
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

1

Virtual Queues for P4: A Poor Man’s
Programmable Traffic Manager

Hasanin Harkous†, Chrysa Papagianni*, Koen De Schepper†, Michael Jarschel†, Marinos Dimolianis**, Rastin
Pries†

†Nokia Bell Labs, firstname.lastname@nokia.com
*University of Amsterdam, c.papagianni@uva.nl

**National Technical University of Athens, mdimolianis@netmode.ntua.gr

Abstract—The advent of programmable network switch ASICs
and recent developments on other programmable data planes
(NPUs, FPGAs) drive the renewed interest in network data plane
programmability. The P4 language has emerged as a strong
candidate to describe a protocol independent datapath pipeline.
With its supported architectures, the P4 language provides an
excellent way to define the packet processing and forwarding
behavior, while leaving other networking components such as
the traffic management engine, to non-programmable fixed func-
tion elements, based on the capabilities of most programmable
devices. However, network flexibility is essential to meet the
Quality of Service (QoS) requirements of traffic flows. Thus,
enabling programmable control for fixed-function elements like
traffic management is crucial.

Towards that end we propose the use of virtual queues in
the P4 pipeline, investigate the application of virtual queue-
based traffic management, and portability of the approach using
different P4 programmable targets. Specifically, we focus on
virtual queue based Active Queue Management (AQM) for
congestion policing and meeting the latency targets of distinct
network slices. The solution is compared to P4 built-in func-
tionality for bandwidth management using meters, proving also
that the additional dimensions of control are achieved without
compromising the processing complexity of the solution.

Index Terms—Software Defined Networking, Programmable
Data Plane, P4, Traffic Management, Performance Evaluation,
SmartNIC.

I. INTRODUCTION

Centralization of the network’s control plane, through soft-
ware defined networking, is an advantage for applications
where changes in the forwarding state do not have strict real-
time requirements and depend on the global network state.
However, functionalities pertaining to traffic management,
such as rate control and Active Queue Management (AQM)
to reduce network congestion and/or scheduling to provide
Quality of Service (QoS) and fairness etc., require local state
information. In such cases, the support of programmable data
planes can minimize the impact of latency and overhead
caused by the intervention of a controller.

Data plane programmability implies the switch capability to
expose the packet processing logic to the control plane to sup-
port systematic, fast and comprehensive reconfiguration [1].
Exploiting advances in networking, including hardware archi-
tectures (e.g., match tables [2], the P4 programming language
[3], etc.), network devices may be reprogrammed in the field
to parse custom protocols and execute custom functionality.

However, while the P4 language and supported architectures
provide an excellent way to define the packet processing and
forwarding behavior, most programmable devices still have
limited, non-programmable traffic management capabilities.
The P4 open-source community has started working towards
defining a programmable traffic manager, encompassing func-
tionality such as packet scheduling, shaping, AQM, etc.

Making the traffic management logic programmable can
provide significant benefits in terms of meeting QoS require-
ments (e.g. low latency communications), reduce the control
load on the SDN controller(s) and corresponding network
overhead, and ensure the required network flexibility through
the introduction of primitives beyond forwarding. Further-
more, portability of such functions between the networking
hardware and software stacks running in the cloud should be
assured, to enhance network service agility.

To support Quality of Experience (QoE) for applications
that make use of high link capacities (if available) while
they can adapt to lower rates but still need low latency (e.g.,
AR/VR, Cloud Gaming), it is important that the network
reports capacity limits before queuing latency starts to build
up or packets get dropped. Optimized AQM and congestion
control are required to manage queuing latency in bottleneck
links. Due to architectural limitations, many existing P4 tar-
gets cannot make the queue delay accessible in the egress
pipeline. Further more, the P4 specification provides a standard
method for bandwidth management using packet classification
and metering [4]. However, meters are only exposed to P4
programmers as an extern function that can be used to call
metering built-in functionality, which may not be available in
all P4 targets, as in the case of NetFPGA-SUME [5], or may
have proprietary behavior or limited functionality.

Motivated by the above challenges, to add missing or
replace existing functionality enabling programmable traffic
management and to enhance its portability between targets,
we propose the use of virtual queues in the P4 pipeline.
Virtual queue-based traffic management schemes (e.g., AQM
[6], scheduling [7] etc.,) have been widely employed for
legacy switching devices. In this study, we propose their use
for different P4 programmable targets, enabling distinct rate
limiting per flow or set of flows and active virtual queue
management, while exploiting traffic prioritization capabilities
and real queue latency, when/if such capabilities are pro-
vided by the target. Assuming that different sets of flows

2

correspond to different slices, customization can be performed
on a per slice basis. The proposed data plane solutions are
implemented using standard parsing and match action pipeline
mechanisms that were defined for programmable forwarding,
leveraging commonly supported P4 constructs (i.e., registers).
We investigate the portability of the approach, by applying
it to two different P4 targets: the BMv2 software switch [8]
and the Netronome SmartNIC [9]. Finally, we assess the
packet processing efficiency of the SmartNIC implementation,
following the methodology presented in [10], [11].

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of related work. Section III
provides background information on the Netronome SmartNIC
and the P4 language. Section IV describes the design and
implementation of the proposed approach and in Section V,
we evaluate its efficiency. Finally, in Section VI, we highlight
our conclusions and discuss directions for future work.

II. RELATED WORK

Previous research on extending programmability to the
data plane [12] stressed the importance of customizing data
plane algorithms, such as scheduling and queuing management
strategies, to application requirements.

