs within the framework of a mathematical 

optimization model. In the second study (Chapter 4), the requirements for the DSS are first 

described verbally followed by its implementation in mathematical form. This study also 

includes the economic performance evaluation. Study three (Chapter 5) presents a multi-year 

field trial that aims to investigate the agronomic performance of the DSS. 

Meanwhile, Study four (Chapter 6) provides a detailed analysis of the characteristics of cost-

efficient fertilizer strategies and examines whether general recommendations for fertilization 

strategies can be derived. In addition, how various farm conditions influence the design of the 

cost-efficient fertilization strategy is examined in this part. Part III begins with Chapter 7, 

which contains extended summaries of the four studies. Finally, Chapter 8 presents an overall 

discussion of the entire research contribution of this thesis and highlights important findings. 

For an initial overview, Table 1-1 provides concise information on the studies presented in 

Part II. 
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Table 1-1: Overview of the studies presented in Part II. 

Topic Research 

question 

Methods Novelty 

Chapter 3: Effects of application costs on fertilizer application strategy 

Use of 

farm-

specific 

application 

costs in op-

timization 

models 

How should 

fertilizer 

application costs 

be considered in 

mathematical 

optimization 

models? 

Use of route planning 

software to define optimal 

transportation routes. 

Derivation of a regression 

function to estimate 

individual transportation 

costs. Use of scenario 

analysis and Monte Carlo 

simulation to assess 

usability. 

It is the first time that the 

SDVRP has been used in 

the context of fertilizer 

application. Another 

contribution is the 

deduction of a resource-

friendly regression function 

for the accurate estimation 

of transport costs based on-

farm characteristics. 

Chapter 4: IoFarm: A novel decision support system to reduce fertilizer expenditures at the 

farm level 

Identifying 

cost-

efficient 

fertilization 

strategies 

How can a farm-

specific cost-

efficient 

fertilization 

strategy be 

achieved? 

Classical OR approach 

from a nonformal model, to 

a formal GAMS model, to 

its evaluation in form of a 

choice experiment. The 

GAMS model is a two-

stage deterministic 

dynamic optimization 

model that solves NLP in 

stage I and MINLP in stage 

II. 

For the first time, a 

dynamically adaptable 

optimization approach is 

presented, which; apart 

from the otherwise usual 

aspects; also considers 

application costs, and its 

planning horizon extends 

over an entire crop rotation 

cycle. 

Chapter 5: IoFarm in field test: Does a cost-optimal choice of fertilization influence yield, 

protein content, and market performance in crop production? 

Agronomic 

effects 

What are the 

agronomic effects 

of a fertilizer 

strategy that has 

been optimized 

based on the 

principles of cost-

efficiency? 

Two-factorial, multi-site, 

multi-year agronomic field 

trial. Factor 1: Fertilizer 

variant (Optimization 

model, farm manager, and 

control). Factor 2: crop 

(winter wheat, winter 

barley, and silage maize). 

For the first time, 

agronomic effects of an 

economically optimized 

fertilizer strategy 

(considering the least-cost 

combination) are reported 

based on a field trial. 

Chapter 6: Characteristics of cost-efficient fertilization strategies at the farm level 

Knowledge 

of cost-

effective 

fertilization 

strategies 

What 

characterizes cost-

efficient fertilizer 

strategies? 

Differentiation of 

fertilization strategies from 

a choice experiment by 

employing regression and 

cluster analysis as well as 

subsequent t-test. 

Evaluation of external 

influencing factors 

according to the ceteris 

paribus principle using the 

newly built DSS as the 

simulation model. 

For the first time, this study 

demonstrates the main 

differences between cost-

efficient and inefficient 

fertilization strategies and 

provides information on the 

impacts of a farm’s initial 

conditions.. 
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2 Theoretical framework and applied methods  

This chapter provides an overview of the theoretical foundations and methodological 

approaches that have been applied in the context of this research work. First, the problem is 

embedded in production theory, followed by a presentation of operations research techniques 

that are commonly used solve the optimization problem. Finally, methods for verifying a DSS 

and analyzing cost-efficient fertilization strategies are described. 

2.1 Microeconomic theories and behaviors 

People are permanently confronted with the task of making decisions. Due to their highly 

developed cognitive abilities, people are often expected to behave rationally. Therefore, it is 

assumed that a decision is preceded by a careful process in which alternative options are 

identified and evaluated according to one’s own preferences. Hence, the term “rational 

principle” is used to refer to this idea. However, in daily life, other behaviors can be identified 

that rarely lead to an optimal decision. These include, for example, limited rational behavior 

(Simon, 1959) as well as emotional, traditional, random, and inconsistent behaviors (Brandes 

and Woermann, 1982, p. 16). Decisions based on these patterns of action require no or little 

transaction costs for obtaining information and evaluating it. Therefore, combined with 

decisions of little relevance, such as the selection of a seat on the bus, it would be quite 

economically efficient to dispense with the rational principle (Simon, 1959). 

With respect to the objective of decisions, formal and substantive objectives can be 

distinguished (Brandes and Woermann, 1982, p. 16). A formal goal can be any conceivable 

objective, whereas a goal is considered substantial only if it is generally accepted, e.g., the 

aim to achieve prosperity. In the context of microeconomic considerations, people are usually 

assumed to act in a substantially rational manner; in this case, we speak of homo 

oeconomicus. Depending on personal preferences, such as desires and needs, the objectives of 

homo oeconomicus, can vary. The term “utility” is used as a measure for the satisfaction of 

one’s wishes and needs. Therefore, a rational decision maker tries to make decisions (x) in 

such a way that his personal utility (U) is maximized, as shown below: 

  max! U x . (2-1) 

The concept of utility maximization is tied to the desires and needs of an individual person, 

thus allowing enormous flexibility. In this case, a direct transferability to companies or 

production processes may not be possible. At this level, goods are produced or services are 
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offered for the purpose of generating income and profit. By generating profit in the company, 

the entrepreneur can satisfy numerous wishes and needs, thereby generating benefits; yet, not 

all wishes and needs can be satisfied by money. Nevertheless, due to the nonexisting 

comparability of individual utility and the considerable intersection between profit ( ) and 

utility (U), it is often assumed in production economics that homo oeconomicus would be a 

profit maximizer. This means that alternative actions (x) are chosen in such a way that profit (

 ) is maximized, as shown in the following: 

  max! x . (2-2) 

2.2 Relevant concepts of production economics 

The concept of profit maximization presented in the previous paragraph is highly 

advantageous, because it can define a monetary and uniform objective that can be used in 

models. In the context of agricultural production theory, further simplifications are applied 

(Mußhoff and Hirschauer, 2013, p. 144), including perfect information, homogeneity and 

divisibility of goods, static consideration of a production period, the absence of external 

effects, and the fact that the producer is the price taker. 

As mentioned above, a cost-efficient fertilizer strategy is an important approach in 

maximizing farm profit. In this respect, profit from crop production can be represented as 

follows: 

      x R x C x   , (2-3) 

where profit depends on a revenue function R(x) and a cost function C(x). The following 

applies to the revenue function R(x): 

    R x p y x  , (2-4) 

where p is the product price, and y(x) is the corresponding yield function. In crop production, 

numerous factors x influence yield y; thus, the yield function should be extended as follows: 

  1 1... ...n n my f x x x x . (2-5) 

Given that the focus is on fertilizer selection, the variable factors x1 to xn denote individual 

fertilizers (incl. time of application and quantity), while all other growth factors are 

considered fixed. As plant growth depends on nutrients rather than fertilizers, only an indirect 

relationship exists between fertilizer use and yield. Therefore, the individual nutrient 
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contributions uns (N, P, K, Mg, S, etc.) are relevant to the crop production function. These 

nutrient contributions can be defined for each fertilizer xn via the known nutrient content of 

the fertilizers (SUPn,ns), as shown below: 

   ,ns n n nsn
u x SUP  . (2-6) 

Therefore, Eq. (2-5) also be represented as follows: 

  1
...ns mn

y f u x x


 . (2-7) 

To determine the optimal relationship between nutrient input and yield, it is necessary to 

define the functional form for Eq. (2-7). Crop production functions are usually found in the 

form of a linear-limitational, quadratic, or asymptotic functional form Frank et al. (1990). In 

this thesis, the concept of linear-limitational plant production function, which can be traced 

back to Justus von Liebig, is used. Although asymptotic functional forms dominate the 

literature for the most part, this concept is also considered in parallel in many studies. It has 

been often stated that the coefficient of determination of a linear-limitational function is only 

insignificantly worse. In fact, some studies have used the linear-limitational function to better 

describe the relationships compared to other common crop production functions (Stone et al., 

2010; Bäckman et al., 1997; Grimm et al., 1987). Omitting the nitrogen dynamics in the soil 

can help derive a linear relationship between plant yield and the nutrient content in the plant, 

which describes the linear part of the production function. Once the nitrogen dynamics of the 

soil are incorporated via measured or estimated values and an adjusted upper yield limit is 

defined in parallel, a site-specific linear-limitational production function is obtained. The 

production function established in this way does not require expensive and site-specific data 

collection in field experiments. Therefore, it can be used in an uncomplicated way across 

sites. Furthermore, it is suitable for complex mathematical optimization models, as linear 

functions require considerably less computing power than quadratic or asymptotic functions. 

For the reasons mentioned above, the current work is based on the linear-limitational 

production function that can be traced back to Justus von Liebig. Figure 2-1 shows a 

representation of this function. 



12 Chapter 2  

 

 

Figure 2-1: Linear-limitational plant production function for multiple nutrients. 

The plant production function shown in Figure 2-1 is limited by a maximum. As a rule, it is 

assumed that this limit is set by a limiting growth factor that corresponds to the genetic yield 

potential of the plant under ideal growth conditions. Then, the maximum yield (YEX) is 

defined by the site-specific yield expectation of the farmer to allow the user to respond to 

changing growth conditions in the later optimization model. This is a dynamic process that 

can be adjusted several times per season. This results in the following crop production 

function: 

 
 

 

1

1

...
min

...
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ns n m
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u
y u x x

UEXT y

y u x x YEX






 


 

, (2-8) 

where uns denotes the nutrient quantity, and UEXTns the nutrient requirement of the crop (per 

yield unit). Now consider the cost function C(x), which is also a part of Eq. (2-3). Assume 

that adjustments to fertilizer strategy can be made without making changes in the fixed assets, 

which means that only variable costs need to be considered. In this case, the cost function 

C(x) consists the price of fertilizer qn and the variable application costs for fertilizer mn, each 

in relation to the amount of fertilizer used xn. All other influencing factors are considered to 

be fixed: 

    1 1... ...n n m n n n nn
C x x x x q x m x     . (2-9) 

At this point, it is already known that fertilizers x1 to xn contribute differently to nutrient 

supply (compare (2-6)) and that the technically efficient path of nutrient supply is given by 

the crop production function (2-8). Hence, the following question arises: What is the least-
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cost combination of fertilizers to achieve a given yield y? Ultimately, this issue has already 

been illustrated in Eq. (2-5). Furthermore, it is presented graphically in simplified form, using 

the combination of two fertilizers x1 and x2 (Figure 2-2 to Figure 2-4). 

 

Figure 2-2: Least-cost combination at the linear marginal rate of substitution. 

Figure 2-2 shows the isoquant for two fully substitutable fertilizers x1 and x2. All 

combinations of the two fertilizers on this line produce the same yield. This, however, is a 

highly simplified case, because more than two fertilizers are usually needed to meet the 

nutrient requirements of a crop. The complete substitutability of fertilizers is also only 

theoretical because of different nutrient compositions and different nutrient forms. As shown 

by the intersection with the isocost line, such substitution relationships lead to corner 

solutions. In the above case, fertilization with fertilizer x2 alone is preferred for cost reasons. 

The representation of decreasing marginal rates of substitution is often found in the literature 

(Figure 2-3). 
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Figure 2-3: Least-cost combination with decreasing marginal rate of substitution. 

Once again, any combination of the fertilizers x1 and x2 produces the same yield, which is 

represented by the isoquant. However, even a small amount of x1 leads to a considerable 

reduction of x2. Hence, the least-cost combination of both fertilizers is determined by the 

intersection with the isocost line. Such substitution effects are plausible, such as when 

nitrogen fertilizers with different forms of nitrogen are compared. However, technically 

efficient combinations of fertilizers are often relevant for the least-cost combination of 

fertilizers, especially considering the fact that several nutrients are considered in parallel 

(Figure 2-4): 

 

Figure 2-4: Least-cost combination with piecewise linear marginal rate of substitution. 

Figure 2-4  illustrates the isoquant for the combination of two different compound fertilizers. 

Fertilizer x1 contains 20% nitrogen and 7% each of potash (K2O) and phosphorus (P2O5). 
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Meanwhile, fertilizer x2 contains 15% each of the above nutrients. The linear substitution of 

both fertilizers is possible up to a certain point, at which one of the nutrients becomes the 

limiting factor for plant growth. In this case, the substitution of another unit of x1 for x2 leads 

to the fact that more x2 must be used (e.g., to satisfy the N demand of the crop). This kink in 

the isoquant is also called a technically efficient combination (Mußhoff and Hirschauer, 2013, 

p. 167; Nicholson and Snyder, 2008, p. 113). In the case presented, this point also 

corresponds to the least-cost combination, because the isocost line intersects here. In actual 

scenarios, numerous fertilizers must be considered to identify the least-cost combination. 

Therefore, isoquants are not to be understood as simple lines, but as multidimensional 

structures (compare Debertin, 1986, p. 113), in which the substitution relationships between 

the fertilizers (as shown) take different forms. 

The course of isocost lines will be considered in more detail after discussing the potential 

forms of isoquants. Isocost lines are typically displayed as straight lines, as shown in Figure 

2-2 to Figure 2-4. Each combination of fertilizers on the isocost line leads to identical 

fertilizer expenditures. Now, let us consider the variable application costs as another 

component of the cost function (2-9). Tröster et al. (2019) (see paragraph 3.4) stated that 

application costs for fertilizer are nonlinear. For example, differences in application costs of 

fertilizers can be attributed to variations in the specific weights of fertilizers. Each 

independent fertilizer application commonly requires a fixed amount of setup time. 

Differences in the nutrient concentration of fertilizers cause changes in the absolute amount of 

fertilizer applied among alternative fertilizer strategies. In our case, nonlinear application 

costs mean that the isocost line cannot be a straight line. Furthermore, entry costs in the form 

of setup time cause a step change of the isocost line. The same applies to additional technical 

requirements for fertilization, e.g., due to minimum application rates. The consequences for 

the least-cost combination are shown in Figure 2-5. 
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Figure 2-5: Least-cost combination in the case of nonlinear application costs. 

Figure 2-5 now shows an example of the use of two fertilizers x1 and x2 with an irregular 

course of the isocost line. As can be seen, the total costs of application increase abruptly as 

soon as a combination of both fertilizers is used. This means that less fertilizer can be 

purchased with the same financial budget. In the above example, this also implies that the 

least-cost combination is no longer at the kink of the isoquant, but now, only fertilizer x2 is 

used. Considering application costs makes it much more difficult to determine the optimum 

from a mathematical point of view. In addition, the application costs mn are themselves a 

function dependent on the choice of fertilizer xn: 

  1...n nm f x x . (2-10) 

As displayed in Eq. (2-10), the application mn costs of a fertilizer xn depend on the choice of 

fertilizers or the fertilizer strategy as a whole. However, the application costs themselves 

influence the choice of fertilizer, thereby implying that there exists a feedback loop within the 

optimization problem, which can only be solved simultaneously. 

2.3 Expansion path concept for optimal fertilizer strategies 

In the previous section, the least-cost combination of fertilizers was discussed in detail. As the 

least-cost combination represents an optimization of input costs, it has a potential impact on 

the optimal factor input quantity. The relationship between optimal intensity and least-cost 

combination is described by the expansion path. It is essential to follow the expansion path to 

a maximum of profit in order to achieve a cost-efficient fertilization strategy. Figure 2-6 

presents a typical illustration of the expansion path in the literature. 
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Figure 2-6: Classic illustration of the expansion path. 

Author’s own illustration, derived from (Mußhoff and Hirschauer, 2013, p. 168). 

As shown in Figure 2-6, the cost-efficient ratio of input factors remains constant regardless of 

the level of production. Therefore, the expansion path connects these intersections in the form 

of a straight line. Hence, the profit maximization can also be done in two steps: (i) finding the 

least-cost combination, and (ii) finding the optimal input intensity given the input ratio (least-

cost combination). However, this stepwise approach is not suitable for identifying a cost-

efficient fertilizer strategy. This is because, as shown earlier (Figure 2-4), the isoquants do not 

behave uniformly; instead, there are abrupt or gradual changes in the isoquants. For this 

reason, the course of the isoquants can change at different production levels. In 

microeconomic theory, this is shown, for example, by inferior inputs that become less 

important as production intensity increases (compare Nicholson and Snyder, 2008, p. 329). 

Furthermore, the expansion path to the cost-efficient fertilizer strategy is characterized by 

nonlinear isocost lines. This has already been demonstrated using nonlinear application costs 

(Figure 2-5). Given that the application costs themselves are dependent on the fertilizer 

combination (compare Eq. (2-10)), the same principle applies to the isocost lines as to the 

isoquants: their course can change at different production levels. Consequently, the expansion 

path is nonlinear and can have various least-cost combinations at different production levels 

(see Figure 2-7). Therefore, the simultaneous optimization of the optimal input intensity and 

least-cost combination is mandatory in the process of identifying a cost-efficient fertilization 

strategy. 
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Figure 2-7: Cost-efficient fertilizer strategy based on the expansion path. 

Author’s own illustration, derived from (Nicholson and Snyder, 2008, p. 328) 

The concept of the expansion path is graphically transferred to the cost-efficient fertilizer 

strategy in Figure 2-7. However, the illustration is still very far from reality, as only two 

variable inputs (fertilizers) are regarded. Specifically, two compound fertilizers are considered 

as inputs: fertilizer x1 containing 20% nitrogen, 7% each of phosphorus (P2O5), and potash 

(K2O). Fertilizer x2 contains 15% each of the above nutrients. Both fertilizers are used for the 

production of winter wheat. For simplicity, only the nutrients N, P, and K are considered, and 

a linear relationship between yield and nutrient input is assumed, where 1 dt yield = 2.51 kg 

N, 1.04 kg P2O5, and 1.67 kg K2O. Under actual conditions, the dimensionality of this 

optimization problem increases considerably, and the decision variable x is defined over the 

following sets: 

•  t  Year 

•  tm Month 

•  cr Crop 

•  fz Fertilizer 

•  f Field 

In addition, these sets are also considered relevant (completely or partially) for yield y, 

product price p, fertilizer price q, and application costs m. Accordingly, the profit function 

from Eq. (2-3) is established in detail as follows: 
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     , , , , , , , , , , , , , , ,, , , , , , , , , ,t f cr t cr t tm cr fz f t tm fz t tm cr fz f t tm fzt f cr t tm cr fz f t tm cr fz f
y p x q x m          (2-11) 

The first part of this profit function present the total revenue, which consists of the sum 

product of revenue yt,f,cr with the product price pt,cr. Note that the yield yt,f,cr is itself a function 

of the variable xt,tm,cr,fz,f. The middle part calculates the total cost of buying the fertilizers. 

Meanwhile, the sum product of fertilizer input xt,tm,cr,fz,f and application cost mt,tm,fz (in the right 

part) summarizes the cost of fertilizer application. It should be emphasized here that mt,tm,fz is 

a function dependent on xt,tm,cr,fz,f. Due to the concatenation of functional relationships and the 

dimensionality of the decision variable xt,tm,cr,fz,f, it is unlikely that such a complex problem 

can be solved by a human decision maker in an optimal way (Amann, 2019, p. 19). Therefore, 

the question arises as to which method can be used to optimally solve the optimization 

problem. 

2.4 Finding the optimal fertilizer strategy 

Solving optimization problems is a central task of operations research, and this field of study 

offers various methods for this purpose. Given that the optimization problem at hand can be 

represented as a mathematical model, the following methods are particularly considered: 

exact optimization methods and heuristics and metaheuristics. 

One of the exact optimization methods is linear programming (LP), first described by 

Kantorovich (1960) in 1939. From this, further exact optimization methods have been 

developed, such as integer programing (IP), mixed integer programming (MIP), nonlinear 

programming (NLP), and a combination of mixed-integer and nonlinear programming 

(MINLP). The exact optimization methods specifically search for the mathematically optimal 

solution and have the distinct advantage of being able to provide information regarding the 

optimality of the solution (e.g., whether the solution found is indeed a global optimum). In 

comparison, heuristics and metaheuristics only search for the best possible solution with 

reasonable effort and do not specifically search for a mathematically optimal solution; they 

also do not allow any statement on the optimality of the solution found (Suhl and Mellouli, 

2013, p. 13). 

In current optimization software, both methods mentioned above are often combined: 

heuristics are used in the so-called pre-solve methods to reduce the size of the optimization 

problem so that the exact optimization methods can be subsequently applied in a more 

efficient manner. Numerous solvers included in the GAMS software package (GAMS 

Development Corporation, 2016) offer this possibility. Moreover, the variety of solvers 
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included in GAMS facilitates the easy switching among different model categories (LP, MIP, 

NLP, MINLP, and others). For these reasons, the exact optimization methods were used for 

the implementation in this study, along with the software package GAMS. Below is the 

typical structure of an LP (modified after Andrei, 2013, p. 109).  

 minimize  f x  (2-12) 

 subject to:   0g x    (2-13) 

 ( , ) 0h x y   (2-14) 

 ,L Ux x x    (2-15) 

As shown above, : nf  , : n mg  , and : n ph   represent linear functions, and 

the solution space of the decision variable x is limited by the lower and upper bounds referred 

to as L and U, respectively. Usually, x is defined as non-negative. If the objective function 

(2-12) or one of the constraint functions (2-13) or (2-14) is nonlinear, it is an NLP. If 

additional integer criteria are considered, it is an MINLP, whose structure can be represented 

below (modified after Floudas, 2011, p. 618). 

 minimize  ,f x y  (2-16) 

 subject to:  , 0ig x y    (2-17) 

 ( , ) 0h x y   (2-18) 

 ,L Ux x x    (2-19) 

 ,L U qy y y N     (2-20) 

As shown above, at least one of the functions : nf  , : n mg  , and : n ph   is 

nonlinear. The decision variables x and y are constrained by the lower and upper bounds 

referred to as L and U, respectively. In addition, N is the set, and q is the number of integers 

or binary variables. 

The already described interrelationships of the present optimization problem necessarily lead 

to a nonlinear model structure. There is a technical lower limit for the application rate of 

fertilizers in practice (e.g., 0.8 dt ha
─1

); hence, the optimization problem also includes 
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semiconditional variables
3
. Thus, a practical model for the economic optimization of fertilizer 

strategies falls under the MINLP category given that such variables lead to binary constraints 

within the model. MINLPs are widely applicable due to the combination of discrete and 

nonlinear content; however, solving such problems is also tremendously challenging (Lee and 

Leyffer, 2012, p. vii; Bussiek and Pruessner, 2003) and rarely succeeds optimally. 

The choice of MINLP solver has a large impact on whether or in what time a problem can be 

solved optimally (or with a relative objective gab < 0.1%) (Kronqvist et al., 2019). This fact 

also applies to the model developed in the current work. To solve the emergent model as 

efficiently as possible, a performance test with different MINLP solvers was carried out at an 

early stage of the model development. MINLP solvers use specialized NLP and MIP 

subsolvers to solve these kinds of subproblems. Furthermore, the optimization model itself 

was also built in two stages. Stage I was used to eliminate inefficient solutions, also known as 

sequential decision making (Amann, 2019, pp. 19–20). Table 2-1 provides an overview of the 

solvers used in both model stages. It presents a selection of the MINLP and NLP solvers 

included in the GAMS software package in January 2016, which were combined in this step. 

A temporary GAMS license with all full versions of the solvers was available for this test. 

The results of the performance test from Table 2-1 clearly highlight the differences among 

various solvers. As can be seen, not every solver is equally suited for solving the MINLP 

model at hand. A large part of the tested solver combinations could not find a simple solution 

or a valid solution for the optimization problem. Only the first five solver combinations, 

shown in Table 2-1, have been found to be useful. The best valid optimization result, at a 

relatively low time cost, was obtained with the ANTIGONE solver (Misener and Floudas, 

2013). This solver additionally required a license for the MIP solver CPLEX (IBM 

Corporation, 2017) and the NLP solver CONOPT (ARKI Consulting and Development A/S, 

2016a). Therefore, this solver package was purchased and used for further model 

development in the current study. 

 

                                                 
3
 The extent of this variable is either 0 or any value between a lower and upper limit. 
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Table 2-1: Solver performance test. 

Stage I
1
  

NLP Solver 

Stage II
2
 

MINLP Solver 

Objective 

value  

[€] 

MINLP 

Solver Status 

MINLP 

solving 

time [sec] 

Antigone
4
 Antigone

4
 459346 Integer Solution 78 

Conopt
6
 SBB

14
 453357 Integer Solution 383 

Conopt
6
 Dicopt [Conopt

6
, SCIP

15
] 441029 Integer Solution 50 

SCIP
15

 Couenne
7
 [Baron

5
] 424213 Integer Solution 287 

SCIP
15

 Baron
5
 424213 Integer Solution 298 

SCIP
15

 Couenne
7
 [SBB

14
] 453468 Feasible Solution

17
 1220 

Couenne
7
 SBB

14
 453412 Feasible Solution

17
 601 

SNOPT
16

 SBB
14

 253100 Intermediate Non Integer 121 

SCIP
15

 Dicopt
8
 [Conopt

6
, SCIP

15
] 462382 Intermediate Non Integer

17
 726 

Couenne
7
 Dicopt

8
 [Conopt

6
, SCIP

15
] 453412 Intermediate Non Integer

17
 600 

Knitro
10

 Knitro
10

 -2444841 Locally Infeasible 481 

Local Solver
11

 SBB
14

 58072775 Locally Infeasible 607 

Path
13

 SBB
14

 -574908 Intermediate Infeasible 100609 

Minos
12

 SCIP
15

 - No Solution 0 

Conopt
6
 SCIP

15
 - No Solution 2 

IPOPTH
9
 SCIP

15
 - No Solution 100 

Baron
5
 SBB

14
 - No Solution 104 

Couenne
7
 SCIP

15
/SBB

14
 

 

No Solution 500 

Couenne
7
 Alphaecp

3
 - No Solution 608 

SCIP
15

 SBB
14

 - No Solution 26210 

Remarks: Used hardware: Intel i7-4790K CPU 4.00 GHz; 16 GM RAM. Used software: GAMS 24.8.1 for MS 

Windows (10 Pro). The solvers in square brackets are the used NLP and MIP sub-solvers. Foodnotes: 1) Stage I 

= relaxed NLP Model; 2) Stage II = full MINLP Model; 3) (Westerlund and Lundqvist, 2001); 4) (Misener and 

Floudas, 2013); 5) (Tawarmalani and Sahinidis, 2005); 6) (ARKI Consulting and Development A/S, 2016a); 7) 

(Belotti et al., 2006); 8) (Vecchietti and Grossmann, 2016); 9) (Wächter and Biegler, 2006); 10) (Byrd et al., 

2006); 11) (Innovation 24, 2016); 12) (Murtagh and Saunders) 13) (Dirkse and Ferris, 1995); 14) (ARKI 

Consulting and Development A/S, 2016b); 15) (Gamrath et al., 2016); 16) (Gill et al., 2013); 17) Integer 

conditions violated. 

Thus far, Section 2.4 describes only one necessary step to solve an optimization problem in 

accordance with the guidelines of operations research. This is the third of a total of five steps 

(Taha, 2017, p. 40), as listed below. 
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• Definition of the problem  

• Construction of the model 

• Solving the model 

• Validation of the model 

• Implementation and presentation of the solution 

The steps listed above were followed in sequence during the optimization problem 

processing. The first step involved using a nonformal model to identify the optimization 

problem and its exact description. Here the nonformal model could be converted into a 

mathematical model (construction of the model), because the components and relationships of 

the optimization problem are sufficiently known. Meanwhile, step number three (solving the 

model) has already been explained in detail. Numerous model runs were performed under 

changing input parameters to validate the model, focusing particularly on the plausibility of 

the model output. Next, an experiment in which the test persons competed directly with the 

optimization model was performed to validate economic performance. The participants' task 

was to achieve a cost-efficient fertilization strategy. The validation of the agronomic 

performance and a first implementation of the optimization model in practice was performed 

via field tests conducted over several years. More information on the validation activities can 

be found in Section 2.7. 

2.5 Decision support systems in crop production 

In the literature, the term “decision support system” has been described by numerous authors 

(Valencia-García et al., 2018; Turban et al., 2011; Power, 2002; Sprague and Carlson, 1982). 

In fact, there is a wide agreement among authors on the definition, which is accurately 

reflected by Zámečníková and Kreslíková (2016, p. 73) as follows: 

 “Decision Support System (DSS) is a computer-based information system 

or subsystem that supports business or organizational decision-making 

activities. DSSs serve the management, operations, and planning levels of 

an organization and provides help in decision making process. […] 

Decision support systems can be either fully automated, human [driven] 

(Author’s note) or a combination of both.” (Zámečníková and Kreslíková, 

2016, p. 73). 
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Thus, a DSS is not a completely autonomous optimization system, but a system over which 

the user still has influence. For this reason, any external intervention in the decision-making 

process is possible, along with the flexible consideration of new information. Certainly, the 

objective of a DSS is to help the user arrive at the best possible decisions. Figure 2-8 shows 

the schematic structure of a DSS. 

 

Figure 2-8: Schematic representation of a DSS (unchanged: Hujer, 2011). 

A DSS consists of several components, namely, data management subsystem, model 

management subsystem, knowledge management subsystem (optional), and user interface 

(Hujer, 2011; Turban et al., 2011; Ragsdale, 2001). The data management subsystem is 

commonly used to provide and, if necessary, process all internal and external information. 

The optional knowledge management subsystem contains theoretical principles, correlations, 

and empirical values that contribute to the process of problem solving and are, for example, 

displayed to the user. Sometimes, artificial intelligence can also be used to integrate this 

knowledge into the solution process (Hujer, 2011). The subsystems mentioned so far 

communicate directly with the model management subsystem. There are numerous 

possibilities involved in creating the model management subsystem, and optimization or 

simulation software is often used. Ultimately, the DSS user can access the mentioned 

subsystems via a user interface to make changes or to simply view information for decision 

making. 
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The DSS is only considered for serious problems, because its construction usually requires 

extensive resources. DSS are particularly useful in solving poorly organized or unstructured 

problems (Turban et al., 2011) that are not sufficiently solvable by human decision-makers 

due to their complexity or the abundance of information (Valencia-García et al., 2018; Power, 

2013, p. 36). Valencia-García et al. (2018, preface) wrote about the benefits of DSS as 

follows: 

“Proper application of DSS increases productivity, efficiency and 

effectiveness and gives many businesses a competitive advantage …” 

In general, productivity, efficiency, and competitiveness are relevant objectives in all sectors 

of the economy, including agriculture. For example, in crop production, simulation models 

are often used to evaluate the impacts of different management practices and derive decisions 

from them. These include, for example, the prominent crop growth models “Agricultural 

Production Systems sIMulator” (APSIM, Holzworth et al., 2014), “Cropping system 

simulation model” (CropSyst, Stöckle et al., 2003), and “DSSAT” (Hoogenboom et al., 

2019). These examples of DSSs are extensively used worldwide to support decisions in crop 

production. The list of successful DSSs in this sector is long. Some of them, such as 

SIMSEPT (Kluge et al., 2006) for predicting Septoria tritici and Septoria nodorum in wheat 

and SYMBLIGHT (Kleinhenz et al., 2007) for predicting the first occurrence of Phytophthora 

infestans in potatoes, are used directly by farmers. Other examples of DSS can also be found 

in the field of fertilization, such as FertiliCalc (Villalobos et al., 2020), Ecofert (Bueno-

Delgado et al., 2016), Optifer (Pagán et al., 2015), or “Nutrient Expert for Wheat” (Chuan et 

al., 2013). The optimization model developed in this thesis also represents a DSS and 

addresses a problem that affects almost every farm. The tool, which is based on-farm-level 

conditions, suggests a cost-efficient fertilizer strategy to the farm manager. According to 

Power (2013, pp. 35–37), DSS can be divided into the following categories: 

• Communications-driven DSS 

• Data-driven DSS 

• Document-driven DSS 

• Knowledge-driven DSS 

• Model-driven DSS 
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A model-driven approach is appropriate for the identification of a cost-efficient fertilizer 

strategy. It focuses on the integrated optimization model, which helps in making rational and 

efficient decisions. 

Despite all the advantages, many DSSs are unable to establish themselves in practice. Rose et 

al. (2016) considered this observation and analyzed the following requirements that should be 

met by a proposed DSS for it to be considered useful in practice: low computational costs, 

high performance, minimum data requirement on the users’ part, trust in the developer, and 

high degree of user-friendliness. During the development and evaluation of the optimization 

model, these requirements were considered to create the broadest possible acceptance for the 

new DSS. 

2.6 Consideration of farm-specific fertilizer application costs 

It is assumed that the application costs of fertilizers influence the cost-efficient fertilizer 

strategy. However, application costs are considerably farm-specific. They are influenced by 

several factors, including road network, field structure, mechanization, application rates, and 

utilization costs of the production factors, among others. In principle, the fertilizer application 

process is straightforward and can be captured analytically. This process can be further 

divided into the following subfunctions Baey-Ernsten (2011): setup time, loading time, field 

work time with turning and loss time, and transport time. These add up to the application 

costs of fertilization, along with the costs of the production factors. 

In the following, the characteristics of the respective subfunctions are only briefly discussed; 

detailed descriptions are given in Chapter 3. The costs caused by setup times represent a fixed 

amount per fertilization measure; thus, their share of the costs is not proportional to the 

application rate. The costs for loading fertilizer can approximately be regarded as proportional 

to the application rate. The costs of field work consist of the tractor and labor costs associated 

with field work and the variable costs of the fertilizer spreader (proportional to the application 

rate). The duration of field work is largely independent of the application rate per hectare due 

to the automated dosing system of modern fertilizer spreaders. Therefore, it is assumed that 

tractor and labor costs are proportional to the area being processed. In contrast to the 

subfunctions of the application costs described thus far, the transport costs cannot be 

represented without considering the field structure and the road network of a farm. This 

relationship is explained further using Figure 2-9. 
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Figure 2-9: Illustration of the field structure and road network of an exemplary farm. 

Remarks: The red dot marks the farm location. The figure contains all farm-to-field connections on the shortest 

route. Created: (Machl, 2018); Data basis: Tröster. 

At this point, it is assumed that fertilizing measures are carried out in a single-stage work 

process, which means that the loading of the fertilizer spreader takes place at the farm 

location (red dot). Next, let us assume that fertilization is to be performed on eight of the field 

plots shown in Figure 2-9, for which a total of 2.5 spreader fillings are required. In this case, 

the farmer has to plan three tours. Furthermore, the farmer will try to keep the transport costs 

as low as possible; thus, it is also important to minimize the sum of farm–field and field–field 

trips. At the same time, however, the farmer must ensure two things: (i) that the capacity of 

the fertilizer spreader is not exceeded in any tour and (ii) the required amount of fertilizer is 

spread on all field plots at the end. The problem described here is called split delivery vehicle 

routing problem (SDVRP) (Dror and Trudeau, 1990), in which the the optimal route will 

change depending on the selection of road network, field structure, field pieces, 

mechanization, fertilizer and fertilizer rate per hectare. This also affects the ratio of farm-to-

field to field-to-field trips. 

One way to capture the transportation cost portion of application costs on a farm-by-farm 

basis is to use the SDVRP. However, it also has disadvantages in the form of high data 

requirement (all farm–field and field–field routes are needed) and the enormous 

computational effort needed to solve a SDVRP (Archetti et al., 2011b). Thus, an alternative 

solution must be found to implement the transportation costs within the framework of a 

mathematical optimization model. Starting from an existing farm, 125 randomized farms with 

different road networks and field structures were formed. The SDVRP was applied to this set 

of randomized farms under different constellations of application rate per hectare and field 
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selection, thereby resulting in a total of 3,500 model runs with optimized routing. Then, in the 

next step, farm- and measure-specific parameters were identified that have considerable 

influence on field–field or farm–field trips. Using these parameters, a linear regression 

function could then be established for both trips, with which the transport cost can ultimately 

be estimated for each individual farm. 

2.7 Verification of a DSS and output analysis  

It would be helpful to compare the proposed DSS with the otherwise usual decision-making 

process to check the performance and usability the former (Taha, 2017, p. 41). This reveals 

potential differences in solutions, such as those in terms of input, output, or feasibility. This 

information is crucial for evaluating performance and may also reveal where adjustments are 

needed to improve feasibility in practice. 

This work verifies a proposed DSS, which represents an agricultural production process. This 

project is particularly challenging due to numerous dynamic influencing factors (e.g., prices 

and weather) and long production cycles (crop rotation cycle). Therefore, a two-part approach 

is chosen for the verification: the first part examines the impact on the total cost of 

fertilization, while the second part addresses the potential agronomic impact of this DSS. This 

approach facilitates an unbiased comparison between DSS and the typical decision-making 

process. This is because dynamic influencing factors can be more easily controlled or fixed 

using the split approach. 

The volatile and unknown price development of fertilizers represents a major influencing 

factor, on the total cost of a multi-year fertilizer strategy. Price information only becomes 

available successively in actual application scenarios. This situation leads to the fact that 

fertilizers are used without knowledge of the future price development. This can have both 

positive and negative effects on the overall costs of the fertilizer strategy. Therefore, to 

determine the economic performance of the optimization model, a choice experiment was 

conducted wherein the price development of fertilizers (dynamic influence factor) was fixed 

for all actors. 

Furthermore, the fixed specifications for nutrient input allow the assumption that the fertilizer 

strategies to be compared do not differ significantly in terms of output. This experiment, 

hereafter referred to as the “fertilizer quiz,” ensures identical conditions, thus allowing an 

unbiased view of the total costs of different fertilizer strategies. The participants’ task was to 

plan fertilization as cost-efficiently as possible for a simplified farm with three field plots and 
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three crops over a three-year period. Table 2-2 provides a reduced representation of the 

fertilizer quiz, showing one of a total of nine planning segments. The fertilizer quiz itself is 

available for download
4
, and further information can also be found in Chapter 4. 

Table 2-2: Excerpt from the fertilizer quiz: Planning segment silage maize 2016. 
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Fertilizer                                   

CAN
1
 (27N)                                   

Urea (46N)                 3.1                 

…                                   

DAP
2
 (18N 46P)                                   

…                                   

Potash (40K 6MgO 5S)                                   

Kieserite (25MgO 20S)                 2.0                 

Burned lime (90CaO)                                   

                  N (minus losses)  
    

 
0  0  126  0  0  

 
     

P2O5 0  0  0  0  0  0  0  0  0  0         

K2O 0  0  0  0  0  0  0  0  0  0         

MgO 0  0  0  0  0  0  0  0  50  0         

S       0  0  40  0         

Lime effect (CaO) 0  0  0  0  0  0  0  0  −143  0  0  0  0  0  0  0  0  

 

 N
 

P
2
O

5
 

K
2
O

 

M
g
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S
 

C
aO

 

Actual (in total)   0 0 50   −143 

Target (in total)   99 0 85     

Actual (in vegetation) 126 0 0 50 40   

Target (in vegetation) 123 0 0 43 25   

Status ok ok ok ok ok   

Remarks: In the first section of the planning matrix, the selection and timing of fertilization measures was 

performed by specifying the amount of fertilizer in dt per hectare. The associated nutrient quantities are added up 

on a monthly basis in the middle section. Nutrient quantities in fields with a gray background are not counted. In 

the lower part of the table, the quiz participant receives a status overview and can determine whether the 

fertilization planning meets the requirements. Abbreviations: 1: Calcium ammonium nitrate, 2: Diammonium 

phosphate. 

The growing conditions must be controlled in the process of comparing the agronomic 

performance of a crop production DSS with an otherwise standard decision-making process. 

                                                 
4
 Link to the fertilizer quiz (last access 14.07.2021): 

https://drive.google.com/file/d/14rBHNKKDuBq8oyeeVUXuek2id1B9z_Dw/view?usp=sharing 
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Crop rotation, variety choice, crop protection intensity, weather, and location are examples of 

dynamic influencing factors that should ideally not differ in such a comparison. Therefore, to 

identify potential agronomic effects, a three-year field trial was conducted on a total of three 

sites in Bavaria, Southern Germany: Geiselsberg, Triesdorf, and Roggenstein. The experiment 

was designed as a two-factor, split-plot design. The first factor reflected the fertilizer variant 

and was kept stationary at the plot level over the entire period. The following fertilizer 

variants were tested: 

• Control (without any fertilization) 

• Farm manager- mineral 

• Farm manager- mineral and organic (only at the Triesdorf site) 

• Optimization model- mineral 

• Optimization model- mineral and organic (only at the Triesdorf site) 

Factor two represents the cultivated crop. During the trial period, the crop rotation of winter 

barley, silage maize, and winter wheat was grown once on each plot. During the entire trial 

period, 297 plots were harvested to determine potential variations in quality or yield. 

Statistical analysis was performed using slit-plot ANOVA and subsequent post-hoc tests. 

Figure 2-10 presents a visual impression of the field trial. 
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Figure 2-10: Field trial at the Triesdorf site in the spring of 2016. 

Remarks: Winter wheat in the foreground, winter barley in the middle, and silage maize in the background 

shortly after emergence. 

Then, the fertilizer quiz was used once more to determine the characteristics of cost-efficient 

fertilizer strategies. Following the detailed processing of the data obtained from this quiz, it 

was possible to describe each individual fertilizer strategy with 675 variables. In a trial and 

error procedure, linear regression analysis was used to identify variables showing significant 

influences on the proposed fertilizer strategy’s cost-efficiency. In addition, the fertilizer 

strategies of the quiz participants were divided into three clusters based on their total costs, 

after which post-hoc tests were used to identify group differences in fertilizer use. Next, the 

developed DSS was used as a simulation model to determine the influence of farm conditions 

on fertilizer strategy. Based on the conditions of an actual farm, certain parameters were 

changed, such as farm size, infrastructure, soil fertility, and the availability of organic 

fertilizers according to the ceteris paribus principle to calculate the adapted fertilizer 

strategies. By comparing these solutions, the influence of the tested parameters on the 

fertilization strategy could thus be determined. 
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3 Effects of application costs on fertilizer application strategy  

This is a pre-copyedited, author-produced version of an article published in Computers and 

Electronics in Agriculture following peer review. The version of record [Michael F. Tröster, 

Hubert Pahl and Johannes Sauer (2019): Effects of application costs on fertilizer application 

strategy. Computers and Electronics in Agriculture 167] is available online at: 

https://doi.org/10.1016/j.compag.2019.105033 
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Tröster developed the research question, designed and conducted the analysis and wrote the 

manuscript. Hubert Pahl and Johannes Sauer contributed to reviewing and editing of the 

manuscript. Johannes Sauer provided supervision and software resources and was helpful in 

discussing the results. The authors would like to thank the editor and two anonymous referees 

for their useful comments. 

Abstract 

To optimize production activities, it is important to understand the associated costs. If the 

optimization is carried out using mathematical instruments, the production costs are 

implemented in the form of a restriction. The functional form is critical not only to ensure 

accuracy but also to facilitate computing power and input data requirements. The present 

study documents the development of a cost function for fertilizer application. Three potential 

ways to address transportation costs within the whole cost function are observed: (i) 

calculating minimal transportation time using a “split delivery vehicle routing problem” 

(SDVRP), (ii) estimating transportation time using a regression model, and (iii) neglecting 

transport costs altogether. In Section 3.3, the costs of fertilizer application and their influence 

on the fertilizer application strategy are compared. Despite minimal differences in the 

application cost values, all methods lead to comparable results. A further investigation reveals 

additional factors that influence the reliability of decision-making, for example, price 

relations. The computational power and data input demands are explored as well. In this 

respect, the SDVRP method was identified as the most resource-demanding option. We 

conclude that the performance of the regression method is the most reliable for optimizing the 

fertilizer application strategy using mathematical instruments. The present study may support 

researchers focusing on farm logistics or related cost functions, such as spraying, sowing or 

manure application.  

https://doi.org/10.1016/j.compag.2019.105033
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3.1 Introduction 

The complexity of decision-making in management and production contexts is a key 

challenge for farmers all over the world. Decisions often depend on many variables and 

decisions influence the level of success or failure. Decision support systems (DSS) are 

valuable instruments that facilitate decision-making based on broad and objective criteria. 

Their application is influenced by performance, data requirements, user-friendliness as well as 

other limitations such as computing power (vgl. Rose et al., 2016). Sensor-based 

determination of crop nitrogen demand (Fitzgerald et al., 2010), genomic selection in animal 

breeding (VanRaden, 2008) and computing of feed rations with the least costs (Waugh, 1951) 

are examples of established applications of DSS in farm management. In particular, we are 

interested in minimizing feed costs and adapting the idea to plant nutrition requirements. Our 

research contributes to technical and allocative productivity in land management and 

facilitates the formulation of farm-specific optimal fertilizer application strategies.  

The process of optimizing a farm’s fertilizer strategy begins with the optimal nutrient input 

requirements within a season or an entire rotation period and the selection of suitable 

fertilizers. The costs of fertilizer application greatly affect the optimal strategy. For example, 

fertilizer application strategies that meet the nutrient requirements of crops with the least 

possible number of doses are preferred when the costs of fertilizer application are high. This 

highlights the significance of application costs. Transport costs are part of the application 

costs. They are highly influenced by farm infrastructure. A common approach for accounting 

for transport costs is the use of mean on-farm transportation time (KTBL, 2019). Transport 

costs could be addressed using route-planning software, which have the ability to calculate 

detailed transport costs. Some examples can be found in transport-intensive agricultural 

sectors, including the dairy industry (Basnet et al., 1996). However, route planning is very 

resource-intensive. Thus, a more straightforward approach for addressing on-farm transport 

costs during fertilizer application is required. It is also necessary to evaluate the usability 

based on mathematical optimization models. The hypothesis is that using farm-specific data 

on infrastructure to estimate transport costs rather than integrating them in route-planning 

software would not significantly affect the fertilizer application strategy. Under certain 
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conditions, we expect that disregarding transport costs does not significantly affect the 

optimal solution. 

The present study evaluates the importance of transport costs and develops a cost function for 

fertilizer application (or other production inputs). This function must be appropriate for a DSS 

at farm level within the framework of mathematical optimization methods. This means it is (i) 

sufficiently precise to obtain a reliable decision on fertilizer application strategy, (ii) resource-

friendly in terms of computational power and (iii) meets minimal requirements of farm-

specific data. To address the problem, we compared three approaches for determining 

transport costs. First, we generated a cost function that takes into account a split delivery 

vehicle routing problem (“SDVRP method”). Second, we replaced route planning with a 

regression model (“regression method”). Finally, we included a scenario in which the 

transport costs are disregarded entirely (“zero transport cost method”).  

To date, the SDVRP method has rarely been used to optimize agricultural production. 

Vougioukas et al. (2012) used the SDVRP method to minimize in-field transportation time of 

robotic crop-transport aids. Frisk et al. (2018) used it as an instrument for optimizing animal 

welfare and economic costs in pre-slaughter logistics. However, within the transportation 

science and logistics, SDVRP is recognized and widely applied (see Latiffianti et al., 2018; 

Eldrandaly and Abdallah, 2012). In our application, we expected that the SDVRP method 

would be useful due to its potential to precisely compute transport time. However, its 

application is limited due to its computing power demands. The other two approaches were 

deemed more appropriate within the framework of mathematical optimization methods. The 

aim of our study is to identify an appropriate approach to address transport costs within the 

comprehensive optimization of fertilizer application strategies at farm level.  

3.2 Materials and methods 

The subject of our study is a working procedure for mineral fertilizer application, in which 

both fertilizer application and transportation occur in one combined step. 

