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Summary

The production and sale of agricultural goods undergo intense global competition. To
alleviate the price pressure resulting from heightened competition, farmers are encouraged to
allocate existing resources as optimally as possible. By doing so, they act in accordance with
the entrepreneurial goal of profit maximization. In daily business, this often involves
decisions that need to be made at the production level. The question arises as to what level of
intensity and with which combination of production factors a certain output should be
targeted. In crop production, this question applies to fertilization, among other things. With
the large share of the variable costs of crop production, this area certainly holds high potential
for optimization. Therefore, farmers and consultants constantly seek farm-specific and cost-
efficient fertilization strategies. “Fertilizer strategy” refers to the selection of a fertilizer and
its temporal and quantitative placements within a crop rotation. To achieve a cost-efficient
fertilizer strategy, additional aspects must be considered simultaneously: (i) the optimal
intensity of all relevant nutrients, (ii) the cost-minimal selection of fertilizers, and (iii) the
application costs. Due to continuous changes in the initial situation (e.g., price changes), the

outlined optimization problem may not be optimally solvable without assistance.

In relation to this problem, this dissertation seeks to identify cost-efficient fertilizer strategies
at the farm level. Four independent studies, which are embedded in the fundamentals of
production theory and operations research, take up this question and deal with the

development and evaluation of a decision support system.

In the first study, different possibilities are investigated and evaluated to appropriately
implement application costs into a mathematical system, with the aim of achieving the
economic optimization of fertilizer strategies. Special attention is given to individual on-farm
infrastructure. In the first approach, the optimal routing is conducted by solving the
underlying split delivery vehicle routing problem. A regression function, which was derived
from this problem, was estimated to determine the transportation time. Then, the influence on
the selection of fertilization strategies was investigated for both options and a scenario in
which transportation costs were completely ignored. The results show that the derived
regression function for estimating individual transport costs is preferable in terms of

reliability and computational power.

The second study embeds the overarching question of the cost-efficient fertilizer strategy in
the associated production theory. This study follows the approach of operations research all

the way to the final developed decision support system called “loFarm.” Considering the
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application-oriented literature, a nonformal model was developed and subsequently
transformed into a mathematical optimization model. Compared to the participants of a
fertilization experiment, loFarm shows an average cost advantage of €66 per hectare, with the

same fertilization intensity.

Study three investigates the agronomic effects resulting from a cost-efficient fertilization
strategy. For this purpose, a field trial was set up at three locations in Bavaria (Southern
Germany) over several years, after which the fertilization strategy of loFram was compared
with a site-typical fertilization strategy. The statistical analysis did not reveal any significant

differences in yield and quality.

Study four first focuses on identifying the differences between cost-efficient and inefficient
fertilization strategies. For this purpose, the data from the aforementioned experiment were
statistically analyzed. Results show that the largest influence on the design of the fertilizer
strategy can be attributed to the relative price differences of the fertilizers. Thus, other
differences that have been identified are not meaningful to derive general recommendations.
In the second part, using loFarm as a simulation model under changed farm conditions, farm-
level influencing factors are investigated according to the ceteris paribus principle. Results
clearly reveal that that the influence of the on-farm infrastructure on the optimal fertilization

strategy is relatively small.

This dissertation contributes to the optimization of fertilization strategies at the farm level.
Optimal strategies increase profits and save management time, which are particularly relevant
for farmers and consultants. This work provides an important and new contribution to the
understanding of cost-efficient fertilization strategies at the farm level from a scientific
perspective. By modifying the objective function of loFarm, climate-friendly fertilizer
strategies can also be particularly identified. As a result, an important contribution to society

can be achieved.



Zusammenfassung

Landwirtschaftliche Giter stehen in einem globalen Wettbewerb. Der daraus resultierende
Preisdruck, aber auch das unternehmerische Ziel der Profitmaximierung, treiben Landwirte
dazu an vorhandene Ressourcen mdglichst optimal zu nutzen. Im Tagesgeschéft geht es dabei
haufig um Entscheidungen die auf Ebene der Produktionsverfahren zu treffen sind. Es stellt
sich regelmalig die Frage mit welcher Intensitit und mit welcher Kombination an
Produktionsfaktoren ein bestimmter Output anzustreben ist. In der Pflanzenproduktion trifft
diese Fragestellung unter anderem auf die Dingung zu. Mit einem groRen Anteil an den
variablen Kosten der Pflanzenproduktion birgt dieser Bereich durchaus hohes
Optimierungspotential. Landwirte und Berater stellen sich daher mehrmals pro Saison die
Frage nach der betriebsindividuellen, kosteneffizienten Diingestrategie. Unter Diingestrategie
ist die Auswahl eines Diingemittels, als auch dessen zeitliche und mengenméRige Platzierung
innerhalb einer Fruchtfolge zu verstehen. Damit daraus eine kosteneffiziente Diingestrategie
wird, sind zusétzliche Aspekte simultan zu beachten: (i) optimale Intensitat samtlicher
relevanter Nahrstoffe; (ii) kostenminimale Auswahl der Dungemittel; (iii) Berticksichtigung
von Ausbringkosten. Aufgrund andauernder Veranderungen der Ausgangssituation, z.B.
durch Preisverdnderungen, ist das skizzierte Optimierungsproblem ohne Hilfsmittel

vermutlich nicht optimal l6sbar.

Diese Dissertation beschéftigt sich mit der Suche nach der kosteneffizienten Dingestrategie
auf Ebene des landwirtschaftlichen Betriebes. Vier eigenstdndige Studien, eingebettet in die
Grundlagen der Produktionstheorie, als auch des Operations Research, greifen diese
Fragestellung auf und befassen sich mit der Entwicklung und Evaluierung eines

Entscheidungshilfesystems.

In der ersten Studie werden unterschiedliche Moglichkeiten gesucht und evaluiert, mit denen
sich Ausbringkosten angemessen in ein mathematisches System zur 06konomischen
Optimierung von Dungestrategien implementieren lassen. Besondere Beachtung verdient die
individuelle innerbetriebliche Infrastruktur. Die Identifikation der optimalen Routenfiihrung
erfolgt durch Losung des zugrundeliegenden Split-Delivery Vehicle Routing Problem.
Abgeleitet davon, konnte eine Regressionsfunktion zur Bestimmung der Transportzeit
geschétzt werden. Fir beide Mdglichkeiten, als auch fur ein Szenario in dem Transportkosten
ganzlich ignoriert werden, wird der Einfluss auf die Auswahl von Diingestrategien untersucht.

Die Ergebnisse zeigen, dass die abgeleitete Regressionsfunktion zur Abschatzung
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individueller Transportkosten mit Blick auf Zuverl&ssigkeit und Rechenleistung vorzuziehen
ist.

Die zweite Studie bettet die Uibergeordnete Frage nach der kosteneffizienten Dilingestrategie in
die dazugehorige Produktionstheorie ein und folgt der Vorgehensweise des Operations
Research bis hin zum fertig entwickelten Entscheidungshilfesystem loFarm. Auf Basis
anwendungsorientierter Fachliteratur wird ein non-formales Model entwickelt und
anschlieBend in ein mathematisches Optimierungsmodell berfuhrt. Im Vergleich mit
Teilnehmern eines Diinge-Experiments zeigen sich fir loFarm im Mittel Kostenvorteile von

66 € pro Hektar, bei gleicher Diingeintensitét.

Studie drei geht der Frage agronomischer Auswirkungen nach, die sich moglicherweise durch
eine kosteneffiziente Dungestrategie ergeben. Hierzu wurde an drei Standorten in Bayern
(Stddeutschland) ein mehrjahriger Feldversuch angelegt in welchem die Diingestrategie von
loFarm mit einer standorttypischen Dingestrategie verglichen wurde. Die statistische
Auswertung konnte keine signifikanten Ertrags- und Qualitatsunterschiede feststellen.

Studie vier konzentriert sich zuerst auf die Identifikation von Unterschieden zwischen
kosteneffizienten und inneffizienten Dungestrategien. Hierzu werden die Daten aus dem
bereits genannten Experiment statistisch analysiert. Der gréfite Einfluss auf die Ausgestaltung
der Dlngestrategie ist auf relative Preisunterschiede der Dungemittel zurtickzufiihren. Davon
werden andere Unterschiede, die ebenfalls identifiziert wurden Uberschattet und eignen sich
nur eingeschrankt um generelle Handlungsempfehlung abzuleiten. Im zweiten Teil werden
betriebliche Einflussfaktoren nach dem ceteris paribus Prinzip untersucht, in dem loFarm als
Simulationsmodell unter verénderten betrieblichen Gegebenheiten eingesetzt wird. Dabei
wird Kklar, dass der Einfluss der innerbetrieblichen Infrastruktur auf die optimale

Diingestrategie gering ausfallt.

Diese Dissertation leistet einen Beitrag um Dungestrategien auf Betriebsebene zu optimieren.
Dadurch werden Gewinne gesteigert und Managementzeit eingespart, was besonders hohe
Relevanz fur Landwirte und Berater hat. Aus wissenschaftlicher Sicht leistet diese Arbeit
einen wichtigen und neuen Beitrag zum Verstandnis kosteneffizienter Dilingestrategien auf
Betriebsebene. Durch Modifikation der Zielfunktion von loFarm lassen sich auch besonders
klimafreundliche Dungestrategien identifizieren. Auf diesem Weg kann zusétzlich ein
wichtiger gesellschaftlicher Beitrag erzielt werden.
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1 Introduction

This work seeks to identify cost-efficient fertilization strategies at the farm level. Since
prehistorical times and early history, this question has already been considered by mankind.
At the beginning of this chapter, the history of fertilization from the early times all the way to
the current research fields is discussed. Then, the research problem, its relevance, the aims of

this study, and the structure of this thesis will be presented in more detail.

1.1 Anongoing story: The optimization of fertilization

Mankind has been engaged in fertilizing crops for thousands of years. Bielecke (1934, p. 7)
dates the first purposeful fertilization measures back to 5000 BC or earlier. At that time,
fertile land was obtained using slash-and-burn technique and used for three to four years.
Albrecht Conrad Thaer (1881) reported that, in 3000 BC, organic fertilizers were used to
increase yields in Egypt, which can also be proven by archaeological findings (Widmann,
2007, p. 157). Once the yield-increasing effect of fertilization was recognized, scientists
began to unravel the mystery behind it and set out to find what we know today as nutrients.
Around 350 BC, Aristotle proposed the “humus theory” in which he assumed that plants feed
on substances that are similar to them. This theory was taken up again and expanded by
Albrecht Daniel Thaer in 1809 (Bielecke, 1934).

Previous research on fertilization was based on practical experience. It was not until the
introduction of the mineral theory of Carl Sprengel (1828) that fertilization began to be
examined from a scientific perspective. Sprengel revolutionized humus theory and found that
minerals were needed for plant nutrition. In his publication in 1828, he also wrote the

following:

“...denn es ist nicht zu bestreiten, wenn eine Pflanze 12 Stoffe zu ihrer Ausbildung
bedarf, so wird sie nimmer aufkommen, wenn nur ein einziger an dieser Zahl fehlt,
und stets kimmerlich wird sie wachsen, wenn einer derselben nicht in derjenigen

Menge vorhanden ist, als es die Natur der Pflanze erheischt

Later (1855), building on the same findings, Justus von Liebig formulated the “Law of the

Minimum,” which laid down the foundation for the linear-limitational production function

ta ifa plant needs 12 nutrients for growth, it is undeniable that it will not grow if one of them is missing and
grow poorly if only one of these nutrients is not present in sufficient quantity.” (translation by the author)
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still being used today. Justus von Liebig (1843) also provided the first comprehensive concept

on mineral plant nutrition, stating that:

“Als Prinzip des Ackerbaus muss angesehen werden, dass der Boden in vollem Mal3e
wiedererhalten muss, was ihm genommen wurde; in welcher Form dies Wiedergeben
geschieht, ob in der Form von Exkrementen, oder von Asche oder Knochen, dieses ist
wohl ziemlich gleichgultig. Es wird eine Zeit kommen, wo man den Acker, wo man
jede Pflanze, die man darauf erzielen will, mit dem ihr zukommenden Dinger

versieht, den man in chemischen Fabriken bereitet.

After discovering which substances could be used for plant nutrition, Europe began to import
sodium nitrate (Chile saltpeter) and Guano. Gradually, other fertilizers were developed and
industrially produced, such as superphosphate (1843), various potash fertilizers from mining
(1860), the first artificially produced nitrogen fertilizers (1890), and ammonia synthesis
(Haber, 1908) with the Haber-Bosch process up to the first NPK compound fertilizer (1927).

Parallel to the development and production of fertilizers, research on their use was pushed
forward. Hence, around the same time, the first research institutes were founded in Europe. Of
particular importance was the “law of action of growth factors” formulated by Mitscherlich
(1909), who found that yield growth declined with increasing fertilizer intensity. Such a
discovery inevitably raised the question of the economically optimal fertilization intensity.

Thus, Mitscherlich triggered a worldwide interest in researching agricultural yield functions.

However, it was only after the end of World War Il that intensive use of fertilizers in
agriculture began (Finck, 1991). Initially, the desired success did not always occur. The
importance of secondary and trace nutrients, along with soil reaction, had not yet been
established in practice or had to be investigated in greater detail. Despite this approximately
7000-year history of fertilization, numerous fields of research are still being identified and

studied currently.

One of these research areas deals with basic agronomic issues related to the application of
fertilizers. For example, Vilsmeier and Amberger (1980) investigated the conversion of
various forms of nitrogen in the soil. Today, the slow-release nitrogen fertilizers or
nitrification inhibitors play an increasingly important role in the field of agriculture, as
evidenced by numerous papers (Chen et al., 2015; Mi et al., 2019; Ni et al., 2014; Noellsch et

% “It must be regarded as a principle of agriculture that the soil must receive back to the full extent what has
been taken from it; in which form this restitution takes place, whether in the form of excrements, or of ashes
or bones, is probably quite irrelevant. There will be a time when the field and the plants grown on it will be
provided with fertilizer produced in chemical factories.” (translation by the author)
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al., 2009; Herbst et al., 2006; Zerulla et al., 2001). In this context, it is also worth mentioning
the research on the Cultan fertilization (Sedlar et al., 2011; Kozlovsky et al., 2009). Other
studies in this field include those on gaseous conversion losses associated with nitrogen
fertilization (Vinzent et al., 2018; Kreuter et al., 2014; Sommer and Jensen, 1994), plant
growth models, and models used to estimate biophysical and biochemical processes in soil,
among others. The application of these models aims to optimize farm management, and
although the specific objectives vary, they share similar primary objectives in terms of yields

and environmental impacts of crop production.

A crop growth model that has become popular in recent years is the decision support system
for agro technology transfer (DSSAT) (Jame and Cutforth, 1996). It has been adapted in
numerous studies to investigate the impacts of fertilization on yield (Araya et al., 2019;
Ubelhor et al., 2015). Mandrini et al. (2021) used the simulation model called “Agricultural
Production Systems sIMulator” (Holzworth et al., 2014) as part of their study on optimal
nitrogen management in corn production. Other models, such as “Model for Nitrogen and
Carbon in Agro-ecosystems” (MONICA) (Nendel, 2014), “DAISY” (Abrahamsen and
Hansen, 2000), “Water and Agrochemicals in the soil, crop and Vadose Environment”
(WAVE) (Vanclooster et al., 1996), or “HERMES” (Kersebaum, 1989), are mainly used to
represent the complex nitrogen dynamics in the soil as accurately as possible in order to
investigate various influencing factors found in the environment. In the context of nitrogen
fertilization, nitrate leaching has been frequently addressed in several publications (Heumann
et al., 2013, p. 399; Zhou and Butterbach-Bahl, 2014; Anger et al., 2002; Biichert et al.,
2001).

Another major area of research, to which this dissertation also contributes, studies the
microeconomic optimization of fertilization at the farm level. The optimal intensity of
fertilization remains a relevant question in the current literature (Sihvonen et al., 2018; Xu et
al., 2017; Chuan et al., 2013; Rajsic and Weersink, 2008), even though it has become a
persistent concern for many decades (Kling, 1985; Baule, 1954; Mitscherlich, 1909). Other
authors, meanwhile, have focused on the least-cost combination of fertilizers. For instance,
Babcock (1984) developed a linear optimization model for creating least-cost blended
fertilizers, while Minguez et al. (1988) used goal programming for least-cost fertilizer
combinations in sugar beet cultivation. In more recent studies, decision support systems have
been developed to cover not only the subsections of a farm but rather provide whole-farm
fertilizer strategies based on the principle of least-cost combination. These include FertiliCalc
(Villalobos et al., 2020), Fertilizer Optimizer (Jansen et al., 2013), Smart Fertilizer (Smart
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Fertilizer Management), Ecofert (Bueno-Delgado et al., 2016), and Optifer, (Pagén et al.,
2015).

Another important research area is the technology of fertilizer application. Studies have also
introduced the possibility of variable-rate fertilization using application maps or via real-time
sensor data or remote sensing. Many authors have made relevant contributions to the
development and advancement of this technology (Cummings et al., 2021; Lu et al., 2019;
Fitzgerald et al., 2010). Meanwhile, other authors reported on the applicability or utility to
practice (Guerrero et al., 2021; Evangelou et al., 2020; Stamatiadis et al., 2018). In some
cases, they do so from specific economic perspectives (Scharf et al., 2011; Koch et al., 2004;
Smit et al., 2000).

This overview shows the enormous range in which the topic of “fertilization” has been and is
still being dealt with from an agricultural perspective. The following section outlines the open

questions addressed by this dissertation and the overall relevance of the underlying topic.

1.2 Relevance of the topic and open questions to continue the “story”

Currently, agricultural goods are traded on a large scale worldwide, resulting in a strong
competition and cost pressure due to the high degree of substitutability and the large number
of producers. Related to this, farmers are forced to constantly adapt and improve their
production systems. Essentially, the aim is to optimally allocate readily available production
factors to ultimately achieve the entrepreneurial goal of profit maximization. In the medium
term, this also affects the production program. In the short term, however, the focus is on the
optimum factor input quantity and the least-cost combination of substitutable inputs. In this
respect, the issue of fertilization is highly relevant for farmers. In many cases, fertilization
accounts for a considerable proportion of production costs while also determining the yield
and the quality of products. In Bavaria (Southern Germany), fertilization costs accounted for
29% of the variable production costs of winter wheat in 2019 (Schatzl et al., 2019). This high

share clearly emphasizes the economic importance of having an optimal fertilizer strategy.

At the same time, changing environmental conditions and dynamic changes in input and
output prices mean that fertilizer strategies must be constantly re-evaluated. For this reason,
almost all farmers in the world would regularly ask themselves whether, how, and in what
form the supply of nutrients to crops can be ensured. However, behind this question lies a
very complex optimization problem, simultaneously searching for the optimal intensity of

nutrient input (of all relevant nutrients) as well as the least-cost combination of the fertilizers
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available for this purpose. Numerous external influencing factors and supplementary
requirements can drastically exacerbate the complexity. These include, among others, crop,
legal and operational requirements for fertilization, field-specific transport costs, volatile
prices, changing environmental conditions, various available single and compound fertilizers,
and the storage function of the soil and the associated flexibility to place nutrients, in some
cases completely freely, within the crop rotation. Furthermore, it can be safely assumed that
the complexity of this optimization problem (Figure 1-1) exceeds the cognitive abilities of a

human decision maker.

«  Determination of » Permanent adjustment of

R Attention to the crop
fertilization dates (effects the fertilization strategy

and losses) during growing season development

o ) » Selection of particular
+ Estimation of the yield N _
] - fertilizers (nutrients,
potential -

AL effects, and losses)

« Attention to fertilizer and T & ; o L
_ » Preliminary fertilization
product prices ) ) )
with basic nutrients

» Determination of the
. . » Use of compound
fertilizer requirement

(N, P, K, ...)

fertilizers

»  Compliance with «  Weather and soil

» Pre-purchase of fertilizers Al
guidelines and legal conditions

(Storage capacity) requirements

Figure 1-1: Optimization problem of the cost-efficient fertilization strategy (without

claim to completeness).

Source: Own compilation.

To solve this optimization problem, some open questions must be addressed first:
»  What influence do application costs have on the cost-efficient fertilizer strategy?

» How can fertilizer application costs be integrated into a mathematical optimization

model for individual farms?

» What are the computational and data requirements of different methods to do so?
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» What are the agronomic, legal, and operational requirements of a model designed for
cost-efficient fertilizer strategies?

* What does the associated mathematical optimization model look like?

 What is the savings potential of such an optimization model compared to a

fertilization strategy defined in the usual way?
» Does a cost-efficient fertilization strategy lead to undesirable agronomic effects?
» How does a cost-efficient fertilizer strategy differ from an inefficient one?

» What influence do different farm conditions have on the design of the cost-efficient

fertilization strategy?

The answers to these questions would be highly relevant for farmers and consultants, as they
have a direct impact on production costs and management time in crop production.
Furthermore, the findings of this work can help reduce production efforts and increase
transparency about the price worthiness of alternative fertilizers. Fertilizer producers are faced
with a situation wherein farmers seek to find maximum price transparency. However,
fertilizer producers can also take advantage of this knowledge and adjust their product

portfolio accordingly.

This thesis aims to provide an important and new contribution to the understanding of cost-
efficient fertilizer strategies at the farm level from a scientific perspective. Cost-efficient
fertilization uses scarce resources efficiently, making it an important part of sustainability
efforts (Troster and Sauer, under review). This also means that the current study has social
relevance that can be further extended, that is, if one applies fertilizer emissions in terms of
CO2 equivalents instead of market prices, it is possible to identify particularly low-emission

fertilization strategies.

1.3 Aims and structure of this thesis

The goal of this dissertation is to develop a decision support system (DSS) that satisfies the
optimization problem shown in Figure 1-1. The DSS is designed to suggest a cost-efficient
fertilizer strategy that can be used by farmers several times per season to improve farm profit
and save management time. Another objective of this work is to assess the economic and
agronomic performance of the DSS under development and to identify the potential features

of a cost-efficient fertilizer strategy (e.g., in the selection of fertilizers).
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In the first part of this thesis (Part 1), the introduction to the research topic, an overview of the
theoretical framework, and the research methods used are presented. The main part (Part I1)
contains four independent studies, which are presented in Chapters 3-6, respectively. A brief
summary is provided at the beginning of each chapter. The first study (Chapter 3) focuses on
integrating farm-specific fertilizer application costs within the framework of a mathematical
optimization model. In the second study (Chapter 4), the requirements for the DSS are first
described verbally followed by its implementation in mathematical form. This study also
includes the economic performance evaluation. Study three (Chapter 5) presents a multi-year

field trial that aims to investigate the agronomic performance of the DSS.

Meanwhile, Study four (Chapter 6) provides a detailed analysis of the characteristics of cost-
efficient fertilizer strategies and examines whether general recommendations for fertilization
strategies can be derived. In addition, how various farm conditions influence the design of the
cost-efficient fertilization strategy is examined in this part. Part Il begins with Chapter 7,
which contains extended summaries of the four studies. Finally, Chapter 8 presents an overall
discussion of the entire research contribution of this thesis and highlights important findings.
For an initial overview, Table 1-1 provides concise information on the studies presented in
Part I1.
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Table 1-1: Overview of the studies presented in Part I1.

Topic Research Methods Novelty
guestion

Chapter 3: Effects of application costs on fertilizer application strategy

Use of How should Use of route planning It is the first time that the

farm- fertilizer software to define optimal | SDVRP has been used in

specific application costs | transportation routes. the context of fertilizer

application | be considered in Derivation of a regression | application. Another

costs in op- | mathematical function to estimate contribution is the

timization optimization individual transportation deduction of a resource-

models models? costs. Use of scenario friendly regression function
analysis and Monte Carlo | for the accurate estimation
simulation to assess of transport costs based on-
usability. farm characteristics.

Chapter 4: loFarm: A novel decision support system to reduce fertilizer expenditures at the

farm level

Identifying | How can a farm- | Classical OR approach For the first time, a

cost- specific cost- from a nonformal model, to | dynamically adaptable

efficient efficient a formal GAMS model, to | optimization approach is

fertilization | fertilization its evaluation in form of a | presented, which; apart

strategies strategy be choice experiment. The from the otherwise usual

achieved? GAMS model is a two- aspects; also considers

stage deterministic application costs, and its
dynamic optimization planning horizon extends
model that solves NLP in over an entire crop rotation
stage I and MINLP in stage | cycle.
.

Chapter 5: loFarm in field test: Does a cost-optimal choice of fertilization influence yield,

protein content, and market performance in crop production?
Agronomic | What are the Two-factorial, multi-site, For the first time,
effects agronomic effects | multi-year agronomic field | agronomic effects of an

of a fertilizer
strategy that has
been optimized
based on the
principles of cost-
efficiency?

trial. Factor 1: Fertilizer
variant (Optimization
model, farm manager, and
control). Factor 2: crop
(winter wheat, winter
barley, and silage maize).

economically optimized
fertilizer strategy
(considering the least-cost
combination) are reported
based on a field trial.

Chapter 6: Characteristics of cost-efficient fertilization strategie

s at the farm level

Knowledge
of cost-
effective
fertilization
strategies

What
characterizes cost-
efficient fertilizer
strategies?

Differentiation of
fertilization strategies from
a choice experiment by
employing regression and
cluster analysis as well as
subsequent t-test.
Evaluation of external
influencing factors
according to the ceteris
paribus principle using the
newly built DSS as the

simulation model.

For the first time, this study
demonstrates the main
differences between cost-
efficient and inefficient
fertilization strategies and
provides information on the
impacts of a farm’s initial
conditions..
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2  Theoretical framework and applied methods

This chapter provides an overview of the theoretical foundations and methodological
approaches that have been applied in the context of this research work. First, the problem is
embedded in production theory, followed by a presentation of operations research techniques
that are commonly used solve the optimization problem. Finally, methods for verifying a DSS

and analyzing cost-efficient fertilization strategies are described.

2.1 Microeconomic theories and behaviors

People are permanently confronted with the task of making decisions. Due to their highly
developed cognitive abilities, people are often expected to behave rationally. Therefore, it is
assumed that a decision is preceded by a careful process in which alternative options are
identified and evaluated according to one’s own preferences. Hence, the term “rational
principle” is used to refer to this idea. However, in daily life, other behaviors can be identified
that rarely lead to an optimal decision. These include, for example, limited rational behavior
(Simon, 1959) as well as emotional, traditional, random, and inconsistent behaviors (Brandes
and Woermann, 1982, p. 16). Decisions based on these patterns of action require no or little
transaction costs for obtaining information and evaluating it. Therefore, combined with
decisions of little relevance, such as the selection of a seat on the bus, it would be quite

economically efficient to dispense with the rational principle (Simon, 1959).

With respect to the objective of decisions, formal and substantive objectives can be
distinguished (Brandes and Woermann, 1982, p. 16). A formal goal can be any conceivable
objective, whereas a goal is considered substantial only if it is generally accepted, e.g., the
aim to achieve prosperity. In the context of microeconomic considerations, people are usually
assumed to act in a substantially rational manner; in this case, we speak of homo
oeconomicus. Depending on personal preferences, such as desires and needs, the objectives of
homo oeconomicus, can vary. The term “utility” is used as a measure for the satisfaction of
one’s wishes and needs. Therefore, a rational decision maker tries to make decisions () in

such a way that his personal utility (U) is maximized, as shown below:
max! U (). (2-1)

The concept of utility maximization is tied to the desires and needs of an individual person,
thus allowing enormous flexibility. In this case, a direct transferability to companies or
production processes may not be possible. At this level, goods are produced or services are
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offered for the purpose of generating income and profit. By generating profit in the company,
the entrepreneur can satisfy numerous wishes and needs, thereby generating benefits; yet, not
all wishes and needs can be satisfied by money. Nevertheless, due to the nonexisting
comparability of individual utility and the considerable intersection between profit (I1) and
utility (U), it is often assumed in production economics that homo oeconomicus would be a
profit maximizer. This means that alternative actions (x) are chosen in such a way that profit (

I1) is maximized, as shown in the following:

max! I1(x). (2-2)

2.2 Relevant concepts of production economics

The concept of profit maximization presented in the previous paragraph is highly
advantageous, because it can define a monetary and uniform objective that can be used in
models. In the context of agricultural production theory, further simplifications are applied
(MuRRhoff and Hirschauer, 2013, p. 144), including perfect information, homogeneity and
divisibility of goods, static consideration of a production period, the absence of external

effects, and the fact that the producer is the price taker.

As mentioned above, a cost-efficient fertilizer strategy is an important approach in
maximizing farm profit. In this respect, profit from crop production can be represented as

follows:
IT(x)=R(x)-C(x), (2-3)

where profit depends on a revenue function R(x) and a cost function C(x). The following

applies to the revenue function R(x):

R(x)=pxy(x), (2-4)

where p is the product price, and y(x) is the corresponding yield function. In crop production,
numerous factors x influence yield y; thus, the yield function should be extended as follows:

Y= (XX XX, ). (2-5)

Given that the focus is on fertilizer selection, the variable factors x; to x, denote individual
fertilizers (incl. time of application and quantity), while all other growth factors are
considered fixed. As plant growth depends on nutrients rather than fertilizers, only an indirect
relationship exists between fertilizer use and vyield. Therefore, the individual nutrient
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contributions ups (N, P, K, Mg, S, etc.) are relevant to the crop production function. These
nutrient contributions can be defined for each fertilizer x, via the known nutrient content of

the fertilizers (SUP, ns), as shown below:

Zn(uns) = Xn X SUI:)n,ns : (2'6)

Therefore, Eq. (2-5) also be represented as follows:
y=f (uns X Xy ) (2-7)

To determine the optimal relationship between nutrient input and yield, it is necessary to
define the functional form for Eq. (2-7). Crop production functions are usually found in the
form of a linear-limitational, quadratic, or asymptotic functional form Frank et al. (1990). In
this thesis, the concept of linear-limitational plant production function, which can be traced
back to Justus von Liebig, is used. Although asymptotic functional forms dominate the
literature for the most part, this concept is also considered in parallel in many studies. It has
been often stated that the coefficient of determination of a linear-limitational function is only
insignificantly worse. In fact, some studies have used the linear-limitational function to better
describe the relationships compared to other common crop production functions (Stone et al.,
2010; Backman et al., 1997; Grimm et al., 1987). Omitting the nitrogen dynamics in the soil
can help derive a linear relationship between plant yield and the nutrient content in the plant,
which describes the linear part of the production function. Once the nitrogen dynamics of the
soil are incorporated via measured or estimated values and an adjusted upper yield limit is
defined in parallel, a site-specific linear-limitational production function is obtained. The
production function established in this way does not require expensive and site-specific data
collection in field experiments. Therefore, it can be used in an uncomplicated way across
sites. Furthermore, it is suitable for complex mathematical optimization models, as linear
functions require considerably less computing power than quadratic or asymptotic functions.
For the reasons mentioned above, the current work is based on the linear-limitational
production function that can be traced back to Justus von Liebig. Figure 2-1 shows a

representation of this function.
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Figure 2-1: Linear-limitational plant production function for multiple nutrients.

The plant production function shown in Figure 2-1 is limited by a maximum. As a rule, it is
assumed that this limit is set by a limiting growth factor that corresponds to the genetic yield
potential of the plant under ideal growth conditions. Then, the maximum yield (YEX) is
defined by the site-specific yield expectation of the farmer to allow the user to respond to
changing growth conditions in the later optimization model. This is a dynamic process that
can be adjusted several times per season. This results in the following crop production
function:

Y (Upng [Xo g Xy ) < U;)“(S_rns min -y, (2-8)

Y (Upg [Xopo %y, ) S YEX

where u,s denotes the nutrient quantity, and UEXT s the nutrient requirement of the crop (per
yield unit). Now consider the cost function C(x), which is also a part of Eq. (2-3). Assume
that adjustments to fertilizer strategy can be made without making changes in the fixed assets,
which means that only variable costs need to be considered. In this case, the cost function
C(x) consists the price of fertilizer g, and the variable application costs for fertilizer my,, each
in relation to the amount of fertilizer used x,. All other influencing factors are considered to
be fixed:

C (XX [y Xy ) = D (0 XX, +1M, XX, ). (2-9)

At this point, it is already known that fertilizers x; to x, contribute differently to nutrient
supply (compare (2-6)) and that the technically efficient path of nutrient supply is given by
the crop production function (2-8). Hence, the following question arises: What is the least-
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cost combination of fertilizers to achieve a given yield y? Ultimately, this issue has already
been illustrated in Eq. (2-5). Furthermore, it is presented graphically in simplified form, using

the combination of two fertilizers x; and x, (Figure 2-2 to Figure 2-4).

— |soquant

——Isocost line

Figure 2-2: Least-cost combination at the linear marginal rate of substitution.

Figure 2-2 shows the isoquant for two fully substitutable fertilizers x; and x,. All
combinations of the two fertilizers on this line produce the same yield. This, however, is a
highly simplified case, because more than two fertilizers are usually needed to meet the
nutrient requirements of a crop. The complete substitutability of fertilizers is also only
theoretical because of different nutrient compositions and different nutrient forms. As shown
by the intersection with the isocost line, such substitution relationships lead to corner
solutions. In the above case, fertilization with fertilizer x, alone is preferred for cost reasons.
The representation of decreasing marginal rates of substitution is often found in the literature
(Figure 2-3).
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— |Soquant

——Isocost line

X1

Figure 2-3: Least-cost combination with decreasing marginal rate of substitution.

Once again, any combination of the fertilizers x; and x, produces the same yield, which is
represented by the isoquant. However, even a small amount of x; leads to a considerable
reduction of x,. Hence, the least-cost combination of both fertilizers is determined by the
intersection with the isocost line. Such substitution effects are plausible, such as when
nitrogen fertilizers with different forms of nitrogen are compared. However, technically
efficient combinations of fertilizers are often relevant for the least-cost combination of
fertilizers, especially considering the fact that several nutrients are considered in parallel
(Figure 2-4):

—|soquant

——Isocost line

Figure 2-4: Least-cost combination with piecewise linear marginal rate of substitution.

Figure 2-4 illustrates the isoquant for the combination of two different compound fertilizers.

Fertilizer x; contains 20% nitrogen and 7% each of potash (K,O) and phosphorus (P,Os).
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Meanwhile, fertilizer x, contains 15% each of the above nutrients. The linear substitution of
both fertilizers is possible up to a certain point, at which one of the nutrients becomes the
limiting factor for plant growth. In this case, the substitution of another unit of x; for x, leads
to the fact that more x, must be used (e.g., to satisfy the N demand of the crop). This Kkink in
the isoquant is also called a technically efficient combination (MulRhoff and Hirschauer, 2013,
p. 167; Nicholson and Snyder, 2008, p.113). In the case presented, this point also
corresponds to the least-cost combination, because the isocost line intersects here. In actual
scenarios, numerous fertilizers must be considered to identify the least-cost combination.
Therefore, isoquants are not to be understood as simple lines, but as multidimensional
structures (compare Debertin, 1986, p. 113), in which the substitution relationships between

the fertilizers (as shown) take different forms.

The course of isocost lines will be considered in more detail after discussing the potential
forms of isoquants. Isocost lines are typically displayed as straight lines, as shown in Figure
2-2 to Figure 2-4. Each combination of fertilizers on the isocost line leads to identical
fertilizer expenditures. Now, let us consider the variable application costs as another
component of the cost function (2-9). Troster et al. (2019) (see paragraph 3.4) stated that
application costs for fertilizer are nonlinear. For example, differences in application costs of
fertilizers can be attributed to variations in the specific weights of fertilizers. Each
independent fertilizer application commonly requires a fixed amount of setup time.
Differences in the nutrient concentration of fertilizers cause changes in the absolute amount of
fertilizer applied among alternative fertilizer strategies. In our case, nonlinear application
costs mean that the isocost line cannot be a straight line. Furthermore, entry costs in the form
of setup time cause a step change of the isocost line. The same applies to additional technical
requirements for fertilization, e.g., due to minimum application rates. The consequences for

the least-cost combination are shown in Figure 2-5.
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——|soquant

——|s0cost line

Figure 2-5: Least-cost combination in the case of nonlinear application costs.

Figure 2-5 now shows an example of the use of two fertilizers x; and x, with an irregular
course of the isocost line. As can be seen, the total costs of application increase abruptly as
soon as a combination of both fertilizers is used. This means that less fertilizer can be
purchased with the same financial budget. In the above example, this also implies that the
least-cost combination is no longer at the kink of the isoquant, but now, only fertilizer X, is
used. Considering application costs makes it much more difficult to determine the optimum
from a mathematical point of view. In addition, the application costs m, are themselves a

function dependent on the choice of fertilizer x,:

m, = f(%..X,). (2-10)

As displayed in Eqg. (2-10), the application m, costs of a fertilizer x, depend on the choice of
fertilizers or the fertilizer strategy as a whole. However, the application costs themselves
influence the choice of fertilizer, thereby implying that there exists a feedback loop within the

optimization problem, which can only be solved simultaneously.

2.3 Expansion path concept for optimal fertilizer strategies

In the previous section, the least-cost combination of fertilizers was discussed in detail. As the
least-cost combination represents an optimization of input costs, it has a potential impact on
the optimal factor input quantity. The relationship between optimal intensity and least-cost
combination is described by the expansion path. It is essential to follow the expansion path to
a maximum of profit in order to achieve a cost-efficient fertilization strategy. Figure 2-6

presents a typical illustration of the expansion path in the literature.
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Figure 2-6: Classic illustration of the expansion path.

Author’s own illustration, derived from (MuBhoff and Hirschauer, 2013, p. 168).

As shown in Figure 2-6, the cost-efficient ratio of input factors remains constant regardless of
the level of production. Therefore, the expansion path connects these intersections in the form
of a straight line. Hence, the profit maximization can also be done in two steps: (i) finding the
least-cost combination, and (ii) finding the optimal input intensity given the input ratio (least-
cost combination). However, this stepwise approach is not suitable for identifying a cost-
efficient fertilizer strategy. This is because, as shown earlier (Figure 2-4), the isoquants do not
behave uniformly; instead, there are abrupt or gradual changes in the isoquants. For this
reason, the course of the isoquants can change at different production levels. In
microeconomic theory, this is shown, for example, by inferior inputs that become less
important as production intensity increases (compare Nicholson and Snyder, 2008, p. 329).
Furthermore, the expansion path to the cost-efficient fertilizer strategy is characterized by
nonlinear isocost lines. This has already been demonstrated using nonlinear application costs
(Figure 2-5). Given that the application costs themselves are dependent on the fertilizer
combination (compare Eq. (2-10)), the same principle applies to the isocost lines as to the
isoquants: their course can change at different production levels. Consequently, the expansion
path is nonlinear and can have various least-cost combinations at different production levels
(see Figure 2-7). Therefore, the simultaneous optimization of the optimal input intensity and
least-cost combination is mandatory in the process of identifying a cost-efficient fertilization

strategy.
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Figure 2-7: Cost-efficient fertilizer strategy based on the expansion path.

Author’s own illustration, derived from (Nicholson and Snyder, 2008, p. 328)

The concept of the expansion path is graphically transferred to the cost-efficient fertilizer
strategy in Figure 2-7. However, the illustration is still very far from reality, as only two
variable inputs (fertilizers) are regarded. Specifically, two compound fertilizers are considered
as inputs: fertilizer x; containing 20% nitrogen, 7% each of phosphorus (P,Os), and potash
(K20). Fertilizer x, contains 15% each of the above nutrients. Both fertilizers are used for the
production of winter wheat. For simplicity, only the nutrients N, P, and K are considered, and
a linear relationship between yield and nutrient input is assumed, where 1 dt yield = 2.51 kg
N, 1.04 kg P,Os, and 1.67 kg K,O. Under actual conditions, the dimensionality of this
optimization problem increases considerably, and the decision variable x is defined over the

following sets:

. t Year

. tm Month

. cr Crop

. fz Fertilizer
. f Field

In addition, these sets are also considered relevant (completely or partially) for yield vy,
product price p, fertilizer price q, and application costs m. Accordingly, the profit function

from Eq. (2-3) is established in detail as follows:
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= Zt,f,cr ( ytvaC" x ptvﬁr ) - Ztvtmycrvfzyf (Xt,tm,cr,fz,f X qt,tm,fz ) - Ztytmvcr'fzvf (Xt,tm,cr,fz,f X mt,tm,fz ) (2-11)

The first part of this profit function present the total revenue, which consists of the sum
product of revenue y; ¢ With the product price picr. Note that the yield y; ¢, is itself a function
of the variable X¢mcrs. The middle part calculates the total cost of buying the fertilizers.
Meanwhile, the sum product of fertilizer input X mcrs and application cost mm, (in the right
part) summarizes the cost of fertilizer application. It should be emphasized here that m¢ iy IS
a function dependent on X;mcr s Due to the concatenation of functional relationships and the
dimensionality of the decision variable Ximcrs.f, it is unlikely that such a complex problem
can be solved by a human decision maker in an optimal way (Amann, 2019, p. 19). Therefore,
the question arises as to which method can be used to optimally solve the optimization
problem.

2.4 Finding the optimal fertilizer strategy

Solving optimization problems is a central task of operations research, and this field of study
offers various methods for this purpose. Given that the optimization problem at hand can be
represented as a mathematical model, the following methods are particularly considered:

exact optimization methods and heuristics and metaheuristics.

One of the exact optimization methods is linear programming (LP), first described by
Kantorovich (1960) in 1939. From this, further exact optimization methods have been
developed, such as integer programing (IP), mixed integer programming (MIP), nonlinear
programming (NLP), and a combination of mixed-integer and nonlinear programming
(MINLP). The exact optimization methods specifically search for the mathematically optimal
solution and have the distinct advantage of being able to provide information regarding the
optimality of the solution (e.g., whether the solution found is indeed a global optimum). In
comparison, heuristics and metaheuristics only search for the best possible solution with
reasonable effort and do not specifically search for a mathematically optimal solution; they
also do not allow any statement on the optimality of the solution found (Suhl and Mellouli,
2013, p. 13).

In current optimization software, both methods mentioned above are often combined:
heuristics are used in the so-called pre-solve methods to reduce the size of the optimization
problem so that the exact optimization methods can be subsequently applied in a more
efficient manner. Numerous solvers included in the GAMS software package (GAMS

Development Corporation, 2016) offer this possibility. Moreover, the variety of solvers
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included in GAMS facilitates the easy switching among different model categories (LP, MIP,
NLP, MINLP, and others). For these reasons, the exact optimization methods were used for
the implementation in this study, along with the software package GAMS. Below is the
typical structure of an LP (modified after Andrei, 2013, p. 109).

minimize f(x) (2-12)
subject to: 9(x)<0 (2-13)
h(x,y)=0 (2-14)
xe| x5 x| (2-15)

As shown above, f :R" >R, g:R"—>R", and h:R" - R" represent linear functions, and
the solution space of the decision variable x is limited by the lower and upper bounds referred
to as L and U, respectively. Usually, x is defined as non-negative. If the objective function
(2-12) or one of the constraint functions (2-13) or (2-14) is nonlinear, it is an NLP. If
additional integer criteria are considered, it is an MINLP, whose structure can be represented
below (modified after Floudas, 2011, p. 618).

minimize f(xy) (2-16)
subject to: g (xy)<0 (2-17)
h(x,y)=0 (2-18)

xe[xt x| (2-19)

ye[y'y’ JAN® (2-20)

As shown above, at least one of the functions f :R" >R,g:R" —>R", and h:R" > R" is

nonlinear. The decision variables x and y are constrained by the lower and upper bounds
referred to as L and U, respectively. In addition, N is the set, and g is the number of integers

or binary variables.