Sharma et.al. [13] proposed a mechanism called Approx-
imate Fair Queuing, prioritizing packets in order to achieve
shorter flow completion times, designed to run on pro-
grammable switches; namely (i) a hardware prototype based
on a Cavium network processor and (ii) a programmable
switch implementation using P4. In a follow up work [14], they
proposed a programmable calendar queue using either data-
plane primitives or control plane commands to dynamically
modify the schedule status of queues. Cascone et al. [15]
introduce Fair Dynamic Priority Assignment, a design for
a packet forwarding pipeline to enforce approximate fair
bandwidth sharing, using primitives common in data plane
abstractions such as P4 and OpenFlow. Sivaraman et al. in
[16] propose a programmable scheduler that can implement
variants of priority scheduling and ideal fair queuing at line
rate using a Push-In-First-Out (PIFO) priority queue. PIFO
allows packets to be enqueued into an arbitrary location in
the queue (thus enabling programmable packet scheduling),
but only dequeued from the head. Authors in [17] introduce
S-PIFO, an approximation of PIFO queues by FIFO queues.
Shrivastav [18] proposes a Push-In-Extract-Out (PIEO) data
structure to express buffer management policies. PIEO main-
tains an ordered list of elements as PIFO, but PIEO allows
dequeue from arbitrary positions in the list by supporting
a programmable predicate-based filtering at dequeue. Other
work from Mittal et.al. [19] shows that the classical Least
Slack Time First (LSTF) algorithm comes close to being a
universal scheduling function. Shrivastav claims in [18] that
LSTF has the same limitations as PIFO, as it uses a priority
queue abstraction at its core.

Focusing on queue management, Sivaraman et al. [12] argue
that there is no “one-size-fits-all” algorithm by analyzing dif-
ferent AQM approaches. They enable programmability at the
data plane by adding an FPGA to the fast path of a hardware

switch using an interface to packet queues, implementing
CODEL and RED as a proof of concept. Kundel et al. [20] [21]
demonstrated that is possible to implement such algorithms for
P4 programmable data planes, illustrating P4 capabilities and
constraints. In [22], a PI2 implementation in P4 is provided,
showcasing ways to overcome P4 limitations towards the
development of AQM algorithms. In [23] authors present
an implementation of activity-based congestion management
using P4, introducing additional target-specific externs for
floating point operations to support rate measurement, activ-
ity computation, activity averaging and computation of drop
threshold. Finally, in [24] PIE and RED AQM schemes are
implemented within the P4 context. All these approaches
enhance queue utilization within common network infrastruc-
tures (links) but they do not fully provide per slice bandwidth
and delay guarantees. Authors in [25] use built-in P4 meters
and priority scheduling for bandwidth management per slice,
without addressing delay requirements. In our case, we are
able to support customizable congestion control capabilities
for elastic traffic, ensuring both rate and delay limits per slice.

III. BACKGROUND

A. The P4 Programming Language

P4 [3] is a declarative language for programming protocol-
independent packet processors. It is domain-specific with con-
structs (e.g., headers, parser, etc.) optimized for writing packet
forwarding functions. Using P4, developers can uniformly
program data plane pipelines based on a match/action archi-
tecture, for a variety of targets (ASICs, CPUs, FPGAs etc.).
The execution of a P4 program follows an abstract forward-
ing model with distinct phases: parsing, ingress processing,
replication and queuing, egress processing, and deparsing [2].
The behavior for each phase is defined by the declarations in
the P4 program. State during execution includes information
from packet headers, metadata provided by the device or
computed by the program and state kept in counters, registers,
and meters [26]. While the P4 language is target-independent,
i.e., it abstracts from the specific hardware characteristics
of the switch, a P4 compiler translates P4 programs into
the instruction set of the packet processor [27]. The current
specification of the language (P4 16), introduced the concept
of the P4 architecture that defines the P4-programmable blocks
of a target and their data plane interfaces. Along with the
corresponding P4 compiler, it enables programming the P4
target.

The Portable Switch Architecture (PSA) [28] defines a
generic switch architecture with a library of types and P4 16
externs for frequently used stateful memory resources. At the
moment only a partial implementation of the PSA is available,
therefore the v1model architecture [29], shown in Fig. 1, is
still widely used by the reference open-source BMv2 software

Parser Traffic
Manager Deparser

Egress
Control
Flow

Checksum
Update

Ingress
Control
Flow

Verify
Checksum

Fig. 1: P4 target architecture (v1model).

3

Load

Balance

Parse Match Action

Reorder
net or

PCIE

net or

PCIEP4 Datapath

(run to completion) Thread #1

Thread #2

Thread #3

Flow Tracker
Learn microflows

Cache action

Fig. 2: P4 pipeline in Netronome SmartNICs [31].

switch. Focusing on keeping state, meters are used to record
statistics and the state of a flow. This information can be
used to drop/mark packets according to burstiness and bit rate
criteria. P4 16 supports the “two rate Three Color Marker”
(trTCM) [30] for packet classification. The trTCM meters a
packet flow and marks its packets based on Peak Information
Rate (PIR) and Committed Information Rate (CIR), and their
associated burst sizes, to either green, yellow, or red. Using
the color, the P4 program can implement drop or mark actions.
It is up to the programmer to implement such behavior.

B. Netronome SmartNIC

The Netronome SmartNIC is a Network Flow Processor
(NFP) that can be programmed via P4. Fig. 2 shows a
schematic of the Netronome SmartNIC’s processing pipeline.
It is equipped with tens of multi-threaded purpose-built cores
that enable high parallelism. Moreover, it utilizes a hierar-
chical transactional memory and built-in accelerators to boost
the packet processing performance. The card also has built-
in functionalities such as hashing, stateful memories, and
meters, which can be called using P4 extern functions. The
SmartNIC’s meters have one rate/burst pair of limits and
thus can report only two output states for a packet flow.
Additionally, the card includes a Flow Tracker mechanism that
tracks sessions by learning microflows and caching actions to
speed up classification.

The Netronome SmartNIC adopts the v1model architecture
as a P4 programming model. However, both ingress and
egress pipeline are before the actual queuing and scheduling
functions, such that the egress processing has no visibility
on actual queuing delays. The back-end compiler of this
SmartNIC translates a P4 program to C implementation of
the datapath, which is then used to create the firmware for
the SmartNIC. Further details about Netronome SmartNIC’s
hardware design and programmability can be found in [31].