Cost functions of complex procedures are often analyzed using regression models. An 

overview of the methods for determining cost functions can be found in Adnan and Jian 

(2006). Known costs and less complex working procedures, as in the case of fertilizer 

application, are therefore preferably determined analytically. Moreover, there is a possibility 

to break down the overall function into individual quantifiable subfunctions. A description of 

the method has been provided by (Baey-Ernsten, 2011). Accordingly, the required working 



38 Chapter 3  

 

time can be divided into setup time; fieldwork time, including turning and lost time; loading 

time; and transport time. In addition to the variable costs of mechanization and based on one’s 

own analysis of the procedures in practice, the following subfunctions emerge: 

• CWP:   Work preparation, respective follow-up work (setup time) 

• CLS:   Loading the fertilizer spreader   (loading) 

• CFW:   Cost of completion of fieldwork   (fieldwork)  

• CVS:   Variable costs of the fertilizer spreader   (fieldwork) 

• CYF:   Transport costs from farmyard to field   (transport) 

• CFF:   Transport costs from field to field   (transport) 

If the factors and conditions of the farm remain unchanged, only variable costs are important 

for the decision-making. Therefore, the fixed costs are not considered. To evaluate the user-

dependent costs in the subfunctions, sufficient knowledge of individual workflows in a farm 

and associated costs are required. For this purpose, primary data of a sample farm are used, 

which were supported by secondary data (KTBL, 2016, 2005). The sample farm is a northern 

Bavarian mixed farm with 50 ha of arable land and mechanization as indicated (see Appendix, 

Table A 3-1). The in-house infrastructure presented by the farm-specific distance table (Ci) 

has a major influence on transport costs. The distances are based on the shortest distances in 

terms of time (min). The advantage of a time-based specification is related to the 

simultaneous consideration of track quality, distance, and maximum speed of the 

transportation unit. 

3.2.1 Breakdown of the cost function into quantifiable subfunctions 

Fertilizer application costs are related to the number of applied spreader fillings (asf): 

 ,
hf ar

asf hf ar
SW Q





         (3-1) 

The number of applied spreader fillings is determined by hectares fertilized (hf), application 

rate (ar), spreader capacity (Q), and the specific fertilizer weight (SW). The specific weight 

ranges from 75 to 170 kg hl
−1

. Therefore, the fertilizer itself influences the required number of 

spreader fillings. Application cost needs to be expressed in Euros (€) per hl. Although 

fertilizer costs are based on a mass unit, here they are expressed in Euros per 100 kg. To avoid 

possible confusion, we assume a specific weight of 100 kg per hl. This is justifiable because 
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we just look for the general structure of application costs at this stage and neglect the optimal 

selection of fertilizers. 

Eq. (3-2) presents the personnel costs for the preparation and follow-up work of a fertilization 

measure (were Setup time = ST and Wage entitlement = WE). 

CWP ST WE            (3-2) 

Eq. (3-3) determines the costs for loading the fertilizer spreader (were Loading time = LT and 

Variable costs of the vehicle used for loading = VL). 

   ,CLS hf ar asf LT VL WE           (3-3) 

Eq. (3-4) shows the cost of the work completion in the field. It is assumed that fertilizer 

application rate (ar) and working speed (WS) are independent, which leads to a constant work 

time per hectare. This reflects the current status of fertilizer spreader technology. For 

nonproductive turning and lost times, the theoretical rate of work is reduced by TT. Fechner 

(2014) found that TT depends on various factors like shape and size of the field, agility of the 

machine and machining direction. According to him TT ranges from 8% to 27%. Identifying 

field individual values for TT takes a lot of effort with little effect on the total application 

costs. Thus, we decided to use a uniform value of 20% for TT. (Working width = WW; 

Variable cost of tractor = VT). 

 
 

 
11000 1 10000

hf
CFW hf VT WE

WS WW TT 
  
      

    (3-4) 

The total variable costs of the fertilizer spreader are described using Eq. (3-5). (Variable cost 

of fertilizer spreader = VS). 

 ,CVS hf ar asf Q VS            (3-5) 

In Eqs. (3-6) and (3-7), the transport costs are presented as dependent functions of the 

unknowns tx and ty. They correspond to the transport times of farm–field (tx) or field–field 

trips (ty). 

   CYF tx tx VT WE            (3-6) 

   CFF ty ty VT WE            (3-7) 

For additional information, see Appendix, Table A 3-1. 
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3.2.2 SDVRP model for transport time determination 

It is a logistic challenge to find the most time-saving route that accounts for in-house 

infrastructure, application rate and spreader capacity. To address this challenge, route 

planning has to consider the option of multiple runs to fields. The logistic challenge 

corresponds to the SDVRP, which was first formulated by Dror and Trudeau (1990). It is a 

variant of the vehicle routing problem, which is derived from Dantzig and Ramser (1959). 

Such kinds of problems are often NP-hard, which means they are not solvable in polynomial 

time. Investigations for this can be found in a study by Archetti et al. (2011b, S 748). NP-hard 

problems place particularly high demands on computing power and cannot be solved 

satisfactorily if problem sizes increase. Using the General Algebraic Modeling System 

(GAMS) (GAMS Development Corporation, 2016), an appropriate SDVRP optimization 

model was developed to address such logistic problems. It is a mixed integer programming 

model, which is solved using the commercial solver CPLEX (IBM Corporation, 2017) (see 

Appendix, Table A 3-2 for further information on the SDVRP model).  

We used the route-planning model to determine the transport times for tx and ty. After 

determining the values, Eqs. (3-6) and (3-7) are incorporated unaltered into the cost function: 

 ,cf hf ar CWP CLS CFW CVS CYF CFF           (3-8) 

3.2.3 Importance of transport costs with regard to the optimal fertilizer 

strategy 

To reveal the significance of transport costs, we need to apply Eq. (3-8) under several 

different conditions. In addition to a varying spread rate and a varying number of fertilized 

sites, we need to account for farm-specific infrastructure, such as plot sizes and distances. 

However, detailed empirical data on farm infrastructure for running multiple SDVRPs for a 

representative set of farms is unavailable. To use an SDVRP, we need to know all distances 

between all fields of a farm, which is a vast amount of information. Machl et al. (2016) 

developed a GIS-based instrument for calculating the shortest farm–field connections in all 

Bavarian farms. Modifying the tool to calculate field–field distances can help in addressing 

information gap in the future; however, since the necessary data contained sensitive geocoded 

information, access was denied. This is why we used the so-called informed guess: We 

examined available data for a single farm to generate a random set of 125 farms. Within a 

bootstrapping procedure, the route optimization model was used in 125 independent runs. At 

the beginning of each run, both the sizes of the field and the farm–field or field–field 
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distances (parameter cjk) were defined based on triangle-distributed random numbers
5
. In this 

way, we randomly generated 125 farms, for which the influence of a varying spread rate (10, 

80, 200, and 320 kg ha
−1

) was investigated. Optimal routes were calculated for each of the 

four fertilizer levels, taking into account different field combinations:  

• All fields in the farm 

• All cereal fields with wheat and barley (6 from 9 fields) 

• All fields with wheat and corn (6 from 9 fields) 

• All fields with barley and corn (6 from 9 fields) 

• All fields with wheat or barley, or corn (respectively 3 from 9 fields) 

There was a total of 3,500 model runs (possible number of problem combinations). Since the 

SDVRP model was not always capable of finding an optimal route, we set a time limit of 

120 s per run. This time limit prevents the solver from endless iterations. Farms with no 

defined optimal route within this time limit were excluded from further analyses. As a 

criterion, a relative deviation between the objective value (obj) and the best possible result
6
 of 

more than 7% was selected. Overall, 55 companies exhibited a relative deviation of more than 

7%. From the remaining 70 random farms, there were 1960 model runs, which revealed 

optimized routes. In addition to the time required for the entire overall route (obj), the results 

also include the time required for the sum of all farm–field (tx) and field–field trips (ty). 

Based on such knowledge on transport time, we are able to evaluate the significance of 

transport costs. Table 3-1 compares the proportions of the application costs (cf) for all 

components of Eq. (3-8) in consideration of the fertilizer costs. 

                                                 
5 For the distance Parameter (cjk), we used 0 min as the minimum, 4.5 min as the median, and 32.3 min as the 

maximum. The plot size (Parameter haj) has the following specifications: minimum 0.1, median 1.4, and 

maximum 7.4 ha. 

6 The Solver CPLEX was set to a 120-s time limit. After the time has expired, the solver returns the best found 

result, together with the relative deviation, to the best possible result “relative gap”.  
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Table 3-1: Fertilizer application costs. 

Fertilized 

fields 

Application 

rate (ar)   

(1) 

Fertilizer 

(2) 

CWP 

(3) 

CLS 

(4) 

CFW 

(5) 

CVS 

(6) 

CYF 

(7) 

CFF 

[pcs] or [%] [kg ha
−1

]     [%] [%] [%] [%] [%] [%] [%] 

1 Field 

80 

 

  64.3** 21.2** 1.0 6.1 0.0 7.4** 0.0 

200 

 

  80.4** 11.2** 1.2 3.1 0.1 4.0* 0.0 

320 

 

  85.8** 7.6** 1.3 2.0 0.1 3.2* 0.0 

33% of all 

Fields 

80 

 

  78.8* 7.4* 1.2 7.5 0.1 2.5* 2.6* 

200 

 

  88.7* 3.3* 1.4 3.4 0.1 2.4 0.7 

320 

 

  91.5* 2.2 1.4 2.2 0.1 2.2 0.5 

67% of all 

Fields 

80 

 

  82.8* 3.7 1.3 7.9 0.1 2.2 2.1 

200 

 

  90.7 1.6 1.4 3.4 0.1 2.0 0.8 

320 

 

  92.8 1.0 1.4 2.2 0.1 2.0 0.5 

100% of all 

Fields 

80 

 

  84.4 2.5 1.3 8.0 0.1 1.7 2.1 

200 

 

  91.3 1.1 1.4 3.5 0.1 1.8 0.8 

320 

 

  93.2 0.7 1.4 2.2 0.1 1.9 0.5 

Note: The percentages are mean values of 70 randomly created farms, which differ in plot size and distances. 

The fertilizer price is €21.50 per 100 kg. ** Range > 20%; * Range > 5%. Source: Own compilation. 

Table 3-1 is useful for determining the major drivers of application costs. In addition to the 

fertilizer cost itself, CFW (costs for completion of fieldwork) dominate the cost-composition. 

This is followed by CWP (costs for work preparation) and transport costs if we sum up the 

corresponding columns 6 and 7. Consequently, we are able to highlight scenarios where 

transport costs could have a real impact on the optimal fertilizer application strategy. A 

threshold of more than 3.1% on total fertilization costs is exceeded in all scenarios where only 

a single field is fertilized and in the scenarios with a low application rate of 80 kg ha
−1

. Some 

mean values of Table 3-1 are labeled with an asterisk. A double asterisk denotes a range of 

more than 20%, and a single asterisk indicates a range of more than 5% in the original data. 

The relevance of farm–field transport costs (CYF) increased considerably in individual cases. 

A detailed look at the data reveals that CYF is of great importance when only a single small 

and far-flung field is involved. Since we are dealing with percentage values, the fertilizer 

prices have a major impact on the contents of Table 3-1. We used a fertilizer price of €21.5 

per 100 kg. A higher fertilizer price would minimize the impact of the application cost in 

general, and vice versa. This will be covered separately. 
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3.2.4 Estimation of field–field and farm–field transport time 

We need to assume that transport time has an effect on the optimal fertilizer application 

strategy. Instead of using an SDVRP, we are now looking for a straightforward approach for 

estimating transport time based on farm-specific information.  

Estimating “ty” 

Based on the 70 model runs with a low application rate of 10 kg ha
−1

, we obtain the shortest 

connection among all the fields in each farm
7
. This farm-specific value for ty was set for each 

random farm to be equivalent to 100%. Therefore, it is possible to express the proportions of 

field–field trips (rty) for all the investigated variations of a random farm. In case none of the 

fields or one field is fertilized, there are no field–field transport trips. The proportion of field–

field trips is therefore equal to 0%. In Figure 3-1(a-d), the proportional field–field trips are 

depicted in relation to the application rate and the proportions of the fertilized farmlands. 

With regard to the proportion of field–field trips, three influential factors can be identified: (i) 

field–field trips can only occur when more than one field is fertilized, (ii) a higher share of 

fertilized farmland leads to an increase in field–field trips, and (iii) field–field trips display a 

wider dispersion and slightly decrease with increase in fertilizer application rate. To examine 

correlations based on a regression analysis, a dataset was formed using the following 

information: proportions of field–field trips, proportions of fertilized farmland, spreader 

fillings per hectare and number of fertilized fields. Since the dataset was not equally weighted 

with regard to the independent variable “number of visited fields”, this was corrected by the 

duplication of underrepresented cases. In sum, the dataset contained 4,200 observations
8
. 

                                                 
7
 For a total farm size of 50 ha and a spreader capacity of 2000 L, only 0.25 spreader fillings are required at this 

application rate. Therefore, the optimal route does not include additional farm–field trips.  

8
 Explanation: 70 farms under four different levels of fertilization, each with three results for the fertilization of a 

combination of nine fields, six fields, three fields, one field, and zero fields. 
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Figure 3-1(a-d): Proportions of field–field trips (*rty) at the respective farm-specific 

optimal routes depending on the proportion of fertilized farmland. 

Figure 3-1(a–d) leads to the assumption of a linear relationship between the proportions of 

field–field trips and fertilized farmland. In addition, we recognize a lower effect of the 

application rate. The application rate is relevant for the number of spreader fillings per 

hectare. This shows how often a field has to be visited. To account for such observations, the 

following regression model was developed to estimate the transport times required for field–

field trips (rty): 

1 2
s s

s s

i si

hf asf
rty

HA hf
  
   

      
  

   1,... ; 0ss i n hf      (3-9) 

Index “s” indicates a dynamic set of scenarios consisting of fertilized fields in combination 

with an application rate. The dependent variable is determined by the proportion of the 

fertilized farmland (first term) and the number of spreader fillings per hectare. Since field–

field trips only occur when more than one field is involved, a binary variable would be 

necessary to account for that. Binary variables may considerably complicate mathematical 

optimization problems. As this was our main application, we decided to disregard the binary 
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variable. The consequence was only a minor decrease in the coefficient of determination. The 

results of the regression model are presented in Table 3-2. 

Table 3-2: Estimation of field–field trips for varying fertilization measures. 

Model       OLS 

Proportion of field–field trips    rtys  (Dependent variable) 

Proportion of fertilized farmland  β1 0.9418***  SE (0.0056) 

Spreader fillings per hectare   β2 –0.7298***  SE (0.0366) 

R²       0.91    n  4,200 

Remarks: *** p < 0.001; SE: Standard error; n: Investigations; no constant term. Source: Own compilation.  

The regression model according to Eq. (3-9) describes the dependent variable rtys. As 

expected, the proportion of fertilized farmland has a positive impact on the number of field–

field trips required. An increase in the number of spreader fillings per hectare results in a 

slight decrease in the number of field–field trips. The reason is that direct farm–field trips are 

more frequent. Using the regression method, we only obtain the proportion of field–field trips 

based on a farm-specific parameter (TF). TF is the sum of all field–field trips on an optimal 

route, and rtys is equal to 100% in such a case. To estimate the transport durations during 

field–field trips in any farm, TF must be known. To be precise, the value would have to be 

calculated using a tour-planning model. In practice, the value is estimated based on the 

experiences of a farm manager. The following applies for the duration of field–field trips: 

s sty rty TF   1,...s n  (3-10) 

Estimating tx 

The estimation of the time spent on farm–field trips, txs, is based on the average farm–field 

distance (FYs). FYs is based on a farm–field distance table FDi and additionally weighted by 

the plot sizes (HAi) of the associated fields:  

 i is
s

is

FD HA
FY

HA






 1,...s i n   (3-11) 

Supplying large fields with production inputs requires more transport trips between farms and 

fields. FY is doubled and multiplied by the number of necessary spreader fillings to obtain the 

transport time tx. The regression model for transport time is presented in Eq. (3-12): 
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1 2s s s stx asf FY       1,...s n  (3-12) 

This simple model is quite useful for estimating the time requirement for farm–field trips. 

Table 3-3 shows the statistic. 

Table 3-3: Estimation of farm–field trips for varying fertilization measures. 

Model       OLS 

Time for farm–field trips     txs  (Dependent variable) 

2s sasf FY        β1 0.9961***  SE (0.0032) 

R²       0.96   n  4,200 

Remarks: *** p < 0.001; SE: Standard error; n: Investigations; no constant term. Source: Own compilation.  

In reality, the applied spreader fillings (asf) have to be an integer number calculated for each 

field separately. Even if a full spreader filling for one field is not required, it is necessary to 

visit the field at least once. This can happen either through a direct farm–field trip or 

indirectly by a field–field trip. Using asf as a continuous variable (as in the present case) 

would lead to the underestimation of transport time, particularly if far-flung fields are 

involved. The coefficient of determination is rarely influenced. Therefore, we are able to 

disregard integer variables, which would pay off when we apply the regression method in the 

context of a mathematical optimization model.  

3.2.5 Zero transport costs 

Another potential way of dealing with the transport costs is to neglect them. The analysis in 

Table 3-1 shows that transport costs are of little importance, at least in most of the observed 

scenarios. Therefore, a meaningful impact on the fertilizer strategy is debatable. Excluding the 

transport costs facilitates further work in two ways: there is no need to consider detailed 

information on farm infrastructure, and the functional aspects of the application costs become 

easier to determine with regard to computational power. However, under unfavorable 

conditions, such an approach could lead to a suboptimal fertilizer application strategy.  

In the following section, we compare the three designated options and check the robustness of 

their results. 
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3.3 Results 

The results of the present study show the influence of the different approaches on the total 

cost of fertilizer application and the optimal fertilizer application strategy. Furthermore, we 

address their potential application within a DSS. 

The three approaches are as follows: the first variant, using the logistic optimization model, is 

“SDVRP method” (see Section 3.2.2), the second variant is “regression method” (see Section 

3.2.4), and the third variant, which disregards the transport costs, is “zero transport cost 

method” or abbreviated as “ZTC method” (see Section 3.2.5). The total costs of fertilizer 

application are calculated using Eq. (3-8) and are presented in Figure 3-2. 

 

Remarks: Results calculated at an application rate lower than or equal to 10 kg ha−1, and scenarios with a total 

fertilizer amount of less than 15% of the spreader capacity are omitted due to their insignificance for praxis. 

Figure 3-2: Total application costs: Regression method and ZTC method versus SDVRP 

method. 

The x-axis of Figure 3-2 shows the application costs for 100 kg fertilizer based on the SDVRP 

method. The values calculated based on the regression method (dots) and the ZTC method 

(lines) are on the y-axis. The regression method underestimates the fertilizer application costs 

in the upper range, which has already been explained at the end of Section 3.2.4. Of course, 

the ZTC method underestimates the fertilizer application costs in general, and the degree of 

underestimation increases as the application costs increase. When fertilizer application costs 

are greater than €8 per 100 kg, the validity of the regression method and the ZTC method 

deteriorates. This is often consistent in situations where only one far-flung field is fertilized. 
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In such cases, transport costs are considerably affected which is not adequately considered by 

the regression method and failed by the ZTC method. Based on the data presented in Figure 

3-2, we obtain a standard deviation of €0.49 100 kg
−1

 for the residues of the SDVRP method 

compared with those of the regression method. Table 3-4 compares the total fertilization costs 

of the three methods applied on a test nitrogen fertilizer application scenario. 

Table 3-4: Influence of application costs on a test nitrogen fertilizer strategy. 

 

  (1) (2) (3) (4) (5) (6) 

Method   SDVRP Regression ZTC 

1. Dose kg ha
−1

 200 320 200 320 200 320 

2. Dose kg ha
−1

 200 

 

200 

 

200 

 3. Dose kg ha
−1

 200 320 200 320 200 320 

Fertilizer Price € 100kg
−1

 21.50 

Application costs € 100kg
−1

  2.19 1.66 2.19+σ 1.66-σ 1.78 1.24 

Total costs € ha
−1

 142.15 148.22 

  

139.68 145.55 

 + σ 

   

145.10 

    -  σ   

   

145.06 

  
Remarks: σ = A standard deviation of €0.49 100 kg

−1
. Source: Own compilation 

In the first two columns, two potential fertilizer application strategies are tested using the 

SDVRP method. In option 1, the nitrogen fertilizer application is divided into three equal 

doses, each containing 200 kg ha
−1

 calcareous ammonium nitrate (CAN). The application 

costs according to the SDVRP method are €2.19 per 100 kg. In option 2, a total of 640 kg ha
−1

 

CAN is applied in two equal doses. Here, 6.7% more nitrogen is applied as fertilizer to 

compensate for losses caused by the stronger aggregation of fertilization. This is because an 

aggregation of nitrogen fertilization increases the risk of losses. Nevertheless, the additional 

amount of 6.7% is based on an expert opinion. Therefore, we tested different scenarios to 

adjust for local conditions. Even if the application costs of option 2 are considerably lower, at 

€1.66 per 100 kg, option 1 is the preferred fertilizer strategy due to the lower total costs of 

€142.15 per ha. Both fertilizer application strategies are also compared using the regression 

method (columns 3 and 4) as well as the ZTC method (columns 5 and 6). To simulate 

potential deviations in the estimation of application costs using the regression method, we 

increased the application costs of the initial cheaper strategy (option 1) by a standard 

deviation of €0.49 per 100 kg
−1

. In addition, we reduced the application cost of Option 2 by 

one standard deviation. The ZTC method does not include transport costs. The manipulation 
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of the application costs in the case of the regression method leads to a change in fertilizer 

application strategy, even if the cost difference per hectare is just only cents. In contrast, 

neglecting the transport costs completely does not influence the fertilizer application strategy 

(please compare the total costs in Table 3-4). In Table 3-5 the influence of application costs 

on the strategy of basic fertilization is analyzed. The structure is similar with the 

aforementioned example (Table 3-4). 

Table 3-5: Influence of application costs on a basic fertilizing strategy. 

  
 

(1) (2) (3) (4) (5) (6) 

Method 
 

SDVRP Regression ZTC 

PK (16 + 16) kg ha
−1

 320 
 

320 
 

320 
 

(25 €100kg
−1

) 
       

Potash 40 kg ha
−1

 
 

128 
 

128 
 

128 

(€27.50 100kg
−1

) 
       

Triple superphos 46 kg ha
−1

 
 

111 
 

111 
 

111 

(€40.50 100kg
−1

) 
       

Potash  ∑ kg ha
−1

 51.2 51.2 51.2 51.2 51.2 51.2 

Phosphorus ∑ kg ha
−1

 51.2 51.2 51.2 51.2 51.2 51.2 

Application costs* € 100kg
−1

 1.66 
 

1.66+ σ 
 

1,24 
 

Application costs** € 100kg
−1

 
 

3.32 
 

3.32–σ  2.59 

Appl. costs*** € 100kg
−1

 
 

3.75 
 

3.75–σ  2.92 

Total costs € ha
−1

 83.31 88.70 
  

83.97 86.85 

 + σ € ha
−1

 
  

86.89 
   

 -  σ € ha
−1

 
   

87.52 
  

Remarks: The application costs are listed separately for the different fertilizer quantities: * 320 kg ha
−1

, 

** 128 kg ha
−1

, *** 111 kg ha
−1

. The prices of fertilizers are placed in the brackets (January 2017). σ = A 

standard deviation of €0.49 100 kg
−1

. Source: Own compilation 

It is possible to apply phosphorus and potash with a compound fertilizer (columns 1, 3, and 

5). Alternatively, both nutrients can be applied separately (columns 2, 4, and 6). The SDVRP 

solution shows that the application of the compound fertilizer is preferable. This solution 

remains unchanged for the other two methods, and the optimal fertilization strategy remains 

the same.  

To check whether the results of the regression method and ZTC method are robust, a Monte 

Carlo simulation (MCS) was carried out. For that purpose, we changed the fertilizer 

application costs by adding normally distributed random numbers with a mean value of zero 

and a standard deviation of €0.49 100 kg
−1

. Compared to the original fertilizer strategy from 
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the SDVRP method, the results remained unchanged in more than 92% of cases for nitrogen 

application. For basic fertilizer application, the results remained unchanged in more than 97% 

of cases. The results of this simulation depended heavily on (i) the additional amounts of 

nitrogen used in the case of the stronger aggregation of nitrogen fertilizer strategy and (ii) the 

relationships among the prices of the different basic fertilizers. We analyzed the relationships 

using the aforementioned MCS in combination with a stepwise increase in the nitrogen level 

or a modified price for the fertilizer “PK (16 + 16)” (see Table 3-6 and Table 3-7). 

Table 3-6: Reliability of decision-making for a nitrogen fertilizer strategy. 

Additional 

nitrogen 

Regression 

method 

ZTC 

method 

Financial 

error 

[%] Consistent decisions [%] [€ ha
−1

] 

0.2% 76.2 100.0 3.0 

1.2% 63.7 100.0 1.5 

2.3% 50.6 0.0 0.0 

3.4% 63.9 100.0 1.6 

4.5% 75.9 100.0 3.1 

5.6% 85.6 100.0 4.6 

6.7% 92.0 100.0 6.1 

7.8% 95.7 100.0 7.6 

Remarks: Comparison of double- and triple-stage nitrogen nutrition. The first column indicates the add-on of 

nitrogen to balance nitrogen losses caused by stronger aggregated nitrogen nutrition. Source: Own compilation 

The starting point for the analysis in Table 3-6 (in bold) is equal to the additional nitrogen 

supply for a double-stage nitrogen fertilizer strategy used in Table 3-4. At this point, we have 

a high reliability in the decision-making for both methods. The decisions of the regression 

method in comparison with the original fertilizer strategy from the SDVRP method would be 

equal in 92.0% of all cases. We simply call this “consistent decisions”. If the necessary 

nitrogen add-on would be 2.3%, the regression method would yield 50.6% consistent 

decisions, whereas the ZTC method would yield 100% inconsistent decisions. The last 

column shows the financial error triggered by a wrong decision. With an additional nitrogen 

supply of 2.3%, the costs for the extra fertilizer are equal to the cost savings due to a cheaper 

fertilizer application. At this stage, both alternative fertilizer strategies (see Table 3-4) would 

result in the same total costs for fertilizer and fertilizer application: Option 1 has lower cost 

for the fertilizer but higher costs for application. In option 2 this is reversed. The financial 
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error is zero, because both options lead to the same costs. In Table 3-6, the probability of a 

wrong decision is highly correlated with a small financial error and, therefore, is acceptable 

from a management perspective.  

Table 3-7: Reliability in decision-making for a basic fertilizer strategy. 

Fertilizer 

price 

Regression 

method 

ZTC  

method 

Financial 

error 

[€ 100kg
−1

] Consistent decisions [%] [€ ha
−1

] 

25.0 97.2 100.0 3.4 

25.3 91.1 100.0 2.4 

25.6 79.6 100.0 1.5 

25.9 61.6 0.0 0.5 

26.2 59.7 100.0 0.5 

26.5 78.0 100.0 1.4 

26.8 90.7 100.0 2.4 

27.1 97.2 100.0 3.3 

Remarks: Comparison of single and compound basic fertilizer strategy. The first column indicates the price for 

the compound fertilizer. Other prices remain steady. Source: Own compilation 

The optimal fertilizer application strategy is often a case of selecting a fertilizer among 

various substitutable fertilizers. In such a case, the driving factor would be the relative price 

distance with regard to the nutrient content. In Table 3-7, we increased the price of “PK (16 + 

16)” while the prices of the substitutable fertilizers remained steady. The result and 

interpretation are similar to those of the aforementioned example. 

3.4 Discussion 

The results of the present study indicate that the described methods lead to comparable 

results. The method has a minimal impact on the selection of the optimal fertilizer application 

strategy. The financial error within the nitrogen fertilizer example ranges from €0.0 up to €7.6 

per hectare (see Table 3-6). The error within the basic fertilizer example is between €0.0 and 

€3.4 per hectare (see Table 3-7). In case of a wrong decision caused by the regression method 

or ZTC method, the financial error is low. Under the considered circumstances, the ZTC 

method has an extremely narrow error margin. Within the margin, the decisions are 100% 

incorrect (with low financial damages) and otherwise 100% correct. Under conditions of a 



52 Chapter 3  

 

higher significance of the transport costs, the error margin of the ZTC method would increase. 

In that respect, the regression method is more robust.  

The ZTC method is a very simple approach for decision-making. It proves useful as long as 

the variable transport costs are small and the farm–field distances are homogenous. However, 

when using the method within a DSS, there is no information about the distance between the 

farm and the corresponding field or set of fields. Therefore, the solver cannot distinguish 

between near and far-flung fields. This has a significant disadvantage as the field-specific 

transport costs are unobserved and we disregard a major driver for a field-specific fertilizer 

strategy. We cannot opt for a differentiated solution such as spreading a more expensive 

compound fertilizer to the far-flung fields (saving transport costs) and using cheaper single 

nutrient fertilizers on the nearer fields (saving fertilizer expenses). The regression method 

does not hold back this field-specific information completely. As soon as a field is selected 

for a fertilization approach, its farm–field distance and its plot size are used to calculate the 

weighted farm–field distances (see Eq. (3-11)). Differentiated solutions, therefore, are 

possible, but they would not be applied often, since a fixed setup time influences entry costs 

for each separate fertilization measure. The flexibility of the regression method in considering 

a wider range of farm-specific situations compelled us to apply it within the context of a DSS.  

The SDVRP method is certainly optimal for determining individual transport time. When 

logistics are of most importance, the SDVRP method is preferable because it offers guidance 

on the optimal route. If the SDVRP based cost function is used in a whole-farm context, the 

corresponding model offers additional optimization options. For example, through a 

simultaneous optimization of cultivation planning, transport times can be reduced overall. 

This could be very useful from the perspective of landscape planning and land consolidation 

(Harasimowicz et al., 2017). However, using an SDVRP model for route planning places very 

high demands on databases and computing power. As previously mentioned, SDVRP models 

are often NP-hard. Therefore, they cannot always be optimally solved even based on small 

model sizes. This has already been shown in the model runs of the present study. 

Accordingly, for more extensive applications, specialized SDVRP algorithms are required. 

Here, the two-phase algorithm according to Jin et al. (2007) and the integration of tabu search 

by Archetti et al. (2006) should be mentioned. State-of-the-art SDVRP algorithms are capable 

of solving problems with up to 288 subjects (fields) within a timeframe of 1,422 s (Archetti et 

al., 2011a). Other routing problems with only 41 subjects are still not solvable within 7,200 s 

(see study by Ozbaygin et al., 2018). Numerous farms surpass such limits. Implementing such 

a specialized algorithm in a large DSS would tremendously increase the problem size. Due to 
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the complexity of such models, however, it is debatable whether the additional optimization 

potential can be achieved due to the exponential increase in model size.  

Another factor for discussion is the database of the present study. We generated data on farm 

infrastructure based on informed guesses. This approach was necessary because access to 

empirical data was not possible. Although our dataset is plausible, it would be sensible to 

repeat the analyses with empirical data in the future. As already mentioned, the prerequisite 

for an SDVRP model is a table containing complete farm–field and field–field distances. A 

GIS-based tool developed by Machl et al. (2016) could facilitate the generation of a suitable 

dataset. Another challenge is processing the empirical data within an SDVRP model because 

the farm size has a significant impact on whether the solver is able to find a solution or not. 

This is a barrier not only for an empirically grounded analysis but also for application within a 

DSS at a farm level. The feasibility of the SDVRP method is currently low. In agriculture, it 

is not always prudent to implement the routing guidance of an SDVRP model. An example is 

the traffic carrying capacity of the soil. It could influence whether a field can be driven on 

with a full spreader or not. In addition, farmers would not be able to realize the optimal route 

in numerous cases due to various external factors. 

3.5 Conclusions 

We present three potential strategies for determining farm-specific application costs for 

mineral fertilizers. In principle, all of them can be integrated into a DSS for optimized 

fertilizer application planning. The selection depends on the available data and the goal of the 

optimization tool. The regression method is particularly suitable for the optimization of 

fertilization at farm level. Estimating the transport times provides a good indication of the 

costs of fertilizer application, and the number of input parameters required is manageable. 

Under circumstances where the farm-specific input data is not available, the ZTC method 

provides acceptable results. If transport time is an important factor at the farm level (e.g. 

widely distributed fields), the ZTC method is not appropriate. The SDVRP method is 

resource-intensive in terms of computational power and input data requirements. It has the 

potential to generate optimal fertilizer strategies and simultaneously reveal the optimal route. 

The method could facilitate the saving of transport resources. It also has great potential in the 

optimization of future applications. However, under current conditions, the potential cannot 

be exploited adequately. In contrast, the DSS would reach a new level of complexity and thus 

often cannot be solved to our satisfaction.  
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The use of SDVRP for fertilizer application decisions contributes to literature on transport 

issues in agricultural contexts. The relevance of the original question could be extended to 

further working procedures. Therefore, a direct transfer to the application of plant protection 

products or grain sowing would be appropriate. 
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3.6 Appendix 

Table A 3-1: Farm-specific parameters and variables that influence fertilization costs. 

 Explanation        Data Unit 

ST Setup time (per fertilizer and month of use)    1.25 h 

WE Wage entitlement        €20.00 h
−1

 

WS Ø Working speed in the field      12.00 km h
−1

 

WW Working width        21.00 m 

Q Volume of the fertilizer spreader     20 hl 

TT Turning and lost time on the field working time (*SD)  20% 

VS Variable costs of the fertilizer spreader (*SD)   €0.015 hl
−1

 

VT Variable costs of the tractor (*SD)     €12.97 h
−1

 

VL Variable costs of the load vehicle (*SD)    €12.97 h
−1

 

LT Loading time per spreader filling     0.2 h 

TF Time required to run all fields one after another   1 h 

SW Specific weight of the fertilizer     75 – 170 kg hl
−1 

FDi Farm–field distance table for each field (Index i)   var. min 

HAi Plot size for each field (Index i)     var. ha 

ar Application rate per hectare within each fertilization measure var. kg ha
−1

 

nf Number of fertilized fields within each fertilization measure var. pcs. 

hf Fertilized acreage within each fertilization measure   var. ha 

tx Time for all farm–field trips within each fertilization measure var. h 

ty Time for all field–field trips within each fertilization measure var. h 

Note: The parameters are abbreviated in capital letters and the variables in lower case. *SD = Secondary data. 
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Table A 3-2: Sets, parameters, and variables for developing an SDVRP model at farm 

level. 

Sets 

j Designation of the field plots (F1–Fn) and the farm (B)  {B, F1… Fn} 

ij  Subset of j; all field plots      {F1… Fn} 

hj Subset of j; field plots for one planned fertilization measure  hj ⊆ ij 

v Number of possible tours with a maximum of M tours, e.g.,  {T1…TM} 

 
1 2jj i

M A ha Q


    
   

vvv Dynamic subset of v, with the minimum number of tours L  {T1… TL}; vvv ⊆ v 

 
1

jj h
L A ha Q


   
   

Alias 

k Alias for Set j 

Parameters 

A 
1A ar SW    fertilizer quantity in hl per hectare   ϵ Z+ 

Q Volume of the fertilizer spreader in hl    ϵ Z+ 

haj Field size of the field plots      ϵ Z+ 

cjk Distance between two points      ϵ Z+ 

Variables 

xvjk  Tour planning; x = 1 means run from j to k, where j ≠ k  xvjk ϵ {0,1} 

yvj  Indicator for visiting fields       yvj ϵ {0,1}; yvv0 = 1 

uvj Dummy variable for limiting sub-tours    uvj ϵ Z+ 

wvj Fertilizer application per tour and per field     wvj ϵ Z+; wv0 = 0 

obj obj tx ty  ; Objective value = Distance in minutes   Minimize! 
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Input of Table A 3-2 is used in line with Jin et al. (2007) to build the following SDVRP: 

Min 0 0 1

n n M

vjk jk

j k v

obj x c
  


 0,1,... ; 1,2,...j n v M   (3-13) 

s.t. 0 0

n n

vjk vkj vj

k k

x x y
 

  
 , 1, 2,... ; 1,2,...j k n v M   (3-14) 

 
1vj vk vjku u nx n   

 , 1, 2,...j h v M   (3-15) 

 
 vj j vjw ha A y

 j h  (3-16) 

 

 
1

M

vj j

v

w ha A



 1,2,...v M  (3-17) 

 0

n

vj

j

w Q



  (3-18) 

The total transport time of the fertilizer measure is minimized by the target function (3-13). 

The restrictions (3-14) facilitate proper tour planning. Each element of j, which is visited once 

within a tour, must also be departed from again. The binary variable yvj is assigned with the 

value 1 if a field is actually visited within the tour. The restrictions (3-15) ensure that the 

number of sub-tours within a tour does not exceed the accepted maximum. Due to the 

inequalities (3-16), a fertilizer delivery wvj is only possible if the corresponding field yvj has 

actually been visited in the tour. Restrictions (3-17) and (3-18) ensure that the total demand 

for fertilizer in all fields is satisfied and the maximum volume of the fertilizer spreader is not 

exceeded within the individual tours. 
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4 IoFarm: A novel decision support system to reduce fertilizer 

expenditures at the farm level 

This is a pre-copyedited, author-produced version of an article published in Computers and 

Electronics in Agriculture following peer review. The version of record [Michael F. Tröster 

and Johannes Sauer (2021): IoFarm: A novel decision support system to reduce fertilizer 

expenditures at the farm level. Computers and Electronics in Agriculture 188] is available 

online at: https://doi.org/10.1016/j.compag.2021.106322.  

Authors’ contributions: Michael Tröster is the main author of this contribution. Michael 

Tröster developed the research question and worked out the conceptual framework. Michael 

Tröster designed the decision support system, conducted the programming and the 

performance evaluation and wrote the manuscript. Johannes Sauer contributed in the 

development of the conceptual framework and was helpful in reviewing and editing of the 

manuscript. Johannes Sauer provided supervision and software resources. The authors would 

like to thank the editor and referees for their useful comments. 

Abstract 

Farmers and consultants make the best use of existing resources to increase profitability, and 

this begins at the operating resources level. Existing literature primarily deals with the optimal 

intensity of fertilization. A multitude of different fertilizers, with fluctuating price ratios, 

however, promises an additional economic optimization potential that can be achieved by 

cleverly combining these fertilizers to form a least-cost combination. This potential is 

extended if individual costs of fertilizer application are considered in parallel. The objective 

of the IoFarm decision support system is to take up this overall complex and to determine 

individual fertilizer strategies for farms, which also determines the economic optimization 

potential. In terms of methodology, the solution to this problem is based on mixed integer 

nonlinear programming (MINLP). The restrictions and parameters used for this were taken 

from the literature and where necessary were derived in a simplified form in order to keep 

usability a practical tool. The subsequent evaluation of the economic performance was carried 

out by conducting an experiment. The participants were asked to define a fertilizer strategy 

for a simplified farm with three fields and three crops over three years. Despite the 

considerable amount of time it took the testers to conduct this investigation, IoFarm 

performed 19% better in terms of costs. Our results show surprisingly clearly the complexity 

https://doi.org/10.1016/j.compag.2021.106322
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of this decision-making process and the previously unused monetary and time optimization 

potential behind it. The agronomic performance of IoFarm has already been confirmed in 

another study. 

Keywords 

Decision support tool, sustainable intensification, fertilizer recommendation, fertilizer 

application; profit maximization, least-cost combination, economic modeling 

4.1 Introduction 

Recent literature focuses on efficiency and sustainability of fertilization, and fertilization has 

also become a topic of social interest. The farm manager’s primary goal is profit 

maximization. Figures from the Bavarian agricultural state institute (LFL) show that the 

average proportional costs of fertilizer measured against the variable costs of winter wheat 

production—ignoring factor costs—were 30% (Schätzl et al., 2019), which highlights the 

significance of an optimal fertilizer strategy in order to maximize farm profit. 

Earlier economic studies (Mitscherlich, 1909; Baule, 1954; Kling, 1985; Smit et al., 2000) 

also took up this topic, but the authors’ approaches and priorities differ, which is not 

surprising, since farm profit is influenced on two levels: (i) the optimal intensity of inputs 

(nutrients) and (ii) the least-cost combination of substitutable inputs (fertilizers). The second 

aspect is only covered by a few studies, which are reviewed in Section 4.3. In our opinion, 

this aspect deserves closer attention from an economic point of view: 

• A variety of single and compound fertilizers is available on the market 

• Continuous change in price relations 

•  Interdependence between fertilizer strategy and total application costs 

To achieve an optimal fertilizer strategy, it is necessary to simultaneously care about the 

optimal intensity and the least-cost combination of inputs. The goal of this study is to develop 

a decision support system (DSS) at the farm-level capable of meeting these expectations. 

Furthermore, product and input prices as well as environmental influences are dynamic, 

which is why the DSS needs to consider these inputs dynamically as well. Additionally, two 

more features will differentiate the DSS from existing tools: (i) the system considers the 

nutrient demand of an entire rotation and (ii) application costs are included in the optimization 

process. 
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Since the factors and conditions for each farm are different, for example, the availability of 

organic fertilizers or rotation and yields, an optimal fertilizer strategy is always farm specific. 

IoFarm addresses this problem at the farm level and farmers benefit through increased profit. 

In addition, outsourcing this problem causes a reduction in valuable management time. 

IoFarm helps to reduce the input of resources, such as energy or fuel, which is also a valuable 

benefit for society. 

4.2 Conceptual framework 

The starting point is the economic principle of utility maximization. We apply a common 

framework and replace utility with profit and the according target function is as follows: 

 ( ) ( ) ( )x R x C x    (4-1) 

Profit π is dependent on a revenue- and cost-function of fertilizer input x. 

   ( )R x p y x   (4-2) 

Revenue R is calculated by product price p, multiplied by product quantity y. 

 
1( ... )ny f x x  (4-3) 

The product quantity is a function of several inputs xn. Relevant to us is the input of different 

fertilizers needed to fulfill the nutritional requirements of y. 

 ( ) ( ) ( )C x q x m x     (4-4) 

C is the corresponding cost-function, with fertilizer price q and fertilizer application costs m, 

each multiplied by the fertilizer quantity x and summarized. 

 
1( ... )nx f x x  (4-5) 

 
1( ... )nm f x x  (4-6) 

Fertilizer quantities x as well as application costs m are dependent on the factor combination 

of x represented in functional form. Application costs will influence profit maximization. 

High application costs will favor fertilizers with a high nutrient content. Application costs are 

a neuralgic part of this optimization problem, and they depend heavily on individual farm 

infrastructure. Further information according to the functional form and relevance of 

applications costs are in Tröster et al. (2019).  
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To answer our research question, we need to identify the optimal nutrient input and the 

cheapest combination of fertilizers. This concept is known as the expansion path and is 

displayed in Figure 4-1 in different variants. 

  

  

Figure 4-1: Expansion path: a) Standard theory b) linear isoquants c) modified to 

optimize the fertilizer strategy at the farm level d) isolated view on an isoquant 

separated by nutrients. 

Figure 4-1a shows the standard version of this concept, with curved isoquants and linear 

isocost lines. This concept is true for the case of two factors with a decreasing substitution 

rate. Literature defines two more isoquants applicable for our research question: (i) isoquants 

with a linear substitution rate and (ii) isoquants with a limiting relationship of factors 

(Debertin, 2012b, pp. 151–178). The first option is true if we focus on a single nutrient and 

compare two completely substitutable fertilizers (Figure 4-1b). The course of the isoquants 

and isocost lines is linear and this will result in a single fertilizer solution. But as we know, 

plants need multiple nutrients in parallel. Figure 4-1c shows this in the form of two compound 

fertilizers containing different concentrations of nitrogen (N), phosphor (P) and potash (K) in 

a fixed composition. Fertilizer x1 is an NPK 20 7 7, fertilizer x2 an NPK 15 15 15. A linear 

substitution between these two fertilizers is possible up to a certain point where one of the 
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nutrients becomes limiting. At this point, there is a kink in the course of the isoquant (Figure 

4-1d). This kink indicates a “technical efficient combination” (Mußhoff and Hirschauer, 2013, 

p. 167) of both fertilizers. To identify the least-cost combination, we need to add isocost lines, 

which are usually assumed to be linear, which will change as soon as we also consider 

application costs. Fertilizer applications costs are nonlinear (Tröster et al., 2019). Thus, the 

course of these isocost lines cannot be generalized. Knowing that a combination of fertilizers 

increases application costs, it is clear that the isocost line is closer to the origin in this type of 

case. We decided to display this relationship by integrating a bent isocost line in Figure 4-1c. 

Due to the irregularly shaped isocost lines and isoquants, the optimal input combination 

jumps between the different levels of input intensity. Linking the least-cost combinations, we 

obtain the expansion path indicated in Figure 4-1c by a sequence of arrows. 

As part of the expansion path, the functional form of the input and output relation is important 

for determining optimum input intensity. Crop response functions to nutrients are usually 

expressed as linear with an upper limit, quadratic or as asymptotic functions (Frank et al., 

1990). This study uses a linear function with an upper limit to describe the relation between 

nutrient inputs and product output.  

After transformation into a revenue function, Figure 4-2a shows this concept of the “broken 

stick” in combination with linear costs for fertilization. The upper limit is either defined by a 

nutrient in minimum or by a local yield potential. The economic optimum is reached when the 

slope of costs is equal to the slope of revenues. If all nutrients are sufficiently available, the 

economic optimum in this case also corresponds to the revenue maximum (yield potential 

times price). But, as previously mentioned, costs for fertilization—including application 

costs—are nonlinear. Figure 4-2b provides an example of this. Here again, the economic 

optimum is defined by comparing the slopes of the cost and revenue function. The yield 

potential is not reached due to an increase in fertilization costs. This increase could be 

explained by a necessary change in the fertilizer strategy. The concept in Figure 4-2b provides 

the possibility of specifying the optimal nutrient input intensity, whereas a concept with linear 

costs is only able to use the yield potential either completely or not at all. 
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Figure 4-2: Linear crop revenue function with an upper limit. 

 “Under a given input price relation and production technology, the expansion path shows the 

cheapest possibility to expand production” (Mußhoff and Hirschauer, 2013, p. 169). 

Assuming the output price, we are able to transform the expansion path into a profit function 

to identify the optimal factor input. This optimum is valid for the intensity and the least-cost 

combination of inputs. Of course, price changes or an adjustment in production technology 

will lead to a new optimum. Finding this optimum is important for profit maximization, but a 

huge variety of fertilizers and volatile prices complicate the solution process in actual 

practice. Operations research (OR) is a scientific field that specializes in this type of complex 

issue. The classical problem-solving process according to (Mariappan, 2013, chapter 1.5) is as 

follows: Formulate the problem (verbal model), construct the mathematical model, verify the 

model, implement and evaluate recommendations. DSS often fall back on OR and this 

problem-solving process. For the practical usability and acceptance of a DSS, Rose et al. 

(2016) determine several demands. Of special relevance are: performance expectancy; ease of 

use; trust and relevance to user. 

4.3 Existing tools 

A large number of tools for fertilization planning are available all over the world. These tools 

differ in objective, quality, origin (scientific, commercial or private), etc. This section covers 

a selection of DSS relevant to farmers and is classified into: (i) tools identifying nutrient 
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demands and (ii) tools blending a fertilizer or proposing a fertilizer strategy. Subsection (iii) 

differentiates IoFarm from the explored tools. 

4.3.1 DSS identifying nutrient demands 

These kinds of tools are built to identify the nutrient demand of crops or entire crop rotations. 

The “ImageIT” (Yara International ASA) mobile app uses pictures of crops to estimate the 

current N demand in kg per hectare. Optical sensors added to machines, such as the 

“GreenSeeker” (N Tech Industries), “N sensor” (YARA) or “Crop sensor ISARIA” 

(Fritzmeier Umwelttechnik & Claas), are able to do the same thing in real time, which is 

important for sub-area fertilization. “Fertilizer Removal by Crop” (IFA Productions Inc., 

2012) allows the user to select a crop, insert an expected yield and the program returns the 

corresponding nutrient demand. This kind of simple application is popular, but the utility is 

limited. Since fertilization is regulated in many countries, there are also official tools 

specialized institutes provide. For example, a Bavarian farmer has to determine the nutrient 

requirements for his crops according to a scheme provided by LFL (Offenberger and 

Wendland). This scheme helps to identify the nutrient demand of crops after taking 

environmental effects and organic fertilization into account. Selecting fertilizers and 

allocating them is up to the farmer. This kind of fertilization planning is currently the usual 

approach for the average Bavarian farmer. 