The already described interrelationships of the present optimization problem necessarily lead
to a nonlinear model structure. There is a technical lower limit for the application rate of

fertilizers in practice (e.g., 0.8 dt ha™'); hence, the optimization problem also includes
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semiconditional variables®. Thus, a practical model for the economic optimization of fertilizer
strategies falls under the MINLP category given that such variables lead to binary constraints
within the model. MINLPs are widely applicable due to the combination of discrete and
nonlinear content; however, solving such problems is also tremendously challenging (Lee and

Leyffer, 2012, p. vii; Bussiek and Pruessner, 2003) and rarely succeeds optimally.

The choice of MINLP solver has a large impact on whether or in what time a problem can be
solved optimally (or with a relative objective gab < 0.1%) (Kronqvist et al., 2019). This fact
also applies to the model developed in the current work. To solve the emergent model as
efficiently as possible, a performance test with different MINLP solvers was carried out at an
early stage of the model development. MINLP solvers use specialized NLP and MIP
subsolvers to solve these kinds of subproblems. Furthermore, the optimization model itself
was also built in two stages. Stage | was used to eliminate inefficient solutions, also known as
sequential decision making (Amann, 2019, pp. 19-20). Table 2-1 provides an overview of the
solvers used in both model stages. It presents a selection of the MINLP and NLP solvers
included in the GAMS software package in January 2016, which were combined in this step.

A temporary GAMS license with all full versions of the solvers was available for this test.

The results of the performance test from Table 2-1 clearly highlight the differences among
various solvers. As can be seen, not every solver is equally suited for solving the MINLP
model at hand. A large part of the tested solver combinations could not find a simple solution
or a valid solution for the optimization problem. Only the first five solver combinations,
shown in Table 2-1, have been found to be useful. The best valid optimization result, at a
relatively low time cost, was obtained with the ANTIGONE solver (Misener and Floudas,
2013). This solver additionally required a license for the MIP solver CPLEX (IBM
Corporation, 2017) and the NLP solver CONOPT (ARKI Consulting and Development A/S,
2016a). Therefore, this solver package was purchased and used for further model

development in the current study.

® The extent of this variable is either 0 or any value between a lower and upper limit.
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Table 2-1: Solver performance test.

Stage I Stage 11° Objective MINLP MINLP
value solving
NLP Solver MINLP Solver [€] Solver Status time [sec]
Antigone” Antigone* 459346 Integer Solution 78
Conopt® sBB" 453357 Integer Solution 383
Conopt® Dicopt [Conopt®, SCIP™] 441029 Integer Solution 50
scIp® Couenne’ [Baron’] 424213 Integer Solution 287
sciIp® Baron® 424213 Integer Solution 298
SCIP® Couenne’ [SBBY] 453468 Feasible Solution®’ 1220
Couenne’ sBB* 453412 Feasible Solution'’ 601
SNOPT?® sBB* 253100 Intermediate Non Integer 121
SCIP® Dicopt® [Conopt®, SCIP¥] 462382 Intermediate Non Integer®’ 726
Couenne’ Dicopt® [Conopt®, SCIP™®] 453412 Intermediate Non Integer®’ 600
Knitro™ Knitro® -2444841 Locally Infeasible 481
Local Solver™ sBB* 58072775 Locally Infeasible 607
Path®® sBB* -574908 Intermediate Infeasible 100609
Minos*? scIp® - No Solution 0
Conopt® scIp® - No Solution 2
IPOPTH? SCIP® - No Solution 100
Baron® sBB* - No Solution 104
Couenne’ SCIP*/SBB" No Solution 500
Couenne’ Alphaecp® - No Solution 608
SCIP® sBB™ - No Solution 26210

Remarks: Used hardware: Intel i7-4790K CPU 4.00 GHz; 16 GM RAM. Used software: GAMS 24.8.1 for MS
Windows (10 Pro). The solvers in square brackets are the used NLP and MIP sub-solvers. Foodnotes: 1) Stage |
= relaxed NLP Model; 2) Stage Il = full MINLP Model; 3) (Westerlund and Lundqvist, 2001); 4) (Misener and
Floudas, 2013); 5) (Tawarmalani and Sahinidis, 2005); 6) (ARKI Consulting and Development A/S, 2016a); 7)
(Belotti et al., 2006); 8) (Vecchietti and Grossmann, 2016); 9) (Wachter and Biegler, 2006); 10) (Byrd et al.,
2006); 11) (Innovation 24, 2016); 12) (Murtagh and Saunders) 13) (Dirkse and Ferris, 1995); 14) (ARKI
Consulting and Development A/S, 2016b); 15) (Gamrath et al., 2016); 16) (Gill et al., 2013); 17) Integer

conditions violated.

Thus far, Section 2.4 describes only one necessary step to solve an optimization problem in

accordance with the guidelines of operations research. This is the third of a total of five steps
(Taha, 2017, p. 40), as listed below.
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+ Definition of the problem

» Construction of the model

+ Solving the model

+ Validation of the model

» Implementation and presentation of the solution

The steps listed above were followed in sequence during the optimization problem
processing. The first step involved using a nonformal model to identify the optimization
problem and its exact description. Here the nonformal model could be converted into a
mathematical model (construction of the model), because the components and relationships of
the optimization problem are sufficiently known. Meanwhile, step number three (solving the
model) has already been explained in detail. Numerous model runs were performed under
changing input parameters to validate the model, focusing particularly on the plausibility of
the model output. Next, an experiment in which the test persons competed directly with the
optimization model was performed to validate economic performance. The participants' task
was to achieve a cost-efficient fertilization strategy. The validation of the agronomic
performance and a first implementation of the optimization model in practice was performed
via field tests conducted over several years. More information on the validation activities can

be found in Section 2.7.

2.5 Decision support systems in crop production

In the literature, the term “decision support system” has been described by numerous authors
(Valencia-Garcia et al., 2018; Turban et al., 2011; Power, 2002; Sprague and Carlson, 1982).
In fact, there is a wide agreement among authors on the definition, which is accurately

reflected by Zamecnikova and Kreslikova (2016, p. 73) as follows:

“Decision Support System (DSS) is a computer-based information system

or subsystem that supports business or organizational decision-making
activities. DSSs serve the management, operations, and planning levels of
an organization and provides help in decision making process. /...J
Decision support systems can be either fully automated, human [driven]
(Author’s note) or a combination of both.” (Zamecnikova and Kreslikovd,
2016, p. 73).
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Thus, a DSS is not a completely autonomous optimization system, but a system over which
the user still has influence. For this reason, any external intervention in the decision-making
process is possible, along with the flexible consideration of new information. Certainly, the
objective of a DSS is to help the user arrive at the best possible decisions. Figure 2-8 shows

the schematic structure of a DSS.

@_. Data ! ) Model
i | management
management g \ Model
base
Knowledge
management
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base
Data Graphical
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interface
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Figure 2-8: Schematic representation of a DSS (unchanged: Hujer, 2011).

A DSS consists of several components, namely, data management subsystem, model
management subsystem, knowledge management subsystem (optional), and user interface
(Hujer, 2011; Turban et al., 2011; Ragsdale, 2001). The data management subsystem is
commonly used to provide and, if necessary, process all internal and external information.
The optional knowledge management subsystem contains theoretical principles, correlations,
and empirical values that contribute to the process of problem solving and are, for example,
displayed to the user. Sometimes, artificial intelligence can also be used to integrate this
knowledge into the solution process (Hujer, 2011). The subsystems mentioned so far
communicate directly with the model management subsystem. There are numerous
possibilities involved in creating the model management subsystem, and optimization or
simulation software is often used. Ultimately, the DSS user can access the mentioned
subsystems via a user interface to make changes or to simply view information for decision

making.
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The DSS is only considered for serious problems, because its construction usually requires
extensive resources. DSS are particularly useful in solving poorly organized or unstructured
problems (Turban et al., 2011) that are not sufficiently solvable by human decision-makers
due to their complexity or the abundance of information (Valencia-Garcia et al., 2018; Power,
2013, p. 36). Valencia-Garcia et al. (2018, preface) wrote about the benefits of DSS as
follows:

“Proper application of DSS increases productivity, efficiency and

effectiveness and gives many businesses a competitive advantage ...”"

In general, productivity, efficiency, and competitiveness are relevant objectives in all sectors
of the economy, including agriculture. For example, in crop production, simulation models
are often used to evaluate the impacts of different management practices and derive decisions
from them. These include, for example, the prominent crop growth models “Agricultural
Production Systems sIMulator” (APSIM, Holzworth et al., 2014), “Cropping system
simulation model” (CropSyst, Stockle et al., 2003), and “DSSAT” (Hoogenboom et al.,
2019). These examples of DSSs are extensively used worldwide to support decisions in crop
production. The list of successful DSSs in this sector is long. Some of them, such as
SIMSEPT (Kluge et al., 2006) for predicting Septoria tritici and Septoria nodorum in wheat
and SYMBLIGHT (Kleinhenz et al., 2007) for predicting the first occurrence of Phytophthora
infestans in potatoes, are used directly by farmers. Other examples of DSS can also be found
in the field of fertilization, such as FertiliCalc (Villalobos et al., 2020), Ecofert (Bueno-
Delgado et al., 2016), Optifer (Pagén et al., 2015), or “Nutrient Expert for Wheat” (Chuan et
al., 2013). The optimization model developed in this thesis also represents a DSS and
addresses a problem that affects almost every farm. The tool, which is based on-farm-level
conditions, suggests a cost-efficient fertilizer strategy to the farm manager. According to

Power (2013, pp. 35-37), DSS can be divided into the following categories:
« Communications-driven DSS
» Data-driven DSS
« Document-driven DSS
* Knowledge-driven DSS

*  Model-driven DSS
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A model-driven approach is appropriate for the identification of a cost-efficient fertilizer
strategy. It focuses on the integrated optimization model, which helps in making rational and

efficient decisions.

Despite all the advantages, many DSSs are unable to establish themselves in practice. Rose et
al. (2016) considered this observation and analyzed the following requirements that should be
met by a proposed DSS for it to be considered useful in practice: low computational costs,
high performance, minimum data requirement on the users’ part, trust in the developer, and
high degree of user-friendliness. During the development and evaluation of the optimization
model, these requirements were considered to create the broadest possible acceptance for the
new DSS.

2.6 Consideration of farm-specific fertilizer application costs

It is assumed that the application costs of fertilizers influence the cost-efficient fertilizer
strategy. However, application costs are considerably farm-specific. They are influenced by
several factors, including road network, field structure, mechanization, application rates, and
utilization costs of the production factors, among others. In principle, the fertilizer application
process is straightforward and can be captured analytically. This process can be further
divided into the following subfunctions Baey-Ernsten (2011): setup time, loading time, field
work time with turning and loss time, and transport time. These add up to the application

costs of fertilization, along with the costs of the production factors.

In the following, the characteristics of the respective subfunctions are only briefly discussed;
detailed descriptions are given in Chapter 3. The costs caused by setup times represent a fixed
amount per fertilization measure; thus, their share of the costs is not proportional to the
application rate. The costs for loading fertilizer can approximately be regarded as proportional
to the application rate. The costs of field work consist of the tractor and labor costs associated
with field work and the variable costs of the fertilizer spreader (proportional to the application
rate). The duration of field work is largely independent of the application rate per hectare due
to the automated dosing system of modern fertilizer spreaders. Therefore, it is assumed that
tractor and labor costs are proportional to the area being processed. In contrast to the
subfunctions of the application costs described thus far, the transport costs cannot be
represented without considering the field structure and the road network of a farm. This

relationship is explained further using Figure 2-9.
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7

Figure 2-9: lllustration of the field structure and road network of an exemplary farm.

Remarks: The red dot marks the farm location. The figure contains all farm-to-field connections on the shortest
route. Created: (Machl, 2018); Data basis: Troster.

At this point, it is assumed that fertilizing measures are carried out in a single-stage work
process, which means that the loading of the fertilizer spreader takes place at the farm
location (red dot). Next, let us assume that fertilization is to be performed on eight of the field
plots shown in Figure 2-9, for which a total of 2.5 spreader fillings are required. In this case,
the farmer has to plan three tours. Furthermore, the farmer will try to keep the transport costs
as low as possible; thus, it is also important to minimize the sum of farm—field and field—field
trips. At the same time, however, the farmer must ensure two things: (i) that the capacity of
the fertilizer spreader is not exceeded in any tour and (ii) the required amount of fertilizer is
spread on all field plots at the end. The problem described here is called split delivery vehicle
routing problem (SDVRP) (Dror and Trudeau, 1990), in which the the optimal route will
change depending on the selection of road network, field structure, field pieces,
mechanization, fertilizer and fertilizer rate per hectare. This also affects the ratio of farm-to-
field to field-to-field trips.

One way to capture the transportation cost portion of application costs on a farm-by-farm
basis is to use the SDVRP. However, it also has disadvantages in the form of high data
requirement (all farm-field and field-field routes are needed) and the enormous
computational effort needed to solve a SDVRP (Archetti et al., 2011b). Thus, an alternative
solution must be found to implement the transportation costs within the framework of a
mathematical optimization model. Starting from an existing farm, 125 randomized farms with
different road networks and field structures were formed. The SDVRP was applied to this set

of randomized farms under different constellations of application rate per hectare and field
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selection, thereby resulting in a total of 3,500 model runs with optimized routing. Then, in the
next step, farm- and measure-specific parameters were identified that have considerable
influence on field-field or farm—field trips. Using these parameters, a linear regression
function could then be established for both trips, with which the transport cost can ultimately

be estimated for each individual farm.

2.7 Verification of a DSS and output analysis

It would be helpful to compare the proposed DSS with the otherwise usual decision-making
process to check the performance and usability the former (Taha, 2017, p. 41). This reveals
potential differences in solutions, such as those in terms of input, output, or feasibility. This
information is crucial for evaluating performance and may also reveal where adjustments are

needed to improve feasibility in practice.

This work verifies a proposed DSS, which represents an agricultural production process. This
project is particularly challenging due to numerous dynamic influencing factors (e.g., prices
and weather) and long production cycles (crop rotation cycle). Therefore, a two-part approach
is chosen for the verification: the first part examines the impact on the total cost of
fertilization, while the second part addresses the potential agronomic impact of this DSS. This
approach facilitates an unbiased comparison between DSS and the typical decision-making
process. This is because dynamic influencing factors can be more easily controlled or fixed

using the split approach.

The volatile and unknown price development of fertilizers represents a major influencing
factor, on the total cost of a multi-year fertilizer strategy. Price information only becomes
available successively in actual application scenarios. This situation leads to the fact that
fertilizers are used without knowledge of the future price development. This can have both
positive and negative effects on the overall costs of the fertilizer strategy. Therefore, to
determine the economic performance of the optimization model, a choice experiment was
conducted wherein the price development of fertilizers (dynamic influence factor) was fixed

for all actors.

Furthermore, the fixed specifications for nutrient input allow the assumption that the fertilizer
strategies to be compared do not differ significantly in terms of output. This experiment,
hereafter referred to as the “fertilizer quiz,” ensures identical conditions, thus allowing an
unbiased view of the total costs of different fertilizer strategies. The participants’ task was to

plan fertilization as cost-efficiently as possible for a simplified farm with three field plots and
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three crops over a three-year period. Table 2-2 provides a reduced representation of the
fertilizer quiz, showing one of a total of nine planning segments. The fertilizer quiz itself is

available for download*, and further information can also be found in Chapter 4.

Table 2-2: Excerpt from the fertilizer quiz: Planning segment silage maize 2016.

2015 2016

Augl
Sepl
Octl
Novl
Decl
Aprll
Mayll
Junll
Julll
Augll
Sepll
Octll
Novll
Decll

Marll

Janll
Febll

Fertilizer
CAN* (27N)
Urea (46N) 3.1

DAP? (18N 46P)

Potash (40K 6MgO 5S)
Kieserite (25MgO 20S) 2.0
Burned lime (90Ca0)

N (minus losses) 126
P,Os
K,O
MgO 50
S 40
Lime effect (CaO) -143

Actual (in total) -143

Target (in total)

8 |& |8 [MgO

Actual (in vegetation) |126 40

o o |8 | [P,0Os
o o |o o K0

Target (in vegetation) [ 123 43 | 25

Status ok | ok | ok | ok | ok

Remarks: In the first section of the planning matrix, the selection and timing of fertilization measures was
performed by specifying the amount of fertilizer in dt per hectare. The associated nutrient quantities are added up
on a monthly basis in the middle section. Nutrient quantities in fields with a gray background are not counted. In
the lower part of the table, the quiz participant receives a status overview and can determine whether the
fertilization planning meets the requirements. Abbreviations: 1: Calcium ammonium nitrate, 2: Diammonium
phosphate.

The growing conditions must be controlled in the process of comparing the agronomic

performance of a crop production DSS with an otherwise standard decision-making process.

* Link to the fertilizer quiz (last access 14.07.2021):
https://drive.google.com/file/d/14rBHNKKDuBqg8oyeeVUXuek2id1B9z_Dw/view?usp=sharing
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Crop rotation, variety choice, crop protection intensity, weather, and location are examples of
dynamic influencing factors that should ideally not differ in such a comparison. Therefore, to
identify potential agronomic effects, a three-year field trial was conducted on a total of three
sites in Bavaria, Southern Germany: Geiselsberg, Triesdorf, and Roggenstein. The experiment
was designed as a two-factor, split-plot design. The first factor reflected the fertilizer variant
and was kept stationary at the plot level over the entire period. The following fertilizer

variants were tested:
» Control (without any fertilization)
« Farm manager- mineral
« Farm manager- mineral and organic (only at the Triesdorf site)
*  Optimization model- mineral
» Optimization model- mineral and organic (only at the Triesdorf site)

Factor two represents the cultivated crop. During the trial period, the crop rotation of winter
barley, silage maize, and winter wheat was grown once on each plot. During the entire trial
period, 297 plots were harvested to determine potential variations in quality or yield.
Statistical analysis was performed using slit-plot ANOVA and subsequent post-hoc tests.

Figure 2-10 presents a visual impression of the field trial.
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Figure 2-10: Field trial at the Triesdorf site in the spring of 2016.

Remarks: Winter wheat in the foreground, winter barley in the middle, and silage maize in the background

shortly after emergence.

Then, the fertilizer quiz was used once more to determine the characteristics of cost-efficient
fertilizer strategies. Following the detailed processing of the data obtained from this quiz, it
was possible to describe each individual fertilizer strategy with 675 variables. In a trial and
error procedure, linear regression analysis was used to identify variables showing significant
influences on the proposed fertilizer strategy’s cost-efficiency. In addition, the fertilizer
strategies of the quiz participants were divided into three clusters based on their total costs,
after which post-hoc tests were used to identify group differences in fertilizer use. Next, the
developed DSS was used as a simulation model to determine the influence of farm conditions
on fertilizer strategy. Based on the conditions of an actual farm, certain parameters were
changed, such as farm size, infrastructure, soil fertility, and the availability of organic
fertilizers according to the ceteris paribus principle to calculate the adapted fertilizer
strategies. By comparing these solutions, the influence of the tested parameters on the

fertilization strategy could thus be determined.
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Abstract

To optimize production activities, it is important to understand the associated costs. If the
optimization is carried out using mathematical instruments, the production costs are
implemented in the form of a restriction. The functional form is critical not only to ensure
accuracy but also to facilitate computing power and input data requirements. The present
study documents the development of a cost function for fertilizer application. Three potential
ways to address transportation costs within the whole cost function are observed: (i)
calculating minimal transportation time using a “split delivery vehicle routing problem”
(SDVRP), (ii) estimating transportation time using a regression model, and (iii) neglecting
transport costs altogether. In Section 3.3, the costs of fertilizer application and their influence
on the fertilizer application strategy are compared. Despite minimal differences in the
application cost values, all methods lead to comparable results. A further investigation reveals
additional factors that influence the reliability of decision-making, for example, price
relations. The computational power and data input demands are explored as well. In this
respect, the SDVRP method was identified as the most resource-demanding option. We
conclude that the performance of the regression method is the most reliable for optimizing the
fertilizer application strategy using mathematical instruments. The present study may support
researchers focusing on farm logistics or related cost functions, such as spraying, sowing or

manure application.
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3.1 Introduction

The complexity of decision-making in management and production contexts is a key
challenge for farmers all over the world. Decisions often depend on many variables and
decisions influence the level of success or failure. Decision support systems (DSS) are
valuable instruments that facilitate decision-making based on broad and objective criteria.
Their application is influenced by performance, data requirements, user-friendliness as well as
other limitations such as computing power (vgl. Rose et al.,, 2016). Sensor-based
determination of crop nitrogen demand (Fitzgerald et al., 2010), genomic selection in animal
breeding (VanRaden, 2008) and computing of feed rations with the least costs (Waugh, 1951)
are examples of established applications of DSS in farm management. In particular, we are
interested in minimizing feed costs and adapting the idea to plant nutrition requirements. Our
research contributes to technical and allocative productivity in land management and
facilitates the formulation of farm-specific optimal fertilizer application strategies.

The process of optimizing a farm’s fertilizer strategy begins with the optimal nutrient input
requirements within a season or an entire rotation period and the selection of suitable
fertilizers. The costs of fertilizer application greatly affect the optimal strategy. For example,
fertilizer application strategies that meet the nutrient requirements of crops with the least
possible number of doses are preferred when the costs of fertilizer application are high. This
highlights the significance of application costs. Transport costs are part of the application
costs. They are highly influenced by farm infrastructure. A common approach for accounting
for transport costs is the use of mean on-farm transportation time (KTBL, 2019). Transport
costs could be addressed using route-planning software, which have the ability to calculate
detailed transport costs. Some examples can be found in transport-intensive agricultural
sectors, including the dairy industry (Basnet et al., 1996). However, route planning is very
resource-intensive. Thus, a more straightforward approach for addressing on-farm transport
costs during fertilizer application is required. It is also necessary to evaluate the usability
based on mathematical optimization models. The hypothesis is that using farm-specific data
on infrastructure to estimate transport costs rather than integrating them in route-planning

software would not significantly affect the fertilizer application strategy. Under certain
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conditions, we expect that disregarding transport costs does not significantly affect the

optimal solution.

The present study evaluates the importance of transport costs and develops a cost function for
fertilizer application (or other production inputs). This function must be appropriate for a DSS
at farm level within the framework of mathematical optimization methods. This means it is (i)
sufficiently precise to obtain a reliable decision on fertilizer application strategy, (ii) resource-
friendly in terms of computational power and (iii) meets minimal requirements of farm-
specific data. To address the problem, we compared three approaches for determining
transport costs. First, we generated a cost function that takes into account a split delivery
vehicle routing problem (“SDVRP method”). Second, we replaced route planning with a
regression model (“regression method”). Finally, we included a scenario in which the

transport costs are disregarded entirely (“zero transport cost method”).

To date, the SDVRP method has rarely been used to optimize agricultural production.
Vougioukas et al. (2012) used the SDVRP method to minimize in-field transportation time of
robotic crop-transport aids. Frisk et al. (2018) used it as an instrument for optimizing animal
welfare and economic costs in pre-slaughter logistics. However, within the transportation
science and logistics, SDVRP is recognized and widely applied (see Latiffianti et al., 2018;
Eldrandaly and Abdallah, 2012). In our application, we expected that the SDVRP method
would be useful due to its potential to precisely compute transport time. However, its
application is limited due to its computing power demands. The other two approaches were
deemed more appropriate within the framework of mathematical optimization methods. The
aim of our study is to identify an appropriate approach to address transport costs within the

comprehensive optimization of fertilizer application strategies at farm level.

3.2 Materials and methods

The subject of our study is a working procedure for mineral fertilizer application, in which

both fertilizer application and transportation occur in one combined step.

Cost functions of complex procedures are often analyzed using regression models. An
overview of the methods for determining cost functions can be found in Adnan and Jian
(2006). Known costs and less complex working procedures, as in the case of fertilizer
application, are therefore preferably determined analytically. Moreover, there is a possibility
to break down the overall function into individual quantifiable subfunctions. A description of
the method has been provided by (Baey-Ernsten, 2011). Accordingly, the required working
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time can be divided into setup time; fieldwork time, including turning and lost time; loading
time; and transport time. In addition to the variable costs of mechanization and based on one’s

own analysis of the procedures in practice, the following subfunctions emerge:

« CWP: Work preparation, respective follow-up work (setup time)
+ CLS: Loading the fertilizer spreader (loading)

« CFW: Cost of completion of fieldwork (fieldwork)
« CVS: Variable costs of the fertilizer spreader (fieldwork)
« CYF: Transport costs from farmyard to field (transport)

+ CFF: Transport costs from field to field (transport)

If the factors and conditions of the farm remain unchanged, only variable costs are important
for the decision-making. Therefore, the fixed costs are not considered. To evaluate the user-
dependent costs in the subfunctions, sufficient knowledge of individual workflows in a farm
and associated costs are required. For this purpose, primary data of a sample farm are used,
which were supported by secondary data (KTBL, 2016, 2005). The sample farm is a northern
Bavarian mixed farm with 50 ha of arable land and mechanization as indicated (see Appendix,
Table A 3-1). The in-house infrastructure presented by the farm-specific distance table (Ci)
has a major influence on transport costs. The distances are based on the shortest distances in
terms of time (min). The advantage of a time-based specification is related to the
simultaneous consideration of track quality, distance, and maximum speed of the

transportation unit.

3.2.1 Breakdown of the cost function into quantifiable subfunctions

Fertilizer application costs are related to the number of applied spreader fillings (asf):

asf (hf,ar) = gf xar (3-1)

W xQ

The number of applied spreader fillings is determined by hectares fertilized (hf), application
rate (ar), spreader capacity (Q), and the specific fertilizer weight (SW). The specific weight
ranges from 75 to 170 kg hl™*. Therefore, the fertilizer itself influences the required number of
spreader fillings. Application cost needs to be expressed in Euros (€) per hl. Although
fertilizer costs are based on a mass unit, here they are expressed in Euros per 100 kg. To avoid

possible confusion, we assume a specific weight of 100 kg per hl. This is justifiable because
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we just look for the general structure of application costs at this stage and neglect the optimal
selection of fertilizers.

Eq. (3-2) presents the personnel costs for the preparation and follow-up work of a fertilization

measure (were Setup time = ST and Wage entitlement = WE).
CWP = ST xWE (3-2)

Eq. (3-3) determines the costs for loading the fertilizer spreader (were Loading time = LT and

Variable costs of the vehicle used for loading = VL).
CLS(hf,ar)=asf xLT x(VL+WE) (3-3)

Eq. (3-4) shows the cost of the work completion in the field. It is assumed that fertilizer
application rate (ar) and working speed (WS) are independent, which leads to a constant work
time per hectare. This reflects the current status of fertilizer spreader technology. For
nonproductive turning and lost times, the theoretical rate of work is reduced by TT. Fechner
(2014) found that TT depends on various factors like shape and size of the field, agility of the
machine and machining direction. According to him TT ranges from 8% to 27%. Identifying
field individual values for TT takes a lot of effort with little effect on the total application
costs. Thus, we decided to use a uniform value of 20% for TT. (Working width = WW,
Variable cost of tractor = VT).

hf
CFW (hf )= VT +WE 3-4
(hf) [stloooxwwx(l—TT)xloooo1]X( +WE) (34

The total variable costs of the fertilizer spreader are described using Eq. (3-5). (Variable cost
of fertilizer spreader = VS).

CVS (hf , ar) =asf xQxVS (3-5)

In Egs. (3-6) and (3-7), the transport costs are presented as dependent functions of the

unknowns tx and ty. They correspond to the transport times of farm-field (tx) or field—field

trips (ty).

CYF (tx) =txx (VT +WE) (3-6)

CFF (ty) =ty x(VT +WE) (3-7)

For additional information, see Appendix, Table A 3-1.
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3.2.2 SDVRP model for transport time determination

It is a logistic challenge to find the most time-saving route that accounts for in-house
infrastructure, application rate and spreader capacity. To address this challenge, route
planning has to consider the option of multiple runs to fields. The logistic challenge
corresponds to the SDVRP, which was first formulated by Dror and Trudeau (1990). It is a
variant of the vehicle routing problem, which is derived from Dantzig and Ramser (1959).
Such kinds of problems are often NP-hard, which means they are not solvable in polynomial
time. Investigations for this can be found in a study by Archetti et al. (2011b, S 748). NP-hard
problems place particularly high demands on computing power and cannot be solved
satisfactorily if problem sizes increase. Using the General Algebraic Modeling System
(GAMS) (GAMS Development Corporation, 2016), an appropriate SDVRP optimization
model was developed to address such logistic problems. It is a mixed integer programming
model, which is solved using the commercial solver CPLEX (IBM Corporation, 2017) (see
Appendix, Table A 3-2 for further information on the SDVRP model).

We used the route-planning model to determine the transport times for tx and ty. After

determining the values, Egs. (3-6) and (3-7) are incorporated unaltered into the cost function:

cf (hf,ar)=CWP+CLS +CFW +CVS +CYF +CFF (3-8)

3.2.3 Importance of transport costs with regard to the optimal fertilizer
strategy

To reveal the significance of transport costs, we need to apply Eq. (3-8) under several
different conditions. In addition to a varying spread rate and a varying number of fertilized
sites, we need to account for farm-specific infrastructure, such as plot sizes and distances.
However, detailed empirical data on farm infrastructure for running multiple SDVRPs for a
representative set of farms is unavailable. To use an SDVRP, we need to know all distances
between all fields of a farm, which is a vast amount of information. Machl et al. (2016)
developed a GIS-based instrument for calculating the shortest farm—field connections in all
Bavarian farms. Modifying the tool to calculate field—field distances can help in addressing
information gap in the future; however, since the necessary data contained sensitive geocoded
information, access was denied. This is why we used the so-called informed guess: We
examined available data for a single farm to generate a random set of 125 farms. Within a
bootstrapping procedure, the route optimization model was used in 125 independent runs. At

the beginning of each run, both the sizes of the field and the farm-field or field—field
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distances (parameter cj) were defined based on triangle-distributed random numbers®. In this
way, we randomly generated 125 farms, for which the influence of a varying spread rate (10,
80, 200, and 320 kg ha ) was investigated. Optimal routes were calculated for each of the

four fertilizer levels, taking into account different field combinations:
« All fields in the farm
» All cereal fields with wheat and barley (6 from 9 fields)
« All fields with wheat and corn (6 from 9 fields)
« All fields with barley and corn (6 from 9 fields)
+ All fields with wheat or barley, or corn (respectively 3 from 9 fields)

There was a total of 3,500 model runs (possible number of problem combinations). Since the
SDVRP model was not always capable of finding an optimal route, we set a time limit of
120 s per run. This time limit prevents the solver from endless iterations. Farms with no
defined optimal route within this time limit were excluded from further analyses. As a
criterion, a relative deviation between the objective value (obj) and the best possible result® of
more than 7% was selected. Overall, 55 companies exhibited a relative deviation of more than
7%. From the remaining 70 random farms, there were 1960 model runs, which revealed
optimized routes. In addition to the time required for the entire overall route (obj), the results
also include the time required for the sum of all farm—field (tx) and field—field trips (ty).
Based on such knowledge on transport time, we are able to evaluate the significance of
transport costs. Table 3-1 compares the proportions of the application costs (cf) for all

components of Eq. (3-8) in consideration of the fertilizer costs.

® For the distance Parameter (cj), we used 0 min as the minimum, 4.5 min as the median, and 32.3 min as the
maximum. The plot size (Parameter ha;) has the following specifications: minimum 0.1, median 1.4, and

maximum 7.4 ha.

¢ The Solver CPLEX was set to a 120-s time limit. After the time has expired, the solver returns the best found

result, together with the relative deviation, to the best possible result “relative gap”.
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Table 3-1: Fertilizer application costs.

Fertilized Application Q 2) 3) 4 (5) (6) )
fields rate (ar) Fertilizer CWP CLS CFW CVS CYF CFF
[pcs] or [%]  [kgha'] [%] [%] [%] [%] [%] [%] [%]
80 64.3** 21.2%* 1.0 6.1 0.0 7.4%* 0.0
1 Field 200 80.4** 11.2%* 1.2 3.1 0.1 4.0* 0.0
320 85.8** 7.6%* 1.3 2.0 0.1 3.2* 0.0
80 78.8* 7.4% 1.2 7.5 0.1 2.5* 2.6*
33% of all
) 200 88.7* 3.3* 1.4 3.4 0.1 24 0.7
Fields
320 91.5* 2.2 1.4 2.2 0.1 2.2 0.5
80 82.8* 3.7 1.3 7.9 0.1 2.2 2.1
67% of all
200 90.7 1.6 1.4 3.4 0.1 2.0 0.8
Fields
320 92.8 1.0 1.4 2.2 0.1 2.0 0.5
80 84.4 2.5 1.3 8.0 0.1 1.7 2.1
100% of all
. 200 91.3 1.1 1.4 35 0.1 1.8 0.8
Fields
320 93.2 0.7 1.4 2.2 0.1 1.9 0.5

Note: The percentages are mean values of 70 randomly created farms, which differ in plot size and distances.
The fertilizer price is €21.50 per 100 kg. ** Range > 20%; * Range > 5%. Source: Own compilation.

Table 3-1 is useful for determining the major drivers of application costs. In addition to the
fertilizer cost itself, CFW (costs for completion of fieldwork) dominate the cost-composition.
This is followed by CWP (costs for work preparation) and transport costs if we sum up the
corresponding columns 6 and 7. Consequently, we are able to highlight scenarios where
transport costs could have a real impact on the optimal fertilizer application strategy. A
threshold of more than 3.1% on total fertilization costs is exceeded in all scenarios where only
a single field is fertilized and in the scenarios with a low application rate of 80 kg ha™. Some
mean values of Table 3-1 are labeled with an asterisk. A double asterisk denotes a range of
more than 20%, and a single asterisk indicates a range of more than 5% in the original data.
The relevance of farm—field transport costs (CYF) increased considerably in individual cases.
A detailed look at the data reveals that CYF is of great importance when only a single small
and far-flung field is involved. Since we are dealing with percentage values, the fertilizer
prices have a major impact on the contents of Table 3-1. We used a fertilizer price of €21.5
per 100 kg. A higher fertilizer price would minimize the impact of the application cost in

general, and vice versa. This will be covered separately.
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3.2.4 Estimation of field—field and farm—field transport time

We need to assume that transport time has an effect on the optimal fertilizer application
strategy. Instead of using an SDVRP, we are now looking for a straightforward approach for

estimating transport time based on farm-specific information.
Estimating “ty”

Based on the 70 model runs with a low application rate of 10 kg ha*, we obtain the shortest
connection among all the fields in each farm’. This farm-specific value for ty was set for each
random farm to be equivalent to 100%. Therefore, it is possible to express the proportions of
field—field trips (rty) for all the investigated variations of a random farm. In case none of the
fields or one field is fertilized, there are no field—field transport trips. The proportion of field—
field trips is therefore equal to 0%. In Figure 3-1(a-d), the proportional field—field trips are
depicted in relation to the application rate and the proportions of the fertilized farmlands.
With regard to the proportion of field—field trips, three influential factors can be identified: (i)
field—field trips can only occur when more than one field is fertilized, (ii) a higher share of
fertilized farmland leads to an increase in field—field trips, and (iii) field—field trips display a
wider dispersion and slightly decrease with increase in fertilizer application rate. To examine
correlations based on a regression analysis, a dataset was formed using the following
information: proportions of field—field trips, proportions of fertilized farmland, spreader
fillings per hectare and number of fertilized fields. Since the dataset was not equally weighted
with regard to the independent variable “number of visited fields”, this was corrected by the
duplication of underrepresented cases. In sum, the dataset contained 4,200 observations®.

” For a total farm size of 50 ha and a spreader capacity of 2000 L, only 0.25 spreader fillings are required at this

application rate. Therefore, the optimal route does not include additional farm—field trips.

® Explanation: 70 farms under four different levels of fertilization, each with three results for the fertilization of a

combination of nine fields, six fields, three fields, one field, and zero fields.
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a) ar = 10 kg ha™! b) ar = 80 kg ha™!
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Figure 3-1(a-d): Proportions of field—field trips (*rty) at the respective farm-specific

optimal routes depending on the proportion of fertilized farmland.

Figure 3-1(a—d) leads to the assumption of a linear relationship between the proportions of
field—field trips and fertilized farmland. In addition, we recognize a lower effect of the
application rate. The application rate is relevant for the number of spreader fillings per
hectare. This shows how often a field has to be visited. To account for such observations, the
following regression model was developed to estimate the transport times required for field—
field trips (rty):

ry, =4 ﬁ +ﬂ2(ﬁf5J+gs sei=1..n;hf,>0 (3-9)
i s
Index “s” indicates a dynamic set of scenarios consisting of fertilized fields in combination
with an application rate. The dependent variable is determined by the proportion of the
fertilized farmland (first term) and the number of spreader fillings per hectare. Since field—
field trips only occur when more than one field is involved, a binary variable would be
necessary to account for that. Binary variables may considerably complicate mathematical
optimization problems. As this was our main application, we decided to disregard the binary
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variable. The consequence was only a minor decrease in the coefficient of determination. The

results of the regression model are presented in Table 3-2.

Table 3-2: Estimation of field—field trips for varying fertilization measures.

Model OLS

Proportion of field—field trips rtys  (Dependent variable)

Proportion of fertilized farmland B1 0.9418*** SE (0.0056)
Spreader fillings per hectare B2 —0.7298*** SE  (0.0366)
R? 0.91 n 4,200

Remarks: *** p < 0.001; SE: Standard error; n: Investigations; no constant term. Source: Own compilation.

The regression model according to Eq. (3-9) describes the dependent variable rtys. As
expected, the proportion of fertilized farmland has a positive impact on the number of field—
field trips required. An increase in the number of spreader fillings per hectare results in a
slight decrease in the number of field—field trips. The reason is that direct farm—field trips are
more frequent. Using the regression method, we only obtain the proportion of field—field trips
based on a farm-specific parameter (TF). TF is the sum of all field—field trips on an optimal
route, and rtys is equal to 100% in such a case. To estimate the transport durations during
field—field trips in any farm, TF must be known. To be precise, the value would have to be
calculated using a tour-planning model. In practice, the value is estimated based on the

experiences of a farm manager. The following applies for the duration of field—field trips:
tys = rtys XTF S= 1, ...n (3'10)

Estimating tx

The estimation of the time spent on farm—field trips, txs, is based on the average farm-field
distance (FYs). FYs is based on a farm—field distance table FD; and additionally weighted by
the plot sizes (HA)) of the associated fields:

FD, xH
FY, :Zs(z |'_|XA A) sei=1..n (3-11)

Supplying large fields with production inputs requires more transport trips between farms and
fields. FY is doubled and multiplied by the number of necessary spreader fillings to obtain the

transport time tx. The regression model for transport time is presented in Eq. (3-12):
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tx, = f, xasf, x2x FY, + ¢, s=1..n (3-12)

This simple model is quite useful for estimating the time requirement for farm—field trips.
Table 3-3 shows the statistic.

Table 3-3: Estimation of farm—field trips for varying fertilization measures.

Model OLS

Time for farm—field trips tXs (Dependent variable)

asf, x2x FY, B1 0.9961***  SE  (0.0032)
R? 0.96 n 4,200

Remarks: *** p < 0.001; SE: Standard error; n: Investigations; no constant term. Source: Own compilation.

In reality, the applied spreader fillings (asf) have to be an integer number calculated for each
field separately. Even if a full spreader filling for one field is not required, it is necessary to
visit the field at least once. This can happen either through a direct farm—field trip or
indirectly by a field—field trip. Using asf as a continuous variable (as in the present case)
would lead to the underestimation of transport time, particularly if far-flung fields are
involved. The coefficient of determination is rarely influenced. Therefore, we are able to
disregard integer variables, which would pay off when we apply the regression method in the

context of a mathematical optimization model.

3.2.5 Zero transport costs

Another potential way of dealing with the transport costs is to neglect them. The analysis in
Table 3-1 shows that transport costs are of little importance, at least in most of the observed
scenarios. Therefore, a meaningful impact on the fertilizer strategy is debatable. Excluding the
transport costs facilitates further work in two ways: there is no need to consider detailed
information on farm infrastructure, and the functional aspects of the application costs become
easier to determine with regard to computational power. However, under unfavorable

conditions, such an approach could lead to a suboptimal fertilizer application strategy.

In the following section, we compare the three designated options and check the robustness of

their results.
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3.3 Results

The results of the present study show the influence of the different approaches on the total
cost of fertilizer application and the optimal fertilizer application strategy. Furthermore, we
address their potential application within a DSS.

The three approaches are as follows: the first variant, using the logistic optimization model, is
“SDVRP method” (see Section 3.2.2), the second variant is “regression method” (see Section
3.2.4), and the third variant, which disregards the transport costs, is “zero transport cost
method” or abbreviated as “ZTC method” (see Section 3.2.5). The total costs of fertilizer

application are calculated using Eq. (3-8) and are presented in Figure 3-2.
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Remarks: Results calculated at an application rate lower than or equal to 10 kg ha—1, and scenarios with a total

fertilizer amount of less than 15% of the spreader capacity are omitted due to their insignificance for praxis.

Figure 3-2: Total application costs: Regression method and ZTC method versus SDVRP
method.

The x-axis of Figure 3-2 shows the application costs for 100 kg fertilizer based on the SDVRP
method. The values calculated based on the regression method (dots) and the ZTC method
(lines) are on the y-axis. The regression method underestimates the fertilizer application costs
in the upper range, which has already been explained at the end of Section 3.2.4. Of course,
the ZTC method underestimates the fertilizer application costs in general, and the degree of
underestimation increases as the application costs increase. When fertilizer application costs
are greater than €8 per 100 kg, the validity of the regression method and the ZTC method

deteriorates. This is often consistent in situations where only one far-flung field is fertilized.
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In such cases, transport costs are considerably affected which is not adequately considered by
the regression method and failed by the ZTC method. Based on the data presented in Figure
3-2, we obtain a standard deviation of €0.49 100 kg for the residues of the SDVRP method
compared with those of the regression method. Table 3-4 compares the total fertilization costs

of the three methods applied on a test nitrogen fertilizer application scenario.

Table 3-4: Influence of application costs on a test nitrogen fertilizer strategy.