IV. PROGRAMMABLE TRAFFIC MANAGEMENT

In this section, we describe the design and P4 imple-
mentation of the proposed virtual queue based approach for
programmable traffic management per slice. Then, we discuss
the advantages of this approach for rate limiting compared to
using P4 meters. Finally, we comment on the portability issues
when running these designs on different P4 devices.

A. Design

The proposed P4 programmable traffic management design
enables customizing the characteristics of the traffic associated
with different slices. In this context, we make sure that the
proposed design also satisfies the following requirements:

1) Traffic Customization: Managing the traffic character-
istics per slice should be possible, so rate limit and
maximum tolerable latency can be configured.

2) State Isolation: Slices should be independently man-
aged/controlled and customized to meet their perfor-
mance requirements. Thus, state information per slice
should be preserved at the data plane.

3) Performance Isolation: Performance isolation implies
that service-level key performance indicators should be
met per slice, independently of congestion and/or perfor-
mance levels of other slices sharing the same infrastruc-
ture.

The solution comprises a Traffic Classifier and a Virtual Queue
based Traffic Manager. Their design is described hereafter.

1) Traffic Classifier: Match-action tables are the mecha-
nisms used for performing packet processing. We use a match-
action table to perform per-flow traffic classification, assuming
that the controller allocates a unique local id per slice called
Data Plane Slice ID (DP SID). For example the VLAN tag
of incoming traffic can be used as DP SID similar to [32].
The DP SID is read from the table and stored in the packet’s
user-defined metadata, allowing the data plane to apply local
decisions on policies (i.e. QoS).

2) Virtual Queue based Traffic Management: A vQueue
(virtual Queue) is a mechanism used to model the length, or
as in our case the sojourn latency, of the queue, as if the
packets arriving at the real queue were served by a link with a
capacity lower than the actual capacity of the link. It does not
hold any packet data. It is a number, incremented as packets
arrive and decremented according to the model. The latency
of the vQueue can be used, e.g., to drive an AQM scheme,
replacing the same metric from the real queue. A description
of the structure and its use for an exemplary AQM is provided
in [33].

As a design option, the vQueue is implemented using
commonly supported P4 constructs (i.e., registers), so that
it can be easily ported to different P4 targets. Furthermore,
associating a network slice to a vQueue implemented using
registers, allows us to keep network slice state information.
The control plane can also access these registers at runtime,
enabling monitoring and management on a per slice basis.
As the use of custom (e.g., multi-dimensional) data structures
for indexing such registers is not supported, we employ the
local DP SID, to allocate memory for a specific slice and its
corresponding port in a network element.

In the example used in this paper, each vQueue is associated
with a network slice as color-coded in Fig. 3. Therefore,
by dropping or marking excess traffic, virtual queues and
thus network slices can be individually rate limited, while a
distinct AQM can be applied to each vQueue according to
the requirements of each network service. In Fig. 3, we illus-
trate a possible use of different queue management schemes
and transport layer congestion control schemes per slice to
address the different requirements of the network services and
applications they run, ensuring local queuing latency limits.
Furthermore, we use the scheduling capabilities of the non-
programmable Traffic Manager - when available - to ensure
performance isolation. Each slice can be mapped to a priority

4

Shared
Bottleneck

Rate Limit and Queue
Management

vQueues

Slice 2

Slice 3

Slice 1 DP_SID AQM

Aligned behavior and control per slice

P4 Target

Slice 1 DP_SID

Non-Programmable
Traffic Manager

High Priority Slices

Low Priority Slices

Congestion Behavior
(CUBIC, DCTCP,…)

Per Slice Configuration:

• Rate Limit

• Delay

• AQM (eg. ECN, TD, …)

• Priority

Fig. 3: Virtual queues and slicing at the data plane.

derived according to its application requirements. We assume
network slice priorities are calculated and pushed top-down
by the control- to the data plane. As depicted in Fig. 3, delay-
sensitive traffic from Slice 1 can be prioritized to traffic from
Slice 2 and Slice 3 and forwarded with minimum delay. The
need to apply different priorities or the opportunity to share
priorities will depend on how slice rate limits relate to the
worst case real bandwidth limit available left and latency
caused by other higher and equal priority slices. How the
control plane will assign these is out of scope of this paper,
but could use the equations defined in Section V-B.

B. Implementation
We apply traffic management rules for each slice, matching

the corresponding DP SID carried by every packet in the user
metadata. With the use of the vQueue in the queue manage
action (see Listing 1), we can apply rate limiting and queue
management per slice, according to the type and version of
the transport protocol used and application requirements. We
exemplify our approach using two basic schemes: Tail Drop
and Explicit Congestion Notification (ECN) step AQM to
support classic (e.g., TCP Cubic) and Scalable (e.g., Data
Centre TCP [34]) congestion controls.

For efficiency, we use a single table to perform per-flow
traffic classification along with implementing the standard
IPv4 forwarding functionality (L3Fwd). The L3Fwd match-
action table is part of ingress processing of the P4 processing
pipeline, forwarding the packet to the appropriate egress port
and, in this case, also injecting the DP SID in the packet’s
user-defined metadata. In our exemplary implementation, a
slice is a set of flows having the same destination IP address.

The vQueue per slice is described in Listing 1. For the sake
of brevity, we assume equal-sized packets and use a packet
transmission time parameter to define the rate. The algorithm
can easily be updated to use byte transmission time instead,
taking packet size into account. It is implemented using (i)
the slice ts register that stores the global timestamp of the
previous packet for the slice at the control block (lines 7-13)
and (ii) the delay register holding the slice’s virtual queue
size (line 19). Depending on the time that has elapsed, since

the previous packet of the vQueue (slice) was processed, we
determine how long the current packet has to wait in the
virtual queue (lines 20-24). We consider that the C DELAY
for each virtual queue is the maximum tolerated delay in msec
as prescribed by the slice’s Service Level Agreement (SLA).
This delay, along with the average packet size and the rate
limit (maximum throughput) given in the SLA, is used to
derive the burst limit. If the size of the vQueue, augmented
by the transmission delay of the packet (T DELAY), exceeds
the burst size (C DELAY) then the packet is dropped, else the
vQueue size is incremented by the transmission delay of the
packet (lines 25-29). In any case, the delay register is updated
accordingly (line 30).