4.3.2 DSS blending a fertilizer or proposing a fertilizer strategy 

These tools go beyond building on identifying nutrient demands. Babcock (1984) studied the 

optimal fertilizer composition to satisfy the nutrient demand for a single crop. His tool, based 

on linear programming, provided the user with a blending scheme to obtain a least-cost 

compound fertilizer. Recent studies have come up with comparable tools. “Optifer” (Pagán et 

al., 2015) and “Ecofert” (Bueno-Delgado et al., 2016) are designed for use in fertigation 

systems. They calculate the cheapest possible mix of fertilizers to get a nutrient solution that 

meets the needs of a single crop. “Fertilizer Optimizer” (Jansen et al., 2013) is a mobile 

application specialized for African countries. It helps to find an optimal fertilizer strategy 

within a limited budget. The outcome does not include a time schedule for the fertilizer 

application. Commercial farm management systems (FMS) built an own category of tools. 

They are widely used and therefore have a high impact on modern farm management. They 

usually include modules for whole-farm fertilization planning. The FMS “365FarmNet” 

(365FarmNet GmbH) contains the “YARA Plan” (YARA GmbH & Co. KG). This instrument 

proposes a fertilizer strategy based on own-company products. The user receives information 
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regarding which fertilizer to use, including its quantity and timing. “NextFarming,” another 

FMS, offers a module called “NextDüngeplanung” (FarmFacts GmbH). According to the 

description, the tool uses linear programming to identify a preferable selection of fertilizers, 

but more than this is not revealed. Input parameters and output show that the tool aims to 

balance site-specific nutrient demand annually, adjusted against the previous year’s nutrient 

balance, which hampers basic fertilization in advance or at the end of a rotation period. The 

tool adds up the costs for fertilizer, but neither these costs nor the costs for application are 

included in the optimization process. “Smart Fertilizer” (Smart Fertilizer Management) is a 

commercial web application that specializes in optimizing fertilization in multiple farming 

systems. Similar to the previous tool, it provides a site-specific fertilizer schedule. The 

optimization mechanism and the included restrictions are not accessible to the user; thus, our 

analysis is based on input and output. To our knowledge, site-specific application costs as 

well as an aggregated basic fertilization within a rotation period are not adequately addressed. 

4.3.3 Differentiation from existing tools 

The following bullet points describe the functionality of IoFarm: 

• Selection of fertilizers as per least-cost combination 

• Allocation of fertilizer doses, considering growing stage and crop demands 

• Dynamic input of yield expectations, market prices and site-specific parameters 

• Observation period: three years in advance 

• Observed nutrients: N, P, K, S, Mg and pH balancing 

• Enables the aggregated use of P, K, Mg and liming within a rotation period 

• Site-specific nonlinear fertilizer application costs are considered 

The last two bullet points are what distinguishes IoFarm from other tools. The possibility of 

an aggregated basic fertilization and the consideration of application costs at the field level 

are unique. On the one hand, IoFarm has more open space to allocate basic nutrients during 

the rotation, which generates additional optimization potential. On the other hand, application 

costs are added to the target function, which influences fertilizer selection as well. 

4.4 Design requirement and meta-planning 

Following the typical OR problem solving process, this section collects and describes the 

requirements of the IoFarm optimization model in verbal form. The verbal model serves as a 
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guideline for the subsequent mathematical model. To maintain usability, it is sometimes 

necessary to simplify the approach. The trade-off between scientific demands and practicality 

will be the subject of discussion at the corresponding position. 

4.4.1 Price relationships and fertilizer information 

In order to guarantee an extensive optimization potential, it is necessary to include all relevant 

fertilizers, which also includes the following information: price, nutrient content, N form, 

specific weight and acidification potential (appendix: Table A 4-2, Table A 4-3 and Table A 

4-4). In order to guide the DSS on the expansion path, price updates for fertilizers and 

products are important. We decided to ask regularly for fertilizer quotes. The price estimation 

of harvest products is based on commodity futures less the transport costs to spot market. 

4.4.2 Weather 

Weather is a key factor in fertilization and a lot of decisions in farming depend on weather 

conditions. IoFarm uses weather information to derive N mineralization and nitrate leaching 

(see Section 4.4.4). Determining factors are soil temperature and the climatic water balance 

(CWB). The CWB expresses the connection between rainfall and evaporation. A negative 

value indicates that the evaporation is greater than the rainfall over a certain period of time. 

Both parameters are constantly recorded by common weather stations. The data is available 

online (Agrarmeteorologie Bayern, 2019). Site-specific weather conditions for an upcoming 

month are considered by averaging values based on long term records from the closest 

weather station. These average weather parameters are updated with the real values for the 

previous month. 

4.4.3 Legal restrictions 

In the European Union, the use of fertilizers is regulated by state legislation. The German 

sectoral legislation (BMEL, 2006) is supplemented by federal regulations (Wendland et al., 

2018), amended in 2016 with entry into force in 2017. There is still ongoing work in some 

affected regulations. For this reason, we did not consider legal restrictions for the moment. At 

any rate, IoFarm is conceptualized to be of fundamental interest to farmers worldwide. In this 

regard, implementing country-specific legal restrictions before using IoFarm in actual practice 

is unavoidable. 
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4.4.4 Plant and soil 

Plant needs and the soil properties are key factors for a successful fertilizer strategy. 

Sustainable plant nutrition has to consider multiple nutrients, particularly N, P, K, Mg, S and 

a compensation of acidification through liming. N and S are vulnerable to leaching and should 

be placed close to the crop demand. On many soils, P, K, Mg and lime are suitable for 

preliminary fertilization (Finck, 2007), which leads also to a difference in managing these 

nutrients in actual practice. 

Basic fertilizer management and pH balancing 

Preliminary fertilization offers additional optimization potential, and a holistic concept has to 

consider the demands of whole-crop rotation for these nutrients. The option of preliminary 

fertilization requires a multi-period model. P, K and Mg demands equal the amount of 

nutrients removed by the entire crop rotation, though differences in soil fertility must be 

respected. The soil fertility is determined through soil testing and categorized in five levels 

ranging from “Very poor” (level A) to “Very high” (level E). When determining nutrient 

requirements, nutrient levels on poor soils are enriched by adding a supplement and vice 

versa. This approach is intended to balance soil fertility. For details, refer to (Wendland et al., 

2018, pp. 27–31). Similar approaches can also be found in (Zorn et al., 2007, pp. 58–66). In 

addition, it is good agricultural practice to forgo the optional preliminary fertilization in case 

of poor soil conditions. Instead, the lacking nutrient should be applied on an annual pattern to 

maintain the yield potential. 

Some fertilizers cause the soil to become acidic, and this acidification has to be balanced by 

adding lime, unless the soil pH is unfavorably high, anyway. Acidic fertilizers lead to 

increased lime demand and thus acidification is important information in order to identify the 

least-cost combinations of fertilizers. 

General aspects of N fertilization 

The N supply during vegetation should preferably adapt to the N uptake of the crop. To 

control for that, we need to estimate the N uptake of the crop and the N dynamics of the soil. 

Literature provides several models dealing with this. Typical models are “HERMES” 

(Kersebaum, 1989), “DAISY” (Abrahamsen and Hansen, 2000; Hansen et al., 1991), 

“WAVE” (Vanclooster et al., 1996) and “MONICA” (Nendel, 2014). Integrating these kinds 

of specialized models is preferable from a scientific viewpoint. In practice, this is hampered 

by the necessary input parameters. Temporal and financial expenditures for data collection 

remain in conflict with conditions for a DSS of high usability (Rose et al., 2016). These 
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circumstances require a pragmatic approach to estimate the N uptake and N dynamic based on 

data available from the usual operating procedure in plant production. 

 

Figure 4-3: Cumulative N uptake of winter wheat and soil N dynamics. 

(Oct I = October of seed year; Jul II = July of harvest year; VegE = End of vegetation period; VegA = Start of 

vegetation period; BBCH = Code for growing stage (Meier, 2018)) 

Figure 4-3 displays this approach by means of winter wheat production. Until BBCH 13 

(three leaves unfolded), winter wheat is able to cover his N uptake (solid line) out of the N 

depot available from the grain (Lütke Entrup, 2000, p. 299). At the same time, there is usually 

a big pool of residual N available in the soil (N soil = dotted line) and there is no need for 

additional N fertilization. N soil is the source for N uptake and negative N soil levels are not 

feasible. Furthermore, during the start of vegetation (VegA), we recognize a need for N 

fertilization to fill up the minimum level of N soil. From VegA until flowering (BBCH 63), it 

is necessary to hold this minimum N soil level. Doing otherwise would lead to a lack of N and 

thus reduce the yields. In addition, the N soil level is also influenced by N losses (leaching = 

vertical lines), N mineralization (mineralization = diagonal lines) and N fertilization 

(horizontal lines). Less relevant and omitted due to their opposite effects are N deposition and 

denitrification. 
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Estimating the N uptake of plants 

To cover the N uptakes of wheat, barley and maize, we had to summarize the findings of 

Lütke Entrup (2000, p. 229), Reiner and Dörre (1992, p. 91), Waldren and Flowerday (1979, 

p. 396). This result in a percentage N uptake is assigned to important growing stages. To use 

this information in different growing years, a dynamic assignment of growing stage and 

growing month needs to be made within a season. This approach helps to fit the N uptake to a 

calendrical basis and enables the model to combine fertilization measures carried out in 

different crops at the same time, which may be beneficial due to reduced application costs. 

To transform this percentage value into a monthly N uptake, we need to know the total 

demand per season, which is ideally expressed by a crop yield response function to N. There 

are many studies (for example: Grimm et al., 1987; Bäckman et al., 1997) dealing with this 

topic, but N dynamics within the soil and local conditions such as soil quality are not 

consistently observed. As a result, the emerging response functions are valid solely for the 

analyzed locations and the corresponding year. To overcome this, we put crop yield in context 

with the N content of the entire plant, including roots. The N content of the roots is derived 

from the N content of straw (cereals) or the entire plant (silage maize) as published by 

Wendland et al. (2018, pp. 77–78). With reference to Lütke Entrup (2000, p. 298), we expect 

that the dry matter of cereal roots equals 20% of the dry matter of grain and straw. In case of 

silage maize, this value is reduced to 10%. Thus, we obtain a linear relationship between yield 

and N uptake: 

• Winter wheat = 2.46 kg dt
−1

 at 86% DM 

• Winter barley = 2.30 kg dt
−1

 at 86% DM 

• Silage maize = 1.40 kg dt
−1

 at 100% DM 

This linear concept of yield and nutrient demand was introduced earlier in Figure 4-2. To 

exclude implausible yields, an upper limit in the form of yield expectation is necessary. This 

upper limit is defined by the farmer and can be adjusted monthly. Of course, misjudgments 

are a serious external factor that can negatively impact the entire system. However, farmers 

can adjust their estimates at very short notice. 

Now it is important to distinguish between N uptake and N fertilization. Higher yields and 

thus higher N uptake require a disproportionate supply of N (compare Mitscherlich, 1909). 

An increasing N fertilization favors N losses and may influence the N dynamic in the soil in 



70 Chapter 4  

 

general. To obtain a customized recommendation for N fertilization, we need to estimate the 

following side effects: 

• Gaseous N emissions at fertilizer application 

• Transformation speed of different N Forms 

• N losses by nitrate leaching 

• N mineralization 

Estimation of gaseous N losses after fertilizer application 

Typical chemical forms of N in fertilizers are nitrate, ammonium and urea. After fertilizer 

application, urea and ammonium will transform into nitrate. This process is accompanied by 

gaseous N emissions in the form of ammonia. The amount of N emissions heavily depends on 

environmental conditions and thus literature reports N losses on different levels (Hutchings et 

al., 2019; Kreuter et al., 2014; Ni et al., 2014; Sommer and Jensen, 1994). There is a 

consensus that urea is more sensitive to gaseous N emissions than ammonium. After 

evaluating different references, gaseous N emissions of urea are defined at 11.5% and for 

ammonium these losses are 8.5%. These parameters are easy to adapt to individual conditions 

or new insights. 

Estimating the transformation speed of various N forms 

The duration of the transformation from urea or ammonium to nitrate is termed “N speed.” As 

we know today, plants are able to use urea and ammonium directly. But the crop response is 

delayed in comparison with nitrate. Fertilizers with nitrification inhibitors slow down the N 

speed even further. To make sure that the crop’s N uptake is always covered by available N, 

only nitrate is considered as fully available. This approach is particularly important at the start 

of the growing season where low soil temperatures reduce the speed of transformation. N 

speed is dependent on the original N form, soil temperature (Vilsmeier and Amberger, 1980), 

soil moisture, soil pH value and the use of nitrification inhibitors (NI) (Chen et al., 2015; 

Herbst et al., 2006; Irigoyen et al., 2003; Zerulla et al., 2001). Under Central European 

conditions, N form, soil temperature and the use of NIs are the main drivers for N speed. 

Therefore, we refer to the research of Vilsmeier and Amberger, who show the relationship 

between soil temperature and N speed. An increase in soil temperature does facilitate the 

transformation speed considerably. Since their findings are based on only three different soil 

temperatures, we had to estimate the intermediate values. To do this, we used an OLS 

regression. For the transformation speed of amides to ammonium, the best coefficient of 
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determination was obtained using a logarithmic functional form (Eq. (4-7); R2=0.9987). The 

transformation speed of half of the ammonium to nitrate, however, was better represented by 

an exponential function (Eq. (4-8); R2 = 0.9832): 

 1.292 ln( ) 4.9142
Amide Ammonium

TS ST


     (4-7) 

 1.338
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TS represents the transformation speed in days, either for amide to ammonium or for 50% of 

ammonium to nitrate depending on the soil temperature ST in degrees Celsius. Specialized 

models such as DAISY (Abrahamsen and Hansen, 2000) could provide a better estimation, 

but need much more input. Zerulla et al. (2001) demonstrate that NIs considerably diminish 

the transformation speed from ammonium to nitrate. Low soil temperatures support the effect. 

Their study compares the effect of NIs at three levels of soil temperature. Using several linear 

OLS regressions, we determined for each temperature level by what factor the use of NI 

reduces the transformation rate. These factors were applied to the results of Vilsmeier and 

Amberger, resulting in Eq. (4-9): 
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Based on this information, IoFarm selects appropriate N fertilizers and separates N 

fertilization into reasonable doses. Special annual conditions such as a low soil temperatures 

or a rapid crop growth will be answered with an adjusted N fertilization. 

Estimation of nitrate leaching 

The relationship between CWB (see Section 4.4.2) and nitrate leaching is often described in 

studies on nitrate leaching (compare Büchert et al. (2001) and Anger et al. (2002)). In a 

monthly comparison of CWB and nitrate leaching, e.g., in Anger et al. (2002, p. 644), it is 

obvious that in phases with low CWB, nitrate leaching is also reduced or stops. 

According to a worldwide meta-study by Zhou and Butterbach-Bahl (2014), the average 

leaching losses of maize are 23% in relation to the N fertilization applied and 17% for wheat. 

Büchert et al. (2001) showed the nitrate leaching for maize in a study from Schleswig 

Holstein. Depending on the intensity of the fertilization, leaching ranged from 16% to 28% in 

terms of N applied. In our view, a corridor of 0% to 30% of the leaching losses can be 

observed. We use this corridor in conjunction with monthly values for CWB to estimate the 

nitrate losses over time based on the following assumptions: A CWB less than or equal to −80 
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means there is no leaching. Leaching increases linearly as CWB increases. The upper limit of 

the corridor is reached at a CWB greater or equal to 130, which means that 30% of the soil N 

is lost due to leaching within a one-month period. Despite clear correlations, we are currently 

unable to prove our assumptions. However, several arguments have led us to apply this 

scheme for estimating nitrate leaching: (i) The reduction of input to CWB increases usability; 

(ii) Under Central European conditions, only a small part of the leaching takes place during 

vegetation; (iii) Inaccuracies are compensated by soil testing twice a year. 

Estimation of N mineralization 

Mineralization is affected by the organic N pool in the soil, soil pH, soil temperature and 

moisture (Heumann et al., 2013, p. 399). The cultivated crop itself has also an impact (Seith, 

2015). We expect that the monthly rate of N mineralization can be estimated thru: (i) a 

sitespecific mineralization potential, (ii) a crop-specific mineralization factor and (iii) soil 

temperature. We assume that N mineralization is stopped at a soil temperature equal to or 

lower than zero degrees Celsius. Following vańt Hoffś rule, mineralization is doubled by an 

increase in soil temperature of 10 Kelvin: 
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 (4-10) 

Q = Reaction speed factor corresponding to a temperature increase of 10 Kelvin; Rn = Reaction speed at soil 

temperature STn 

To avoid division by zero, R1 has to be 1 at a soil temperature of 0° C. To double 

mineralization by a temperature increase of 10 Kelvin, Q has to be 2. Knowing these 

parameters, we are able to restructure the formula toward R2: 
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Inserting a soil temperature (ST2) of 0° C would result in an R2 value of 1. But, as already 

mentioned, we assume that N mineralization stops at this point. Under Central European 

conditions, an increase in soil temperature is often linked to a decrease in soil moisture. Both 

a lack of water and a transgression of the biological temperature optimum hamper further 

facilitation of N mineralization. To cover this, R2 needs to be manipulated as follows: 
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R2 is 0 for a soil temperature equal to or lower than 0° C. With increasing soil temperature, 

the mineralization rate speeds up, reaching its upper limit for R2, which is 2 at a soil 

temperature of about 16° C. Based on average soil temperatures, we calculate a site-specific 

value for R2 every month. The sum of all R2 values over a year is equal to 100%, which 

enables us to interpret the monthly R2 values as a percentage value. Multiplying (i) the annual 

mineralization potential in kg per hectare with (ii) the crop-specific N mineralization factor 

and with (iii) the percentage value of R2, we obtain an estimate for the monthly N 

mineralization for a specific place underneath a specific crop. 

Calibrating the N dynamics 

The above system reproduces the N dynamics on a monthly scale. Estimates for N uptake, N 

losses, N mineralization and N speed are used to calculate the N soil level for each month. 

The N fertilization is the only external variable in this system. It is also the only variable with 

which we can directly influence the relationships shown in Figure 4-3. N fertilization controls 

the N soil level and thus the availability of N for plant nutrition. Of course, the reliability of 

this approach suffers from a lot of estimates and assumptions. Therefore, the calculated N soil 

level is updated based on soil testing results. Soil testing takes place well in advance of the 

first N fertilization and post-harvest. This approach minimizes possible shortcomings to an 

acceptable level, which is a good trade-off between usability and accuracy. 

Calibration should be carried out using an established N fertilizer system before using this 

system on a farm for the first time. Our empirical example relates to Bavaria, so we use the 

official system (Wendland et al., 2018, pp. 26–30) established there to calibrate IoFarm. 

Calibration is necessary to adjust the site-specific N mineralization potential as well as the 

mineralization factors for different crops relative to winter barley. Due to this calibration, the 

level of total N fertilization is well adapted to the reference system. We use the OLS method 

to calibrate the system. The residual values are developed by comparing the suggested 

fertilizer level of IoFarm and the reference system. The sum of these error squares is 

minimized by changing the calibration factors. After an initial calibration, IoFarm is ready to 

use for the corresponding farm. 
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Estimating the S demand 

The S demand for crops is usually covered by sulfate, which is very susceptible to leaching. S 

should therefore be applied during the vegetation period and parallel to the main N uptake. To 

ensure this, a percentage link between total N uptake and S demand, in combination with a 

suitable time window for a useful S fertilization, is needed. The practical recommendation for 

S fertilization is around 20 kg per hectare for the crops mentioned. With a ratio of 1 to 10 

between S fertilization and N uptake, our crops are allocated around 20 kg of S per hectare 

per year. To satisfy the needs of other crops, this ratio needs to be crop-specific and 

adjustable. 

4.4.5 Further restrictions 

The feasibility of model decisions may be hampered due to unforeseen external effects. 

Affected restrictions may significantly limit the optimization potential. Example: A fertilizer 

application scheduled for March could fail due to the soil’s insufficient traffic-carrying ability 

or a labor shortage. The omitted fertilization in March mathematically points to the fact that 

the appropriate restriction is not fulfilled as expected. The consequence would possibly be a 

drastic decline in the modeled yield expectation. But a temporary lack of nutrients does not 

immediately reduce the yield potential. Plants are able to compensate for a temporary 

shortage and missing nutrients are absorbed at a later point. To achieve this flexibility within 

IoFarm, it is necessary to exclude certain former restrictions, for example, the monthly N 

restriction. The N demand for March is no longer important in April. Instead, higher-ranking 

restrictions ensure that the total nutrient demands within a growing season (N, S) or an entire 

rotation (P, K, Mg) are satisfied. Temporary shortages in the past are then covered by an 

additional supply of nutrients. This procedure is also important to enable a subsequent 

increase in yield expectations, for example, due to good weather conditions. Because the 

farmer regularly updates his yield expectations, the system remains subject to external 

control. 

Today’s fertilizer spreaders control the application rate by volume flow rate and driving 

speed. The maximum driving speed and the minimum diameter of the dosing opening creates 

a minimum application rate per hectare. This limit was set to 80 kg ha
−1

. 

Optional restrictions (not yet implemented): (i) Storage capacity and ongoing availability of 

organic fertilizers; (ii) Pre-purchase and fertilizer storage (this automatically includes a hedge 

on the price development of fertilizers and would therefore lead to a bias in the economic 

assessment of IoFarm). 
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4.5 Model development 

The previously described verbal model needs to be specified in the form of a formal 

optimization model. In this section, we identify appropriate optimization methods and 

software, followed by a detailed presentation of the IoFarm model. 

4.5.1 Identifying the appropriate methods and software for optimization 

The scope and complexity of this problem exceed the limits for an informal optimization 

strategy. The structure of the problem is explicit and formal. In this case, it is useful to choose 

between methods based on mathematical or heuristic programming. Heuristics are often 

powerful instruments for finding acceptable solutions to huge problems, but they are not able 

to guarantee an optimum outcome. Mathematical programming is preferred if an optimum 

solution is desired. Babcock (1984), for example, used an LP model to solve a fertilizer 

blending problem. Mínguez et al. (1988) used LP as part of a Goal Programming model to 

optimize fertilizer use on sugar beets in Spain. The described fertilizing problem also contains 

integer variables and nonlinear terms, which makes it a mixed integer nonlinear problem 

(MINLP). MINLP models are extremely difficult to solve. It is known that the applied solver 

exerts a tremendous influence on performance and the optimality of the solution. The GAMS 

modeling language provides the opportunity for switching among a large number of solvers. 

Therefore, GAMS is an excellent instrument in MINLP modeling. An early stage 

performance evaluation among all MINLP solvers within GAMS (Version 24.8.1) revealed 

that ANTIGONE is the preferred solver for IoFarm. The solver choice changed during the 

modeling process. The latest version of IoFarm is solved using SCIP. 

4.5.2 Model flow 

The flowchart in Figure 4-4 is intended to provide an initial overview of the IoFarm model 

structure. In parallel, it becomes visible which exogenous inputs feed the model. Since the 

model runs in parallel to actual farming processes, these exogenous inputs are constantly 

updated. Real-world observations successively replace the assumptions made at the beginning 

of a multi-year planning period (crop rotation cycle). With each run of IoFarm, the workflow 

shown in Figure 4-4 is passed through. This procedure usually happens once a month during 

the growth period. The exogenous parameters are also updated at this time interval. For 

example, as soon as crop yields are known, they are fixed. At the same time, a system of slack 

variables ensures that violations of affected restrictions (including the production function) 

due to differences between modeled yields and observed yields are bypassed. Fertilization 
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measures that were suggested by IoFarm and have already been carried out in practice are also 

fixed and represent exogenous inputs for the model from this point on. 

To obtain a solution close to optimality, it was necessary to divide the solving procedure into 

two stages. An overview of this is provided in Figure 4-4. Stage I is mainly a relaxation of the 

original MINLP problem. All integer conditions are ignored, and the application costs were 

defined in a simplified way. The results of stage I serve as initial variable values at the 

beginning of stage II. Fertilizers not used during the actual month and the last two months in 

stage I are no longer available in stage II. This reduction in model size enables us to introduce 

semiconditional variables in stage II for the current decision month. The model is still able to 

respond to the additional integer conditions by selecting from a number of fertilizers that have 

been beneficial in the past. This workaround is necessary to find solutions close to optimality, 

although we do lose some optimization potential. 

In addition to the two-stage design, the model is additionally divided into a static and dynamic 

deterministic model. A lot of parameters are uncertain at the start of a planning horizon. 

Weather, prices, yield expectations and all dependent parameters are affected. Instead of real 

values we use expected values, which changes over time, if more and more of these values 

become known. At the same time, decisions regarding variables in the past are fixed, which 

steadily reduces model size. To achieve this, we save the model results in an EXCEL 

document using the GAMS data exchange tools. 
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Figure 4-4: IoFarm flowchart. 

• Collect exogenous inputs 

(Farm data; prices; fertilizer 

specification; weather; yield 

expectations, or instead post-harvest 

yields if applicable) 

• Solve model stage I 

(Characteristics: NLP model; easy to 

solve; linear application costs) 

Crop rotation cycle 

completed? 

• Define fertilizer measures as semi-

conditional 

• Define application costs as non-linear  

• Use solution of stage I as starting values 

• Reduce problem size  

(Allow only fertilizers that are currently 

used or have been used within the last 2 

months in stage I to be used in stage II) 

• Solve model stage II 

(Characteristics: MINLP model; hard to 

solve; non-linear application costs) 

• Store the solution (as xlsx file) 

• Display the fertilization strategy 

• Implement the solution in practice 

• Fix (un)executed measures as exogenous 

• Update remaining exogenous inputs 

Start of a new planning period 

• Load exogenous inputs & starting values  

• Relax bounds which reduced problem 

size before stage II (if applicable) 

Yes 
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4.5.3 Stage I: Relaxed NLP model 

The following section describes the mathematical structure of the IoFarm model. It should be 

noted that the model is initially presented in simplified form in the main part. Only the most 

important restrictions are picked out for the sake of easier comprehensibility. Indices are not 

listed in this section, either. Variables and parameters that do not have indices even in the full 

model are highlighted in bold in the simplified model. Variables are shown in lower-case 

letters and external parameters in upper-case letters (see appendix Table A 4-1 for an 

overview of acronyms). The role of restrictions not explicitly shown is described under the 

keyword “secondary restrictions.” In addition to the simplified presentation of the model, 

there are consistent cross-references to the detailed restrictions in the appendix, where the 

complete mathematical structure can be reviewed. 

Target function 

Eq. (4-13) contains the objective function. IoFarm is designed as a maximization problem and 

therefore the total objective function value obj is maximized. It depends on the total revenue 

of the plant production typ minus the total expenditure for fertilizer tfc and the necessary 

application costs tsc: 

   obj typ tfc tsc  (4-13) 

The three main variables are influenced not only by factors external to the model but also to a 

large extent by the quantity, type and timing of the fertilizers applied. The interaction of 

quantity, type and time of fertilization is called fertilizer strategy. It is expressed in the fu 

variable. The value of this variable also indicates the solution path for cost-optimal 

fertilization and is thus decisive for the user. There is a central relationship between fu and the 

three main variables. This relationship will be made clear in the following sections. 

Relationship between total revenue and fertilizer strategy 

Of course, the chosen fertilizer strategy fu exerts an influence on crop yields. Therefore, Eq. 

(4-14) (alternatively appendix, Eq. (4-29)), first shows the composition of typ, the total 

revenue of plant production within the period under consideration. The total revenue typ is 

composed of the sum product of ty (crop yield) and PPH (price or expected price of the crop): 

 [( )ty PPH typ  (4-14) 
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The annual yield of the individual crop ty is also determined within the model (Eq.(4-15); 

alternatively appendix Eq. (4-30)). It is composed of the modeled yield per hectare y, the 

slack variable yslk and the crop-specific area under cultivation CRP: 

 [( ) ]ty y yslk CRP    (4-15) 

Secondary restrictions: The slack variable yslk is needed to compensate for differences 

between the modeled yield per hectare y and the real yield YPH. In reality, there will always 

be deviations at this point. It is therefore important to be able to replace the modeled yield y 

(endogenous) with the real yield YPH (exogenous). If the real yield is higher than the modeled 

yield, restrictions are violated afterward, and the model becomes infeasible. The slack system 

is only used if the real yield is already known. In this case, it eliminates possible violations, 

and the model remains feasible. In parallel, nutrient requirements are adjusted to the real 

nutrient removal. Further information on the slack system can be found in the appendix (Eqs. 

(4-33), (4-34) and (4-36)). Eq. (4-16) describes the input–output relationship of nutrients and 

yield, forming the production function (for more details see appendix Eqs. (4-31) and (4-32)). 

This production function defines the modeled yield per hectare y as a linear function between 

nutrient input u [kg ha
−1

a
−1

] and nutrient removal UEXT [kg dt
−1

]. The restriction is also 

constructed as an inequality. Thus, y can remain below the farmer's yield expectation if the 

marginal costs are higher than the marginal benefit. Since this restriction is valid for several 

nutrients at the same time, y is also restricted if only one nutrient is deficient: 

 
u

y
UEXT

  (4-16) 

Secondary restrictions: Other methods are used to determine the S nutrient input. The S 

requirement is proportionally oriented to the N requirement that is determined in parallel 

(appendix Eq. (4-35)). As already mentioned, the modeled yield y is limited by the farmer’s 

yield expectation YEX (appendix Eq. (4-32)). The already introduced system of slack 

variables enables the real yield YPH to excide this upper limit. YEX can be continuously 

adjusted as an external parameter, which allows the model to react dynamically to changes in 

yield expectations. As soon as the real yield YPH is known, this yield is taken over in the 

parameter YEX. In order to take into account the soil content of P, K and Mg, the nutrient 

input u is again corrected in terms of quantity and application period, if necessary. (appendix 

Eq. (4-39)). Parallel to the modeled yield per hectare y, the necessary nutrient input u in 

[kg ha
−1

] was determined in Eq. (4-16). In order to include the different sizes of field pieces in 
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the further process, u is to be converted into the new variable w (Eq.(4-17)). For this purpose, 

u is multiplied by the respective cultivation area (CRP), so that variable w now indicates the 

nutrient requirement in kg per field piece: 

 w u CRP   (4-17) 

Eq. (4-17) (alternatively appendix, Eq. (4-43)) refers only to the nutrients N and S. 

Modification is necessary for nutrients such as P, K and Mg, which can be balanced, since in 

this case, fertilization is possible within the framework of crop rotation (Eq. (4-18); 

alternatively appendix Eq. (4-37)). The variable w must be summarized for the period of crop 

rotation. With the parameters AYN and MYN the need of the balanceable nutrients is adapted 

to the soil content (compare Section 4.4.4). Altogether the equation ensures that within a crop 

rotation, the entire need of balanceable nutrients is covered. Thus, an aggregated fertilization 

of the balanceable nutrients is also possible: 

 ( ) {[( ) ] }w u uslk AYN MYN CRP       (4-18) 

The variable uslk can be traced back to the same slack system as in yield calculation, i.e., it 

serves to balance the nutrient requirements according to the modeled yield and the nutrient 

requirements according to the actual yield (appendix Eqs. (4-33), (4-34), (4-36)). This system 

gives us the flexibility to update the model post-harvest with real yields without violating 

prior constraints.  

Eqs. (4-17) and (4-18) define the requirements of the nutrients N and S, or P, K and Mg per 

field and year in the variable w. In Eq. (4-19) (alternatively appendix Eq. (4-38)), this 

requirement is covered by selecting a fertilizer strategy fu. Mathematically, this is done by 

multiplying and summing up fu with the nutrient content of the fertilizer SUP: 

 ( )w fu SUP   (4-19) 

Secondary restrictions are linked to the use of fertilizers: maximum available quantities of 

organic fertilizers (appendix Eq. (4-42)), reasonable timeframes for using different fertilizers 

(appendix Eqs. (4-39), (4-44), (4-50)) and requirements for compensating the lime-consuming 

effect (appendix Eqs. (4-40), (4-41)). 

This restriction system is not yet sufficient for a plant-appropriate supply of N. In addition to 

the total N requirement, its distribution during the year must also be taken into account. The 

variable w is distributed over a period of months by multiplying it by the factor NDM, which 
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results in variable wm (Eqs. (4-20)). NDM indicates on a monthly basis what proportion of 

the total N demand a crop typically requires: 

 wm w NDM   (4-20) 

Of course, it would not be appropriate to apply N once a month, which is why the restriction 

is also implemented as an inequality. The possibility of combining the N fertilization in 

several applications as well as integrating the natural N dynamics of the soil complicates the 

situation considerably. Eq. (4-20) is therefore replaced by Eq. (4-45). Secondary restrictions: 

Parallel to Eq. (4-20) or (4-45), it is ensured that a site-specific soil supply of N in the form of 

nitrate may not fall below a certain level (appendix Eq. (4-46)). For this purpose, the soil 

nitrate supply must be estimated within the model (appendix Eq. (4-48)). This estimated value 

is adjusted to the actual measured value at the time of the soil testing by using another slack 

system (appendix Eqs. (4-49), (4-47)). 

Considering Eq. (4-21) (alternatively appendix Eq. (4-50)), the N requirement wm during the 

year is now ensured by selecting a suitable fertilizer strategy fu, wherein the fertilizers are 

multiplied by their transformation speed NSM and totaled. The binary parameter TWN 

excludes timeframes in which N fertilization is not useful. The satisfaction of wm takes place 

simultaneously while satisfying the previously mentioned requirements for other nutrients: 

 [( ) ]wm fu NSM TWN    (4-21) 

Relationship between total expenditures for fertilizers and fertilizer strategy 

The total expenditure of the fertilizers used, referred to as tfc, plays a central role in the 

optimal fertilizer strategy. They correspond to the sum product of the fertilizer input fu and 

the monthly updated fertilizer price PF (Eq. (4-22); alternatively appendix Eq. (4-54)): 

 ( )fu PF tfc  (4-22) 

Relationship between total costs of fertilizer application and fertilizer strategy 

In order to consider different costs when applying solid and liquid fertilizers, a distinction is 

made between the application costs of solid (spdc) and liquid fertilizers (spyc). The total sum 

of both variables then represents the total cost of fertilizer application tsc (Eq. (4-23); 

alternatively, appendix Eq. (4-55)): 

 ( ) ( )spdc spyc  tsc  (4-23) 
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A detailed consideration of the application costs leads to a disproportionately high 

computational effort for IoFarm. Therefore, in stage I of IoFarm, a simplified approach to 

application costs is chosen (Eqs. (4-24), (4-25); alternatively appendix Eqs. (4-56), (4-57)). 

The variables spdc and spyc represent the application costs per fertilization measure. SLS 

describes the cost per fill (spd, spy) caused by setup time as well as loading and spreading 

fertilizer. Transport costs are added in the second part of the equation. The field-yard distance 

C [min] is converted into hours. A return trip is calculated and charged with the variable costs 

for the tractor VT and the personnel costs WE for each filling. Integrating the field-yard 

distance C ensures that a fertilizer strategy adapted to the transport distance is proposed: 

 [ 2 ( )]spdc spd spd C      SLS VT WE  (4-24) 

 [ 2 ( )]spyc syd syd C      SLS VT WE  (4-25) 

Secondary restrictions: The number of fillings spd or spy depends on the density of the 

fertilizer and the tank volume (appendix Eqs. (4-58), (4-59)). 

4.5.4 Stage II: Final MINLP model 

The previous NLP model becomes an MINLP model during the transition to stage II. For this 

purpose, Eqs. (4-24) and (4-25) (respectively appendix (4-56) and (4-57)) are replaced. 

Instead of the simplified presentation of the application costs, the individual cost components 

are integrated in detail, including setup time, loading, field work and transport. The last item 

depends largely on the farm infrastructure and is difficult to determine. Tröster et al. (2019) 

developed an approach for integrating application costs comprehensively and individually for 

each farm. This approach is adapted for use in mathematical models. A description is not 

given here, but reference is instead made to the original publication. The corresponding 

restrictions can be found in the appendix (Eqs. (4-73) to (4-79)). Secondary restrictions: This 

method requires the total area-per-fertilization measure in order to determine the application 

costs, which uses two auxiliary restrictions (appendix Eqs. (4-52), (4-53)) to determine them. 

Another aspect that affects the transport costs is the number of fillings per field piece 

(appendix Eq. (4-72)). In addition, mainly for mathematical reasons, binary information is 

needed to indicate whether fertilization is taking place (appendix Eqs. (4-70), (4-71)). 

Furthermore, stage II of IoFarm ensures that the fertilizer strategy is practically feasible in 

relation to the application rates. For this purpose, the variable fu is divided by the 

corresponding area (CRP) (appendix (4-51)), which gives the variable sfu, which indicates the 
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fertilizer use in dt per hectare. In case a fertilizer is used, sfu cannot be zero meaning that we 

can limit sfu using the binary variable bin and an externally defined lower, (LO) or upper limit 

(UP). This is done in Eqs. (4-26) and (4-27) (alternatively appendix Eqs. (4-68), (4-69)). sfu 

hereby becomes a semiconditional variable that can take either the value zero or values 

between LO and UP (mineral fertilizers 0.8 to 15 dt ha
−1

; lime 3 to 50 dt ha
−1

; organic 

fertilizers 12.5 to 50 t ha
−1

): 

 sfu bin LO   (4-26) 

 sfu bin UP   (4-27) 

4.6 Performance evaluation 

We created a hypothetical example to evaluate the economic performance of IoFarm. 

Interested readers will find this “fertilizer quiz” as supplementary material to this article. An 

introductory video explains task and rules in detail. The following bullet points outline the 

“fertilizer quiz” in brief: 

• The aim is to find a cost-effective fertilizer strategy 

• Applications costs are also exemplified and considered 

• The rotation consists of barley, wheat and maize (50 ha each) 

• The planning period is three years in advance 

• Seasonal and overall nutrient demands are given 

• Different single and compound fertilizers are available 

• Full price and weather information within the planning period are given 

The quiz was distributed via email and social media. A large part of the reach was achieved 

via mailing lists of alumni associations of higher agricultural education institutions and 

universities. In addition to the fertilizer strategy, the participants were asked for the following 

information: (i) time needed to complete the quiz; (ii) financial self-assessment of their own 

solution; (iii) level of experience. Level of experience was defined as follows: Expert = 

Person possessing either scientific experience in plant nutrition or economic optimization 

models; Farmer = Person with at least five years of professional experience in agriculture and 

plant nutrition; Student = Student with advanced knowledge in economic optimization models 

and plant nutrition; “Others” (not included). The results of this experiment are displayed in 



84 Chapter 4  

 

Table 4-1. This experiment only allows a differentiation of fertilization costs. The benchmark 

for the financial evaluation is the cost of IoFarm's fertilizer strategy. Due to time and cost 

constraints, the different fertilization strategies of the participants were not tested in the field. 

Potential differences in yield or quality are unobserved. The fertilization requirements were 

identical for IoFarm and the participants, which means: identical specifications for nutrient 

requirements, uniform time windows for fertilization measures, same minimum application 

rates per hectare, etc. Due to these clear specifications, the potential for significant yield 

differences is very low. Nevertheless, in order to be able to make valid statements on potential 

yield or quality differences, IoFarm was compared with farm-usual fertilization strategies in a 

separate field trial (Tröster and Sauer, 2021a). For those who want to try it on their own, the 

quiz is available online
9
. The fertilizer strategy of IoFarm is in the appendix Table A 4-5. 

On average, the valid participants spent €340 ha
−1

a
−1

 for fertilizer and application. The 

solution for IoFarm performed significantly better at €274 ha
−1

a
−1

. For the financial 

evaluation, we compared the participants’ results with the benchmark set by IoFarm; see 

Table 4-1, “Cost difference” column. The self-assessment is presented in the last column. The 

participants had to estimate the amount per hectare and year in which their solution falls short 

compared to IoFarm’s solution. To structure this, the following options were given: 0–5; 5–

15; 15–30; 30–60; 60–120 or>120 € ha
−1

a
−1

. Compared to the average of the valid 

participants, IoFarm achieved a cost advantage of €66 ha
−1

a
−1

. The self-assessment of the 

participants also shows that they see potential in optimizing their fertilizer strategy. In direct 

comparison, however, it can be seen that the financial optimization potential is even 

underestimated. Although, our “fertilizer quiz” is simplified and not comparable to real 

conditions in fertilizer management with lots of fields and crops, it was difficult and time 

consuming for the participants. On average, they needed 81 min to take the quiz. Due to 

fluctuating prices and yield expectations, a farmer needs to repeat this process several times 

within a single planning period. Projecting this information onto real-world farm conditions, 

fertilizer management is a very time-consuming job. Outsourcing this job to a computer 

program is therefore a real timesaver. 

 

                                                 
9
 https://drive.google.com/file/d/14rBHNKKDuBq8oyeeVUXuek2id1B9z_Dw/view?usp=sharing 

https://drive.google.com/file/d/14rBHNKKDuBq8oyeeVUXuek2id1B9z_Dw/view?usp=sharing
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Table 4-1: Results of the fertilizer quiz. 

    

Time  

needed  

[min] 

Cost  

difference  

[€ ha
─1

]   

Self- 

assessment 

[€ ha
─1

] 

      

 

Min 30.0 20.8 Min 5-15 

Expert Avg 83.8 57.4 Mod 5-15 

n = 4 + 1* Max 150.0 94.3 Max 15-30 

 

Sd 52.4 26.6 

        

 

Min 30.0 10.0 Min 5-15 

Farmer Avg 76.9 64.0 Mod 30-60 

n = 18 + 1* Max 180.0 127.6 Max 60-120 

 

Sd 37.7 27.5 

        

 

Min 45.0 45.4 Min 5-15 

Student Avg 90.8 76.6 Mod 30-60 

n = 6 + 1* Max 230.0 113.5 Max 60-120 

 

Sd 63.9 23.8 

        

 

Min 30.0 10.0 Min 5-15 

Total Avg 80.9 65.8 Mod 30-60 

n = 28 + 3* Max 230.0 127.6 Max 60-120 

  Sd 47.0 27.3     

Remarks: “Cost difference in € ha
─1

” compares the participants solution with the one of IoFarm. “Self-

assessment”: The participants had to evaluate their solution in comparison to IoFarm’s using a prescribed scale. 

Min = Minimum, Avg = Average, Max = Maximum, Sd = Standard deviation, Mod = Modus. *) Invalid 

solutions. 

4.7 Discussion 

An experiment was used to evaluate IoFarm’s performance. The main people involved were 

experienced farmers and agricultural students with experience in the field of mathematical 

optimization as well as some experts. This selection may entail a selection bias. However, it is 

to be expected that the participants are by and large tough opponents due to their education 

and experience. Unfortunately, the desired participation was not achieved, which is probably 

due to the enormous amount of time required and the lack of incentive for the participants. 

Even in the case of a lucrative incentive, there is a risk that participants will solve the quiz 

without actually paying attention to minimizing fertilization costs. In order to include just 

motivated participants, we decided not to offer any material incentives. The fertilizer quiz is 

available online as additional material to give the reader the option of testing IoFarm’s 

performance in a self-experiment. 
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The relevance and feasibility of the suggested fertilization strategies depend on many factors. 

IoFarm is designed to be very flexible and can accept changes that a farmer makes in 

fertilization strategy. In addition, the fertilizer strategy can be easily adapted to individual 

farm requirements via additional restrictions, such as the consideration of labor capacities. 

Due to identical requirements in our experiment, we may assume an equivalent relevance and 

feasibility of all fertilization strategies. The results of the fertilizer quiz are impressive and 

show the financial optimization potential that can be achieved with IoFarm in actual practice. 

For a 150 ha farm without organic fertilizers, the costs for fertilizer and application could be 

reduced by 19% in comparison. This proportion remains largely stable even with increasing 

farm area, so that larger farms benefit from it much more in absolute terms than smaller 

farms. As a rule, organic fertilizers are applied on the farm’s own land. Organic fertilizers are 

natural compound fertilizers. High percentages per hectare reduce the need for mineral 

fertilizers or, in extreme cases, even make them obsolete. Therefore, the potential for 

optimization diminishes as the proportion of organic fertilization in the total fertilizer 

application increases. Thus, farms with a large area of land without in-house organic 

fertilizers benefit most. These estimations can also be made for saving management time in 

fertilization planning. No information is available for directly comparing the financial and 

temporal effects with other DSS mentioned in literature. Thus, none of the cited articles 

(Jansen et al., 2013; Bueno-Delgado et al., 2016; Pagán et al., 2015; Mínguez et al., 1988; 

Babcock, 1984) examine the extent to which costs can be saved by applying the respective 

optimization tools compared to a standard operating solution. Among the commercial 

providers of software-based solutions, only the “Smart Fertilizer” website contains statements 

on this topic, where they mention cost savings of 60% and an increase in income of 40%. 

However, no proof of this is provided. Sensor-based measures for optimizing fertilization 

were also mentioned at the beginning of this article. The manufacturers of these systems 

expect profit increases of €20 to €30 ha
−1

 by improving the N efficiency. Evangelou et al. 

(2020) even show in their field trial for N fertilization in maize a savings potential of €33 to 

€92 ha
−1

. However, sensor- based systems are not in competition with IoFarm but could be 

used in parallel. 

Another point of discussion is the way in which biological, chemical and agronomic processes 

have been taken into account. Here, numerous simplifications were accepted during the model 

development (see Section 4.4). We decided that a field trial was indispensable in order to 

determine potential influences on yield and quality of harvested products. This field trial was 

conducted between 2015 and 2018 (see Tröster and Sauer, 2021a). In addition, integrating and 
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testing other ways of determining fertilization requirements in IoFarm should be considered in 

the future: combination with site-specific fertilization approaches based on sensors, maps or 

satellites would be promising. 

IoFarm is a mathematical optimization model in which the nutrient requirements are explicitly 

specified. In practice, it can be observed that the nutrient requirements of a crop are rarely 

satisfied exactly to 100% without direct effects on yield or quality. This observation is taken 

into account in less explicit approaches such as goal programming. Mínguez et al. (1988) used 

goal programming for a similar optimization problem in fertilizing sugar beets. Their scope 

only referred to a single crop year. This approach should be viewed rather critically when 

considering a period of several years. There is the risk that nutrients could be dosed below the 

actual requirement level several years in a row. IoFarm leverages the advantages of goal 

programming solely for allocating basic nutrients. Fertilization within the framework of crop 

rotation is permitted provided that the soil is adequately supplied with nutrients. 

The structure as a mathematical optimization model with integer variables and nonlinear 

conditions leads to the fact that IoFarm places high demands on computing capacity. 

Compared to alternative heuristic approaches, however, the advantage is that the optimality of 

a solution can be judged by the gap in the potential optimum. For the application of IoFarm 

under practical conditions with more than three crops and numerous field plots, it has to be 

checked whether heuristic approaches can possibly lead to better results in terms of cost 

savings or computing power. 

4.8 Conclusions 

At approximately €66 ha
−1

a
−1

, the saving potential IoFarm obtains turns out to be surprisingly 

high when comparing the average participant in the fertilizer quiz. At €10 ha
−1

a
−1

, even the 

best individual participant lags behind the IoFarm result. In addition to the financial 

advantage, valuable management time can be saved, since fertilizer selection can be 

outsourced. These results highlight the benefits of this type of a DSS for farmers and 

consultants. The first version of this type of optimization tool for individual farms has been 

successfully developed and fills the gap in the area of these management tools. IoFarm is 

primarily focused on profit maximization, which is often associated with negative 

environmental impacts. However, IoFarm draws part of its optimization potential from a 

fertilizer strategy that is as efficient and resource-saving as possible and thus a considerable 

contribution to sustainability is achieved. 
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We published a field trial of several years to show the influence on yield and quality in 

comparison to common fertilizer strategies (Tröster and Sauer, 2021a). In the future, we want 

to use IoFarm to answer further questions, such as, under which conditions is using compound 

fertilizer economically reasonable? How does the fertilizer strategy change in the case of a 

very homogeneous or very heterogeneous supply of the soil with basic nutrients? How does 

the fertilizer strategy change if the overall target function is used to optimize the greenhouse 

gas balance? These questions are relevant for the fertilizer industry, policy makers and for 

society as a whole.  
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4.9 Appendix 

Table A 4-1: Overview of model acronyms. 