() ) ®) (4) () (6)
Method SDVRP Regression ZTC
1. Dose kg ha™ 200 320 200 320 200 320
2. Dose kg ha™ 200 200 200
3. Dose kg ha* 200 320 200 320 200 320
Fertilizer Price € 100kg ™ 21.50
Application costs € 100kg ™ 2.19 1.66 2.19+c 1.66-c 1.78 1.24
Total costs €hat 142.15 148.22 139.68 145.55
+o 145.10
-0 145.06

Remarks: 6 = A standard deviation of €0.49 100 kg *. Source: Own compilation

In the first two columns, two potential fertilizer application strategies are tested using the
SDVRP method. In option 1, the nitrogen fertilizer application is divided into three equal
doses, each containing 200 kg ha™* calcareous ammonium nitrate (CAN). The application
costs according to the SDVRP method are €2.19 per 100 kg. In option 2, a total of 640 kg ha™*
CAN is applied in two equal doses. Here, 6.7% more nitrogen is applied as fertilizer to
compensate for losses caused by the stronger aggregation of fertilization. This is because an
aggregation of nitrogen fertilization increases the risk of losses. Nevertheless, the additional
amount of 6.7% is based on an expert opinion. Therefore, we tested different scenarios to
adjust for local conditions. Even if the application costs of option 2 are considerably lower, at
€1.66 per 100 kg, option 1 is the preferred fertilizer strategy due to the lower total costs of
€142.15 per ha. Both fertilizer application strategies are also compared using the regression
method (columns 3 and 4) as well as the ZTC method (columns 5 and 6). To simulate
potential deviations in the estimation of application costs using the regression method, we
increased the application costs of the initial cheaper strategy (option 1) by a standard
deviation of €0.49 per 100 kg . In addition, we reduced the application cost of Option 2 by

one standard deviation. The ZTC method does not include transport costs. The manipulation
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of the application costs in the case of the regression method leads to a change in fertilizer
application strategy, even if the cost difference per hectare is just only cents. In contrast,
neglecting the transport costs completely does not influence the fertilizer application strategy
(please compare the total costs in Table 3-4). In Table 3-5 the influence of application costs
on the strategy of basic fertilization is analyzed. The structure is similar with the

aforementioned example (Table 3-4).

Table 3-5: Influence of application costs on a basic fertilizing strategy.

@) ) ®) (4) (®) (6)
Method SDVRP Regression ZTC
PK (16 + 16) kg ha™ 320 320 320
(25 €100kg ™)
Potash 40 kg ha* 128 128 128
(€27.50 100kg )
Triple superphos 46 kg ha™* 111 111 111
(€40.50 100kg )
Potash S kgha” 51.2 51.2 51.2 51.2 51.2 51.2
Phosphorus Y kgha 51.2 51.2 51.2 51.2 51.2 51.2
Application costs* € 100kg " 1.66 1.66+ ¢ 1,24
Application costs** € 100kg ™ 3.32 332 2.59
Appl. costs*** € 100kg’l 3.75 3.75-—¢ 2.92
Total costs €ha 83.31 88.70 83.97 86.85
to €hat 86.89
- o €hat 87.52

Remarks: The application costs are listed separately for the different fertilizer quantities: * 320 kg ha ',
** 128 kg ha ', *** 111 kg ha *. The prices of fertilizers are placed in the brackets (January 2017). o = A

standard deviation of €0.49 100 kg *. Source: Own compilation

It is possible to apply phosphorus and potash with a compound fertilizer (columns 1, 3, and
5). Alternatively, both nutrients can be applied separately (columns 2, 4, and 6). The SDVRP
solution shows that the application of the compound fertilizer is preferable. This solution
remains unchanged for the other two methods, and the optimal fertilization strategy remains

the same.

To check whether the results of the regression method and ZTC method are robust, a Monte
Carlo simulation (MCS) was carried out. For that purpose, we changed the fertilizer
application costs by adding normally distributed random numbers with a mean value of zero

and a standard deviation of €0.49 100 kg™*. Compared to the original fertilizer strategy from
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the SDVRP method, the results remained unchanged in more than 92% of cases for nitrogen
application. For basic fertilizer application, the results remained unchanged in more than 97%
of cases. The results of this simulation depended heavily on (i) the additional amounts of
nitrogen used in the case of the stronger aggregation of nitrogen fertilizer strategy and (ii) the
relationships among the prices of the different basic fertilizers. We analyzed the relationships
using the aforementioned MCS in combination with a stepwise increase in the nitrogen level
or a modified price for the fertilizer “PK (16 + 16)” (see Table 3-6 and Table 3-7).

Table 3-6: Reliability of decision-making for a nitrogen fertilizer strategy.

Additional Regression ZTC Financial

nitrogen method method error
[%6] Consistent decisions [%]  [€ ha ]
0.2% 76.2 100.0 3.0
1.2% 63.7 100.0 1.5
2.3% 50.6 0.0 0.0
3.4% 63.9 100.0 1.6
4.5% 75.9 100.0 3.1
5.6% 85.6 100.0 4.6
6.7% 92.0 100.0 6.1
7.8% 95.7 100.0 7.6

Remarks: Comparison of double- and triple-stage nitrogen nutrition. The first column indicates the add-on of

nitrogen to balance nitrogen losses caused by stronger aggregated nitrogen nutrition. Source: Own compilation

The starting point for the analysis in Table 3-6 (in bold) is equal to the additional nitrogen
supply for a double-stage nitrogen fertilizer strategy used in Table 3-4. At this point, we have
a high reliability in the decision-making for both methods. The decisions of the regression
method in comparison with the original fertilizer strategy from the SDVRP method would be
equal in 92.0% of all cases. We simply call this “consistent decisions”. If the necessary
nitrogen add-on would be 2.3%, the regression method would yield 50.6% consistent
decisions, whereas the ZTC method would yield 100% inconsistent decisions. The last
column shows the financial error triggered by a wrong decision. With an additional nitrogen
supply of 2.3%, the costs for the extra fertilizer are equal to the cost savings due to a cheaper
fertilizer application. At this stage, both alternative fertilizer strategies (see Table 3-4) would
result in the same total costs for fertilizer and fertilizer application: Option 1 has lower cost
for the fertilizer but higher costs for application. In option 2 this is reversed. The financial
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error is zero, because both options lead to the same costs. In Table 3-6, the probability of a
wrong decision is highly correlated with a small financial error and, therefore, is acceptable

from a management perspective.

Table 3-7: Reliability in decision-making for a basic fertilizer strategy.

Fertilizer ~ Regression ZTC Financial
price method method error

[€ 100kg '] Consistent decisions [%]  [€ ha ]
25.0 97.2 100.0 3.4
25.3 91.1 100.0 2.4
25.6 79.6 100.0 1.5
25.9 61.6 0.0 0.5
26.2 59.7 100.0 0.5
26.5 78.0 100.0 1.4
26.8 90.7 100.0 2.4
27.1 97.2 100.0 3.3

Remarks: Comparison of single and compound basic fertilizer strategy. The first column indicates the price for

the compound fertilizer. Other prices remain steady. Source: Own compilation

The optimal fertilizer application strategy is often a case of selecting a fertilizer among
various substitutable fertilizers. In such a case, the driving factor would be the relative price
distance with regard to the nutrient content. In Table 3-7, we increased the price of “PK (16 +
16)” while the prices of the substitutable fertilizers remained steady. The result and

interpretation are similar to those of the aforementioned example.

3.4 Discussion

The results of the present study indicate that the described methods lead to comparable
results. The method has a minimal impact on the selection of the optimal fertilizer application
strategy. The financial error within the nitrogen fertilizer example ranges from €0.0 up to €7.6
per hectare (see Table 3-6). The error within the basic fertilizer example is between €0.0 and
€3.4 per hectare (see Table 3-7). In case of a wrong decision caused by the regression method
or ZTC method, the financial error is low. Under the considered circumstances, the ZTC
method has an extremely narrow error margin. Within the margin, the decisions are 100%

incorrect (with low financial damages) and otherwise 100% correct. Under conditions of a
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higher significance of the transport costs, the error margin of the ZTC method would increase.
In that respect, the regression method is more robust.

The ZTC method is a very simple approach for decision-making. It proves useful as long as
the variable transport costs are small and the farm—field distances are homogenous. However,
when using the method within a DSS, there is no information about the distance between the
farm and the corresponding field or set of fields. Therefore, the solver cannot distinguish
between near and far-flung fields. This has a significant disadvantage as the field-specific
transport costs are unobserved and we disregard a major driver for a field-specific fertilizer
strategy. We cannot opt for a differentiated solution such as spreading a more expensive
compound fertilizer to the far-flung fields (saving transport costs) and using cheaper single
nutrient fertilizers on the nearer fields (saving fertilizer expenses). The regression method
does not hold back this field-specific information completely. As soon as a field is selected
for a fertilization approach, its farm—field distance and its plot size are used to calculate the
weighted farm-field distances (see Eq. (3-11)). Differentiated solutions, therefore, are
possible, but they would not be applied often, since a fixed setup time influences entry costs
for each separate fertilization measure. The flexibility of the regression method in considering

a wider range of farm-specific situations compelled us to apply it within the context of a DSS.

The SDVRP method is certainly optimal for determining individual transport time. When
logistics are of most importance, the SDVRP method is preferable because it offers guidance
on the optimal route. If the SDVRP based cost function is used in a whole-farm context, the
corresponding model offers additional optimization options. For example, through a
simultaneous optimization of cultivation planning, transport times can be reduced overall.
This could be very useful from the perspective of landscape planning and land consolidation
(Harasimowicz et al., 2017). However, using an SDVRP model for route planning places very
high demands on databases and computing power. As previously mentioned, SDVRP models
are often NP-hard. Therefore, they cannot always be optimally solved even based on small
model sizes. This has already been shown in the model runs of the present study.
Accordingly, for more extensive applications, specialized SDVRP algorithms are required.
Here, the two-phase algorithm according to Jin et al. (2007) and the integration of tabu search
by Archetti et al. (2006) should be mentioned. State-of-the-art SDVRP algorithms are capable
of solving problems with up to 288 subjects (fields) within a timeframe of 1,422 s (Archetti et
al., 2011a). Other routing problems with only 41 subjects are still not solvable within 7,200 s
(see study by Ozbaygin et al., 2018). Numerous farms surpass such limits. Implementing such

a specialized algorithm in a large DSS would tremendously increase the problem size. Due to



3.5 Conclusions 53

the complexity of such models, however, it is debatable whether the additional optimization
potential can be achieved due to the exponential increase in model size.

Another factor for discussion is the database of the present study. We generated data on farm
infrastructure based on informed guesses. This approach was necessary because access to
empirical data was not possible. Although our dataset is plausible, it would be sensible to
repeat the analyses with empirical data in the future. As already mentioned, the prerequisite
for an SDVRP model is a table containing complete farm—field and field—field distances. A
GIS-based tool developed by Machl et al. (2016) could facilitate the generation of a suitable
dataset. Another challenge is processing the empirical data within an SDVRP model because
the farm size has a significant impact on whether the solver is able to find a solution or not.
This is a barrier not only for an empirically grounded analysis but also for application within a
DSS at a farm level. The feasibility of the SDVRP method is currently low. In agriculture, it
is not always prudent to implement the routing guidance of an SDVRP model. An example is
the traffic carrying capacity of the soil. It could influence whether a field can be driven on
with a full spreader or not. In addition, farmers would not be able to realize the optimal route

in numerous cases due to various external factors.

3.5 Conclusions

We present three potential strategies for determining farm-specific application costs for
mineral fertilizers. In principle, all of them can be integrated into a DSS for optimized
fertilizer application planning. The selection depends on the available data and the goal of the
optimization tool. The regression method is particularly suitable for the optimization of
fertilization at farm level. Estimating the transport times provides a good indication of the
costs of fertilizer application, and the number of input parameters required is manageable.
Under circumstances where the farm-specific input data is not available, the ZTC method
provides acceptable results. If transport time is an important factor at the farm level (e.g.
widely distributed fields), the ZTC method is not appropriate. The SDVRP method is
resource-intensive in terms of computational power and input data requirements. It has the
potential to generate optimal fertilizer strategies and simultaneously reveal the optimal route.
The method could facilitate the saving of transport resources. It also has great potential in the
optimization of future applications. However, under current conditions, the potential cannot
be exploited adequately. In contrast, the DSS would reach a new level of complexity and thus

often cannot be solved to our satisfaction.
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The use of SDVRP for fertilizer application decisions contributes to literature on transport
issues in agricultural contexts. The relevance of the original question could be extended to
further working procedures. Therefore, a direct transfer to the application of plant protection

products or grain sowing would be appropriate.
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3.6 Appendix

Table A 3-1: Farm-specific parameters and variables that influence fertilization costs.

Explanation Data Unit
ST Setup time (per fertilizer and month of use) 1.25 h
WE  Wage entitlement €20.00 h™*
WS @ Working speed in the field 12.00 kmh™
WW  Working width 21.00 m
Q Volume of the fertilizer spreader 20 hl
TT  Turning and lost time on the field working time (*SD) 20%
VS Variable costs of the fertilizer spreader (*SD) €0.015 hl™
VT  Variable costs of the tractor (*SD) €12.97h™
VL  Variable costs of the load vehicle (*SD) €12.97h™
LT Loading time per spreader filling 0.2 h
TF  Time required to run all fields one after another 1 h
SW  Specific weight of the fertilizer 75-170 kg hI™
FD; Farm-field distance table for each field (Index i) var.  min
HA;  Plot size for each field (Index i) var. ha
ar Application rate per hectare within each fertilization measure var. kgha'
nf Number of fertilized fields within each fertilization measure var.  pcs.
hf Fertilized acreage within each fertilization measure var. ha
tx Time for all farm—field trips within each fertilization measure var. h
ty Time for all field—field trips within each fertilization measure var. h

Note: The parameters are abbreviated in capital letters and the variables in lower case. *SD = Secondary data.
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Table A 3-2: Sets, parameters, and variables for developing an SDVRP model at farm

level.
Sets
J Designation of the field plots (F1-Fn) and the farm (B) {B, FI... Fn}
Ij Subset of j; all field plots {F1... Fn}
hj Subset of j; field plots for one planned fertilization measure hj € i
v Number of possible tours with a maximum of M tours, e.g., {T1...TM}

M = (Zjd Axha, xQ’l—l+ 2
vvy  Dynamic subset of v, with the minimum number of tours L

L= [Zjeh Axha, xQ‘l_‘

Alias

{T1... TL}; vwy CE V

k Alias for Set |

Parameters

A A=arxSW™ fertilizer quantity in hl per hectare € Z+

Q Volume of the fertilizer spreader in hl €Z+

ha;  Field size of the field plots €Z+

Cik Distance between two points €Z+
Variables

Xvjk  Tour planning; x = 1 means run from j to k, where j # k Xvjk € {0,1}

Yvj Indicator for visiting fields
Uy Dummy variable for limiting sub-tours
wy;  Fertilizer application per tour and per field

obj

obj =X+1y - Opjective value = Distance in minutes

Yvj € {0,1}; ywo =1
uVj € Z+

Wyj € Z+; Wyo = 0

Minimize!
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Input of Table A 3-2 is used in line with Jin et al. (2007) to build the following SDVRP:

Zn:zn:ixwk Cix

Min j=0 k=0 v=1 j :0,1,...n;v=1, 2,...|\/| (3_13)

st = = j,k=12,..n;v=12,..M (3-14)
Uy = Uy +NX <n=1 jehv=12..M (3-15)
w, <(ha;A)y, jeh (3-16)

= v=12,..M (3_17)
Zwvj < Q
=0 (3-18)

The total transport time of the fertilizer measure is minimized by the target function (3-13).
The restrictions (3-14) facilitate proper tour planning. Each element of j, which is visited once
within a tour, must also be departed from again. The binary variable y,; is assigned with the
value 1 if a field is actually visited within the tour. The restrictions (3-15) ensure that the
number of sub-tours within a tour does not exceed the accepted maximum. Due to the
inequalities (3-16), a fertilizer delivery wy; is only possible if the corresponding field yy; has
actually been visited in the tour. Restrictions (3-17) and (3-18) ensure that the total demand
for fertilizer in all fields is satisfied and the maximum volume of the fertilizer spreader is not

exceeded within the individual tours.
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4 loFarm: A novel decision support system to reduce fertilizer

expenditures at the farm level
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and Johannes Sauer (2021): loFarm: A novel decision support system to reduce fertilizer
expenditures at the farm level. Computers and Electronics in Agriculture 188] is available
online at: https://doi.org/10.1016/j.compag.2021.106322.
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like to thank the editor and referees for their useful comments.
Abstract

Farmers and consultants make the best use of existing resources to increase profitability, and
this begins at the operating resources level. Existing literature primarily deals with the optimal
intensity of fertilization. A multitude of different fertilizers, with fluctuating price ratios,
however, promises an additional economic optimization potential that can be achieved by
cleverly combining these fertilizers to form a least-cost combination. This potential is
extended if individual costs of fertilizer application are considered in parallel. The objective
of the loFarm decision support system is to take up this overall complex and to determine
individual fertilizer strategies for farms, which also determines the economic optimization
potential. In terms of methodology, the solution to this problem is based on mixed integer
nonlinear programming (MINLP). The restrictions and parameters used for this were taken
from the literature and where necessary were derived in a simplified form in order to keep
usability a practical tool. The subsequent evaluation of the economic performance was carried
out by conducting an experiment. The participants were asked to define a fertilizer strategy
for a simplified farm with three fields and three crops over three years. Despite the
considerable amount of time it took the testers to conduct this investigation, loFarm
performed 19% better in terms of costs. Our results show surprisingly clearly the complexity
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of this decision-making process and the previously unused monetary and time optimization
potential behind it. The agronomic performance of loFarm has already been confirmed in

another study.
Keywords

Decision support tool, sustainable intensification, fertilizer recommendation, fertilizer

application; profit maximization, least-cost combination, economic modeling

4.1 Introduction

Recent literature focuses on efficiency and sustainability of fertilization, and fertilization has
also become a topic of social interest. The farm manager’s primary goal is profit
maximization. Figures from the Bavarian agricultural state institute (LFL) show that the
average proportional costs of fertilizer measured against the variable costs of winter wheat
production—ignoring factor costs—were 30% (Schatzl et al., 2019), which highlights the

significance of an optimal fertilizer strategy in order to maximize farm profit.

Earlier economic studies (Mitscherlich, 1909; Baule, 1954; Kling, 1985; Smit et al., 2000)
also took up this topic, but the authors’ approaches and priorities differ, which is not
surprising, since farm profit is influenced on two levels: (i) the optimal intensity of inputs
(nutrients) and (ii) the least-cost combination of substitutable inputs (fertilizers). The second
aspect is only covered by a few studies, which are reviewed in Section 4.3. In our opinion,

this aspect deserves closer attention from an economic point of view:
« A variety of single and compound fertilizers is available on the market
» Continuous change in price relations
» Interdependence between fertilizer strategy and total application costs

To achieve an optimal fertilizer strategy, it is necessary to simultaneously care about the
optimal intensity and the least-cost combination of inputs. The goal of this study is to develop
a decision support system (DSS) at the farm-level capable of meeting these expectations.
Furthermore, product and input prices as well as environmental influences are dynamic,
which is why the DSS needs to consider these inputs dynamically as well. Additionally, two
more features will differentiate the DSS from existing tools: (i) the system considers the
nutrient demand of an entire rotation and (ii) application costs are included in the optimization

process.
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Since the factors and conditions for each farm are different, for example, the availability of
organic fertilizers or rotation and yields, an optimal fertilizer strategy is always farm specific.
loFarm addresses this problem at the farm level and farmers benefit through increased profit.
In addition, outsourcing this problem causes a reduction in valuable management time.
loFarm helps to reduce the input of resources, such as energy or fuel, which is also a valuable
benefit for society.

4.2 Conceptual framework

The starting point is the economic principle of utility maximization. We apply a common

framework and replace utility with profit and the according target function is as follows:
7(x) = R(x)—C(x) (4-1)

Profit 7 is dependent on a revenue- and cost-function of fertilizer input x.

R(x)=pxy() (4-2)
Revenue R is calculated by product price p, multiplied by product quantity y.
y=f(x..X,) (4-3)

The product quantity is a function of several inputs xn. Relevant to us is the input of different

fertilizers needed to fulfill the nutritional requirements of y.
C(x) = (gx x) +(mxx) (4-4)

C is the corresponding cost-function, with fertilizer price g and fertilizer application costs m,
each multiplied by the fertilizer quantity x and summarized.

X=f(X...X,) (4-5)
m = f(x...x,) (4-6)

Fertilizer quantities x as well as application costs m are dependent on the factor combination
of x represented in functional form. Application costs will influence profit maximization.
High application costs will favor fertilizers with a high nutrient content. Application costs are
a neuralgic part of this optimization problem, and they depend heavily on individual farm
infrastructure. Further information according to the functional form and relevance of

applications costs are in Troster et al. (2019).
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To answer our research question, we need to identify the optimal nutrient input and the
cheapest combination of fertilizers. This concept is known as the expansion path and is

displayed in Figure 4-1 in different variants.

(a) (b)

\

~NPK2077
NPK 207 7

NPK 15 15 15

Figure 4-1: Expansion path: a) Standard theory b) linear isoquants c) modified to
optimize the fertilizer strategy at the farm level d) isolated view on an isoquant

separated by nutrients.

Figure 4-1a shows the standard version of this concept, with curved isoquants and linear
isocost lines. This concept is true for the case of two factors with a decreasing substitution
rate. Literature defines two more isoquants applicable for our research question: (i) isoquants
with a linear substitution rate and (ii) isoquants with a limiting relationship of factors
(Debertin, 2012b, pp. 151-178). The first option is true if we focus on a single nutrient and
compare two completely substitutable fertilizers (Figure 4-1b). The course of the isoquants
and isocost lines is linear and this will result in a single fertilizer solution. But as we know,
plants need multiple nutrients in parallel. Figure 4-1c shows this in the form of two compound
fertilizers containing different concentrations of nitrogen (N), phosphor (P) and potash (K) in
a fixed composition. Fertilizer x; is an NPK 20 7 7, fertilizer x, an NPK 15 15 15. A linear

substitution between these two fertilizers is possible up to a certain point where one of the
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nutrients becomes limiting. At this point, there is a kink in the course of the isoquant (Figure
4-1d). This kink indicates a “technical efficient combination” (MuBhoff and Hirschauer, 2013,
p. 167) of both fertilizers. To identify the least-cost combination, we need to add isocost lines,
which are usually assumed to be linear, which will change as soon as we also consider
application costs. Fertilizer applications costs are nonlinear (Troster et al., 2019). Thus, the
course of these isocost lines cannot be generalized. Knowing that a combination of fertilizers
increases application costs, it is clear that the isocost line is closer to the origin in this type of
case. We decided to display this relationship by integrating a bent isocost line in Figure 4-1c.
Due to the irregularly shaped isocost lines and isoquants, the optimal input combination
jumps between the different levels of input intensity. Linking the least-cost combinations, we

obtain the expansion path indicated in Figure 4-1c by a sequence of arrows.

As part of the expansion path, the functional form of the input and output relation is important
for determining optimum input intensity. Crop response functions to nutrients are usually
expressed as linear with an upper limit, quadratic or as asymptotic functions (Frank et al.,
1990). This study uses a linear function with an upper limit to describe the relation between

nutrient inputs and product output.

After transformation into a revenue function, Figure 4-2a shows this concept of the “broken
stick” in combination with linear costs for fertilization. The upper limit is either defined by a
nutrient in minimum or by a local yield potential. The economic optimum is reached when the
slope of costs is equal to the slope of revenues. If all nutrients are sufficiently available, the
economic optimum in this case also corresponds to the revenue maximum (yield potential
times price). But, as previously mentioned, costs for fertilization—including application
costs—are nonlinear. Figure 4-2b provides an example of this. Here again, the economic
optimum is defined by comparing the slopes of the cost and revenue function. The yield
potential is not reached due to an increase in fertilization costs. This increase could be
explained by a necessary change in the fertilizer strategy. The concept in Figure 4-2b provides
the possibility of specifying the optimal nutrient input intensity, whereas a concept with linear

costs is only able to use the yield potential either completely or not at all.
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Figure 4-2: Linear crop revenue function with an upper limit.

“Under a given input price relation and production technology, the expansion path shows the

cheapest possibility to expand production” (MuBhoff and Hirschauer, 2013, p. 169).
Assuming the output price, we are able to transform the expansion path into a profit function
to identify the optimal factor input. This optimum is valid for the intensity and the least-cost
combination of inputs. Of course, price changes or an adjustment in production technology
will lead to a new optimum. Finding this optimum is important for profit maximization, but a
huge variety of fertilizers and volatile prices complicate the solution process in actual
practice. Operations research (OR) is a scientific field that specializes in this type of complex
issue. The classical problem-solving process according to (Mariappan, 2013, chapter 1.5) is as
follows: Formulate the problem (verbal model), construct the mathematical model, verify the
model, implement and evaluate recommendations. DSS often fall back on OR and this
problem-solving process. For the practical usability and acceptance of a DSS, Rose et al.
(2016) determine several demands. Of special relevance are: performance expectancy; ease of
use; trust and relevance to user.

4.3 Existing tools

A large number of tools for fertilization planning are available all over the world. These tools
differ in objective, quality, origin (scientific, commercial or private), etc. This section covers

a selection of DSS relevant to farmers and is classified into: (i) tools identifying nutrient
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demands and (ii) tools blending a fertilizer or proposing a fertilizer strategy. Subsection (iii)
differentiates loFarm from the explored tools.

4.3.1 DSS identifying nutrient demands

These kinds of tools are built to identify the nutrient demand of crops or entire crop rotations.
The “ImagelT” (Yara International ASA) mobile app uses pictures of crops to estimate the
current N demand in kg per hectare. Optical sensors added to machines, such as the
“GreenSeeker” (N Tech Industries), “N sensor” (YARA) or “Crop sensor ISARIA”
(Fritzmeier Umwelttechnik & Claas), are able to do the same thing in real time, which is
important for sub-area fertilization. “Fertilizer Removal by Crop” (IFA Productions Inc.,
2012) allows the user to select a crop, insert an expected yield and the program returns the
corresponding nutrient demand. This kind of simple application is popular, but the utility is
limited. Since fertilization is regulated in many countries, there are also official tools
specialized institutes provide. For example, a Bavarian farmer has to determine the nutrient
requirements for his crops according to a scheme provided by LFL (Offenberger and
Wendland). This scheme helps to identify the nutrient demand of crops after taking
environmental effects and organic fertilization into account. Selecting fertilizers and
allocating them is up to the farmer. This kind of fertilization planning is currently the usual

approach for the average Bavarian farmer.

4.3.2 DSS blending a fertilizer or proposing a fertilizer strategy

These tools go beyond building on identifying nutrient demands. Babcock (1984) studied the
optimal fertilizer composition to satisfy the nutrient demand for a single crop. His tool, based
on linear programming, provided the user with a blending scheme to obtain a least-cost
compound fertilizer. Recent studies have come up with comparable tools. “Optifer” (Pagén et
al., 2015) and “Ecofert” (Bueno-Delgado et al., 2016) are designed for use in fertigation
systems. They calculate the cheapest possible mix of fertilizers to get a nutrient solution that
meets the needs of a single crop. “Fertilizer Optimizer” (Jansen et al., 2013) is a mobile
application specialized for African countries. It helps to find an optimal fertilizer strategy
within a limited budget. The outcome does not include a time schedule for the fertilizer
application. Commercial farm management systems (FMS) built an own category of tools.
They are widely used and therefore have a high impact on modern farm management. They
usually include modules for whole-farm fertilization planning. The FMS “365FarmNet”
(365FarmNet GmbH) contains the “YARA Plan” (YARA GmbH & Co. KG). This instrument

proposes a fertilizer strategy based on own-company products. The user receives information
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regarding which fertilizer to use, including its quantity and timing. “NextFarming,” another
FMS, offers a module called “NextDiingeplanung” (FarmFacts GmbH). According to the
description, the tool uses linear programming to identify a preferable selection of fertilizers,
but more than this is not revealed. Input parameters and output show that the tool aims to
balance site-specific nutrient demand annually, adjusted against the previous year’s nutrient
balance, which hampers basic fertilization in advance or at the end of a rotation period. The
tool adds up the costs for fertilizer, but neither these costs nor the costs for application are
included in the optimization process. “Smart Fertilizer” (Smart Fertilizer Management) is a
commercial web application that specializes in optimizing fertilization in multiple farming
systems. Similar to the previous tool, it provides a site-specific fertilizer schedule. The
optimization mechanism and the included restrictions are not accessible to the user; thus, our
analysis is based on input and output. To our knowledge, site-specific application costs as

well as an aggregated basic fertilization within a rotation period are not adequately addressed.

4.3.3 Differentiation from existing tools
The following bullet points describe the functionality of loFarm:
+ Selection of fertilizers as per least-cost combination
« Allocation of fertilizer doses, considering growing stage and crop demands
» Dynamic input of yield expectations, market prices and site-specific parameters
» Observation period: three years in advance
» Observed nutrients: N, P, K, S, Mg and pH balancing
» Enables the aggregated use of P, K, Mg and liming within a rotation period
 Site-specific nonlinear fertilizer application costs are considered

The last two bullet points are what distinguishes loFarm from other tools. The possibility of
an aggregated basic fertilization and the consideration of application costs at the field level
are unique. On the one hand, loFarm has more open space to allocate basic nutrients during
the rotation, which generates additional optimization potential. On the other hand, application

costs are added to the target function, which influences fertilizer selection as well.

4.4 Design requirement and meta-planning

Following the typical OR problem solving process, this section collects and describes the

requirements of the loFarm optimization model in verbal form. The verbal model serves as a
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guideline for the subsequent mathematical model. To maintain usability, it is sometimes
necessary to simplify the approach. The trade-off between scientific demands and practicality

will be the subject of discussion at the corresponding position.

4.4.1 Price relationships and fertilizer information

In order to guarantee an extensive optimization potential, it is necessary to include all relevant
fertilizers, which also includes the following information: price, nutrient content, N form,
specific weight and acidification potential (appendix: Table A 4-2, Table A 4-3 and Table A
4-4). In order to guide the DSS on the expansion path, price updates for fertilizers and
products are important. We decided to ask regularly for fertilizer quotes. The price estimation

of harvest products is based on commodity futures less the transport costs to spot market.

4.4.2 \Weather

Weather is a key factor in fertilization and a lot of decisions in farming depend on weather
conditions. loFarm uses weather information to derive N mineralization and nitrate leaching
(see Section 4.4.4). Determining factors are soil temperature and the climatic water balance
(CWB). The CWB expresses the connection between rainfall and evaporation. A negative
value indicates that the evaporation is greater than the rainfall over a certain period of time.
Both parameters are constantly recorded by common weather stations. The data is available
online (Agrarmeteorologie Bayern, 2019). Site-specific weather conditions for an upcoming
month are considered by averaging values based on long term records from the closest
weather station. These average weather parameters are updated with the real values for the

previous month,

4.4.3 Legal restrictions

In the European Union, the use of fertilizers is regulated by state legislation. The German
sectoral legislation (BMEL, 2006) is supplemented by federal regulations (Wendland et al.,
2018), amended in 2016 with entry into force in 2017. There is still ongoing work in some
affected regulations. For this reason, we did not consider legal restrictions for the moment. At
any rate, loFarm is conceptualized to be of fundamental interest to farmers worldwide. In this
regard, implementing country-specific legal restrictions before using loFarm in actual practice

is unavoidable.
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4.4.4 Plant and soil

Plant needs and the soil properties are key factors for a successful fertilizer strategy.
Sustainable plant nutrition has to consider multiple nutrients, particularly N, P, K, Mg, S and
a compensation of acidification through liming. N and S are vulnerable to leaching and should
be placed close to the crop demand. On many soils, P, K, Mg and lime are suitable for
preliminary fertilization (Finck, 2007), which leads also to a difference in managing these

nutrients in actual practice.
Basic fertilizer management and pH balancing

Preliminary fertilization offers additional optimization potential, and a holistic concept has to
consider the demands of whole-crop rotation for these nutrients. The option of preliminary
fertilization requires a multi-period model. P, K and Mg demands equal the amount of
nutrients removed by the entire crop rotation, though differences in soil fertility must be
respected. The soil fertility is determined through soil testing and categorized in five levels
ranging from “Very poor” (level A) to “Very high” (level E). When determining nutrient
requirements, nutrient levels on poor soils are enriched by adding a supplement and vice
versa. This approach is intended to balance soil fertility. For details, refer to (Wendland et al.,
2018, pp. 27-31). Similar approaches can also be found in (Zorn et al., 2007, pp. 58-66). In
addition, it is good agricultural practice to forgo the optional preliminary fertilization in case
of poor soil conditions. Instead, the lacking nutrient should be applied on an annual pattern to

maintain the yield potential.

Some fertilizers cause the soil to become acidic, and this acidification has to be balanced by
adding lime, unless the soil pH is unfavorably high, anyway. Acidic fertilizers lead to
increased lime demand and thus acidification is important information in order to identify the

least-cost combinations of fertilizers.
General aspects of N fertilization

The N supply during vegetation should preferably adapt to the N uptake of the crop. To
control for that, we need to estimate the N uptake of the crop and the N dynamics of the soil.
Literature provides several models dealing with this. Typical models are “HERMES”
(Kersebaum, 1989), “DAISY” (Abrahamsen and Hansen, 2000; Hansen et al., 1991),
“WAVE” (Vanclooster et al., 1996) and “MONICA” (Nendel, 2014). Integrating these kinds
of specialized models is preferable from a scientific viewpoint. In practice, this is hampered
by the necessary input parameters. Temporal and financial expenditures for data collection

remain in conflict with conditions for a DSS of high usability (Rose et al., 2016). These
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circumstances require a pragmatic approach to estimate the N uptake and N dynamic based on

data available from the usual operating procedure in plant production.
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Figure 4-3: Cumulative N uptake of winter wheat and soil N dynamics.

(Oct | = October of seed year; Jul Il = July of harvest year; VegE = End of vegetation period; VegA = Start of
vegetation period; BBCH = Code for growing stage (Meier, 2018))

Figure 4-3 displays this approach by means of winter wheat production. Until BBCH 13
(three leaves unfolded), winter wheat is able to cover his N uptake (solid line) out of the N
depot available from the grain (Litke Entrup, 2000, p. 299). At the same time, there is usually
a big pool of residual N available in the soil (N soil = dotted line) and there is no need for
additional N fertilization. N soil is the source for N uptake and negative N soil levels are not
feasible. Furthermore, during the start of vegetation (VegA), we recognize a need for N
fertilization to fill up the minimum level of N soil. From VegA until flowering (BBCH 63), it
is necessary to hold this minimum N soil level. Doing otherwise would lead to a lack of N and
thus reduce the yields. In addition, the N soil level is also influenced by N losses (leaching =
vertical lines), N mineralization (mineralization = diagonal lines) and N fertilization
(horizontal lines). Less relevant and omitted due to their opposite effects are N deposition and

denitrification.
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Estimating the N uptake of plants

To cover the N uptakes of wheat, barley and maize, we had to summarize the findings of
Litke Entrup (2000, p. 229), Reiner and Dorre (1992, p. 91), Waldren and Flowerday (1979,
p. 396). This result in a percentage N uptake is assigned to important growing stages. To use
this information in different growing years, a dynamic assignment of growing stage and
growing month needs to be made within a season. This approach helps to fit the N uptake to a
calendrical basis and enables the model to combine fertilization measures carried out in

different crops at the same time, which may be beneficial due to reduced application costs.

To transform this percentage value into a monthly N uptake, we need to know the total
demand per season, which is ideally expressed by a crop yield response function to N. There
are many studies (for example: Grimm et al., 1987; Backman et al., 1997) dealing with this
topic, but N dynamics within the soil and local conditions such as soil quality are not
consistently observed. As a result, the emerging response functions are valid solely for the
analyzed locations and the corresponding year. To overcome this, we put crop yield in context
with the N content of the entire plant, including roots. The N content of the roots is derived
from the N content of straw (cereals) or the entire plant (silage maize) as published by
Wendland et al. (2018, pp. 77—78). With reference to Litke Entrup (2000, p. 298), we expect
that the dry matter of cereal roots equals 20% of the dry matter of grain and straw. In case of
silage maize, this value is reduced to 10%. Thus, we obtain a linear relationship between yield

and N uptake:
«  Winter wheat = 2.46 kg dt * at 86% DM
+  Winter barley = 2.30 kg dt * at 86% DM
+  Silage maize = 1.40 kg dt * at 100% DM

This linear concept of yield and nutrient demand was introduced earlier in Figure 4-2. To
exclude implausible yields, an upper limit in the form of yield expectation is necessary. This
upper limit is defined by the farmer and can be adjusted monthly. Of course, misjudgments
are a serious external factor that can negatively impact the entire system. However, farmers

can adjust their estimates at very short notice.

Now it is important to distinguish between N uptake and N fertilization. Higher yields and
thus higher N uptake require a disproportionate supply of N (compare Mitscherlich, 1909).

An increasing N fertilization favors N losses and may influence the N dynamic in the soil in
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general. To obtain a customized recommendation for N fertilization, we need to estimate the

following side effects:
» Gaseous N emissions at fertilizer application
» Transformation speed of different N Forms
* N losses by nitrate leaching
* N mineralization
Estimation of gaseous N losses after fertilizer application

Typical chemical forms of N in fertilizers are nitrate, ammonium and urea. After fertilizer
application, urea and ammonium will transform into nitrate. This process is accompanied by
gaseous N emissions in the form of ammonia. The amount of N emissions heavily depends on
environmental conditions and thus literature reports N losses on different levels (Hutchings et
al., 2019; Kreuter et al., 2014; Ni et al., 2014; Sommer and Jensen, 1994). There is a
consensus that urea is more sensitive to gaseous N emissions than ammonium. After
evaluating different references, gaseous N emissions of urea are defined at 11.5% and for
ammonium these losses are 8.5%. These parameters are easy to adapt to individual conditions

or new insights.
Estimating the transformation speed of various N forms

The duration of the transformation from urea or ammonium to nitrate is termed “N speed.” As
we know today, plants are able to use urea and ammonium directly. But the crop response is
delayed in comparison with nitrate. Fertilizers with nitrification inhibitors slow down the N
speed even further. To make sure that the crop’s N uptake is always covered by available N,
only nitrate is considered as fully available. This approach is particularly important at the start
of the growing season where low soil temperatures reduce the speed of transformation. N
speed is dependent on the original N form, soil temperature (Vilsmeier and Amberger, 1980),
soil moisture, soil pH value and the use of nitrification inhibitors (NI) (Chen et al., 2015;
Herbst et al., 2006; Irigoyen et al., 2003; Zerulla et al., 2001). Under Central European
conditions, N form, soil temperature and the use of Nls are the main drivers for N speed.
Therefore, we refer to the research of Vilsmeier and Amberger, who show the relationship
between soil temperature and N speed. An increase in soil temperature does facilitate the
transformation speed considerably. Since their findings are based on only three different soil
temperatures, we had to estimate the intermediate values. To do this, we used an OLS

regression. For the transformation speed of amides to ammonium, the best coefficient of
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determination was obtained using a logarithmic functional form (Eq. (4-7); R2=0.9987). The
transformation speed of half of the ammonium to nitrate, however, was better represented by
an exponential function (Eqg. (4-8); R2 = 0.9832):

TS =-1.292xIn(ST) +4.9142 (4-7)

Amide—— Ammonium

=-372.11x ST %% (4-8)

50% Ammonium—— Nitrate

TS represents the transformation speed in days, either for amide to ammonium or for 50% of
ammonium to nitrate depending on the soil temperature ST in degrees Celsius. Specialized
models such as DAISY (Abrahamsen and Hansen, 2000) could provide a better estimation,
but need much more input. Zerulla et al. (2001) demonstrate that NIs considerably diminish
the transformation speed from ammonium to nitrate. Low soil temperatures support the effect.
Their study compares the effect of Nls at three levels of soil temperature. Using several linear
OLS regressions, we determined for each temperature level by what factor the use of NI
reduces the transformation rate. These factors were applied to the results of Vilsmeier and
Amberger, resulting in Eq. (4-9):

=856.09x ST %7 (4-9)

50% Ammonium—-N Nitate

Based on this information, loFarm selects appropriate N fertilizers and separates N
fertilization into reasonable doses. Special annual conditions such as a low soil temperatures

or a rapid crop growth will be answered with an adjusted N fertilization.
Estimation of nitrate leaching

The relationship between CWB (see Section 4.4.2) and nitrate leaching is often described in
studies on nitrate leaching (compare Buchert et al. (2001) and Anger et al. (2002)). In a
monthly comparison of CWB and nitrate leaching, e.g., in Anger et al. (2002, p. 644), it is

obvious that in phases with low CWB, nitrate leaching is also reduced or stops.

According to a worldwide meta-study by Zhou and Butterbach-Bahl (2014), the average
leaching losses of maize are 23% in relation to the N fertilization applied and 17% for wheat.
Biichert et al. (2001) showed the nitrate leaching for maize in a study from Schleswig
Holstein. Depending on the intensity of the fertilization, leaching ranged from 16% to 28% in
terms of N applied. In our view, a corridor of 0% to 30% of the leaching losses can be
observed. We use this corridor in conjunction with monthly values for CWB to estimate the

nitrate losses over time based on the following assumptions: A CWB less than or equal to —80
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means there is no leaching. Leaching increases linearly as CWB increases. The upper limit of
the corridor is reached at a CWB greater or equal to 130, which means that 30% of the soil N
is lost due to leaching within a one-month period. Despite clear correlations, we are currently
unable to prove our assumptions. However, several arguments have led us to apply this
scheme for estimating nitrate leaching: (i) The reduction of input to CWB increases usability;
(if) Under Central European conditions, only a small part of the leaching takes place during

vegetation; (iii) Inaccuracies are compensated by soil testing twice a year.
Estimation of N mineralization

Mineralization is affected by the organic N pool in the soil, soil pH, soil temperature and
moisture (Heumann et al., 2013, p. 399). The cultivated crop itself has also an impact (Seith,
2015). We expect that the monthly rate of N mineralization can be estimated thru: (i) a
sitespecific mineralization potential, (ii) a crop-specific mineralization factor and (iii) soil
temperature. We assume that N mineralization is stopped at a soil temperature equal to or
lower than zero degrees Celsius. Following vant Hoffs rule, mineralization is doubled by an

increase in soil temperature of 10 Kelvin:

R [SéO—KSTJ
_|R 10
© (RJ 10

Q = Reaction speed factor corresponding to a temperature increase of 10 Kelvin; R, = Reaction speed at soil

temperature ST,

To avoid division by zero, R; has to be 1 at a soil temperature of 0° C. To double
mineralization by a temperature increase of 10 Kelvin, Q has to be 2. Knowing these
parameters, we are able to restructure the formula toward R;:

&ZJ?J (4-11)

Inserting a soil temperature (ST,) of 0° C would result in an R, value of 1. But, as already
mentioned, we assume that N mineralization stops at this point. Under Central European
conditions, an increase in soil temperature is often linked to a decrease in soil moisture. Both
a lack of water and a transgression of the biological temperature optimum hamper further

facilitation of N mineralization. To cover this, R, needs to be manipulated as follows:
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if :(R,21)A(R, <3) >R, =R, -1
elseif :R, >3 >R, =2 (4-12)
else:R, =0

R, is 0 for a soil temperature equal to or lower than 0° C. With increasing soil temperature,
the mineralization rate speeds up, reaching its upper limit for R,, which is 2 at a soil
temperature of about 16° C. Based on average soil temperatures, we calculate a site-specific
value for R, every month. The sum of all R, values over a year is equal to 100%, which
enables us to interpret the monthly R, values as a percentage value. Multiplying (i) the annual
mineralization potential in kg per hectare with (ii) the crop-specific N mineralization factor
and with (iii) the percentage value of R,, we obtain an estimate for the monthly N
mineralization for a specific place underneath a specific crop.