Assuming the use of TCP congestion control systems, if
the TCP version at flow level supports Explicit Congestion
Notification (ECN) functionality and the drop burst limit
(C DELAY) has not been reached, the packet is ECN-marked
when the virtual queue delay exceeds the marking burst limit
M DELAY limit, indicating congestion (lines 32-34). For more
complex schemes, each AQM can be a separate action.

While testing our initial P4 code, several target specific
modifications were required. The queue admission control
should be done at ingress, before enqueuing packets. However,
due to some limitations of the SmartNIC target, meters do not
work in the ingress. As queues are located after the egress
pipeline, metering functionality can safely be executed in the
egress pipeline, but it breaks the generality of the P4 program.
In the BMv2 case, a P4 program can access information
about the real queue in the egress pipeline, as part of the
packet metadata. Hence, we have the opportunity to also check
real queuing delay and to decide upon dropping or marking
a packet. The additional match at egress can be avoided
by adding the relevant parameters received at ingress in
packet metadata fields. Finally, for targets that support multi-
threading, concurrent execution by threads that manipulate the
same memory locations can cause inconsistency issues. The
P4 16 language provides the @atomic feature which can be
used for instructing the compiler to execute atomically a code
block.

5

1 action queue_manage(bit<64> T_DELAY, bit<64> C_DELAY, bit
<64> M_DELAY){

2 bit<64> delay=0; //Delay
reported

3 meta.ts=hdr.intrinsic_metadata.current_global_timestamp;
4 bit<64> c_ts = meta.ts;
5 bit<64> p_ts;
6 bit<64> delta = 0;
7 @atomic { //Update

timestamps
8 slice_ts.READ_REG(p_ts,meta.slice_id);
9 slice_ts.WRITE_REG(meta.slice_id, c_ts);

10 }
11 if ((p_ts==0) || (p_ts>c_ts)) { //For reordered

packets
12 p_ts = c_ts;
13 }
14 delta = c_ts-p_ts;
15 if (delta >= 3294967296) { //Wrap up

timestamps
16 delta=delta-3294967296;
17 }
18 @atomic { //Update delay
19 slice_delay.READ_REG(delay,meta.slice_id);
20 if (delta > delay) {
21 delay = 0;
22 } else {
23 delay = delay - delta;
24 }
25 if (delay + T_DELAY > C_DELAY) {
26 meta.DropFlag = 1; //Drop Packet
27 } else {
28 delay = delay + T_DELAY;
29 }
30 slice_delay.WRITE_REG(meta.slice_id,delay);
31 }
32 if ((meta.flag == 0) && (hdr.ipv4.ecn != 0) && (delay >

M_DELAY)) {
33 hdr.ipv4.ecn = 3; //Mark Packet
34 }
35 }

Listing 1: Queue Management P4 Action (excerpt).
C. Advantages compared to P4 meters

Off the shelf P4 meters can be used for bandwidth man-
agement [25]. In terms of throughput, the use of P4 meters
and optionally priority schedulers for bandwidth management
should be sufficient. However, to support delay requirements
for elastic congestion-controlled traffic, we need to employ
additional traffic management schemes (e.g., AQMs, etc.) to
cope with congestion. Yet, the traffic management logic in
forwarding devices is not programmable.

Virtual queues are used not only to enable programmable
active (virtual) queue management and regulate the load on the
actual queue(s), but also as a slicing abstraction supporting the
implementation of stateful data plane algorithms on a per slice
basis, enabling at the same time the easy integration of new
traffic management approaches.

As already mentioned, metering built-in functionality may
not be available in all P4 targets, as in the case of NetFPGA-
SUME [5], or may have proprietary behavior or limited func-
tionality. It also hides the state variables (current queue/burst
size) which might be useful for an active queue management
(AQM) implementation. Due to architectural limitations or
design, many existing P4 targets such as the SmartNICs do
not provide queuing delay information in the egress pipeline.

D. On the Portability of P4 Implementations
We implemented the proposed vQueue-based approach and

a baseline solution using indirect P4 meters, for the BMv2
software switch and the Netronome SmartNIC. In the follow-
ing, we summarize the lessons learned from this exercise.
• P4 registers, used in the vQueue implementation, are not

synchronized with the in-hardware flow cache on the Smart-
NIC. This leads to a flaw in the design logic unless we
disable the cache-flow option on the SmartNIC, even though
this may impact the performance of the card.

• Multi-thread processing on the SmartNIC leads to a lack
of synchronization between registers read/write operations.
This issue was solved by forcing read and write register
operations as “atomic operations” (lines 7, 18).

• There is a difference in the time-stamping mechanisms
between the two targets. As the 64bit time in the SmartNIC
is represented by two 32bit fields (seconds and nanoseconds)
we need to subtract 232 − 109 whenever one second is
exceeded (lines 15-16).

• The SmartNIC supports the v1model architecture. However,
its queues are located after the egress pipeline, hence some
of the standard metadata fields that report the queue occu-
pancy are missing. For this reason, we can only monitor the
virtual queue (see Section V).

• Assigning different queue priorities on SmartNIC is cur-
rently not well supported [35].

• The SmartNIC behavior is undefined when meters are
executed in the ingress pipeline. Thus, we had to apply
traffic policing (using the queue manage action or meters
execution) at the egress pipeline.

• Meters on the SmartNIC have only one threshold. Two
meters have been used in tandem to implement the trTCM.