Sets    

cr 

f 

fz 

nu 

Crop 

Field 

Fertilizer 

{N,P2O5,K2O,MgO,S,CaO} 

swg 

t 

tm 

ttm 

Specific weight 

Time in years 

Time in month 

Alias of set tm 

Subset of (Set)    

afz (fz) 

bns (nu) 

bnu (nu) 

lfz (fz) 

lqfz (fz) 

Min. fertilizer without lime 

{N, P2O5, K2O MgO} 

{ P2O5, K2O MgO} 

Lime fertilizer 

Liquid leaf fertilizer 

mfz (fz) 

mfz2 (mfz) 

ofz (fz) 

sfz (fz) 

 

Mineral fertilizer 

mfz2 = mfz≠{AHL1zu3} 

Organic fertilizer 

N fertilizers; soil active 

 

Variables    

binb
t,tm,cr,fz,f 

fu+ t,tm,cr,fz,f 

hf+ t,tm,mfz 

hff+ t,tm,mfz,cr,f 

nfn+ f,t,ttm,cr 

nso+ f,t,tm,cr,nu 

obj 

sslk f,t,tm,cr 

sfu+ t,tm,cr,fz,f 

sfu0+
 t,tm,cr,fz,f 

snm+ f,t,tm,cr 

snn f,t,tm,cr 

spd+ t,tm,mfz  

spd0+
 t,tm,mfz 

spdc+ t,tm,mfz 

spdcFF+
 t,tm,mfz 

spdcFW+
 t,tm,mfz 

spdcLT+
 t,tm,mfz 

spdcST+
t,tm,mfz 

spdcVC+
 t,tm,mfz 

spdcYF+
 t,tm,mfz 

Decision on fu {0/1} 

Fertilizer usage 

Acreage per measure 

Acreage per measure &field 

N fertilization as nitrate 

Nitrate spillover 

Objective value 

Slack var. for soil-nitrate 

Specific fertilizer usage 

Binary indicator of sfu 

Soil nitrate minimum 

Soil-nitrogen as nitrate 

Spreader loads 

Binary indicator of spd 

Spread costs 

Cost of field to field trips II 

Costs of fieldwork stage II 

Costs of load time stage II 

Costs of setup time stage II 

Costs of spreader stage II 

Costs of farm field trips II 

spdha+
 t,tm,mfz 

spy+ t,tm,lqfz 

spy0+
 t,tm,lqfz 

spyc+ t,tm,lqfz 

spycFF+
 t,tm,lqfz 

spycFW+
 t,tm,lqfz 

spycLT+
 t,tm,lqfz 

spycST+
t,tm,lqfz 

spycVC+
 t,tmlq 

spycYF+
 t,tm,lqfz 

spyha+
 t,tm,lqfz 

tfc+ 

tsc 

ty+ cr,t 

typ 

u+ t,f,cr,nu 

uslk t,f,cr,nu 

w+ f,t,cr,nu 

wm+ f,t,tm,ttm,cr,nu 

y+ t,f,cr 

yslk t,f,cr 

Spreader fillings per hectare 

Sprayer loads 

Binary indicator of spy 

Spray costs 

Cost of field to field trips II 

Costs of fieldwork stage II 

Costs of load time stage II 

Costs of setup time stage II 

Costs of sprayer stage II 

Costs of farm field trips II 

Sprayer fillings per hectare 

Total fertilizer costs 

Total spread and spray costs 

Total yield 

Total crop revenue 

Specific nutrient demand  

Nutrient demand slack var. 

Crop nutrient demand 

Nitrate demand per month 

Modeled yield 

Slack var. for yield  

Remarks: A superscript + indicates a positive variable; a superscript b indicates a binary parameter or variable. 

Table A 4-1 is continued on next page 
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Table A 4-1: Overview of model acronyms (continued). 

Parameter    

AYN f,t,nu 

BFF f,t,bnu 

C f 

CRP f,t,cr 

HA f 

LO fz 

LT 

LYNb f,t,nu 

MSNL 

MYN f,t,nu 

NDM t,tm,cr 

NL t,tm 

NMOB f,t,tm 

NSM fz,ttm,t,tm 

OFA ofz,t 

PEF t,tm,cr,fz,f 

PF fz,t,tm 

PPH cr,t 

Q 

SABS f,t,tm  

SAPH f,t,tm 

SNBS f,t,tm,* 

SNPH f,t,tm,* 

SLS 

ST 

SUP fz,nu 

SW mfz,swg 

Addition to basic nutrients 

Basic fertilization factor 

Farm-field distance 

Cropping plan 

Plot size for each field 

Lower boundary for sfu 

Loading time per load 

Lime usage yes/no 

Minimum soil nitrate level 

Factor on basic nutrients 

Monthly plant nitrate need 

Nitrate leach in percentage 

Natural nitrate mobilization 

Nitrate supply monthly  

Organic fertilizer amount 

Fixed values for sfu 

Price of fertilizers 

Crop price  

Spreader/sprayer volume 

Soil NH4
+ in spring  

Soil NH4
+ post-harvest 

Soil nitrate in spring 

Soil nitrate post-harvest 

Cost for: setup+load+spread 

Setup time 

Nutrient supply of fertilizer 

Specific weight of fertilizer 

SYNb tm,cr 

TF 

TFA 

TLISTt,tm 

TSTAMP 

TT 

TWBFb tm,cr 

TWBFFb tm,cr 

TWLAb tm,cr 

TWLNb lqfz,tm,cr 

TWNb tm,cr,t 

TWOFb tm,cr 

TWSNb tm,t,cr 

UEXT nu,cr 

ULFZt,tm,lfz 

ULQFZt,tm,lqfz 

UMFZt,tm,mfz 

UPfz 

VEGb t,cr 

VL 

VS 

VT 

WE 

WS 

WW 

YEX cr,t 

YPH f,t,cr 

Timeframe S use 

Time to reach all fields  

Total farm area 

Serial number for t and tm 

Current time stamp for t, tm 

Share of turning & lost time  

Timeframe: basic fert. use  

TWBF + low soil fertility 

Timeframe: lime use 

Timeframe: liquid N use 

Timeframe: Nitrogen use 

Timeframe: organic fert. 

Timeframe: solid N fert. 

Nutrient extraction  

Use of lime in past 3 mos. 

Use of lqzf in past 3 months 

Use of mfz in past 3 months 

Upper bound for sfu 

Start of vegetation 

Variable cost: load vehicle 

Variable cost: spreader 

Variable cost: tractor 

Wage entitlement 

Working speed in field 

Working width 

Yield expectation 

Yield post-harvest 

Remarks: A superscript + indicates a positive variable; a superscript b indicates a binary parameter or variable 

Equations Stage I 

 obj typ tfc tsc    (4-28) 

  , ,, cr t cr tcr t
typ ty PPH   (4-29) 

   , , , , , , ,P ,cr t t f cr t f cr f t crf
ty y yslk CR cr t     (4-30) 

For Eq. (4-30) applies: As long as YPHf,t,cr is unknown, yslkt,f,cr = 0. 
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, , ,

, ,

,

, , ,
t f cr bns

t f cr

bns cr

u
y t f cr bns

UEXT
   (4-31) 

 , , , , ,t f cr ct ty YEX t f cr   (4-32) 

 
, , ,

, ,

,

, , ,
t f cr bns

t f cr

bns cr

uslk
yslk t f cr bns

UEXT
   (4-33) 

Eq. (4-33) only applies if YPHf,t,cr > 0. 

 , , , , , , , ,t f cr f t cr t f cryslk YPH y t f cr    (4-34) 

Eq. (4-34) only applies if YPHf,t,cr > 0. 

 , , , { } , , , { } { }, , ,t f cr nu S t f cr nu N nu S cru u UEXT t f cr    (4-35) 

 , , , { } , , , { } { }, , ,t f cr nu S t f cr nu N nu S cruslk uslk UEXT t f cr    (4-36) 

Eq. (4-36) only applies if YPHf,t,cr > 0. 

 

 

   
, , ,,

, , , , , , , , , , , ,,
,

f t cr bnucr t

t f cr bnu t f cr bnu f t bnu f t bnu f t crcr t

w

u uskl AYN MYN CRP f bnu



    




 (4-37) 

For Eq. (4-37) applies: As long as YPHf,t,cr is unknown, uslkt,f,cr,bnu = 0. 

  , , , , , , , ,,
, , ,f t cr bnu t tm cr fz f fz bnutm fz

w fu SUP f t cr bnu    (4-38) 

 
 

 
, , , , , , , , , , ,

, , , , , ,,
, , ,

t f cr bnu f t bnu f t bnu f t cr f t bnu

t tm cr fz f tm cr fz bnutm fz

u AYN MYN CRP BFF

fu TWBFF SUP t f cr bnu

    

  
 (4-39) 

Eq. (4-39) only applies if the soil supply with P, K or Mg is low (see Section 4.4.4). In this 

case, the factor , , 0f t bnuBFF   and a placed fertilization must be carried out annually within a 

given timeframe TWBFF. Thus, this restriction only intensifies the original restriction from 

Eq. (4-37). In order to prevent subsequent non-compensable violations, Eq. (4-39) is canceled 

as soon as an actual harvest quantity is determined, i.e., when YPHf,t,cr > 0. 

  , , , , , { } , , { }, , ,
0 t tm cr fz f fz nu CaO f t nu CaOt tm cr fz

fu SUP LYN f     (4-40) 
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Eq. (4-40) is only relevant for fields where liming is allowed  , , { } 1f t nu CaOLYN  . In this case, 

the lime supply must be at least neutral in the course of a crop rotation period. 

  , , , ,, ,
0 ,t tm cr lfz ftm cr lfz

fu t f   (4-41) 

Eq. (4-41) only applies if LYNf,t,nu{CaO} = 0. In this case, Eq. (4-40) becomes ineffective. Eq. 

(4-41) then ensures that no special lime fertilizers are applied to this field at any time. 

  , , , , ,, ,
0 ,t tm cr ofz f ofz ttm cr f

fu OFA t ofz    (4-42) 

 , , , { , } , , , { , } , , , , , { , }f t cr nu N S t f cr nu N S f t crw u CRP t f cr nu N S    (4-43) 

Eq. (4-43) only applies if CRPf,t,cr ≠ 0. With regard to the nutrient sulfur, the equation is only 

taken into account as long as YPHf,t,cr is unknown. 

  , , , { } , , , , , , { },
, , , { }f t cr nu S t tm cr fz f tm cr fz nu Stm fz

w fu SYN SUP f t cr nu S     (4-44) 

  
 

, , , { } , ,

, , 1, 1, , { } , , 1, , { }

, , , , 1 , , 1 , , 1

, , 1, , ,

, , 1, 2, , { } , , 2,

f t cr nu N t tm cr

f t tm ttm cr nu N f t tm cr nu N

f t cr f t tm f t tm f t tm

f t tm cr f t cr

f t tm ttm cr nu N f t tm ttm

w NDM

wm nso

CRP SABS SAPH NMOB

sslk CRP

wm wm

  

  



   

 

 
 
     
 
  
 

  

  
 

2, , { } , , 2, , { } , , 1, , { } , 1

, , , , 2 , , 2 , , 2

, , 2, , ,

, , 1, 17, , { } , , 17,

1

...

...

cr nu N f t tm cr nu N f t tm cr nu N t tm

f t cr f t tm f t tm f t tm

f t tm cr f t cr

f t tm ttm cr nu N f t tm ttm

nso nso NL

CRP SABS SAPH NMOB

sslk CRP

wm wm

  

  



  

    
 
     
 
  
 

   

  
 

17, , { } , , 17, , { } , , 16, , { } , 16

, , , , 17 , , 17

, , 17, , ,

1

, , , , , { }

cr nu N f t tm cr nu N f t tm cr nu N t tm

f t cr f t tm f t tm

f t tm cr f t cr

nso nso NL

CRP SABS NMOB

sslk CRP

f t tm ttm cr nu N

   

 



    
 
   
 
  
 



(4-45) 

For Eq. (4-45) applies: The variable sslk is only considered if  , , ,* , ,0 0f t tm f t crSNPH CRP    

or if  , , ,* , ,0 0f t tm f t crSNBS CRP   , which is always the case when new soil test results are 

available. The equation is divided into a total of 17 segments, one segment per fertilization 

month tm (August to December in the year of cultivation and January to December in the year 

of harvest). Only the segment corresponding to the current fertilization month is taken into 
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account. SAPH is only defined for segments 1-5, i.e., for tm ={1, ... 5}. The natural N 

mineralization is integrated via the parameter NMOB. The variable nso allows the transfer of 

N surpluses from one fertilization month to another within a cropping period. Losses in the 

form of leaching are deducted using the parameter NL. The variable wm thus indicates the 

planned nitrate supply per fertilization month and crop. Since N fertilizers do not necessarily 

contain nitrate, or contain other N forms besides nitrate, the complete conversion into nitrate 

is often spread over several months. For this reason, it was necessary to define the variable 

wm two-dimensionally, by the indices tm and ttm. Thus, it is possible to show the nitrate 

effect of an N fertilization based on the fertilizer's speed of action (NSM) over several 

fertilization months. Thus, IoFarm is able to control the timing and at the same time does not 

overlook possible utility costs, for example, losses due to nitrate leaching. An example will 

help to better understand the purpose of Eq. (4-45): Assume that winter wheat has a nitrogen 

requirement of 40 kg in May, which is defined by w NDM . However, this requirement does 

not necessarily have to be covered by N fertilization in May alone. Part of it can be covered 

from a previous fertilization measure. For example, N may have already been applied in 

March, but was not fully absorbed. After deducting losses, this N is still available in May. In 

addition, soil N is mineralized during this period. In May, therefore, only a reduced 

fertilization, possibly even no fertilization at all, would be necessary to meet the N 

requirement of 40 kg. 

 
 , , , , { } , , 1, 1, , { }

, , ,

, ,

, , ,
f t tm cr nu N f t tm ttm cr nu N

f t tm cr

f t cr

nso wm
snm MSNL f t tm cr

CRP

 
 
   
 
 

  (4-46) 

Eq. (4-46) is only valid as of the start of vegetation ( ,t crtm VEG  ), starting in March at the 

earliest ( 8tm  ), or from the month in which the need for N arises ( , , 0t tm crNDM  ). Points of 

time in the past are likewise faded out by using the equation only if the following applies:

,t tmTSTAMP TLIST
. 

 , , , , , { }

, , ,

, ,

, , ,
f t tm ttm cr nu N

f t ttm cr tm
f t cr

wm
nfn f t ttm cr

CRP

 
   

 
  (4-47) 
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  

 

, , , , , , , , , , , { } , , , { } , ,

, , 1, , { } , 1

, ,

1
, , ,

f t tm cr f t tm f t tm cr t f cr nu N t f cr nu N t tm cr

f t tm cr nu N t tm

f t cr

snn NMOB nfn u uslk NDM

nso NL
                f t tm cr

CRP

 

    

  
   
 
 

 (4-48) 

, , , , , , , , , , , ," " , , ," " , , ,f t tm cr f t tm cr f t tm cr f t tm NSommer f t tm NFruehjahrsslk snn nfn SNPH SNBS f t tm cr      (4-49) 

Eq. (4-49) only applies if , , ,* , , ,*0 0f t tm f t tmSNPH SNBS   . 

 , , , , , { } , , , , , , , , ,TWN , , , , , { }f t tm ttm cr nu N t tm cr fz f fz ttm t tm tm cr tfz
wm fu NSM f t tm ttm cr nu N     (4-50) 

 
, , , ,

, , , ,

, ,

, , , ,
t tm cr fz f

t tm cr fz f

f t cr

fu
sfu t tm cr fz f

CRP
   (4-51) 

 , , , , , , , , , , , , , , , ,t tm mfz cr f t tm cr mfz f t tm cr mfz fhff sfu fu t tm mfz cr f    (4-52) 

 
, , , , , ,,

( ) , ,t tm mfz t tm mfz cr fcr f
hf hff t tm mfz   (4-53) 

  , , , , , ,, , , , t tm cr fz f ft t tmt tm cr fz f
tfc fu PF   (4-54) 

    , , , ,, , , ,t tm mfz t tm lqfzt tm mfz t tm lqfz
tsc spdc spyc    (4-55) 

 , , , , , ,[ 2 ( )] , ,t tm mfz t tm mfz f t tm mfz fspdc SLS spd spd C VT WE t tm mfz         (4-56) 

Eq. (4-56) applies only for  1 3mfz AHL zu   

 , , , , , ,[ 2 ( )] , ,t tm mfz t tm mfz f t tm mfz fspyc SLS spy spy C VT WE t tm mfz         (4-57) 

Eq. (4-57) applies only for   , ,1 3 0lqfz tm crmfz AHL zu TWLN     

 , , , , 1

, , , ,
,

, ,
t tm cr mfz f

t tm mfz cr f swg
mfz swg

fu
spd Q t tm mfz

SW


 

    
 

  (4-58) 

 , , , , 1

, , , ,
,

, ,
t tm cr lqfz f

t tm lqfz cr f swg
lqfz swg

fu
spy Q t tm lqfz

SW


 

    
 

  (4-59) 
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For Eq. (4-59) applies: If TWLNlqfz,tm,cr = 1, then spyt,tm,lqfz = 0.  

Bounds in Stage I 

These bounds ((4-60) – (4-67)) are defined before the solve statement of stage I: 

 , , , , , , , , ,: t tm t tm cr fz f t tm cr fz fif TSTAMP TLIST sfu PEF    (4-60) 

Eq. (4-60) transfers fertilization measures that have already been carried out to the PEF  

parameter. PEF  is then available to fix past fertilization measures in the model. 

 , , , , , , , , ,: 1 15; : 0tm cr t tm cr afz f t tm cr afz fif TWBF sfu else sfu      (4-61) 

 , , , , , , , , ,: 1 15; : 0tm cr t tm cr sfz f t tm cr sfz fif TWSN sfu else sfu      (4-62) 

 , , , , , , , , ,: 1 2.5; : 0tm cr t tm cr lqfz f t tm cr lqfz fif TWSN sfu else sfu      (4-63) 

 , , , , , , , , ,: 1 50; : 0tm cr t tm cr lfz f t tm cr lfz fif TWLA sfu else sfu      (4-64) 

 , { , } , , { , }, , , , { , }, ,: 1 30; : 0tm cr WW WG t tm cr WG WW ofz f t tm cr WW WG ofz fif TWOF sfu else sfu      (4-65) 

 , { } , , { }, , , , { }, ,: 1 50; : 0tm cr SM t tm cr SM ofz f t tm cr SM ofz fif TWOF sfu else sfu      (4-66) 

Eqs. (4-61) to (4-66) check on a crop-specific basis whether reasonable time windows for 

different fertilization measures (TWBF to TWOF ) apply. If yes, a technically reasonable 

upper limit is defined, otherwise this upper limit is set to 0. 

 , , , , ,: 0 0f t cr t f cr nuif YPH uslk    (4-67) 

Eq. (4-67) controls the slack variable uslk  as long as no actual yield YPH  has been 

determined. Otherwise, an uncontrolled negative expansion of uslk  would be possible. 

Equations in Stage II 

 , , , , t, , , ,t tm cr fz f tm cr fz f fzsfu bin LO   (4-68) 

 , , , , t, , , ,t tm cr fz f tm cr fz f fzsfu bin UP   (4-69) 
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Eqs. (4-68) and (4-69) are only considered if ,t tmTSTAMP TLIST . Thus, the number of binary 

variables is reduced to a minimum for computational reasons. 

 , , , , , , , , , , , ,0 , , , ,t tm cr fz f t tm cr fz f t tm cr fz fsfu sfu sfu t tm cr fz f    (4-70) 

 , , 2 , , 2 , , 20 , , 2t tm mfz t tm mfz t tm mfzspd spd spd t tm mfz    (4-71) 

 , , , , , , , ,t tm mfz t tm mfz t tm mfzspdha hf spd t tm mfz    (4-72) 

 
, , 2 , , 2 , , 2 , , 2 , , 2

, , 2 , , 2 , , 2

t tm mfz t tm mfz t tm mfz t tm mfz t tm mfz

t tm mfz t tm mfz

spdc spdcST spdcLT spdcFW spdcVC

spdcYF spdcFF t tm mfz

   

  
 (4-73) 

 , , , ,0 , ,t tm mfz t tm mfzspdcST ST WE spd t tm mfz     (4-74) 

  , , , , , ,t tm mfz t tm mfzspdcLT spd LT WE VL t tm mfz      (4-75)  

 
  

 , ,

, , , ,0 , ,
1 0.1

t tm mfz

t tm mfz t tm mfz

hf
spdcFW WE VT spd t tm mfz

WS WW TT

 
     
     

 (4-76) 

 , , , , , ,t tm mfz t tm mfzspdcVC spd Q VS t tm mfz     (4-77) 

   
 

 

, , , ,

, , , ,

, ,

0.9960552 2

0
, ,

0.001

t tm mfz t tm mfz

f f t tm cr mfz ff cr

t tm mfz

spdcYF spd

HA C sfu
WE VT t tm mfz

hf

  

  
    
 
 

   (4-78) 

 , ,

, , , ,0.9418345 0.7297727 , ,
t tm mfz

t tm mfz t tm mfz

hf
spdcFF spdha TF WE VT t tm mfz

TFA

 
        
 

 (4-79) 

Eqs. (4-71) to (4-79) are repeated in order to be able to consider other costs involved in 

applying liquid fertilizers, if necessary. For this purpose, the variables or indices in the 

corresponding restrictions are replaced as follows: In all variables, the letter combination spy 

replaces spd, which results in new variables. lqfz replaces indices mfz and mfz2. 
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Bounds in Stage II 

These bounds ((4-80)–(4-83)) are defined after the solve statement of Stage I and before the 

solve statement of stage II: 

 , , , , , , , , ,: t tm t tm cr fz f t tm cr fz fif TSTAMP TLIST sfu PEF    (4-80) 

Eq. (4-80) is a repetition of Eq. (4-60) and simply ensures that no important information is 

accidentally lost between the two stages. 

  , , , , , 1, , , , 2, , , , , , , , , , ,,
: 0 0t tm cr fz f t tm cr fz f t tm cr fz f t tm cr fz f t tm cr ft fcr f

if sfu sfu sfu bin sfu        (4-81) 

Eq. (4-81) checks on a farm-wide basis which fertilizers have been selected in stage I 

currently and in the last two months. Any fertilizers that were not used in this period are not 

considered in stage II in the current fertilizer month. 

 
" "

, , , , , , , , ,: 0 0StageI

t tm t tm cr fz f t tm cr fz fif TSTAMP TLIST sfu sfu      (4-82) 

Eq. (4-82) checks on a field-specific basis which fertilizers were not currently used in stage I 

and also excludes them for stage II in the current fertilizer month. 

" " " "

, , , , , , , , , , , , ,: StageI StageI

t tm t tm cr fz f t tm cr fz f t tm cr fz fif TSTAMP TLIST sfu LO sfu sfu      (4-83) 

Eq. (4-83) refers to the present and the future. Fertilization measures that have exceeded the 

technically necessary lower limit (LO) in stage I are fixed in stage II. However, with each new 

model run, stage I is able to readjust future fertilization measures, so future fertilization 

measures in stage II remain flexible for adaptation. 
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Table A 4-4: Fertilizer composition, lime effect and specific weight. 

Fertilizer / Content NO3- NH4+ Urea 

Stabi-

lized 

NH4+ 

Stabi-

lized 

Urea P2O5 K2O MgO S CaO 

Speci-

fic 

weight 

[%] [%] [%] [%] [%] [%] [%] [%] [%] [kg dt-1] [kg/L] 

N Fertilizer                       

Calcium ammonium nitrate (27N)(1,6) 13.5 13.5 

       

-15.0 1.0 

Calcium ammonium nitrate (27N 

4Mg(3,6)) 13.5 13.5 

     

4.0 

 

-9.0 1.0 

Ammonium nitrate urea solution 

(28N)(2,6) 7.0 7.0 14.0 

      

-28.0 1.3 

Urea (46N)(1,6) 

  

46.0 

      

-46.0 0.8 

Calcium ammonium nitrate (24N 

6S)(3,6) 12.0 12.0 

      

6.0 -34.0 1.1 

Ammonium sulphate nitrate (26N 

13S)(1,6) 7.0 19.0 

      

13.0 -49.0 1.0 

Sulfuric acid ammonia (21N 24S)(4,6) 

 

21.0 

      

24.0 -63.0 1.0 

Urea (33N 12S)(2,6) 

 

10.4 22.6 

     

12.0 -54.0 0.8 

ENTEC (26N 13S)(1,6) 7.5 

  

18.5 

    

13.0 -49.0 1.0 

Stabilized urea (46N)(2,6) 

    

46.0 

    

-46.0 0.8 

Water + Ammonium nitrate urea 

solution (9N) 2.2 2.2 4.5 

      

-9.0 1.0 

NP Fertilizer                       

Diammon phosphate (18N 46P)(1,6) 

 

18.0 

   

46.0 

   

-36.0 1.0 

NP (20N 20P 2S)(1,6) 8.2 11.8 

   

20.0 

  

2.0 -31.0 1.1 

NPK Fertilizer                       

ENTEC (15N 5P 20K 2MgO 8S)(1,6) 6.9 

  

8.1 

 

5.0 20.0 2.0 8.0 -14.0 1.2 

NPK (15N 15P 15K 2S)(1,6) 6.0 9.0 

   

15.0 15.0 

 

2.0 -15.0 1.1 

NPK (20N 8P 8K 3MgO 4S)(5,6) 9.0 11.0 

   

8.0 8.0 3.0 4.0 -21.0 1.1 

NPK (23 5 5 +6S)(6) 10.7 13.3 

   

5.0 5.0 

 

6.0 -23.0 1.0 

P and PK Fertilizer                       

Triple superphosphate (46P)(6) 

     

46.0 

   

-1.0 1.1 

PK (16P 16K 2MgO 7S)(7,6) 

     

16.0 16.0 2.0 7.0 6.0 1.1 

K Fertilizer                       

Potash (40K 6MgO 5S)(8,6) 

      

40.0 6.0 5.0 0.0 1.1 

Kainite (11K 5MgO 4S)(6) 

      

11.0 5.0 4.0 0.0 1.2 

Mg & S Fertilizer                       

Kieserite (25MgO 20S)(8,6) 

       

25.0 20.0 0.0 1.3 

Lime Fertilizer                       

Carbonic lime (2S 50CaO)(9) 

        

2.0 50.0 1.7 

Carbonic lime (14MgO 53.4CaO)(9) 

       

14.0 

 

53.4 1.7 

Burnt lime (90CaO)(9)                   90.0 1.0 

Remarks: The specification of fertilizers can be found in the following sources: 
(1)

 (EuroChem Agro GmbH); 
(2)

 

(SKW Stickstoffwerke Piesteritz GmbH); 
(3)

 (YARA GmbH & Co. KG); 
(4)

 (DOMO Caproleuna GmbH); 
(5)

 

(Borealis L.A.T GmbH); 
(6)

 (Wendland et al., 2018); 
(7)

 (METRAC Handelsgesellschaft mbH); 
(8)

 (K+S Minerals 

and Agriculture GmbH); 
(9)

 (DüKa Düngekalkgesellschaft mbH). Note: Nutrient contents are subject to minor 

changes over time, especially if natural products are included (last update: March 2017). 
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Table A 4-5: IoFarm fertilizer strategy (application rate [dt ha
─1

]). 

 

  
Field 1 Field 2 Field 3 

1
st

 r
o

ta
ti

o
n

 p
er

io
d

 

    Maize Barley Wheat 

Aug I Carbonic lime (14MgO 53.4CaO) 3.04 3.00   

Feb II Kieserite (25MgO 20S)     1.05 

Feb II Carbonic lime (2S 50CaO)   3.00   

Mar II Calcium ammonium nitrate (27N 4Mg)     0.80 

Mar II Urea (46N)   2.58 0.85 

Mar II Diammon phosphate (18N 46P)   1.08   

Apr II Urea (46N) 2.53     

Apr II Sulfuric acid ammonia (21N 24S) 1.03     

May II Urea (46N)     1.07 

May II Diammon phosphate (18N 46P)   0.80 1.39 

May II Sulfuric acid ammonia (21N 24S)   0.80   

Jun II Calcium ammonium nitrate (27N 4Mg)   0.80 1.93 

Aug II Potash (40K 6MgO 5S)     4.71 

2
n

d
 r

o
ta

ti
o

n
 p

er
io

d
 

    Wheat Maize Barley 

Aug I Triple superphosphate (46P)   3.23 1.3 

Aug I Carbonic lime (14MgO 53.4CaO)   3.00   

Oct I Carbonic lime (14MgO 53.4CaO) 3.00     

Feb II Kieserite (25MgO 20S)     0.86 

Mar II Calcium ammonium nitrate (27N 4Mg)     0.80 

Apr II Water + Ammonium nitrate urea solution (9N) 2.1     

Apr II Calcium ammonium nitrate (27N 4Mg)     3.64 

Apr II Urea (46N)   3.26   

Apr II Sulfuric acid ammonia (21N 24S)   0.92   

May II Urea (46N) 1.89     

May II Sulfuric acid ammonia (21N 24S) 0.87     

May II Water + Ammonium nitrate urea solution (9N) 2.50     

May II Calcium ammonium nitrate (27N 4Mg)   0.80 1.54 

May II Sulfuric acid ammonia (21N 24S)   0.80   

Jun II Water + Ammonium nitrate urea solution (9N) 2.20     

Sep II Kieserite (25MgO 20S)     0.94 

3
rd

 r
o

ta
ti

o
n

 p
er

io
d

 

    Barley Wheat Maize 

Feb II Urea (46N)   1.51   

Feb II Diammon phosphate (18N 46P) 4.93 3.73   

Feb II Potash (40K 6MgO 5S)   4.19   

Feb II Carbonic lime (14MgO 53.4CaO) 6.34 5.25   

Feb II Kieserite (25MgO 20S)     1.51 

Mar II Calcium ammonium nitrate (27N 4Mg) 1.61 0.80   

Apr II Calcium ammonium nitrate (27N 4Mg)     1.22 

Apr II Diammon phosphate (18N 46P)     6.15 

May II Sulfuric acid ammonia (21N 24S) 0.80     

Jun II Calcium ammonium nitrate (27N 4Mg)   0.91   

Dec II Potash (40K 6MgO 5S)   0.80   
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5 IoFarm in Field Test: Does a Cost-Optimal Choice of 

Fertilization Influence Yield, Protein Content, and Market 

Performance in Crop Production? 

This article is published as [Tröster, Michael Friedrich; Sauer, Johannes (2021): IoFarm in 

Field Test: Does a Cost-Optimal Choice of Fertilization Influence Yield, Protein Content, and 

Market Performance in Crop Production? Agriculture, 11, 571] under the terms and 

conditions of the Creative Commons Attribution (CC BY) license. The version of record is 

available online at: https://doi.org/10.3390/agriculture11060571. 
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curation, writing—original-draft preparation, visualization, project administration. Michael 

Tröster and Johannes Sauer: Resources, writing—review and editing. Johannes Sauer: 

Supervision.  

Abstract 

Decision-support system (DSS) IoFarm was developed to identify economically optimal 

fertilizer strategies on the farm level. The average cost savings are €66 ha
−1

. This study aimed 

to determine whether this approach impacts yield, protein content, and market performance in 

crop production compared to usual farm-fertilization strategies. Few DSSs for fertilizer 

optimization consider multiple nutrients. DSSs with a clear focus on both fertilizer intensity 

and the least-cost combination of fertilizers are even rarer. To the best of our knowledge, 

there is no information in the literature on the impact of such DSSs on yield, protein content, 

and market performance for cereal–maize crop rotation. This study determines for the first 

time whether the financial benefits of using such an optimization tool are in conflict with 

important agronomic goals. In a three-year field trial, IoFarm was compared to standard farm-

fertilization strategies. Results were evaluated with an analysis of variance followed by post 

hoc tests. No significant differences in yield, protein content, and market performance were 

found for comparable fertilization variants (with or without organic fertilization). However, 

differences exist in the selection of fertilizers and the timing of fertilization. Results show the 

agronomic comparability of IoFarm and usual farm-fertilizer strategies. 

https://doi.org/10.3390/agriculture11060571
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5.1 Introduction 

Agricultural goods are internationally traded on a large scale and are in global competition. 

The resulting price pressure requires steady adjustments by producers. Therefore, the optimal 

allocation of available production factors is necessary to achieve the entrepreneurial goal of 

profit maximization. Before farmers consider changing their production program, they usually 

first attempt to optimize their production technology. Fertilization is a vital component of 

production, as numerous current studies show (Tröster and Sauer, 2021b, Tian et al., 2020, 

Ransom et al., 2020, Hlisnikovský et al., 2020, Mi et al., 2019). About 29% of the variable 

costs of winter wheat production (WW = Triticum aestivum L.) in Bavaria in 2020 are related 

to fertilizers (Schätzl et al., 2019). Thus, the savings potential that can be achieved by 

fertilizer optimization is promising. Changing environmental conditions and dynamic changes 

in input and product prices greatly complicate decisions regarding fertilizer intensity and 

selection. Farmers are faced with this problem several times in a season. For an economically 

optimal solution, it is necessary to collect, update, and rationally process all relevant 

information. This results in high transactional costs that prevent farmers from thinking 

intensively about an economically optimal fertilizer strategy several times per season. 

Furthermore, due to the enormous number of combinations of fertilizer, fertilizer quantity, 

and timing, it is hardly possible to optimally solve this problem without assistance. Therefore, 

assistance from a decision support system (DSS) is extremely helpful to rationally and 

objectively deal with such complex decisions. DSS IoFarm (Tröster and Sauer, 2021b) was 

developed for this purpose. It enables rationally and objectively making complex decisions by 

taking into account changes in environmental conditions, input, product prices, and the 

associated application costs when searching for an optimal field-specific fertilization strategy. 

IoFarm considers a crop production function and is therefore able to regulate the output level 

in the case that the marginal cost of fertilization exceeds the marginal revenue of crop 

production. However, the focus of optimization is on identifying the least-cost combination of 

fertilizers. By simultaneously considering both input intensity and a least-cost combination, 

IoFarm represents the theoretical concept of the expansion path. A previous study showed that 

this approach can save both fertilizer costs (−19%) and valuable management time (Tröster 
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and Sauer, 2021b). Of course, the growing conditions of crops are a key factor in the search 

for the optimal fertilizer strategy. A large number of agronomic restrictions in IoFarm 

represent these requirements, but verification in practice is still essential. According to the 

operations research requirements (Mariappan, 2013), this step is closely linked to the 

development of new models. Therefore, the literature also reports numerous field experiments 

in which DSSs were tested. For example, a study by Scharf et al. (2011) demonstrated 

positive effects on maize cultivation for the use of a sensor-based fertilizer system. 

Additionally, research was conducted on using a decision-support system for agrotechnology 

transfer (DSSAT) (Jame and Cutforth, 1996). Araya et al. (2019) calibrated a DSSAT system 

to simulate the effect of fertilization on wheat cultivation in Ethiopia, and Übelhör et al. 

(2015) developed the CROPGRO system on the basis of DSSAT to derive knowledge on the 

fertilization of white cabbage in Germany. Additionally, the Nutrient Expert for Wheat 

system (Chuan et al., 2013) was developed to optimize fertilizer intensity in Chinese wheat 

production. Successful tools were also developed and tested in other areas of crop production. 

One example is DSSHerbicide (Sønderskov et al., 2015), which is used to optimize herbicide 

use. All these DSSs were evaluated in practice or in field trials to show their utility for 

potential users. The question of economically efficient fertilization was also addressed by 

Mandrini et al. (2021). Their study focused on 10 different management strategies for corn 

cultivation in Illinois, which were investigated using the Agricultural Production System 

Simulator instead of field trials. As a result, they answered which of the tested strategies were 

preferable under different objectives (economics, ecology). IoFarm differs from the 

previously mentioned tools by its clear focus on the least-cost combination in fertilizer 

selection, simultaneous consideration of multiple nutrients, and the possibility of aggregated 

base fertilization within a crop rotation. The literature also includes several DSSs that have 

similar approaches and goals to those of IoFarm. These include Smart Fertilizer (Smart 

Fertilizer Management), Ecofert (Bueno-Delgado et al., 2016), and Optifer (Pagán et al., 

2015). To date, no field trials have been published on any of these DSSs. Therefore, it is 

currently unclear whether the use of such DSS based on a pure economic objective function 

could be associated with undesirable effects on yield, protein content, and market 

performance. To address this gap, IoFarm was compared to a standard farm-fertilization 

strategy in a multiyear field trial. As competing variants in this field trial were based on the 

same system of nutrient requirements calculated by the Bavarian State Institute of Agriculture 

(Offenberger and Wendland), nutrient input was largely identical. 
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This article and the underlying field trial investigate the agronomic performance of IoFarm 

and highlight the utility of such an optimization tool for potential users. Additionally, the 

verification of the optimization model in practice is urgently needed to uncover its potential 

shortcomings and to initiate adaptation measures. 

5.2 Materials and Methods 

5.2.1 IoFarm Decision-Support System 

IoFarm is a novel DSS to reduce fertilizer expenditure on the farm level (Tröster and Sauer, 

2021b). The system provides precise guidance on fertilizer selection, application rate, and 

application timing for each field plot over an entire crop rotation cycle. Through regular 

updates of fertilizer and product prices, yield expectations, soil test results, and weather 

information, IoFarm is quickly adapted to changing conditions. To make the most of this 

ability, IoFarm should be used once a month during the growing season to recalculate the 

fertilization strategy. IoFarm falls into the category of mixed integer nonlinear problems. The 

objective function was designed to find the economically optimal fertilizer strategy that 

satisfies crop requirements. In addition to the market prices of the fertilizers, the application 

costs are also relevant in this choice. Within the model, marginal revenue and marginal cost 

are used to determine the optimal nutrient application, and hence yield level. Figure 5-1 

provides a general overview of IoFarm’s data input, data processing, and output.  

After this general overview of DSS IoFarm, some information on how IoFarm works and how 

it incorporates data from the biophysical environment is summarized below. The estimation 

of nitrogen dynamics in the soil is performed with the help of two annual soil tests, soil 

temperature and climatic water balance (CWB). The first soil test is performed in spring at the 

beginning of the growing season or before the first fertilization. The second soil test is carried 

out after harvest. Soil nitrogen content between these two sampling dates is derived from soil 

temperature (nitrogen mineralization) and CWB (leaching of nitrogen). Both of these 

measurements are typically recorded by local weather stations, and are therefore available as 

long-term monthly averages for forecasting purposes. Long-term monthly averages are 

replaced month by month by actual measured values. This approach to estimate nitrogen 

dynamics is highly simplified. It can only be justified by regular updates with real measured 

values for soil nitrogen content and by prioritizing a high level of user friendliness. Scientific 

models such as HERMES (Kersebaum, 1989), WAVE (Vanclooster et al., 1996), DAISY 



106 Chapter 5  

 

(Abrahamsen and Hansen, 2000), or MONICA (Nendel, 2014) are available, but they are too 

complex for use in the context of a practical DSS. 

 

Figure 5-1: Workflow of DSS IoFarm: (grey) data input, (orange) execution, (blue) data 

output. 

Regional adaptation: 

• Adaptation to local fertilizer system 

• Calibration of N production function 

Regular adjustments (monthly): 

• Yield expectation (by farmer) 

• Product and fertilizer prices 

• Current weather data 

• Consider executed fertilization measures 

Irregular adjustments (twice a season): 

• Soil testing for mineral N 

Is the crop rotation 

cycle completed? 

Execution of IoFarm: 

• max!  Profit = Revenue – Cost 

• s.t.  Agronomic, legal & operational  

restrictions 

IoFarm output (for whole crop rotation): 

• Least-cost combination of fertilizer 

• Dosage & time of application (monthly) 

• Example: Field 1; WW; 2 dt CAN; May 

Implementation in practice (monthly): 

• Execute currently relevant measures 

• Fix (un)executed measures as exogenous 

Start of a new planning period 

Farm specific adaptation: 

• Crop rotation schedule 

• Farm infrastructure 

• Mechanization 

• Soil testing (P, K, Mg, pH) 

• Historical weather data 

• other specifications, e.g. org. fertilizer 

No 

Yes 
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To determine the crop-specific nutrient requirements of N, P, K, Mg, and S, IoFarm must be 

adapted and calibrated to regionally common methods. This means that IoFarm is not an 

independent fertilizer system, but is based on the specifications of an externally specified 

fertilizer system, which is required in many countries for legal reasons. IoFarm could be said 

to just be a problem solver for a given fertilizer system. For the field trial, IoFarm was 

adapted to the usual nutrient requirement calculation of the trial sites. All three sites were 

located in Bavaria (southern Germany), so the calculation of requirements in our case was 

based on the guidelines of the Bavarian State Institute for Agriculture (Wendland et al., 

2018). 

We now present the basic features of this fertilizer system. The system is based on site-

specific yield expectations, which are defined by the farmer or through statistical data. From 

this, the fertilizer requirement of the nutrients is derived. For nitrogen, the soil supply of 

available mineral nitrogen at the beginning of the season is deducted. Standard values offer 

the possibility of taking into account, for example, crop development or N mineralization with 

additions and deductions. The fertilizer requirement of nutrients P, K, and Mg is also adjusted 

depending on the location. This is conducted on the basis of soil-test results. If the respective 

nutrient content is low, additions are applied; the same applies in reverse for high nutrient 

contents. As a result, this system of determining fertilizer requirements provides information 

on the quantities of nutrients that can be used per hectare and year. The farmer uses this 

information to form their own fertilization strategy. 

IoFarm largely follows this fertilization system, but additionally calculates an economically 

optimized fertilization strategy. It is taken into account that fertilization measures can also 

take place aggregated, in the course of a crop rotation (e.g., potash fertilization). IoFarm 

differs from the fertilization system described above only in the determination of N 

requirements. As already described above, nitrogen dynamics in the soil are taken into 

account in a simplified form within the model. In combination with fertilization, which is also 

internally determined in the model, it is thus known which N content is available to the plants 

month by month from the soil. Nitrogen must be allocated to the plants as close as possible to 

their temporal requirements. In order to account for this, the percentage nitrogen uptake of 

plants at distinctive developmental stages is estimated on the basis of literature data (Waldren 

and Flowerday, 1979, Reiner and Dörre, 1992, Lütke Entrup, 2000). In combination, this 

enables the identification of when and to what extent nitrogen fertilization is required. As 

crop-yield response function, IoFarm uses a linear function with different slopes depending 

on the nutrient. The maximum of this function is limited by the yield expectation of the 
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farmers. In summary, the following applies: IoFarm is designed to meet important crop-

management requirements for fertilization. An attempt is made to model the nitrogen 

dynamics in the soil and to synchronize fertilizer application as optimally as possible with the 

nutrient requirements of the plants over the growing season and the entire crop rotation. This 

ensures balanced nutrition and avoids overdosing of nutrients. For further details, please refer 

to the original manuscript (Tröster and Sauer, 2021b). 

5.2.2 Site Description and Weather Conditions 

The field experiment was conducted over three crop years (2016 to 2018) and at three 

locations within Bavaria (southern Germany): Geiselsberg (GB; 49°08′ N, 10°50′ E; altitude, 

505 m), Triesdorf (TD; 49°11′ N, 10°39′ E; altitude, 430 m), and Roggenstein (RS; 48°11′ N, 

11°20′ E; altitude, 514 m). The soil properties at the beginning of the experiment are shown in 

Table 5-1. 

Table 5-1: Soil properties of the three field sites in Bavaria. 

Site 
 

GB TD RS 

Plots   {1…9} {10…18} {18…27} {1…15} {16…30} {31…45} {1…9} {10…18} {19…27} 

Soil typ 
 

Cambisol Planosol Cambisol 

Soil texture 
 

Loam Sandy Loam Silty Clay 

Soil pH 
 

6.6 6.6 6.9* 7.3* 7.3* 7.3* 6.1 6.0 6.0 

Usable field capacity % 17.5 16.2 16.2 12.7 15.5 16.0 24.5 21.8 23.7 

Bulk density  g cm
−3

 1.25 1.27 1.29 1.24 1.33 1.35 1.43 1.45 1.50 

Organic matter % 2.1 2.2 2.9 2.5 2.6 2.4 1.7 1.7 1.7 

P2O5 mg100g
−1

 12 6 8 17 19 24 7 7 7 

K2O mg100g
−1

 36 28 22 17 18 19 14 15 16 

MgO mg100g
−1

 9 6 7 20 19 18 4 5 3 

* Soil pH is above the desired level, therefore no liming was allowed. 

Weather records are based on data from the nearest weather stations (Windsfeld, Triesdorf, 

and Roggenstein) of the German Weather Service (Agrarmeteorologie Bayern, 2019). Our 

own precipitation records were used for GB, as deviations were expected due to a distance of 

about 8000 m to the nearest weather station. Figure 5-2 provides a selection of relevant 

weather information. 
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Figure 5-2: Weather conditions during trial period by location. 

5.2.3 Field Experiment 

The experiment was set up in a two-factorial design with three locations and three crop years. 

The first factor reflected the fertilization variant and was composed of a farm manager variant 

(FM), an IoFarm variant (IO), and a control variant (0V) without any fertilization. Additional 

organic fertilizer in the form of digestate was integrated into the trial at the TD site. Here, 

additional organomineral variants were created (oFM, oIO). The second factor was formed by 

different crops that were grown at each site in each year: winter wheat (WW; Triticum 
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aestivum L.), silage maize (SM; Zea mays L.), and winter barley (WB; Hordeum vulgare L.). 

As both plots and variants were fixed over the entire experimental period, the experiment 

replicated a complete crop rotation cycle on each plot. The experiment was planned in a split-

plot design with randomized replications. In GB and TD, the plots were laid out at 12 × 4.5 m, 

and the crop was harvested in a core area of 9 × 1.38 m for cereals, and 9 × 1.5 m for SM. 

Due to the different technology, the plot size in RS was 10 × 6 m. Here, the core area was 

harvested at 10 × 1.56 m for cereals and 10 × 1.5 m for SM. In RS, fertilizer was applied 

using a lifted drill. However, in GB and TD, fertilizers were applied using a plot spreader 

with a belt-head dispenser (own construction of the Educational Schools Triesdorf, 

Weidenbach, Germany). Digestate was only applied in TD using a slurry tank with a trailing 

shoe applicator (Gülle Zwerg constructed by Zunhammer in Traunreut, Germany), which was 

specially developed for plot trials. Digestate was applied according to a target in m
3
 ha

−1
. The 

maximal available amount of digestate was limited to 4000 m
3
 per year for the assumed farm 

area of 150 ha. Repeated analysis of the digestate served to update the nutrient content. 

Figure 5-3 presents how the tested fertilizer variants (FM, oFM, IO, oIO) were created. Both 

the farm managers and IoFarm used the same information. 

Process by farm manager (Figure 5-3, left column): For the experiment, a yield expectation 

was assigned to each crop by the local farm managers. This value was based on empirical 

values (historical yield data). Subsequently, nutrient requirements were calculated for 

nitrogen, phosphorus, potash, and magnesium according to specifications of the Bavarian 

State Institute for Agriculture (Wendland et al., 2018). A description of this fertilizer system 

can be found in Section 5.2.1. The calculated quantitative and seasonal nutrient target values 

were passed on to the farm managers together with current fertilizer prices and other shared 

information. Then, with the help of a planning tool
10

, the farm managers defined a ready-to-

use fertilizer strategy for all three crops. The objective of the exercise was to select the most 

cost-effective option from the available fertilizers while satisfying the specified nutrient 

demands as much as possible. For phosphorus, potash, and magnesium, fertilization was 

freely allocable within crop rotation. However, lime fertilizers could not be applied to areas 

with a pH value above the site-specific optimum (compare Table 5-1). In the case of a 

fertilizer application, a minimal rate of 300 kg ha
−1

 was specified for lime fertilizer, 

12.5 m
3
 ha

−1
 for digestate, and 80 kg ha

−1
 for all other fertilizers. As application costs also 

play a role in fertilizer strategy selection, a hypothetical farm was specified with 50 ha of 

                                                 
10

 For more information on the used planning tool, please refer to the following link (accessed on 20 June 
2021): https://drive.google.com/file/d/14rBHNKKDuBq8oyeeVUXuek2id1B9z_Dw/view?usp=sharing 
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WW, 50 ha of WB, and 50 ha of SM. The average field-to-farm distance was set as 7 min. 

Although this information is irrelevant to the evaluated parameters in this experiment, it is 

important for determining a particular fertilizer strategy, and is thereby mentioned here. This 

is how farm managers’ mineral and organomineral fertilizer variants (FM and oFM) were 

generated. This procedure was repeated monthly, starting from the fall sowing season in 2015. 

The shared information, such as results from soil Nmin testing and price changes, was 

constantly updated. Thus, farm managers had the opportunity to adjust their target yield and 

fertilizer strategy once a month at the beginning of the application period before the fertilizers 

were applied. However, the possibility to adjust the target yield was rarely used by the farm 

managers during the trial period. An overview of Nmin values and adjustments to yield 

expectations can be found in appendix (Table A 5-2). 

 

Figure 5-3: Similarities and differences in fertilizer strategy: Farm Manager and 

IoFarm. 