Calibrating the N dynamics

The above system reproduces the N dynamics on a monthly scale. Estimates for N uptake, N
losses, N mineralization and N speed are used to calculate the N soil level for each month.
The N fertilization is the only external variable in this system. It is also the only variable with
which we can directly influence the relationships shown in Figure 4-3. N fertilization controls
the N soil level and thus the availability of N for plant nutrition. Of course, the reliability of
this approach suffers from a lot of estimates and assumptions. Therefore, the calculated N soil
level is updated based on soil testing results. Soil testing takes place well in advance of the
first N fertilization and post-harvest. This approach minimizes possible shortcomings to an

acceptable level, which is a good trade-off between usability and accuracy.

Calibration should be carried out using an established N fertilizer system before using this
system on a farm for the first time. Our empirical example relates to Bavaria, so we use the
official system (Wendland et al., 2018, pp. 26-30) established there to calibrate loFarm.
Calibration is necessary to adjust the site-specific N mineralization potential as well as the
mineralization factors for different crops relative to winter barley. Due to this calibration, the
level of total N fertilization is well adapted to the reference system. We use the OLS method
to calibrate the system. The residual values are developed by comparing the suggested
fertilizer level of loFarm and the reference system. The sum of these error squares is
minimized by changing the calibration factors. After an initial calibration, loFarm is ready to

use for the corresponding farm.
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Estimating the S demand

The S demand for crops is usually covered by sulfate, which is very susceptible to leaching. S
should therefore be applied during the vegetation period and parallel to the main N uptake. To
ensure this, a percentage link between total N uptake and S demand, in combination with a
suitable time window for a useful S fertilization, is needed. The practical recommendation for
S fertilization is around 20 kg per hectare for the crops mentioned. With a ratio of 1 to 10
between S fertilization and N uptake, our crops are allocated around 20 kg of S per hectare
per year. To satisfy the needs of other crops, this ratio needs to be crop-specific and

adjustable.

4.4.5 Further restrictions

The feasibility of model decisions may be hampered due to unforeseen external effects.
Affected restrictions may significantly limit the optimization potential. Example: A fertilizer
application scheduled for March could fail due to the soil’s insufficient traffic-carrying ability
or a labor shortage. The omitted fertilization in March mathematically points to the fact that
the appropriate restriction is not fulfilled as expected. The consequence would possibly be a
drastic decline in the modeled yield expectation. But a temporary lack of nutrients does not
immediately reduce the yield potential. Plants are able to compensate for a temporary
shortage and missing nutrients are absorbed at a later point. To achieve this flexibility within
loFarm, it is necessary to exclude certain former restrictions, for example, the monthly N
restriction. The N demand for March is no longer important in April. Instead, higher-ranking
restrictions ensure that the total nutrient demands within a growing season (N, S) or an entire
rotation (P, K, Mg) are satisfied. Temporary shortages in the past are then covered by an
additional supply of nutrients. This procedure is also important to enable a subsequent
increase in yield expectations, for example, due to good weather conditions. Because the
farmer regularly updates his yield expectations, the system remains subject to external

control.

Today’s fertilizer spreaders control the application rate by volume flow rate and driving
speed. The maximum driving speed and the minimum diameter of the dosing opening creates

a minimum application rate per hectare. This limit was set to 80 kg ha *.

Optional restrictions (not yet implemented): (i) Storage capacity and ongoing availability of
organic fertilizers; (ii) Pre-purchase and fertilizer storage (this automatically includes a hedge
on the price development of fertilizers and would therefore lead to a bias in the economic

assessment of loFarm).
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4.5 Model development

The previously described verbal model needs to be specified in the form of a formal
optimization model. In this section, we identify appropriate optimization methods and
software, followed by a detailed presentation of the loFarm model.

4.5.1 ldentifying the appropriate methods and software for optimization

The scope and complexity of this problem exceed the limits for an informal optimization
strategy. The structure of the problem is explicit and formal. In this case, it is useful to choose
between methods based on mathematical or heuristic programming. Heuristics are often
powerful instruments for finding acceptable solutions to huge problems, but they are not able
to guarantee an optimum outcome. Mathematical programming is preferred if an optimum
solution is desired. Babcock (1984), for example, used an LP model to solve a fertilizer
blending problem. Minguez et al. (1988) used LP as part of a Goal Programming model to
optimize fertilizer use on sugar beets in Spain. The described fertilizing problem also contains
integer variables and nonlinear terms, which makes it a mixed integer nonlinear problem
(MINLP). MINLP models are extremely difficult to solve. It is known that the applied solver
exerts a tremendous influence on performance and the optimality of the solution. The GAMS
modeling language provides the opportunity for switching among a large number of solvers.
Therefore, GAMS is an excellent instrument in MINLP modeling. An early stage
performance evaluation among all MINLP solvers within GAMS (Version 24.8.1) revealed
that ANTIGONE is the preferred solver for loFarm. The solver choice changed during the

modeling process. The latest version of loFarm is solved using SCIP.

4.5.2 Model flow

The flowchart in Figure 4-4 is intended to provide an initial overview of the loFarm model
structure. In parallel, it becomes visible which exogenous inputs feed the model. Since the
model runs in parallel to actual farming processes, these exogenous inputs are constantly
updated. Real-world observations successively replace the assumptions made at the beginning
of a multi-year planning period (crop rotation cycle). With each run of loFarm, the workflow
shown in Figure 4-4 is passed through. This procedure usually happens once a month during
the growth period. The exogenous parameters are also updated at this time interval. For
example, as soon as crop yields are known, they are fixed. At the same time, a system of slack
variables ensures that violations of affected restrictions (including the production function)

due to differences between modeled yields and observed yields are bypassed. Fertilization
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measures that were suggested by loFarm and have already been carried out in practice are also
fixed and represent exogenous inputs for the model from this point on.

To obtain a solution close to optimality, it was necessary to divide the solving procedure into
two stages. An overview of this is provided in Figure 4-4. Stage | is mainly a relaxation of the
original MINLP problem. All integer conditions are ignored, and the application costs were
defined in a simplified way. The results of stage | serve as initial variable values at the
beginning of stage Il. Fertilizers not used during the actual month and the last two months in
stage | are no longer available in stage Il. This reduction in model size enables us to introduce
semiconditional variables in stage 11 for the current decision month. The model is still able to
respond to the additional integer conditions by selecting from a number of fertilizers that have
been beneficial in the past. This workaround is necessary to find solutions close to optimality,

although we do lose some optimization potential.

In addition to the two-stage design, the model is additionally divided into a static and dynamic
deterministic model. A lot of parameters are uncertain at the start of a planning horizon.
Weather, prices, yield expectations and all dependent parameters are affected. Instead of real
values we use expected values, which changes over time, if more and more of these values
become known. At the same time, decisions regarding variables in the past are fixed, which
steadily reduces model size. To achieve this, we save the model results in an EXCEL

document using the GAMS data exchange tools.
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4.5.3 Stage I: Relaxed NLP model

The following section describes the mathematical structure of the loFarm model. It should be
noted that the model is initially presented in simplified form in the main part. Only the most
important restrictions are picked out for the sake of easier comprehensibility. Indices are not
listed in this section, either. Variables and parameters that do not have indices even in the full
model are highlighted in bold in the simplified model. Variables are shown in lower-case
letters and external parameters in upper-case letters (see appendix Table A 4-1 for an
overview of acronyms). The role of restrictions not explicitly shown is described under the
keyword “secondary restrictions.” In addition to the simplified presentation of the model,
there are consistent cross-references to the detailed restrictions in the appendix, where the

complete mathematical structure can be reviewed.
Target function

Eqg. (4-13) contains the objective function. loFarm is designed as a maximization problem and
therefore the total objective function value obj is maximized. It depends on the total revenue
of the plant production typ minus the total expenditure for fertilizer tfc and the necessary

application costs tsc:

obj = typ —tfc —tsc (4-13)

The three main variables are influenced not only by factors external to the model but also to a
large extent by the quantity, type and timing of the fertilizers applied. The interaction of
quantity, type and time of fertilization is called fertilizer strategy. It is expressed in the fu
variable. The value of this variable also indicates the solution path for cost-optimal
fertilization and is thus decisive for the user. There is a central relationship between fu and the

three main variables. This relationship will be made clear in the following sections.
Relationship between total revenue and fertilizer strategy

Of course, the chosen fertilizer strategy fu exerts an influence on crop vyields. Therefore, Eq.
(4-14) (alternatively appendix, Eq. (4-29)), first shows the composition of typ, the total
revenue of plant production within the period under consideration. The total revenue typ is
composed of the sum product of ty (crop yield) and PPH (price or expected price of the crop):

typ =" [(tyx PPH) (4-14)
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The annual yield of the individual crop ty is also determined within the model (Eq.(4-15);
alternatively appendix Eq. (4-30)). It is composed of the modeled yield per hectare y, the

slack variable yslk and the crop-specific area under cultivation CRP:
ty =Y [(y+yslk) xCRP] (4-15)

Secondary restrictions: The slack variable yslk is needed to compensate for differences
between the modeled yield per hectare y and the real yield YPH. In reality, there will always
be deviations at this point. It is therefore important to be able to replace the modeled yield y
(endogenous) with the real yield YPH (exogenous). If the real yield is higher than the modeled
yield, restrictions are violated afterward, and the model becomes infeasible. The slack system
is only used if the real yield is already known. In this case, it eliminates possible violations,
and the model remains feasible. In parallel, nutrient requirements are adjusted to the real
nutrient removal. Further information on the slack system can be found in the appendix (Egs.
(4-33), (4-34) and (4-36)). Eq. (4-16) describes the input—output relationship of nutrients and
yield, forming the production function (for more details see appendix Egs. (4-31) and (4-32)).
This production function defines the modeled yield per hectare y as a linear function between
nutrient input u [kg ha*a*] and nutrient removal UEXT [kg dt™]. The restriction is also
constructed as an inequality. Thus, y can remain below the farmer's yield expectation if the
marginal costs are higher than the marginal benefit. Since this restriction is valid for several
nutrients at the same time, y is also restricted if only one nutrient is deficient:

ysﬁ (4-16)
Secondary restrictions: Other methods are used to determine the S nutrient input. The S
requirement is proportionally oriented to the N requirement that is determined in parallel
(appendix Eq. (4-35)). As already mentioned, the modeled yield y is limited by the farmer’s
yield expectation YEX (appendix Eq. (4-32)). The already introduced system of slack
variables enables the real yield YPH to excide this upper limit. YEX can be continuously
adjusted as an external parameter, which allows the model to react dynamically to changes in
yield expectations. As soon as the real yield YPH is known, this yield is taken over in the
parameter YEX. In order to take into account the soil content of P, K and Mg, the nutrient
input u is again corrected in terms of quantity and application period, if necessary. (appendix
Eqg. (4-39)). Parallel to the modeled vyield per hectare y, the necessary nutrient input u in

[kg ha '] was determined in Eq. (4-16). In order to include the different sizes of field pieces in
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the further process, u is to be converted into the new variable w (Eq.(4-17)). For this purpose,
u is multiplied by the respective cultivation area (CRP), so that variable w now indicates the

nutrient requirement in kg per field piece:

W>UxCRP (4-17)

Eq. (4-17) (alternatively appendix, Eq. (4-43)) refers only to the nutrients N and S.
Modification is necessary for nutrients such as P, K and Mg, which can be balanced, since in
this case, fertilization is possible within the framework of crop rotation (Eg. (4-18);
alternatively appendix Eq. (4-37)). The variable w must be summarized for the period of crop
rotation. With the parameters AYN and MYN the need of the balanceable nutrients is adapted
to the soil content (compare Section 4.4.4). Altogether the equation ensures that within a crop
rotation, the entire need of balanceable nutrients is covered. Thus, an aggregated fertilization

of the balanceable nutrients is also possible:
D (W)= {[(u+uslk + AYN) x MYN]xCRP} (4-18)

The variable uslk can be traced back to the same slack system as in yield calculation, i.e., it
serves to balance the nutrient requirements according to the modeled yield and the nutrient
requirements according to the actual yield (appendix Egs. (4-33), (4-34), (4-36)). This system
gives us the flexibility to update the model post-harvest with real yields without violating

prior constraints.

Egs. (4-17) and (4-18) define the requirements of the nutrients N and S, or P, K and Mg per
field and year in the variable w. In Eq. (4-19) (alternatively appendix Eq. (4-38)), this
requirement is covered by selecting a fertilizer strategy fu. Mathematically, this is done by
multiplying and summing up fu with the nutrient content of the fertilizer SUP:

w=>"(fuxSUP) (4-19)

Secondary restrictions are linked to the use of fertilizers: maximum available quantities of
organic fertilizers (appendix Eq. (4-42)), reasonable timeframes for using different fertilizers
(appendix Egs. (4-39), (4-44), (4-50)) and requirements for compensating the lime-consuming
effect (appendix Eqgs. (4-40), (4-41)).

This restriction system is not yet sufficient for a plant-appropriate supply of N. In addition to
the total N requirement, its distribution during the year must also be taken into account. The

variable w is distributed over a period of months by multiplying it by the factor NDM, which
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results in variable wm (Egs. (4-20)). NDM indicates on a monthly basis what proportion of

the total N demand a crop typically requires:

wm > wx NDM (4-20)

Of course, it would not be appropriate to apply N once a month, which is why the restriction
is also implemented as an inequality. The possibility of combining the N fertilization in
several applications as well as integrating the natural N dynamics of the soil complicates the
situation considerably. Eq. (4-20) is therefore replaced by Eq. (4-45). Secondary restrictions:
Parallel to Eq. (4-20) or (4-45), it is ensured that a site-specific soil supply of N in the form of
nitrate may not fall below a certain level (appendix Eq. (4-46)). For this purpose, the soil
nitrate supply must be estimated within the model (appendix Eq. (4-48)). This estimated value
is adjusted to the actual measured value at the time of the soil testing by using another slack
system (appendix Egs. (4-49), (4-47)).

Considering Eq. (4-21) (alternatively appendix Eg. (4-50)), the N requirement wm during the
year is now ensured by selecting a suitable fertilizer strategy fu, wherein the fertilizers are
multiplied by their transformation speed NSM and totaled. The binary parameter TWN
excludes timeframes in which N fertilization is not useful. The satisfaction of wm takes place

simultaneously while satisfying the previously mentioned requirements for other nutrients:

wm = "[(fux NSM)xTWN] (4-21)

Relationship between total expenditures for fertilizers and fertilizer strategy

The total expenditure of the fertilizers used, referred to as tfc, plays a central role in the
optimal fertilizer strategy. They correspond to the sum product of the fertilizer input fu and

the monthly updated fertilizer price PF (Eq. (4-22); alternatively appendix Eq. (4-54)):

tic=> (fuxPF) (4-22)

Relationship between total costs of fertilizer application and fertilizer strategy

In order to consider different costs when applying solid and liquid fertilizers, a distinction is
made between the application costs of solid (spdc) and liquid fertilizers (spyc). The total sum
of both variables then represents the total cost of fertilizer application tsc (Eq. (4-23);

alternatively, appendix Eq. (4-55)):

tsc = (spdc) + > (spyc) (4-23)
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A detailed consideration of the application costs leads to a disproportionately high
computational effort for loFarm. Therefore, in stage | of loFarm, a simplified approach to
application costs is chosen (Egs. (4-24), (4-25); alternatively appendix Egs. (4-56), (4-57)).
The variables spdc and spyc represent the application costs per fertilization measure. SLS
describes the cost per fill (spd, spy) caused by setup time as well as loading and spreading
fertilizer. Transport costs are added in the second part of the equation. The field-yard distance
C [min] is converted into hours. A return trip is calculated and charged with the variable costs
for the tractor VT and the personnel costs WE for each filling. Integrating the field-yard

distance C ensures that a fertilizer strategy adapted to the transport distance is proposed:

spdc = SLS xspd + > [spd xC x2x (VT +WE)] (4-24)
spyc = SLS xsyd + > [syd xC x2x (VT +WE)] (4-25)

Secondary restrictions: The number of fillings spd or spy depends on the density of the
fertilizer and the tank volume (appendix Egs. (4-58), (4-59)).

4.5.4 Stage Il: Final MINLP model

The previous NLP model becomes an MINLP model during the transition to stage Il. For this
purpose, Eqgs. (4-24) and (4-25) (respectively appendix (4-56) and (4-57)) are replaced.
Instead of the simplified presentation of the application costs, the individual cost components
are integrated in detail, including setup time, loading, field work and transport. The last item
depends largely on the farm infrastructure and is difficult to determine. Troster et al. (2019)
developed an approach for integrating application costs comprehensively and individually for
each farm. This approach is adapted for use in mathematical models. A description is not
given here, but reference is instead made to the original publication. The corresponding
restrictions can be found in the appendix (Eqgs. (4-73) to (4-79)). Secondary restrictions: This
method requires the total area-per-fertilization measure in order to determine the application
costs, which uses two auxiliary restrictions (appendix Egs. (4-52), (4-53)) to determine them.
Another aspect that affects the transport costs is the number of fillings per field piece
(appendix Eq. (4-72)). In addition, mainly for mathematical reasons, binary information is
needed to indicate whether fertilization is taking place (appendix Egs. (4-70), (4-71)).

Furthermore, stage Il of loFarm ensures that the fertilizer strategy is practically feasible in
relation to the application rates. For this purpose, the variable fu is divided by the

corresponding area (CRP) (appendix (4-51)), which gives the variable sfu, which indicates the
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fertilizer use in dt per hectare. In case a fertilizer is used, sfu cannot be zero meaning that we
can limit sfu using the binary variable bin and an externally defined lower, (LO) or upper limit
(UP). This is done in Egs. (4-26) and (4-27) (alternatively appendix Egs. (4-68), (4-69)). sfu
hereby becomes a semiconditional variable that can take either the value zero or values
between LO and UP (mineral fertilizers 0.8 to 15 dt ha™*; lime 3 to 50 dt ha*; organic
fertilizers 12.5 to 50 t ha ):

sfu >binx LO (4-26)

sfu < binxUP (4-27)

4.6 Performance evaluation

We created a hypothetical example to evaluate the economic performance of loFarm.
Interested readers will find this “fertilizer quiz” as supplementary material to this article. An
introductory video explains task and rules in detail. The following bullet points outline the

“fertilizer quiz” in brief:
« Theaim is to find a cost-effective fertilizer strategy
» Applications costs are also exemplified and considered
» The rotation consists of barley, wheat and maize (50 ha each)
» The planning period is three years in advance
+ Seasonal and overall nutrient demands are given
« Different single and compound fertilizers are available
« Full price and weather information within the planning period are given

The quiz was distributed via email and social media. A large part of the reach was achieved
via mailing lists of alumni associations of higher agricultural education institutions and
universities. In addition to the fertilizer strategy, the participants were asked for the following
information: (i) time needed to complete the quiz; (ii) financial self-assessment of their own
solution; (iii) level of experience. Level of experience was defined as follows: Expert =
Person possessing either scientific experience in plant nutrition or economic optimization
models; Farmer = Person with at least five years of professional experience in agriculture and
plant nutrition; Student = Student with advanced knowledge in economic optimization models

and plant nutrition; “Others” (not included). The results of this experiment are displayed in
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Table 4-1. This experiment only allows a differentiation of fertilization costs. The benchmark
for the financial evaluation is the cost of loFarm's fertilizer strategy. Due to time and cost
constraints, the different fertilization strategies of the participants were not tested in the field.
Potential differences in yield or quality are unobserved. The fertilization requirements were
identical for loFarm and the participants, which means: identical specifications for nutrient
requirements, uniform time windows for fertilization measures, same minimum application
rates per hectare, etc. Due to these clear specifications, the potential for significant yield
differences is very low. Nevertheless, in order to be able to make valid statements on potential
yield or quality differences, loFarm was compared with farm-usual fertilization strategies in a
separate field trial (Troster and Sauer, 2021a). For those who want to try it on their own, the

quiz is available online®. The fertilizer strategy of loFarm is in the appendix Table A 4-5.

On average, the valid participants spent €340 ha ‘a* for fertilizer and application. The
solution for loFarm performed significantly better at €274 ha'a’. For the financial
evaluation, we compared the participants’ results with the benchmark set by loFarm; see
Table 4-1, “Cost difference” column. The self-assessment is presented in the last column. The
participants had to estimate the amount per hectare and year in which their solution falls short
compared to IoFarm’s solution. To structure this, the following options were given: 0-5; 5—
15; 15-30; 30-60; 60-120 or>120 € ha'a . Compared to the average of the valid
participants, loFarm achieved a cost advantage of €66 ha *a . The self-assessment of the
participants also shows that they see potential in optimizing their fertilizer strategy. In direct
comparison, however, it can be seen that the financial optimization potential is even
underestimated. Although, our “fertilizer quiz” is simplified and not comparable to real
conditions in fertilizer management with lots of fields and crops, it was difficult and time
consuming for the participants. On average, they needed 81 min to take the quiz. Due to
fluctuating prices and yield expectations, a farmer needs to repeat this process several times
within a single planning period. Projecting this information onto real-world farm conditions,
fertilizer management is a very time-consuming job. Outsourcing this job to a computer

program is therefore a real timesaver.

? https://drive.google.com/file/d/14rBHNKKDuBg8oyeeVUXuek2id1B9z Dw/view?usp=sharing
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Table 4-1: Results of the fertilizer quiz.

Time Cost Self-
needed difference assessment
[min] [€ ha™!] [€ ha ]
Min 30.0 20.8 Min 5-15
Expert Avg 83.8 57.4 Mod 5-15
n=4+1* Max 150.0 94.3 Max 15-30
Sd 52.4 26.6
Min 30.0 10.0 Min 5-15
Farmer Avg 76.9 64.0 Mod 30-60
n=18+1* Max 180.0 127.6 Max 60-120
Sd 37.7 27.5
Min 45.0 45.4 Min 5-15
Student Avg 90.8 76.6 Mod 30-60
n=6+1* Max 230.0 113.5 Max 60-120
Sd 63.9 23.8
Min 30.0 10.0 Min 5-15
Total Avg 80.9 65.8 Mod 30-60
n=28+3* Max 230.0 127.6 Max 60-120
Sd 47.0 27.3

Remarks: “Cost difference in € ha™™ compares the participants solution with the one of IoFarm. “Self-
assessment”: The participants had to evaluate their solution in comparison to IoFarm’s using a prescribed scale.
Min = Minimum, Avg = Average, Max = Maximum, Sd = Standard deviation, Mod = Modus. *) Invalid

solutions.

4.7 Discussion

An experiment was used to evaluate loFarm’s performance. The main people involved were
experienced farmers and agricultural students with experience in the field of mathematical
optimization as well as some experts. This selection may entail a selection bias. However, it is
to be expected that the participants are by and large tough opponents due to their education
and experience. Unfortunately, the desired participation was not achieved, which is probably
due to the enormous amount of time required and the lack of incentive for the participants.
Even in the case of a lucrative incentive, there is a risk that participants will solve the quiz
without actually paying attention to minimizing fertilization costs. In order to include just
motivated participants, we decided not to offer any material incentives. The fertilizer quiz is
available online as additional material to give the reader the option of testing loFarm’s

performance in a self-experiment.
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The relevance and feasibility of the suggested fertilization strategies depend on many factors.
loFarm is designed to be very flexible and can accept changes that a farmer makes in
fertilization strategy. In addition, the fertilizer strategy can be easily adapted to individual
farm requirements via additional restrictions, such as the consideration of labor capacities.
Due to identical requirements in our experiment, we may assume an equivalent relevance and
feasibility of all fertilization strategies. The results of the fertilizer quiz are impressive and
show the financial optimization potential that can be achieved with loFarm in actual practice.
For a 150 ha farm without organic fertilizers, the costs for fertilizer and application could be
reduced by 19% in comparison. This proportion remains largely stable even with increasing
farm area, so that larger farms benefit from it much more in absolute terms than smaller
farms. As a rule, organic fertilizers are applied on the farm’s own land. Organic fertilizers are
natural compound fertilizers. High percentages per hectare reduce the need for mineral
fertilizers or, in extreme cases, even make them obsolete. Therefore, the potential for
optimization diminishes as the proportion of organic fertilization in the total fertilizer
application increases. Thus, farms with a large area of land without in-house organic
fertilizers benefit most. These estimations can also be made for saving management time in
fertilization planning. No information is available for directly comparing the financial and
temporal effects with other DSS mentioned in literature. Thus, none of the cited articles
(Jansen et al., 2013; Bueno-Delgado et al., 2016; Pagan et al., 2015; Minguez et al., 1988;
Babcock, 1984) examine the extent to which costs can be saved by applying the respective
optimization tools compared to a standard operating solution. Among the commercial
providers of software-based solutions, only the “Smart Fertilizer” website contains statements
on this topic, where they mention cost savings of 60% and an increase in income of 40%.
However, no proof of this is provided. Sensor-based measures for optimizing fertilization
were also mentioned at the beginning of this article. The manufacturers of these systems
expect profit increases of €20 to €30 ha* by improving the N efficiency. Evangelou et al.
(2020) even show in their field trial for N fertilization in maize a savings potential of €33 to
€92 ha*. However, sensor- based systems are not in competition with loFarm but could be

used in parallel.

Another point of discussion is the way in which biological, chemical and agronomic processes
have been taken into account. Here, numerous simplifications were accepted during the model
development (see Section 4.4). We decided that a field trial was indispensable in order to
determine potential influences on yield and quality of harvested products. This field trial was

conducted between 2015 and 2018 (see Troster and Sauer, 2021a). In addition, integrating and
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testing other ways of determining fertilization requirements in loFarm should be considered in
the future: combination with site-specific fertilization approaches based on sensors, maps or

satellites would be promising.

loFarm is a mathematical optimization model in which the nutrient requirements are explicitly
specified. In practice, it can be observed that the nutrient requirements of a crop are rarely
satisfied exactly to 100% without direct effects on yield or quality. This observation is taken
into account in less explicit approaches such as goal programming. Minguez et al. (1988) used
goal programming for a similar optimization problem in fertilizing sugar beets. Their scope
only referred to a single crop year. This approach should be viewed rather critically when
considering a period of several years. There is the risk that nutrients could be dosed below the
actual requirement level several years in a row. loFarm leverages the advantages of goal
programming solely for allocating basic nutrients. Fertilization within the framework of crop

rotation is permitted provided that the soil is adequately supplied with nutrients.

The structure as a mathematical optimization model with integer variables and nonlinear
conditions leads to the fact that loFarm places high demands on computing capacity.
Compared to alternative heuristic approaches, however, the advantage is that the optimality of
a solution can be judged by the gap in the potential optimum. For the application of loFarm
under practical conditions with more than three crops and numerous field plots, it has to be
checked whether heuristic approaches can possibly lead to better results in terms of cost

savings or computing power.

4.8 Conclusions

At approximately €66 ha *a*, the saving potential loFarm obtains turns out to be surprisingly
high when comparing the average participant in the fertilizer quiz. At €10 ha ‘a™, even the
best individual participant lags behind the loFarm result. In addition to the financial
advantage, valuable management time can be saved, since fertilizer selection can be
outsourced. These results highlight the benefits of this type of a DSS for farmers and
consultants. The first version of this type of optimization tool for individual farms has been
successfully developed and fills the gap in the area of these management tools. loFarm is
primarily focused on profit maximization, which is often associated with negative
environmental impacts. However, loFarm draws part of its optimization potential from a
fertilizer strategy that is as efficient and resource-saving as possible and thus a considerable

contribution to sustainability is achieved.
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We published a field trial of several years to show the influence on yield and quality in
comparison to common fertilizer strategies (Troster and Sauer, 2021a). In the future, we want
to use loFarm to answer further questions, such as, under which conditions is using compound
fertilizer economically reasonable? How does the fertilizer strategy change in the case of a
very homogeneous or very heterogeneous supply of the soil with basic nutrients? How does
the fertilizer strategy change if the overall target function is used to optimize the greenhouse
gas balance? These questions are relevant for the fertilizer industry, policy makers and for

society as a whole.
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Table A 4-1: Overview of model acronyms.

Sets

cr Crop swg Specific weight

f Field t Time in years

fz Fertilizer tm Time in month

nu {N,P,05,K,0,Mg0,S,Ca0} | ttm Alias of set tm

Subset of (Set)

afz (fz) Min. fertilizer without lime | mfz (fz) Mineral fertilizer

bns (nu) {N, P,0s, K,O MgO} mfz2 (mfz) mfz2 = mfz#{AHL1zu3}
bnu (nu) { P,0s, K,0 MgO} ofz (fz) Organic fertilizer

Ifz (fz) Lime fertilizer sfz (fz) N fertilizers; soil active
lgfz (fz) Liquid leaf fertilizer

Variables

bin° tmcr fz.f Decision on fu {0/1} spdha” . tmmiz Spreader fillings per hectare

fu’ ttm,cr.fz,f

hf+ t,tm,mfz

hﬁ+ t,tm,mfz,cr.f
nfN" ¢ ¢ amcr
nso* ft,tm,cr,nu
obj

sslk f,t.tm,cr

sfu® t,tm,cr.fz,f
sfu0+ t,tm,cr,fz,f
snm” fttm,cr
SNN ¢ ttm,cr

Spd+ t,tm,mfz
SdeJr t,tm,mfz
SpdC+ t,tm,mfz
SpdCFF+ t,tm,mfz
SPACFW™ ¢ tm,mz
SpdCLT+ t,tm,mfz
SpdCSTJ{t,tm,mfz
spdcVC™ ¢ mmtz
SpdCYF+ t,tm,mfz

Fertilizer usage

Acreage per measure
Acreage per measure &field
N fertilization as nitrate
Nitrate spillover

Obijective value

Slack var. for soil-nitrate
Specific fertilizer usage
Binary indicator of sfu

Soil nitrate minimum
Soil-nitrogen as nitrate
Spreader loads

Binary indicator of spd
Spread costs

Cost of field to field trips 11
Costs of fieldwork stage I
Costs of load time stage Il
Costs of setup time stage |1
Costs of spreader stage Il
Costs of farm field trips I

spy+ t,tm, lgfz
spy0+ t,tm,lgfz
SPYC” tim.iqfz
SPYCFF" ¢ tm.iqfz
SPYCFW™ tm,1qfz
SPYCLT ttmqtz
SPYCST tim.igfz
spYCVC tmiq
SPYCYF" tim,iqz
spyha+ ttm,lqfz
tfc*

tsc

'[yJr crt

typ

u tf.cr,nu

uslk tf,cr,nu

w* f.t.cr,nu

wm”* f,t,tm, ttm,cr,nu
y+ tf.cr

ySIk tfer

Sprayer loads

Binary indicator of spy
Spray costs

Cost of field to field trips 11
Costs of fieldwork stage Il
Costs of load time stage Il
Costs of setup time stage |1
Costs of sprayer stage Il
Costs of farm field trips Il
Sprayer fillings per hectare
Total fertilizer costs

Total spread and spray costs
Total yield

Total crop revenue
Specific nutrient demand
Nutrient demand slack var.
Crop nutrient demand
Nitrate demand per month
Modeled yield

Slack var. for yield

Remarks: A superscript + indicates a positive variable; a superscript b indicates a binary parameter or variable.

Table A 4-1 is continued on next page
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Table A 4-1: Overview of model acronyms (continued).

Parameter

AYN ¢y Addition to basic nutrients | SYN® ¢ Timeframe S use

BFF ¢ pnu Basic fertilization factor TF Time to reach all fields

Cr Farm-field distance TFA Total farm area

CRP i Cropping plan TLISTtm Serial number for t and tm
HA ¢ Plot size for each field TSTAMP Current time stamp for t, tm
LO ¢, Lower boundary for sfu TT Share of turning & lost time
LT Loading time per load TWBF® 1o Timeframe: basic fert. use
LYNP ¢4 Lime usage yes/no TWBFF® in.or TWBF + low soil fertility
MSNL Minimum soil nitrate level | TWLA® ¢ Timeframe: lime use

MYN ¢ty Factor on basic nutrients TWLNP lqfz,tm.cr Timeframe: liquid N use
NDM ¢ tm.cr Monthly plant nitrate need | TWN® tmcrt Timeframe: Nitrogen use
NL ¢ tm Nitrate leach in percentage | TWOF® i Timeframe: organic fert.
NMOB ¢t m Natural nitrate mobilization | TWSN® e Timeframe: solid N fert.
NSM ¢ ttm t.tm Nitrate supply monthly UEXT qnuer Nutrient extraction

OFA 4.1 Organic fertilizer amount ULFZ it Use of lime in past 3 mos.
PEF ttmcrfzf Fixed values for sfu ULQFZ; tm iqf2 Use of Igzf in past 3 months
PF ttm Price of fertilizers UMFZ; im m: Use of mfz in past 3 months
PPH ¢+ Crop price UP¢, Upper bound for sfu

Q Spreader/sprayer volume VEG® Start of vegetation

SABS fm Soil NH," in spring VL Variable cost: load vehicle
SAPH ¢t m Soil NH," post-harvest VS Variable cost: spreader
SNBS ¢ tm * Soil nitrate in spring VT Variable cost: tractor

SNPH ¢ tm Soil nitrate post-harvest WE Wage entitlement

SLS Cost for: setup+load+spread | WS Working speed in field

ST Setup time ww Working width

SUP 2y Nutrient supply of fertilizer | YEX ¢ ¢ Yield expectation

SW mtz,swg Specific weight of fertilizer | YPH ¢¢cr Yield post-harvest

Remarks: A superscript + indicates a positive variable; a superscript b indicates a binary parameter or variable

Equations Stage |

For Eq. (4-30) applies: As long as YPHjs ¢ is unknown, yslk; - = 0.

obj =typ —tfc —tsc

typ = Zcr,t (tycr,t X PPHCI’,t)

tycr,t = Zf (( yt,f ,cr + ySIkt,f ,cr)XCR Pf ,t,cr) ‘V’Cl’,t

(4-28)

(4-29)

(4-30)
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Y, o < Morerons i ¢ or bns (4-31)
b UEXTbns,cr Y ,
yt,f,cr SYEXct,t Vt’ f’Cr (4'32)
USIkt f,cr,bns
yslk, ; ., =————— V¢, f,cr,bns (4-33)
- UEXTbns,cr

Eq. (4-33) only applies if YPH;t¢ > 0.
ySIkt,f,cr :YPHf,t,cr - yt,f,cr Vt’ f ’Cr (4'34)

Eq. (4-34) only applies if YPH;¢ > 0.
ut,f,cr,nu{S} 2 ut,f,cr,nu{N} XUEXTnu{S},cr Vt’ f ’Cr (4'35)
LIS’Ikt,l‘,cr,nu{S} = USIk1,f,cr,nu{N} ><UEXTnu{S},cr Vt’ f I (4'36)

Eq. (4-36) only applies if YPH;¢ > 0.

Zcr,t(wf t,er,bnu ) 2
(4-37)
Zcr,t (((ut, f,cr,bnu + lJSkIt,f,cr,bnu + AYN f ,t,bnu )X MYN f ,t,bnu ) X CRPf t.er ) Vf ' an
For Eq. (4-37) applies: As long as YPHgs ¢ is unknown, uslK ¢ crpnu = 0.
Wf terbnu T Ztm, fz( fut,tm,cr, fz, f X SLJsz,bnu ) Vf ’t’ cr, bnu (4-38)
(utfcrbnu"'AYNftbnu)XI\/IYI\IftbnuXCRF)ftcrXBFFftbnuS ( )
o ) ) . ) 4-39
Ztm’fz( Uy gy, . X TWBFF,, . xSUP, . ) Vt, f,cr,bnu

Eq. (4-39) only applies if the soil supply with P, K or Mg is low (see Section 4.4.4). In this

case, the factor BFF; ., >0 and a placed fertilization must be carried out annually within a

given timeframe TWBFF. Thus, this restriction only intensifies the original restriction from

Eq. (4-37). In order to prevent subsequent non-compensable violations, Eq. (4-39) is canceled

as soon as an actual harvest quantity is determined, i.e., when YPH ¢ > 0.

0 < Zt'tmvcr'fz( fut,tm,cr, fz, f X SL”:)fz,nu{CaO} x LYN f ,t,nu{CaO}) Vf

(4-40)
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Eq. (4-40) is only relevant for fields where liming is allowed (LYN .0y =1). In this case,

the lime supply must be at least neutral in the course of a crop rotation period.

0= ztm,cr,lfz( fU, i cr e 1 ) vt, f (4-41)

Eq. (4-41) only applies if LYNttnucaoy = 0. In this case, Eq. (4-40) becomes ineffective. Eq.
(4-41) then ensures that no special lime fertilizers are applied to this field at any time.

0 2 Ztmycryf ( fut,tm,cr,ofz,f )_ OFAofz,t Vt' sz (4'42)
Wf ter,nu{N,S} 2 ut,f .cr,nu{N,S} X CRI:)f ter Vt’ f ,CI, nu{N ! S} (4'43)

Eq. (4-43) only applies if CRPs ¢ # 0. With regard to the nutrient sulfur, the equation is only

taken into account as long as YPHs ¢, is unknown.

Wf Jt,er,nu{S} = Ztm'fz( fut,tm,cr,fz,f x SYNtm,cr X SlJF)fz,nu{S}) Vf ’t’ cr, nU{S} (4-44)

w x NDM

f.t,cr,nu{N} t,tm,cr =

wm f t,tm=Lttm=Lcr,nu{N} — nsof Jttm=1,cr,nu{N}

+(CRPf tor X(SABS  jny +SAPH o + NMOB, 1)) |+
_(SSIKf tim=tcr X CRPf ter )

wmy ttm=1,ttm=2,cr,nu{N} +wm; ttm=2,ttm=2,cr,nu{N} Nso; ttm=2.cr.nu{N} + NSO¢ ttm=Lcr,nu{N} x (1_ NL(,tm:l)
+(CRP, , x(SABS, , ., + SAPH, ,,,_, + NMOB, ,,,.,))

(4-45)
_(SS”(f tim=2,0r X CRPf ter )
wm, t,tm=1,ttm=17,cr,nu{N} +o WM, t,tm=17,ttm=17,cr,nu{N} — nso¢ t,tm=17,cr,nu{N} + NSO t,tm=16,cr,nu{N} x (1_ NL(,tm:lB)
+(CRPf Jter X (SABST,t,tm:N + NMOBf,t,tm:ﬂ ))
_(SSka t,tm=17,cr x CRPf ter )
Vi, t,tm,ttm,cr,nu{N}
For Eq. (4-45) applies: The variable sslk is only considered if (SNPHf’t,tm,* >0ACRP; >0)

or if (SNBS >0ACRP >O), which is always the case when new soil test results are

f,t,tm,* f.ter

available. The equation is divided into a total of 17 segments, one segment per fertilization
month tm (August to December in the year of cultivation and January to December in the year
of harvest). Only the segment corresponding to the current fertilization month is taken into
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account. SAPH is only defined for segments 1-5, i.e., for tm ={1, ... 5}. The natural N
mineralization is integrated via the parameter NMOB. The variable nso allows the transfer of
N surpluses from one fertilization month to another within a cropping period. Losses in the
form of leaching are deducted using the parameter NL. The variable wm thus indicates the
planned nitrate supply per fertilization month and crop. Since N fertilizers do not necessarily
contain nitrate, or contain other N forms besides nitrate, the complete conversion into nitrate
is often spread over several months. For this reason, it was necessary to define the variable
wm two-dimensionally, by the indices tm and ttm. Thus, it is possible to show the nitrate
effect of an N fertilization based on the fertilizer's speed of action (NSM) over several
fertilization months. Thus, loFarm is able to control the timing and at the same time does not
overlook possible utility costs, for example, losses due to nitrate leaching. An example will
help to better understand the purpose of Eq. (4-45): Assume that winter wheat has a nitrogen
requirement of 40 kg in May, which is defined by wx NDM . However, this requirement does
not necessarily have to be covered by N fertilization in May alone. Part of it can be covered
from a previous fertilization measure. For example, N may have already been applied in
March, but was not fully absorbed. After deducting losses, this N is still available in May. In
addition, soil N is mineralized during this period. In May, therefore, only a reduced
fertilization, possibly even no fertilization at all, would be necessary to meet the N
requirement of 40 kg.
(NSO umernugnsy + WMt it gt rmugny )

SNM¢ | nor = —MSNL Vf,t,tm,cr (4-46)
o CRP

f tcr

Eq. (4-46) is only valid as of the start of vegetation ( VIM ZVEQCr ), starting in March at the

earliest (Vtm>8), or from the month in which the need for N arises (NDM, , . >0). Points of

time in the past are likewise faded out by using the equation only if the following applies:

TSTAMP <TLIST

t,tm

wm
N i er =Ztm( fé’ggm“'““m}} vt ttm, or (4-47)

f.tcr
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Srmf,t,tm,cr = NMOBf,t,tm + nfnf,t,tm,cr _((ut,f,cr,nu{N} -l_l'jSIkt,f,cr,nu{N})>< NDMt,tm,cr)

n NSO ttm-Lernu{N} X (1_ NLt,tm—l) vf t.tm, cr (4'48)
CRPf ter
SSka tmer snny timer mcﬂf timer SNPH f t,tm,"NSommer” SNBSf t,tm,"NFruehjahr" vi ,t,tm,cr (4-49)

Eq. (4-49) only applies if SNPH, . >0v3NBS;  .>0.
Wmf ,ttm ttm,cr,nu{N} = z fz( fut,tm,cr,fz,f x NSM fz,ttm t,tm ) X TWNtm,cr,t Vf 't'tm'ttm! cr, nU{N} (4-50)

fu
Sfuttm cr, fz, f :M Vt,tm,Cr, fZ, f (4-51)
T CRP,

f.ter

hff, i er t XU mermiet = Uimerme r VEIM mfz,cr, f (4-52)
hf e = Zcr’f (hff, o ) VT, tM, mfz (4-53)

tfe = o ( Fmer s XPFim) (4-54)

tsc=> o (SPAC 4, )+ D o (SPYC, i) (4-55)

SpAC, i i, = SLS xSPd, 1, 1, + Z ¢[8Pd, i s XC x2x (VT +WE)] Vt,tm,mfz  (4-56)
Eq. (4-56) applies only for Ymfz = { AHL1zu3}

SPYCoamatz = SLS X SDYumate + D 1 [SPemme XCr X2x (VT +WE)] Wt,tmmfz  (4-57)
Eq. (4-57) applies only for Ymfz={AHL1z2u3} ATWLN ;.\ . =0

fu
P, e = D er 1 smg (Sf\,‘vm—”“J x Q7 Vt,tm, mfz (4-58)

mfz,swg

fu
S Zcr,f,swg(st\;vLW]le vt,tm, lgfz (4-59)

lgfz,swg
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For Eq. (4-59) applies: If TWLNqfz,tm,cr = 1, then spyimiqrz = 0.