V. EVALUATION AND ANALYSIS

In this section, we focus on a set of representative ex-
periments, which illustrate the level of flexibility and porta-
bility of our proposed solution, using two different existing
P4 targets: the BMv2 software switch and the Netronome
SmartNIC. We validate and compare the performance of our
approach, denoted as vQueue, to the baseline approach using
P4 Meters [25]. Specifically, in Subsection V-A we validate
the effectiveness of the proposed approaches in controlling
throughput and delay per slices, ensuring performance iso-
lation. The operational limits and trade-offs of the proposed
vQueue approach are investigated in Subsection V-B. Finally,
in Subsection V-C, we compare the processing efficiency of the
vQueue implementation to that of the Meters, in the SmartNIC
setup.

A. Rate and Latency Management

Evaluation Environment and Reporting. The testbed used in
this set of experiments consists of three Linux machines which
serve as traffic client, server, and the host for the P4 target,
as shown in Fig. 4. The client and the server are configured
with macvlan to provide traffic isolation at the hosts. We

Agilio	CX	2x10GbE	
SmartNIC	from	Netronome

1Gbps physical link

ClientServer

.193.1
BMv2

10.187.254.0/24
10.187.253.0/24
10.187.252.0/24

1Gbps physical link.211 .1

10.187.15.0/24
10.187.14.0/24
10.187.13.0/24

10Gbps physical link ClientServer

.193.1
10.187.254.0/24
10.187.253.0/24
10.187.252.0/24

10Gbps physical link

.1.211

10.187.15.0/24
10.187.14.0/24
10.187.13.0/24

Fig. 4: Testbed for rate and latency management evaluation.

6

TABLE I: Traffic per slice.

Parameter
Slice DC Enterprise Peering

BMv2 SNIC BMv2 SNIC BMv2 SNIC
RTT (msec) 5 10 30
TCP Flavor DCTCP Cubic Cubic
TCP flows (#) 10 100 1 10 10 100

TABLE II: Configuration per slice.

Parameter
Slice DC Enterprise Peering

BMv2 SNIC BMv2 SNIC BMv2 SNIC
Rate limit (Mbps) 48 480 12 120 240 2400
Burst limit (msec) 20 10 30

(pkts) 80 800 10 100 600 6000
QM Scheme ECN Step TD TD
Target delay (msec) 5 - -

employ two experimentation setups, utilizing either the BMv2
switch or the Netronome SmartNIC. In the first case, we use
the three hosts running Ubuntu (16.04 for the switch with
Linux Kernel version 4.4.0) each with different Intel CPU
(i7-4770 @ 4x3.40GHz, Pentium D @ 2.8GHz and i5-4590
@ 4x3.30Ghz). The machines are equipped with at least two
1GbE NICs with MTU set to 1500 bytes. In the Netronome
SmartNIC setup, we use hosts running 18.04 Ubuntu based on
Linux Kernel version 4.19.0, each with 16 cores (dual-socket
Intel Xeon CPU E5-2630 v3 @ 2.40GHz), 64GB of 2133
MHz DDR4 memory and equipped with 82599ES 10-Gigabit
Ethernet network interface card.

With regards to reporting, the identification field in the IPv4
header has been re-purposed to report measurement results.
This is done solely for validating the Proof of Concept (by
generating the corresponding graphs) and is not required in a
real-world deployment of the proposed approach. When BMv2
switch is used as the target, the 6 least significant bits store
the packet’s virtual queuing delay in ms, 6 bits report the
packet’s real queuing delay in ms (up to 63ms), while the 4
most significant bits are used to report the number of dropped
packets in the first next non-dropped packet of the same slice.
Due to size restrictions, up to 15 drops can be reported. Any
more dropped packets will be carried over to the next packet,
making the maximum reportable drop rate = 15/16 = 94%.
When virtual queues are not utilized all 12 least significant bits
store the packet’s real queuing delay in ms (up to 4s). However,
when the SmartNIC is used as the target, the real queuing
delay can not be reported as discussed in Subsection IV-D.
Therefore, we use the 16 bits identification field to report the
virtual queuing delay (in ms) using the least 9 significant bits,
and the number of dropped packets using the remaining upper
7 bits.
Network Slice description, traffic & configuration. We
assume 3 network slices with different requirements based on
their use, that is (i) data center interconnection [DC slice],
(ii) enterprise WAN connectivity [Enterprise slice] and (iii)
peering between two virtual network operators [Peering slice].
The traffic properties per slice (number of TCP flows and
RTT) used in the experiments are provided in Table I. The
greedy TCP traffic is only limited by the selected congestion
control scheme and its interaction with drops and marks by the

configured AQMs in the slice. The congestion control is set to
either Cubic or Data Center TCP (DCTCP) on the client(s) and
server(s) before starting these applications. The configuration
parameters required for the three slices when running on the
BMv2 switch and the SmartNIC are provided in Table II. To
match the throughput capabilities of the forwarding devices,
which are relatively restricted especially in the case of the
BMv2 reference software switch1, we have down-scaled the
aggregated slices’ rate limit (approximately threefold decrease
for the BMv2 switch and the SmartNIC whose line rates are
1Gbps and 10Gbps respectively). Initially, a rate and target
delay (burst limit) per slice are arbitrarily set. The burst limit is
set as the delay a burst of packets would cause to a real queue
served by the specified rate limit. We assume that slice DC has
the most stringent delay and loss requirements. Thus, DCTCP
with an immediate ECN step [34] active queue management
algorithm is used. We use ECN packet marking to control the
delay of the virtual queue to a 5ms target and avoid loss, by
allowing a larger (exceptional) burst limit before packets are
dropped. The other two slices use only their drop based burst
limit, effectively implementing a delay-based TailDrop (TD)
(virtual) queue.
Experiments, Measurements & Evaluation Metrics. The 1st

experiment (Subsection V-A1) evaluates the efficiency of the
proposed approach using vQueues for policing and AQM and
the system’s interaction with TCP flows on the BMv2 switch.
The results are compared to the Meter-based implementation.
We operate the 3 slices simultaneously over the shared non-
congested link. All Traffic is sent to the same physical queue
at the switch’s egress port where the size is set high enough
(e.g., 200,000 packets) to ensure that congestion control is
only performed by the queue management algorithm at the
virtual queues.