Process by IoFarm (Figure 5-3, right column): Fertilization variants IO and oIO were defined 

with the help of IoFarm. The endogenous yield target of IoFarm was also limited by yield 
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expectation (updated monthly by farm manager). Again, this was followed by determining the 

fertilizer requirement and the solving process in which IoFarm calculates the economically 

optimal fertilizer strategy. Regular updates of the input parameters (shared information) also 

require a regular repetition of this procedure. 

Externally defined yield expectation has great influence on the intensity of fertilization in this 

system. Reliable yield prediction requires a lot of experience and is only possible relatively 

late in the growing season. Incorrect predictions lead to biases, but can probably be 

minimized, by integrating a validated plant-growth model into IoFarm in future. For the sake 

of usability and comparability, however, we decided to work with the farmers’ yield 

expectation. This approach is quite common and is also used by extension services to achieve 

a regional differentiation of nutrient supply (Rajsic and Weersink, 2008). 

5.2.4 General Cultivation Management 

To begin the trial in the first year with a neutral preceding crop, winter oilseed rape was 

grown in the preceding year in GB and TD. In RS, the preceding crop was spring barley. The 

soil was tilled with a cultivator, which was used several times if required. A rotary harrow 

was used to prepare the seedbed. Before sowing SM, an intercrop mixture (25 kg ha
−1

 “Terra 

Life Aqua pro”) was sown in summer. The following seeding information applies to the main 

crops: 

• WB: 320 tsr m
−2

, KWS Meridian variety approx. 25 September, drill sowing. 

• WW: 340 tsr m
−2

, Patras variety, approx. 5 October, drill sowing. 

• SM: 9 tsr m
−2

, P8589 variety, approx. 25 April, precision seeding, row width 75 cm. 

The used varieties are standard regional varieties. Plant protection measures were adapted to 

the conditions of the respective locations. Weed control was very successful. Fungicide and 

insecticide measures in the cereals were designed to keep the plants completely healthy. In the 

first year of cultivation, notable Ramularia infections of WB appeared at the RS site, and 

slight Septoria tritici infections of WW were detected at the GB site. Otherwise, disease and 

pest control was very successful. Fertilization measures were extremely diverse across all 

sites, crops, and varieties. An overview of all measures, including fertilizer choice, can be 

found in Table A 5-1 in Appendix. For a detailed differentiation of the fertilizer strategies 

themselves, we refer to (Tröster and Sauer, under review). To obtain an overview of the 

quantities of applied nutrients, individual measures are also summarized and compared in 

Section 5.3.1. Cereal plots were harvested using plot combines (Haldrup c65, Ilshofen 
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Germany). In GB and TD, SM plots were harvested using a two-row plot chopper equipped 

with rear container and weighing device. In RS, two maize rows were harvested by hand and 

then processed on-site with the above-mentioned plot chopper. Straw from the cereal plots 

remained on the harvested plots, and was afterwards chopped and incorporated. This 

procedure was repeated for three consecutive years until the crop rotation of WB-SM-WW 

was completed on each plot. 

5.2.5 Crop and Soil Analysis 

In fall 2015, detailed analysis of the soil conditions was conducted. All plots were analyzed 

for phosphorus, potash, magnesium, pH, organic matter, and soil type using standard 

methods, including calcium-acetate-lactate extraction. In parallel, nine undisturbed soil 

samples were collected at each site and analyzed for pore volume in the soil laboratory. Soil 

samples were annually taken at the beginning of the growing season or shortly before sowing 

SM to a depth of 0 to 30 cm and 30 to 60 cm to determine the supply of mineral nitrogen 

(Nmin). This was separately performed for all variants. The results of the soil tests for mineral 

nitrogen only slightly differed among variants (Table A 5-2 in appendix). In WB and WW, 

yield structure was also surveyed (for details see Section 5.3.5). Samples of the harvested 

material from WW and WG were analyzed for water and protein content using near-infrared 

spectroscopy (Perten DA 7250, PerkinElmer, Waltham, MA). In the case of SM, only dry 

matter was determined. For this purpose, 200 g samples were taken from each plot and dried 

for 24 h at 105 °C in a drying oven. 

5.2.6 Statistical Analysis 

Statistical analysis was performed using STAT software (StataCorp, 2017). The two-factorial 

experiment (fertilization, crop) was evaluated using ANOVA for different dependent 

variables. In the case of significant F tests, multiple Tukey’s post hoc tests were performed 

for primary-factor fertilization to determine statistical differences. The Tukey test was chosen 

because it corrects for alpha error accumulation and is considered to be moderate. The 

prerequisites of ANOVA were confirmed using the Shapiro–Wilk test to check for normal 

distribution of residuals, and Levene’s test to check for homoscedasticity. In some groups, the 

data were not normally distributed (p < 0.05). However, with a sufficient number of 

observations per group (central-limit theorem), split-plot ANOVA was considered to be 

robust to the violation of this condition of a normal distribution of residuals (Salkind, 2010). 

Partial heteroscedasticity was also found. Various approaches used to transform the variables 
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were inconclusive. The resulting consequences are discussed in Section 5.4, but they are not 

relevant to the post hoc tests that were performed. 

ANOVA for the dependent variable yield (Y) was performed using Eq. (5-1). 

 ( ) ( ) ( )ijk i k ik j ij ijkY f r e F c fc e FC        (5-1) 

where f represents the i-th effect of fertilization, r represents the effect of the k-th replicate, 

and e(F) represents the associated ik-th error term. Variable c represents the j-th effect of 

crop, fc is the effect of the interaction of fertilization and crop in the ij-th combination, and 

e(FC) is the ijk-th error term. Random effects are indicated with capital letters. 

In addition to yield, variance analyses were also performed for other dependent variables. Eq. 

(5-1) was adjusted accordingly: 

 ( ) ( ) ( )ijk i k ik j ij ijkP f r e F c fc e FC        (5-2) 

 ( ) ( ) ( )ijk i k ik j ij ijkMP f r e F c fc e FC        (5-3) 

 _ ( )ik i k ikY SM f r e F     (5-4) 

where the dependent variables from Eqs. (5-2) to (5-4) correspond to: (i) the protein content 

(P) of WB and WW; (ii) market performance (MP) taking into account the quality rating of 

WW; and (iii) the yield of each crop, here substituting Y_SM for SM. The underlying values 

of the variable MP are not measured, but were formed according to Eq. (5-5). 

 , , , , ,c t pl c t pl c tMP y Py   (5-5) 

where y represents the yield of the c-th crop in the t-th year on the pl-th plot. Py represents the 

crop- and year-specific price, which, in the case of wheat, additionally depends on protein 

content. 

5.3 Results 

The basis for the interpretation of the results is a comparison of the nutrient supply of the test 

variants (Table 5-2). Results themselves show the influence of the IoFarm DSS on yield, 

quality, and market performance compared with the standard fertilizer strategy of a farm 

manager. Only marginal differences were found. 
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5.3.1 Comparison of Nutrient Supply and Fertilizer Use 

As Table 5-2 shows, the site-specific nutrient supply of the test variants only slightly differed. 

Table 5-2: Comparative overview of nutrient supply by location, crop, and treatment. 

Site: Geiselsberg Roggenstein Triesdorf Triesdorf 

Treatment: FM IO FM IO FM IO oFM oIO 

Silage maize         

N + Nmin 199 193 186 231 190 199 196 209 

P2O5 146 116 140 149 46 85 72 80 

K2O 93 11 407 219 77 138 167 220 

MgO 100 74 108 99 27 25 44 48 

S 12 36 48 34 22 27 38 25 

Winter barley 
        

N + Nmin 201 204 188 211 206 209 217 223 

P2O5 116 161 161 125 52 71 37 52 

K2O 0 73 0 83 141 95 81 109 

MgO 28 57 92 103 27 30 19 15 

S 5 19 22 22 90 22 31 21 

Winter wheat 
        

N + Nmin 235 234 247 242 236 220 234 190 

P2O5 130 122 127 151 119 58 102 70 

K2O 67 79 0 111 199 194 167 65 

MgO 73 67 73 84 43 44 44 28 

S 30 28 25 26 105 34 70 25 

Total crop rotation  
       

N + Nmin 212 210 207 228 211 210 216 207 

P2O5 131 133 143 142 72 71 70 67 

K2O 53 54 136 138 139 143 138 132 

MgO 67 66 91 95 32 33 36 30 

S 16 28 32 27 72 28 46 24 

All average values in kg ha−1. FM = farm manager; IO = IoFarm; oFM and oIO were additionally treated with 

organic fertilizer. N + Nmin = nitrogen fertilization + soil nitrogen content (soil test in spring). 

Larger deviations were found in the nitrogen fertilization of winter barley and silage maize at 

the Roggenstein site because of the different nitrogen sources: CAN was mainly used in the 

FM variant, while urea dominated in the IO variant due to relative price advantages. The 

higher gaseous losses of urea were taken into account by IoFarm through increased nitrogen 

fertilization. However, the emission targets of the European Union include a reduction in 

ammonia emissions (European Parliament, 2016). In this context, urea fertilization is 
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problematic and could possibly be further restricted. There were also major differences in the 

nitrogen supply to wheat in the oFM and oIO variants. Here, significantly less nitrogen was 

applied in the oIO variant. In contrast to the oFM variant, in the oIO variant, organic 

fertilization in wheat was divided into two applications in two out of three years, whereby 

better nitrogen utilization of the organic fertilization could be assumed. Further deviations can 

be seen in the sulfur fertilization at the Triesdorf site. Here, fertilization in the FM variant was 

above the requirements, perhaps because of the complexity of the optimization problem itself. 

The farm manager had difficulties in defining a fertilization strategy in which all nutrients 

were applied in sufficient quantities. 

The most important nitrogen fertilizer by volume in the IO variant was urea at all sites (39% 

to 52% of total N fertilization). In FM variants, farm managers relied on different nitrogen 

fertilizers, including CAN (GB and TDoFM), DAP (RS), and urea (TDFM). Phosphate supply 

was predominantly provided by DAP, while TSP or PK 16 + 16 was used to a greater extent 

at only two sites in the FM variant. Potash supply took place almost entirely with grain 

potash. For more detailed analysis of the fertilizer strategy of IoFarm, a separate study is 

planned (Tröster and Sauer, under review). 

5.3.2 Analysis of Variance 

ANOVA results are presented in Table 5-3 and considered in more detail below. 

Table 5-3: Analyses of variance for yield, protein content, and market performance. 

Dependent  

Variable 

Y  

(Yield) 

P  

(Protein) 

MP  

(Revenue) 

Y_SM  

(Yield) 

Y_WB  

(Yield) 

Y_WW  

(Yield) 

 
F p F p F p F p F p F p 

Model 32.1 0.000 13.1 0.000 16.5 0.000 3.2 0.000 17.1 0.000 26.9 0.000 

f 513.9 0.000 424.8 0.000 798.6 0.000 64.4 0.000 590.7 0.000 655.6 0.000 

r 0.5 0.613 1.8 0.233 0.6 0.581 0.5 0.646 1.2 0.343 0.9 0.453 

e(F#R)             

c 2772.2 0.000 3797.9 0.000 386.8 0.000 --- --- --- --- --- --- 

c#f 5.4 0.001 41.2 0.000 39.3 0.000 --- --- --- --- --- --- 

e(R#C#F)             

Obs. 297 198 297 99 99 99 

Adj R
2
 0.822 0.640 0.697 0.240 0.697 0.788 

Column 1 shows the model structure. Fixed factors are in lower case, random factors are in upper case: f, 

fertilization; r, replications; and c, culture. Interactions are indicated by #. Dependent variable under 

investigation is defined by the column headings. 
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The influence of dependent variable f (fertilization) was significant in all models (p < 0.001). 

When factor c (crop) was included in the models, it was also significant (p < 0.001). As 

expected, variable c also explained a large part of the found variance, since differences in 

mean yield among SM (180.1 dt ha
−1

), WB (80.4 dt ha
−1

), and WW (80.6 dt ha
−1

) were very 

high. In the first two models, the interpretation of the primary factors was biased due to a 

significant interaction term of fertilization and crop. Thus, there were interactions between 

these two factors that suggested that the fertilization factor was not equally effective in all 

crops. Closer data analysis (Figure 5-4) shows that SM responded with lower yield increases 

to the fertilization factor compared to the two other crops. This finding explains the 

significant interaction term. Additionally, the adjusted coefficient of determination indicates 

that the models were able to explain a large part of the found variance. Only the model for 

SM yield (Y_SM) was an exception, with a coefficient of determination of 0.240. Fertilization 

had a significant effect, but it is likely that unobserved effects, such as environmental 

influences, played a much larger role in this model than they did in the other models. 

ANOVA confirmed the significance of fertilization in determining yield and differences in 

yield at different fertilization levels. A pairwise comparison of means (Tukey test) in 

combination with a box-plot diagram illustrates the yield differences within crops, 

differentiated by fertilizer level (see Figure 5-4). 

Regardless of crop, there was a significant effect of fertilization compared with in the control 

(0V). However, for the evaluation of DSS IoFarm, direct comparisons of the variants were 

necessary. For FM and IO, the location and dispersion parameters in the box-plot diagram 

indicated that no significant differences were to be expected, which was also statistically 

proven (Table 5-4). For variants oFM and oIO in which additional organic fertilization was 

applied, slight negative yield effects were evident compared with those in purely mineral 

fertilization variants. In all cases, there were no significant differences between the two 

organomineral fertilized variants. For SM, only variant oIO was not significantly different 

from the control. For WW, there were significant differences between the oIO variant and the 

mineral variants, which was not the case for the oFM variant. These observations indicate that 

there could be slight disadvantages to using IoFarm in the case of organomineral fertilization. 

For a more detailed assessment of the results, the grouped mean values of the yields, the 

standard errors (SE), and the classification into Tukey groups are provided in Table 5-4. 

 



118 Chapter 5  

 

 

Figure 5-4: Location and dispersion measures for different crop yields grouped by level 

of fertilizer application (n = 297).  

Levels of fertilization: 0V = no fertilization (n = 3 × 27); FM = farm manager variant (n = 3 × 27), IO = model 

variant (n = 3 × 27); oFM = FM + organic fertilization (n = 3 × 9); oIO = IO + organic fertilization (n = 3 × 9). 

Within a crop (SM, WB, and WW), the following applied: means sharing a letter in the group were not 

significantly different at the 5% level. * For SM, yield refers to dry matter; for WB and WW, yield was corrected 

to 86% of dry-matter content. 

Table 5-4: Mean values (Ø), standard errors (SE), and Tukey groups (Gr.) for protein 

content (P), market performance (MP), and crop yields (Y) for five factor levels of 

fertilization. 

  
P 

  
MP 

  
Y_SM 

  
Y_WB 

  
Y_WW 

 

 
Ø SE Gr. Ø SE Gr. Ø SE Gr. Ø SE Gr. Ø SE Gr. 

0V 9.17 0.22 B 760.5 32.5 C 142.1 6.85 B 44.7 2.58 B 40.9 2.33 C 

FM 12.13 0.23 A 1442.9 32.6 A 195.4 6.85 A 95.3 2.58 A 99.6 2.33 A 

IO 11.96 0.24 A 1440.2 32.7 A 203.1 6.85 A 93.8 2.58 A 97.5 2.33 A 

oFM 11.11 0.38 A 1338.0 56.2 AB 188.1 11.87 A 91.5 4.47 A 89.5 4.04 AB 

oIO 11.03 0.38 A 1256.2 56.2 B 171.3 11.87 AB 91.7 4.47 A 83.7 4.04 B 

Means sharing a letter in the group were not significantly different at the 5% level. 
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5.3.3 Effects on Protein Content in Cereals 

Overall, protein content plays an important role in determining the market and feed value of 

cereals, and it is particularly influenced by nitrogen fertilization. Therefore, it is important to 

measure this quality parameter when comparing fertilizer systems. ANOVA (Table 5-3) 

showed that the primary effects that were tested (fertilization, crop, and their interaction) had 

significant influence on the protein content in cereal grains. A pairwise comparison of means 

(Tukey test) illustrates the differences in cereal protein content, differentiated by fertilizer 

level (Table 5-4, Column P). There were no significant differences in the protein content in 

the dry matter of all fertilized variants. They only differed significantly from the nonfertilized 

control. Nevertheless, cereal protein content tended to be somewhat lower in the IoFarm 

variants. Dilution effects could be excluded in view of the observed yields. Due to the 

comparable fertilization intensity of the treatments, a possible effect on the protein content is 

best sought in the dosage and timing of late fertilization. 

5.3.4 Effects of IoFarm Decision Support System on Market Performance 

From an economic point of view, it is useful to determine whether fertilization decisions 

made with the help of IoFarm can achieve comparable market performance to that of 

fertilization strategies decided by farm managers. This was determined by comparing market 

performance (calculated according to Eq. (5-5)). For WW, protein content was also used to 

indicate quality, which determines the market price. A complete overview of the underlying 

market prices is provided in Table 5-5. 

Table 5-5: Overview of postharvest prices in 2016 to 2018 for silage maize (SM), winter 

barley (WB), and winter wheat (WW). 

Crop Year 2016 2017 2018 

SM € (dt DM)
−1

 8.13 8.00 8.20 

WB € dt
−1

 11.68 12.60 14.36 

WW <12% XP € dt
−1

 12.62 14.16 14.90 

WW >12% XP € dt
−1

 14.01 14.73 15.41 

WW >13% XP € dt
−1

 14.52 15.21 15.97 

WW >14% XP € dt
−1

 15.80 16.74 17.27 

XP: Protein content in dry matter. 

ANOVA indicated that fertilization had significant influence on market performance (Table 

5-3). The market performance of variants FM and IO (Table 5-4, Column MP) could not be 

statistically distinguished from each other, indicating that IoFarm did not lead to any 
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difference in market performance in the case of these two variants. However, the market 

performance of organomineral variant oIO was significantly lower than that of FM and IO, 

but not significantly different to oFM. 

5.3.5 Effects on Yield Components 

Less relevant for the economic evaluation of DSS IoFarm is its influence on the yield 

components in cereals. From a crop-production perspective, however, important relationships 

become visible with regard to the yield components. These are presented in Table 5-6 and 

thus enable a more detailed agronomic interpretation of the results. 

Table 5-6: Yield components of winter barley and winter wheat. 

Variant: 0V FM IO oFM oIO 

Winter barley Thousand-grain mass (g) 
   

GB 45 46 46 
  

RS 42 45 49 
  

TD 47 49 49 49 49 

Winter wheat 
    

GB 55 50 51 
  

RS 47 51 51 
  

TD 53 54 56 55 56 

Winter barley Spikes per square meter (number) 
   

GB 484 721 756 
  

RS 357 609 622 
  

TD 392 732 657 665 611 

Winter wheat 
    

GB 372 602 544 
  

RS 466 568 502 
  

TD 309 483 452 470 449 

Winter barley Grains per spike (number) 
   

GB 27 31 29 
  

RS 21 34 29 
  

TD 25 28 31 29 31 

Winter wheat 
    

GB 29 34 37 
  

RS 16 37 41 
  

TD 22 36 35 35 34 

Variants: 0V = control; FM = farm manager; IO = IoFarm; oFM and oIO additionally treated with organic 

fertilizer. Sites: GB = Geiselsberg; RS = Roggenstein; TD = Triesdorf. 
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Apart from the control, the differences in thousand-grain weight were moderate. The main 

differences between the FM and IO or oFM and oIO variants relate to the number of spikes 

per square meter and the grains per spike. On the basis of this observation, it can be 

concluded that the timing or synchronization between nitrogen fertilization and nitrogen 

uptake was different among test varieties. A model-internal consideration of variety 

characteristics in IoFarm could lead to significant improvements, and possibly contribute to 

the stabilization of the yield reliability of IoFarm. 

5.4 Discussion 

The main purpose of this study was to compare the agronomic performance of the IoFarm 

DSS with a standard farm-fertilization strategy in a field trial. From this, it was deduced 

whether fertilization strategies calculated by IoFarm or by similar DSSs could be expected to 

have agronomic impact. Results from Table 5-4 (compared Tukey groups) showed that there 

were no significant effects of yield, protein content, and market performance within 

comparable variants, with and without organic fertilization. Hence, IoFarm does not impair 

agronomic outcomes. The literature does not provide any studies on the agronomic effects of 

DSSs with similar objectives. DSSs with similar objectives are considered to be that by Pagán 

et al. (2015), by Bueno-Delgado et al. (2016), Smart Fertilizer (Smart Fertilizer 

Management), and by Villalobos et al. (2020). They also have a clear focus on the least-cost 

combination of fertilizers, and consider at least nutrients nitrogen, phosphorus, and potash in 

parallel. In contrast, numerous other studies mainly deal with the optimal intensity of 

fertilization and provide valuable knowledge in this area: For example, Wu and Ma (2015), 

who state in their review that integrated nutrient management is of great importance for global 

crop productivity, or Rajsic and Weersink (2008), and Mandrini et al. (2021), focusing on 

economically optimal nitrogen supply. More broadly, some field-tested DSSs that simulate or 

recommend the use of inputs in crop production were studied and found to be useful in 

enabling agronomic performance (Araya et al., 2019, Übelhör et al., 2015, Chuan et al., 2013, 

Sønderskov et al., 2015). These studies are based on crop-growth models, or apply ex ante 

versus ex post analysis. However, an estimation of potential agronomic effects caused by a 

primarily cost-optimized fertilization strategy (as, e.g., in IoFarm) is not possible with the 

help of these studies. This study fills that gap and shows that a primarily cost-optimized 

fertilization strategy can keep up the pace with a standard farm-fertilization strategy from an 

agronomic perspective. 
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Before further discussion of the results, some limitations should be noted: due to the relatively 

high variance of the dependent variable within the control variant, the requirements of 

ANOVA for homoscedasticity were not met in some groups. Efforts to reduce variance by 

different transformations were unfortunately not successful. If included in the respective 

model, interactions of the main factors of f fertilization and c crop were always significant. 

Strictly speaking, both observations led to an invalid interpretation of ANOVA. The problem 

of partial heteroscedasticity can be avoided by excluding the control variant from data 

analysis. However, our focus was on the comparison of the factor levels of fertilization. The 

Tukey test can be reliably used under these conditions, which is why we decided not to 

exclude the control variant. For comparison purposes, all group means were checked in 

parallel with an unadjusted least-significant-difference t-test. Even with this more liberal test, 

no significant differences were found between comparable variants FM and IO or oFM and 

oIO. 

Predictably, the purely mineral fertilization variants (FM and IO) and the organomineral 

variants (oFM and oIO) only slightly differed from each other on the basis of their group 

mean values. Therefore, care was taken in the experimental design to test them under as many 

environmental conditions (year and location) as possible to obtain enough observations for 

comparison. The relative standard error indicated, among other things, whether the number of 

observations were sufficient to clarify the experimental question. In the case of the mineral-

fertilized variants, the relative standard error of the yield across all crops was 2.3% to 3.5%. 

This allowed for a suitable estimation of the significance levels, which again confirmed that 

no yield effects were expected from using IoFarm instead of standard farm-manager 

decisions. For organomineral variants, the range of the relative standard error was 

significantly higher, at 4.5% to 6.9%. Therefore, additional observations are necessary to 

make a more robust estimation of the significance levels for these variants. This was not 

possible in the field trial because the necessary plot technology for digestate application was 

only available in TD. Comparing variants oFM and oIO was also affected by weather and 

possible fluctuations in the nutrient content in the used digestate: for the fictitious 150 ha 

farm, 4000 m
3
 of digestate was available per year, which could be allocated to the crops 

almost freely in terms of quantity and timing. Thus, it was not possible to guarantee 

homogeneous weather conditions and homogeneous nutrient content in the digestate between 

the two variants, which inevitably led to unobserved influences on the nutrient supply. In 

sum, the comparison of the organomineral variants was significantly weakened. However, 

findings tend to indicate that farm managers were able to better integrate the digestate into 
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their fertilization planning than in the IoFarm model. Therefore, it might make sense to leave 

the planning of organic fertilization to the farmer, and to consider this as an external 

specification in IoFarm, so that operational conditions, such as trafficability of the fields or 

storage capacities, can also be taken into account. Alternatively, it would be conceivable to 

adopt such restrictions in IoFarm and redefine the effectiveness of organic fertilizers within 

the model. 

Market performance must be considered to evaluate the economic performance of IoFarm. 

However, volatile prices add another random factor: changes in price relations influence the 

contrast between group means, and could also influence whether there are significant 

differences between groups. It is also possible that farms use the entire grain yield for feed 

purposes and do not receive the market value, making it necessary to include a substitution 

value. In this case, the protein content of WB would also affect the substitution value. 

Analysis of yield, protein content, and market performance led to a largely consistent trend in 

differences between treatment groups. Therefore, despite the mentioned limitations, it could 

be assumed that moderate price or value changes did not have a significant influence on the 

assessment of market performance. 

The financial-savings potential of using IoFarm was investigated in an independent 

experiment (Tröster and Sauer, 2021b). Results showed that the IoFarm DSS leads to an 

average cost saving of €66 ha
−1

. This savings potential is mainly based on the least-cost 

combination of fertilizers, at largely identical nutrient inputs. In comparison, according to 

(Evangelou et al., 2020), the savings potential of sensor-based fertilizer systems ranges from 

€33 to €92 ha
−1

, whereas manufacturing companies assume savings of €20 to €30 ha
−1

. At 

least comparable results were obtained using IoFarm without additional technical equipment. 

As no significant differences were found in yield, protein content, and market performance for 

the mineral variants, the mentioned cost advantage could be fully attributed to using the 

IoFarm DSS. In the case of organomineral variants, the reliability of the results was less 

robust. In a direct comparison, variants oFM and oIO were not found to be significantly 

different. However, in contrast to oFM, oIO was somewhat behind the mineral-fertilized 

variants in terms of production. Therefore, if organic fertilizers are used, the oFM variant 

tends to have an advantage from an agronomic point of view. The actual extent of this 

difference and whether it is compensated for by the cost optimization of the fertilization 

strategy requires further investigation. 



124 Chapter 5  

 

5.5 Conclusions 

Our findings and the previous literature indicate that carefully developed DSSs are able to 

provide superior solutions in complex situations. When optimizing a fertilization strategy, 

IoFarm considers a large amount of information and restrictions, which is not possible for 

decision makers to process. Through this computation ability, IoFarm can save fertilizer costs 

without having to accept a reduction in yield and quality. Therefore, a cost-optimized 

fertilization strategy is not fundamentally in conflict with other agronomic objectives. The 

benefits for farmers and their advisors are evident: lower costs with the same levels of market 

performance. Since the search for a least-cost fertilization strategy is of global importance, the 

results of this study are also of international interest. However, by adapting the objective 

function, further objectives could also be achieved using IoFarm: instead of a least-cost 

fertilization strategy, minimizing the CO2 footprint associated with fertilization could also be 

optimized. Therefore, CO2-efficient fertilization strategies could be developed, which is 

important in the context of climate change, both socially and internationally. However, further 

research is needed to determine CO2 emissions caused by individual fertilizers. Currently, it is 

necessary to expand the range of available crops in the IoFarm DDS to enable broad 

applicability for farmers and consultants. The final goal is to enable farmers to directly use 

IoFarm. For this purpose, the data exchange must be performed via an online platform. For a 

high level of user friendliness, it is important that digitally available farm data can be 

imported. The calculation of an optimal fertilizer strategy is then carried out via external 

servers with high computing capacity. The result is stored in the online platform and made 

digitally available to farmers in the form of a fertilization strategy. 
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5.6 Appendix 

Table A 5-1: Detailed documentation of fertilizer application in dt per hectare (1 dt = 

100 kg). 

Geiselsberg: 2016 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code | SM WB WW 

Mar | 12: 18,46,0,0,0,−36 | 
 

2.6 
 

| 02: 27,0,0,4,0,−9 | 
 

2.5 2.5 

 
| 21: 0,0,40,6,5,0 | 

 
3.3 

 
| 

 
| 

   
  | 26: 0,0,0,14,0,53 |   3.0   |   |       

Apr | 12: 18,46,0,0,0,−36 | 
  

1.8 | 02: 27,0,0,4,0,−9 | 
 

1.0 
 

 
| 24: 0,0,0,25,20,0 | 

  
0.8 | 19: 0,0,46,0,0,−1 | 

 
2.5 

 

 
| 04: 46,0,0,0,0,−46 | 

 
1.2 

 
| 07: 21,0,0,0,24,−63 | 

  
1.5 

  |   |       | 12: 18,46,0,0,0,−36 |     2.0 

May | 04: 46,0,0,0,0,−46 | 2.1 
 

1.7 | 02: 27,0,0,4,0,−9 | 
 

2.0 
 

 
| 21: 0,0,40,6,5,0 | 

 
1.4 4.7 | 04: 46,0,0,0,0,−46 | 3.0 

  

 
| 12: 18,46,0,0,0,−36 | 2.4 2.6 

 
| 12: 18,46,0,0,0,−36 | 2.0 

  

 
| 07: 21,0,0,0,24,−63 | 0.8 

  
| 

 
| 

   

 
| 25: 0,0,0,0,2,50 | 3.0 

  
| 

 
| 

   
  | 26: 0,0,0,14,0,53 | 6.1     |   |       

Jun | 04: 46,0,0,0,0,−46 |     1.1 | 02: 27,0,0,4,0,−9 |     2.0 

Jul | 12: 18,46,0,0,0,−36 |     1.1 |   |       

 

Geiselsberg: 2017 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Aug 19: 0,0,46,0,0,−1 |   2.9 4.5 |   |       

Oct   26: 0,0,0,14,0,53 | 3.0 3.0   |   |       

Nov     |       | 26: 0,0,0,14,0,53 | 6.0 6.0   

Mar 
 

02: 27,0,0,4,0,−9 | 
  

1.3 | 02: 27,0,0,4,0,−9 | 2.5 
  

  
21: 0,0,40,6,5,0 | 

 
0.8 0.8 | 19: 0,0,46,0,0,−1 | 1.5 

  
    24: 0,0,0,25,20,0 |     0.8 | 13: 20,20,0,0,0,−31 |     3.5 

Apr 
 

07: 21,0,0,0,24,−63 | 1.0 
  

| 13: 20,20,0,0,0,−31 | 
  

3.5 

  
02: 27,0,0,4,0,−9 | 

  
2.5 | 02: 27,0,0,4,0,−9 | 2.0 

  
      |       | 21: 0,0,40,6,5,0 |   2.0   

May 04: 46,0,0,0,0,−46 | 2.0 3.0 
 

| 02: 27,0,0,4,0,−9 | 1.0 
  

  
12: 18,46,0,0,0,−36 | 2.5 

  
| 04: 46,0,0,0,0,−46 | 

 
2.0 

 

  
02: 27,0,0,4,0,−9 | 

  
2.1 | 12: 18,46,0,0,0,−36 | 

 
3.0 

 
    07: 21,0,0,0,24,−63 |   0.9   |   |       
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Continuation Table of A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg). 

Geiselsberg: 2018 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Mar 
 

04: 46,0,0,0,0,−46 | 
 

1.5 
 

| 02: 27,0,0,4,0,−9 | 2.5 3 
 

  
12: 18,46,0,0,0,−36 | 

 
2.4 

 
| 12: 18,46,0,0,0,−36 | 2 

  

  
04: 46,0,0,0,0,−46 | 2 

  
| 26: 0,0,0,14,0,53 | 3 

  

  
07: 21,0,0,0,24,−63 | 0.8 

  
| 19: 0,0,46,0,0,−1 | 

 
5 

 

  
12: 18,46,0,0,0,−36 | 0.8 

  
| 22: 0,0,40,6,5,0 | 

 
5 

 
    26: 0,0,0,14,0,53 | 3.7     | 24: 0,0,0,25,20,0 |   1.5   

Apr 
 

07: 21,0,0,0,24,−63 | 
 

0.8 
 

| 04: 46,0,0,0,0,−46 | 
  

1.7 

  
26: 0,0,0,14,0,53 | 

 
7.3 

 
| 12: 18,46,0,0,0,−36 | 

  
4.5 

  
02: 27,0,0,4,0,−9 | 

  
4.7 | 21: 0,0,40,6,5,0 | 

  
5 

    12: 18,46,0,0,0,−36 |     2.2 | 26: 0,0,0,14,0,53 |     13 

May 04: 46,0,0,0,0,−46 | 0.8 1.3 
 

| 02: 27,0,0,4,0,−9 | 2.3 2.5 
 

  
21: 0,0,40,6,5,0 | 

 
1.2 

 
| 

 
| 

   
    24: 0,0,0,25,20,0 |     2.9 |   |       

Jun     |       | 02: 27,0,0,4,0,−9 |   1.5   

 

Triesdorf: 2016 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Mar 
 

04: 46,0,0,0,0,−46 | 
 

1.3 0.8 | 15: 15,15,15,0,2,−15 | 
  

4.0 

  
12: 18,46,0,0,0,−36 | 

 
0.8 

 
| 17: 23,5,5,0,6,−23 | 

 
2.5 

 
    21: 0,0,40,6,5,0 |   4.8   |   |       

Apr 
 

21: 0,0,40,6,5,0 | 8.4 
 

5.6 | 04: 46,0,0,0,0,−46 | 2.5 
  

  
12: 18,46,0,0,0,−36 | 

 
0.9 

 
| 12: 18,46,0,0,0,−36 | 2.0 

  
      |       | 06: 26,0,0,0,13,−49 |   2.0   

May 04: 46,0,0,0,0,−46 | 2.1 
 

0.8 | 06: 26,0,0,0,13,−49 | 
  

1.5 

    12: 18,46,0,0,0,−36 | 3.6 0.8 1.4 |   |       

Jun   04: 46,0,0,0,0,−46 |     1.1 | 06: 26,0,0,0,13,−49 |   2.0 2.7 

Jul   12: 18,46,0,0,0,−36 |   2.2   |   |       
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Continuation of Table A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg). 

Triesdorf: 2017 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Feb   21: 0,0,40,6,5,0 | 1.6 0.8   |   |       

Mar 
 

02: 27,0,0,4,0,−9 | 1.1 
 

2.5 | 05: 24,0,0,0,6,−34 | 2.5 
  

   
| 

   
| 20: 0,16,16,2,7,6 | 5.0 

 
4.0 

      |       | 18: 23,5,5,0,6,−23 |     2.5 

Apr 
 

11: 9,0,0,0,0,−9 | 2.4 
  

| 05: 24,0,0,0,6,−34 | 2.0 
 

1.5 

  
02: 27,0,0,4,0,−9 | 

  
2.1 | 

 
| 

   
    21: 0,0,40,6,5,0 |     2.4 |   |       

May 02: 27,0,0,4,0,−9 | 1,6 1.6 1.7 | 02: 27,0,0,4,0,−9 | 3.0 
  

  
07: 21,0,0,0,24,−63 | 0.8 0.8 0.8 | 05: 24,0,0,0,6,−34 | 

  
2.5 

  
11: 9,0,0,0,0,−9 | 2.3 

  
| 04: 46,0,0,0,0,−46 | 

 
3.0 

 

  
12: 18,46,0,0,0,−36 | 1.4 0.8 

 
| 12: 18,46,0,0,0,−36 | 

 
1.0 

 
    04: 46,0,0,0,0,−46 |   1.8   |   |       

Jun   11: 9,0,0,0,0,−9 | 1.1     |   |       

 

Triesdorf: 2018 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Mar 
 

02: 27,0,0,4,0,−9 | 
 

1.4 
 

| 05: 24,0,0,0,6,−34 | 2.5 
  

  
04: 46,0,0,0,0,−46 | 3.9 1.0 

 
| 20: 0,16,16,2,7,6 | 1.7 

  

  
24: 0,0,0,25,20,0 | 0.9 

  
| 22: 0,0,40,6,5,0 | 3.7 6.4 

 

   
| 

   
| 06: 26,0,0,0,13,−49 | 

 
2.5 

 

   
| 

   
| 19: 0,0,46,0,0,−1 | 

 
3.6 

 
      |       | 24: 0,0,0,25,20,0 |   2.0   

Apr 
 

02: 27,0,0,4,0,−9 | 
 

1.0 1.8 | 14: 15,5,20,2,8,−14 | 8.0 10.0 
 

  
24: 0,0,0,25,20,0 | 

 
0.8 

 
| 24: 0,0,0,25,20,0 | 1.3 

 
1.8 

  
04: 46,0,0,0,0,−46 | 

  
1.7 | 04: 46,0,0,0,0,−46 | 

  
3.5 

  
07: 21,0,0,0,24,−63 | 

  
0.8 | 22: 0,0,40,6,5,0 | 

  
5.8 

  
12: 18,46,0,0,0,−36 | 

  
1.2 | 

 
| 

   
    21: 0,0,40,6,5,0 |     1.2 |   |       

May 04: 46,0,0,0,0,−46 | 
 

1.1 
 

| 
 

| 
   

  
12: 18,46,0,0,0,−36 | 

 
0.9 

 
| 

 
| 

   
    21: 0,0,40,6,5,0 |   7.4   |   |       

Jun   02: 27,0,0,4,0,−9 |   0.8   |   |       
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Continuation of Table A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg). 

Roggenstein: 2016 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Mrz 
 

04: 46,0,0,0,0,−46 | 
 

0.8 2.3 | 12: 18,46,0,0,0,−36 | 
 

3 4 

  
07: 21,0,0,0,24,−63 | 

 
0.8 

 
| 24: 0,0,0,25,20,0 | 

 
0.5 0.5 

  
12: 18,46,0,0,0,−36 | 

 
0.8 1 | 

 
| 

   

  
26: 0,0,0,14,0,53 | 

 
5.5 4.1 | 

 
| 

   
    21: 0,0,40,6,5,0 |     2.8 |   |       

Apr   26: 0,0,0,14,0,53 | 5.1     | 02: 27,0,0,4,0,−9 |     2.6 

May 04: 46,0,0,0,0,−46 | 3.3 1.2 
 

| 02: 27,0,0,4,0,−9 | 
 

3.1 1.7 

  
12: 18,46,0,0,0,−36 | 4 0.8 0.8 | 04: 46,0,0,0,0,−46 | 2.5 

  

  
21: 0,0,40,6,5,0 | 8.4 1.5 1.8 | 12: 18,46,0,0,0,−36 | 3 

  

   
| 

   
| 21: 0,0,40,6,5,0 | 10 

  
      |       | 26: 0,0,0,14,0,53 | 10     

Jun   12: 18,46,0,0,0,−36 |   1.6 2.3 | 02: 27,0,0,4,0,−9 |   3.2   

Jul   03: 28,0,0,0,0,−28 |   1.7   |   |       

Sep     |       | 26: 0,0,0,14,0,53 |   12 12 

 

Roggenstein: 2017 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Feb   21: 0,0,40,6,5,0 | 1.9 0.8   |   |       

Mrz 
 

02: 27,0,0,4,0,−9 | 2.8 
  

| 02: 27,0,0,4,0,−9 | 2.2 2.2 
 

  
26: 0,0,0,14,0,53 | 4.7 

 
8.6 | 

 
| 

   
    03: 28,0,0,0,0,−28 |   5.7   |   |       

Apr 
 

11: 9,0,0,0,0,−9 | 
 

0.8 
 

| 01: 27,0,0,0,0,−15 | 2.8 
  

  
26: 0,0,0,14,0,53 | 

 
10 

 
| 10: 46,0,0,0,0,−46 | 

  
2.5 

  
07: 21,0,0,0,24,−63 | 

  
1.1 | 07: 21,0,0,0,24,−63 | 1.5 1 

 

  
10: 46,0,0,0,0,−46 | 

  
2.7 | 12: 18,46,0,0,0,−36 | 3 3 2.5 

    12: 18,46,0,0,0,−36 |     2.1 | 22: 0,0,40,6,5,0 |     10 

May 04: 46,0,0,0,0,−46 | 1.2 
  

| 01: 27,0,0,0,0,−15 | 
 

2 
 

  
07: 21,0,0,0,24,−63 | 0.8 0.8 

 
| 

 
| 

   
    12: 18,46,0,0,0,−36 | 3.1 2.5   |   |       

Jun   12: 18,46,0,0,0,−36 | 0.8     |   |       
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Continuation of Table A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg). 

Roggenstein: 2018 | IO |   | FM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Mrz 
 

02: 27,0,0,4,0,−9 | 1.1 
 

1 | 06: 26,0,0,0,13,−49 | 2.5 
 

2.3 

  
04: 46,0,0,0,0,−46 | 1.9 

 
1.5 | 

 
| 

   

  
12: 18,46,0,0,0,−36 | 

  
2.7 | 

 
| 

   
    07: 21,0,0,0,24,−63 | 0.8     |   |       

Apr 
 

26: 0,0,0,14,0,53 | 4.5 
 

3.2 | 01: 27,0,0,0,0,−15 | 1.2 
 

1.4 

  
02: 27,0,0,4,0,−9 | 

 
2 

 
| 02: 27,0,0,4,0,−9 | 0.7 

  

  
04: 46,0,0,0,0,−46 | 

 
2 

 
| 12: 18,46,0,0,0,−36 | 3.5 3.7 2.3 

  
12: 18,46,0,0,0,−36 | 

 
3.6 

 
| 26: 0,0,0,14,0,53 | 4.5 

  
    21: 0,0,40,6,5,0 |   8.1   | 22: 0,0,40,6,5,0 |   11   

May 04: 46,0,0,0,0,−46 | 
  

1.5 | 01: 27,0,0,0,0,−15 | 
 

3.5 2.9 

  
21: 0,0,40,6,5,0 | 0.8 

 
5 | 

 
| 

   
    12: 18,46,0,0,0,−36 | 1.5     |   |       

 

Triesdorf: 2016 |   oIO   |   |   oFM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Mrz 
 

28: Digestate | 
  

13 
 

05: 24,0,0,0,6,−34 | 
 

2.5 2.5 

  
04: 46,0,0,0,0,−46 | 

 
1.3 

   
| 

   
    21: 0,0,40,6,5,0 | 2.5 4.3       |       

Apr   12: 18,46,0,0,0,−36 |   1.7     28: Digestate |   18 22 

May 07: 21,0,0,0,24,−63 | 
  

0.8 
 

07: 21,0,0,0,24,−63 | 2 
  

  
28: Digestate | 48 

 
20 

 
28: Digestate | 40 

  

  
04: 46,0,0,0,0,−46 | 

 
1 

   
| 

   
    12: 18,46,0,0,0,−36 | 1.4         |       

Jun   04: 46,0,0,0,0,−46 |     1   05: 24,0,0,0,6,−34 |   2 2 

 

Triesdorf: 2017 |   oIO   |   |   oFM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Mrz 
 

03: 28,0,0,0,0,−28 | 1.1 
 

3.5 
 

05: 24,0,0,0,6,−34 | 2.5 
 

2.5 

    28: Digestate | 13       20: 0,16,16,2,7,6 | 5     

Apr   28: Digestate | 13 43 13   28: Digestate | 25 35 20 

May 07: 21,0,0,0,24,−63 | 0.8 
 

0.8 
 

12: 18,46,0,0,0,−36 | 
 

1 
 

  
11: 9,0,0,0,0,−9 | 1.9 

 
1.3 

 
05: 24,0,0,0,6,−34 | 1 

 
2 

  
12: 18,46,0,0,0,−36 | 0.8 

 
0.8 

  
| 

   
    07: 21,0,0,0,24,−63 |   0.8       |       

Jun   11: 9,0,0,0,0,−9 | 0.8         |       
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Continuation of Table A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg). 

Triesdorf: 2018 |   oIO   |   |   oFM 

    Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW 

Mrz 
 

02: 27,0,0,4,0,−9 | 
 

1.4 
  

06: 26,0,0,0,13,−49 | 2 
  

  
04: 46,0,0,0,0,−46 | 2.8 

   
19: 0,0,46,0,0,−1 | 0.8 

  

  
24: 0,0,0,25,20,0 | 

  
0.8 

 
05: 24,0,0,0,6,−34 | 

 
2.5 

 

   
| 

    
20: 0,16,16,2,7,6 | 

 
5 

 
      |         24: 0,0,0,25,20,0 |   2.2   

Apr 
 

28: Digestate | 13 24 44 
 

04: 46,0,0,0,0,−46 | 
  

1.4 

  
04: 46,0,0,0,0,−46 | 

  
1.3 

 
02: 27,0,0,4,0,−9 | 1 1.5 

 

   
| 

    
28: Digestate | 20 20 40 

   
| 

    
20: 0,16,16,2,7,6 | 

  
1.2 

      |         24: 0,0,0,25,20,0 |     1.5 

May 02: 27,0,0,4,0,−9 | 
 

2.2 
  

02: 27.0.0.4.0.−9 | 2 
  

  
12: 18,46,0,0,0,−36 | 

 
0.8 

  
15: 15,15,15,0,2,−15 | 

 
4 

 

  
24: 0,0,0,25,20,0 | 

 
1.3 

   
| 

   
    07: 21,0,0,0,24,−63 | 0.8         |       

Jun   12: 18,46,0,0,0,−36 |   1.7       |       

* First two digits of fertilizer codes are used to assign the fertilizer. Colon is followed by the respective 

composition of the fertilizers with the nutrient contents for N, P2O5, K20, MgO, S, and their CaO effects. 

Fertilizers: 01, 02, and 05 = CAN, 03 = ammonium nitrate urea solution, 04 and 08 = urea, 06 = ammonium 

sulfate nitrate; 07 = sulfuric acid ammonia, 09 = ENTEC26, 10 = stabilized urea, 11 = ammonium nitrate urea 

solution + water, 12 = DAP, 13 = NP; 14 = ENTEC NPK, 15 to 18 = NPK, 19 = TSP, 20 = PK, 21 and 22 = 

potash, 23 = kainite, 24 = kieserit, 25 to 27 = lime, 28 = digestat. Variants: IO = IoFarm, FM = farm manager, 

oIO = IO + digestate, oFM = FM + digestate. 
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Table A 5-2: Results from soil testing (Nmin) and farmers’ yield expectation (YEX). 

Site → Geiselsberg | Triesdorf | Roggenstein 

Variant → IO FM 
 

| IO FM oIO oFM 
 

| IO FM 
 

Crop and  Nmin Nmin YEX 
**

 | Nmin Nmin Nmin Nmin YEX 
**

 | Nmin Nmin YEX 
**

 

Date ↓ kg ha
−1

 dt ha
−1

 | kg ha
−1

 kg ha
−1

 dt ha
−1

 | kg ha
−1

 dt ha
−1

 

Winter Barley 
   

| 
     

| 
   

02/2016 41 41 75 | 46 46 46 46 75 | 26 26 80 

04/2016 
  

75 | 
    

70 | 
  

80 

07/2016 
  

H * | 
    

H * | 
  

H * 

08/2016 82 83 75 | 65 69 72 67 75 | 62 74 80 

02/2017 62 65 75 | 41 43 45 42 75 | 19 12 80 

06/2017 
  

70 | 
    

70 | 
  

75 

07/2017 
  

H * | 
    

H * | 
  

H * 

08/2017 161 85 75 | 126 175 90 98 75 | 33 
 

80 

02/2018 39 44 75 | 31 33 34 35 75 | 23 23 80 

07/2018     H * |         H * |     H * 

Winter Wheat 
   

| 
     

| 
   

02/2016 52 52 85 | 50 50 50 50 85 | 30 30 89 

04/2016 
  

85 | 
    

70 | 
  

89 

08/2016 106 74 H * | 49 41 43 37 H * | 24 21 H * 

09/2016 
  

85 | 
    

85 | 
  

89 

02/2017 76 83 85 | 51 50 44 46 85 | 20 16 89 

04/2017 
  

85 | 
    

80 | 
  

89 

06/2017 
  

75 | 
    

75 | 
  

89 

07/2017 
  

H * | 
    

H * | 
  

H * 

08/2017 108 116 
 

| 
     

| 
   

09/2017 
  

85 | 
    

85 | 
  

89 

10/2017 
  

85 | 64 60 62 56 85 | 67 
 

89 

02/2018 49 44 85 | 45 34 43 41 85 | 32 32 89 

07/2018     H * |         H * |     H * 

Silage Maize 
   

| 
     

| 
   

04/2016 41 41 176 | 49 49 49 49 160 | 26 26 192 

08/2016 89 95 176 | 91 85 95 92 160 | 50 
 

192 

09/2016 
  

H * | 
    

H * | 
  

H * 

03/2017 38 51 176 | 38 23 26 30 160 | 30 28 192 

05/2017 
  

176 | 
    

160 | 
  

176 

08/2017 88 98 176 | 104 88 89 90 160 | 
  

176 

09/2017 
  

H * | 
    

H * | 
  

H * 

10/2017 
  

176 | 
    

160 | 
  

192 

03/2018 18 25 176 | 32 32 36 35 160 | 15 15 192 

09/2018     H * |         H * |     H * 

* Harvest; ** farmers yield expectation in dt ha
−1

 (1 dt = 100 kg). Only months in which new information or 

changes occurred compared to the previous month are shown. Changes highlighted in bold. 
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6 Characteristics of cost-efficient fertilization strategies at the 

farm level 

This manuscript is coauthored with Johannes Sauer and submitted to NJAS: Impact in 
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Abstract 

Context: Fertilization accounts for a significant share of the costs of crop production. Farmers 

therefore aim to find cost-efficient fertilization strategies. Due to numerous and partly volatile 

influencing factors, such as fertilizer price, yield expectation, product price, weather 

conditions, etc., this is a very complex and recurring optimization problem in crop production. 