Bounds in Stage |

These bounds ((4-60) — (4-67)) are defined before the solve statement of stage I:

if :TSTAMP >TLIST, ,, — sfu

t,tm t,tm,cr, fz, f

= PEFt,tm,cr,fz,f (4'60)

Eq. (4-60) transfers fertilization measures that have already been carried out to the PEF
parameter. PEF is then available to fix past fertilization measures in the model.

if :TWBF,, ., =1—>SfU, .\ o an ¢ <157€lsE:SfU e =0 (4-61)

if :TWSN,, ., =1—>sfu, ¢ <15;€lse:sfu, oo =0 (4-62)

if :TWSN,, o =1 SfU, i igre s < 2.5 €188 18fU i ¢ =0 (4-63)

if :;TWLA, , =1->sfu . <50;else:sfu ., =0 (4-64)

if ' TWOR,, cromw wey =1 STUL i crawe wwp oz, 1 < 305 else: StU, g crow weyor s =0 (4-65)
if ' TWOR,, crsmy =1 SU, i cresmyote ¢ < 505 else: StU, i crgsmyoe,t =0 (4-66)

Egs. (4-61) to (4-66) check on a crop-specific basis whether reasonable time windows for
different fertilization measures (TWBF to TWOF ) apply. If yes, a technically reasonable

upper limit is defined, otherwise this upper limit is set to 0.

if :YPH,,, =0—>uslk, ., =0 (4-67)

f.ter

Eq. (4-67) controls the slack variable uslk as long as no actual yield YPH has been

determined. Otherwise, an uncontrolled negative expansion of uslk would be possible.

Equations in Stage 11

Sfut,tm,cr,fz,f 2 bint,tm,cr,fz,f X Lofz (4'68)

sfu ¢S bint,tm,cr,fz,f xUP, (4-69)

t,tm,cr, fz,
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Eqs. (4-68) and (4-69) are only considered if TSTAMP =TLIST, . Thus, the number of binary

variables is reduced to a minimum for computational reasons.

Sﬁ'lot,tm,cr,fz,f ><Sfut,tm,cr,fz,f :Sfut,tm,cr,fz,f Vt'tm’cr’ fZ, f

Spd Ot,tm,mfzz X Spdt,tm,mfzz = Spdt,tm,mfzz Vt'tm’ mfzz
Spdl’]at,tm,mfz X hft,tm,mfz = Spdt,tm,mfz Vt7tm’ mfZ

Spdct = SpdCSTt,tm,mfzz + SpdCLTt,tm,mfzz + SpdCF\Nt,tm,mfzz + S[*-)(-jCVCt,tm,mfzz

Vt,tm, mfz2

,tm,mfz2

+ spdcYF, , + SpdcFF,

,tm, mfz ,tm,mfz2

spACST, v, oy = ST XWE x$pd0, v, Vt,tm, mfz

SPACLT, 11 e = SPU gn mie X LT X (WE +VL) Vt,tm, mfz

t,tm,mfz

spdcFW,

,tm, mfz

hf
_ t,tm,mfz x (WE +VT) X spd 0[ mmp, VM, mfz
(WS xWW x(1-TT)x0.1) o

spdcVC, i, iy = SP, i XQXVS W, tm, mfz

t,tm,mfz

SPACYF, ;, o, = 0.9960552 5pd, ;1 X 2

X[Zf(HAf ><Cf ><Z:cr(Sfuot,tm,cr,mfz,f ))

,tm, mfz

(D +0.001)

t,tm,mfz

JX(WE +VT) Vt,tm,mfz

tmmfz

(4-70)

(4-71)

(4-72)

(4-73)

(4-74)

(4-75)

(4-76)

(4-77)

(4-78)

h
spdcFF, . . = [0.9418345>< — _0,7297727 x spdha, , v, J xTF x(WE +VT) vt,tmmfz (4-79)
TFA Am,

Egs. (4-71) to (4-79) are repeated in order to be able to consider other costs involved in

applying liquid fertilizers, if necessary. For this purpose, the variables or indices in the

corresponding restrictions are replaced as follows: In all variables, the letter combination spy

replaces spd, which results in new variables. Iqfz replaces indices mfz and mfz2.
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Bounds in Stage 11

These bounds ((4-80)—(4-83)) are defined after the solve statement of Stage | and before the

solve statement of stage II:

if :TSTAMP >TLIST, ,, — sfu

t,tm t,tm,cr, fz, f

= PEFt,tm,cr, fz, f (4'80)

Eq. (4-80) is a repetition of Eq. (4-60) and simply ensures that no important information is

accidentally lost between the two stages.

If :Zcr'f (Sfut,tm,cr,fz,f + Sfut,tm—l,cr,fz,f + Sfut,tm—z,cr,fz,f ) = O - bint,tm,cr,fz,f A Sfut,tm,cr,ﬂ,f = 0 (4_81)

Eqg. (4-81) checks on a farm-wide basis which fertilizers have been selected in stage |
currently and in the last two months. Any fertilizers that were not used in this period are not

considered in stage Il in the current fertilizer month.

if :TSTAMP =TLIST, A sfu™*"

t,tm t,tm,er, fz, f

=0—sfu =0 (4-82)

t,tm,cr, fz, f
Eq. (4-82) checks on a field-specific basis which fertilizers were not currently used in stage |

and also excludes them for stage Il in the current fertilizer month.

if :TSTAMP <TLIST, ,, A sfu's®" >LO - sfu _ gfy sl

t,tm t,tm,er,fz,f —

t,tm,cr, fz, f t,tm,cr,fz, f (4'83)

Eq. (4-83) refers to the present and the future. Fertilization measures that have exceeded the
technically necessary lower limit (LO) in stage | are fixed in stage 1. However, with each new
model run, stage | is able to readjust future fertilization measures, so future fertilization

measures in stage 11 remain flexible for adaptation.
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Table A 4-4: Fertilizer composition, lime effect and specific weight.

Stabi-  Stabi- Speci-
- lized lized fic
Fertilizer / Content NO3- NH4+ Urea NH4+ Urea P205 K20 MgO S CaO  weight
[%] (%] (%]  [%] 6]  [%] [%] [%] [%] [kgdt'] [kg/L]
N Fertilizer
Calcium ammonium nitrate (27N)*® | 135 135 -150 1.0
Calcium ammonium nitrate (27N
4Mg®9) 135 135 4.0 -9.0 1.0
Ammonium nitrate urea solution
(28N)29) 70 7.0 140 -28.0 1.3
Urea (46N)*9 46.0 -460 0.8
Calcium ammonium nitrate (24N
6S)9) 120 120 60 -340 11
Ammonium sulphate nitrate (26N
135)49) 70 190 130 -49.0 1.0
Sulfuric acid ammonia (21N 24S)“© 21.0 240 -630 1.0
Urea (33N 125)29 104 226 120 -540 08
ENTEC (26N 135)®9 75 185 130 -49.0 1.0
Stabilized urea (46N)@® 46.0 -460 0.8
Water + Ammonium nitrate urea
solution (9N) 2.2 22 45 -9.0 1.0
NP Fertilizer
Diammon phosphate (18N 46P)® 18.0 46.0 -360 1.0
NP (20N 20P 25)®9) 82 118 20.0 20 -310 1.1
NPK Fertilizer
ENTEC (15N 5P 20K 2MgO 85)*® | 6.9 8.1 50 200 20 80 -140 1.2
NPK (15N 15P 15K 25)®9 60 9.0 150 15.0 20 -150 11
NPK (20N 8P 8K 3MgO 45)®® 9.0 110 80 80 30 40 -210 1.1
NPK (2355 +6S)© 107 133 50 5.0 60 -230 10
P and PK Fertilizer
Triple superphosphate (46P)® 46.0 -1.0 1.1
PK (16P 16K 2MgO 75)® 160 160 20 70 6.0 1.1
K Fertilizer
Potash (40K 6MgO 5S)©® 400 60 50 00 1.1
Kainite (11K 5MgO 45)®© 110 50 40 0.0 1.2
Mg & S Fertilizer
Kieserite (25MgO 20S)@® 250 200 0.0 1.3
Lime Fertilizer
Carbonic lime (25 50Ca0)® 20 500 1.7
Carbonic lime (14MgO 53.4Ca0)® 14.0 53.4 1.7
Burnt lime (90Ca0)® 90.0 1.0

Remarks: The specification of fertilizers can be found in the following sources: ® (EuroChem Agro GmbH); @
(SKW Stickstoffwerke Piesteritz GmbH); ® (YARA GmbH & Co. KG); ¥ (DOMO Caproleuna GmbH); ©
(Borealis L. A.T GmbH); © (Wendland et al., 2018); ” (METRAC Handelsgesellschaft mbH); ® (K+S Minerals

and Agriculture GmbH); © (DiiKa Diingekalkgesellschaft mbH). Note: Nutrient contents are subject to minor

changes over time, especially if natural products are included (last update: March 2017).
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Table A 4-5: loFarm fertilizer strategy (application rate [dt ha™]).
Field 1 Field 2 Field 3
Maize Barley Wheat
Aug |l Carbonic lime (14MgO 53.4Ca0) 3.04 3.00
Feb Il  Kieserite (25MgO 20S) 1.05
- _FeblIl Carbonic lime (2S 50Ca0) 3.00
2 _Marll _Calcium ammonium nitrate (27N 4Mg) 0.80
L Marll Urea (46N) 2.58 0.85
§ Marll Diammon phosphate (18N 46P) 1.08
2 Aprll  Urea (46N) 2.53
§ Apr Il Sulfuric acid ammonia (21N 24S) 1.03
% May |l Urea (46N) 1.07
- May Il Diammon phosphate (18N 46P) 0.80 1.39
May Il Sulfuric acid ammonia (21N 24S) 0.80
Jun Il Calcium ammonium nitrate (27N 4Mg) 0.80 1.93
Aug Il Potash (40K 6MgO 5S) 4.71
Wheat Maize Barley
Aug |  Triple superphosphate (46P) 3.23 1.3
Aug |l Carbonic lime (14MgO 53.4Ca0O) 3.00
Oct | Carbonic lime (14MgO 53.4Ca0) 3.00
Feb Il Kieserite (25MgO 20S) 0.86
8 Marll Calcium ammonium nitrate (27N 4Mg) 0.80
S Aprll  Water + Ammonium nitrate urea solution (9N) 2.1
2 Apr Il Calcium ammonium nitrate (27N 4Mg) 3.64
2 Aprll  Urea (46N) 3.26
% Apr Il Sulfuric acid ammonia (21N 24S) 0.92
S _May Il Urea (46N) 1.89
& May Il Sulfuric acid ammonia (21N 24S) 0.87
May Il Water + Ammonium nitrate urea solution (9N) 2.50
May Il Calcium ammonium nitrate (27N 4Mg) 0.80 1.54
May Il Sulfuric acid ammonia (21N 24S) 0.80
Jun Il Water + Ammonium nitrate urea solution (9N) 2.20
Sep Il Kieserite (25MgO 20S) 0.94
Barley Wheat Maize
Feb Il Urea (46N) 1.51
< _Feb Il Diammon phosphate (18N 46P) 4.93 3.73
2 Febll Potash (40K 6MgO 5S) 4.19
8 Febll Carbonic lime (14MgO 53.4Ca0) 6.34 5.25
S Febll Kieserite (25MgO 20S) 1.51
% Marll Calcium ammonium nitrate (27N 4Mg) 1.61 0.80
§ Apr Il Calcium ammonium nitrate (27N 4Mg) 1.22
© Aprll Diammon phosphate (18N 46P) 6.15
®  May Il Sulfuric acid ammonia (21N 24S) 0.80
Jun Il Calcium ammonium nitrate (27N 4Mg) 0.91
Dec Il  Potash (40K 6MgO 5S) 0.80
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5 loFarmin Field Test: Does a Cost-Optimal Choice of
Fertilization Influence Yield, Protein Content, and Market

Performance in Crop Production?

This article is published as [Troster, Michael Friedrich; Sauer, Johannes (2021): loFarm in
Field Test: Does a Cost-Optimal Choice of Fertilization Influence Yield, Protein Content, and
Market Performance in Crop Production? Agriculture, 11, 571] under the terms and
conditions of the Creative Commons Attribution (CC BY) license. The version of record is
available online at: https://doi.org/10.3390/agriculture11060571.

Authors’ contributions: Michael Troster is the main author of this contribution. Michael
Troster: Conceptualization, methodology, validation, formal analysis, investigation, data
curation, writing—original-draft preparation, visualization, project administration. Michael
Troster and Johannes Sauer: Resources, writing—review and editing. Johannes Sauer:

Supervision.
Abstract

Decision-support system (DSS) loFarm was developed to identify economically optimal
fertilizer strategies on the farm level. The average cost savings are €66 ha *. This study aimed
to determine whether this approach impacts yield, protein content, and market performance in
crop production compared to usual farm-fertilization strategies. Few DSSs for fertilizer
optimization consider multiple nutrients. DSSs with a clear focus on both fertilizer intensity
and the least-cost combination of fertilizers are even rarer. To the best of our knowledge,
there is no information in the literature on the impact of such DSSs on yield, protein content,
and market performance for cereal-maize crop rotation. This study determines for the first
time whether the financial benefits of using such an optimization tool are in conflict with
important agronomic goals. In a three-year field trial, loFarm was compared to standard farm-
fertilization strategies. Results were evaluated with an analysis of variance followed by post
hoc tests. No significant differences in yield, protein content, and market performance were
found for comparable fertilization variants (with or without organic fertilization). However,
differences exist in the selection of fertilizers and the timing of fertilization. Results show the

agronomic comparability of loFarm and usual farm-fertilizer strategies.


https://doi.org/10.3390/agriculture11060571
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Keywords

Fertilizer recommendation; nutrient management; model validation; least-cost combination;

decision support; field trial

5.1 Introduction

Agricultural goods are internationally traded on a large scale and are in global competition.
The resulting price pressure requires steady adjustments by producers. Therefore, the optimal
allocation of available production factors is necessary to achieve the entrepreneurial goal of
profit maximization. Before farmers consider changing their production program, they usually
first attempt to optimize their production technology. Fertilization is a vital component of
production, as numerous current studies show (Troster and Sauer, 2021b, Tian et al., 2020,
Ransom et al., 2020, Hlisnikovsky et al., 2020, Mi et al., 2019). About 29% of the variable
costs of winter wheat production (WW = Triticum aestivum L.) in Bavaria in 2020 are related
to fertilizers (Schatzl et al., 2019). Thus, the savings potential that can be achieved by
fertilizer optimization is promising. Changing environmental conditions and dynamic changes
in input and product prices greatly complicate decisions regarding fertilizer intensity and
selection. Farmers are faced with this problem several times in a season. For an economically
optimal solution, it is necessary to collect, update, and rationally process all relevant
information. This results in high transactional costs that prevent farmers from thinking
intensively about an economically optimal fertilizer strategy several times per season.
Furthermore, due to the enormous number of combinations of fertilizer, fertilizer quantity,
and timing, it is hardly possible to optimally solve this problem without assistance. Therefore,
assistance from a decision support system (DSS) is extremely helpful to rationally and
objectively deal with such complex decisions. DSS loFarm (Troster and Sauer, 2021b) was
developed for this purpose. It enables rationally and objectively making complex decisions by
taking into account changes in environmental conditions, input, product prices, and the
associated application costs when searching for an optimal field-specific fertilization strategy.
loFarm considers a crop production function and is therefore able to regulate the output level
in the case that the marginal cost of fertilization exceeds the marginal revenue of crop
production. However, the focus of optimization is on identifying the least-cost combination of
fertilizers. By simultaneously considering both input intensity and a least-cost combination,
loFarm represents the theoretical concept of the expansion path. A previous study showed that

this approach can save both fertilizer costs (—19%) and valuable management time (Troster
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and Sauer, 2021b). Of course, the growing conditions of crops are a key factor in the search
for the optimal fertilizer strategy. A large number of agronomic restrictions in loFarm
represent these requirements, but verification in practice is still essential. According to the
operations research requirements (Mariappan, 2013), this step is closely linked to the
development of new models. Therefore, the literature also reports numerous field experiments
in which DSSs were tested. For example, a study by Scharf et al. (2011) demonstrated
positive effects on maize cultivation for the use of a sensor-based fertilizer system.
Additionally, research was conducted on using a decision-support system for agrotechnology
transfer (DSSAT) (Jame and Cutforth, 1996). Araya et al. (2019) calibrated a DSSAT system
to simulate the effect of fertilization on wheat cultivation in Ethiopia, and Ubelhor et al.
(2015) developed the CROPGRO system on the basis of DSSAT to derive knowledge on the
fertilization of white cabbage in Germany. Additionally, the Nutrient Expert for Wheat
system (Chuan et al., 2013) was developed to optimize fertilizer intensity in Chinese wheat
production. Successful tools were also developed and tested in other areas of crop production.
One example is DSSHerbicide (Sgnderskov et al., 2015), which is used to optimize herbicide
use. All these DSSs were evaluated in practice or in field trials to show their utility for
potential users. The question of economically efficient fertilization was also addressed by
Mandrini et al. (2021). Their study focused on 10 different management strategies for corn
cultivation in Illinois, which were investigated using the Agricultural Production System
Simulator instead of field trials. As a result, they answered which of the tested strategies were
preferable under different objectives (economics, ecology). loFarm differs from the
previously mentioned tools by its clear focus on the least-cost combination in fertilizer
selection, simultaneous consideration of multiple nutrients, and the possibility of aggregated
base fertilization within a crop rotation. The literature also includes several DSSs that have
similar approaches and goals to those of loFarm. These include Smart Fertilizer (Smart
Fertilizer Management), Ecofert (Bueno-Delgado et al., 2016), and Optifer (Pagén et al.,
2015). To date, no field trials have been published on any of these DSSs. Therefore, it is
currently unclear whether the use of such DSS based on a pure economic objective function
could be associated with undesirable effects on vyield, protein content, and market
performance. To address this gap, loFarm was compared to a standard farm-fertilization
strategy in a multiyear field trial. As competing variants in this field trial were based on the
same system of nutrient requirements calculated by the Bavarian State Institute of Agriculture

(Offenberger and Wendland), nutrient input was largely identical.
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This article and the underlying field trial investigate the agronomic performance of loFarm
and highlight the utility of such an optimization tool for potential users. Additionally, the
verification of the optimization model in practice is urgently needed to uncover its potential

shortcomings and to initiate adaptation measures.

5.2 Materials and Methods

5.2.1 loFarm Decision-Support System

loFarm is a novel DSS to reduce fertilizer expenditure on the farm level (Trdster and Sauer,
2021b). The system provides precise guidance on fertilizer selection, application rate, and
application timing for each field plot over an entire crop rotation cycle. Through regular
updates of fertilizer and product prices, yield expectations, soil test results, and weather
information, loFarm is quickly adapted to changing conditions. To make the most of this
ability, loFarm should be used once a month during the growing season to recalculate the
fertilization strategy. loFarm falls into the category of mixed integer nonlinear problems. The
objective function was designed to find the economically optimal fertilizer strategy that
satisfies crop requirements. In addition to the market prices of the fertilizers, the application
costs are also relevant in this choice. Within the model, marginal revenue and marginal cost
are used to determine the optimal nutrient application, and hence yield level. Figure 5-1

provides a general overview of loFarm’s data input, data processing, and output.

After this general overview of DSS loFarm, some information on how loFarm works and how
it incorporates data from the biophysical environment is summarized below. The estimation
of nitrogen dynamics in the soil is performed with the help of two annual soil tests, soil
temperature and climatic water balance (CWB). The first soil test is performed in spring at the
beginning of the growing season or before the first fertilization. The second soil test is carried
out after harvest. Soil nitrogen content between these two sampling dates is derived from soil
temperature (nitrogen mineralization) and CWB (leaching of nitrogen). Both of these
measurements are typically recorded by local weather stations, and are therefore available as
long-term monthly averages for forecasting purposes. Long-term monthly averages are
replaced month by month by actual measured values. This approach to estimate nitrogen
dynamics is highly simplified. It can only be justified by regular updates with real measured
values for soil nitrogen content and by prioritizing a high level of user friendliness. Scientific
models such as HERMES (Kersebaum, 1989), WAVE (Vanclooster et al., 1996), DAISY
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(Abrahamsen and Hansen, 2000), or MONICA (Nendel, 2014) are available, but they are too
complex for use in the context of a practical DSS.

4 )
Regional adaptation:
* Adaptation to local fertilizer system
» Calibration of N production function )
Farm specific adaptation:
» Crop rotation schedule
* Farm infrastructure
* Mechanization
* Soil testing (P, K, Mg, pH)
* Historical weather data
» other specifications, e.g. org. fertilizer
Regular adjustments (monthly):
* Yield expectation (by farmer)
* Product and fertilizer prices
» Current weather data
» Consider executed fertilization measures
Irregular adjustments (twice a season):
* Soil testing for mineral N
Execution of IoFarm:
* max! Profit = Revenue — Cost
* st Agronomic, legal & operational
restrictions
IoFarm output (for whole crop rotation):
* Least-cost combination of fertilizer
* Dosage & time of application (monthly)
* Example: Field 1, WW; 2 dt CAN; May
Implementation in practice (monthly):
* Execute currently relevant measures
* Fix (un)executed measures as exogenous

Is the crop rotation
cycle completed?

(
(

Start of a new planning period ]

Figure 5-1: Workflow of DSS loFarm: (grey) data input, (orange) execution, (blue) data
output.
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To determine the crop-specific nutrient requirements of N, P, K, Mg, and S, loFarm must be
adapted and calibrated to regionally common methods. This means that loFarm is not an
independent fertilizer system, but is based on the specifications of an externally specified
fertilizer system, which is required in many countries for legal reasons. loFarm could be said
to just be a problem solver for a given fertilizer system. For the field trial, loFarm was
adapted to the usual nutrient requirement calculation of the trial sites. All three sites were
located in Bavaria (southern Germany), so the calculation of requirements in our case was
based on the guidelines of the Bavarian State Institute for Agriculture (Wendland et al.,
2018).

We now present the basic features of this fertilizer system. The system is based on site-
specific yield expectations, which are defined by the farmer or through statistical data. From
this, the fertilizer requirement of the nutrients is derived. For nitrogen, the soil supply of
available mineral nitrogen at the beginning of the season is deducted. Standard values offer
the possibility of taking into account, for example, crop development or N mineralization with
additions and deductions. The fertilizer requirement of nutrients P, K, and Mg is also adjusted
depending on the location. This is conducted on the basis of soil-test results. If the respective
nutrient content is low, additions are applied; the same applies in reverse for high nutrient
contents. As a result, this system of determining fertilizer requirements provides information
on the quantities of nutrients that can be used per hectare and year. The farmer uses this

information to form their own fertilization strategy.

loFarm largely follows this fertilization system, but additionally calculates an economically
optimized fertilization strategy. It is taken into account that fertilization measures can also
take place aggregated, in the course of a crop rotation (e.g., potash fertilization). loFarm
differs from the fertilization system described above only in the determination of N
requirements. As already described above, nitrogen dynamics in the soil are taken into
account in a simplified form within the model. In combination with fertilization, which is also
internally determined in the model, it is thus known which N content is available to the plants
month by month from the soil. Nitrogen must be allocated to the plants as close as possible to
their temporal requirements. In order to account for this, the percentage nitrogen uptake of
plants at distinctive developmental stages is estimated on the basis of literature data (Waldren
and Flowerday, 1979, Reiner and Ddrre, 1992, Litke Entrup, 2000). In combination, this
enables the identification of when and to what extent nitrogen fertilization is required. As
crop-yield response function, loFarm uses a linear function with different slopes depending

on the nutrient. The maximum of this function is limited by the yield expectation of the
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farmers. In summary, the following applies: loFarm is designed to meet important crop-
management requirements for fertilization. An attempt is made to model the nitrogen
dynamics in the soil and to synchronize fertilizer application as optimally as possible with the
nutrient requirements of the plants over the growing season and the entire crop rotation. This
ensures balanced nutrition and avoids overdosing of nutrients. For further details, please refer
to the original manuscript (Troster and Sauer, 2021b).

5.2.2 Site Description and Weather Conditions

The field experiment was conducted over three crop years (2016 to 2018) and at three
locations within Bavaria (southern Germany): Geiselsberg (GB; 49°08’ N, 10°50" E; altitude,
505 m), Triesdorf (TD; 49°11' N, 10°39" E; altitude, 430 m), and Roggenstein (RS; 48°11' N,
11°20" E; altitude, 514 m). The soil properties at the beginning of the experiment are shown in
Table 5-1.

Table 5-1: Soil properties of the three field sites in Bavaria.

Site GB TD RS
Plots {1...9} {10...18}{18...27} {1...15} {16...30}{31...45} {1...9} {10...18}{19...27}
Soil typ Cambisol Planosol Cambisol
Soil texture Loam Sandy Loam Silty Clay
Soil pH 6.6 6.6 6.9* 7.3* 7.3* 7.3* 6.1 6.0 6.0

Usable field capacity %  17.5 16.2 16.2 12.7 15.5 16.0 24.5 21.8 23.7
Bulk density gcm™® 1.25 1.27 1.29 1.24 1.33 1.35 1.43 1.45 1.50

Organic matter % 2.1 2.2 2.9 25 2.6 2.4 1.7 1.7 1.7
P,0s mgl00g™" 12 6 8 17 19 24 7 7 7
K,0 mgl00g™" 36 28 22 17 18 19 14 15 16
MgO mg100g~' 9 6 7 20 19 18 4 5 3

* Soil pH is above the desired level, therefore no liming was allowed.

Weather records are based on data from the nearest weather stations (Windsfeld, Triesdorf,
and Roggenstein) of the German Weather Service (Agrarmeteorologie Bayern, 2019). Our
own precipitation records were used for GB, as deviations were expected due to a distance of
about 8000 m to the nearest weather station. Figure 5-2 provides a selection of relevant
weather information.
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Figure 5-2: Weather conditions during trial period by location.

5.2.3 Field Experiment

The experiment was set up in a two-factorial design with three locations and three crop years.
The first factor reflected the fertilization variant and was composed of a farm manager variant
(FM), an loFarm variant (10), and a control variant (0V) without any fertilization. Additional
organic fertilizer in the form of digestate was integrated into the trial at the TD site. Here,
additional organomineral variants were created (0FM, olO). The second factor was formed by
different crops that were grown at each site in each year: winter wheat (WW,; Triticum
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aestivum L.), silage maize (SM; Zea mays L.), and winter barley (WB; Hordeum vulgare L.).
As both plots and variants were fixed over the entire experimental period, the experiment
replicated a complete crop rotation cycle on each plot. The experiment was planned in a split-
plot design with randomized replications. In GB and TD, the plots were laid out at 12 x 4.5 m,
and the crop was harvested in a core area of 9 x 1.38 m for cereals, and 9 x 1.5 m for SM.
Due to the different technology, the plot size in RS was 10 x 6 m. Here, the core area was
harvested at 10 x 1.56 m for cereals and 10 x 1.5 m for SM. In RS, fertilizer was applied
using a lifted drill. However, in GB and TD, fertilizers were applied using a plot spreader
with a belt-head dispenser (own construction of the Educational Schools Triesdorf,
Weidenbach, Germany). Digestate was only applied in TD using a slurry tank with a trailing
shoe applicator (Gllle Zwerg constructed by Zunhammer in Traunreut, Germany), which was
specially developed for plot trials. Digestate was applied according to a target in m® ha . The
maximal available amount of digestate was limited to 4000 m® per year for the assumed farm
area of 150 ha. Repeated analysis of the digestate served to update the nutrient content.

Figure 5-3 presents how the tested fertilizer variants (FM, oFM, 10, olO) were created. Both

the farm managers and loFarm used the same information.

Process by farm manager (Figure 5-3, left column): For the experiment, a yield expectation
was assigned to each crop by the local farm managers. This value was based on empirical
values (historical yield data). Subsequently, nutrient requirements were calculated for
nitrogen, phosphorus, potash, and magnesium according to specifications of the Bavarian
State Institute for Agriculture (Wendland et al., 2018). A description of this fertilizer system
can be found in Section 5.2.1. The calculated quantitative and seasonal nutrient target values
were passed on to the farm managers together with current fertilizer prices and other shared

information. Then, with the help of a planning tool™

, the farm managers defined a ready-to-
use fertilizer strategy for all three crops. The objective of the exercise was to select the most
cost-effective option from the available fertilizers while satisfying the specified nutrient
demands as much as possible. For phosphorus, potash, and magnesium, fertilization was
freely allocable within crop rotation. However, lime fertilizers could not be applied to areas
with a pH value above the site-specific optimum (compare Table 5-1). In the case of a
fertilizer application, a minimal rate of 300 kg ha' was specified for lime fertilizer,
12.5m*ha ! for digestate, and 80 kg ha™* for all other fertilizers. As application costs also

play a role in fertilizer strategy selection, a hypothetical farm was specified with 50 ha of

% For more information on the used planning tool, please refer to the following link (accessed on 20 June
2021): https://drive.google.com/file/d/14rBHNKKDuBg8oyeeVUXuek2id1B9z_Dw/view?usp=sharing
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WW, 50 ha of WB, and 50 ha of SM. The average field-to-farm distance was set as 7 min.
Although this information is irrelevant to the evaluated parameters in this experiment, it is
important for determining a particular fertilizer strategy, and is thereby mentioned here. This
is how farm managers’ mineral and organomineral fertilizer variants (FM and oFM) were
generated. This procedure was repeated monthly, starting from the fall sowing season in 2015.
The shared information, such as results from soil Npmi, testing and price changes, was
constantly updated. Thus, farm managers had the opportunity to adjust their target yield and
fertilizer strategy once a month at the beginning of the application period before the fertilizers
were applied. However, the possibility to adjust the target yield was rarely used by the farm
managers during the trial period. An overview of Npi, values and adjustments to yield

expectations can be found in appendix (Table A 5-2).

Shared information and common
approaches
Process by Historical yield data Process by
Farm Manager (FM) \l/ IoFarm (I0)
Yield expectation Yield expectation Yield expectation
> Target yield (by farmer or institute) > Endogen yield target
Determination of fertilizer Determination of fertilizer
requirements Weather requirements
(regionally valid Product & fertilizer price (regionally valid
system) system)
Soil test (P, K, Mg, pH)
Quantitative & seasonal Soil test (mineral N)
nutrient target values (N, P, K,
Mg, S)
E.g.: WW; 180 kg N/ha
. Solving process
Farm infrastructure
Mechanization
Transformation into a fertilizer Other specifications
strategy
e “ e A
Ready to use Ready to use
fertilizer strategy fertilizer strategy
. J o J

B [ R e [

Figure 5-3: Similarities and differences in fertilizer strategy: Farm Manager and

loFarm.

Process by loFarm (Figure 5-3, right column): Fertilization variants 10 and olO were defined

with the help of loFarm. The endogenous yield target of loFarm was also limited by yield
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expectation (updated monthly by farm manager). Again, this was followed by determining the
fertilizer requirement and the solving process in which loFarm calculates the economically
optimal fertilizer strategy. Regular updates of the input parameters (shared information) also

require a regular repetition of this procedure.

Externally defined yield expectation has great influence on the intensity of fertilization in this
system. Reliable yield prediction requires a lot of experience and is only possible relatively
late in the growing season. Incorrect predictions lead to biases, but can probably be
minimized, by integrating a validated plant-growth model into loFarm in future. For the sake
of usability and comparability, however, we decided to work with the farmers’ yield
expectation. This approach is quite common and is also used by extension services to achieve

a regional differentiation of nutrient supply (Rajsic and Weersink, 2008).

5.2.4 General Cultivation Management

To begin the trial in the first year with a neutral preceding crop, winter oilseed rape was
grown in the preceding year in GB and TD. In RS, the preceding crop was spring barley. The
soil was tilled with a cultivator, which was used several times if required. A rotary harrow
was used to prepare the seedbed. Before sowing SM, an intercrop mixture (25 kg ha* “Terra
Life Aqua pro”) was sown in summer. The following seeding information applies to the main

crops:
«  WB: 320 tsr m 2, KWS Meridian variety approx. 25 September, drill sowing.
«  WW: 340 tsr m 2, Patras variety, approx. 5 October, drill sowing.
« SM: 9 tsr m 2, P8589 variety, approx. 25 April, precision seeding, row width 75 cm.

The used varieties are standard regional varieties. Plant protection measures were adapted to
the conditions of the respective locations. Weed control was very successful. Fungicide and
insecticide measures in the cereals were designed to keep the plants completely healthy. In the
first year of cultivation, notable Ramularia infections of WB appeared at the RS site, and
slight Septoria tritici infections of WW were detected at the GB site. Otherwise, disease and
pest control was very successful. Fertilization measures were extremely diverse across all
sites, crops, and varieties. An overview of all measures, including fertilizer choice, can be
found in Table A 5-1 in Appendix. For a detailed differentiation of the fertilizer strategies
themselves, we refer to (Troster and Sauer, under review). To obtain an overview of the
quantities of applied nutrients, individual measures are also summarized and compared in

Section 5.3.1. Cereal plots were harvested using plot combines (Haldrup c65, llshofen
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Germany). In GB and TD, SM plots were harvested using a two-row plot chopper equipped
with rear container and weighing device. In RS, two maize rows were harvested by hand and
then processed on-site with the above-mentioned plot chopper. Straw from the cereal plots
remained on the harvested plots, and was afterwards chopped and incorporated. This
procedure was repeated for three consecutive years until the crop rotation of WB-SM-WW
was completed on each plot.

5.2.5 Crop and Soil Analysis

In fall 2015, detailed analysis of the soil conditions was conducted. All plots were analyzed
for phosphorus, potash, magnesium, pH, organic matter, and soil type using standard
methods, including calcium-acetate-lactate extraction. In parallel, nine undisturbed soil
samples were collected at each site and analyzed for pore volume in the soil laboratory. Soil
samples were annually taken at the beginning of the growing season or shortly before sowing
SM to a depth of 0 to 30 cm and 30 to 60 cm to determine the supply of mineral nitrogen
(Nmin). This was separately performed for all variants. The results of the soil tests for mineral
nitrogen only slightly differed among variants (Table A 5-2 in appendix). In WB and WW,
yield structure was also surveyed (for details see Section 5.3.5). Samples of the harvested
material from WW and WG were analyzed for water and protein content using near-infrared
spectroscopy (Perten DA 7250, PerkinElmer, Waltham, MA). In the case of SM, only dry
matter was determined. For this purpose, 200 g samples were taken from each plot and dried

for 24 h at 105 °C in a drying oven.

5.2.6 Statistical Analysis

Statistical analysis was performed using STAT software (StataCorp, 2017). The two-factorial
experiment (fertilization, crop) was evaluated using ANOVA for different dependent
variables. In the case of significant F tests, multiple Tukey’s post hoc tests were performed
for primary-factor fertilization to determine statistical differences. The Tukey test was chosen
because it corrects for alpha error accumulation and is considered to be moderate. The
prerequisites of ANOVA were confirmed using the Shapiro-Wilk test to check for normal
distribution of residuals, and Levene’s test to check for homoscedasticity. In some groups, the
data were not normally distributed (p < 0.05). However, with a sufficient number of
observations per group (central-limit theorem), split-plot ANOVA was considered to be
robust to the violation of this condition of a normal distribution of residuals (Salkind, 2010).

Partial heteroscedasticity was also found. Various approaches used to transform the variables
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were inconclusive. The resulting consequences are discussed in Section 5.4, but they are not
relevant to the post hoc tests that were performed.

ANOVA for the dependent variable yield (Y) was performed using Eq. (5-1).
Y =1+ f+1 +e(F);, Y +(fC)ij +e(FC)ijk (5-1)

where f represents the i-th effect of fertilization, r represents the effect of the k-th replicate,
and e(F) represents the associated ik-th error term. Variable c represents the j-th effect of
crop, fc is the effect of the interaction of fertilization and crop in the ij-th combination, and

e(FC) is the ijk-th error term. Random effects are indicated with capital letters.

In addition to yield, variance analyses were also performed for other dependent variables. Eq.

(5-1) was adjusted accordingly:

Pi =u+ T+ 1 +e(F), +c; +(fc); +e(FC)y (5-2)
MB,, = u+ f, + 1, +e(F), +c; +(fc); +e(FC)y (5-3)
Y_SM, =u+ f, +r +e(F), (5-4)

where the dependent variables from Egs. (5-2) to (5-4) correspond to: (i) the protein content
(P) of WB and WW; (ii) market performance (MP) taking into account the quality rating of
WW; and (iii) the yield of each crop, here substituting Y_SM for SM. The underlying values
of the variable MP are not measured, but were formed according to Eq. (5-5).

Mpc,t,pl = yc,t,pl X Pyc,t (5'5)

where y represents the yield of the c-th crop in the t-th year on the pl-th plot. Py represents the
crop- and year-specific price, which, in the case of wheat, additionally depends on protein

content.

5.3 Results

The basis for the interpretation of the results is a comparison of the nutrient supply of the test
variants (Table 5-2). Results themselves show the influence of the loFarm DSS on yield,
quality, and market performance compared with the standard fertilizer strategy of a farm

manager. Only marginal differences were found.
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5.3.1 Comparison of Nutrient Supply and Fertilizer Use

As Table 5-2 shows, the site-specific nutrient supply of the test variants only slightly differed.

Table 5-2: Comparative overview of nutrient supply by location, crop, and treatment.

Site: Geiselsberg Roggenstein Triesdorf Triesdorf
Treatment: FM 10 FM 10 FM 10 oFM olO
Silage maize

N + Nmin 199 193 186 231 190 199 196 209

P,Os 146 116 140 149 46 85 72 80

K,0 93 11 407 219 77 138 167 220

MgO 100 74 108 99 27 25 44 48

S 12 36 48 34 22 27 38 25
Winter barley
N + Ny 201 204 188 211 206 209 217 223

P,Os 116 161 161 125 52 71 37 52

K0 0 73 0 83 141 95 81 109

MgO 28 57 92 103 27 30 19 15

S 5 19 22 22 90 22 31 21
Winter wheat
N + Npin 235 234 247 242 236 220 234 190

P,Os 130 122 127 151 119 58 102 70

K,0 67 79 0 111 199 194 167 65

MgO 73 67 73 84 43 44 44 28

S 30 28 25 26 105 34 70 25
Total crop rotation
N + Nmin 212 210 207 228 211 210 216 207

P,Os 131 133 143 142 72 71 70 67

KO 53 54 136 138 139 143 138 132

MgO 67 66 91 95 32 33 36 30

S 16 28 32 27 72 28 46 24

All average values in kg ha—1. FM = farm manager; 10 = loFarm; oFM and olO were additionally treated with

organic fertilizer. N + Nmin = nitrogen fertilization + soil nitrogen content (soil test in spring).

Larger deviations were found in the nitrogen fertilization of winter barley and silage maize at
the Roggenstein site because of the different nitrogen sources: CAN was mainly used in the
FM variant, while urea dominated in the 10 variant due to relative price advantages. The
higher gaseous losses of urea were taken into account by loFarm through increased nitrogen
fertilization. However, the emission targets of the European Union include a reduction in

ammonia emissions (European Parliament, 2016). In this context, urea fertilization is
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problematic and could possibly be further restricted. There were also major differences in the
nitrogen supply to wheat in the oFM and olO variants. Here, significantly less nitrogen was
applied in the olO variant. In contrast to the oFM variant, in the olO variant, organic
fertilization in wheat was divided into two applications in two out of three years, whereby
better nitrogen utilization of the organic fertilization could be assumed. Further deviations can
be seen in the sulfur fertilization at the Triesdorf site. Here, fertilization in the FM variant was
above the requirements, perhaps because of the complexity of the optimization problem itself.
The farm manager had difficulties in defining a fertilization strategy in which all nutrients

were applied in sufficient quantities.

The most important nitrogen fertilizer by volume in the 10 variant was urea at all sites (39%
to 52% of total N fertilization). In FM variants, farm managers relied on different nitrogen
fertilizers, including CAN (GB and TDeem), DAP (RS), and urea (TDgm). Phosphate supply
was predominantly provided by DAP, while TSP or PK 16 + 16 was used to a greater extent
at only two sites in the FM variant. Potash supply took place almost entirely with grain
potash. For more detailed analysis of the fertilizer strategy of loFarm, a separate study is

planned (Troster and Sauer, under review).

5.3.2 Analysis of Variance

ANOVA results are presented in Table 5-3 and considered in more detail below.

Table 5-3: Analyses of variance for yield, protein content, and market performance.

Dependent Y P MP Y_SM Y_WB Y_WW
Variable (Yield) (Protein) (Revenue) (Yield) (Yield) (Yield)
F p F p F p F p F p F p
Model 321 0.000 131 0.000 16.5 0.000 3.2 0.000 17.1 0.000 26.9 0.000
f 5139 0.000 4248 0.000 798.6 0.000 64.4 0.000 590.7 0.000 655.6 0.000
r 05 0613 18 0233 06 0581 05 0646 12 0343 09 0.453
e(F#R)
c 2772.2 0.000 3797.9 0.000 386.8 0.000 ---  ---
c#f 54 0001 412 0.000 393 0.000 --  --
e(RHCHF)
Obs. 297 198 297 99 99 99
Adj R? 0.822 0.640 0.697 0.240 0.697 0.788

Column 1 shows the model structure. Fixed factors are in lower case, random factors are in upper case: f,
fertilization; r, replications; and c, culture. Interactions are indicated by #. Dependent variable under

investigation is defined by the column headings.
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The influence of dependent variable f (fertilization) was significant in all models (p < 0.001).
When factor ¢ (crop) was included in the models, it was also significant (p < 0.001). As
expected, variable c¢ also explained a large part of the found variance, since differences in
mean yield among SM (180.1 dt ha !), WB (80.4 dt ha %), and WW (80.6 dt ha ") were very
high. In the first two models, the interpretation of the primary factors was biased due to a
significant interaction term of fertilization and crop. Thus, there were interactions between
these two factors that suggested that the fertilization factor was not equally effective in all
crops. Closer data analysis (Figure 5-4) shows that SM responded with lower yield increases
to the fertilization factor compared to the two other crops. This finding explains the
significant interaction term. Additionally, the adjusted coefficient of determination indicates
that the models were able to explain a large part of the found variance. Only the model for
SM yield (Y_SM) was an exception, with a coefficient of determination of 0.240. Fertilization
had a significant effect, but it is likely that unobserved effects, such as environmental
influences, played a much larger role in this model than they did in the other models.

ANOVA confirmed the significance of fertilization in determining yield and differences in
yield at different fertilization levels. A pairwise comparison of means (Tukey test) in
combination with a box-plot diagram illustrates the yield differences within crops,
differentiated by fertilizer level (see Figure 5-4).