We measure the throughput and delay over time for the
virtual queue per slice and the physical queue. Measurements
are taken after 50 seconds from the start of the experiment,
to capture only the steady-state and span over an interval of
250 seconds. We capture the packets at the outgoing switch-
to-client interface. The throughput plots are averages over one-
second intervals of the per-packet reported size. We measure
the queuing delay per packet and zoom in the plot (10s
period) to make the TCP variations visible. We also plot the
Cumulative Distribution Function (CDF) of the queuing delay.
The queuing delay CDFs use the per-packet queue delays to
count in bin-sizes of 1024µs, ranging from 0ms to 30ms.

The 2nd experiment (Subsection V-A2) is carried out to
evaluate the performance of the vQueue management mech-
anism when running on the P4 programmable Netronome
SmartNIC. The same measurement procedure is applied in
this experiment. However, due to the SmartNIC architec-
ture/implementation, where the physical queue succeeds the
ingress/egress pipeline, we do not report the packet delay in
the physical queue. The experiment validates the portability
of the mechanism, running on a hardware target.

To further investigate the potential benefits of the proposed
implementation for slice performance isolation (i.e., meeting

1https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md

7

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

Q
u
e
u
e
 d

e
la

y
 [

m
s]

Time [sec]

Virtual Queuing Delay
Avg Virtual Queuing Delay
Real Queuing Delay
Avg Real Queuing Delay
Drops

(a) DC slice.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

Q
u
e
u
e
 d

e
la

y
 [

m
s]

Time [sec]

Virtual Queuing Delay
Avg Virtual Queuing Delay
Real Queuing Delay
Avg Real Queuing Delay
Drops

(b) Enterprise slice.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

Q
u
e
u
e
 d

e
la

y
 [

m
s]

Time [sec]

Virtual Queuing Delay
Avg Virtual Queuing Delay
Real Queuing Delay
Avg Real Queuing Delay
Drops

(c) Peering slice.

Fig. 5: BMv2 - vQueue delay and packet drop results.

throughput and latency bounds per slice), we repeat the
experiment, operating however the three slices simultaneously
over a shared bottleneck. To this end we rate limit the link to
285Mbps, just below the aggregated capacity of the three slices
at 300Mbps. Furthermore, apart from the vQueue-based traffic
management, we also exploit the capabilities of the target’s
non programmable traffic manager. Specifically, we employ
traffic prioritization using two priority queues, assigning the
traffic of the DC and Enterprise slices to the highest priority
one. This 3rd experiment (Subsection V-A3) is conducted
only using the BMv2 target as real queuing delay cannot be
measured and configuring queue priorities with P4 is not well
supported in the SmartNIC.

1) Experiment 1- BMv2 software switch: The results of
vQueue implementation running on the BMv2 switch are
presented in Figs. 5-7, with plots showing the (i) per packet
and average delay in the virtual and the real (switch egress
port) queue as well as packet drops (zoomed in for the first
10 seconds of the experiment), (ii) the delay CDFs for the
duration of the experiment and (iii) average throughput. Fig. 8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

C
D

F

Queue delay [ms]

DC: Virtual
DC: Real
Enterprise: Virtual
Enterprise: Real
Peering: Virtual
Peering: Real

Fig. 6: BMv2 - vQueue CDF of delay.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Time [sec]

DC vQueue
Enterprise vQueue
Peering vQueue

Fig. 7: BMv2 - vQueue throughput results.

shows the measured throughput for all slices when using the
standard P4 packet classifier/meters (baseline).

The gauged TCP throughputs, for the three slices in Fig. 7
confirm the effectiveness of the policing approach using
vQueues; the results are similar to the baseline in Fig. 8 where
with the use of P4 meters we are limiting the per slice rate
according to their configurations. Moreover, the corresponding
delay CDFs, show that for a non-congested physical link,
the real queuing delay for all slices sharing that link is in
the order of microseconds, while the virtual queue delay is
kept below the corresponding burst limit and the hard rate
limits are obeyed. This signifies that the proposed vQueue
implementation is able to control the behavior and limits of
each slice and match its requirements, in terms of throughput
as well as drop/target delay (when applicable). The latter is
not possible using the off-the-shelf P4 meters.

Under close inspection of the vQueue results, in Fig. 5a,
we see that the DCTCP flows (slice DC) are being controlled
at the target rate and around the 5ms marking threshold
(Table II). As packets are marked and not discarded, the

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Time [sec]

DC Meter
Enterprise Meter
Peering Meter

Fig. 8: BMv2 - Meter throughput results.

8

DCTCP flows average virtual queue delay can exceed the
5ms marking threshold. The extra 15ms virtual queue size
is required to minimize packet drops, which sporadically still
happens when this threshold is exceeded. The higher delay
variation in the virtual queue is due to the fast integration
function of the virtual queue and the delayed mark response
from the TCP senders.

With regards to the Cubic TCP flow of enterprise slice
in Fig. 5b we see that due to the non-shaped (non-ACK-
paced) traffic, the full congestion window of the single flow is
transmitted repetitively at line rate, resulting in a very bursty
virtual queuing delay. Because the virtual transmission time of
one packet is 1ms on the virtual rate limit of 12 Mbps, only
bursts of about 10 packets per RTT (10 ms) are allowed. This
reduces the actual rate to only slightly above 10 Mbps.