Objective: This study aims to analyze whole-farm fertilization strategies from an economic 

point of view. In the first part, differences between cost-efficient and inefficient fertilization 

strategies are analyzed. In the second part, the influence of different farm conditions on cost-

efficient fertilization strategies is investigated. In summary, both parts contribute to generate a 

deeper economic understanding of cost-efficient fertilization strategies on farm level, thus 

extending the current knowledge. 

Methods: First, an experiment was conducted in which participants had to plan a fertilizer 

strategy for a simplified farm. The data obtained were analyzed with linear regression 

analyses and t-test to reveal the characteristics of cost-efficient fertilizer strategies. For part 

two, a typical Bavarian farm was used to analyze extreme changes in farm conditions, 

following the ceteris paribus principle. The determination of the fertilization strategy was 

done with the decision support system IoFarm, which was used as a benchmark for cost-

efficient fertilization strategies. 

Results and conclusions: Our results show that certain fertilizers are more common in cost-

efficient fertilizer strategies. The timing of application of base fertilizers is also important. 

Inefficient fertilizer strategies have surpluses of sulfur and potash, incurring costs and 
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impacting sustainability. Application costs represent a significant portion of total costs, but 

play a minor role compared to other factors. Fertilizer prices or relative price differences were 

identified as the largest factor influencing the fertilizer strategy. Furthermore, this study 

provides an example of bounded rationality of human decision makers in complex situations. 

The decision support system IoFarm provides help and is able to determine cost-efficient 

fertilizer strategies. 

Significance: This research analyzes the cost-efficiency of fertilizer strategies considering 

application costs. The focus is on the comparison and evaluation of: (i) fertilizer selection, (ii) 

timing of fertilizer measures, and( iii) the influence of farm conditions. The study provides a 

new and important contribution to the understanding of cost-efficient fertilizer strategies at 

the farm level. Farmers benefit significantly from this contribution, as it shows opportunities 

to increase cost-efficiency. The results show that cost-efficient fertilizer strategies are at the 

same time more sustainable, which also demonstrates the societal benefit of this study. 

Keywords 

IoFarm, cost efficiency, profit maximization, fertilization strategy, fertilizer application, 

sustainable intensification 

6.1 Introduction 

Economic efficiency is an objective that is generally pursued by rational actors. This objective 

requires technical efficiency and allocative efficiency. In the context of agricultural 

production, both the available production technology and the production program must be 

considered fixed when making short-term production decisions. Therefore, the most cost-

efficient production possible is of great importance. Cost efficiency means that the 

combination and intensity of production factors and means of production are chosen in such a 

way that the resulting marginal profit does not become negative. Hence, cost efficiency 

follows a profit function, which in turn is based on at least one production function. 

Since the fertilization of crops accounts for a significant proportion of variable production 

costs, a cost-efficient fertilization strategy contributes significantly to the economic efficiency 

of the farm. The isolated consideration of a cost-efficient fertilization strategy is already a 

complex optimization problem in itself, which in summary consists of two questions: Which 

fertilizer intensity (related to all relevant nutrients) promises the economically optimal, 

technical input/output ratio? Which combination of available fertilizers is able to provide the 

optimal fertilizer intensity at minimum cost? To answer these questions, all price information 
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is relevant. In addition, growth conditions, as well as legal, operational and crop production 

requirements must be taken into account in order to develop the most cost-efficient fertilizer 

strategy. Fertilizer strategy is understood to be a farm-by-farm plan that includes, for each 

combination of field plot and crop, over the period of a crop rotation: (i) fertilizer selection; 

(ii) fertilizer application rate; (iii) timing of fertilizer measures. The fertilizer strategy must be 

adjusted several times over the course of a planning period (e.g., crop rotation cycle) to 

account for changes in prices, for example. In summary, this results in innumerable possible 

combinations of potential fertilizer strategies that differ significantly in terms of their cost-

efficiency.  

The characteristics of cost-efficient fertilizer strategies and their differences from inefficient 

fertilizer strategies are of particular interest to farmers and consultants. Thus, 

recommendations for their own fertilizer strategies can be derived. The differentiation 

between efficient and inefficient measures can be found in numerous scientific studies: 

Wimmer and Sauer (2020) analyze accounting data to identify efficient farm diversification 

strategies; Mollenhorst et al. (2020) train a machine-learning algorithm with organic 

fertilization management data to derive efficient organic fertilization decisions; Grassini et al. 

(2011) studied the effect of various management practices on corn production efficiency in 

the Western US corn belt. The topic of “fertilizer strategies” per se, is also heavily represented 

in the literature: Studies by Gil-Ortiz et al. (2020), Dimkpa et al. (2020), Mi et al. (2019) and 

Noellsch et al. (2009) look at the differences in fertilization strategies with conventional and 

slow release nitrogen fertilizers; Kozlovský et al. (2009) compare Cultan fertilization with 

conventional fertilization strategies; Song et al. (2021) and Koch et al. (2004) examine 

variable rate control as a possible fertilization strategy. These are primarily studies of 

technical efficiency. Studies that focus on cost-efficient fertilizer strategies often specifically 

consider the optimal intensity of nutrient supply (LI et al., 2021; Tabak et al., 2020; Sihvonen 

et al., 2018; Xu et al., 2017; Chuan et al., 2013) and, in rare cases, the least-cost combination 

of fertilizers (Villalobos et al., 2020; Bueno-Delgado et al., 2016; Pagán et al., 2015; Mínguez 

et al., 1988; Babcock, 1984). Instead of a very broad definition of “fertilizer strategy,” the 

studies mentioned focus on a specific aspect in each case and examine it mostly on the basis 

of trials in single crops. The situation is similar with production technology trials in the 

fertilizer industry, where in-house fertilizers are compared with competing products. Due to a 

lack of representativeness and validity, these competitive comparisons have no scientific 

value and are therefore not published accordingly 
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It should be noted that the literature provides a great amount of information on specific 

fertilization issues. This information can be used to draw conclusions about the benefits of 

different technologies or to derive suitable fertilizer intensities. Farmers or consultants need to 

convert this knowledge into a cost-efficient fertilizer strategy tailored to the farm. This 

requires defining the choice of fertilizers as well as the amount and timing of fertilization. To 

this end, there are currently no studies in the literature that specifically refer to the 

characteristics of cost-efficient and inefficient fertilizer strategies at farm level. Since 

fertilizer strategies in practice are influenced by the capabilities of decision makers and by 

natural and respective farm conditions, two research questions arise: (i) How do cost-efficient 

fertilizer strategies differ from inefficient ones in terms of fertilizer selection, dosage, timing 

and resource use? (ii) What is the influence of natural conditions and farm conditions on a 

cost-efficient fertilizer strategy? 

To answer the first question, we refer back to a fertilizer quiz in which we had asked the 

participants to plan a fertilizer strategy. In this experiment, the natural and farm conditions 

were fixed. Despite uniform specifications and information, fertilizer strategies differed 

considerably in terms of design and cost-efficiency. These differences can be useful to 

improve cost-efficiency without using or having access to optimization tools, avoiding 

associated transfer costs. We address the second question using the decision support system 

(DSS) IoFarm (Tröster and Sauer, 2021b). IoFarm generates fertilizer strategies with optimal 

cost-efficiency on farm level. Application costs are also taken into account. Previous studies 

have shown that IoFarm, primarily through least cost combination, results in an average cost 

saving of €66 ha
─1

 (Tröster and Sauer, 2021b) at the same fertilizer intensity. Neither yield 

nor quality in crop production are affected to a significance level of 5% (Tröster and Sauer, 

2021a). IoFarm is used to determine optimal fertilization strategies under different farm 

conditions. The main aim of this is to clarify whether different fertilization strategies arise for 

different farm types and what these potential deviations ultimately look like in concrete terms. 

Previous studies (Tröster and Sauer, 2021b; Tröster et al., 2019) have already pointed out 

relevant influencing factors in this context. Thus, we assume that the following factors will 

have an influence on the fertilization strategy: Farm size (hectares), internal infrastructure, 

organic fertilizer accumulation and heterogeneity of soil fertility. 

This article shows characteristics in which cost-efficient and inefficient fertilization strategies 

differ and what influence varying farm conditions exert in this respect. This article thus 

contributes to a better understanding of cost-efficient fertilization strategies. Furthermore, it is 

clarified whether general recommendations for a cost-efficient fertilizer strategy can be 
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derived from this information or whether the support of a DSS is indispensable. This 

information is particularly relevant for farmers and consultants who want to implement more 

economically efficient, but also resource-friendly fertilization strategies. In addition, the 

fertilizer industry benefits from the results of this study, e.g., in developing new products, or 

in connection with strategic decisions in the company. 

6.2 Material and methods 

6.2.1 The IoFarm decision-support system 

IoFarm is a novel decision support system for identifying cost-efficient fertilizer strategies at 

the farm level (Tröster and Sauer, 2021b). In the context of this study, IoFarm is used, on the 

one hand, as a cost-efficient benchmark for comparing different fertilization strategies. On the 

other hand, IoFarm is based on a clear mathematical structure and is therefore well suited for 

scenario analyses in which a consistent solution path is important. Over an entire crop rotation 

cycle, the DSS IoFarm makes concrete specifications for selecting fertilizers, application rate 

and application time for each field plot. By regularly updating fertilizer and product prices, 

yield expectations, soil test results and weather information, IoFarm can dynamically adjust 

the fertilizer strategy. The mathematical structure of IoFarm belongs to the category of so-

called “Mixed Integer Non-linear Problems.” The objective function is designed to find the 

most cost-efficient combination of fertilizers to meet crop requirements. In addition to the 

market prices of the fertilizers, the application costs of the fertilizers are also considered. 

Within the model, marginal revenues and marginal costs are also taken into account, which 

may limit the intensity of fertilization if it is economically reasonable. 

6.2.2 An experiment as data source 

To assess the economic performance of IoFarm, a fertilizer quiz was conducted as part of a 

previous study (Tröster and Sauer, 2021b). Participants were mainly reached via “mailing lists 

of alumni associations of higher agricultural education institutions and universities.” 

Participants were asked to define their experience level according to the following 

description: Expert = person possessing either scientific experience in plant nutrition or 

economic optimization models; Farmer = person with at least five years of professional 

experience in agriculture and plant nutrition; Student = student with advanced knowledge in 

economic optimization models and plant nutrition; “Others.” For further analysis, the last 

group was excluded. 
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The task was to define a complete fertilizer strategy for a 150-hectare farm, with three equal-

sized field plots over a period of three years. To highlight differences in fertilizer selection 

and timing, we ensured that the participants and the IoFarm DSS followed identical guidelines 

for fertilizer intensity and timing. These guidelines are based on the fertilization standards 

valid in Bavaria (Sothern Germany) (Wendland et al., 2018), but are comparable to other 

state-specific standards in Germany (Zorn et al., 2007): N and S are allocated according to the 

yield expectation within a season. For N, soil test results are considered. The basic nutrients 

(P, K, and Mg) are applied according to the nutrient removal of the crop rotation, whereby 

soil nutrient content leads to additional increases or decreases as required. Seasonal 

requirements for basic fertilization only arise if the soil nutrient content falls below a critical 

level; otherwise these nutrients are freely allocable within a crop rotation. To keep up with 

these guidelines, the participants were provided with a planning tool that contained 

requirement specifications for the individual nutrients (N, P, K, Mg, S) as well as a selection 

of 25 fertilizers commonly available on the market. This allowed the participants to 

concentrate on selecting, dosing and timing the fertilization measures. The objective for the 

participants was to identify the most cost-efficient fertilizer strategy, and to help with this, a 

complete listing of all fertilizer prices covering the entire period was handed out along with 

the quiz. The relevance of application costs was also pointed out (The quiz is available 

online
11

). For comparability reasons, participants who were not able to follow the guidelines 

had to be excluded from further analysis. Thus, the data set for analysis contains only 

fertilizer strategies that meet uniform guidelines. It is therefore expected that there would be 

no significant differences in the output of crop production, which is supported by the results 

of a multi-year field trail (Tröster and Sauer, 2021a). The cost-efficiency of the fertilizer 

strategies can therefore be assessed based on total costs alone. 

On average, it took the participants 81 minutes to complete the task. The best participant’s 

total cost for fertilizer and application is about €10 per hectare per year more expensive than 

IoFarm's fertilizer strategy. On average, this difference is as high as €66 per hectare per year. 

The data submitted by the quiz participants contain much more information than just the total 

costs: each data set represents a separate fertilization strategy that was more or less successful 

from a cost perspective. This allows a detailed characterization of the fertilization strategies. 

                                                 
11

 https://drive.google.com/file/d/14rBHNKKDuBq8oyeeVUXuek2id1B9z_Dw/view?usp=sharing 
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6.2.3 Classification of similar fertilizers 

The participants could choose from 25 fertilizers on the fertilizer quiz, which is why 

participant fertilizer strategies differed considerably. To transparently compare the fertilizer 

strategies, it is therefore necessary to group similar fertilizers together in order to make 

potential solution patterns visible, which is why we distinguish between fertilizers with low 

(xL) and high (xH) nutrient content, e.g., 31% nutrient content is a high nutrient content. This 

limit was purposely chosen so as not to distort the group balance between these two 

categories too much. As a second characteristic, we distinguish between single-nutrient 

fertilizers (Sx) and compound fertilizers (Cx). A fertilizer is considered to be a single-nutrient 

fertilizer if it contains only N, P or K and, in parallel, no more than 20% of its total nutrient 

content comprises the nutrients S and Mg. The combination of these differentiation criteria 

results in the groups SL, SH, CL, and CH. Special lime fertilizers form their own group (CA). 

The fertilizers and their group allocation can be found in the appendix (Table A 6-1). Based 

on this grouping, our primary focus is to determine what proportion of the applied nutrient 

quantity a participant drew from each of the five fertilizer groups. This should allow 

conclusions to be drawn about the fertilizer strategy as well as the total costs of fertilization 

(including application). 

6.2.4 Data preparation and comparison of fertilization strategies 

Several steps were necessary to form an informative data set from the fertilization strategies 

of the individual quiz participants. First, the raw data that could be derived directly from the 

individual fertilization strategies was listed. This included, for example, the amount of 

fertilizer used, number of fertilizer applications, as well as the application rate of each 

nutrient. Based on this information, further variables were generated that are important for 

analyzing the fertilization strategy. These variables include costs for purchasing fertilizers and 

their application costs, nutrient losses or nutrient balances. A large number of the variables 

describe the proportion that fertilizers contribute to the total supply of each nutrient. In total, 

675 variables comprise each fertilizer strategy. Relevant excerpts of these data can be found 

in the appendix (Table A 6-2, Table A 6-3). 

Statistical calculations were performed using STATA SE 13 software (StataCorp, 2017). The 

data set was analyzed for potential factors influencing the variable FA_Cost (total cost from 

fertilizer and application) using linear regression analysis. Eq. (6-1) represents the associated 

linear regression model. The coefficient 0  represents a constant. The remaining coefficients 
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n  represent the weighting factors of the independent variables nx . The residual error is 

covered by the error term  . 

 0 1 1_ Cos ... n nFA t x x        (6-1) 

The variable FA_Cost was also used as the sole cluster variable to divide the fertilization 

strategies into clusters with different cost efficiencies. The median-linkage clustering method 

in combination with the Euclidean option as a continuous dissimilarity measure led, as 

desired, to a differentiation into three clusters: The cluster with the most cost-efficient 

fertilization strategies also includes the optimal IoFarm solution. We assign this cluster to the 

economically “efficient” fertilization strategies. The remaining two clusters can be described 

as “average” and economically “inefficient” fertilization strategies. This provided the 

opportunity to perform mean comparisons between clusters using t-tests in further analysis. 

Since more than two groups (efficient, average, and inefficient clusters) were compared, the 

Tukey test was used (Tukey, 1949). This post-hoc test is a multiple comparison of means that 

corrects for alpha error accumulation and is therefore considered to be conservative. 

6.2.5 Scenario analysis using the DSS IoFarm 

The DSS IoFarm was applied under different farm conditions to identify potential impacts on 

cost-efficient fertilization strategy. As a starting point for this study, data from an existing 

farm (“original farm”) was used. The farm is managed by one of the authors, therefore 

necessary details of on-farm infrastructure are well known. Complete information on all farm-

to-field and field-to-field distances of other farms is not directly accessible. It is possible to 

generate such datasets (Machl et al., 2016), but these georeferenced data are highly sensitive, 

which is why we were unable to obtain access for this under data protection law. 

The “original farm” (see Table 6-7, column 1) cultivates 63 hectares, of which one third each 

is winter barley, winter wheat and silage maize. The acreage and cropping structure 

correspond to an average Bavarian farm where, according to the Bavarian Agricultural Report 

(StMELF, 2020), cereals and fodder crops are cultivated on 60.4 hectares. No organic 

fertilizers are available. In order to be able to consider field-to-field distances, the total time 

required to reach all field pieces (in a circuit) was used according to Tröster et al. (2019). This 

amounts to 65 minutes. The field pieces were grouped into three management units (f1 to f3). 

This greatly facilitates the clarity and comparability of the results. Based on the size and the 

farm-to-field distances of the individual field pieces, a weighted average farm-to-field 

distance in minutes was determined for the three management units. The third of the plots 
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close to the farm (f1) has a farm-field distance of only 0.75 minutes. Management unit f2 and 

f3 are 2.55 and 10.74 minutes away, respectively. Soil nutrient content (P, K, and Mg) of the 

management units was determined using representative farm plots and classified into 

categories “A” (very low) to “E” (very high) according to the guideline of the Bavarian State 

Institute of Agriculture (Wendland et al., 2018). Accordingly, a classification in categories 

“A” and “B” results in an increase in the respective nutrient requirement. Classification in 

categories “D” and “E” results in the respective nutrient requirement being halved or 

cancelled. 

The initial situation of the original farm was now changed selectively in order to be able to 

represent the following scenarios: “small farm,” “big farm,” “nearby fields,” “faraway fields,” 

“homogeneous soil fertility,” “medium slurry accumulation” and “high slurry accumulation.” 

In addition, to test the influence of relative price changes on fertilizer strategy, fertilizer prices 

collected between August 2015 and October 2018 were artificially manipulated. The fertilizer 

prices can be viewed in conjunction with the fertilizer quiz online (link provided above). 

Using binary random numbers, a decision was made for each fertilizer at the beginning of 

each year whether to raise or lower the original prices by 10%. This results in a data set with 

annually changing price relations. Price trends of the individual fertilizers within the period 

under consideration, however, remain. The associated scenario is labeled “artificial price 

shift.” More detailed information on the scenarios, as well as an overview of the results, can 

be found in Table 6-7. 

6.3 Results 

The results show that cost-efficient fertilizer strategies are primarily influenced by relative 

changes in fertilizer prices. The farm-specific conditions investigated only partially influence 

the fertilizer strategy. 

6.3.1 Differences between cost-efficient and inefficient fertilization 

strategies 

In order to find out how cost-efficient fertilizer strategies differ from inefficient ones, a 

detailed analysis of the data from the fertilizer quiz is carried out in this point. The most cost-

efficient fertilizer strategy of IoFarm is also shown separately in the group mean comparisons 

to enable cross-comparisons. 
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Fertilizer decision 

Particularly relevant is identifying fertilizers with a high or low economic advantage. In order 

to be able to assess the importance of the fertilizers separated by nutrients, it is first calculated 

which share of a nutrient a fertilizer covers in total within the framework of the present 

fertilizer strategy. If, for example, the potash supply is covered exclusively by gr. potash, this 

fertilizer has a share of 100% in the potash supply. This shows what contribution each 

fertilizer has made to the respective quantities of nutrients applied. Numerous regression 

analyses were then carried out to determine the impact of these fertilizer variables on the total 

cost of fertilization, using the trial and error method. In the end, a model was created that is 

able to relate each nutrient to a specific fertilizer (see Table 6-1). 

Table 6-1: Influence of important fertilizers on the total cost of fertilization. 

FA_Cost   Coef. SE P>|t| 

N%CAN+Mg 

 

-18373 9805 0.074 

P%DAP 

 

-14852 4452 0.003 

K%ENTEC NPK 

 

13039 6580 0.060 

Mg%Lime+Mg 

 

-32785 9736 0.003 

S%gr. potash 

 

-76149 24935 0.006 

constant   178999 5509 0.000 

n= 29 | Prob > F = 0.000 | Adj. R-squared = 0.7365 

FA_Cost = total cost of fertilizer and application; Coef. = regression coefficient; SE = standard error; 

N%CAN+Mg = contribution of CAN+Mg to total nitrogen fertilization; P%DAP = contribution of DAP to total 

phosphorus fertilization, etc. 

With the exception of the K source (K%ENTEC NPK), all variables contribute to lower total 

costs in the model from Table 1. It is therefore to be expected that low-cost fertilization 

strategies rely more on CAN+Mg as a nitrogen source, DAP as a phosphorus source, 

Lime+Mg as a magnesium source and gr. potash as a sulfur source and in parallel avoid 

ENTEC NPK as a potash source. Due to the uniform scaling of the independent variables, it is 

also possible to rank the influencing variable on the basis of the level of the coefficients. 

Accordingly, the use of gr. potash as a source of sulfur is of particular importance. A multiple 

mean comparison between the clusters formed in advance (cost-efficient, average and 

inefficient fertilizer strategies) provides additional insights into different frequencies of 

fertilizer use (see Table 6-2). 
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Table 6-2: Fertilizers with significant differences between group means of clusters. 

Fertilizer 

Io- 

Farm 

Cluster  

1 ←versus→ 

Cluster  

2 ←versus→ 

Cluster  

3 ←versus→ 

Cluster 

1 

  Ø % Ø % SE P>|t| Ø % SE P>|t| Ø % SE P>|t| Ø % 

N%AHL1to3 4.0 6.5 0.01 0.001 0.8 0.01 0.773 0.0 0.01 0.001 6.5 

N%DAP 21.3 21.7 0.04 0.018 9.3 0.02 0.133 1.5 0.04 0.002 21.7 

            P%DAP 80.0 81.8 0.14 0.015 34.0 0.07 0.143 5.7 0.13 0.002 81.8 

P%TSP 20.0 18.2 0.16 0.355 42.0 0.07 0.185 70.2 0.14 0.049 18.2 

            K%gr. potash 100 100 0.19 0.063 51.1 0.08 0.700 35.9 0.17 0.044 100 

            Mg%gr. potash 10.4 9.4 0.02 0.130 5.2 0.01 0.415 2.8 0.02 0.039 9.4 

            S%gr. potash 16.7 17.5 0.03 0.002 6.8 0.01 0.248 2.6 0.02 0.000 17.5 

S%Kieserit 33.3 63.0 0.08 0.240 49.1 0.03 0.165 34.7 0.07 0.028 63.0 

Notes: The optimal solution “IoFarm” is shown separately as a benchmark; Cluster 1 = cost-efficient fertilization 

strategies; Cluster 2 = average fertilization strategies; Cluster 3 = inefficient fertilization strategies; SE = 

standard error; N%AHL1to3 = amount of AHL1to3 to total nitrogen fertilization; P%_DAP = contribution of 

DAP to total phosphorus fertilization, etc. 

Only a few of the combinations of nutrient source (e.g., N%) and fertilizer (e.g., DAP) differ 

significantly in their frequency of use between cluster 1 (cost-efficient fertilizer strategies) to 

cluster 3 (inefficient fertilizer strategies). Table 6-2 only shows combinations of nutrient and 

fertilizer for which significant differences in use frequency can be detected, at least when 

comparing clusters 1 and 3 (see right part of table). Significant differences in use frequency 

between clusters 1 and 2 are particularly relevant. Although AHL1to3 contributes only 

slightly (with 6.5%) to the nitrogen supply in cluster 1, it is still considered a success-

determining factor for a cost-efficient fertilization strategy. Also relevant is DAP as a source 

of N and phosphorus, respectively, and gr. potash as a source of cost-efficient sulfur supply. 

Thus, comparing means essentially supports the results of the regression analysis. In looking 

at the raw data, we also notice some patterns that were not detectable, or not sufficiently 

detectable, using the statistical methods: Fertilizers with a combination of N, P and K, as well 

as stabilized nitrogen fertilizers are rarely used in cost-efficient solutions; gr. potash plays an 

important role for the supply of S, but the time of application must then be within the growing 

season; by far the greater part of the sulfur supply is via SSA in the context of the fertilizer 

quiz. The importance of SSA depends on its price, but also strongly on the pH value, as well 

as the K and Mg supply of the soil. Here is an example: A high pH value and a low Mg 

supply favor SSA, because due to the strong acidifying effect of this fertilizer, more 

Lime+Mg must be used to compensate for the acidifying effect. Lime+Mg is also the most 
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economical source to ensure Mg supply. In contrast, at a low K supply and low pH, SSA 

becomes less relevant. In this case, larger portions of the S requirement are usually covered 

within the framework of potash fertilization via gr. potash. 

Fertilizer categories 

In a further model, it was investigated whether it might also be possible to derive conclusions 

about entire fertilizer groups. Fertilizer categorization was carried out as described in Section 

6.2.3. Values between 0 and 1 were calculated for the proportional nutrient supply from the 

variables SL, SH, CL, CH, and CA. A value of 1 would mean that the respective quiz 

participant had obtained 100% of the total nutrient supply from one and the same fertilizer 

category. However, the total cost of fertilization (FA_Cost) cannot be explained by the 

nutrient proportions from the five fertilizer categories. The associated model (not shown) 

already fails at the F statistic (Prob > F 0.1475). 

Timing of basic fertilization with K and P 

P and K are nutrients that do not necessarily need to be spread every season, which presents 

the option of using potential low price periods to purchase these nutrients in order to save on 

costs. For this purpose, the total amount of applied nutrients in 2016, 2017, and 2018 was 

compared with the dependent variable FA_Cost in the form of a regression analysis for both P 

and K (see Table 6-3). 
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Table 6-3: Influence of the timing of basic fertilization on the total cost of fertilization. 

FA_Cost   Coef. SE P>|t| 

P2016 

 

1.786 1.087 0.115 

P2017 

 

0.806 1.057 0.454 

P2018 

 

1.323 1.022 0.209 

K2016 

 

2.254 0.759 0.007 

K2017 

 

2.623 1.041 0.019 

K2018 

 

1.848 0.929 0.059 

constant   36286.28 53581.99 0.505 

n= 29 | Prob > F = 0.0238 | Adj. R-squared = 

0.3095 

FA_Cost = total cost of fertilizer and application; Coef. = regression coefficient; SE = standard error; P2016 = 

phosphorus fertilization in 2016, K2018 = potash fertilization in 2018, etc. 

For timing phosphorus fertilization (variables P2016 to P2018), no significant influence on 

the total costs can be detected. For timing potash fertilization, however, significant influences 

can be detected at least in the years 2016 and 2017. The coefficients of the variables K2016 to 

K2018 indicate that K had a comparatively high price in 2017. In contrast, in 2018, the price 

level for K was considerably lower. Thus, it can be expected that the basic supply of K in 

cost-efficient fertilizer strategies was preferentially provided in 2018. 

The comparison of means (not shown) provides a significant difference only for the use of P 

in 2016. In cluster 1, significantly (P>|t| = 0.019) less P was used in this year compared to 

cluster 3. With this insight, more importance should be attached to the coefficient of variable 

P2016 in the above regression analysis (see Table 6-3). With the value of 1.786, it takes by far 

the highest value of variables P2016 to P2018, indicating high phosphorus prices in 2016. In 

contrast to the regression analysis, the t-tests (due to high standard errors) for the timing of 

potash fertilization between the clusters did not reveal any verified differences. A look at the 

raw data reveals that gr. potash was also used in cost-efficient solutions to some extent in 

2016 and 2017, but then in reduced amounts and specifically in the spring to satisfy a 

proportion of the sulfur requirements in parallel. This confirms the importance of gr. potash 

and its dual function as a source of K and S. 

Application costs and number of fertilization measures 

On average, the application costs of all quiz participants account for 5.2% of the total costs. 

Despite this relatively low share of costs, a significant (P>|t| = 0.013) correlation between 
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total costs (dependent variable: FA_Cost) and application costs (independent variable: 

A_Cost) was found in a linear regression analysis (Prob>F = 0.013; Adjusted R² = 0.1782). 

The coefficient for A_Cost is 7.35, indicating that high application costs are related to high 

total costs. The “Measures” variable indicates the number of all fertilization measures within 

the three-year period. With a positive correlation of 0.750, it is closely linked to application 

costs (A_Cost), which is why the “Measures” influence was tested separately to prevent 

autocorrelation. However, “Measures” as an independent variable is not suitable for drawing 

conclusions about the total costs of a fertilizer strategy (Model: Prob>F = 0.2745). 

Table 6-4: Statistical comparison of means for application costs and number of 

measures. 

Test- Variable 

IoFarm Cluster1 ←versus→ Cluster2 ←versus→ Cluster3 ←versus→ Cluster1 

Ø Ø SE P>|t| Ø SE P>|t| Ø SE P>|t| Ø 

A_Cost [€] 8323 7189 385 0.207 7926 172 0.272 8535 344 0.039 7189 

Measures [No] 37 26.3 3.43 0.666 29.5 1.53 0.322 33.0 3.07 0.570 26.3 

Cluster 1 = cost-efficient fertilization strategies; Cluster 2 = average fertilization strategies; Cluster 3 = 

inefficient fertilization strategies; SE = standard error; A_Cost = application cost; Measures = number of 

fertilization measures within 3 years. 

The comparison of the cluster means (Table 6-4) confirms the result from the previous 

regression analysis. It is interesting, however, that the optimal solution of IoFarm, which was 

only presented here as a reference, stands out with high costs for application and many 

fertilization measures. 

Nutrient losses and balances 

Another factor that affects both the fertilization costs and the evaluation of the sustainability 

of this measure is a nutrient supply that is as close as possible to the requirements. For the 

basic nutrients P, K and Mg, balances were shown to the quiz participants during the 

processing of the experiment. In these balances, the nutrient requirements resulting from the 

withdrawals of the crop rotation were compared with the applied nutrients (taking into 

account the nutrient content of the soils). The corresponding names of the variables are 

“P_Bil,” “K_Bil” and “Mg_Bil.” For nutrients N and S, this balancing approach is not 

suitable due to the high potential for displacement in the soil. However, information on 

potential losses could be generated at least indirectly from the available data: For the required 

sulfur supply, crop-specific target values were considered demand. In addition, it was defined 

that effective sulfur fertilization can only take place in the time window from February to 
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May. Sulfur applications above the demand, or outside this time window were summarized in 

the variable “S_loss” as sulfur loss. N leaching losses unfortunately cannot be derived. 

However, since nitrogen fertilization was only allowed within reasonable time windows 

during the experiment and the fertilizer requirement was predefined, it is assumed that 

leaching losses do not differ significantly. However, theoretical conversion losses of the 

different nitrogen forms were considered during the course of the fertilizer quiz. The sum of 

these conversion losses is summarized in the variable N_loss. Table 6-5 shows the influence 

of the variables mentioned on the fertilizer costs (FA_Cost). 

Table 6-5: Relationship between demand-based and cost-efficient fertilization. 

FA_Cost   Coef. SE P>|t| 

N_loss 

 

0.272 1.502 0.858 

S_loss 

 

1.276 0.202 0.001 

P_bil 

 

0.787 0.739 0.296 

K_bil 

 

1.295 0.524 0.021 

Mg_bil 

 

-0.900 0.506 0.089 

constant   134161 8918 0.001 

n= 29 | Prob > F = 0.0001 | Adj. R-squared = 0.6960 

FA_Cost = total cost of fertilizer and application; Coef. = regression coefficient; SE = standard error; N_loss = 

theoretical conversion losses of nitrogen fertilizers; S_loss = displaced or overapplied sulfur fertilization; P_bil = 

balance of P fertilization and withdrawal, etc. 

Despite the relatively high pure nutrient costs in the purchase of N and P, the associated 

variables (N_loss and P_bil) have no significant influence on fertilizer costs. This can only be 

explained by the fact that the quiz participants fertilized largely according to demand in this 

respect and that there are therefore no significant differences. There are significant differences 

for S (S_loss) and K (K_bil). In both cases, overfertilization leads to higher fertilizer costs 

and to a deterioration in resource efficiency. In Table 6-6, a statistical mean comparison is 

provided to show the differences between clusters 1 to 3. 
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Table 6-6: Statistical comparison of means with regard to demand-based fertilization. 

Test-

Variable 

Io- 

Farm 

Cluster 

1 ←versus→ 

Cluster 

2 ←versus→ 

Cluster 

3 ←versus→ 

Cluster 

1 

  Ø Ø SE P>|t| Ø SE P>|t| Ø SE P>|t| Ø 

N_loss [kg] 6562 6388 552 0.206 5328 247 0.926 5534 494 0.492 6388 

S_loss [kg] 3680 4036 2835 0.060 11486 1268 0.001 24486 2535 0.001 4036 

P_bil [kg] 0 201 1048 0.344 1834 469 0.640 2786 937 0.177 201 

K_bil [kg] 565 437 1334 0.498 2106 597 0.123 4825 1193 0.054 437 

Mg_bil [kg] 1319 4456 1653 0.998 4347 739 0.243 7076 1478 0.474 4456 

Cluster 1 = cost-efficient fertilization strategies; Cluster 2 = average fertilization strategies; Cluster 3 = 

inefficient fertilization strategies; SE = standard error; N_loss = theoretical conversion losses of nitrogen 

fertilizers; S_loss = displaced or overapplied sulfur fertilization; P_bil = balance of P fertilization and 

withdrawal, etc. 

The differences in sulfur losses (S_loss) are very significant. Only between cluster 1 and 

cluster 2 there is no clear significant difference. The difference in the potassium balance 

(K_bil) between cluster 1 and cluster 3 is almost significant, confirming the result of the 

regression analysis in Table 6-5. However, the high nitrogen losses in the optimum solution 

(IoFarm) and in cluster 1 are surprising. The main reason for this is the somewhat greater use 

of urea as a nitrogen source. The higher conversion losses, which were used for urea 

fertilization, could apparently be tolerated due to relative price advantages. In cluster 3, the 

sum of nutrient surpluses is by far the highest. Cost-inefficient solutions thus also appear to be 

less sustainable and less resource-efficient. To test this, a new variable (NPKMgS) was 

formed from the sum of the five variables N_loss to Mg_bil. A regression analysis (Prob>F = 

0.0000; adjusted R² = 0.5262) shows the highly significant (P>|t| = 0.001) influence of this 

variable on the increase in fertilizer costs. The differentiation between clusters 1 and 3, or 

clusters 2 and 3, is also highly significant (P>|t| = 0.001). This result is extremely relevant as 

it shows how cost efficiency and sustainability have a complementary objective at this point. 

Identification and utilization of abrupt, relative price changes 

In order to be able to put the fertilizer prices into perspective, a mean pure nutrient price was 

first derived for N (€0.81 kg
─1

), P (€0.86 kg
─1

) and K (€0.69 kg
─1

) on the basis of the average 

prices of CAN, TSP and gr. potash. Subsequently, pure nutrient costs for these nutrients could 

be derived for all fertilizers. Continuous changes in the price relations as well as abrupt price 

changes were analyzed graphically. A particularly striking price drop was recorded for TSP 

from June to July 2016 (see Figure 6-1). This price drop was detected and used by the IoFarm 
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model. Only six of the quiz participants also recognized this price drop and used TSP at that 

time. This shows that even clear price signals are often not recognized by human decision 

makers. 

 

Figure 6-1: Pure nutrient price of P based on triple superphosphate in 2016. 

6.3.2 Influence of farm conditions on cost-efficient fertilizer strategies 

IoFarm is able to calculate cost-efficient fertilization strategies. Due to the clear mathematical 

structure of the DSS, the solution path is consistent. IoFarm is therefore well suited for 

investigating the influence of farm conditions on cost-efficient fertilization strategies. In the 

following sections, IoFarm is used to highlight the following farm conditions: Farm size, 

infrastructure, soil fertility, organic fertilizer availability, and price changes. Table 6-7 

provides a central overview of all scenarios studied and their impact on the cost-efficient 

fertilizer strategy. The goal of this comparison is to identify possible trends in fertilizer 

selection in order to locate particularly relevant factors influencing a cost-efficient fertilizer 

strategy. This contributes to a deeper understanding of cost-efficient fertilization. 

Influence of farm size (acreage) 

To examine the influence of farm size, the farm size of the “original farm” was changed from 

63 hectares to 6 hectares—“small farm”—or to 1,500 hectares—“big farm”—under otherwise 

identical conditions. Although it can be assumed that there is a correlation between farm size 

and on-farm infrastructure (e.g., farm-to-field distance), both aspects are examined separately. 
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In principle, it cannot be excluded that both large farms with surrounding fields and small 

farms with distant fields occur. The change in farm size was purposely chosen drastically in 

order to be able to clearly highlight potential effects on fertilizer strategy. Table 6-7, columns 

1 through 3 compares the “original farm” with the two extreme variants of “small farm” and 

“big farm.” The total costs for fertilizer and application differ significantly (small farm: 

€324 ha
─1

; original farm: €272 ha
─1

; big farm €265 ha
─1

). The share of application costs in the 

total costs, as well as the application costs per 100 kg fertilizer make clear that the cost 

differences are almost exclusively caused by changes in application costs. The reason for this 

is the nonlinear composition of application costs according to Tröster et al. (2019). Included 

in this: setup time per fertilizer application, costs for loading the spreader, farm-to-field and 

field-to-field trips, costs incurred during field work. Small farms are at a cost disadvantage 

compared to large farms, primarily due to setup time. By reducing the number of fertilizer 

measures from 32 (“original farm”) to 30 (“small farm”), an attempt is made to compensate 

for this cost disadvantage. However, effects on the selection of fertilizers cannot be identified 

due to the size of the farm. For example, the ratio of nutrient proportions from the different 

fertilizer categories (SL, SH, CL, CH and, CA) remains almost unchanged. However, a minor 

adjustment response of the “small farm” should be mentioned: the share of the fertilizer 

category SL is reduced by 2% compared to “big farm”, whereas slightly more of the higher 

concentrated fertilizer category SH is used. The main nutrient sources for N, P, K, Mg and S 

are identical for the various-sized farms: urea (N), DAP (P) and, gr. potash (K, Mg, S), each 

with approximately equal percentages of nutrient supply. 

Overall, it can thus be stated that the farm size exerts only a minimal influence on the 

fertilization strategy. 

Influence of the internal infrastructure 

The on-farm infrastructure is the distance between farm and field, as well as the position of 

the fields in relation to each other (field-to-field distance) in combination with the existing 

mechanization. Changes in this area have a significant effect on transport and application 

costs. In order to test possible effects on fertilizer strategy selection, the farm-field distance of 

the management units (f1 to f3) was changed to one minute each for “nearby fields” and to 30 

minutes each for “faraway fields.” In parallel, the duration for the complete approach of all 

field pieces (field-to-field distance) had to be adjusted to 6 minutes for “nearby fields” and to 

180 minutes for “faraway fields.” Table 6-7, columns 4 and 5 compares the two scenarios. As 

expected, both scenarios differ in total fertilizer and application costs (nearby fields: 
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€266 ha
─1

; faraway fields: €288 ha
─1

). Also in this case, it can be seen that the difference in 

total costs is mainly caused by the application costs. However, the change in the fertilizer 

strategy itself is small: more fertilizer of the SL category is used in the “nearby fields” variant 

than in “original farm.” This is mainly a higher proportion of CAN+Mg. Due to the short 

transport distances, the nutrient density in the fertilizers used is less important, so this change 

is comprehensible. With regard to the other fertilizer categories and the main fertilizers used, 

the adjustments are insignificant compared to the “original farm.” It is interesting to note that 

even in the “faraway fields” scenario, significantly more of the lower concentrated SL 

fertilizers (10%) are used than in the “original farm.” This initially is contrary to the logic that 

fertilizers with high nutrient concentrations are preferred in case of long transport distances. 

However, in fact, part of the urea fertilization (SH) was replaced by CAN+Mg (SL) in this 

scenario (compare Main N source Table 6-7). The reason for this is probably the strong 

acidifying effect of urea, which in parallel also increases the need for compensatory liming. 

Partial replacement of urea with CAN+Mg can reduce fertilization measures and application 

costs. In the “faraway fields” scenario, the share of the CH fertilizer group is 3% higher than 

the original level. This increase is directly related to the growing importance of DAP as a P 

(and N) source (see Main P source Table 6-7). Since DAP has no other disadvantages, the 

benefits of the enormously high nutrient density of this fertilizer are fully realized. 

As a result, on-farm distances play a minor role in the fertilizer strategy; the share of transport 

costs in the total costs of fertilization is too small to exert an influence on the fertilizer 

strategy. 

Influence of soil nutrient content 

In the “original farm” scenario, the soil content of the nutrients P, K and Mg is relatively 

heterogeneous. The classifications are between “B” low and “E” very high. In order to 

investigate the influence of soil nutrient content on the fertilization strategy, a scenario with 

an absolutely homogeneous soil nutrient content was created under otherwise identical 

conditions. For this purpose, it is assumed that the nutrients P, K and Mg are each present in 

optimal concentrations and can therefore be classified as “C.” This setup as well as the results 

for this variant can be found in Table 6-7, column 6, “Homogeneous soil fertility.” Due to the 

changes, slightly more P and Mg must be spread in total than in the “original farm” scenario. 

As a result, the total costs for fertilizer and application are higher than before (€287 ha
─1

). 

Due to the homogeneous soil nutrient content of all management units, the fertilization 

strategy can be simplified. This reduces the fertilization measures from 32 to 28 measures, 
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which also leads to a reduction in application costs. In total, the nutrient percentage shifts 

from the fertilizer category CH toward SL and SH. This is due to the fact that significantly 

less urea is used compared to "original farm.” Instead, more CAN+Mg is used. DAP (CH) is 

replaced by TSP (SH) as the main source of P. TSP has an advantage in homogeneous P soil 

conditions because it can be used simultaneously in all crops, largely independent of the 

season. This allows optimal use of periods of low prices and also enables fertilization 

measures to be combined to reduce application costs. Changes in terms of K, Mg and S 

fertilization are marginal. As in all previous scenarios, gr. potash is used for the most part as 

the fertilizer of choice for these nutrients.  

It should be noted that differences in soil nutrient content affect the complexity of the 

optimization problem and therefore significantly influence the fertilization strategy. 

Influence of the amount of organic fertilizer 

The type and availability of organic fertilizers vary in practice from farm to farm. The 

"original farm", in which no organic fertilizer is available, was therefore compared with two 

scenarios with organic fertilizer (see Table 6-7): “medium slurry accumulation” with a 

nitrogen accumulation from livestock of 80 kg N ha
─1

 and “high slurry accumulation” with 

the maximum organic nitrogen fertilization currently permitted in Germany of 170 kg N ha
─1

. 

Slurry fertilization covered a considerable proportion of the nutrient requirement in both 

variants. As a result, the cost of purchasing commercial fertilizer and the associated 

application costs drop drastically to €179 ha
─1

 (medium slurry accumulation), or to €55 ha
─1

. 

The availability of organic fertilizer also has a significant effect on the number of mineral 

fertilization measures. In the “high slurry accumulation” scenario, the farm would manage 

with just 13 mineral fertilization measures in the 3-year period under consideration. Since 

slurry must be classified in the CL fertilizer group, the nutrient percentage of this fertilizer 

group increases from its original 0% to 44% or 78%. Due to this massive change, the 

percentages of the other fertilizer groups can no longer be directly compared with the 

previous scenarios. However, in both cases, a clear decrease in the SH fertilizer group is 

noticeable. This decrease is mainly due to a reduced use of urea and TSP. The evaluation of 

the main nutrient sources for the different nutrients is dominated by slurry in both scenarios. 

Only the main source of S stays inorganic and has changed from gr. potash to SSA. Further 

adjustments to the selection of purchased commercial fertilizers can only be detected when 

looking at the second-most important nutrient source after slurry: For the medium slurry 

accumulation scenario, CAN+Mg is the most important purchased N fertilizer, accounting for 
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27% of the N supply. For Mg supply, Lime+Mg is mainly used. DAP remains the main 

commercial fertilizer for P and gr. potash remains the main commercial fertilizer for K. In the 

“high slurry accumulation” scenario, neither P nor K is purchased externally. The second-

most important N source besides slurry is urea (12%). Lime+Mg (8%) is used as a source for 

Mg. S needs are primarily covered by SSA. 

In summary, the availability of organic fertilizers affects several issues at once: (i) external 

nutrient requirements; (ii) the cost of fertilizer purchase and application; (iii) the distribution 

and number of fertilizer applications; (iv) the choice of fertilizers themselves. 

Influence of relative price changes of fertilizers 

So far, major changes in the fertilizer strategy have only occurred in the scenarios with 

organic fertilizer use and with changed soil nutrient conditions. In order to test whether 

relative price changes on the fertilizer market have a noticeable influence on the fertilizer 

strategy, fertilizer prices were artificially changed as described in Section 6.2.5.The result of 

this analysis can be found in Table 6-7, column 9. Despite moderate price adjustments of 

±10%, different fertilizers are now selected for N (50% CAN+Mg) and P (71% TSP) than in 

the “original farm.” With regard to the origin of K, Mg and S, the fertilizer strategy remains 

relatively constant. Here, too, gr. potash is mainly used, although somewhat more use is made 

of other fertilizers for sulfur supply than in the original situation. 

Relative changes in fertilizer prices thus have a major impact on cost-efficient fertilizer 

strategies. 
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Discussion 

This study investigated the characteristics of cost-efficient fertilizer strategies. For this 

purpose, an experiment in the form of a fertilizer quiz was conducted in which the participants 

had to set up a fertilizer strategy that was as cost-efficient as possible. On the other hand, this 

study also clarifies whether or how different farm conditions influence a cost-efficient 

fertilizer strategy. This study will also help to increase knowledge about cost-efficient 

fertilizer strategies and, if possible, derive general recommendations for action for farmers 

and advisors. 

According to this and further work (Kiełbasa et al., 2018; Rajsic and Weersink, 2008), a 

nutrient supply that is as close to demand as possible is particularly relevant for the cost-

efficiency of fertilizer strategies. Quiz participants had the supply of the N and P nutrients 

largely under control. Fertilizing with N and P is strictly regulated in Germany (Bundestag, 

2017; Bundestag, 2009), which is why farmers pay particular attention to it. However, human 

decision makers find it difficult to meet all crop nutrient requirements in an equally balanced 

manner. As a result, inefficient solutions result in significant over-supply of S and K, which, 

of course, is associated with unnecessary costs. A look at the total nutrient surpluses 

(NPKMgS) also shows that cost-efficient fertilizer strategies have significantly lower nutrient 

surpluses. This in turn is evidence that an economically efficient fertilizer strategy makes an 

important contribution to resource efficiency and sustainable land use. This is also the 

conclusion of a study on the efficiency of mineral fertilizer use in Europe (Expósito and 

Velasco, 2020), as well as of a case study on sustainable agriculture by Kiełbasa et al. (2018). 

Although a general recommendation can be formulated at this point: “All crops should be 

fertilized according to nutrient demand,” this requirement is not new and was also known to 

the quiz participants. Therefore, it can be assumed that this recommendation simply cannot be 

fully implemented by the human decision maker. The mean time required (81 min) and the 

education level of the participants suggests carefully planned fertilization strategies on their 

part and reinforces this conclusion. The same is true for the recognition of clear price signals, 

which we could demonstrate with the example of the abrupt price drop of TSP (see Figure 

6-1). Despite complete information (prices, weather, yield expectation, etc.) and a clear focus 

on profit maximization, the participants of the experiment could not keep a central assumption 

of production theory, namely: The assumption of rational behavior. Complex problems often 

cannot be fully understood by humans and limited rational behavior occurs (Simon, 1959). On 

the other hand, it is also possible that the transaction costs or costs of acquiring information to 

solve the problem optimally are so high for the decision maker that a suboptimal solution to 
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the problem may be rational from their perspective (Simon, 1959). IoFarm is an important 

tool for overcoming these barriers. It allows cost-efficient fertilization strategies to be located 

and updated at regular intervals. 