Regardless of crop, there was a significant effect of fertilization compared with in the control
(0V). However, for the evaluation of DSS loFarm, direct comparisons of the variants were
necessary. For FM and 10O, the location and dispersion parameters in the box-plot diagram
indicated that no significant differences were to be expected, which was also statistically
proven (Table 5-4). For variants oFM and olO in which additional organic fertilization was
applied, slight negative yield effects were evident compared with those in purely mineral
fertilization variants. In all cases, there were no significant differences between the two
organomineral fertilized variants. For SM, only variant olO was not significantly different
from the control. For WW, there were significant differences between the olO variant and the
mineral variants, which was not the case for the oFM variant. These observations indicate that
there could be slight disadvantages to using loFarm in the case of organomineral fertilization.
For a more detailed assessment of the results, the grouped mean values of the yields, the
standard errors (SE), and the classification into Tukey groups are provided in Table 5-4.
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Figure 5-4: Location and dispersion measures for different crop yields grouped by level

of fertilizer application (n = 297).

Levels of fertilization: OV = no fertilization (n = 3 x 27); FM = farm manager variant (n = 3 x 27), 10 = model

variant (n = 3 x 27); oFM = FM + organic fertilization (n = 3 x 9); 0lO = 10 + organic fertilization (n = 3 x 9).

Within a crop (SM, WB, and WW), the following applied: means sharing a letter in the group were not

significantly different at the 5% level. * For SM, yield refers to dry matter; for WB and WW, yield was corrected

to 86% of dry-matter content.

Table 5-4: Mean values (&), standard errors (SE), and Tukey groups (Gr.) for protein

content (P), market performance (MP), and crop yields (Y) for five factor levels of

fertilization.
P MP Y_SM Y_WB Y _WW

@ SE Gr. @ SE Gr. @ SE Gr. @ SE Gr. @ SE  Gr.
OV 917 022 B 7605 325 C 1421 685 B 447 258 B 409 233 C
FM 1213 023 A 14429 326 A 1954 685 A 953 258 A 996 233 A
IO 11.96 0.24 A 14402 327 A 2031 685 A 938 258 A 975 233 A
oFM 11.11 0.38 A 13380 56.2 AB 188.1 1187 A 915 447 A 895 404 AB
0ol0 11.03 038 A 12562 562 B 171.3 1187 AB 91.7 447 A 837 404 B

Means sharing a letter in the group were not significantly different at the 5% level.
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5.3.3 Effects on Protein Content in Cereals

Overall, protein content plays an important role in determining the market and feed value of
cereals, and it is particularly influenced by nitrogen fertilization. Therefore, it is important to
measure this quality parameter when comparing fertilizer systems. ANOVA (Table 5-3)
showed that the primary effects that were tested (fertilization, crop, and their interaction) had
significant influence on the protein content in cereal grains. A pairwise comparison of means
(Tukey test) illustrates the differences in cereal protein content, differentiated by fertilizer
level (Table 5-4, Column P). There were no significant differences in the protein content in
the dry matter of all fertilized variants. They only differed significantly from the nonfertilized
control. Nevertheless, cereal protein content tended to be somewhat lower in the loFarm
variants. Dilution effects could be excluded in view of the observed yields. Due to the
comparable fertilization intensity of the treatments, a possible effect on the protein content is

best sought in the dosage and timing of late fertilization.

5.3.4 Effects of loFarm Decision Support System on Market Performance

From an economic point of view, it is useful to determine whether fertilization decisions
made with the help of loFarm can achieve comparable market performance to that of
fertilization strategies decided by farm managers. This was determined by comparing market
performance (calculated according to Eq. (5-5)). For WW, protein content was also used to
indicate quality, which determines the market price. A complete overview of the underlying

market prices is provided in Table 5-5.

Table 5-5: Overview of postharvest prices in 2016 to 2018 for silage maize (SM), winter
barley (WB), and winter wheat (WW).

Crop Year 2016 2017 2018

SM € (dtDM)’ 8.13 8.00 8.20

WB €dt™ 11.68 12.60 14.36
WW <12% XP €dt™ 12.62 14.16 14.90
WW >12% XP edt’ 14.01 14.73 15.41
WW >13% XP edt’ 14.52 15.21 15.97
WW >14% XP edt’! 15.80 16.74 17.27

XP: Protein content in dry matter.

ANOVA indicated that fertilization had significant influence on market performance (Table
5-3). The market performance of variants FM and 10 (Table 5-4, Column MP) could not be

statistically distinguished from each other, indicating that loFarm did not lead to any
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difference in market performance in the case of these two variants. However, the market
performance of organomineral variant olO was significantly lower than that of FM and 10,

but not significantly different to oFM.

5.3.5 Effects on Yield Components

Less relevant for the economic evaluation of DSS loFarm is its influence on the yield
components in cereals. From a crop-production perspective, however, important relationships
become visible with regard to the yield components. These are presented in Table 5-6 and

thus enable a more detailed agronomic interpretation of the results.

Table 5-6: Yield components of winter barley and winter wheat.

Variant: ov FM 10 oFM olO
Winter barley Thousand-grain mass (g)
GB 45 46 46
RS 42 45 49
TD 47 49 49 49 49
Winter wheat
GB 55 50 51
RS 47 51 51
TD 53 54 56 55 56
Winter barley Spikes per square meter (number)
GB 484 721 756
RS 357 609 622
TD 392 732 657 665 611
Winter wheat
GB 372 602 544
RS 466 568 502
TD 309 483 452 470 449
Winter barley Grains per spike (number)
GB 27 31 29
RS 21 34 29
TD 25 28 31 29 31
Winter wheat
GB 29 34 37
RS 16 37 41
TD 22 36 35 35 34

Variants: OV = control; FM = farm manager; 10 = loFarm; oFM and olO additionally treated with organic

fertilizer. Sites: GB = Geiselsberg; RS = Roggenstein; TD = Triesdorf.
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Apart from the control, the differences in thousand-grain weight were moderate. The main
differences between the FM and 1O or oFM and olO variants relate to the number of spikes
per square meter and the grains per spike. On the basis of this observation, it can be
concluded that the timing or synchronization between nitrogen fertilization and nitrogen
uptake was different among test varieties. A model-internal consideration of variety
characteristics in loFarm could lead to significant improvements, and possibly contribute to

the stabilization of the yield reliability of loFarm.

5.4 Discussion

The main purpose of this study was to compare the agronomic performance of the loFarm
DSS with a standard farm-fertilization strategy in a field trial. From this, it was deduced
whether fertilization strategies calculated by loFarm or by similar DSSs could be expected to
have agronomic impact. Results from Table 5-4 (compared Tukey groups) showed that there
were no significant effects of yield, protein content, and market performance within
comparable variants, with and without organic fertilization. Hence, loFarm does not impair
agronomic outcomes. The literature does not provide any studies on the agronomic effects of
DSSs with similar objectives. DSSs with similar objectives are considered to be that by Pagan
et al. (2015), by Bueno-Delgado et al. (2016), Smart Fertilizer (Smart Fertilizer
Management), and by Villalobos et al. (2020). They also have a clear focus on the least-cost
combination of fertilizers, and consider at least nutrients nitrogen, phosphorus, and potash in
parallel. In contrast, numerous other studies mainly deal with the optimal intensity of
fertilization and provide valuable knowledge in this area: For example, Wu and Ma (2015),
who state in their review that integrated nutrient management is of great importance for global
crop productivity, or Rajsic and Weersink (2008), and Mandrini et al. (2021), focusing on
economically optimal nitrogen supply. More broadly, some field-tested DSSs that simulate or
recommend the use of inputs in crop production were studied and found to be useful in
enabling agronomic performance (Araya et al., 2019, Ubelhor et al., 2015, Chuan et al., 2013,
Senderskov et al., 2015). These studies are based on crop-growth models, or apply ex ante
versus ex post analysis. However, an estimation of potential agronomic effects caused by a
primarily cost-optimized fertilization strategy (as, e.g., in loFarm) is not possible with the
help of these studies. This study fills that gap and shows that a primarily cost-optimized
fertilization strategy can keep up the pace with a standard farm-fertilization strategy from an

agronomic perspective.
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Before further discussion of the results, some limitations should be noted: due to the relatively
high variance of the dependent variable within the control variant, the requirements of
ANOVA for homoscedasticity were not met in some groups. Efforts to reduce variance by
different transformations were unfortunately not successful. If included in the respective
model, interactions of the main factors of f fertilization and c crop were always significant.
Strictly speaking, both observations led to an invalid interpretation of ANOVA. The problem
of partial heteroscedasticity can be avoided by excluding the control variant from data
analysis. However, our focus was on the comparison of the factor levels of fertilization. The
Tukey test can be reliably used under these conditions, which is why we decided not to
exclude the control variant. For comparison purposes, all group means were checked in
parallel with an unadjusted least-significant-difference t-test. Even with this more liberal test,
no significant differences were found between comparable variants FM and 10 or oFM and
olO.

Predictably, the purely mineral fertilization variants (FM and 10) and the organomineral
variants (0FM and olQO) only slightly differed from each other on the basis of their group
mean values. Therefore, care was taken in the experimental design to test them under as many
environmental conditions (year and location) as possible to obtain enough observations for
comparison. The relative standard error indicated, among other things, whether the number of
observations were sufficient to clarify the experimental question. In the case of the mineral-
fertilized variants, the relative standard error of the yield across all crops was 2.3% to 3.5%.
This allowed for a suitable estimation of the significance levels, which again confirmed that
no yield effects were expected from using loFarm instead of standard farm-manager
decisions. For organomineral variants, the range of the relative standard error was
significantly higher, at 4.5% to 6.9%. Therefore, additional observations are necessary to
make a more robust estimation of the significance levels for these variants. This was not
possible in the field trial because the necessary plot technology for digestate application was
only available in TD. Comparing variants oFM and olO was also affected by weather and
possible fluctuations in the nutrient content in the used digestate: for the fictitious 150 ha
farm, 4000 m® of digestate was available per year, which could be allocated to the crops
almost freely in terms of quantity and timing. Thus, it was not possible to guarantee
homogeneous weather conditions and homogeneous nutrient content in the digestate between
the two variants, which inevitably led to unobserved influences on the nutrient supply. In
sum, the comparison of the organomineral variants was significantly weakened. However,

findings tend to indicate that farm managers were able to better integrate the digestate into
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their fertilization planning than in the loFarm model. Therefore, it might make sense to leave
the planning of organic fertilization to the farmer, and to consider this as an external
specification in loFarm, so that operational conditions, such as trafficability of the fields or
storage capacities, can also be taken into account. Alternatively, it would be conceivable to
adopt such restrictions in loFarm and redefine the effectiveness of organic fertilizers within
the model.

Market performance must be considered to evaluate the economic performance of loFarm.
However, volatile prices add another random factor: changes in price relations influence the
contrast between group means, and could also influence whether there are significant
differences between groups. It is also possible that farms use the entire grain yield for feed
purposes and do not receive the market value, making it necessary to include a substitution
value. In this case, the protein content of WB would also affect the substitution value.
Analysis of yield, protein content, and market performance led to a largely consistent trend in
differences between treatment groups. Therefore, despite the mentioned limitations, it could
be assumed that moderate price or value changes did not have a significant influence on the

assessment of market performance.

The financial-savings potential of using loFarm was investigated in an independent
experiment (Troster and Sauer, 2021b). Results showed that the loFarm DSS leads to an
average cost saving of €66 ha'. This savings potential is mainly based on the least-cost
combination of fertilizers, at largely identical nutrient inputs. In comparison, according to
(Evangelou et al., 2020), the savings potential of sensor-based fertilizer systems ranges from
€33 to €92 ha !, whereas manufacturing companies assume savings of €20 to €30 ha’. At
least comparable results were obtained using loFarm without additional technical equipment.
As no significant differences were found in yield, protein content, and market performance for
the mineral variants, the mentioned cost advantage could be fully attributed to using the
loFarm DSS. In the case of organomineral variants, the reliability of the results was less
robust. In a direct comparison, variants oFM and olO were not found to be significantly
different. However, in contrast to oFM, olO was somewhat behind the mineral-fertilized
variants in terms of production. Therefore, if organic fertilizers are used, the oFM variant
tends to have an advantage from an agronomic point of view. The actual extent of this
difference and whether it is compensated for by the cost optimization of the fertilization

strategy requires further investigation.
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5.5 Conclusions

Our findings and the previous literature indicate that carefully developed DSSs are able to
provide superior solutions in complex situations. When optimizing a fertilization strategy,
loFarm considers a large amount of information and restrictions, which is not possible for
decision makers to process. Through this computation ability, loFarm can save fertilizer costs
without having to accept a reduction in yield and quality. Therefore, a cost-optimized
fertilization strategy is not fundamentally in conflict with other agronomic objectives. The
benefits for farmers and their advisors are evident: lower costs with the same levels of market
performance. Since the search for a least-cost fertilization strategy is of global importance, the
results of this study are also of international interest. However, by adapting the objective
function, further objectives could also be achieved using loFarm: instead of a least-cost
fertilization strategy, minimizing the CO, footprint associated with fertilization could also be
optimized. Therefore, CO,-efficient fertilization strategies could be developed, which is
important in the context of climate change, both socially and internationally. However, further
research is needed to determine CO, emissions caused by individual fertilizers. Currently, it is
necessary to expand the range of available crops in the loFarm DDS to enable broad
applicability for farmers and consultants. The final goal is to enable farmers to directly use
loFarm. For this purpose, the data exchange must be performed via an online platform. For a
high level of user friendliness, it is important that digitally available farm data can be
imported. The calculation of an optimal fertilizer strategy is then carried out via external
servers with high computing capacity. The result is stored in the online platform and made

digitally available to farmers in the form of a fertilization strategy.
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5.6 Appendix

Table A 5-1: Detailed documentation of fertilizer application in dt per hectare (1 dt =

100 kg).
Geiselsberg: 2016 | 10 | | FM
Fertilizer Code* | SM WB WW | Fertilizer Code | SM WB WW
Mar | 12:18,46,0,0,0,—36 | 2.6 | 02:27,0,0,4,0,-9 | 25 25
| 21:0,0,40,6,5,0 | 3.3 | |
| 26:0,0,0,14,0,53 | 3.0 | |
Apr | 12:18,46,0,0,0,-36 | 1.8 | 02:27,0,04,0,-9 | 1.0
| 24:0,0,0,25,20,0 | 0.8 | 19:0,0,46,0,0,-1 | 25
| 04:46,0,0,0,0,-46 | 1.2 | 07:21,0,0,0,24,-63 | 15
| | | 12:18,46,0,0,0,-36 | 2.0
May | 04:46,0,0,0,0,—46 | 2.1 1.7 | 02:27,0,04,0,-9 | 2.0
| 21:0,0,40,6,5,0 | 14 47 | 04:46,0,00,0,-46 | 3.0
| 12:18,46,0,0,0,—36 | 24 26 | 12:18,46,0,0,0,-36 | 2.0
| 07:21,0,0,0,24,-63 | 0.8 | |
| 25:0,0,0,0,2,50 | 3.0 | |
| 26:0,0,0,14,0,53 | 6.1 | |
Jun | 04:46,0,0,0,0,-46 | 1.1 | 02:27,0,04,0,-9 | 2.0
Jul | 12:18,46,0,0,0,-36 | 11 | |
Geiselsberg: 2017 | 10 | | FM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Aug 19:0,0,46,0,0,-1 | 29 45 | |
Oct 26:0,0,0,14,0,53 | 30 30 | |
Nov | | 26:0,0,0,14,0,53 | 60 6.0
Mar 02: 27,0,0,4,0,-9 | 1.3 | 02:27,0,04,0-9 | 25
21:0,0,40,6,5,0 | 0.8 08 | 19:0,0,46,0,0,-1 | 15
24:0,0,0,25,20,0 | 0.8 | 13:20,20,0,0,0,-31 | 35
Apr 07:21,0,0,0,24,-63 | 1.0 | 13:20,20,0,0,0,-31 | 35
02: 27,0,0,4,0,-9 | 25 | 02:27,0,04,0,-9 | 20
| | 21:0,0,40,6,5,0 | 2.0
May 04: 46,0,0,0,0,-46 | 20 30 | 02:27,0,0,4,0,-9 | 1.0
12: 18,46,0,0,0,—36 | 25 | 04:46,0,0,0,0,-46 | 2.0
02: 27,0,0,4,0,-9 | 21 | 12:18,46,0,0,0,—36 | 3.0
07:21,0,0,0,24,-63 | 0.9 | |




126

Chapter 5

Continuation Table of A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg).

Geiselsberg: 2018 | 10 | | FM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Mar 04: 46,0,0,0,0,—46 | 15 | 02:27,0,0,4,0,-9 | 25 3
12:18,46,0,0,0,—-36 | 24 | 12:18,46,0,0,0,—36 | 2
04: 46,0,0,0,0,—46 | 2 | 26:0,0,0,14,0,53 | 3
07:21,0,0,0,24,-63 | 0.8 | 19:0,0,46,0,0,—1 | 5
12:18,46,0,0,0,—-36 | 0.8 | 22:0,0,40,6,5,0 | 5
26:0,0,0,14,0,53 | 37 | 24:0,0,0,25,20,0 | 15
Apr 07:21,0,0,0,24,-63 | 0.8 | 04:46,0,0,0,0,-46 | 1.7
26:0,0,0,14,0,53 | 7.3 | 12:18,46,0,0,0,-36 | 45
02: 27,0,0,4,0,-9 | 47 | 21:0,0,406,5,0 | 5
12: 18,46,0,0,0,-36 | 22 | 26:0,0,0,14,0,53 | 13
May 04: 46,0,0,0,0,—46 | 08 13 | 02:27,0,0,4,0-9 | 23 25
21:0,0,40,6,5,0 | 1.2 | |
24:0,0,0,25,20,0 | 29 | |
Jun | | 02:27,0,0,4,0,-9 | 15
Triesdorf: 2016 | 10 | | FM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Mar 04: 46,0,0,0,0,—46 | 1.3 0.8 | 15:15,15,15,0,2,-15 | 4.0
12: 18,46,0,0,0,-36 | 0.8 | 17:235,5,0,6,-23 | 25
21:0,0,40,6,5,0 | 4.8 | |
Apr 21:0,0,40,6,5,0 | 84 5.6 | 04:46,0,0,0,0,-46 | 25
12: 18,46,0,0,0,-36 | 0.9 | 12:18,46,0,00,-36 | 2.0
| | 06:26,0,0,0,13,-49 | 2.0
May 04: 46,0,0,0,0,—46 | 21 0.8 | 06:26,00,0,13-49 | 15
12: 18,46,0,0,0,—36 | 36 08 14 | |
Jun 04: 46,0,0,0,0,—46 | 1.1 | 06:26,0,0,0,13,-49 | 2.0 2.7
Jul 12: 18,46,0,0,0,—36 | 2.2 | |
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Continuation of Table A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg).

Triesdorf: 2017 | 10 | | FM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Feb 21:0,0,40,6,5,0 | 16 038 | |
Mar 02: 27,0,0,4,0,-9 | 11 25 | 05:24,0,0,0,6,-34 | 25
| | 20:0,16,16,2,7,6 | 50 4.0
| | 18:23,5,5,0,6,-23 | 2.5
Apr 11:9,0,0,0,0,-9 | 24 | 05:24,0,0,0,6,—34 | 20 15
02: 27,0,0,4,0,-9 | 21 | |
21:0,0,40,6,5,0 | 24 | |
May 02: 27,0,0,4,0,-9 | 16 16 1.7 | 02:27,0,04,0-9 | 3.0
07:21,0,0,0,24,-63 | 08 038 0.8 | 05:24,0,0,0,6,-34 | 25
11:9,0,0,0,0,-9 | 23 | 04:46,0,0,0,0,—46 | 3.0
12:18,46,0,0,0,-36 | 14 038 | 12:18,46,0,0,0,-36 | 1.0
04: 46,0,0,0,0,~46 | 1.8 | |
Jun 11:9,0,0,0,0,-9 | 11 | |
Triesdorf: 2018 | 10 | | FM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Mar 02: 27,0,0,4,0,-9 | 1.4 | 05:24,0,0,0,6,-34 | 25
04: 46,0,0,0,0,—46 | 39 1.0 | 20:0,16,16,2,7,6 | 1.7
24:0,0,0,25,20,0 | 0.9 | 22:0,0,40,6,5,0 | 3.7 6.4
| | 06:26,0,0,0,13,-49 | 25
| | 19:0,0,46,0,0,-1 | 3.6
| | 24:0,0,0,25,20,0 | 2.0
Apr 02: 27,0,0,4,0,-9 | 10 18 | 14:15520,28-14 | 80 10.0
24:0,0,0,25,20,0 | 0.8 | 24:0,0,0,25,20,0 | 1.3 1.8
04: 46,0,0,0,0,—46 | 1.7 | 04:46,0,0,0,0,—46 | 35
07:21,0,0,0,24,-63 | 08 | 22:0,0,40,6,5,0 | 5.8
12:18,46,0,0,0,-36 | 12 | |
21:0,0,40,6,5,0 | 12 | |
May 04: 46,0,0,0,0,—46 | 1.1 | |
12:18,46,0,0,0,—36 | 0.9 | |
21:0,0,40,6,5,0 | 7.4 | |
Jun 02: 27,0,0,4,0,-9 | 0.8 | |
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Continuation of Table A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg).

Roggenstein: 2016 | 10 | | FM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Mrz 04: 46,0,0,0,0,—46 | 08 23 | 12:18,46,0,00,-36 | 3 4
07: 21,0,0,0,24,-63 | 0.8 | 24:0,0,0,25,20,0 | 0.5 0.5
12: 18,46,0,0,0,—36 | 08 1 | |
26:0,0,0,14,0,53 | 55 41 | |
21:0,0,40,6,5,0 | 28 | |
Apr 26:0,0,0,14,0,53 | 5.1 | 02:27,0,0,4,0,-9 | 2.6
May 04: 46,0,0,0,0,—46 | 33 12 | 02:27,0,04,0-9 | 31 17
12:18,46,0,0,0,—36 | 4 08 08 | 04:46,0,0,0,0,—46 | 25
21:0,0,40,6,5,0 | 84 15 18 | 12:18,46,0,0,0-36 | 3
| | 21:0,0,40,6,5,0 | 10
| | 26:0,0,0,14,0,53 | 10
Jun 12:18,46,0,0,0,—-36 | 1.6 2.3 | 02:27,0,0,4,0,—9 | 3.2
Jul 03: 28,0,0,0,0,—28 | 17 | |
Sep | | 26:0,0,0,14,0,53 | 12 12
Roggenstein: 2017 10 FM
Fertilizer Code* SM WB WW Fertilizer Code* SM WB WW
Feb 21:0,0,40,6,5,0 19 038
Mrz 02: 27,0,0,4,0,-9 2.8 02: 27,0,0,4,0,-9 22 22
26:0,0,0,14,0,53 4.7 8.6
03: 28,0,0,0,0,—28 5.7
Apr 11:9,0,0,0,0,-9 0.8 01:27,0,0,0,0,-15 2.8

| I I
| I I
| I I
| I I
| I I
| | |
| | |
26:0,0,0,14,0,53 | 10 | 10:46,0,0,0,0,-46 | 25
| | |
| | |
| | |
| | |
| | |
| | |
| | |

07:21,0,0,0,24,-63 11 07:21,0,0,0,24,-63 15 1
10: 46,0,0,0,0,—46 2.7 12: 18,46,0,0,0,—36 3 3 2.5
12: 18,46,0,0,0,—36 2.1 22:0,0,40,6,5,0 10
May 04: 46,0,0,0,0,—46 1.2 01:27,0,0,0,0,-15 2
07:21,0,0,0,24,-63 08 0.8
12: 18,46,0,0,0,—36 31 25
Jun 12: 18,46,0,0,0,—36 0.8
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Continuation of Table A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg).

Roggenstein: 2018 | 10 | | FM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Mrz 02: 27,0,0,4,0,-9 | 1.1 1 | 06:26,000,13,-49 | 25 2.3
04: 46,0,0,0,0,~46 | 1.9 15 | |
12:18,46,0,0,0,—36 | 27 | |
07: 21,0,0,0,24,~63 | 08 | |
Apr 26: 0,0,0,14,0,53 | 45 3.2 | 01:27,0,0,0,0,-15 | 1.2 14
02:27,0,0,4,0,-9 | 2 | 02:27,0,0,4,0-9 | 0.7
04: 46,0,0,0,0,—-46 | 2 | 12:18,46,0,00,-36 | 35 3.7 23
12: 18,46,0,0,0,—36 | 3.6 | 26:0,0,0,14,0,53 | 45
21:0,0,40,6,5,0 | 8.1 | 22:0,0,40,6,5,0 | 11
May 04: 46,0,0,0,0,-46 | 15 | 01:27,0,0,0,0,-15 | 35 29
21:0,0,40,6,5,0 | 0.8 5 | |
12: 18,46,0,0,0,-36 | 1.5 | |
Triesdorf: 2016 | olO | | oFM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Mrz 28: Digestate | 13 05: 24,0,0,0,6,—-34 | 25 25
04: 46,0,0,0,0,-46 | 1.3 |
21:0,0,40,6,5,0 | 25 43 |
Apr 12: 18,46,0,0,0,-36 | 1.7 28: Digestate | 18 22
May 07:21,0,0,0,24,-63 | 0.8 07:21,0,0,0,24,-63 | 2
28: Digestate | 48 20 28: Digestate | 40
04: 46,0,0,0,0,-46 | 1 |
12: 18,46,0,0,0,-36 | 1.4 |
Jun 04: 46,0,0,0,0,—46 | 1 05: 24,0,0,0,6,—-34 | 2 2
Triesdorf: 2017 | olO | | oFM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Mrz 03: 28,0,0,0,0,—28 | 1.1 3.5 05: 24,0,0,0,6,—34 | 25 25
28: Digestate | 13 20: 0,16,16,2,7,6 | 5
Apr 28: Digestate | 13 43 13 28: Digestate | 25 35 20
May 07:21,0,0,0,24,-63 | 0.8 0.8 12:18,46,0,0,0,—-36 | 1
11:9,0,0,0,0,—-9 | 1.9 1.3 05: 24,0,0,0,6,—34 | 1 2
12: 18,46,0,0,0,-36 | 0.8 0.8 |
07:21,0,0,0,24,-63 | 0.8 |
Jun 11:9,0,0,0,0,-9 | 0.8 |
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Continuation of Table A5-1. Detailed documentation of fertilizer application in dt per hectare (1dt = 100kg).

Triesdorf: 2018 | olO | | oFM
Fertilizer Code* | SM WB WW | Fertilizer Code* | SM WB WW
Mrz 02: 27,0,0,4,0,-9 | 14 06:26,0,00,13,-49 | 2
04: 46,0,0,0,0,—46 | 2.8 19: 0,0,46,0,0,-1 | 0.8
24:0,0,0,25,20,0 | 0.8 05: 24,0,0,0,6,-34 | 25
| 20:0,16,16,2,7,6 | 5
| 24:0,0,0,25,20,0 | 2.2
Apr 28: Digestate | 13 24 44 04: 46,0,0,0,0,-46 | 14
04: 46,0,0,0,0,—46 | 1.3 02:27,0,0,4,0,-9 | 1 15
| 28: Digestate | 20 20 40
| 20:0,16,16,2,7,6 | 1.2
| 24:0,0,0,25,20,0 | 15
May 02: 27,0,0,4,0,-9 | 2.2 02: 27.0.0.4.0.-9 | 2
12:18,46,0,0,0,—36 | 0.8 15: 15,15,15,0,2,-15 | 4
24:0,0,0,25,20,0 | 1.3 |
07: 21,0,0,0,24,-63 | 0.8 |
Jun 12:18,46,0,0,0,-36 | 1.7 |

* First two digits of fertilizer codes are used to assign the fertilizer. Colon is followed by the respective
composition of the fertilizers with the nutrient contents for N, P,Os, K,0, MgO, S, and their CaO effects.
Fertilizers: 01, 02, and 05 = CAN, 03 = ammonium nitrate urea solution, 04 and 08 = urea, 06 = ammonium
sulfate nitrate; 07 = sulfuric acid ammonia, 09 = ENTEC26, 10 = stabilized urea, 11 = ammonium nitrate urea
solution + water, 12 = DAP, 13 = NP; 14 = ENTEC NPK, 15 to 18 = NPK, 19 = TSP, 20 = PK, 21 and 22 =
potash, 23 = kainite, 24 = kieserit, 25 to 27 = lime, 28 = digestat. Variants: 10 = loFarm, FM = farm manager,
0lO =10 + digestate, oFM = FM + digestate.
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Table A 5-2: Results from soil testing (Nmin) and farmers’ yield expectation (YEX).

Site — Geiselsberg | Triesdorf | Roggenstein
Variant — I0 FM | 10 FM 0olO oFM | 10 FM

Crop and Nmin Nmin YEX™ | NpinNpin Nmin Nmin - YEX | Npin Npin YEX
Date | kg ha* dtha' | kgha® kgha' dtha® | kgha' dtha™
Winter Barley | |

02/2016 41 41 75 | 46 46 46 46 75 | 26 26 80
04/2016 75 | 70 | 80
07/2016 H* | H* | H*
08/2016 82 83 75 | 65 69 72 67 75 | 62 74 80
02/2017 62 65 75 | 41 43 45 42 75 | 19 12 80
06/2017 70 | 70 | 75
07/2017 H* | H* | H*
08/2017 161 85 75 | 126 175 90 98 75 | 33 80
02/2018 39 44 75 | 31 33 34 35 75 | 23 23 80
07/2018 H* | H* | H*
Winter Wheat | |

02/2016 52 52 85 | 50 50 50 50 85 | 30 30 89
04/2016 85 | 70 | 89
08/2016 106 74 H* | 49 41 43 37 H* | 24 21 H*
09/2016 85 | 85 | 89
02/2017 7% 83 85 | 51 50 44 46 85 | 20 16 89
04/2017 85 | 80 | 89
06/2017 75 | 75 | 89
07/2017 H* | H* | H*
08/2017 108 116 | |

09/2017 85 | 85 | 89
10/2017 85 | 64 60 62 56 85 | 67 89
02/2018 49 44 85 | 45 34 43 41 85 | 32 32 89
07/2018 H* | H* | H*
Silage Maize | |

04/2016 41 41 176 | 49 49 49 49 160 | 26 26 192
08/2016 89 95 176 | 91 85 95 92 160 | 50 192
09/2016 H* | H* | H*
03/2017 38 51 176 | 38 23 26 30 160 | 30 28 192
05/2017 176 | 160 | 176
08/2017 88 98 176 | 1048 89 90 160 | 176
09/2017 H* | H* | H*
10/2017 176 | 160 | 192
03/2018 18 25 176 | 32 32 36 35 160 | 15 15 192
09/2018 H* | H* | H*

* Harvest; ** farmers yield expectation in dt ha™ (1 dt = 100 kg). Only months in which new information or

changes occurred compared to the previous month are shown. Changes highlighted in bold.
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Abstract

Context: Fertilization accounts for a significant share of the costs of crop production. Farmers
therefore aim to find cost-efficient fertilization strategies. Due to numerous and partly volatile
influencing factors, such as fertilizer price, yield expectation, product price, weather

conditions, etc., this is a very complex and recurring optimization problem in crop production.

Objective: This study aims to analyze whole-farm fertilization strategies from an economic
point of view. In the first part, differences between cost-efficient and inefficient fertilization
strategies are analyzed. In the second part, the influence of different farm conditions on cost-
efficient fertilization strategies is investigated. In summary, both parts contribute to generate a
deeper economic understanding of cost-efficient fertilization strategies on farm level, thus

extending the current knowledge.

Methods: First, an experiment was conducted in which participants had to plan a fertilizer
strategy for a simplified farm. The data obtained were analyzed with linear regression
analyses and t-test to reveal the characteristics of cost-efficient fertilizer strategies. For part
two, a typical Bavarian farm was used to analyze extreme changes in farm conditions,
following the ceteris paribus principle. The determination of the fertilization strategy was
done with the decision support system loFarm, which was used as a benchmark for cost-

efficient fertilization strategies.

Results and conclusions: Our results show that certain fertilizers are more common in cost-
efficient fertilizer strategies. The timing of application of base fertilizers is also important.

Inefficient fertilizer strategies have surpluses of sulfur and potash, incurring costs and
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impacting sustainability. Application costs represent a significant portion of total costs, but
play a minor role compared to other factors. Fertilizer prices or relative price differences were
identified as the largest factor influencing the fertilizer strategy. Furthermore, this study
provides an example of bounded rationality of human decision makers in complex situations.
The decision support system loFarm provides help and is able to determine cost-efficient

fertilizer strategies.

Significance: This research analyzes the cost-efficiency of fertilizer strategies considering
application costs. The focus is on the comparison and evaluation of: (i) fertilizer selection, (ii)
timing of fertilizer measures, and( iii) the influence of farm conditions. The study provides a
new and important contribution to the understanding of cost-efficient fertilizer strategies at
the farm level. Farmers benefit significantly from this contribution, as it shows opportunities
to increase cost-efficiency. The results show that cost-efficient fertilizer strategies are at the

same time more sustainable, which also demonstrates the societal benefit of this study.
Keywords

loFarm, cost efficiency, profit maximization, fertilization strategy, fertilizer application,

sustainable intensification

6.1 Introduction

Economic efficiency is an objective that is generally pursued by rational actors. This objective
requires technical efficiency and allocative efficiency. In the context of agricultural
production, both the available production technology and the production program must be
considered fixed when making short-term production decisions. Therefore, the most cost-
efficient production possible is of great importance. Cost efficiency means that the
combination and intensity of production factors and means of production are chosen in such a
way that the resulting marginal profit does not become negative. Hence, cost efficiency

follows a profit function, which in turn is based on at least one production function.

Since the fertilization of crops accounts for a significant proportion of variable production
costs, a cost-efficient fertilization strategy contributes significantly to the economic efficiency
of the farm. The isolated consideration of a cost-efficient fertilization strategy is already a
complex optimization problem in itself, which in summary consists of two questions: Which
fertilizer intensity (related to all relevant nutrients) promises the economically optimal,
technical input/output ratio? Which combination of available fertilizers is able to provide the

optimal fertilizer intensity at minimum cost? To answer these questions, all price information
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is relevant. In addition, growth conditions, as well as legal, operational and crop production
requirements must be taken into account in order to develop the most cost-efficient fertilizer
strategy. Fertilizer strategy is understood to be a farm-by-farm plan that includes, for each
combination of field plot and crop, over the period of a crop rotation: (i) fertilizer selection;
(i1) fertilizer application rate; (iii) timing of fertilizer measures. The fertilizer strategy must be
adjusted several times over the course of a planning period (e.g., crop rotation cycle) to
account for changes in prices, for example. In summary, this results in innumerable possible
combinations of potential fertilizer strategies that differ significantly in terms of their cost-

efficiency.

The characteristics of cost-efficient fertilizer strategies and their differences from inefficient
fertilizer strategies are of particular interest to farmers and consultants. Thus,
recommendations for their own fertilizer strategies can be derived. The differentiation
between efficient and inefficient measures can be found in numerous scientific studies:
Wimmer and Sauer (2020) analyze accounting data to identify efficient farm diversification
strategies; Mollenhorst et al. (2020) train a machine-learning algorithm with organic
fertilization management data to derive efficient organic fertilization decisions; Grassini et al.
(2011) studied the effect of various management practices on corn production efficiency in
the Western US corn belt. The topic of “fertilizer strategies” per se, is also heavily represented
in the literature: Studies by Gil-Ortiz et al. (2020), Dimkpa et al. (2020), Mi et al. (2019) and
Noellsch et al. (2009) look at the differences in fertilization strategies with conventional and
slow release nitrogen fertilizers; Kozlovsky et al. (2009) compare Cultan fertilization with
conventional fertilization strategies; Song et al. (2021) and Koch et al. (2004) examine
variable rate control as a possible fertilization strategy. These are primarily studies of
technical efficiency. Studies that focus on cost-efficient fertilizer strategies often specifically
consider the optimal intensity of nutrient supply (LI et al., 2021; Tabak et al., 2020; Sihvonen
et al., 2018; Xu et al., 2017; Chuan et al., 2013) and, in rare cases, the least-cost combination
of fertilizers (Villalobos et al., 2020; Bueno-Delgado et al., 2016; Pagan et al., 2015; Minguez
et al., 1988; Babcock, 1984). Instead of a very broad definition of “fertilizer strategy,” the
studies mentioned focus on a specific aspect in each case and examine it mostly on the basis
of trials in single crops. The situation is similar with production technology trials in the
fertilizer industry, where in-house fertilizers are compared with competing products. Due to a
lack of representativeness and validity, these competitive comparisons have no scientific

value and are therefore not published accordingly
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It should be noted that the literature provides a great amount of information on specific
fertilization issues. This information can be used to draw conclusions about the benefits of
different technologies or to derive suitable fertilizer intensities. Farmers or consultants need to
convert this knowledge into a cost-efficient fertilizer strategy tailored to the farm. This
requires defining the choice of fertilizers as well as the amount and timing of fertilization. To
this end, there are currently no studies in the literature that specifically refer to the
characteristics of cost-efficient and inefficient fertilizer strategies at farm level. Since
fertilizer strategies in practice are influenced by the capabilities of decision makers and by
natural and respective farm conditions, two research questions arise: (i) How do cost-efficient
fertilizer strategies differ from inefficient ones in terms of fertilizer selection, dosage, timing
and resource use? (ii) What is the influence of natural conditions and farm conditions on a

cost-efficient fertilizer strategy?

To answer the first question, we refer back to a fertilizer quiz in which we had asked the
participants to plan a fertilizer strategy. In this experiment, the natural and farm conditions
were fixed. Despite uniform specifications and information, fertilizer strategies differed
considerably in terms of design and cost-efficiency. These differences can be useful to
improve cost-efficiency without using or having access to optimization tools, avoiding
associated transfer costs. We address the second question using the decision support system
(DSS) loFarm (Troster and Sauer, 2021b). loFarm generates fertilizer strategies with optimal
cost-efficiency on farm level. Application costs are also taken into account. Previous studies
have shown that loFarm, primarily through least cost combination, results in an average cost
saving of €66 ha™* (Troster and Sauer, 2021b) at the same fertilizer intensity. Neither yield
nor quality in crop production are affected to a significance level of 5% (Troster and Sauer,
2021a). loFarm is used to determine optimal fertilization strategies under different farm
conditions. The main aim of this is to clarify whether different fertilization strategies arise for
different farm types and what these potential deviations ultimately look like in concrete terms.
Previous studies (Troster and Sauer, 2021b; Troster et al., 2019) have already pointed out
relevant influencing factors in this context. Thus, we assume that the following factors will
have an influence on the fertilization strategy: Farm size (hectares), internal infrastructure,

organic fertilizer accumulation and heterogeneity of soil fertility.

This article shows characteristics in which cost-efficient and inefficient fertilization strategies
differ and what influence varying farm conditions exert in this respect. This article thus
contributes to a better understanding of cost-efficient fertilization strategies. Furthermore, it is

clarified whether general recommendations for a cost-efficient fertilizer strategy can be



136 Chapter 6

derived from this information or whether the support of a DSS is indispensable. This
information is particularly relevant for farmers and consultants who want to implement more
economically efficient, but also resource-friendly fertilization strategies. In addition, the
fertilizer industry benefits from the results of this study, e.g., in developing new products, or

in connection with strategic decisions in the company.

6.2 Material and methods

6.2.1 The loFarm decision-support system

loFarm is a novel decision support system for identifying cost-efficient fertilizer strategies at
the farm level (Troster and Sauer, 2021b). In the context of this study, loFarm is used, on the
one hand, as a cost-efficient benchmark for comparing different fertilization strategies. On the
other hand, loFarm is based on a clear mathematical structure and is therefore well suited for
scenario analyses in which a consistent solution path is important. Over an entire crop rotation
cycle, the DSS loFarm makes concrete specifications for selecting fertilizers, application rate
and application time for each field plot. By regularly updating fertilizer and product prices,
yield expectations, soil test results and weather information, loFarm can dynamically adjust
the fertilizer strategy. The mathematical structure of loFarm belongs to the category of so-
called “Mixed Integer Non-linear Problems.” The objective function is designed to find the
most cost-efficient combination of fertilizers to meet crop requirements. In addition to the
market prices of the fertilizers, the application costs of the fertilizers are also considered.
Within the model, marginal revenues and marginal costs are also taken into account, which

may limit the intensity of fertilization if it is economically reasonable.

6.2.2 An experiment as data source

To assess the economic performance of loFarm, a fertilizer quiz was conducted as part of a
previous study (Troster and Sauer, 2021b). Participants were mainly reached via “mailing lists
of alumni associations of higher agricultural education institutions and universities.”
Participants were asked to define their experience level according to the following
description: Expert = person possessing either scientific experience in plant nutrition or
economic optimization models; Farmer = person with at least five years of professional
experience in agriculture and plant nutrition; Student = student with advanced knowledge in
economic optimization models and plant nutrition; “Others.” For further analysis, the last

group was excluded.



6.2 Material and methods 137

The task was to define a complete fertilizer strategy for a 150-hectare farm, with three equal-
sized field plots over a period of three years. To highlight differences in fertilizer selection
and timing, we ensured that the participants and the loFarm DSS followed identical guidelines
for fertilizer intensity and timing. These guidelines are based on the fertilization standards
valid in Bavaria (Sothern Germany) (Wendland et al., 2018), but are comparable to other
state-specific standards in Germany (Zorn et al., 2007): N and S are allocated according to the
yield expectation within a season. For N, soil test results are considered. The basic nutrients
(P, K, and Mg) are applied according to the nutrient removal of the crop rotation, whereby
soil nutrient content leads to additional increases or decreases as required. Seasonal
requirements for basic fertilization only arise if the soil nutrient content falls below a critical
level; otherwise these nutrients are freely allocable within a crop rotation. To keep up with
these guidelines, the participants were provided with a planning tool that contained
requirement specifications for the individual nutrients (N, P, K, Mg, S) as well as a selection
of 25 fertilizers commonly available on the market. This allowed the participants to
concentrate on selecting, dosing and timing the fertilization measures. The objective for the
participants was to identify the most cost-efficient fertilizer strategy, and to help with this, a
complete listing of all fertilizer prices covering the entire period was handed out along with
the quiz. The relevance of application costs was also pointed out (The quiz is available
online™). For comparability reasons, participants who were not able to follow the guidelines
had to be excluded from further analysis. Thus, the data set for analysis contains only
fertilizer strategies that meet uniform guidelines. It is therefore expected that there would be
no significant differences in the output of crop production, which is supported by the results
of a multi-year field trail (Troster and Sauer, 2021a). The cost-efficiency of the fertilizer

strategies can therefore be assessed based on total costs alone.

On average, it took the participants 81 minutes to complete the task. The best participant’s
total cost for fertilizer and application is about €10 per hectare per year more expensive than
IoFarm's fertilizer strategy. On average, this difference is as high as €66 per hectare per year.
The data submitted by the quiz participants contain much more information than just the total
costs: each data set represents a separate fertilization strategy that was more or less successful

from a cost perspective. This allows a detailed characterization of the fertilization strategies.