In Fig. 5c, we also observe the Cubic TCP behavior (in
Reno mode) for the flows of the peering slice. Throughput
variations can be attributed to the abrupt 30% Cubic backoff
on loss and slow increase. A high level of jitter is noted due
to line-rate bursts at congestion window size, but in this case,
it is not limited by the burst limit of the virtual queue. Even
with 10 flows we observe a high level of synchronization. This
causes frequent episodes of slight under-utilization, visible in
the throughput and CDF plot. Note that the real queuing delay
of the three slices is always in the order of microseconds, and
hence close to 0 ms.

As a last note, the results reveal the efficiency of the
proposed approach to support alternative traffic management
schemes per slice, adapted to the TCP flavor used and applica-
tion needs. Obviously, slice (state and performance) isolation
can be supported when sharing a real queue and capacity, given
that both are dimensioned sufficiently large to accommodate
the slices.

2) Experiment 2- Netronome SmartNIC: Similar to the
BMv2 experiment, the results of the vQueue implementation
are presented in Figs. 9-11, while Fig. 12 depicts the through-
put for the three slices when using the standard P4 packet
classifier/meter implementation for the SmartNIC.

Overall, we see a similar trend to the BMv2 results at a
larger scale (x10 flows). For the three slices in Fig. 11 the
throughput results are similar to the baseline implementation
in Fig. 12. Although in the SmartNIC setup we can only report
the delay of the virtual queues, the virtual queue delay for all
three slices is kept below the corresponding burst limit and
the hard rate limits are obeyed.

In more details, the DCTCP flows (slice DC) in Fig. 9a
are fluctuating around the 5ms marking threshold, similar
to BMv2. In this case, however, DCTCP traffic fills the
virtual queue, since congestion control (via marking) takes
a few RTT to respond and reduce the rate to the target
value. After approximately two seconds the synchronized TCP
oscillation, manifested as the delay variation and the typical
on/off marking pattern, is smoothed out as on/off marking gets
broken due to micro marking bursts spread more evenly over
time.

Regarding the Enterprise slice in Fig. 9b, the tenfold
increase in the number of packets dropped is due to the
tenfold increase in the number of flows. We also observe a

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

Q
u
e
u
e
 d

e
la

y
 [

m
s]

Time [sec]

Virtual Queuing Delay
Avg Virtual Queuing Delay
Drops

(a) DC slice.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

Q
u
e
u
e
 d

e
la

y
 [

m
s]

Time [sec]

Virtual Queuing Delay
Avg Virtual Queuing Delay
Drops

(b) Enterprise slice.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

Q
u
e
u
e
 d

e
la

y
 [

m
s]

Time [sec]

Virtual Queuing Delay
Avg Virtual Queuing Delay
Drops

(c) Peering slice.

Fig. 9: SmartNIC - vQueue delay and packet drop results.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

C
D

F

Queue delay [ms]

DC: Virtual
Enterprise: Virtual
Peering: Virtual

Fig. 10: SmartNIC - vQueue CDF of delay.

better utilization of the slice capacity, indicating no TCP flow
synchronization.

For the Peering slice in Fig. 9c, the effects of global
synchronization we noted in Fig. 5 for the Cubic TCP flows
are amplified when scaling up (x10). This leads to increased
under-utilization of the slice capacity, made evident also by the
CDF and the throughput plots. Using our vQueue implementa-
tion, one could alternatively adopt a random dropping scheme

9

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Time [sec]

DC vQueue
Enterprise vQueue
Peering vQueue

Fig. 11: SmartNIC - vQueue throughput results.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Time [sec]

DC Meter
Enterprise Meter

Peering Meter

Fig. 12: SmartNIC - Meter throughput results.

such as the RED-like scheme, to break synchronization issues,
enforcing a linear increase in the drop probability starting at
a minimum delay threshold ending at a maximum threshold
where 100% of the packets are dropped.

3) Experiment 3- BMv2 performance isolation with over-
utilized link: Performance isolation in the network slicing
context implies that service-specific performance requirements
are always satisfied on each network slice instance, regardless
of the congestion and workloads of other slice instances
running over the shared infrastructure. Fig. 13 and Fig. 14
depict the coo responding delay and throughput, using priority
queues for both the virtual queue and P4 meters. The DC and
Enterprise slice traffic is prioritized - sharing the high priority
physical queue of the switch - over the Peering slice traffic.
The three slices operate simultaneously, sharing the same
constrained link capacity of a single egress port (285 Mbps).
As the real rate limit is lower than the sum of the virtual rate
limiters, the real queue delays need to be also controlled. To
that end, the virtual queue policies we implemented use the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

C
D

F

Queue delay [ms]

DC vQueue:Virtual
DC vQueue:Real
DC Meter:Real
Ent.vQueue:Virtual
Ent.vQueue:Real
Ent.Meter:Real
Peer.vQueue:Virtual
Peer.vQueue:Real
Peer.Meter:Real

Fig. 13: BMv2 - performance isolation with over-utilized link
CDF of delay.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Time [sec]

DC vQueue
Enterprise vQueue
Peering vQueue
DC Meter
Enterprise Meter
Peering Meter

Fig. 14: BMv2 - performance isolation with over-utilized link
throughput results.

maximum of the virtual and real queue delay of packets for
their drop and mark decisions.

In the vQueue case, we observe that the QoS requirements
of the two high priority slices are supported, while we observe
a decrease in throughput and an increase in the packets’ real
queue delay for the low priority one (Peering Slice) which
however remains within the pre-defined bound (30 ms). Fig. 13
(CDF) signifies that the Peering slice is controlled by the
real queuing delay (Peer.vQueue:Real). The vQueue is not
operational anymore, as it is not able to reach the virtual rate
limit and hits the burst limit of 30 ms, as long as the higher
priority slices are using their maximum throughput levels.

Using the standard P4 meters, throughput-wise, the results
are similar as evident in Fig. 14; there is the same notable
decrease in throughput for the Peering slice. As expected,
no real queuing delay is observed for the DC and Enterprise
slices since their traffic is prioritized. However, the increase
in the packets’ real queuing delay for the low priority traffic
is significant (up to 800ms), since it is not controlled as in the
vQueues case.