The analysis of the fertilizers used showed that significantly more DAP, gr. potash and 

lime+Mg were used in cost-efficient solutions (cluster 1). Here, DAP covers about 80% of the 

phosphorus demand and about 22% of the nitrogen demand and was thus an economically 

relevant source for both nutrients. Gr. potash also fulfills a significant dual function in cost-

efficient solutions: 100% of the potash supply is realized via gr. potash, and in parallel around 

17% of the sulfur supply is achieved. In order to take advantage of the dual function of both 

fertilizers, farmers and consultants must make sure to apply these fertilizers in spring. Also 

significant is the use of lime+Mg to ensure magnesium supply. In addition, the studies show 

that NPK fertilizers were not used in cost-efficient solutions. Other studies, however, come to 

different results here: Sayegh et al. (1981) found on poorly supplied soils in the Middle East 

that NPK fertilizers have a positive effect on yield at many locations and should therefore be 

used. There was no economic evaluation of the results in this context. If NPK fertilizers are 

evaluated with pure nutrient costs, they are at times definitely more favorable than single-

nutrient fertilizers, which can also be shown for the period of this study (Schiebel, 2015 - 

2018). The reason for avoiding NPK fertilizers in cost-efficient solutions lies rather in the 

fixed nutrient composition of these fertilizers. NPK fertilizers meet the exact farm 

requirements only in exceptional cases and therefore make it difficult to supply nutrients in 

line with requirements. However, compound fertilizers that are specifically tailored to the 

requirements of the farm are an interesting option. The perfect nutrient composition of such 

blended fertilizers can be identified with the help of IoFarm, which eliminates the 

disadvantage of a fixed nutrient composition of NPK fertilizers. 

The benefits of the fertilizers mentioned at the beginning (DAP, gr. potash and lime+Mg) are 

clearly dependent on relative price changes in the fertilizer market. Lahmiri (2017) studied the 

price volatility of rock phosphate, DAP, TSP, urea, and potassium chloride before and after 

the global financial crisis in 2007, finding that external shocks lead to volatile fertilizer 

markets and are associated with relative price changes among fertilizers. External shocks are 

also to be expected in the future, as the current global COVID-19 pandemic teaches us. For 

this reason, relative price changes in the fertilizer market can also be expected in the future, 

which is why no long-term recommendations can be derived for farmers and consultants on 

the basis of the fertilizers currently considered to be beneficial. 
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During the analysis, it became apparent that the importance of application costs for a cost-

efficient fertilizer strategy was often overestimated by the quiz participants. While the impact 

of application costs on the total cost of fertilization is significant, striving for the lowest 

possible application costs leads to several undesirable side effects. To achieve low application 

costs, the number of fertilization measures must be reduced. As a consequence, the nutrient 

quantities per measure are increased. This is done, for example, by using NPK fertilizers or by 

reducing the distribution of nitrogen fertilization to a few applications. All in all, a small 

number of fertilization measures leads to savings in application costs, but at the same time 

this makes it more difficult to combine fertilizers cleverly in the sense of demand-based 

fertilization. In addition, it is more difficult to benefit from the relative price advantages of 

individual fertilizers. Fertilizer systems that are designed to minimize the number of 

fertilization measures are more affected by these undesirable side effects. An example of this 

is CULTAN fertilization. This fertilization strategy is evaluated quite differently in the 

literature. For example, Kozlovský et al. (2009) and Sedlář et al. (2011) come to significantly 

higher, lower, and non-differentiable yield effects in different years compared to standard 

nitrogen fertilization. The effects of CULTAN fertilization or other aggregated N fertilization 

measures on the total fertilization costs of a crop rotation, however, remain unclear in the 

literature. Unfortunately, no recommendation for practice can be derived regarding 

prioritizing application costs. On the one hand, it has been shown that application costs have a 

relevant influence on the total costs of fertilization, on the other hand, a demand-based 

nutrient allocation is by far the most important factor to save costs. If both goals are not 

compatible, the demand-based nutrient allocation has to be prioritized. 

To test the influence of farm size, infrastructure, soil fertility and the availability of organic 

fertilizers, a typical Bavarian farm was used, which was subjected to extreme changes in the 

respective categories according to the ceteris paribus principle. Contrary to the original 

assumption, the analysis showed that the factor farm size has no visible influence on the 

selection of a cost-efficient fertilizer strategy. Only a minor influence is caused by the on-

farm infrastructure. Unfavorable infrastructure does increase application costs, but even under 

the conditions of the “faraway fields” scenario with a 30-minute farm-to-field distance, the 

influence of application costs, accounting for 12% of total costs, was not large enough to 

cause significant changes in fertilizer strategy. We therefore conclude that the factors of farm 

size and infrastructure (within realistic limits) do not have a significant impact on fertilizer 

strategy. Future versions of IoFarm may therefore be able to omit the consideration of 

transportation costs (farm-to-field and field-to-field), thereby saving considerable 
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computational resources. In contrast, the factors of soil fertility and the availability of organic 

fertilizers must be evaluated differently. Both factors directly influence the need for nutrients. 

In the case of homogeneous soil fertility, fertilization measures can be saved, since no field-

specific requirements have to be taken into account. Both factors change the selection of 

fertilizers and the timing of fertilization. In practice, the soil fertility factor differs even on a 

small scale within farmland. The availability and nutrient content of organic fertilizers also 

vary a great deal from farm to farm. Both factors are therefore of great importance for a cost-

efficient fertilization strategy and must be taken into account. 

The previous findings on cost-efficient fertilizer strategies (IoFarm) suggest that a large part 

of the optimization potential must come from the least-cost combination of fertilizers (type, 

quantity and timing). This assumption could be confirmed with the “artificial price shift” 

scenario. Even a slight manipulation of prices led to a recognizable adjustment of the fertilizer 

strategy. It also seems that a higher variability of fertilizer prices accommodates the 

optimization potential of IoFarm, because with total costs of €264 ha
─1

 the scenario “artificial 

price shift” was significantly cheaper than fertilization in the “original farm.” Overall, relative 

price changes in the fertilizer market are commonplace (Lahmiri, 2017), so regular 

recalculation is also required for a cost-efficient fertilizer strategy. 

The results from the comparison of fertilizer strategies (Section 6.3.1) are based on a low 

number of quiz participants (n=31). Even with the greatest efforts, it was not possible to 

motivate more voluntary participants, which was also due to the large amount of time 

required to participate in the fertilizer quiz. A further simplification of the experiment or 

payment for participation was purposely rejected, since only intrinsically motivated 

participants show a real will to optimize and can thus serve as a reference for IoFarm (Stanley 

et al., 2020; Barge and Gehlbach, 2012; Göritz, 2006). The data set was analyzed using 

standard statistical methods. The optimal solution of IoFarm itself appears only once in this 

data set. Therefore, in the regression analyses and t-tests performed, the influence of the 

optimal solution is not accentuated. In the context of the comparisons of means (see Table 

6-2, Table 6-4, Table 6-6), the optimal solution of IoFarm was additionally shown in order to 

be able to point out special features if necessary. However, statements made about cost-

efficient fertilizer strategies can also be confirmed with regard to the optimal solution of 

IoFarm.  

The second part of the analysis (Section 6.3.2) is based as described on a typical Bavarian 

farm, which was subjected to extreme changes by undergoing different scenarios. By 
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consistently applying the ceteris paribus principle, it is possible to analyze the various farm 

conditions in the scenarios very precisely. This knowledge is helpful for deriving statements 

for farms that are subject to other conditions. For more applicability, however, it would be 

helpful to supplement the analysis with actual, but different types of farms. This might lead to 

combination effects that are suppressed in an analysis according to the ceteris paribus 

principle. However, due to the inaccessibility of information regarding the farm infrastructure, 

this consideration had to be postponed. 

6.5 Conclusions 

This study clarifies the distinguishing features between cost-efficient and inefficient 

fertilization strategies. The influences of different farm conditions were also demonstrated. 

Here, it is shown that the homogeneity of soil fertility and the availability of organic 

fertilizers have a far greater influence on fertilization strategy than a farm’s size and 

infrastructure. Ultimately, however, the study also shows that relative price variations among 

fertilizers dominate cost-efficient fertilizer strategy design. Prices clearly influence the 

selection of fertilizers and the timing of fertilizer application. Nevertheless, some of the 

results of this study remain valid regardless of the fertilizer market and farmers and 

consultants should therefore consider them when thinking about cost-efficient fertilizer 

planning: nutrient surpluses should be avoided; application costs are not the primary issue in 

fertilizer planning; standard NPK fertilizers are difficult to integrate due to their fixed nutrient 

composition. Overall, it can be seen that the humans as decision makers are mentally unable 

or unwilling to optimally solve such a complex problem, or this inability or unwillingness 

could be due to transfer costs. The DSS IoFarm is a suitable tool to use to accomplish this 

task. IoFarm can help increase farm profits and, in parallel, help avoid redundant use of 

nutrients. In summary, IoFarm improves both profit and sustainability in agriculture and 

should therefore be used as widely as possible in the future. The contribution to sustainability 

justifies a subsidy to ensure widespread practical use. We will spend the coming months 

further developing IoFarm into an online-based DSS. This will generate the necessary 

computing capacities, which are a key requirement for widespread practical use. 
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6.6 Appendix 

Table A 6-1: Allocation of fertilizers to fertilizer categories. 

Abbreviation Name Content/Effect in kg per 100 kg 

    N P2O5 K2O MgO S CaO 

Category SL (single low) 

      AHL Ammonium nitrate urea solution 28 

    

-28 

AHL1to3 67%Water + 33%AHL 9 

    

-9 

CAN Calcium ammonium nitrate 27 

    

-15 

CAN+Mg Calcium ammonium nitrate 27 

  

4 

 

-9 

CAN+S Calcium ammonium nitrate 24 

   

6 -34 

        Category SH (single high)  

      TSP Triple superphosphate 

 

46 

   

-1 

U+Inhib Alzon 46 

    

-46 

Urea Urea 46 

    

-46 

        Category CL (compound low) 

      Kainite Kainite 

  

11 5 4 0 

Slurry Liquid organic fertilizer 3,9* 1,7 4,7 1,2 0,3 1,6 

        Category CH (compound high) 

      ASS Ammonium sulphate nitrate 26 

   

13 -49 

DAP Diammon phosphate 18 46 

   

-36 

ENTEC+S ENTEC 26 

   

13 -49 

ENTEC NPK ENTEC 15 5 20 2 8 -14 

gr. potash Granular potash 

  

40 6 5 0 

Kieserit Kieserite 

   

25 20 0 

NP 20;20 NP 20 20 

  

2 -31 

NPK 

15;15;15 NPK 15 15 15 

 

2 -15 

NPK 20;8;8 NPK 20 8 8 3 4 -21 

NPK 23;5;5 NPK 24 5 5 

 

4 -23 

PK 16;16 PK 

 

16 16 2 8 6 

SSA Sulfuric acid ammonia 21 

   

24 -63 

Urea+S Piamon S 33 

   

12 -54 

        Category CA (special lime fertilizer)
3
 

      Burned Lime Burned lime 

     

90 

Lime+Mg Carbonic lime 

   

14 

 

53 

Lime+S Carbonic lime         2 50 

SL and SH: Single-nutrient fertilizers containing either N, P, or K and whose content of S and Mg does not 

exceed 20% of its total nutrient content. Fertilizers that do not meet this definition are called compound 

fertilizers (CL and CH). L stands for low nutrient content (<= 31%); H for high nutrient content (> 31%); CA = 

group of lime fertilizers. 
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7 Extended summary of embedded publications 

For a quick overview, highlights and core findings on the individual studies are shown in 

Table 7-1, and detailed summaries are provided in Sections 7.1 to 7.4. 

Table 7-1: Overview of highlights and core findings of embedded publications. 

Chapter3: Effects of application costs on fertilizer application strategy 

• Transport costs influence the fertilizer application strategy 

• Transport costs depend on-farm-specific infrastructure and route planning 

• Route planning is extremely resource-demanding and currently difficult to achieve 

• Farm- and measure-specific transport costs can be estimated 

• This is an effective approach that does not affect the fertilization strategy itself 

Chapter4: IoFarm: A novel decision support system to reduce fertilizer expenditures at the 

farm level 

• The selection of a cost-efficient fertilizer strategy is very complex 

• The least-cost combination and input level of fertilizer must be considered 

• The MINLP model, IoFarm, can solve this problem 

• In an experiment, IoFarm was 19% below the fertilizer costs of the participants 

• IoFarm is a useful DSS that increases farm profit and saves management time 

Chapter5: IoFarm in Field Test: Does a cost-optimal choice of fertilization influence yield, 

protein content or market performance in crop production? 

• The DSS, IoFarm, proved its agronomic performance in field trials 

• Agronomic performance was not negatively affected by least-cost fertilizer strategies 

• Cost advantages in fertilizer selection can be fully attributed to IoFarm 

Chapter6: Characteristics of cost-efficient fertilization strategies at the farm level 

• Certain fertilizers are used more often in cost-efficient strategies 

• Application costs are less relevant for cost-efficiency 

• Nutrient surpluses lead to inefficiency  

• Volatile fertilizer prices greatly influence cost-efficient fertilization strategies 

• Complexity requires farmers to use optimization software to increase profitability and 

sustainability 
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7.1 Summary of Chapter 3: Effects of application costs on fertilizer 

application strategy  

To optimize production processes from an economic perspective, a comprehensive knowledge 

of the interrelationships and costs of production is necessary. Transport costs play an 

important role in agricultural production. However, in on-farm infrastructures, farms are 

heterogeneously structured. From large farms with nearby fields and small farms with widely 

dispersed field pieces, the most diverse constellations of on-farm infrastructure can be found. 

Therefore, transport distances are relevant to optimize transport-dependent production 

processes, such as the application of fertilizers. Currently, there is no resource-friendly way to 

integrate farm- and measure-specific application and transport costs into a mathematical 

optimization tool that helps improve the economic efficiency and sustainability of production. 

This study presents the development of a cost function for fertilizer application. To integrate 

the influence of on-farm infrastructure in selecting a cost-efficient fertilizer strategy, the 

overall application cost function was first decomposed into individual components, and sub-

functions were then formed for the following elements: setup, loading, fieldwork, farm-to-

field transport, and field-to-field transport. To determine the extent of the differences in 

transportation costs between farms with different on-farm infrastructures, 70 random farms 

were generated. These farms are of different sizes and distances of field pieces. For each 

random farm, 28 fertilizer scenarios were examined based on the application rate per hectare 

and proportion of field pieces fertilized. An algorithm for solving the split delivery vehicle 

routing problem (“SDVRP method”) was used to determine the optimal routing for fertilizer 

application. These results and the farm data could be used to identify important factors 

influencing farm- and measure-specific transport costs. Based on these influencing factors, a 

regression model was derived to estimate transport costs (“regression method”). Both 

possibilities in determining transport costs, SDVRP and regression method, were used to 

compare whether deviations in the selection of the optimal fertilization strategy are to be 

expected. Moreover, another possibility, which does not consider transport costs, was 

investigated. All three possibilities lead to largely consistent fertilization strategies. Wrong 

decisions caused by the regression method or the omission of transport costs are rare and 

cause marginal financial impact. Compared to the alternatively tested methods, input data and 

computational power requirements are by far the highest for the SDVRP method. Therefore, it 

is concluded that considering transportation costs as a sub-function of application costs in a 

mathematical optimization tool should be evaluated using the regression method, and a 
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general disregard of transportation costs is not recommended. This study is relevant for issues 

related to agricultural logistics and similar cost functions, such as the application of pesticides 

or seeds. 

7.2 Summary of Chapter 4: IoFarm: a novel decision support 

system to reduce fertilizer expenditures at the farm level 

To maintain competitiveness and increase profits, producers focus on saving costs without 

reducing output. The expenses for fertilizers and their application play a major role in 

agricultural crop production and account for the largest share of variable costs in crop 

production, which also indicates a large degree of optimization potential. To fully achieve this 

optimization potential, the cost-efficient fertilizer strategy must be identified. Therefore, the 

following points are important: (i) optimal intensity and composition of nutrient supply; (ii) 

temporal and quantitative distribution in the course of a crop rotation; (iii) application costs; 

and (iv) selection of the most cost-efficient fertilizer combination. The described challenges 

on optimization represent the application of a well-known theory on expansion path. Changes 

in the field- and crop-specific nutrient requirements, weather effects, available fertilizers, 

volatile prices, and nonlinear structure of application costs suggest that a human decision 

maker may not solve this optimization problem alone. Therefore, various decision support 

systems (DSS) have been developed to assist farmers and consultants, but only a few DSS 

consider the least-cost combination of fertilizers. None of these DSS consider farm-specific 

application costs and plan fertilizer application over an entire crop rotation cycle. The 

development of IoFarm closes this gap, which can also achieve economic potential by taking 

a holistic view of this optimization problem. 

To address this optimization problem, a non-formal model that identifies important factors 

influencing the fertilization strategy and describes their effects was developed. It is discussed 

how these factors can be implemented in a DSS without limiting its usability. The 

implementation is presented in the form of a mathematical optimization model. Due to the 

complexity, a two-step solution procedure composed of a nonlinear problem (NLP) and a 

mixed-integer nonlinear problem (MINLP) is necessary. To evaluate the economic 

performance of the IoFarm DSS, an experiment was conducted. The participants of the 

fertilization experiment (experts, farmers, and students) were asked to plan the most cost-

efficient fertilizer strategy possible for a highly simplified farm. All relevant information, 

such as prices, application costs and nutrient requirements, was provided. The results show on 
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average that the fertilizer strategies of the participants were 19% more expensive compared to 

IoFarm. Additionally, participants spent on average 81 min of management time to solve this 

problem suboptimally. The best participant achieved significantly higher costs than IoFarm 

with a difference of €10 ha
─1

. IoFarm is therefore a very promising tool for farmers and 

advisors that helps increase profit and save management time. The next research step is to 

examine potential agronomic impacts to identify possible output changes. The study also 

helps demonstrate the theory of the expansion path with a realistic case and is therefore also 

suitable for practical teaching of the production theory. 

7.3 Summary of Chapter 5: IoFarm in field test: does a cost-

optimal choice of fertilization influence yield, protein content, 

and market performance in crop production? 

The IoFarm decision support system (DSS) was developed to identify cost-efficient fertilizer 

strategies for farms. Results show that significant cost savings can be obtained. For user 

acceptance and according to operations research specifications, it is essential to test such DSS 

in practice. Models, such as IoFarm, can only represent simplified interrelationships and have 

to be verified in more complex ones to assess their performance. Even though a small number 

of DSS with similar orientation as IoFarm are described in other studies, there have been no 

reports on their use in the field. Thus, the following question arises: does a least-cost fertilizer 

strategy potentially affect crop yield, quality, and market performance? This question is 

relevant because a cost-efficient fertilizer strategy is not based on low costs alone but also on 

the impact of output. 

To answer this question, a two-factorial field trial with three replications was set up at three 

locations in Bavaria (Geiselsberg, Triesdorf, and Roggenstein) over a period of 3 cropping 

years (2016–2018). The first factor reflected the fertilizer variant, wherein IoFarm was 

compared with a common farm fertilization strategy and a control variant. The second factor 

was built by different crops, namely silage maize, winter wheat, and winter barley. Within the 

trial period, this crop rotation was cultivated once on each plot. At the Triesdorf location, 

additional variants of the first factor were built using organic fertilization. The evaluation of 

the field trial was conducted using a split-plot ANOVA and subsequent t-tests. The results 

show no significant differences in yield, protein content, and market performance between the 

common farm fertilization strategy and IoFarm. Thus, the cost benefits already demonstrated 

with the use of IoFarm are not achieved at the expense of market performance. This study 



 Extended summary of embedded publications 169 

 

highlights the benefits of IoFarm for farmers and consultants and thereby increasing the 

confidence of potential users. Therefore, according to the principle of least-cost combination, 

the selection of fertilizers has no significant impact on the output in crop production and thus 

should be widely applied. 

7.4 Summary of Chapter 6: Characteristics of cost-efficient 

fertilization strategies at the farm level 

Fertilization of agricultural crops represents a significant part of production costs in most 

farming systems. Through the selection of individual fertilization strategies, farmers have a 

great influence on costs and agronomically relevant parameters, such as yield and quality. 

Fertilizer strategy is based on intensity, timing, dosage, and selection of specific fertilizers. 

With this study, whole-farm fertilization strategies are analyzed to compare cost-efficient and 

inefficient fertilization strategies. This study aims to generate recommendations for farmers 

and consultants to improve competitiveness and sustainability.  

To obtain information on individual fertilization strategies, a fertilization experiment was 

conducted. Participants were asked to plan a cost-efficient fertilizer strategy for a simplified 

three field, three crop farm for over 3 years. All relevant information, such as nutrient 

requirements (N, P, K, Mg, and S), fertilizer prices, product prices, weather information, and 

application cost information were provided. A series of linear regressions were used to 

evaluate the experiment. To generate additional information, the different fertilization 

strategies were divided into three clusters based on their total costs. Differences between 

clusters were tested using t-test. The results show that some fertilizers (e.g., DAP and granular 

potash) were more common in cost-efficient solutions, whereas NPK fertilizers were barely 

used. The application timing of P and K also played a role in the overall cost. Fertilization 

with K and S according to demand is a major challenge. In inefficient fertilization strategies, 

these nutrients were significantly overdosed, with a parallel negative impact on sustainability. 

In the second part of the study, the IoFarm DSS was used under different farming conditions. 

With IoFarm, cost-efficient fertilization strategies can be identified. A typical Bavarian farm 

was used as the reference situation, which was then varied ceteris paribus in the following 

aspects: acreage, internal infrastructure, soil fertility, and organic fertilizer accumulation. In 

addition, artificially changed fertilizer prices were used to calculate another scenario. The 

results of this study highlight the differences between cost-efficient and inefficient fertilizer 

strategies and the influence of individual farm conditions. Interestingly, acreage had no effect, 
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while internal infrastructure had very little effect on fertilizer strategy. Fertilizer prices and 

their relative price differences were found to be the largest factors influencing the design of 

the fertilizer strategy. Despite the large influence of fertilizer prices, the following 

recommendations for choosing a fertilizer strategy must be considered: (i) nutrient surpluses 

should be avoided; (ii) minimizing application costs is not effective; and (iii) NPK fertilizers 

are rarely used due to their fixed composition. Furthermore, the participants were unable to 

make optimal decisions despite being thoroughly informed. The study is thus providing an 

example of limited rational behavior in complex situations. 
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8 General discussion and conclusions  

The objective of this thesis was to support farmers and consultants in choosing cost-efficient 

fertilization strategies at the farm level and better understand the interrelationships of cost-

efficient fertilization strategies. This objective was addressed in a total of four consecutive 

studies (Chapters 3 to 6). In particular, this chapter provides an overview of the contribution 

of these studies. In each case, the background is briefly repeated, and the results and 

significance of the studies in relation to the existing literature are discussed. The succeeding 

paragraphs highlight extended stakeholder implications, methodological contributions, 

limitations of this thesis, and conclusions. 

Discussion of the results from Chapter 3: Machine costs are a major factor in the cultivation 

of field crops. The share of variable machinery costs in winter wheat production in Bavaria 

was approximately 33% in 2017 to 2019 (Schätzl et al., 2019). Part of these costs is related to 

fertilizer application, including transport. Studies show that production decisions are related 

to transportation costs and thus application costs (Shamdasani, 2021; Damania et al., 2017). 

Therefore, application costs are expected to influence the selection of cost-efficient fertilizer 

strategies. Hence, the objective of Chapter 3 was to develop and implement methods that 

allow the consideration of farm- and measure-specific application costs within a mathematical 

optimization model. However, the transport costs for farm-to-field and field-to-field trips 

remain a challenge (Jensen et al., 2012). 

The results show that, at least from a logistical perspective, the split delivery vehicle routing 

problem (SDVRP) (Dror et al., 1994; Dror and Trudeau, 1990) is perfectly suited to meet this 

objective. By incorporating the SDVRP, optimal transportation routes for fertilizer application 

can be identified, which can then be used to calculate transportation costs. Several studies 

show that the advantage of optimal routing is especially utilized in transportation-intensive 

economic sectors (Latiffianti et al., 2018; Eldrandaly and Abdallah, 2012; Basnet et al., 

1996). However, it is unlikely that farmers can entirely follow the guidelines of such routing 

in practice. For example, the carrying capacity of the soil determines in which order and with 

which load a field can be driven. Although the SDVRP could still be used to estimate 

transportation costs, this study showed that high computational capacities are needed to solve 

an SDVRP. The same is also reported in a previous study, wherein state-of-the-art algorithms 

that can solve problems up to 288 subjects (field pieces) within 1.422 s (Archetti et al., 

2011a). However, small problems with only 41 subjects may also not be solved even after 
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7.200 s (Hernández-Pérez and Salazar-González, 2019; Ozbaygin et al., 2018; Archetti et al., 

2014). Therefore, there is no guarantee that an SDVRP can be reliably solved optimally. In 

addition, an SDVRP requires information on all on-farm travel distances, which includes all 

farm-to-field and field-to-field distances. As an example, a dataset of 24 field pieces including 

the farm location covers 325 distances that a farmer usually cannot provide. Although there 

are possibilities to generate this dataset (Machl et al., 2016), access to this possibility is 

strictly limited for data protection reasons. 

Compared to the SDVRP method, two other approaches with low computational power and 

data input requirements were tested: (i) The “regression method,” derived from the results of 

the SDVRP method, establishes a functional relationship between farm- and measure-specific 

parameters and thus estimates transportation costs without routing information; (ii) The “zero 

transportation cost method” (ZTC method). Here, transportation costs are neglected as part of 

the application costs. The results of a Monte Carlo simulation show that under the given 

circumstances, the ZTC method leads to much the same fertilization strategy as the SDVRP 

method. In cases where there is no agreement, the financial damage caused by the deviation is 

marginal (€0–€0.5 ha
─1

). Minimal data requirements and computational capacity were in 

favor of the ZTC method, although with some weaknesses: with increasing importance of 

transport costs and inhomogeneous farm-field and field-field distances, the validity of the 

ZTC method wanes, as this information remains unobserved and cannot be considered in 

decision making; therefore, the regression method is more robust in this regard. Compared to 

the SDVRP method, the regression method leads to the same fertilization strategy with a 

percentage of 92% (“Nitrogen Experiment” Table 3-6) or 97% (“PK Experiment” Table 3-7). 

Wrong decisions result in minor cost disadvantages of €6.1 and €3.4 ha
─1

. 

The results of the study demonstrate why the SDVRP method cannot be combined with a 

complex optimization model. However, the increasing digitization of agriculture and 

developments of software and hardware might facilitate the provision and processing of the 

necessary data in the future. Until then, the regression method can be recommended as the 

second-best solution. By estimating transportation costs using farm- and measure-specific 

parameters, this method is useful for a wide range of farms. Due to the low demands on 

computing capacity and data requirements, the regression method is suitable for reflecting 

transport costs within the framework of a mathematical optimization model. 

Discussion of the results from Chapter 4: This thesis assumes that farmers act according to 

the economic principle. Therefore, they are concerned with optimizing production processes 
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to increase profit. Cost-efficient fertilization in crop production is a difficult task for farmers 

and consultants. The objective of Chapter 4 was to structure the complex optimization 

problem of cost-efficient fertilization, to develop a solution and to highlight potential 

economic advantages. 

The results show that the optimization problem of cost-efficient fertilization can be 

represented using a mathematical model (IoFarm). In the operations research literature, this 

approach is quite recommended for solving problems with known relationships (Domschke et 

al., 2015, pp. 3–7; Suhl and Mellouli, 2013, pp. 8–20). To test the economic performance of 

IoFarm, a fertilization experiment was conducted in the form of a choice experiment. 

Participants were asked to plan cost-efficient fertilization strategies. Although the 

requirements of the individual nutrients were fixed, the participants’ average cost of 

€66 ha
─1

a
─1

 was surprisingly well above the cost level of IoFarm. The participant with the 

best results was as close as €10 ha
─1

a
─1

 to IoFarm’s solution, which still represents a 

considerable savings potential of €1000 ha
─1

a
─1

 for a 100-ha farm. In addition to IoFarm, 

other DSSs considering the least-cost combination of fertilizers can be found in previous 

studies (Villalobos et al., 2020; Jansen et al., 2013; Bueno-Delgado et al., 2016; Pagán et al., 

2015; Mínguez et al., 1988; Babcock, 1984). However, none of these studies compare the 

cost-efficiency of the DSS solutions to a standard fertilization strategy. Therefore, a direct 

comparison with IoFarm is not possible. Smart Fertilizer (Smart Fertilizer Management) is a 

comparable commercial tool on the market. The company advertises a savings potential of 

60% and an increase in income of 40%, although with insufficient details. Sensor-based and 

site-specific fertilization measures represent a completely different way of optimizing 

fertilization. Manufacturers of this technology present additional profits of €20 to 

€30 ha
─1

a
─1

, for example, by improving N efficiency. In a field trial using sensor-based N 

fertilization in silage maize, Evangelou et al. (2020) show potential savings of €33 to 

€92 ha
─1

a
─1

. Colaço and Bramley (2018) report an average profit increase in grain crops of 

$30 ha
─1

a
─1

 (from ─$30 to +$70 ha
─1

a
─1

) in their review on crop sensors. Given these 

numbers, the potential savings achieved with IoFarm are remarkable, especially since there is 

no investment in technology. In addition to the cost of fertilization, the time required for 

participants to plan a fertilization strategy was also considered. Despite highly simplified 

conditions (three field plots of three crops in 3 years), the average time spent on this task was 

unexpectedly high at 81 min per participant. The amount of management time a farmer uses 

annually to improve fertilizer cost-efficiency remains unclear from the fertilizer experiment. 

However, it can be assumed that real farms are more complex (StMELF, 2020) and the 
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fertilizer strategy has to be readjusted several times per season. Using a DSS, this process can 

be formalized and largely automated (Blanco, 2020), which saves management time 

(González-Andújar, 2020, p. 27). 

Taken together, IoFarm contributes significantly to reducing fertilizer costs and management 

time. Large farms benefit in particular because potential savings in management time and 

fertilizer costs increases with farm size. Since Chapter 4 suggests a constant output in crop 

production, this must be verified before providing statements about the cost-efficiency of 

IoFarm. 

Discussion of the results from Chapter 5: Production theory demonstrates that changes in 

production inputs often affect the output (Debertin, 2012a, p. 82). Therefore, the cost 

reduction achieved by IoFarm must be examined as it may have consequences on the output. 

The objective of Chapter 5 was to compare the agronomic performance of IoFarm with a 

usual farm fertilization strategy, so the following fertilizer variants were tested in a field trial: 

(i) pure mineral IoFarm and farm manager variants (IO, BL); (ii) organic and mineral IoFarm 

and farm manager variants (oIO, oBL); and (iii) an unfertilized control. 

The statistical analysis of the results shows that there were no significant differences in yield, 

quality, and market performance between comparable varieties, which include IO and BL, as 

well as oIO and oBL. Only a few DSS that show similarity with IoFarm are found in previous 

studies (Villalobos et al., 2020; Jansen et al., 2013; Bueno-Delgado et al., 2016; Pagán et al., 

2015; Mínguez et al., 1988; Babcock, 1984). None of these studies tested the agronomic 

performance of the respective tools in a field trial; this is also true for the commercial tool of 

Smart Fertilizer Management. There were several studies on DSS in the field of fertilization 

(Mandrini et al., 2021; Mollenhorst et al., 2020; Kleinhenz et al., 2007), although it is rather 

the exception that these studies report results from own field trials. These exceptions include 

studies by Araya et al. (2019), Übelhör et al. (2015), Sønderskov et al. (2015), and Chuan et 

al. (2013). The DSS tested therein have been proven in field trials, although not comparable to 

IoFarm. Therefore, studies are lacking on whether fertilizer strategies that are trimmed for 

least-cost combination and cost-effectiveness may involve negative agronomic impacts. 

Chapter 5 makes an important contribution here, showing that a fertilizer strategy optimized 

primarily for cost-effectiveness does not necessarily have a significant impact on yield, 

quality, and market performance in crop production. 

Before this statement can be accepted, possible errors in the design or execution of the field 

trial must be verified to exclude whether these are the cause for the non-significant 
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differentiation of the fertilizer variants. A high variance within the measured values or an 

insufficient number of measured values can also be the cause for a statistically not reliable 

differentiation of the group mean values. Therefore, the relative standard error should be 

referred to at this point, which sets the standard error in relation to the mean value and ranges 

from 2.3% to 3.5% for the mineral fertilizer variants (IO and BL) across the yields of all 

crops. For a significant interpretation of field trials, the values should be <4% (Thomas, 2006, 

p. 61). The relative standard error revealed that there is no significant difference in yield 

between the IO and BL variants. For the organic and mineral fertilized variants, oIO and oBL, 

the relative standard error is 4.5% to 6.9%. This result is due to these variants were only 

tested at the Triesdorf site; therefore, significantly fewer observations are available. 

Additionally, the application of organic fertilizer varied between the variants in terms of time 

and quantity per application. Therefore, weather conditions and the variability of the nutrient 

content in the organic fertilizer led to unobserved influences, which are generally a problem in 

experiments with organic fertilizers (Tamburini et al., 2015; Chen et al., 2013). To further 

validate the comparison of the oIO and oBL variants, additional observations are required. 

Unfortunately, not all sites could be included in this comparison due to the lack of plot 

technology for organic fertilization. 

Overall, it was demonstrated in Chapter 5 that IoFarm causes no significant agronomic 

effects. Future users can assume that with unchanged market performance, the cost savings 

will have a positive impact on the farm profit, as shown in Chapter 4. 

Discussion of results from Chapter 6: The results of the previous chapters show that IoFarm 

leads to a significant reduction in fertilizer costs and management time without changes in 

agronomic performance. When discussing these results with farmers or consultants, the 

following question arises: What are the differences between a fertilizer strategy planned by 

IoFarm and a common fertilizer strategy? This question is also relevant from a scientific 

perspective because it simultaneously expands the knowledge on overall farm relations of 

cost-efficient fertilization strategies. There are many studies on various aspects of 

fertilization, e.g., specifically on intensity (LI et al., 2021; Tabak et al., 2020; Sihvonen et al., 

2018; Xu et al., 2017; Chuan et al., 2013) or specifically on technologies (Song et al., 2021; 

Fulton et al., 2021; Gil-Ortiz et al., 2020; Dimkpa et al., 2020; Mi et al., 2019; Kozlovský et 

al., 2009; Koch et al., 2004). However, studies on perennial (crop rotation) and whole-farm 

cost-efficient fertilization strategies could not be found. Chapter 6 examines the different 

characteristics of cost-efficient and inefficient fertilizer strategies at the farm level, wherein 

data from the fertilization experiment are statistically analyzed. In addition, Chapter 6 will 
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clarify whether and to what extent different farm conditions affect cost-efficient fertilization 

strategies. For this analysis, IoFarm is used as a simulation model, and the model output is 

compared. 

The results from the first part of the study show a significant relationship between cost-

efficiency and demand-based fertilization. Kiełbasa et al. (2018) and Rajsic and Weersink 

(2008) also established this relationship. In the fertilizer experiment, inefficient fertilization 

strategies are particularly noticeable due to surpluses of the nutrients K and S. It can be 

assumed that the participants focused more on demand-based N and P fertilization since both 

nutrients are strictly regulated under the German law (Bundestag, 2017; Bundestag, 2009). 

This results in a certain automatism that directs the focus on N and P. Cost-efficient 

fertilization strategies showed significantly lower nutrient surpluses in the experiment, 

suggesting that they are more resource efficient and sustainable. This conclusion is also found 

in a study by Expósito and Velasco (2020) on the efficiency of mineral fertilizer use in 

Europe, as well as in a case study by Kiełbasa et al. (2018) on sustainable agriculture. 

Therefore, one recommendation for fertilizer planning is to apply all nutrients as needed, 

although most participants were unable to do this. The same also applies to the recognition of 

clear price signals on the fertilizer market. For the fertilizer TSP, there was a massive and 

abrupt price decline in the summer of 2016. In cost-efficient fertilizer strategies, this time 

window was used for some phosphorus fertilization. However, 80% of participants did not 

take advantage of this low-price period, probably because it was not recognized. Both 

observations on nutrient surpluses and price signals suggest that human decision-makers are 

burdened with the multitude of information and complexity of this problem and, therefore, 

can only act rationally to a limited extent (Simon, 1959). 

Chapter 6 also provides insights regarding the preferability of individual fertilizers. For 

example, the fertilizers DAP as a source of N and P, grain potash as a source of K and S, 

CAN as a source of N and Mg, and carbonic magnesium lime as a source of Ca and Mg were 

highly valued in cost-efficient fertilizer strategies. Urea frequently occurred in cost-efficient 

and inefficient fertilizer strategies. The aforementioned fertilizers combine well due to their 

nutrient composition, which allows a balanced distribution of nutrients. For the specific 

compensation of the nutrients P and S, TSP and SSA were applied selectively. NPK fertilizers 

and stabilized nitrogen fertilizers were not used in cost-efficient solutions. Studies on the cost-

effectiveness of stabilized nitrogen fertilizers remain controversial statements: Mi et al. 

(2019) found both positive and negative effects on profit in different comparisons. Sikora et 

al. (2020b) show significant positive effects on profit in the cultivation of vegetables. In the 
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present study, however, stabilized nitrogen fertilizers are avoided in cost-efficient solutions 

because of their high cost relative to pure nutrient content. Positive effects, such as reduction 

of nitrate leaching (Pack et al., 2006; Owens et al., 1999), mitigation of greenhouse gas 

emissions (Chen et al., 2021; Sikora et al., 2020a; Tang et al., 2018), and saving of labor 

inputs for the same expected yield (Wilson et al., 2009), justify a higher price. However, the 

fertilizer experiment suggests that the additional cost of stabilized fertilizers may not be 

acceptable in this case. 

Broken down to their pure nutrient content NPK fertilizers often have competitive prices 

(Schiebel, 2015 - 2018). However, the fixed composition of these three nutrients in a fertilizer 

limits flexibility in choosing other fertilizers. Fertilizer industry advertises NPK fertilizers to 

have positive yield effects and a reduction in labor, which may be true. There is also evidence 

in the literature of the positive yield effect of NPK fertilizers (Sayegh et al., 1981). However, 

this effect is likely to occur even if the nutrients N, P, and K are applied separately in the 

same period.  

Furthermore, application costs have a significant impact on the total cost of fertilization. 

However, this result can easily be misleading. The share of application costs in total costs is 

low across all participants, ranging from 4% to 7%; therefore, the savings potential in this 

respect is marginal. To achieve the lowest application cost, the number of fertilizer 

applications must be reduced by combining fertilization measures. Therefore, the participants 

specifically selected highly concentrated fertilizers (including NPK fertilizers) and 

summarized fertilization measures using stabilized fertilizers or increasing the N dose per 

application. In the previous paragraph, the effect of these fertilizers on cost-efficiency has 

already been discussed. A small number of fertilizer measures means that there are less time 

windows available for the selection of least-cost fertilizers. This also reduces the number of 

degrees of freedom in fertilizer selection, making it more difficult to allocate all nutrients 

according to demand. The results indicate the following: if the application costs in the total 

costs of fertilization are <7%, it is not advisable to focus on the lowest possible application 

costs. This statement may be true even for a significantly higher share of application costs, 

although this cannot be proven or generalized from the study. 

The results from Chapter 6 show a significant correlation between cost-efficiency and timing 

of basic fertilization with P and K; for example, P was more expensive on average in 2016, 

whereas K was more expensive in 2017. The previous results lead to the assumption that 

relative price differences between fertilizers have the greatest influence on the selection of a 
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cost-efficient fertilization strategy. This impression could be reinforced by a scenario analysis 

using artificially manipulated fertilizer prices, wherein the results show that even small 

changes in the relative price differences of fertilizers (±10%) lead to significant changes in 

fertilizer selection. Therefore, the volatility of fertilizer prices (Lahmiri, 2017) will 

permanently affect the selection of cost-efficient fertilizer strategies. Therefore, farmers and 

consultants cannot safely rely on previous statements about the preferability of individual 

fertilizers, and continuous adjustment of fertilizer strategy is mandatory for maximum cost-

efficiency. 

In addition to the characteristics of cost-efficient fertilizer strategies, the influence of farm 

conditions on the selection of the fertilizer strategy was also investigated. The size of the farm 

or the on-farm infrastructure had no significant influence on the selection of the fertilizer 

strategy. Both parameters mainly influence the share of application costs in the total costs. In 

the “small farm” scenario, this share is significantly increased to 22%, but nevertheless the 

expected effect on the choice of fertilizer strategy remains absent. This observation supports 

the secondary importance of application costs. As discussed in Chapter 3, a complete 

omission of the application costs or transport costs is nevertheless critical. A further increase 

in the share of application costs or strongly varying farm-field and field-field distances could 

affect the design of the cost-efficient fertilizer strategy. 

Chapter 6 also shows a clear influence of the fertilizer strategy by the parameters 

“homogeneous soil fertility” and “slurry accumulation.” Changes in these two parameters 

directly influence the necessary mineral nutrient supply, which can even become obsolete 

with a correspondingly high proportion of organic fertilizers. As a result, the mineral nutrient 

input and the selection of fertilizers changes in the investigated scenarios. Of particular 

interest is the influence of overall homogeneous soil fertility. In this case, the complexity of 

the optimization problem is apparently diminished, since the “field-specific” requirements are 

reduced. This enables fewer fertilization measures (28 instead of 32 measures within the 3-

year crop rotation) to be used in line with nutrient requirements and at lower overall costs. In 

the long term, farmers should strive to homogenize soil fertility to generate additional 

optimization potential. 

Chapter 6 shows the complexity of the optimization problem itself and the dominant influence 

of volatile fertilizer prices on the cost-efficient fertilizer strategy. Farmers and consultants are 

strongly recommended to regularly use the appropriate DSS for a cost-efficient fertilization 

strategy. 
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Extended Stakeholder Implications: The implications addressed have focused on farmers and 

consultants. In addition, other stakeholders have a legitimate interest in the results of this 

thesis, including the fertilizer industry, trade companies, policymakers, and society. 

Optimal routing of agricultural inputs via SDVRP also promises benefits from a social and 

political perspective, such as minimizing transport costs strengthens the competitiveness of 

agriculture and reduces road traffic and its consumption of fossil fuels. To accelerate 

application of the SDVRP in this context, policymakers should provide access to necessary 

infrastructural farm data. The tool of Machl et al. (2016) could be used to calculate farm-to-

field and field-to-field distances and existing information systems (e.g., IBALIS for Bavaria) 

are helpful to exchange necessary data. With the widespread availability of these 

infrastructure data, the incentive for software developers to build measure-based route 

planning systems for agriculture increases, as it is already common in the logistics sector 

(Guo et al., 2021; Bortfeldt and Yi, 2020). 

IoFarm enables farmers to evaluate the relative competitiveness of different fertilizers on a 

farm-specific basis. Therefore, farmers react more dynamically to price changes and demand 

different products at varying times, which impacts achievable trading margins and 

predictability of fertilizer production and sales for traders and the fertilizer industry. IoFarm 

users will selectively demand fertilizers that are beneficial to their farms; thus, the advisory 

function of the trading companies will be pushed back. It can be assumed that traders and 

industry will increasingly respond to individual farm requirements. However, there is also a 

great opportunity for agricultural traders who offer blended fertilizers on demand, as the 

output of IoFarm could be used to produce cost-efficient farm-specific blended fertilizers and 

generate real added value for both sides. The importance of this approach is also shown in 

previous studies (Benhamou et al., 2020; Cole et al., 2015; Aldeseit, 2014; Mínguez et al., 

1988; Babcock, 1984). The fertilizer industry can also benefit and use IoFarm as part of 

product development. For example, compound fertilizers can be developed that are specific to 

crop rotations and farm types. In addition, IoFarm also offers an interesting option for pricing 

new products from the perspective of fertilizer manufacturers, wherein simulation runs can 

show compositions of fertilizer and the most acceptable maximum price compared to 

alternative fertilizers to succeed on the market. 

The results from Chapter 6 showed that cost-efficient fertilization strategies have less nutrient 

surpluses and thus have a positive impact on sustainability. Together with the improvement of 
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the competitiveness of agriculture, these are extremely relevant outcomes from a societal and 

political point of view, which can be expected from a widespread use of IoFarm. 

Methodological contributions of this thesis: Currently, there are several studies on the 

optimization of the in-field logistics of agricultural operations that reduce nonworking 

distance (Vahdanjoo and Sorensen, 2021; Vahdanjoo et al., 2020; He et al., 2019; Utamima et 

al., 2019). However, route planning also plays a role in identifying shortest connections 

between farm and multiple field pieces. As far as known, this is the first time SDVRP was 

used in connection with the application of agricultural inputs. Using the SDVRP is 

particularly appropriate when transportation capacity is limited and under conditions where 

field-to-field trips occur. In these cases, farmers face the question of optimal route splitting 

(“spit delivery”) and routing to minimize transportation costs. Ideal cases for the SDVRP are 

the application of mineral fertilizers and pesticides. However, this approach is not relevant for 

operations in which field-to-field travel is the exception, e.g., for the application of organic 

fertilizers or the transport of harvested crops. In these cases, the transport vehicle shuttles 

between two points (usually farm and field), which is why route optimization is not generally 

needed. In cases where field-to-field trips occur but no transportation capacity is required, 

e.g., tillage, reference is made to the more efficient solution methods of the traveling salesman 

problem (e.g. Zhang et al., 2021). The implementation of SDVRP in an agricultural context is 

currently limited mainly by the high demands on computational capacity and as already 

described, the availability of the necessary farm-specific distance data. Should it be possible 

to overcome these barriers in the future, e.g., through the advancing digitalization in 

agriculture, the SDVRP can additionally be used for the optimal allocation of crops on the 

farmland. This allows transport distances to be minimized and work processes to be optimized 

in advance, which is very relevant, especially from a landscape planning perspective 

(Harasimowicz et al., 2017). 

The development of a farm- and measure-specific regression function for the estimation of 

farm-field and field-field trips, presented in Chapter 3, is also a new methodological 

contribution. This method allows estimating transportation costs for farm-field and field-field 

trips. In contrast to the SDVRP method, the result of the estimation function does not contain 

any information on the real routing. Instead, based on a small amount of information 

characterizing the farm and the measure carried out, an adapted estimation of the transport 

costs is made. This method is well suited to consider transport costs for the application of 

mineral fertilizers or pesticides within the framework of a mathematical optimization model. 
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The main advantage is the low computational demand, which is very important in 

combination with a possibly complex main problem. 

Chapter 4 contains the conceptual framework of this thesis. It applies the usual expansion 

path theory to the optimization problem of a cost-efficient fertilization strategy at the farm 

level. The problem-specific features in the course of the isoquant and isocost lines are 

discussed in detail. It was shown that isoquants, due to technically efficient combinations of 

fertilizers , can be kinked (Mußhoff and Hirschauer, 2013, p. 167; Nicholson and Snyder, 

2008, p. 113) and do not necessarily have to run in parallel (Nicholson and Snyder, 2008, 

p. 329). Isocost lines were also identified as nonlinear functions due to the influence of 

nonlinear application costs. Overall, this results in the following findings for cost-efficient 

fertilizer strategies: the expansion path can be erratic between different production levels, 

which means that the least-cost combination of fertilizers can be affected as production levels 

change. An additional methodological feature appears in the combination of the linear-

limitational production function (Liebig, 1843) with erratic or nonlinear total costs of 

fertilization. In this combination, it is possible that the profit-maximizing fertilizer input is 

neither at the maximum nor at the minimum of the linear-limitational production function, but 

is defined by a certain input level between these two points. Usually the literature describes 

this observation only for production functions with decreasing slope. In test runs with IoFarm, 

however, it could be observed several times that the yield maximum given by the linear-

limitational production function was deliberately not completely exhausted for economic 

reasons. 