Y https://drive.google.com/file/d/14rBHNKKDuBq8oyeeVUXuek2id1B9z_Dw/view?usp=sharing
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6.2.3 Classification of similar fertilizers

The participants could choose from 25 fertilizers on the fertilizer quiz, which is why
participant fertilizer strategies differed considerably. To transparently compare the fertilizer
strategies, it is therefore necessary to group similar fertilizers together in order to make
potential solution patterns visible, which is why we distinguish between fertilizers with low
(xL) and high (xH) nutrient content, e.g., 31% nutrient content is a high nutrient content. This
limit was purposely chosen so as not to distort the group balance between these two
categories too much. As a second characteristic, we distinguish between single-nutrient
fertilizers (Sx) and compound fertilizers (Cx). A fertilizer is considered to be a single-nutrient
fertilizer if it contains only N, P or K and, in parallel, no more than 20% of its total nutrient
content comprises the nutrients S and Mg. The combination of these differentiation criteria
results in the groups SL, SH, CL, and CH. Special lime fertilizers form their own group (CA).
The fertilizers and their group allocation can be found in the appendix (Table A 6-1). Based
on this grouping, our primary focus is to determine what proportion of the applied nutrient
quantity a participant drew from each of the five fertilizer groups. This should allow
conclusions to be drawn about the fertilizer strategy as well as the total costs of fertilization

(including application).

6.2.4 Data preparation and comparison of fertilization strategies

Several steps were necessary to form an informative data set from the fertilization strategies
of the individual quiz participants. First, the raw data that could be derived directly from the
individual fertilization strategies was listed. This included, for example, the amount of
fertilizer used, number of fertilizer applications, as well as the application rate of each
nutrient. Based on this information, further variables were generated that are important for
analyzing the fertilization strategy. These variables include costs for purchasing fertilizers and
their application costs, nutrient losses or nutrient balances. A large number of the variables
describe the proportion that fertilizers contribute to the total supply of each nutrient. In total,
675 variables comprise each fertilizer strategy. Relevant excerpts of these data can be found
in the appendix (Table A 6-2, Table A 6-3).

Statistical calculations were performed using STATA SE 13 software (StataCorp, 2017). The
data set was analyzed for potential factors influencing the variable FA_Cost (total cost from
fertilizer and application) using linear regression analysis. Eq. (6-1) represents the associated

linear regression model. The coefficient g, represents a constant. The remaining coefficients
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B, represent the weighting factors of the independent variables x,. The residual error is

covered by the error term ¢ .
FA_Cost=f,+ B X +..0.X, +& (6-1)

The variable FA_Cost was also used as the sole cluster variable to divide the fertilization
strategies into clusters with different cost efficiencies. The median-linkage clustering method
in combination with the Euclidean option as a continuous dissimilarity measure led, as
desired, to a differentiation into three clusters: The cluster with the most cost-efficient
fertilization strategies also includes the optimal loFarm solution. We assign this cluster to the
economically “efficient” fertilization strategies. The remaining two clusters can be described
as “average” and economically “inefficient” fertilization strategies. This provided the
opportunity to perform mean comparisons between clusters using t-tests in further analysis.
Since more than two groups (efficient, average, and inefficient clusters) were compared, the
Tukey test was used (Tukey, 1949). This post-hoc test is a multiple comparison of means that

corrects for alpha error accumulation and is therefore considered to be conservative.

6.2.5 Scenario analysis using the DSS loFarm

The DSS loFarm was applied under different farm conditions to identify potential impacts on
cost-efficient fertilization strategy. As a starting point for this study, data from an existing
farm (“original farm”) was used. The farm is managed by one of the authors, therefore
necessary details of on-farm infrastructure are well known. Complete information on all farm-
to-field and field-to-field distances of other farms is not directly accessible. It is possible to
generate such datasets (Machl et al., 2016), but these georeferenced data are highly sensitive,

which is why we were unable to obtain access for this under data protection law.

The “original farm” (see Table 6-7, column 1) cultivates 63 hectares, of which one third each
is winter barley, winter wheat and silage maize. The acreage and cropping structure
correspond to an average Bavarian farm where, according to the Bavarian Agricultural Report
(StMELF, 2020), cereals and fodder crops are cultivated on 60.4 hectares. No organic
fertilizers are available. In order to be able to consider field-to-field distances, the total time
required to reach all field pieces (in a circuit) was used according to Troster et al. (2019). This
amounts to 65 minutes. The field pieces were grouped into three management units (f1 to f3).
This greatly facilitates the clarity and comparability of the results. Based on the size and the
farm-to-field distances of the individual field pieces, a weighted average farm-to-field

distance in minutes was determined for the three management units. The third of the plots
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close to the farm (f1) has a farm-field distance of only 0.75 minutes. Management unit 2 and
f3 are 2.55 and 10.74 minutes away, respectively. Soil nutrient content (P, K, and Mg) of the
management units was determined using representative farm plots and classified into
categories “A” (very low) to “E” (very high) according to the guideline of the Bavarian State
Institute of Agriculture (Wendland et al., 2018). Accordingly, a classification in categories
“A” and “B” results in an increase in the respective nutrient requirement. Classification in
categories “D” and “E” results in the respective nutrient requirement being halved or

cancelled.

The initial situation of the original farm was now changed selectively in order to be able to

99 ¢

represent the following scenarios: “small farm,” “big farm,” “nearby fields,” “faraway fields,”

2 ¢

“homogeneous soil fertility,” “medium slurry accumulation” and “high slurry accumulation.”
In addition, to test the influence of relative price changes on fertilizer strategy, fertilizer prices
collected between August 2015 and October 2018 were artificially manipulated. The fertilizer
prices can be viewed in conjunction with the fertilizer quiz online (link provided above).
Using binary random numbers, a decision was made for each fertilizer at the beginning of
each year whether to raise or lower the original prices by 10%. This results in a data set with
annually changing price relations. Price trends of the individual fertilizers within the period
under consideration, however, remain. The associated scenario is labeled “artificial price

shift.” More detailed information on the scenarios, as well as an overview of the results, can

be found in Table 6-7.

6.3 Results

The results show that cost-efficient fertilizer strategies are primarily influenced by relative
changes in fertilizer prices. The farm-specific conditions investigated only partially influence
the fertilizer strategy.

6.3.1 Differences between cost-efficient and inefficient fertilization
strategies

In order to find out how cost-efficient fertilizer strategies differ from inefficient ones, a
detailed analysis of the data from the fertilizer quiz is carried out in this point. The most cost-
efficient fertilizer strategy of loFarm is also shown separately in the group mean comparisons

to enable cross-comparisons.
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Fertilizer decision

Particularly relevant is identifying fertilizers with a high or low economic advantage. In order
to be able to assess the importance of the fertilizers separated by nutrients, it is first calculated
which share of a nutrient a fertilizer covers in total within the framework of the present
fertilizer strategy. If, for example, the potash supply is covered exclusively by gr. potash, this
fertilizer has a share of 100% in the potash supply. This shows what contribution each
fertilizer has made to the respective quantities of nutrients applied. Numerous regression
analyses were then carried out to determine the impact of these fertilizer variables on the total
cost of fertilization, using the trial and error method. In the end, a model was created that is
able to relate each nutrient to a specific fertilizer (see Table 6-1).

Table 6-1: Influence of important fertilizers on the total cost of fertilization.

FA_Cost Coef. SE P>|t|
N%CAN+Mg -18373 9805 0.074
P%DAP -14852 4452 0.003
K%ENTEC NPK 13039 6580 0.060
Mg%Lime+Mg -32785 9736 0.003
S%gr. potash -76149 24935 0.006
constant 178999 5509 0.000

n=29 | Prob > F = 0.000 | Adj. R-squared = 0.7365

FA Cost = total cost of fertilizer and application; Coef. = regression coefficient; SE = standard error;
N%CAN+Mg = contribution of CAN+Mg to total nitrogen fertilization; P%DAP = contribution of DAP to total

phosphorus fertilization, etc.

With the exception of the K source (K%ENTEC NPK), all variables contribute to lower total
costs in the model from Table 1. It is therefore to be expected that low-cost fertilization
strategies rely more on CAN+Mg as a nitrogen source, DAP as a phosphorus source,
Lime+Mg as a magnesium source and gr. potash as a sulfur source and in parallel avoid
ENTEC NPK as a potash source. Due to the uniform scaling of the independent variables, it is
also possible to rank the influencing variable on the basis of the level of the coefficients.
Accordingly, the use of gr. potash as a source of sulfur is of particular importance. A multiple
mean comparison between the clusters formed in advance (cost-efficient, average and
inefficient fertilizer strategies) provides additional insights into different frequencies of

fertilizer use (see Table 6-2).
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Table 6-2: Fertilizers with significant differences between group means of clusters.

lo- Cluster Cluster Cluster Cluster
Fertilizer Farm 1 «—versus— 2 «—versus— 3 «—versus— 1
@% @% SE P>t ©@% SE P>tf @% SE P>t O%
N%AHL1to3 4.0 6.5 0.01 0.001 0.8 0.01 0.773 0.0 0.01 0.001 6.5

N%DAP 21.3 21.7 0.04 0.018 9.3 0.02 0.133 1.5 0.04 0.002 217

P%DAP 80.0 81.8 0.14 0.015 340 0.07 0.143 5.7 0.13 0.002 81.8
P%TSP 20.0 182 0.16 0.355 420 0.07 0.185 70.2 014 0.049 182

K%gr. potash 100 100 0.19 0.063 51.1 0.08 0.700 359 017 0.044 100
Mg%gr. potash ~ 10.4 9.4 0.02 0.130 5.2 0.01 0.415 2.8 0.02 0.039 9.4

S%qr. potash 16.7 175 0.03 0.002 6.8 0.01 0.248 2.6 0.02 0.000 17.5
S%Kieserit 33.3 630 0.08 0240 49.1 003 0165 347 0.07 0.028 63.0

Notes: The optimal solution “IoFarm” is shown separately as a benchmark; Cluster 1 = cost-efficient fertilization
strategies; Cluster 2 = average fertilization strategies; Cluster 3 = inefficient fertilization strategies; SE =
standard error; N%AHL1to3 = amount of AHL1to3 to total nitrogen fertilization; P%_DAP = contribution of
DAP to total phosphorus fertilization, etc.

Only a few of the combinations of nutrient source (e.g., N%) and fertilizer (e.g., DAP) differ
significantly in their frequency of use between cluster 1 (cost-efficient fertilizer strategies) to
cluster 3 (inefficient fertilizer strategies). Table 6-2 only shows combinations of nutrient and
fertilizer for which significant differences in use frequency can be detected, at least when
comparing clusters 1 and 3 (see right part of table). Significant differences in use frequency
between clusters 1 and 2 are particularly relevant. Although AHL1to3 contributes only
slightly (with 6.5%) to the nitrogen supply in cluster 1, it is still considered a success-
determining factor for a cost-efficient fertilization strategy. Also relevant is DAP as a source
of N and phosphorus, respectively, and gr. potash as a source of cost-efficient sulfur supply.
Thus, comparing means essentially supports the results of the regression analysis. In looking
at the raw data, we also notice some patterns that were not detectable, or not sufficiently
detectable, using the statistical methods: Fertilizers with a combination of N, P and K, as well
as stabilized nitrogen fertilizers are rarely used in cost-efficient solutions; gr. potash plays an
important role for the supply of S, but the time of application must then be within the growing
season; by far the greater part of the sulfur supply is via SSA in the context of the fertilizer
quiz. The importance of SSA depends on its price, but also strongly on the pH value, as well
as the K and Mg supply of the soil. Here is an example: A high pH value and a low Mg
supply favor SSA, because due to the strong acidifying effect of this fertilizer, more
Lime+Mg must be used to compensate for the acidifying effect. Lime+Mg is also the most
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economical source to ensure Mg supply. In contrast, at a low K supply and low pH, SSA
becomes less relevant. In this case, larger portions of the S requirement are usually covered

within the framework of potash fertilization via gr. potash.
Fertilizer categories

In a further model, it was investigated whether it might also be possible to derive conclusions
about entire fertilizer groups. Fertilizer categorization was carried out as described in Section
6.2.3. Values between 0 and 1 were calculated for the proportional nutrient supply from the
variables SL, SH, CL, CH, and CA. A value of 1 would mean that the respective quiz
participant had obtained 100% of the total nutrient supply from one and the same fertilizer
category. However, the total cost of fertilization (FA_Cost) cannot be explained by the
nutrient proportions from the five fertilizer categories. The associated model (not shown)
already fails at the F statistic (Prob > F 0.1475).

Timing of basic fertilization with K and P

P and K are nutrients that do not necessarily need to be spread every season, which presents
the option of using potential low price periods to purchase these nutrients in order to save on
costs. For this purpose, the total amount of applied nutrients in 2016, 2017, and 2018 was
compared with the dependent variable FA_Cost in the form of a regression analysis for both P
and K (see Table 6-3).
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Table 6-3: Influence of the timing of basic fertilization on the total cost of fertilization.

FA Cost Coef. SE P>t
P2016 1.786 1.087 0.115
P2017 0.806 1.057 0.454
P2018 1.323 1.022 0.209
K2016 2.254 0.759 0.007
K2017 2.623 1.041 0.019
K2018 1.848 0.929 0.059

constant 36286.28 53581.99 0.505

n=29 | Prob > F = 0.0238 | Adj. R-squared =
0.3095

FA_Cost = total cost of fertilizer and application; Coef. = regression coefficient; SE = standard error; P2016 =

phosphorus fertilization in 2016, K2018 = potash fertilization in 2018, etc.

For timing phosphorus fertilization (variables P2016 to P2018), no significant influence on
the total costs can be detected. For timing potash fertilization, however, significant influences
can be detected at least in the years 2016 and 2017. The coefficients of the variables K2016 to
K2018 indicate that K had a comparatively high price in 2017. In contrast, in 2018, the price
level for K was considerably lower. Thus, it can be expected that the basic supply of K in

cost-efficient fertilizer strategies was preferentially provided in 2018.

The comparison of means (not shown) provides a significant difference only for the use of P
in 2016. In cluster 1, significantly (P>[t| = 0.019) less P was used in this year compared to
cluster 3. With this insight, more importance should be attached to the coefficient of variable
P2016 in the above regression analysis (see Table 6-3). With the value of 1.786, it takes by far
the highest value of variables P2016 to P2018, indicating high phosphorus prices in 2016. In
contrast to the regression analysis, the t-tests (due to high standard errors) for the timing of
potash fertilization between the clusters did not reveal any verified differences. A look at the
raw data reveals that gr. potash was also used in cost-efficient solutions to some extent in
2016 and 2017, but then in reduced amounts and specifically in the spring to satisfy a
proportion of the sulfur requirements in parallel. This confirms the importance of gr. potash

and its dual function as a source of K and S.
Application costs and number of fertilization measures

On average, the application costs of all quiz participants account for 5.2% of the total costs.

Despite this relatively low share of costs, a significant (P>|t| = 0.013) correlation between
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total costs (dependent variable: FA_Cost) and application costs (independent variable:
A_Cost) was found in a linear regression analysis (Prob>F = 0.013; Adjusted R? = 0.1782).
The coefficient for A_Cost is 7.35, indicating that high application costs are related to high
total costs. The “Measures” variable indicates the number of all fertilization measures within
the three-year period. With a positive correlation of 0.750, it is closely linked to application
costs (A_Cost), which is why the “Measures” influence was tested separately to prevent
autocorrelation. However, “Measures” as an independent variable is not suitable for drawing

conclusions about the total costs of a fertilizer strategy (Model: Prob>F = 0.2745).

Table 6-4: Statistical comparison of means for application costs and number of

measures.

loFarm Clusterl <versus—> Cluster2 <&versus—> Cluster3 <versus—> Clusterl
Test- Variable @ 4] SE  P>|t| @ SE  P>|t| @ SE  P>|t| @

A_Cost [€] 8323 7189 385 0.207 7926 172 0.272 8535 344 0.039 7189
Measures [No] 37 263 3.43 0666 295 153 0.322 33.0 3.07 0570 26.3

Cluster 1 = cost-efficient fertilization strategies; Cluster 2 = average fertilization strategies; Cluster 3 =
inefficient fertilization strategies; SE = standard error; A _Cost = application cost; Measures = number of

fertilization measures within 3 years.

The comparison of the cluster means (Table 6-4) confirms the result from the previous
regression analysis. It is interesting, however, that the optimal solution of loFarm, which was
only presented here as a reference, stands out with high costs for application and many

fertilization measures.
Nutrient losses and balances

Another factor that affects both the fertilization costs and the evaluation of the sustainability
of this measure is a nutrient supply that is as close as possible to the requirements. For the
basic nutrients P, K and Mg, balances were shown to the quiz participants during the
processing of the experiment. In these balances, the nutrient requirements resulting from the
withdrawals of the crop rotation were compared with the applied nutrients (taking into
account the nutrient content of the soils). The corresponding names of the variables are
“P_Bil,” “K_Bil” and “Mg Bil.” For nutrients N and S, this balancing approach is not
suitable due to the high potential for displacement in the soil. However, information on
potential losses could be generated at least indirectly from the available data: For the required
sulfur supply, crop-specific target values were considered demand. In addition, it was defined

that effective sulfur fertilization can only take place in the time window from February to
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May. Sulfur applications above the demand, or outside this time window were summarized in
the variable “S loss” as sulfur loss. N leaching losses unfortunately cannot be derived.
However, since nitrogen fertilization was only allowed within reasonable time windows
during the experiment and the fertilizer requirement was predefined, it is assumed that
leaching losses do not differ significantly. However, theoretical conversion losses of the
different nitrogen forms were considered during the course of the fertilizer quiz. The sum of
these conversion losses is summarized in the variable N_loss. Table 6-5 shows the influence

of the variables mentioned on the fertilizer costs (FA_Cost).

Table 6-5: Relationship between demand-based and cost-efficient fertilization.

FA Cost Coef. SE P>|t|
N_loss 0.272 1.502 0.858
S_loss 1.276 0.202 0.001

P_bil 0.787 0.739 0.296
K_bil 1.295 0.524 0.021
Mg_bil -0.900 0.506 0.089

constant 134161 8918 0.001

n=29 | Prob > F = 0.0001 | Adj. R-squared = 0.6960

FA_Cost = total cost of fertilizer and application; Coef. = regression coefficient; SE = standard error; N_loss =
theoretical conversion losses of nitrogen fertilizers; S_loss = displaced or overapplied sulfur fertilization; P_bil =

balance of P fertilization and withdrawal, etc.

Despite the relatively high pure nutrient costs in the purchase of N and P, the associated
variables (N_loss and P_bil) have no significant influence on fertilizer costs. This can only be
explained by the fact that the quiz participants fertilized largely according to demand in this
respect and that there are therefore no significant differences. There are significant differences
for S (S_loss) and K (K_bil). In both cases, overfertilization leads to higher fertilizer costs
and to a deterioration in resource efficiency. In Table 6-6, a statistical mean comparison is

provided to show the differences between clusters 1 to 3.
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Table 6-6: Statistical comparison of means with regard to demand-based fertilization.

Test- lo-  Cluster Cluster Cluster Cluster
Variable Farm 1 «—versus— 2 «—versus— 3 «—versus— 1
@ @ SE P>t (] SE P>t ] SE P>t @

N_loss [kg] 6562 6388 552 0.206 5328 247 0.926 5534 494 0.492 6388
S_loss[kg] 3680 4036 2835 0.060 11486 1268 0.001 24486 2535 0.001 4036
P_bil [kg] 0 201 1048 0.344 1834 469 0.640 2786 937 0.177 201
K_bil [kg] 565 437 1334 0498 2106 597 0.123 4825 1193 0.054 437
Mg_bil [kg] 1319 4456 1653 0.998 4347 739 0.243 7076 1478 0.474 4456

Cluster 1 = cost-efficient fertilization strategies; Cluster 2 = average fertilization strategies; Cluster 3 =
inefficient fertilization strategies; SE = standard error; N_loss = theoretical conversion losses of nitrogen
fertilizers; S_loss = displaced or overapplied sulfur fertilization; P_bil = balance of P fertilization and
withdrawal, etc.

The differences in sulfur losses (S_loss) are very significant. Only between cluster 1 and
cluster 2 there is no clear significant difference. The difference in the potassium balance
(K_bil) between cluster 1 and cluster 3 is almost significant, confirming the result of the
regression analysis in Table 6-5. However, the high nitrogen losses in the optimum solution
(loFarm) and in cluster 1 are surprising. The main reason for this is the somewhat greater use
of urea as a nitrogen source. The higher conversion losses, which were used for urea
fertilization, could apparently be tolerated due to relative price advantages. In cluster 3, the
sum of nutrient surpluses is by far the highest. Cost-inefficient solutions thus also appear to be
less sustainable and less resource-efficient. To test this, a new variable (NPKMgS) was
formed from the sum of the five variables N_loss to Mg_bil. A regression analysis (Prob>F =
0.0000; adjusted R2 = 0.5262) shows the highly significant (P>|t| = 0.001) influence of this
variable on the increase in fertilizer costs. The differentiation between clusters 1 and 3, or
clusters 2 and 3, is also highly significant (P>|t| = 0.001). This result is extremely relevant as

it shows how cost efficiency and sustainability have a complementary objective at this point.
Identification and utilization of abrupt, relative price changes

In order to be able to put the fertilizer prices into perspective, a mean pure nutrient price was
first derived for N (€0.81 kg™), P (€0.86 kg™*) and K (€0.69 kg™) on the basis of the average
prices of CAN, TSP and gr. potash. Subsequently, pure nutrient costs for these nutrients could
be derived for all fertilizers. Continuous changes in the price relations as well as abrupt price
changes were analyzed graphically. A particularly striking price drop was recorded for TSP
from June to July 2016 (see Figure 6-1). This price drop was detected and used by the loFarm
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model. Only six of the quiz participants also recognized this price drop and used TSP at that
time. This shows that even clear price signals are often not recognized by human decision

makers.
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Figure 6-1: Pure nutrient price of P based on triple superphosphate in 2016.

6.3.2 Influence of farm conditions on cost-efficient fertilizer strategies

loFarm is able to calculate cost-efficient fertilization strategies. Due to the clear mathematical
structure of the DSS, the solution path is consistent. loFarm is therefore well suited for
investigating the influence of farm conditions on cost-efficient fertilization strategies. In the
following sections, loFarm is used to highlight the following farm conditions: Farm size,
infrastructure, soil fertility, organic fertilizer availability, and price changes. Table 6-7
provides a central overview of all scenarios studied and their impact on the cost-efficient
fertilizer strategy. The goal of this comparison is to identify possible trends in fertilizer
selection in order to locate particularly relevant factors influencing a cost-efficient fertilizer

strategy. This contributes to a deeper understanding of cost-efficient fertilization.
Influence of farm size (acreage)

To examine the influence of farm size, the farm size of the “original farm” was changed from
63 hectares to 6 hectares—“small farm”—or to 1,500 hectares—*big farm”—under otherwise
identical conditions. Although it can be assumed that there is a correlation between farm size

and on-farm infrastructure (e.g., farm-to-field distance), both aspects are examined separately.
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In principle, it cannot be excluded that both large farms with surrounding fields and small
farms with distant fields occur. The change in farm size was purposely chosen drastically in
order to be able to clearly highlight potential effects on fertilizer strategy. Table 6-7, columns
1 through 3 compares the “original farm” with the two extreme variants of “small farm” and
“big farm.” The total costs for fertilizer and application differ significantly (small farm:
€324 ha*; original farm: €272 ha™"; big farm €265 ha™"). The share of application costs in the
total costs, as well as the application costs per 100 kg fertilizer make clear that the cost
differences are almost exclusively caused by changes in application costs. The reason for this
is the nonlinear composition of application costs according to Troster et al. (2019). Included
in this: setup time per fertilizer application, costs for loading the spreader, farm-to-field and
field-to-field trips, costs incurred during field work. Small farms are at a cost disadvantage
compared to large farms, primarily due to setup time. By reducing the number of fertilizer
measures from 32 (“original farm”) to 30 (“small farm”), an attempt is made to compensate
for this cost disadvantage. However, effects on the selection of fertilizers cannot be identified
due to the size of the farm. For example, the ratio of nutrient proportions from the different
fertilizer categories (SL, SH, CL, CH and, CA) remains almost unchanged. However, a minor
adjustment response of the “small farm” should be mentioned: the share of the fertilizer
category SL is reduced by 2% compared to “big farm”, whereas slightly more of the higher
concentrated fertilizer category SH is used. The main nutrient sources for N, P, K, Mg and S
are identical for the various-sized farms: urea (N), DAP (P) and, gr. potash (K, Mg, S), each
with approximately equal percentages of nutrient supply.

Overall, it can thus be stated that the farm size exerts only a minimal influence on the

fertilization strategy.
Influence of the internal infrastructure

The on-farm infrastructure is the distance between farm and field, as well as the position of
the fields in relation to each other (field-to-field distance) in combination with the existing
mechanization. Changes in this area have a significant effect on transport and application
costs. In order to test possible effects on fertilizer strategy selection, the farm-field distance of
the management units (f1 to f3) was changed to one minute each for “nearby fields” and to 30
minutes each for “faraway fields.” In parallel, the duration for the complete approach of all
field pieces (field-to-field distance) had to be adjusted to 6 minutes for “nearby fields” and to
180 minutes for “faraway fields.” Table 6-7, columns 4 and 5 compares the two scenarios. As

expected, both scenarios differ in total fertilizer and application costs (nearby fields:
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€266 ha *; faraway fields: €288 ha™). Also in this case, it can be seen that the difference in
total costs is mainly caused by the application costs. However, the change in the fertilizer
strategy itself is small: more fertilizer of the SL category is used in the “nearby fields” variant
than in “original farm.” This is mainly a higher proportion of CAN+Mg. Due to the short
transport distances, the nutrient density in the fertilizers used is less important, so this change
is comprehensible. With regard to the other fertilizer categories and the main fertilizers used,
the adjustments are insignificant compared to the “original farm.” It is interesting to note that
even in the “faraway fields” scenario, significantly more of the lower concentrated SL
fertilizers (10%) are used than in the “original farm.” This initially is contrary to the logic that
fertilizers with high nutrient concentrations are preferred in case of long transport distances.
However, in fact, part of the urea fertilization (SH) was replaced by CAN+Mg (SL) in this
scenario (compare Main N source Table 6-7). The reason for this is probably the strong
acidifying effect of urea, which in parallel also increases the need for compensatory liming.
Partial replacement of urea with CAN+Mg can reduce fertilization measures and application
costs. In the “faraway fields” scenario, the share of the CH fertilizer group is 3% higher than
the original level. This increase is directly related to the growing importance of DAP as a P
(and N) source (see Main P source Table 6-7). Since DAP has no other disadvantages, the

benefits of the enormously high nutrient density of this fertilizer are fully realized.

As a result, on-farm distances play a minor role in the fertilizer strategy; the share of transport
costs in the total costs of fertilization is too small to exert an influence on the fertilizer

strategy.
Influence of soil nutrient content

In the “original farm” scenario, the soil content of the nutrients P, K and Mg is relatively
heterogeneous. The classifications are between “B” low and “E” very high. In order to
investigate the influence of soil nutrient content on the fertilization strategy, a scenario with
an absolutely homogeneous soil nutrient content was created under otherwise identical
conditions. For this purpose, it is assumed that the nutrients P, K and Mg are each present in
optimal concentrations and can therefore be classified as “C.” This setup as well as the results
for this variant can be found in Table 6-7, column 6, “Homogeneous soil fertility.” Due to the
changes, slightly more P and Mg must be spread in total than in the “original farm” scenario.
As a result, the total costs for fertilizer and application are higher than before (€287 ha™).
Due to the homogeneous soil nutrient content of all management units, the fertilization

strategy can be simplified. This reduces the fertilization measures from 32 to 28 measures,
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which also leads to a reduction in application costs. In total, the nutrient percentage shifts
from the fertilizer category CH toward SL and SH. This is due to the fact that significantly
less urea is used compared to "original farm.” Instead, more CAN+Mg is used. DAP (CH) is
replaced by TSP (SH) as the main source of P. TSP has an advantage in homogeneous P soil
conditions because it can be used simultaneously in all crops, largely independent of the
season. This allows optimal use of periods of low prices and also enables fertilization
measures to be combined to reduce application costs. Changes in terms of K, Mg and S
fertilization are marginal. As in all previous scenarios, gr. potash is used for the most part as

the fertilizer of choice for these nutrients.

It should be noted that differences in soil nutrient content affect the complexity of the

optimization problem and therefore significantly influence the fertilization strategy.
Influence of the amount of organic fertilizer

The type and availability of organic fertilizers vary in practice from farm to farm. The
"original farm", in which no organic fertilizer is available, was therefore compared with two
scenarios with organic fertilizer (see Table 6-7): “medium slurry accumulation” with a
nitrogen accumulation from livestock of 80 kg N ha™* and “high slurry accumulation” with
the maximum organic nitrogen fertilization currently permitted in Germany of 170 kg N ha™™.
Slurry fertilization covered a considerable proportion of the nutrient requirement in both
variants. As a result, the cost of purchasing commercial fertilizer and the associated
application costs drop drastically to €179 ha * (medium slurry accumulation), or to €55 ha™*.
The availability of organic fertilizer also has a significant effect on the number of mineral
fertilization measures. In the “high slurry accumulation” scenario, the farm would manage
with just 13 mineral fertilization measures in the 3-year period under consideration. Since
slurry must be classified in the CL fertilizer group, the nutrient percentage of this fertilizer
group increases from its original 0% to 44% or 78%. Due to this massive change, the
percentages of the other fertilizer groups can no longer be directly compared with the
previous scenarios. However, in both cases, a clear decrease in the SH fertilizer group is
noticeable. This decrease is mainly due to a reduced use of urea and TSP. The evaluation of
the main nutrient sources for the different nutrients is dominated by slurry in both scenarios.
Only the main source of S stays inorganic and has changed from gr. potash to SSA. Further
adjustments to the selection of purchased commercial fertilizers can only be detected when
looking at the second-most important nutrient source after slurry: For the medium slurry

accumulation scenario, CAN+Myg is the most important purchased N fertilizer, accounting for
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27% of the N supply. For Mg supply, Lime+Mg is mainly used. DAP remains the main
commercial fertilizer for P and gr. potash remains the main commercial fertilizer for K. In the
“high slurry accumulation” scenario, neither P nor K is purchased externally. The second-
most important N source besides slurry is urea (12%). Lime+Mg (8%) is used as a source for

Mg. S needs are primarily covered by SSA.

In summary, the availability of organic fertilizers affects several issues at once: (i) external
nutrient requirements; (ii) the cost of fertilizer purchase and application; (iii) the distribution

and number of fertilizer applications; (iv) the choice of fertilizers themselves.
Influence of relative price changes of fertilizers

So far, major changes in the fertilizer strategy have only occurred in the scenarios with
organic fertilizer use and with changed soil nutrient conditions. In order to test whether
relative price changes on the fertilizer market have a noticeable influence on the fertilizer
strategy, fertilizer prices were artificially changed as described in Section 6.2.5.The result of
this analysis can be found in Table 6-7, column 9. Despite moderate price adjustments of
+10%, different fertilizers are now selected for N (50% CAN+Mg) and P (71% TSP) than in
the “original farm.” With regard to the origin of K, Mg and S, the fertilizer strategy remains
relatively constant. Here, too, gr. potash is mainly used, although somewhat more use is made
of other fertilizers for sulfur supply than in the original situation.

Relative changes in fertilizer prices thus have a major impact on cost-efficient fertilizer

strategies.
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Discussion

This study investigated the characteristics of cost-efficient fertilizer strategies. For this
purpose, an experiment in the form of a fertilizer quiz was conducted in which the participants
had to set up a fertilizer strategy that was as cost-efficient as possible. On the other hand, this
study also clarifies whether or how different farm conditions influence a cost-efficient
fertilizer strategy. This study will also help to increase knowledge about cost-efficient
fertilizer strategies and, if possible, derive general recommendations for action for farmers

and advisors.

According to this and further work (Kietbasa et al., 2018; Rajsic and Weersink, 2008), a
nutrient supply that is as close to demand as possible is particularly relevant for the cost-
efficiency of fertilizer strategies. Quiz participants had the supply of the N and P nutrients
largely under control. Fertilizing with N and P is strictly regulated in Germany (Bundestag,
2017; Bundestag, 2009), which is why farmers pay particular attention to it. However, human
decision makers find it difficult to meet all crop nutrient requirements in an equally balanced
manner. As a result, inefficient solutions result in significant over-supply of S and K, which,
of course, is associated with unnecessary costs. A look at the total nutrient surpluses
(NPKMgS) also shows that cost-efficient fertilizer strategies have significantly lower nutrient
surpluses. This in turn is evidence that an economically efficient fertilizer strategy makes an
important contribution to resource efficiency and sustainable land use. This is also the
conclusion of a study on the efficiency of mineral fertilizer use in Europe (Expdsito and
Velasco, 2020), as well as of a case study on sustainable agriculture by Kietbasa et al. (2018).
Although a general recommendation can be formulated at this point: “All crops should be
fertilized according to nutrient demand,” this requirement is not new and was also known to
the quiz participants. Therefore, it can be assumed that this recommendation simply cannot be
fully implemented by the human decision maker. The mean time required (81 min) and the
education level of the participants suggests carefully planned fertilization strategies on their
part and reinforces this conclusion. The same is true for the recognition of clear price signals,
which we could demonstrate with the example of the abrupt price drop of TSP (see Figure
6-1). Despite complete information (prices, weather, yield expectation, etc.) and a clear focus
on profit maximization, the participants of the experiment could not keep a central assumption
of production theory, namely: The assumption of rational behavior. Complex problems often
cannot be fully understood by humans and limited rational behavior occurs (Simon, 1959). On
the other hand, it is also possible that the transaction costs or costs of acquiring information to

solve the problem optimally are so high for the decision maker that a suboptimal solution to
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the problem may be rational from their perspective (Simon, 1959). loFarm is an important
tool for overcoming these barriers. It allows cost-efficient fertilization strategies to be located

and updated at regular intervals.

The analysis of the fertilizers used showed that significantly more DAP, gr. potash and
lime+Mg were used in cost-efficient solutions (cluster 1). Here, DAP covers about 80% of the
phosphorus demand and about 22% of the nitrogen demand and was thus an economically
relevant source for both nutrients. Gr. potash also fulfills a significant dual function in cost-
efficient solutions: 100% of the potash supply is realized via gr. potash, and in parallel around
17% of the sulfur supply is achieved. In order to take advantage of the dual function of both
fertilizers, farmers and consultants must make sure to apply these fertilizers in spring. Also
significant is the use of lime+Mg to ensure magnesium supply. In addition, the studies show
that NPK fertilizers were not used in cost-efficient solutions. Other studies, however, come to
different results here: Sayegh et al. (1981) found on poorly supplied soils in the Middle East
that NPK fertilizers have a positive effect on yield at many locations and should therefore be
used. There was no economic evaluation of the results in this context. If NPK fertilizers are
evaluated with pure nutrient costs, they are at times definitely more favorable than single-
nutrient fertilizers, which can also be shown for the period of this study (Schiebel, 2015 -
2018). The reason for avoiding NPK fertilizers in cost-efficient solutions lies rather in the
fixed nutrient composition of these fertilizers. NPK fertilizers meet the exact farm
requirements only in exceptional cases and therefore make it difficult to supply nutrients in
line with requirements. However, compound fertilizers that are specifically tailored to the
requirements of the farm are an interesting option. The perfect nutrient composition of such
blended fertilizers can be identified with the help of loFarm, which eliminates the

disadvantage of a fixed nutrient composition of NPK fertilizers.

The benefits of the fertilizers mentioned at the beginning (DAP, gr. potash and lime+Mg) are
clearly dependent on relative price changes in the fertilizer market. Lahmiri (2017) studied the
price volatility of rock phosphate, DAP, TSP, urea, and potassium chloride before and after
the global financial crisis in 2007, finding that external shocks lead to volatile fertilizer
markets and are associated with relative price changes among fertilizers. External shocks are
also to be expected in the future, as the current global COVID-19 pandemic teaches us. For
this reason, relative price changes in the fertilizer market can also be expected in the future,
which is why no long-term recommendations can be derived for farmers and consultants on

the basis of the fertilizers currently considered to be beneficial.
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During the analysis, it became apparent that the importance of application costs for a cost-
efficient fertilizer strategy was often overestimated by the quiz participants. While the impact
of application costs on the total cost of fertilization is significant, striving for the lowest
possible application costs leads to several undesirable side effects. To achieve low application
costs, the number of fertilization measures must be reduced. As a consequence, the nutrient
quantities per measure are increased. This is done, for example, by using NPK fertilizers or by
reducing the distribution of nitrogen fertilization to a few applications. All in all, a small
number of fertilization measures leads to savings in application costs, but at the same time
this makes it more difficult to combine fertilizers cleverly in the sense of demand-based
fertilization. In addition, it is more difficult to benefit from the relative price advantages of
individual fertilizers. Fertilizer systems that are designed to minimize the number of
fertilization measures are more affected by these undesirable side effects. An example of this
IS CULTAN fertilization. This fertilization strategy is evaluated quite differently in the
literature. For example, Kozlovsky et al. (2009) and Sedlaf et al. (2011) come to significantly
higher, lower, and non-differentiable yield effects in different years compared to standard
nitrogen fertilization. The effects of CULTAN fertilization or other aggregated N fertilization
measures on the total fertilization costs of a crop rotation, however, remain unclear in the
literature. Unfortunately, no recommendation for practice can be derived regarding
prioritizing application costs. On the one hand, it has been shown that application costs have a
relevant influence on the total costs of fertilization, on the other hand, a demand-based
nutrient allocation is by far the most important factor to save costs. If both goals are not

compatible, the demand-based nutrient allocation has to be prioritized.

To test the influence of farm size, infrastructure, soil fertility and the availability of organic
fertilizers, a typical Bavarian farm was used, which was subjected to extreme changes in the
respective categories according to the ceteris paribus principle. Contrary to the original
assumption, the analysis showed that the factor farm size has no visible influence on the
selection of a cost-efficient fertilizer strategy. Only a minor influence is caused by the on-
farm infrastructure. Unfavorable infrastructure does increase application costs, but even under
the conditions of the “faraway fields” scenario with a 30-minute farm-to-field distance, the
influence of application costs, accounting for 12% of total costs, was not large enough to
cause significant changes in fertilizer strategy. We therefore conclude that the factors of farm
size and infrastructure (within realistic limits) do not have a significant impact on fertilizer
strategy. Future versions of loFarm may therefore be able to omit the consideration of

transportation costs (farm-to-field and field-to-field), thereby saving considerable
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computational resources. In contrast, the factors of soil fertility and the availability of organic
fertilizers must be evaluated differently. Both factors directly influence the need for nutrients.
In the case of homogeneous soil fertility, fertilization measures can be saved, since no field-
specific requirements have to be taken into account. Both factors change the selection of
fertilizers and the timing of fertilization. In practice, the soil fertility factor differs even on a
small scale within farmland. The availability and nutrient content of organic fertilizers also
vary a great deal from farm to farm. Both factors are therefore of great importance for a cost-

efficient fertilization strategy and must be taken into account.

The previous findings on cost-efficient fertilizer strategies (loFarm) suggest that a large part
of the optimization potential must come from the least-cost combination of fertilizers (type,
quantity and timing). This assumption could be confirmed with the “artificial price shift”
scenario. Even a slight manipulation of prices led to a recognizable adjustment of the fertilizer
strategy. It also seems that a higher variability of fertilizer prices accommodates the
optimization potential of loFarm, because with total costs of €264 ha™* the scenario “artificial
price shift” was significantly cheaper than fertilization in the “original farm.” Overall, relative
price changes in the fertilizer market are commonplace (Lahmiri, 2017), so regular

recalculation is also required for a cost-efficient fertilizer strategy.

The results from the comparison of fertilizer strategies (Section 6.3.1) are based on a low
number of quiz participants (n=31). Even with the greatest efforts, it was not possible to
motivate more voluntary participants, which was also due to the large amount of time
required to participate in the fertilizer quiz. A further simplification of the experiment or
payment for participation was purposely rejected, since only intrinsically motivated
participants show a real will to optimize and can thus serve as a reference for loFarm (Stanley
et al., 2020; Barge and Gehlbach, 2012; Goritz, 2006). The data set was analyzed using
standard statistical methods. The optimal solution of loFarm itself appears only once in this
data set. Therefore, in the regression analyses and t-tests performed, the influence of the
optimal solution is not accentuated. In the context of the comparisons of means (see Table
6-2, Table 6-4, Table 6-6), the optimal solution of loFarm was additionally shown in order to
be able to point out special features if necessary. However, statements made about cost-
efficient fertilizer strategies can also be confirmed with regard to the optimal solution of

loFarm.

The second part of the analysis (Section 6.3.2) is based as described on a typical Bavarian

farm, which was subjected to extreme changes by undergoing different scenarios. By
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consistently applying the ceteris paribus principle, it is possible to analyze the various farm
conditions in the scenarios very precisely. This knowledge is helpful for deriving statements
for farms that are subject to other conditions. For more applicability, however, it would be
helpful to supplement the analysis with actual, but different types of farms. This might lead to
combination effects that are suppressed in an analysis according to the ceteris paribus
principle. However, due to the inaccessibility of information regarding the farm infrastructure,

this consideration had to be postponed.

6.5 Conclusions

This study clarifies the distinguishing features between cost-efficient and inefficient
fertilization strategies. The influences of different farm conditions were also demonstrated.
Here, it is shown that the homogeneity of soil fertility and the availability of organic
fertilizers have a far greater influence on fertilization strategy than a farm’s size and
infrastructure. Ultimately, however, the study also shows that relative price variations among
fertilizers dominate cost-efficient fertilizer strategy design. Prices clearly influence the
selection of fertilizers and the timing of fertilizer application. Nevertheless, some of the
results of this study remain valid regardless of the fertilizer market and farmers and
consultants should therefore consider them when thinking about cost-efficient fertilizer
planning: nutrient surpluses should be avoided; application costs are not the primary issue in
fertilizer planning; standard NPK fertilizers are difficult to integrate due to their fixed nutrient
composition. Overall, it can be seen that the humans as decision makers are mentally unable
or unwilling to optimally solve such a complex problem, or this inability or unwillingness
could be due to transfer costs. The DSS loFarm is a suitable tool to use to accomplish this
task. loFarm can help increase farm profits and, in parallel, help avoid redundant use of
nutrients. In summary, loFarm improves both profit and sustainability in agriculture and
should therefore be used as widely as possible in the future. The contribution to sustainability
justifies a subsidy to ensure widespread practical use. We will spend the coming months
further developing loFarm into an online-based DSS. This will generate the necessary

computing capacities, which are a key requirement for widespread practical use.
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Table A 6-1: Allocation of fertilizers to fertilizer categories.