The mathematical optimization problem IoFarm developed in Chapter 4 combines a practical 

application of production theory with state-of-the-art economic modeling techniques. The 

underlying optimization problem is a real world MINLP problem. It thus extends the MINLP 

research area of operations research by an application with an agricultural context. MINLP’s 

are currently at the threshold between theoretical research (e.g. Muts et al., 2020; Mauri et al., 

2020) and application in practice (e.g. Ye et al., 2021; Kazi et al., 2021; Gao et al., 2021). 

Therefore, real applications tested in experiments are an important contribution to the existing 

literature. First promising approaches to solve this category of models were already found in 

the literature with the “outer-approximation” method (Duran and Grossmann, 1986). Despite 

continued development and improved solution methods, MINLP places high demands on 

computational power. However, MINLP allows for an almost uncompromized representation 

of real world requirements by combining nonlinear and discrete components (Bonami et al., 

2012, p. 31). Only with this model category it was possible to define feasible fertilization 
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strategies. An important aspect in this context is, for example, the minimum quantity in the 

application rate of fertilizers. To meet the high demand on computing power, a sequential 

process for decision making was additionally implemented in the model (Amann, 2019, 

pp. 19–20). Accordingly, IoFarm is an early agricultural application of a sequential MINLP 

problem. Didactically, IoFarm can be used as a bridge to connect the optimization potential of 

the expansion path theory, which is often considered abstract, with an everyday agricultural 

problem. 

Limitations and need for research: Despite the greatest efforts and care, some limitations 

must also be addressed in this thesis. The method for farm- and measure-specific estimation 

of application costs developed in Chapter 3 is not based on infrastructure data of existing 

farms. For data protection reasons, access to this georeferenced data was denied. Instead, 

based on a real farm, infrastructure data were simulated (informed guess). Further research 

with data of representative and real existing farms is necessary to make the estimation more 

precise and more validated. For this project the data acquisition as well as the calculation of 

optimal routes by means of SDVRP could be a barrier, especially since there is currently no 

guarantee that every routing problem can be solved optimally. 

The implementation of biological, chemical, and agronomic processes and requirements in 

IoFarm is simplified in many cases. For instance, the internal modeling of the nitrogen stock 

in the soil is strongly affected by this. Recurrent soil tests are used to correct potential 

misestimates through updates. This approach allows to cope with a minimum of standard 

data, which is highly relevant for applicability in practice (Rose et al., 2016). In principle, 

however, there are quite interesting options to combine IoFarm with other models or 

technologies. For example, the use of sensor technology or remote sensing would be a 

promising alternative for determining timing-related nutrient requirements (Pedersen et al., 

2021; Lu et al., 2020). Specialized models to estimate soil N dynamics, e.g., MONICA 

(Nendel, 2014), SNAP (Paul et al., 2002), or DAISY (Abrahamsen and Hansen, 2000) could 

also increase the accuracy of IoFarm. Thus, further research is needed to potentially improve 

IoFarm in this regard. However, it is important not to lose track on the trade-off between 

practical benefits and the requirements for data acquisition and computational power. 

In terms of computational power requirements, the MINLP problem IoFarm is highly 

demanding. Therefore, a sequential method is required to solve the problem (Amann, 2019, 

pp. 19–20), wherein the solution space is constrained by temporary upper and lower limits for 

fertilizers to find a solution to the MINLP. The fertilizers concerned are highly unlikely to be 
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considered for an optimal solution. Nevertheless, this cannot be said with certainty and 

optimization potential may be lost. With the further development of efficient solution 

procedures for MINLP problems, future versions of IoFarm may offer the possibility to 

replace the sequential solution procedure. 

A fertilizer experiment was used to evaluate the economic performance of IoFarm. Due to the 

limited number of participants (31), the evidence of the results is restricted. Incentives were 

purposefully not used to recruit participants. The large amount of time required to participate 

in the experiment, most likely results in only intrinsically motivated participants who 

contribute credible fertilization strategies. Several studies (Stanley et al., 2020; Barge and 

Gehlbach, 2012; Göritz, 2006) show the feared negative relationship between incentives and 

data quality, supporting the chosen approach. The selection experiment is available online. A 

further expansion of the number of participants is thus possible and will hopefully lead to a 

better validation of the results in the future. 

The evaluation of the agronomic performance of IoFarm was carried out in field trials. Due to 

the location of the trial sites, only a regional validity of the results for Bavaria (Southern 

Germany) can be given. Another limitation concerns the interpretation of the trial results of 

the organically fertilized variants (oIO, oBL). With a relative standard error of 4.5% to 6.9%, 

variation within the variants is above the threshold of 4% (Thomas, 2006, p. 61), and thus 

only of limited validity. Therefore, it is important to investigate the agronomic performance 

of IoFarm in the future under many different environmental conditions, with and without the 

use of organic fertilizers. 

In Chapter 6, the dominant influence of volatile fertilizer prices on the design of the fertilizer 

strategy was established. As a result, the statements made regarding the preferability of 

individual fertilizers cannot be generalized. Since this study is also based on the fertilizer 

experiment, the basis for analyzing fertilizer strategies is currently limited to 31 participants. 

To investigate the influence of different farm conditions on cost-efficient fertilization 

strategies, a real existing initial farm was used and selectively modified according to the 

ceteris paribus principle. This approach allows a targeted evaluation of these selective 

changes. A repeated analysis with a representative set of farms would provide additional 

insights. The challenge of such an empirical study, however, is likely to be in the collection of 

infrastructure data from the farms. 
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Final Conclusions: In the course of this thesis, it becomes visible what degree of complexity 

the identification of the cost-efficient fertilizer strategy entails for the individual farm. Cost-

efficient fertilizer strategies are primarily influenced by relative price differences between 

fertilizers. Volatile fertilizer prices and other volatile influencing factors, such as growing 

conditions, result in the need for frequent readjustment of fertilizer strategy. To optimize the 

solution of this time-consuming management task, farmers and consultants should rely on the 

help of appropriate optimization tools, such as IoFarm. With IoFarm, average cost benefits of 

€66 ha
─1

a
─1

 could be generated with unchanged market performance. In addition, IoFarm 

largely automates the fertilizer strategy planning process, reducing the need for valuable 

management time. From an individual farm perspective, the benefits are thus assured. 

However, it has also been shown that cost-efficient fertilization strategies are additionally 

more resource efficient. IoFarm therefore also contributes to sustainability, supporting 

important social and political goals. By simply adapting the overall target function, IoFarm 

will also be used in the future to develop CO2-efficient fertilization strategies. From an 

economic perspective, IoFarm contributes to increasing the competitiveness of agriculture and 

improving sustainability. In addition, CO2-efficient fertilizer strategies offer the opportunity 

to make a global contribution to climate protection. This justifies the subsidization of IoFarm 

and policymakers should consider this option. 

The short-term goal is now to prepare IoFarm for a wide range of crops and to provide 

farmers with direct access to IoFarm. Due to the increasing digitalization of agriculture, 

numerous farm-related data are now available in digital form. Many applications, e.g. field 

mapping, from external providers show that the exchange of this data already works in 

practice. It is therefore realistic to use this approach for IoFarm in the future to provide 

farmers and consultants with an online platform for data exchange. This platform is to be 

connected to a powerful external computing center to solve large optimization problems 

efficiently. 



 General discussion and conclusions 185 

 

Acknowledgments 

I would like to thank all those who encouraged me to work on this dissertation and to all those 

who supported me in carrying it out or keeping it up. Many thanks to my supervisor Prof. Dr. 

Johannes Sauer, who had confidence in me and who always motivated but also challenged 

me. Many thanks to my mentor Dr. Hubert Pahl, who gave me advice and had an open ear for 

me. I would also like to thank my esteemed colleagues at the chair, which included me in 

their team as an external doctoral student. I cannot put into words the gratitude I would like to 

express to my wife Iryna, my two children Juliane and Elly my parents Friedrich and Irmgard, 

my brother Bernd, and grandma Lies. It was only through the support of my family that I 

found the time and strength to devote to this dissertation in addition to my job and farming 

business. Further, I would like to thank all my friends and explicitly to Christian Schuh for 

valuable feedback and Alisher Qurbanov, who among other things encouraged me to do this 

work and actively supported me during the field trials. I would also like to thank to my 

colleagues, in Roggenstein and in Triesdorf, without their help, the field trial would not have 

been possible. 

 

 

 

 



186 References  

 

9 References 

365FarmNet GmbH. 365FarmNet. https://www.365farmnet.com/ (accessed 14 October 2019). 

Abrahamsen, P., Hansen, S., 2000. Daisy: an open soil-crop-atmosphere system model. 

Environ. Modell. Softw. 15, 313–330. https://doi.org/10.1016/S1364-8152(00)00003-7. 

Adnan, N., Jian, S.D., 2006. Product Cost Estimation: Technique Classification and 

Methodology Review. Journal of Manufacturing Science and Engineering, 563–575. 

Agrarmeteorologie Bayern, 2019. Weather data in Bavaria. Institut für Pflanzenschutz. 

https://www.wetter-

by.de/Internet/global/inetcntr.nsf/dlr_web_full.xsp?src=98OE9BL691&p1=6BH7UJ4826

&p3=S313638Z32&p4=YNDMXE6MAN# (accessed 17 November 2019). 

Aldeseit, B., 2014. Linear Programming-Based Optimization of Synthetic Fertilizers 

Formulation. JAS 6. https://doi.org/10.5539/jas.v6n12p194. 

Amann, E., 2019. Entscheidungstheorie. Springer Fachmedien Wiesbaden, Wiesbaden. 

Andrei, N., 2013. Nonlinear Optimization Applications Using the GAMS Technology. 

Springer US, Boston, MA. 

Anger, M., Hüging, H., Huth, C., Kühbauch, W., 2002. Nitrat-Austräge auf intensiv und 

extensiv beweidetem Grünland, erfasst mittels Saugkerzen- und Nmin-Beprobung I 

Einfluss der Beweidungsintensität. J. Plant Nutr. Soil Sci. 165, 640–647. 

https://doi.org/10.1002/1522-2624(200210)165:5<640:AID-JPLN640>3.0.CO;2-F. 

Araya, A., Prasad, P., Gowda, P.H., Afewerk, A., Abadi, B., Foster, A.J., 2019. Modeling 

irrigation and nitrogen management of wheat in northern Ethiopia. Agr. Water Manage. 

216, 264–272. https://doi.org/10.1016/j.agwat.2019.01.014. 

Archetti, C., Bianchessi, N., Speranza, M.G., 2011a. A column generation approach for the 

split delivery vehicle routing problem. Networks 58, 241–254. 

https://doi.org/10.1002/net.20467. 

Archetti, C., Bianchessi, N., Speranza, M.G., 2014. Branch-and-cut algorithms for the split 

delivery vehicle routing problem. European Journal of Operational Research 238, 685–

698. https://doi.org/10.1016/j.ejor.2014.04.026. 

Archetti, C., Feillet, D., Gendreau, M., Grazia Speranza, M., 2011b. Complexity of the VRP 

and SDVRP. Transportation Research Part C: Emerging Technologies 19, 741–750. 

https://doi.org/10.1016/j.trc.2009.12.006. 



 References 187 

 

Archetti, C., Speranza, M.G., Hertz, A., 2006. A Tabu Search Algorithm for the Split 

Delivery Vehicle Routing Problem. Transportation Science 40, 64–73. 

https://doi.org/10.1287/trsc.1040.0103. 

ARKI Consulting and Development A/S, 2016a. CONOPT. ARKI Consulting and 

Development A/S, Bagsvaerd, DK, Bagsvaerd, DK. 

ARKI Consulting and Development A/S, 2016b. SBB: Simple Branch and Bound. ARKI 

Consulting and Development A/S, Bagsvaerd, Denmark, Bagsvaerd, Denmark. 

Babcock, B., 1984. Identifying least-cost sources of required fertilizer nutrients. American 

Journal of Agricultural Economics 66, 385–391. https://doi.org/10.2307/1240806. 

Bäckman, S.T., Vermeulen, S., Taavitsainen, V.-M., 1997. Long-term fertilizer field trials: 

Comparison of three mathematical response models. Agricultural and Food Science in 

Finland 6, 151–160. https://doi.org/10.23986/afsci.72778. 

Baey-Ernsten, H. de, 2011. Methodik zur KTBL online Anwendung Verfahrensrechner 

Pflanze, 3 pp. http://daten.ktbl.de/downloads/vrpflanze/KalkulationVerfahrensrechner.pdf 

(accessed 7 January 2017). 

Barge, S., Gehlbach, H., 2012. Using the Theory of Satisficing to Evaluate the Quality of 

Survey Data. Res High Educ 53, 182–200. https://doi.org/10.1007/s11162-011-9251-2. 

Basnet, C., Foulds, L., Igbaria, M., 1996. FleetManager: a microcomputer-based decision 

support system for vehicle routing. Desision Support Systems, 195–207. 

Baule, B., 1954. Eine physikalische Analogie zum Pflanzenertragsgesetz. Zeitschrift für 

Acker- und Pflanzenbau. 

Belotti, P., Bonami, P., Wächter, A., 2006. Couenne, an exact solver for nonconvex MINLPs: 

Couenne. IBM and Carnegie Mellon University. 

Benhamou, L., Giard, V., Khouloud, M., Fenies, P., Fontane, F., 2020. Reverse Blending: An 

economically efficient approach to the challenge of fertilizer mass customization. 

International Journal of Production Economics 226, 107603. 

https://doi.org/10.1016/j.ijpe.2019.107603. 

Bielecke, H., 1934. Die Geschichte der künstlichen Düngung und der 

Kunstdüngerversorgung. 

Blanco, A.M., 2020. Optimization in Decision Support Systems, in: Chantre, G.R., González-

Andújar, J.L. (Eds.), Decision Support Systems for Weed Management. Springer 

International Publishing, Cham, pp. 39–57. 



188 References  

 

BMEL, 2006. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, 

Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen 

Praxis beim Düngen: DüV, 26 pp. 

Bonami, P., Kilinç, M., Linderoth, J., 2012. Algorithms and Software for Convex Mixed 

Integer Nonlinear Programs, in: Lee, J., Leyffer, S. (Eds.), Mixed Integer Nonlinear 

Programming, vol. 154. Springer New York, New York, NY, pp. 1–39. 

Borealis L.A.T GmbH. Product information. https://www.borealis-lat.com/ (accessed 26 June 

2021). 

Bortfeldt, A., Yi, J., 2020. The Split Delivery Vehicle Routing Problem with three-

dimensional loading constraints. European Journal of Operational Research 282, 545–558. 

https://doi.org/10.1016/j.ejor.2019.09.024. 

Brandes, W., Woermann, E., 1982. Theorie und Planung des landwirtschaftlichen Betriebes, 

2nd ed. Parey, Hamburg, Berlin, 234 S. 

Büchert, M., Wachdorf, M., Taube, F., 2001. Nitratauswaschung unter Silomais in 

Abhängigkeit von der Bewirtschaftungsformund der N-Düngungsintensität – Ergebnisse 

aus dem N-Projekt Karkendamm, in: Mitteilungen der Arbeitsgemeinschaft für Grünland 

und Futterbau, pp. 75–77. 

Bueno-Delgado, M.V., Molina-Martínez, J.M., Correoso-Campillo, R., Pavón-Mariño, P., 

2016. Ecofert: An Android application for the optimization of fertilizer cost in fertigation. 

Comput. Electron. Agr. 121, 32–42. https://doi.org/10.1016/j.compag.2015.11.006. 

Bundestag, 2009. Düngegesetz: DüngeG. 

Bundestag, 2017. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, 

Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen 

Praxis beim Düngen: DüV. 

Bussiek, M.R., Pruessner, A., 2003. Mixed-Integer Nonlinear Programming. GAMS 

Development Corporation. http://www.gamsworld.org/minlp/siagopt.pdf (accessed 3 July 

2021). 

Byrd, R.H., Nocedal, J., Waltz, R.A., 2006. Knitro: An Integrated Package for Nonlinear 

Optimization, in: Pardalos, P., Di Pillo, G., Roma, M. (Eds.), Large-Scale Nonlinear 

Optimization, vol. 83. Springer US, Boston, MA, pp. 35–59. 

Chen, L., Liu, X., Hua, Z., Xue, H., Mei, S., Wang, P., Wang, S., 2021. Comparison of 

Nitrogen Loss Weight in Ammonia Volatilization, Runoff, and Leaching Between 

Common and Slow-Release Fertilizer in Paddy Field. Water Air Soil Pollut 232. 

https://doi.org/10.1007/s11270-021-05083-6. 



 References 189 

 

Chen, L., Xing, L., Han, L., 2013. Review of the application of near-infrared spectroscopy 

technology to determine the chemical composition of animal manure. Journal of 

Environmental Quality 42, 1015–1028. https://doi.org/10.2134/jeq2013.01.0014. 

Chen, Q., Qi, L., Bi, Q., Dai, P., Sun, D., Sun, C., Liu, W., Lu, L., Ni, W., Lin, X., 2015. 

Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide 

(DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil. Applied 

microbiology and biotechnology 99, 477–487. https://doi.org/10.1007/s00253-014-6026-

7. 

Chuan, L., He, P., Pampolino, M.F., Johnston, A.M., Jin, J., Xu, X., Zhao, S., Qiu, S., Zhou, 

W., 2013. Establishing a scientific basis for fertilizer recommendations for wheat in 

China: Yield response and agronomic efficiency. Field Crop Res. 140, 1–8. 

https://doi.org/10.1016/j.fcr.2012.09.020. 

Colaço, A.F., Bramley, R., 2018. Do crop sensors promote improved nitrogen management in 

grain crops? Field Crops Research 218, 126–140. 

https://doi.org/10.1016/j.fcr.2018.01.007. 

Cole, B.M., Bradshaw, S., Potgieter, H., 2015. An optimisation methodology for a supply 

chain operating under any pertinent conditions of uncertainty - an application with two 

forms of operational uncertainty, multi-objectivity and fuzziness. IJOR 23, 69180, 200. 

https://doi.org/10.1504/IJOR.2015.069180. 

Cummings, C., Miao, Y., Paiao, G.D., Kang, S., Fernández, F.G., 2021. Corn Nitrogen Status 

Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom Sensing System. 

Remote Sensing 13, 401. https://doi.org/10.3390/rs13030401. 

Damania, R., Berg, C., Russ, J., Federico Barra, A., Nash, J., Ali, R., 2017. Agricultural 

Technology Choice and Transport. American Journal of Agricultural Economics 99, 265–

284. https://doi.org/10.1093/ajae/aav073. 

Dantzig, G.B., Ramser, J.H., 1959. THE TRUCK DISPATCHING PROBLEM. Management 

Science, 80–91. 

Debertin, D.L., 1986. Agricultural production economics. Macmillan; Collier Macmillan, 

New York, London, 366 pp. 

Debertin, D.L., 2012a. Agricultural production economics, 2nd ed. Univ. of Kentucky, 

Lexington, 413 pp. 

Debertin, D.L., 2012b. Applied Microeconomics: Consumption, Production and Markets, 2nd 

ed. Lexington, KY. 



190 References  

 

Dimkpa, C.O., Fugice, J., Singh, U., Lewis, T.D., 2020. Development of fertilizers for 

enhanced nitrogen use efficiency - Trends and perspectives. The Science of the total 

environment 731, 139113. https://doi.org/10.1016/j.scitotenv.2020.139113. 

Dirkse, S.P., Ferris, M.C., 1995. The path solver: a nommonotone stabilization scheme for 

mixed complementarity problems. Optimization Methods and Software 5, 123–156. 

https://doi.org/10.1080/10556789508805606. 

DOMO Caproleuna GmbH. Product information. https://www.domogran.de/ (accessed 26 

June 2021). 

Domschke, W., Drexl, A., Klein, R., Scholl, A., 2015. Einführung in Operations Research. 

Springer Berlin Heidelberg, Berlin, Heidelberg. 

Dror, M., Laporte, G., Trudeau, P., 1994. Vehicle routing with split deliveries. Discrete 

Applied Mathematics 50, 239–254. https://doi.org/10.1016/0166-218X(92)00172-I. 

Dror, M., Trudeau, P., 1990. Split delivery routing. Naval Research Logistics 37, 383–402. 

https://doi.org/10.1002/nav.3800370304. 

DüKa Düngekalkgesellschaft mbH. Product information. 

https://www.dueka.de/index.php?id=9 (accessed 26 June 2021). 

Duran, M.A., Grossmann, I.E., 1986. An outer-approximation algorithm for a class of mixed-

integer nonlinear programs. Math. Program. 36, 307–339. 

https://doi.org/10.1007/BF02592064. 

Eldrandaly, K.A., Abdallah, A.F., 2012. A novel GIS-based decision-making framework for 

the school bus routing problem. Geo-spatial Information Science 15, 51–59. 

https://doi.org/10.1080/10095020.2012.708151. 

EuroChem Agro GmbH. Product information. https://www.eurochemdach.com/produkte/ 

(accessed 26 June 2021). 

European Parliament, 2016. Directive (EU) 2016/2284 of the European Parliament and of the 

Council on the reduction of national emissions of certain atmospheric pollutants: NEC 

Directive. 

Evangelou, E., Stamatiadis, S., Schepers, J.S., Glampedakis, A., Glampedakis, M., Dercas, 

N., Tsadilas, C., Nikoli, T., 2020. Evaluation of sensor-based field-scale spatial 

application of granular N to maize. Precision Agric 21, 1008–1026. 

https://doi.org/10.1007/s11119-019-09705-2. 

Expósito, A., Velasco, F., 2020. Exploring environmental efficiency of the European 

agricultural sector in the use of mineral fertilizers. Journal of Cleaner Production 253, 

119971. https://doi.org/10.1016/j.jclepro.2020.119971. 



 References 191 

 

FarmFacts GmbH. NextFarming: NEXT Düngeplanung Office. FarmFacts GmbH. 

Fechner, W., 2014. Einfluss der Hauptbearbeitungsrichtung auf die Arbeitszeit im Feldbau am 

Beispiel eines mitteldeutschen Großbetriebs, in: Bornimer Agrartechnische Berichte. 19. 

Arbeitswissenschaftliches Kolloquium des VDI-MEG Arbeitskreises 

Arbeitswissenschaften im Landbau, Potsdam-Bornim Dresden. 11. - 12.03.2014, pp. 22–

34. 

Finck, A., 1991. Düngung: 41 Tabellen ; [ertragssteigernd, qualitätsverbessernd 

umweltgerecht]. Ulmer, Stuttgart, 174 S. 

Finck, A., 2007. Pflanzenernährung und Düngung in Stichworten. Borntraeger, Berlin [u.a.]. 

Fitzgerald, G., Rodriguez, D., O’Leary, G., 2010. Measuring and predicting canopy nitrogen 

nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). 

Field Crops Research 116, 318–324. https://doi.org/10.1016/j.fcr.2010.01.010. 

Floudas, C.A., 2011. Deterministic global optimization: Theory, methods andaApplications, 

1st ed. Kluwer, Dordrecht, 739 pp. 

Frank, M.D., Beattie, B.R., Embleton, M.E., 1990. Crop response Modells Liebig, 

Mitscherlich, Quadratic. American Journal of Agricultural Economics, 597–603. 

Frisk, M., Jonsson, A., Sellman, S., Flisberg, P., Rönnqvist, M., Wennergren, U., 2018. Route 

optimization as an instrument to improve animal welfare and economics in pre-slaughter 

logistics. PloS one 13, e0193223. https://doi.org/10.1371/journal.pone.0193223. 

Fulton, J.P., Colley, R., Shearer, S.A., Gauci, A., Hawkins, E.M., 2021. 72. High definition 

fertilizer as-applied maps for pneumatic applicators, in: Precision agriculture ’21. 13th 

European Conference on Precision Agriculture, Budapest, Hungary. 19-22 July, 2021. 

Wageningen Academic Publishers, The Netherlands, pp. 601–607. 

Gamrath, G., Fischer, T., Gally, T., Gleixner, A., Hendel, G., Koch, T., Maher, S.J., 

Miltenberger, M., Müller, B., Pfetsch, M., Puchert, C., Rehfeldt, D., Schenker, S., 

Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt, J.T., 

Witzig, J., 2016. The SCIP Optimization Suite 3.2. https://opus4.kobv.de/opus4-

zib/frontdoor/index/index/docId/5767. 

GAMS Development Corporation, 2016. General Algebraic Modeling System (GAMS) 

Release 24.8.1. Washington D.C. , USA, Washington D.C. , USA. 

Gao, X., Zhao, Y., Wang, Y., Zuo, X., Chen, T., 2021. A Lagrange Relaxation Based 

Decomposition Algorithm for Large-Scale Offshore Oil Production Planning 

Optimization. Processes 9, 1257. https://doi.org/10.3390/pr9071257. 



192 References  

 

Gill, P.E., Murray, W., Saunders, M.A., 2013. SNOPT. Stanford University, Stanford, 

California, Stanford, California. 

Gil-Ortiz, R., Naranjo, M.Á., Ruiz-Navarro, A., Atares, S., García, C., Zotarelli, L., San 

Bautista, A., Vicente, O., 2020. Enhanced Agronomic Efficiency Using a New Controlled-

Released, Polymeric-Coated Nitrogen Fertilizer in Rice. Plants (Basel, Switzerland) 9. 

https://doi.org/10.3390/plants9091183. 

González-Andújar, J.L., 2020. Introduction to Decision Support Systems, in: Chantre, G.R., 

González-Andújar, J.L. (Eds.), Decision Support Systems for Weed Management. 

Springer International Publishing, Cham, pp. 25–38. 

Göritz, A.S., 2006. Incentives in Web Studies: Methodological Issues and a Review. 

International Journal of Internet Science 1, 58–70. 

Grassini, P., Thorburn, J., Burr, C., Cassman, K.G., 2011. High-yield irrigated maize in the 

Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic 

practices. Field Crops Research 120, 142–150. https://doi.org/10.1016/j.fcr.2010.09.012. 

Grimm, S.S., Paris, Q., Williams, W.A., 1987. A Von Liebig Model for Water and Nitrogen 

Crop Response. Western Journal of Agricultural Economics 12, 182–192. 

Guerrero, A., Neve, S. de, Mouazen, A.M., 2021. Current sensor technologies for in situ and 

on-line measurement of soil nitrogen for variable rate fertilization: A review, in: Elsevier. 

Guo, F., Huang, Z., Huang, W., 2021. Heuristic approaches for a vehicle routing problem 

with an incompatible loading constraint and splitting deliveries by order. Computers & 

Operations Research 134, 105379. https://doi.org/10.1016/j.cor.2021.105379. 

Haber, F., 1908. Verfahren zur synthetischen Darstellung von Ammoniak aus den Elementen. 

https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE235421A. 

Hansen, S., Jensen, H.E., Nielsen, N.E., Svendsen, H., 1991. Simulation of nitrogen dynamics 

and biomass production in winter wheat using the Danish simulation model DAISY, in: 

Groot, J.J.R., Willigen, P., Verberne, E.L.J. (Eds.), Nitrogen Turnover in the Soil-Crop 

System: Modelling of Biological Transformations, Transport of Nitrogen and Nitrogen 

Use Efficiency. Proceedings of a Workshop held at the Institute for Soil Fertility 

Research, Haren, the Netherlands, 5-6 June 1990. Springer Netherlands; Imprint; Springer, 

Dordrecht, pp. 245–259. 

Harasimowicz, S., Janus, J., Bacior, S., Gniadek, J., 2017. Shape and size of parcels and 

transport costs as a mixed integer programming problem in optimization of land 

consolidation. Computers and Electronics in Agriculture 140, 113–122. 

https://doi.org/10.1016/j.compag.2017.05.035. 



 References 193 

 

He, P., Li, J., Qin, H., He, Y., Cao, G., 2019. Using hybrid algorithm to reduce non-working 

distance in intra- and inter-field logistics simultaneously for heterogeneous harvesters. 

Computers and Electronics in Agriculture 167, 105065. 

https://doi.org/10.1016/j.compag.2019.105065. 

Herbst, F., Gans, W., Merbach, W., 2006. Einfluss eines Urease-Inhibitors bei Harnstoff-

Düngung auf den Stickstoff-Umsatz im Boden, die Ammoniak-Verflüchtigung und die 

Verwertung des Stickstoffs durch Hafer. Pflanzenbauwissenschaften, 37–43. 

Hernández-Pérez, H., Salazar-González, J.-J., 2019. Optimal Solutions for the Vehicle 

Routing Problem with Split Demands, in: Paternina-Arboleda, C., Voß, S. (Eds.), 

Computational Logistics, vol. 11756. Springer International Publishing, Cham, pp. 189–

203. 

Heumann, S., Fier, A., Haßdenteufel, M., Höper, H., Schäfer, W., Eiler, T., Böttcher, J., 2013. 

Minimizing nitrate leaching while maintaining crop yields: Insights by simulating net N 

mineralization. Nutr Cycl Agroecosyst 95, 395–408. https://doi.org/10.1007/s10705-013-

9572-y. 

Hlisnikovský, L., Vach, M., Abrhám, Z., Mensik, L., Kunzová, E., 2020. The effect of 

mineral fertilisers and farmyard manure on grain and straw yield, quality and economical 

parameters of winter wheat. Plant Soil Environ. 66, 249–256. 

https://doi.org/10.17221/60/2020-PSE. 

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G., Chenu, 

K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish, J.P., 

Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z., Thorburn, 

P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., 

Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E., Hammer, G.L., 

Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H., McClelland, T., 

Carberry, P.S., Hargreaves, J.N., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, 

S., Keating, B.A., 2014. APSIM – Evolution towards a new generation of agricultural 

systems simulation. Environmental Modelling & Software 62, 327–350. 

https://doi.org/10.1016/j.envsoft.2014.07.009. 

Hoogenboom, G., Porter, C.H., Boote, K.J., Shelia, V., Wilkens, P.W., Singh, U., White, 

J.W., Asseng, S., Lizaso, J.I., Moreno, L.P., Pavan, W., Ogoshi, R., Hunt, L.A., Tsuji, 

G.Y., Jones, J.W., 2019. The DSSAT crop modeling ecosystem, in: Boote, K. (Ed.), 

Advances in crop modelling for a sustainable agriculture. Burleigh Dodds Science 

Publishing, pp. 173–216. 



194 References  

 

Hujer, T., 2011. Design and Development of a Compound DSS for Laboratory Research, in: 

Jao, C. (Ed.), Efficient Decision Support Systems - Practice and Challenges From Current 

to Future. InTech. 

Hutchings, N., Webb, J., Amon, B., 2019. MEP/EEA air pollutant emission inventory 

guidebook: Technical guidance to prepare national emission inventories. 

https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-

guidance-chapters/4-agriculture/3-d-crop-production-and/view (accessed 17 November 

2019). 

IBM Corporation, 2017. CPLEX 12. o.O., o.O. 

IFA Productions Inc., 2012. AgPhD: Fertilizer Removal by Crop. IFA Productions Inc. 

Innovation 24, 2016. Local Solver. Innovation 24, Paris, France, Paris, France. 

Irigoyen, I., Muro, J., Azpilikueta, M., Aparicio-Tejo, P., Lamsfus, a.C., 2003. Ammonium 

oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various 

temperatures. Aust. J. Soil Res. 41, 1177. https://doi.org/10.1071/SR02144. 

Jame, Y.W., Cutforth, H.W., 1996. Crop growth models for decision support systems. Can. J. 

Plant Sci. 76, 9–19. https://doi.org/10.4141/cjps96-003. 

Jansen, J., Wortmann, C., Stockton, M., Kaizzi, C., 2013. Maximizing Net Returns to 

Financially Constrained Fertilizer Use. Agronomy Journal 105, 573–578. 

https://doi.org/10.2134/agronj2012.0413. 

Jensen, M.A.F., Bochtis, D., Sørensen, C.G., Blas, M.R., Lykkegaard, K.L., 2012. In-field 

and inter-field path planning for agricultural transport units. Computers & Industrial 

Engineering 63, 1054–1061. https://doi.org/10.1016/j.cie.2012.07.004. 

Jin, M., Liu, K., Bowden, R.O., 2007. A two-stage algorithm with valid inequalities for the 

split delivery vehicle routing problem. International Journal of Production Economics 105, 

228–242. https://doi.org/10.1016/j.ijpe.2006.04.014. 

K+S Minerals and Agriculture GmbH. Product information. http://www.ks-minerals-and-

agriculture.com/dede/fertiliser/products/ (accessed 26 June 2021). 

Kantorovich, L.V., 1960. Mathematical methods of organizing and planning production 

(Translation). Management science : journal of the Institute for Operations Research and 

the Management Sciences 6, 366–422. 

Kazi, S.R., Short, M., Biegler, L.T., 2021. A trust region framework for heat exchanger 

network synthesis with detailed individual heat exchanger designs. Computers & 

Chemical Engineering 153, 107447. https://doi.org/10.1016/j.compchemeng.2021.107447. 

Kersebaum, K.C., 1989. Die Simulation der Stickstoff-Dynamik von Ackerböden. Hannover. 



 References 195 

 

Kiełbasa, B., Pietrzak, S., Ulén, B., Drangert, J.-O., Tonderski, K., 2018. Sustainable 

agriculture: The study on farmers’ perception and practices regarding nutrient 

management and limiting losses. Journal of Water and Land Development 36, 67–75. 

https://doi.org/10.2478/jwld-2018-0007. 

Kleinhenz, B., Falke, K., Kakau, J., Rossberg, D., 2007. SIMBLIGHT1 ? a new model to 

predict first occurrence of potato late blight. EPPO Bulletin 37, 339–343. 

https://doi.org/10.1111/j.1365-2338.2007.01135.x. 

Kling, A., 1985. Optimale Stickstoffdüngung ausgewählter Ackerfrüchte aus ökonomischer 

Sicht. Dissertation. München. 

Kluge, E., Jörg, E., Rossberg, D., 2006. SIMSEPT: Eine Entscheidungshilfe zur Bekämpfung 

von Septoria tritici und Septoria nodorum. Archives Of Phytopathology And Plant 

Protection 39, 79–92. https://doi.org/10.1080/03235400500289577. 

Koch, B., Khosla, R., Frasier, W.M., Westfall, D.G., Inman, D., 2004. Economic Feasibility 

of Variable-Rate Nitrogen Application Utilizing Site-Specific Management Zones. 

Agron.j. 96, 1572–1580. https://doi.org/10.2134/agronj2004.1572. 

Kozlovský, O., Balík, J., Černý, J., Kulhánek, M., Kos, M., Prášilová, M., 2009. Influence of 

nitrogen fertilizer injection (CULTAN) on yield, yield components formation and quality 

of winter wheat grain. Plant Soil Environ. 55, 536–543. 

https://doi.org/10.17221/165/2009-PSE. 

Kreuter, T., Ni, K., Gaßner, M., Schmidhalter, U., Döhler, J., Pacholski, A., 2014. Ammonia 

loss rates from urea and calcium ammonium nitrate applied to winter wheat on three 

different sites in germany, in: Cordovil, C.S.M.d.S. (Ed.), The Nitrogen challenge: 

Bulding a blueprint for nitrogen use efficiency and food security: Proceedings of the 18th 

Nitrogen workshop, Lisboa, Portugal, 30th June - 3rd July 2014. ISA Press, Lisboa, 

pp. 453–455. 

Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E., 2019. A review and comparison of 

solvers for convex MINLP. Optim Eng 20, 397–455. https://doi.org/10.1007/s11081-018-

9411-8. 

KTBL (Ed.), 2005. Faustzahlen für die Landwirtschaft, 13th ed. Kuratorium für Technik und 

Bauwesen in der Landwirtschaft e.V.(KTBL), Darmstadt, XXXIII, 1095 S. 

KTBL (Ed.), 2016. Betriebsplanung Landwirtschaft 2016/17: Daten für die Betriebsplanung 

in der Landwirtschaft, 25th ed. Kuratorium für Technik und Bauwesen in der 

Landwirtschaft, Darmstadt, 768 Seiten. 



196 References  

 

KTBL, 2019. Feldarbeitsrechner. Kuratorium für Technik und Bauwesen in der 

Landwirtschaft e.V.(KTBL). 

Lahmiri, S., 2017. Asymmetric and persistent responses in price volatility of fertilizers 

through stable and unstable periods. Physica A: Statistical Mechanics and its Applications 

466, 405–414. https://doi.org/10.1016/j.physa.2016.09.036. 

Latiffianti, E., Siswanto, N., Firmandani, R.A., 2018. Split delivery vehicle routing problem 

with time windows: A case study. IOP Conf. Ser.: Mater. Sci. Eng. 337, 12012. 

https://doi.org/10.1088/1757-899X/337/1/012012. 

Lee, J., Leyffer, S., 2012. Mixed Integer Nonlinear Programming. Springer New York, New 

York, NY. 

LI, G., CHENG, G., LU, W., LU, D., 2021. Differences of yield and nitrogen use efficiency 

under different applications of slow release fertilizer in spring maize. Journal of 

Integrative Agriculture 20, 554–564. https://doi.org/10.1016/S2095-3119(20)63315-9. 

Liebig, J.¬., 1843. Die Chemie in ihrer Anwendung auf Agricultur und Physiologie. Vieweg, 

Braunschweig. 

Lu, J., Miao, Y., Shi, W., Li, J., Hu, X., Chen, Z., Wang, X., Kusnierek, K., 2020. Developing 

a Proximal Active Canopy Sensor-based Precision Nitrogen Management Strategy for 

High-Yielding Rice. Remote Sensing 12, 1440. https://doi.org/10.3390/rs12091440. 

Lu, N., Wang, W., Zhang, Q., Li, D., Yao, X., Tian, Y., Zhu, Y., Cao, W., Baret, F., Liu, S., 

Cheng, T., 2019. Estimation of Nitrogen Nutrition Status in Winter Wheat From 

Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Frontiers in plant 

science 10, 1601. https://doi.org/10.3389/fpls.2019.01601. 

Lütke Entrup, N. (Ed.), 2000. Lehrbuch des Pflanzenbaues. Verlag Th. Mann, Gelsenkirchen. 

Machl, T., 2018. Digitale Karte mit Hof-Feld Entfernungen des Betriebes Tröster. E-Mail. 

Machl, T., Ewald, W., Donaubauer, A., Kolbe, T.H., 2016. Entwicklung eines Werkzeugs zur 

landesweit flächendeckenden Analyse landwirtschaftlicher Transportbeziehungen in 

Bayern. Zeitschrift für Geodäsie, Geoinformation und Landmanagement 141, 197–205. 

https://doi.org/10.12902/zfv-0118-2016. 

Mandrini, G., Bullock, D.S., Martin, N.F., 2021. Modeling the economic and environmental 

effects of corn nitrogen management strategies in Illinois. Field Crop Res. 261, 108000. 

https://doi.org/10.1016/j.fcr.2020.108000. 

Mariappan, P., 2013. Operations research: An introduction. Dorling Kindersley (India), New 

Delhi, 1 online resource (1 volume). 



 References 197 

 

Mauri, M. de, Gillis, J., Swevers, J., Pipeleers, G., 2020. A proximal-point outer 

approximation algorithm. Comput Optim Appl 77, 755–777. 

https://doi.org/10.1007/s10589-020-00216-9. 

Meier, U., 2018. Growth stages of mono- and dicotyledonous plants: BBCH Monograph. 

Open Agrar Repositorium, 204 pp. 

METRAC Handelsgesellschaft mbH. Product information. 

https://www.metrac.de/duengemittel/ (accessed 26 June 2021). 

Mi, W., Gao, Q., Guo, X., Zhao, H., Xie, B., Wu, L., 2019. Evaluation of Agronomic and 

Economic Performance of Controlled and Slow-Release Nitrogen Fertilizers in Two Rice 

Cropping Systems. Agron.j. 111, 210–216. https://doi.org/10.2134/agronj2018.03.0175. 

Mínguez, M.I., Romero, C., Domingo, J., 1988. Determining Optimum Fertilizer 

Combinations through Goal Programming with Penalty Functions: An Application to 

Sugar Beet Production in Spain. Journal of the Operational Research Society 39, 61–70. 

Misener, R., Floudas, C.A., 2013. ANTIGONE: Algorithms for coNTinuous/Integer Global 

Optimization. Computer-Aided Systems Laboratory, Princeton USA, Princeton USA. 

Mitscherlich, E.A., 1909. Das Gesetz des Minimums und das Gesetz des abnehmenden 

Bodenertrages. Landwirtschaftliche Jahrbücher, 537–552. 

Mollenhorst, H., Haan, M.H. de, Oenema, J., Kamphuis, C., 2020. Field and crop specific 

manure application on a dairy farm based on historical data and machine learning. 

Computers and Electronics in Agriculture 175, 105599. 

https://doi.org/10.1016/j.compag.2020.105599. 

Murtagh, B.A., Saunders, M.A. MINOS. Department of Management Science and 

Engineering, Stanford University. 

Mußhoff, O., Hirschauer, N., 2013. Modernes Agrarmanagement: Betriebswirtschaftliche 

Analyse- und Planungsverfahren, 3rd ed. Vahlen, München, XX, 471 S. 

Muts, P., Nowak, I., Hendrix, E.M.T., 2020. The decomposition-based outer approximation 

algorithm for convex mixed-integer nonlinear programming. J Glob Optim 77, 75–96. 

https://doi.org/10.1007/s10898-020-00888-x. 

Nendel, C., 2014. MONICA: A Simulation Model for Nitrogen and Carbon Dynamics in 

Agro-Ecosystems, in: Mueller, L., Saparov, A., Lischeid, G. (Eds.), Novel Measurement 

and Assessment Tools for Monitoring and Management of Land and Water Resources in 

Agricultural Landscapes of Central Asia. Springer International Publishing, Cham, 

pp. 389–405. 



198 References  

 

Ni, K., Pacholski, A., Kage, H., 2014. Ammonia volatilization after application of urea to 

winter wheat over 3 years affected by novel urease and nitrification inhibitors. 

Agriculture, Ecosystems & Environment 197, 184–194. 

https://doi.org/10.1016/j.agee.2014.08.007. 

Nicholson, W., Snyder, C.M., 2008. Microeconomic theory: Basic principles and extensions, 

10th ed. Thomson Business and Economics, Belmont, CA, 740 pp. 

Noellsch, A.J., Motavalli, P.P., Nelson, K.A., Kitchen, N.R., 2009. Corn Response to 

Conventional and Slow-Release Nitrogen Fertilizers across a Claypan Landscape. Agron.j. 

101, 607–614. https://doi.org/10.2134/agronj2008.0067x. 

Offenberger, K., Wendland, M. Düngebedarfsermittlung: NPK 1.13.0. 

https://www.stmelf.bayern.de/npk/app/demo?3 (accessed 17 October 2019). 

Owens, L.B., Edwards, W.M., van Keuren, R.W., 1999. Nitrate Leaching from Grassed 

Lysimeters Treated with Ammonium Nitrate or Slow-Release Nitrogen Fertilizer. Journal 

of Environmental Quality 28, 1810–1816. 

https://doi.org/10.2134/jeq1999.00472425002800060017x. 

Ozbaygin, G., Karasan, O., Yaman, H., 2018. New exact solution approaches for the split 

delivery vehicle routing problem. EURO J Comput Optim 6, 85–115. 

https://doi.org/10.1007/s13675-017-0089-z. 

Pack, J.E., Hutchinson, C.M., Simonne, E.H., 2006. Evaluation of Controlled-Release 

Fertilizers for Northeast Florida Chip Potato Production. Journal of Plant Nutrition 29, 

1301–1313. https://doi.org/10.1080/01904160600767633. 

Pagán, F.J., Ferrández-Villena, M., Fernández-Pacheco, D.G., Rosillo, J.J., Molina-Martínez, 

J.M., 2015. Optifer: AN application to optimize fertiliser costs in fertigation. Agr. Water 

Manage. 151, 19–29. https://doi.org/10.1016/j.agwat.2014.11.007. 

Paul, K.I., Polglase, P.J., O'Connell, A.M., Carlyle, J.C., Smethurst, P.J., Khanna, P.K., 2002. 

Soil nitrogen availability predictor (SNAP): a simple model for predicting mineralisation 

of nitrogen in forest soils. Soil Res. 40, 1011. https://doi.org/10.1071/SR01114. 

Pedersen, M.F., Gyldengren, J.G., Pedersen, S.M., Diamantopoulos, E., Gislum, R., Styczen, 

M.E., 2021. A simulation of variable rate nitrogen application in winter wheat with soil 

and sensor information - An economic feasibility study. Agricultural Systems 192, 

103147. https://doi.org/10.1016/j.agsy.2021.103147. 

Power, D.J., 2002. Decision support systems: Concepts and resources for managers. Quorum 

Books, Westport, Conn., London, xvi, 251 sayfa. 



 References 199 

 

Power, D.J., 2013. Decision support, analytics, and business intelligence, 2nd ed. Business 

Expert Press, [New York, N.Y.] (222 East 46th Street, New York, NY 10017), 162 pp. 

Ragsdale, C.T., 2001. Teaching Management Science with Spreadsheets: From Decision 

Models to Decision Support. INFORMS Transactions on Education 1, 68–74. 

https://doi.org/10.1287/ited.1.2.68. 

Rajsic, P., Weersink, A., 2008. Do farmers waste fertilizer? A comparison of ex post optimal 

nitrogen rates and ex ante recommendations by model, site and year. Agr.Syst. 97, 56–67. 

https://doi.org/10.1016/j.agsy.2007.12.001. 

Ransom, C.J., Kitchen, N.R., Camberato, J.J., Carter, P.R., Ferguson, R.B., Fernández, F.G., 

Franzen, D.W., Laboski, C.A.M., Nafziger, E.D., Sawyer, J.E., Scharf, P.C., Shanahan, 

J.F., 2020. Corn nitrogen rate recommendation tools’ performance across eight US 

midwest corn belt states. Agron.J. 112, 470–492. https://doi.org/10.1002/agj2.20035. 

Reiner, L., Dörre, R., 1992. Weizen aktuell, 2nd ed. DLG-Verlag, Frankfurt am Main, 269 pp. 

Rose, D.C., Sutherland, W.J., Parker, C., Lobley, M., Winter, M., Morris, C., Twining, S., 

Ffoulkes, C., Amano, T., Dicks, L.V., 2016. Decision support tools for agriculture: 

Towards effective design and delivery. Agricultural Systems 149, 165–174. 

https://doi.org/10.1016/j.agsy.2016.09.009. 

Salkind, N.J., 2010. Encyclopedia of research design. SAGE Publications, Thousand Oaks, 

Calif., 1719 pp. 

Sayegh, A.H., Jaloud, A., am Osman, 1981. The effect of compound versus single fertilizers 

on the productivity of some crops in the middle eastern-countries. 

LANDWIRTSCHAFTLICHE FORSCHUNG 34, 60–66. 

Scharf, P.C., Shannon, D.K., Palm, H.L., Sudduth, K.A., Drummond, S.T., Kitchen, N.R., 

Mueller, L.J., Hubbard, V.C., Oliveira, L.F., 2011. Sensor-Based Nitrogen Applications 

Out-Performed Producer-Chosen Rates for Corn in On-Farm Demonstrations. Agron.j. 

103, 1683–1691. https://doi.org/10.2134/agronj2011.0164. 

Schätzl, R., Reisenweber, J., Schägger, M., Frank, J., 2019. LfL Deckungsbeiträge und 

Kalkulationsdaten. Bayerische Landesanstalt für Landwirtschaft. 

https://www.stmelf.bayern.de/idb/winterweizen.html (accessed 14 October 2019). 

Schiebel, D., 2015 - 2018. Fertilizer sales prices. e-Mail. Herrieden. 

Sedlář, O., Balík, J., Kozlovský, O., Peklová, L., Kubešová, K., 2011. Impact of nitrogen 

fertilizer injection on grain yield and yield formation of spring barley (Hordeum vulgare 

L.). Plant Soil Environ. 57, 547–552. https://doi.org/10.17221/429/2011-PSE. 



200 References  

 

Seith, T., 2015. N_Mineralisation_nach Kulturen_Jahrestagung_der_DBG. DBG. DBG 

Jahrestagung Unsere Böden Unser Leben, 5 September 2015, München. 

Shamdasani, Y., 2021. Rural road infrastructure & agricultural production: Evidence from 

India. Journal of Development Economics 152, 102686. 

https://doi.org/10.1016/j.jdeveco.2021.102686. 

Sihvonen, M., Hyytiäinen, K., Valkama, E., Turtola, E., 2018. Phosphorus and Nitrogen Yield 

Response Models for Dynamic Bio-Economic Optimization: An Empirical Approach. 

Agronomy 8, 41. https://doi.org/10.3390/agronomy8040041. 

Sikora, J., Niemiec, M., Szeląg-Sikora, A., Gródek-Szostak, Z., Kuboń, M., Komorowska, 
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