Abbreviation Name

Content/Effect in kg per 100 kg

N POs K;O MgO S CaO

Category SL (single low)

AHL Ammonium nitrate urea solution
AHL1to3 67%Water + 33%AHL

CAN Calcium ammonium nitrate
CAN+Mg Calcium ammonium nitrate
CAN+S Calcium ammonium nitrate

Category SH (single high)

TSP Triple superphosphate
U+Inhib Alzon
Urea Urea

Category CL (compound low)
Kainite Kainite
Slurry Liquid organic fertilizer

Category CH (compound high)

ASS Ammonium sulphate nitrate
DAP Diammon phosphate
ENTEC+S ENTEC

ENTEC NPK ENTEC

gr. potash Granular potash
Kieserit Kieserite

NP 20;20 NP

NPK

15;15;15 NPK

NPK 20:;8;8 NPK

NPK 23;5;5 NPK

PK 16:;16 PK

SSA Sulfuric acid ammonia
Urea+S Piamon S

Category CA (special lime fertilizer)?
Burned Lime Burned lime

Lime+Mg Carbonic lime

Lime+S Carbonic lime

28
9
27
27
24

46
46

3,9*

26
18
26
15

20
15
20
24

21
33

46

1,7

46

11
4,7

20
40

1,2

N

14

-28
-9
-15
-9
-34

-1
-46
-46

0
1,6

-49
-36
-49
-14
0
0
-31

-15
-21
-23
6
-63
-54

90
53
50

SL and SH: Single-nutrient fertilizers containing either N, P, or K and whose content of S and Mg does not

exceed 20% of its total nutrient content. Fertilizers that do not meet this definition are called compound

fertilizers (CL and CH). L stands for low nutrient content (<= 31%); H for high nutrient content (> 31%); CA =

group of lime fertilizers.
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7  Extended summary of embedded publications

For a quick overview, highlights and core findings on the individual studies are shown in
Table 7-1, and detailed summaries are provided in Sections 7.1 to 7.4.

Table 7-1: Overview of highlights and core findings of embedded publications.

Chapter3: Effects of application costs on fertilizer application strategy

« Transport costs influence the fertilizer application strategy

« Transport costs depend on-farm-specific infrastructure and route planning

* Route planning is extremely resource-demanding and currently difficult to achieve
« Farm- and measure-specific transport costs can be estimated

» This is an effective approach that does not affect the fertilization strategy itself

Chapter4: loFarm: A novel decision support system to reduce fertilizer expenditures at the

farm level

» The selection of a cost-efficient fertilizer strategy is very complex

» The least-cost combination and input level of fertilizer must be considered

« The MINLP model, loFarm, can solve this problem

* Inan experiment, loFarm was 19% below the fertilizer costs of the participants

» loFarm is a useful DSS that increases farm profit and saves management time

Chapter5: loFarm in Field Test: Does a cost-optimal choice of fertilization influence yield,

protein content or market performance in crop production?

* The DSS, loFarm, proved its agronomic performance in field trials
« Agronomic performance was not negatively affected by least-cost fertilizer strategies

» Cost advantages in fertilizer selection can be fully attributed to loFarm

Chapter6: Characteristics of cost-efficient fertilization strategies at the farm level

» Certain fertilizers are used more often in cost-efficient strategies

» Application costs are less relevant for cost-efficiency

» Nutrient surpluses lead to inefficiency

» Volatile fertilizer prices greatly influence cost-efficient fertilization strategies

» Complexity requires farmers to use optimization software to increase profitability and

sustainability
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7.1  Summary of Chapter 3: Effects of application costs on fertilizer

application strategy

To optimize production processes from an economic perspective, a comprehensive knowledge
of the interrelationships and costs of production is necessary. Transport costs play an
important role in agricultural production. However, in on-farm infrastructures, farms are
heterogeneously structured. From large farms with nearby fields and small farms with widely
dispersed field pieces, the most diverse constellations of on-farm infrastructure can be found.
Therefore, transport distances are relevant to optimize transport-dependent production
processes, such as the application of fertilizers. Currently, there is no resource-friendly way to
integrate farm- and measure-specific application and transport costs into a mathematical

optimization tool that helps improve the economic efficiency and sustainability of production.

This study presents the development of a cost function for fertilizer application. To integrate
the influence of on-farm infrastructure in selecting a cost-efficient fertilizer strategy, the
overall application cost function was first decomposed into individual components, and sub-
functions were then formed for the following elements: setup, loading, fieldwork, farm-to-
field transport, and field-to-field transport. To determine the extent of the differences in
transportation costs between farms with different on-farm infrastructures, 70 random farms
were generated. These farms are of different sizes and distances of field pieces. For each
random farm, 28 fertilizer scenarios were examined based on the application rate per hectare
and proportion of field pieces fertilized. An algorithm for solving the split delivery vehicle
routing problem (“SDVRP method”) was used to determine the optimal routing for fertilizer
application. These results and the farm data could be used to identify important factors
influencing farm- and measure-specific transport costs. Based on these influencing factors, a
regression model was derived to estimate transport costs (“regression method”). Both
possibilities in determining transport costs, SDVRP and regression method, were used to
compare whether deviations in the selection of the optimal fertilization strategy are to be
expected. Moreover, another possibility, which does not consider transport costs, was
investigated. All three possibilities lead to largely consistent fertilization strategies. Wrong
decisions caused by the regression method or the omission of transport costs are rare and
cause marginal financial impact. Compared to the alternatively tested methods, input data and
computational power requirements are by far the highest for the SDVRP method. Therefore, it
is concluded that considering transportation costs as a sub-function of application costs in a

mathematical optimization tool should be evaluated using the regression method, and a
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general disregard of transportation costs is not recommended. This study is relevant for issues
related to agricultural logistics and similar cost functions, such as the application of pesticides

or seeds.

7.2  Summary of Chapter 4: loFarm: a novel decision support

system to reduce fertilizer expenditures at the farm level

To maintain competitiveness and increase profits, producers focus on saving costs without
reducing output. The expenses for fertilizers and their application play a major role in
agricultural crop production and account for the largest share of variable costs in crop
production, which also indicates a large degree of optimization potential. To fully achieve this
optimization potential, the cost-efficient fertilizer strategy must be identified. Therefore, the
following points are important: (i) optimal intensity and composition of nutrient supply; (ii)
temporal and quantitative distribution in the course of a crop rotation; (iii) application costs;
and (iv) selection of the most cost-efficient fertilizer combination. The described challenges
on optimization represent the application of a well-known theory on expansion path. Changes
in the field- and crop-specific nutrient requirements, weather effects, available fertilizers,
volatile prices, and nonlinear structure of application costs suggest that a human decision
maker may not solve this optimization problem alone. Therefore, various decision support
systems (DSS) have been developed to assist farmers and consultants, but only a few DSS
consider the least-cost combination of fertilizers. None of these DSS consider farm-specific
application costs and plan fertilizer application over an entire crop rotation cycle. The
development of loFarm closes this gap, which can also achieve economic potential by taking
a holistic view of this optimization problem.

To address this optimization problem, a non-formal model that identifies important factors
influencing the fertilization strategy and describes their effects was developed. It is discussed
how these factors can be implemented in a DSS without limiting its usability. The
implementation is presented in the form of a mathematical optimization model. Due to the
complexity, a two-step solution procedure composed of a nonlinear problem (NLP) and a
mixed-integer nonlinear problem (MINLP) is necessary. To evaluate the economic
performance of the loFarm DSS, an experiment was conducted. The participants of the
fertilization experiment (experts, farmers, and students) were asked to plan the most cost-
efficient fertilizer strategy possible for a highly simplified farm. All relevant information,

such as prices, application costs and nutrient requirements, was provided. The results show on
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average that the fertilizer strategies of the participants were 19% more expensive compared to
loFarm. Additionally, participants spent on average 81 min of management time to solve this
problem suboptimally. The best participant achieved significantly higher costs than loFarm
with a difference of €10 ha™'. loFarm is therefore a very promising tool for farmers and
advisors that helps increase profit and save management time. The next research step is to
examine potential agronomic impacts to identify possible output changes. The study also
helps demonstrate the theory of the expansion path with a realistic case and is therefore also

suitable for practical teaching of the production theory.

7.3 Summary of Chapter 5: loFarm in field test: does a cost-
optimal choice of fertilization influence yield, protein content,

and market performance in crop production?

The loFarm decision support system (DSS) was developed to identify cost-efficient fertilizer
strategies for farms. Results show that significant cost savings can be obtained. For user
acceptance and according to operations research specifications, it is essential to test such DSS
in practice. Models, such as loFarm, can only represent simplified interrelationships and have
to be verified in more complex ones to assess their performance. Even though a small number
of DSS with similar orientation as loFarm are described in other studies, there have been no
reports on their use in the field. Thus, the following question arises: does a least-cost fertilizer
strategy potentially affect crop yield, quality, and market performance? This question is
relevant because a cost-efficient fertilizer strategy is not based on low costs alone but also on

the impact of output.

To answer this question, a two-factorial field trial with three replications was set up at three
locations in Bavaria (Geiselsberg, Triesdorf, and Roggenstein) over a period of 3 cropping
years (2016-2018). The first factor reflected the fertilizer variant, wherein loFarm was
compared with a common farm fertilization strategy and a control variant. The second factor
was built by different crops, namely silage maize, winter wheat, and winter barley. Within the
trial period, this crop rotation was cultivated once on each plot. At the Triesdorf location,
additional variants of the first factor were built using organic fertilization. The evaluation of
the field trial was conducted using a split-plot ANOVA and subsequent t-tests. The results
show no significant differences in yield, protein content, and market performance between the
common farm fertilization strategy and loFarm. Thus, the cost benefits already demonstrated

with the use of loFarm are not achieved at the expense of market performance. This study
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highlights the benefits of loFarm for farmers and consultants and thereby increasing the
confidence of potential users. Therefore, according to the principle of least-cost combination,
the selection of fertilizers has no significant impact on the output in crop production and thus

should be widely applied.

7.4  Summary of Chapter 6: Characteristics of cost-efficient

fertilization strategies at the farm level

Fertilization of agricultural crops represents a significant part of production costs in most
farming systems. Through the selection of individual fertilization strategies, farmers have a
great influence on costs and agronomically relevant parameters, such as yield and quality.
Fertilizer strategy is based on intensity, timing, dosage, and selection of specific fertilizers.
With this study, whole-farm fertilization strategies are analyzed to compare cost-efficient and
inefficient fertilization strategies. This study aims to generate recommendations for farmers

and consultants to improve competitiveness and sustainability.

To obtain information on individual fertilization strategies, a fertilization experiment was
conducted. Participants were asked to plan a cost-efficient fertilizer strategy for a simplified
three field, three crop farm for over 3 years. All relevant information, such as nutrient
requirements (N, P, K, Mg, and S), fertilizer prices, product prices, weather information, and
application cost information were provided. A series of linear regressions were used to
evaluate the experiment. To generate additional information, the different fertilization
strategies were divided into three clusters based on their total costs. Differences between
clusters were tested using t-test. The results show that some fertilizers (e.g., DAP and granular
potash) were more common in cost-efficient solutions, whereas NPK fertilizers were barely
used. The application timing of P and K also played a role in the overall cost. Fertilization
with K and S according to demand is a major challenge. In inefficient fertilization strategies,

these nutrients were significantly overdosed, with a parallel negative impact on sustainability.

In the second part of the study, the loFarm DSS was used under different farming conditions.
With loFarm, cost-efficient fertilization strategies can be identified. A typical Bavarian farm
was used as the reference situation, which was then varied ceteris paribus in the following
aspects: acreage, internal infrastructure, soil fertility, and organic fertilizer accumulation. In
addition, artificially changed fertilizer prices were used to calculate another scenario. The
results of this study highlight the differences between cost-efficient and inefficient fertilizer

strategies and the influence of individual farm conditions. Interestingly, acreage had no effect,
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while internal infrastructure had very little effect on fertilizer strategy. Fertilizer prices and
their relative price differences were found to be the largest factors influencing the design of
the fertilizer strategy. Despite the large influence of fertilizer prices, the following
recommendations for choosing a fertilizer strategy must be considered: (i) nutrient surpluses
should be avoided; (i) minimizing application costs is not effective; and (iii) NPK fertilizers
are rarely used due to their fixed composition. Furthermore, the participants were unable to
make optimal decisions despite being thoroughly informed. The study is thus providing an

example of limited rational behavior in complex situations.
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8 General discussion and conclusions

The objective of this thesis was to support farmers and consultants in choosing cost-efficient
fertilization strategies at the farm level and better understand the interrelationships of cost-
efficient fertilization strategies. This objective was addressed in a total of four consecutive
studies (Chapters 3 to 6). In particular, this chapter provides an overview of the contribution
of these studies. In each case, the background is briefly repeated, and the results and
significance of the studies in relation to the existing literature are discussed. The succeeding
paragraphs highlight extended stakeholder implications, methodological contributions,

limitations of this thesis, and conclusions.

Discussion of the results from Chapter 3: Machine costs are a major factor in the cultivation
of field crops. The share of variable machinery costs in winter wheat production in Bavaria
was approximately 33% in 2017 to 2019 (Schétzl et al., 2019). Part of these costs is related to
fertilizer application, including transport. Studies show that production decisions are related
to transportation costs and thus application costs (Shamdasani, 2021; Damania et al., 2017).
Therefore, application costs are expected to influence the selection of cost-efficient fertilizer
strategies. Hence, the objective of Chapter 3 was to develop and implement methods that
allow the consideration of farm- and measure-specific application costs within a mathematical
optimization model. However, the transport costs for farm-to-field and field-to-field trips
remain a challenge (Jensen et al., 2012).

The results show that, at least from a logistical perspective, the split delivery vehicle routing
problem (SDVRP) (Dror et al., 1994; Dror and Trudeau, 1990) is perfectly suited to meet this
objective. By incorporating the SDVRP, optimal transportation routes for fertilizer application
can be identified, which can then be used to calculate transportation costs. Several studies
show that the advantage of optimal routing is especially utilized in transportation-intensive
economic sectors (Latiffianti et al., 2018; Eldrandaly and Abdallah, 2012; Basnet et al.,
1996). However, it is unlikely that farmers can entirely follow the guidelines of such routing
in practice. For example, the carrying capacity of the soil determines in which order and with
which load a field can be driven. Although the SDVRP could still be used to estimate
transportation costs, this study showed that high computational capacities are needed to solve
an SDVRP. The same is also reported in a previous study, wherein state-of-the-art algorithms
that can solve problems up to 288 subjects (field pieces) within 1.422 s (Archetti et al.,
2011a). However, small problems with only 41 subjects may also not be solved even after
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7.200 s (Hernandez-Pérez and Salazar-Gonzalez, 2019; Ozbaygin et al., 2018; Archetti et al.,
2014). Therefore, there is no guarantee that an SDVRP can be reliably solved optimally. In
addition, an SDVRP requires information on all on-farm travel distances, which includes all
farm-to-field and field-to-field distances. As an example, a dataset of 24 field pieces including
the farm location covers 325 distances that a farmer usually cannot provide. Although there
are possibilities to generate this dataset (Machl et al., 2016), access to this possibility is

strictly limited for data protection reasons.

Compared to the SDVRP method, two other approaches with low computational power and
data input requirements were tested: (i) The “regression method,” derived from the results of
the SDVRP method, establishes a functional relationship between farm- and measure-specific
parameters and thus estimates transportation costs without routing information; (ii) The “zero
transportation cost method” (ZTC method). Here, transportation costs are neglected as part of
the application costs. The results of a Monte Carlo simulation show that under the given
circumstances, the ZTC method leads to much the same fertilization strategy as the SDVRP
method. In cases where there is no agreement, the financial damage caused by the deviation is
marginal (€0—€0.5 ha'). Minimal data requirements and computational capacity were in
favor of the ZTC method, although with some weaknesses: with increasing importance of
transport costs and inhomogeneous farm-field and field-field distances, the validity of the
ZTC method wanes, as this information remains unobserved and cannot be considered in
decision making; therefore, the regression method is more robust in this regard. Compared to
the SDVRP method, the regression method leads to the same fertilization strategy with a
percentage of 92% (“Nitrogen Experiment” Table 3-6) or 97% (“PK Experiment” Table 3-7).

Wrong decisions result in minor cost disadvantages of €6.1 and €3.4 ha .

The results of the study demonstrate why the SDVRP method cannot be combined with a
complex optimization model. However, the increasing digitization of agriculture and
developments of software and hardware might facilitate the provision and processing of the
necessary data in the future. Until then, the regression method can be recommended as the
second-best solution. By estimating transportation costs using farm- and measure-specific
parameters, this method is useful for a wide range of farms. Due to the low demands on
computing capacity and data requirements, the regression method is suitable for reflecting

transport costs within the framework of a mathematical optimization model.

Discussion of the results from Chapter 4: This thesis assumes that farmers act according to

the economic principle. Therefore, they are concerned with optimizing production processes
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to increase profit. Cost-efficient fertilization in crop production is a difficult task for farmers
and consultants. The objective of Chapter 4 was to structure the complex optimization
problem of cost-efficient fertilization, to develop a solution and to highlight potential

economic advantages.

The results show that the optimization problem of cost-efficient fertilization can be
represented using a mathematical model (loFarm). In the operations research literature, this
approach is quite recommended for solving problems with known relationships (Domschke et
al., 2015, pp. 3-7; Suhl and Mellouli, 2013, pp. 8-20). To test the economic performance of
loFarm, a fertilization experiment was conducted in the form of a choice experiment.
Participants were asked to plan cost-efficient fertilization strategies. Although the
requirements of the individual nutrients were fixed, the participants’ average cost of
€66 ha_'a" was surprisingly well above the cost level of loFarm. The participant with the
best results was as close as €10 ha—'a! to loFarm’s solution, which still represents a
considerable savings potential of €1000 ha—'a~' for a 100-ha farm. In addition to loFarm,
other DSSs considering the least-cost combination of fertilizers can be found in previous
studies (Villalobos et al., 2020; Jansen et al., 2013; Bueno-Delgado et al., 2016; Pagan et al.,
2015; Minguez et al., 1988; Babcock, 1984). However, none of these studies compare the
cost-efficiency of the DSS solutions to a standard fertilization strategy. Therefore, a direct
comparison with loFarm is not possible. Smart Fertilizer (Smart Fertilizer Management) is a
comparable commercial tool on the market. The company advertises a savings potential of
60% and an increase in income of 40%, although with insufficient details. Sensor-based and
site-specific fertilization measures represent a completely different way of optimizing
fertilization. Manufacturers of this technology present additional profits of €20 to
€30 ha—'a”', for example, by improving N efficiency. In a field trial using sensor-based N
fertilization in silage maize, Evangelou et al. (2020) show potential savings of €33 to
€92 ha—'a~". Colaco and Bramley (2018) report an average profit increase in grain crops of
$30 ha—'a”' (from —$30 to +$70 ha—'a ') in their review on crop sensors. Given these
numbers, the potential savings achieved with loFarm are remarkable, especially since there is
no investment in technology. In addition to the cost of fertilization, the time required for
participants to plan a fertilization strategy was also considered. Despite highly simplified
conditions (three field plots of three crops in 3 years), the average time spent on this task was
unexpectedly high at 81 min per participant. The amount of management time a farmer uses
annually to improve fertilizer cost-efficiency remains unclear from the fertilizer experiment.

However, it can be assumed that real farms are more complex (StMELF, 2020) and the
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fertilizer strategy has to be readjusted several times per season. Using a DSS, this process can
be formalized and largely automated (Blanco, 2020), which saves management time
(Gonzalez-Anddjar, 2020, p. 27).

Taken together, loFarm contributes significantly to reducing fertilizer costs and management
time. Large farms benefit in particular because potential savings in management time and
fertilizer costs increases with farm size. Since Chapter 4 suggests a constant output in crop
production, this must be verified before providing statements about the cost-efficiency of

loFarm.

Discussion of the results from Chapter 5: Production theory demonstrates that changes in
production inputs often affect the output (Debertin, 2012a, p.82). Therefore, the cost
reduction achieved by loFarm must be examined as it may have consequences on the output.
The objective of Chapter 5 was to compare the agronomic performance of loFarm with a
usual farm fertilization strategy, so the following fertilizer variants were tested in a field trial:
(1) pure mineral loFarm and farm manager variants (10, BL); (ii) organic and mineral loFarm

and farm manager variants (01O, oBL); and (iii) an unfertilized control.

The statistical analysis of the results shows that there were no significant differences in yield,
quality, and market performance between comparable varieties, which include 10 and BL, as
well as 01O and oBL. Only a few DSS that show similarity with loFarm are found in previous
studies (Villalobos et al., 2020; Jansen et al., 2013; Bueno-Delgado et al., 2016; Pagan et al.,
2015; Minguez et al., 1988; Babcock, 1984). None of these studies tested the agronomic
performance of the respective tools in a field trial; this is also true for the commercial tool of
Smart Fertilizer Management. There were several studies on DSS in the field of fertilization
(Mandrini et al., 2021; Mollenhorst et al., 2020; Kleinhenz et al., 2007), although it is rather
the exception that these studies report results from own field trials. These exceptions include
studies by Araya et al. (2019), Ubelhor et al. (2015), Sgnderskov et al. (2015), and Chuan et
al. (2013). The DSS tested therein have been proven in field trials, although not comparable to
loFarm. Therefore, studies are lacking on whether fertilizer strategies that are trimmed for
least-cost combination and cost-effectiveness may involve negative agronomic impacts.
Chapter 5 makes an important contribution here, showing that a fertilizer strategy optimized
primarily for cost-effectiveness does not necessarily have a significant impact on yield,

quality, and market performance in crop production.

Before this statement can be accepted, possible errors in the design or execution of the field

trial must be verified to exclude whether these are the cause for the non-significant
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differentiation of the fertilizer variants. A high variance within the measured values or an
insufficient number of measured values can also be the cause for a statistically not reliable
differentiation of the group mean values. Therefore, the relative standard error should be
referred to at this point, which sets the standard error in relation to the mean value and ranges
from 2.3% to 3.5% for the mineral fertilizer variants (10 and BL) across the yields of all
crops. For a significant interpretation of field trials, the values should be <4% (Thomas, 2006,
p. 61). The relative standard error revealed that there is no significant difference in yield
between the 10 and BL variants. For the organic and mineral fertilized variants, 0lO and oBL,
the relative standard error is 4.5% to 6.9%. This result is due to these variants were only
tested at the Triesdorf site; therefore, significantly fewer observations are available.
Additionally, the application of organic fertilizer varied between the variants in terms of time
and quantity per application. Therefore, weather conditions and the variability of the nutrient
content in the organic fertilizer led to unobserved influences, which are generally a problem in
experiments with organic fertilizers (Tamburini et al., 2015; Chen et al., 2013). To further
validate the comparison of the olO and oBL variants, additional observations are required.
Unfortunately, not all sites could be included in this comparison due to the lack of plot

technology for organic fertilization.

Overall, it was demonstrated in Chapter 5 that loFarm causes no significant agronomic
effects. Future users can assume that with unchanged market performance, the cost savings

will have a positive impact on the farm profit, as shown in Chapter 4.

Discussion of results from Chapter 6: The results of the previous chapters show that loFarm
leads to a significant reduction in fertilizer costs and management time without changes in
agronomic performance. When discussing these results with farmers or consultants, the
following question arises: What are the differences between a fertilizer strategy planned by
loFarm and a common fertilizer strategy? This question is also relevant from a scientific
perspective because it simultaneously expands the knowledge on overall farm relations of
cost-efficient fertilization strategies. There are many studies on various aspects of
fertilization, e.g., specifically on intensity (LI et al., 2021; Tabak et al., 2020; Sihvonen et al.,
2018; Xu et al., 2017; Chuan et al., 2013) or specifically on technologies (Song et al., 2021,
Fulton et al., 2021; Gil-Ortiz et al., 2020; Dimkpa et al., 2020; Mi et al., 2019; Kozlovsky et
al., 2009; Koch et al., 2004). However, studies on perennial (crop rotation) and whole-farm
cost-efficient fertilization strategies could not be found. Chapter 6 examines the different
characteristics of cost-efficient and inefficient fertilizer strategies at the farm level, wherein

data from the fertilization experiment are statistically analyzed. In addition, Chapter 6 will
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clarify whether and to what extent different farm conditions affect cost-efficient fertilization
strategies. For this analysis, loFarm is used as a simulation model, and the model output is

compared.

The results from the first part of the study show a significant relationship between cost-
efficiency and demand-based fertilization. Kietbasa et al. (2018) and Rajsic and Weersink
(2008) also established this relationship. In the fertilizer experiment, inefficient fertilization
strategies are particularly noticeable due to surpluses of the nutrients K and S. It can be
assumed that the participants focused more on demand-based N and P fertilization since both
nutrients are strictly regulated under the German law (Bundestag, 2017; Bundestag, 2009).
This results in a certain automatism that directs the focus on N and P. Cost-efficient
fertilization strategies showed significantly lower nutrient surpluses in the experiment,
suggesting that they are more resource efficient and sustainable. This conclusion is also found
in a study by Exposito and Velasco (2020) on the efficiency of mineral fertilizer use in
Europe, as well as in a case study by Kielbasa et al. (2018) on sustainable agriculture.
Therefore, one recommendation for fertilizer planning is to apply all nutrients as needed,
although most participants were unable to do this. The same also applies to the recognition of
clear price signals on the fertilizer market. For the fertilizer TSP, there was a massive and
abrupt price decline in the summer of 2016. In cost-efficient fertilizer strategies, this time
window was used for some phosphorus fertilization. However, 80% of participants did not
take advantage of this low-price period, probably because it was not recognized. Both
observations on nutrient surpluses and price signals suggest that human decision-makers are
burdened with the multitude of information and complexity of this problem and, therefore,

can only act rationally to a limited extent (Simon, 1959).

Chapter 6 also provides insights regarding the preferability of individual fertilizers. For
example, the fertilizers DAP as a source of N and P, grain potash as a source of K and S,
CAN as a source of N and Mg, and carbonic magnesium lime as a source of Ca and Mg were
highly valued in cost-efficient fertilizer strategies. Urea frequently occurred in cost-efficient
and inefficient fertilizer strategies. The aforementioned fertilizers combine well due to their
nutrient composition, which allows a balanced distribution of nutrients. For the specific
compensation of the nutrients P and S, TSP and SSA were applied selectively. NPK fertilizers
and stabilized nitrogen fertilizers were not used in cost-efficient solutions. Studies on the cost-
effectiveness of stabilized nitrogen fertilizers remain controversial statements: Mi et al.
(2019) found both positive and negative effects on profit in different comparisons. Sikora et

al. (2020b) show significant positive effects on profit in the cultivation of vegetables. In the
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present study, however, stabilized nitrogen fertilizers are avoided in cost-efficient solutions
because of their high cost relative to pure nutrient content. Positive effects, such as reduction
of nitrate leaching (Pack et al., 2006; Owens et al., 1999), mitigation of greenhouse gas
emissions (Chen et al., 2021; Sikora et al., 2020a; Tang et al., 2018), and saving of labor
inputs for the same expected yield (Wilson et al., 2009), justify a higher price. However, the
fertilizer experiment suggests that the additional cost of stabilized fertilizers may not be

acceptable in this case.

Broken down to their pure nutrient content NPK fertilizers often have competitive prices
(Schiebel, 2015 - 2018). However, the fixed composition of these three nutrients in a fertilizer
limits flexibility in choosing other fertilizers. Fertilizer industry advertises NPK fertilizers to
have positive yield effects and a reduction in labor, which may be true. There is also evidence
in the literature of the positive yield effect of NPK fertilizers (Sayegh et al., 1981). However,
this effect is likely to occur even if the nutrients N, P, and K are applied separately in the
same period.

Furthermore, application costs have a significant impact on the total cost of fertilization.
However, this result can easily be misleading. The share of application costs in total costs is
low across all participants, ranging from 4% to 7%; therefore, the savings potential in this
respect is marginal. To achieve the lowest application cost, the number of fertilizer
applications must be reduced by combining fertilization measures. Therefore, the participants
specifically selected highly concentrated fertilizers (including NPK fertilizers) and
summarized fertilization measures using stabilized fertilizers or increasing the N dose per
application. In the previous paragraph, the effect of these fertilizers on cost-efficiency has
already been discussed. A small number of fertilizer measures means that there are less time
windows available for the selection of least-cost fertilizers. This also reduces the number of
degrees of freedom in fertilizer selection, making it more difficult to allocate all nutrients
according to demand. The results indicate the following: if the application costs in the total
costs of fertilization are <7%, it is not advisable to focus on the lowest possible application
costs. This statement may be true even for a significantly higher share of application costs,

although this cannot be proven or generalized from the study.

The results from Chapter 6 show a significant correlation between cost-efficiency and timing
of basic fertilization with P and K; for example, P was more expensive on average in 2016,
whereas K was more expensive in 2017. The previous results lead to the assumption that

relative price differences between fertilizers have the greatest influence on the selection of a
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cost-efficient fertilization strategy. This impression could be reinforced by a scenario analysis
using artificially manipulated fertilizer prices, wherein the results show that even small
changes in the relative price differences of fertilizers (x10%) lead to significant changes in
fertilizer selection. Therefore, the volatility of fertilizer prices (Lahmiri, 2017) will
permanently affect the selection of cost-efficient fertilizer strategies. Therefore, farmers and
consultants cannot safely rely on previous statements about the preferability of individual
fertilizers, and continuous adjustment of fertilizer strategy is mandatory for maximum cost-

efficiency.

In addition to the characteristics of cost-efficient fertilizer strategies, the influence of farm
conditions on the selection of the fertilizer strategy was also investigated. The size of the farm
or the on-farm infrastructure had no significant influence on the selection of the fertilizer
strategy. Both parameters mainly influence the share of application costs in the total costs. In
the “small farm” scenario, this share is significantly increased to 22%, but nevertheless the
expected effect on the choice of fertilizer strategy remains absent. This observation supports
the secondary importance of application costs. As discussed in Chapter 3, a complete
omission of the application costs or transport costs is nevertheless critical. A further increase
in the share of application costs or strongly varying farm-field and field-field distances could
affect the design of the cost-efficient fertilizer strategy.

Chapter 6 also shows a clear influence of the fertilizer strategy by the parameters
“homogeneous soil fertility” and “slurry accumulation.” Changes in these two parameters
directly influence the necessary mineral nutrient supply, which can even become obsolete
with a correspondingly high proportion of organic fertilizers. As a result, the mineral nutrient
input and the selection of fertilizers changes in the investigated scenarios. Of particular
interest is the influence of overall homogeneous soil fertility. In this case, the complexity of
the optimization problem is apparently diminished, since the “field-specific” requirements are
reduced. This enables fewer fertilization measures (28 instead of 32 measures within the 3-
year crop rotation) to be used in line with nutrient requirements and at lower overall costs. In
the long term, farmers should strive to homogenize soil fertility to generate additional

optimization potential.

Chapter 6 shows the complexity of the optimization problem itself and the dominant influence
of volatile fertilizer prices on the cost-efficient fertilizer strategy. Farmers and consultants are
strongly recommended to regularly use the appropriate DSS for a cost-efficient fertilization

strategy.
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Extended Stakeholder Implications: The implications addressed have focused on farmers and
consultants. In addition, other stakeholders have a legitimate interest in the results of this

thesis, including the fertilizer industry, trade companies, policymakers, and society.

Optimal routing of agricultural inputs via SDVRP also promises benefits from a social and
political perspective, such as minimizing transport costs strengthens the competitiveness of
agriculture and reduces road traffic and its consumption of fossil fuels. To accelerate
application of the SDVRP in this context, policymakers should provide access to necessary
infrastructural farm data. The tool of Machl et al. (2016) could be used to calculate farm-to-
field and field-to-field distances and existing information systems (e.g., IBALIS for Bavaria)
are helpful to exchange necessary data. With the widespread availability of these
infrastructure data, the incentive for software developers to build measure-based route
planning systems for agriculture increases, as it is already common in the logistics sector
(Guo et al., 2021; Bortfeldt and Yi, 2020).

loFarm enables farmers to evaluate the relative competitiveness of different fertilizers on a
farm-specific basis. Therefore, farmers react more dynamically to price changes and demand
different products at varying times, which impacts achievable trading margins and
predictability of fertilizer production and sales for traders and the fertilizer industry. loFarm
users will selectively demand fertilizers that are beneficial to their farms; thus, the advisory
function of the trading companies will be pushed back. It can be assumed that traders and
industry will increasingly respond to individual farm requirements. However, there is also a
great opportunity for agricultural traders who offer blended fertilizers on demand, as the
output of loFarm could be used to produce cost-efficient farm-specific blended fertilizers and
generate real added value for both sides. The importance of this approach is also shown in
previous studies (Benhamou et al., 2020; Cole et al., 2015; Aldeseit, 2014; Minguez et al.,
1988; Babcock, 1984). The fertilizer industry can also benefit and use loFarm as part of
product development. For example, compound fertilizers can be developed that are specific to
crop rotations and farm types. In addition, loFarm also offers an interesting option for pricing
new products from the perspective of fertilizer manufacturers, wherein simulation runs can
show compositions of fertilizer and the most acceptable maximum price compared to

alternative fertilizers to succeed on the market.

The results from Chapter 6 showed that cost-efficient fertilization strategies have less nutrient

surpluses and thus have a positive impact on sustainability. Together with the improvement of
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the competitiveness of agriculture, these are extremely relevant outcomes from a societal and

political point of view, which can be expected from a widespread use of loFarm.

Methodological contributions of this thesis: Currently, there are several studies on the
optimization of the in-field logistics of agricultural operations that reduce nonworking
distance (Vahdanjoo and Sorensen, 2021; Vahdanjoo et al., 2020; He et al., 2019; Utamima et
al., 2019). However, route planning also plays a role in identifying shortest connections
between farm and multiple field pieces. As far as known, this is the first time SDVRP was
used in connection with the application of agricultural inputs. Using the SDVRP is
particularly appropriate when transportation capacity is limited and under conditions where
field-to-field trips occur. In these cases, farmers face the question of optimal route splitting
(“spit delivery”) and routing to minimize transportation costs. Ideal cases for the SDVRP are
the application of mineral fertilizers and pesticides. However, this approach is not relevant for
operations in which field-to-field travel is the exception, e.g., for the application of organic
fertilizers or the transport of harvested crops. In these cases, the transport vehicle shuttles
between two points (usually farm and field), which is why route optimization is not generally
needed. In cases where field-to-field trips occur but no transportation capacity is required,
e.g., tillage, reference is made to the more efficient solution methods of the traveling salesman
problem (e.g. Zhang et al., 2021). The implementation of SDVRP in an agricultural context is
currently limited mainly by the high demands on computational capacity and as already
described, the availability of the necessary farm-specific distance data. Should it be possible
to overcome these barriers in the future, e.g., through the advancing digitalization in
agriculture, the SDVRP can additionally be used for the optimal allocation of crops on the
farmland. This allows transport distances to be minimized and work processes to be optimized
in advance, which is very relevant, especially from a landscape planning perspective

(Harasimowicz et al., 2017).

The development of a farm- and measure-specific regression function for the estimation of
farm-field and field-field trips, presented in Chapter 3, is also a new methodological
contribution. This method allows estimating transportation costs for farm-field and field-field
trips. In contrast to the SDVRP method, the result of the estimation function does not contain
any information on the real routing. Instead, based on a small amount of information
characterizing the farm and the measure carried out, an adapted estimation of the transport
costs is made. This method is well suited to consider transport costs for the application of

mineral fertilizers or pesticides within the framework of a mathematical optimization model.
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The main advantage is the low computational demand, which is very important in

combination with a possibly complex main problem.

Chapter 4 contains the conceptual framework of this thesis. It applies the usual expansion
path theory to the optimization problem of a cost-efficient fertilization strategy at the farm
level. The problem-specific features in the course of the isoquant and isocost lines are
discussed in detail. It was shown that isoquants, due to technically efficient combinations of
fertilizers , can be kinked (MuBhoff and Hirschauer, 2013, p. 167; Nicholson and Snyder,
2008, p. 113) and do not necessarily have to run in parallel (Nicholson and Snyder, 2008,
p. 329). Isocost lines were also identified as nonlinear functions due to the influence of
nonlinear application costs. Overall, this results in the following findings for cost-efficient
fertilizer strategies: the expansion path can be erratic between different production levels,
which means that the least-cost combination of fertilizers can be affected as production levels
change. An additional methodological feature appears in the combination of the linear-
limitational production function (Liebig, 1843) with erratic or nonlinear total costs of
fertilization. In this combination, it is possible that the profit-maximizing fertilizer input is
neither at the maximum nor at the minimum of the linear-limitational production function, but
is defined by a certain input level between these two points. Usually the literature describes
this observation only for production functions with decreasing slope. In test runs with loFarm,
however, it could be observed several times that the yield maximum given by the linear-
limitational production function was deliberately not completely exhausted for economic

reasons.

The mathematical optimization problem loFarm developed in Chapter 4 combines a practical
application of production theory with state-of-the-art economic modeling techniques. The
underlying optimization problem is a real world MINLP problem. It thus extends the MINLP
research area of operations research by an application with an agricultural context. MINLP’s
are currently at the threshold between theoretical research (e.g. Muts et al., 2020; Mauri et al.,
2020) and application in practice (e.g. Ye et al., 2021; Kazi et al., 2021; Gao et al., 2021).
Therefore, real applications tested in experiments are an important contribution to the existing
literature. First promising approaches to solve this category of models were already found in
the literature with the “outer-approximation” method (Duran and Grossmann, 1986). Despite
continued development and improved solution methods, MINLP places high demands on
computational power. However, MINLP allows for an almost uncompromized representation
of real world requirements by combining nonlinear and discrete components (Bonami et al.,

2012, p. 31). Only with this model category it was possible to define feasible fertilization
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strategies. An important aspect in this context is, for example, the minimum quantity in the
application rate of fertilizers. To meet the high demand on computing power, a sequential
process for decision making was additionally implemented in the model (Amann, 2019,
pp. 19-20). Accordingly, loFarm is an early agricultural application of a sequential MINLP
problem. Didactically, loFarm can be used as a bridge to connect the optimization potential of
the expansion path theory, which is often considered abstract, with an everyday agricultural

problem.

Limitations and need for research: Despite the greatest efforts and care, some limitations
must also be addressed in this thesis. The method for farm- and measure-specific estimation
of application costs developed in Chapter 3 is not based on infrastructure data of existing
farms. For data protection reasons, access to this georeferenced data was denied. Instead,
based on a real farm, infrastructure data were simulated (informed guess). Further research
with data of representative and real existing farms is necessary to make the estimation more
precise and more validated. For this project the data acquisition as well as the calculation of
optimal routes by means of SDVRP could be a barrier, especially since there is currently no

guarantee that every routing problem can be solved optimally.

The implementation of biological, chemical, and agronomic processes and requirements in
loFarm is simplified in many cases. For instance, the internal modeling of the nitrogen stock
in the soil is strongly affected by this. Recurrent soil tests are used to correct potential
misestimates through updates. This approach allows to cope with a minimum of standard
data, which is highly relevant for applicability in practice (Rose et al., 2016). In principle,
however, there are quite interesting options to combine loFarm with other models or
technologies. For example, the use of sensor technology or remote sensing would be a
promising alternative for determining timing-related nutrient requirements (Pedersen et al.,
2021; Lu et al., 2020). Specialized models to estimate soil N dynamics, e.g., MONICA
(Nendel, 2014), SNAP (Paul et al., 2002), or DAISY (Abrahamsen and Hansen, 2000) could
also increase the accuracy of loFarm. Thus, further research is needed to potentially improve
loFarm in this regard. However, it is important not to lose track on the trade-off between

practical benefits and the requirements for data acquisition and computational power.

In terms of computational power requirements, the MINLP problem loFarm is highly
demanding. Therefore, a sequential method is required to solve the problem (Amann, 2019,
pp. 19-20), wherein the solution space is constrained by temporary upper and lower limits for

fertilizers to find a solution to the MINLP. The fertilizers concerned are highly unlikely to be
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considered for an optimal solution. Nevertheless, this cannot be said with certainty and
optimization potential may be lost. With the further development of efficient solution
procedures for MINLP problems, future versions of loFarm may offer the possibility to

replace the sequential solution procedure.

A fertilizer experiment was used to evaluate the economic performance of loFarm. Due to the
limited number of participants (31), the evidence of the results is restricted. Incentives were
purposefully not used to recruit participants. The large amount of time required to participate
in the experiment, most likely results in only intrinsically motivated participants who
contribute credible fertilization strategies. Several studies (Stanley et al., 2020; Barge and
Gehlbach, 2012; Goritz, 2006) show the feared negative relationship between incentives and
data quality, supporting the chosen approach. The selection experiment is available online. A
further expansion of the number of participants is thus possible and will hopefully lead to a

better validation of the results in the future.

The evaluation of the agronomic performance of loFarm was carried out in field trials. Due to
the location of the trial sites, only a regional validity of the results for Bavaria (Southern
Germany) can be given. Another limitation concerns the interpretation of the trial results of
the organically fertilized variants (01O, oBL). With a relative standard error of 4.5% to 6.9%,
variation within the variants is above the threshold of 4% (Thomas, 2006, p. 61), and thus
only of limited validity. Therefore, it is important to investigate the agronomic performance
of loFarm in the future under many different environmental conditions, with and without the

use of organic fertilizers.

In Chapter 6, the dominant influence of volatile fertilizer prices on the design of the fertilizer
strategy was established. As a result, the statements made regarding the preferability of
individual fertilizers cannot be generalized. Since this study is also based on the fertilizer
experiment, the basis for analyzing fertilizer strategies is currently limited to 31 participants.
To investigate the influence of different farm conditions on cost-efficient fertilization
strategies, a real existing initial farm was used and selectively modified according to the
ceteris paribus principle. This approach allows a targeted evaluation of these selective
changes. A repeated analysis with a representative set of farms would provide additional
insights. The challenge of such an empirical study, however, is likely to be in the collection of

infrastructure data from the farms.
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Final Conclusions: In the course of this thesis, it becomes visible what degree of complexity
the identification of the cost-efficient fertilizer strategy entails for the individual farm. Cost-
efficient fertilizer strategies are primarily influenced by relative price differences between
fertilizers. Volatile fertilizer prices and other volatile influencing factors, such as growing
conditions, result in the need for frequent readjustment of fertilizer strategy. To optimize the
solution of this time-consuming management task, farmers and consultants should rely on the
help of appropriate optimization tools, such as loFarm. With loFarm, average cost benefits of
€66 ha'a~' could be generated with unchanged market performance. In addition, loFarm
largely automates the fertilizer strategy planning process, reducing the need for valuable
management time. From an individual farm perspective, the benefits are thus assured.
However, it has also been shown that cost-efficient fertilization strategies are additionally
more resource efficient. loFarm therefore also contributes to sustainability, supporting
important social and political goals. By simply adapting the overall target function, loFarm
will also be used in the future to develop CO,-efficient fertilization strategies. From an
economic perspective, loFarm contributes to increasing the competitiveness of agriculture and
improving sustainability. In addition, CO,-efficient fertilizer strategies offer the opportunity
to make a global contribution to climate protection. This justifies the subsidization of loFarm

and policymakers should consider this option.

The short-term goal is now to prepare loFarm for a wide range of crops and to provide
farmers with direct access to loFarm. Due to the increasing digitalization of agriculture,
numerous farm-related data are now available in digital form. Many applications, e.g. field
mapping, from external providers show that the exchange of this data already works in
practice. It is therefore realistic to use this approach for loFarm in the future to provide
farmers and consultants with an online platform for data exchange. This platform is to be
connected to a powerful external computing center to solve large optimization problems

efficiently.
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