Considering delay as the key performance indicator for
performance isolation, the use of the P4-standard meters does
not sufficiently isolate the performance of the low priority
slice. Meters only support under-provisioned rate limits when
latency guarantees are required, unless additional real queue
latency configuration and checks are implemented, like in
our vQueue implementation. To omit using additional real
queue latency controls, we need to manage the capacity
margin between the (configured) sum of the slices’ (vQueues)
throughput and the capacity of the physical link.

B. Guaranteed Performance Targets Using vQueues

As noted in the last experiment in V-A3, namely Experiment
3- BMv2 performance isolation with over-utilized link, it is
necessary to investigate the capacity margin required between
the (configured) sum of the vQueues and the actual link
capacity, to guarantee that all slices meet their performance
target. Towards that end, we assume the behavior of a Marko-
vian non-preemptive priority queuing system and estimate the
corresponding physical link capacity required to support the
delay and throughput targets set per slice, under different slice
priorities.

Using priority scheduling, the queues of lower-priority
slices are effectively blocked during the busy period of higher-

10

TABLE III: Priority per slice.

Case
Slice DC Enterprise Peering

A 7 7 7
B 7 6 6
C 7 7 6
D 7 6 5

priority slices. Based on the maximum busy period for every
slice s ∈ S with priority i ∈ I, where |I| is the highest priority,
we can calculate the maximum real queuing delay (worst case
scenario) for each slice. The maximum busy period ts

i for every
slice s with priority i can be estimated based on its burst limit
bs

i (in bytes), and the residual capacity ri of the bottleneck for
priority i as following:

ts
i =

bs
i

ri
(1)

The residual capacity that can be used by every slice s with
priority i and rate limit Ls

i , over the bottleneck with nominal
capacity C is:

ri =C− ∑
∀ j∈S

|I|

∑
k=i+1

L j
k (2)

Based on Eq. (1) and (2), the worst case queuing delay di
for every slice s with priority i is equal to the aggregate busy
period of all higher or equivalent priority slices, including slice
s as follows:

di = ∑
∀ j∈S

|I|

∑
k=i

t j
k (3)

The extra worst case queuing delay ∆di = di−di+1 for all
slices with priority i is dependent on (i) the residual capacity
of the link for that priority ri and (ii) sum of all burst sizes
(derived from the delay burst limits and respective rate limits)
of all slices of that priority as follows:

∆di = di−di+1 =
∑∀ j∈S b j

i

ri
(4)

From this reworked equation, we can derive the bound on
the maximum extra latency ∆di for slices of priority i given
a residual capacity ri, or the bound on the minimum residual
capacity ri needed for the given maximum extra latency ∆di
that is allowed for the slices of priority i.

When the real queuing latency cannot be controlled, these
bounds will limit the number of slices that can be supported
for a given link capacity. On the other hand, when the real
queues can be controlled, these bounds provide the worst case
rate that a priority can experience.

In Fig. 15 we plot the worst case queuing delay of the three
slices used in the experiments above (i.e. slice DC, Enter-
prise and Peering with target rates of 48 Mbps, 12 Mbps and
240 Mbps respectively), for various rates (bottleneck links),

300 500 700 900 1100 1300 1500 1700

Link capacity [Mbps]

0

5

10

15

20

25

30

35

Q
u
e
u
e
 d

e
la

y
 [
m

s
]

Case A: Slice DC/Ent./Peer.

Case D: Slice DC

Case D: Slice Enterprise

Case D: Slice Peering

Cases A and D

300 500 700 900 1100 1300 1500 1700

Link capacity [Mbps]

0

5

10

15

20

25

30

35

Q
u
e
u
e
 d

e
la

y
 [
m

s
]

Case B: Slice DC

Case B:Slice Ent./Peer.

Case C: Slice DC/Ent.

Case C: Slice Peering

Cases B and C

Fig. 15: Worst case delay as a function of link capacity.

with priorities as depicted in Table III. The figure is split to
improve readability as the cases B, C and D partially overlap.
Case A is similar to the initial slice setup used in the first
two experiments of the previous Subsection for BMv2 and
SmartNIC evaluations in Experiment 1 and Experiment 2 while
Case C reflects the slice setup used in the third experiment
Experiment 3 for the over-utilized link evaluation. Case D
yields similar results to case C; the DC and Enterprise traffic
are both prioritized over Peering traffic. Case B identifies the
corresponding limits, when traffic from slice DC is prioritized
over the other two.

Graph Case A: Slice DC/Ent./Peer. in Fig. 15 depicts the
worst case queuing delay for each slice, with no traffic
prioritization. We observe that a capacity of 1650 Mbps is
required to guarantee a (maximum) 5 ms delay for Slice DC.

The queuing delays for Slices DC, Enterprise and Peering
in Case B are denoted as Case B:Slice DC and Case B:Slice
Ent./Peer. respectively. We note that in this case, where DC
traffic is prioritized over traffic from the other two slices, the
10 ms delay limit for the Slice Enterprise is met only when
the bottleneck rate is higher than 900 Mbps.

In case C, where traffic from Slices DC and Enterprise is pri-

11

oritized over Peering traffic, the queuing delays are denoted as
Case C:Slice DC/Ent. and Case C:Slice Peering respectively.
Similarly, graphs Case D: Slice DC, Case D Slice Enterprise
and Case D: Slice Peering depict the worst case queuing delay
for each slice, when different priorities are applied between the
slices. We verify from these graphs, that both priority policies
allow us to support the corresponding maximum burst limits
for all slices even in the worst case scenario, as long as the
bottleneck is at least equal to 330 Mbps.

Overall, we observe that by using the corresponding maxi-
mum burst limits (worst case queuing delay) of the slices, strict
slice priority allows us to determine the necessary capacity
margin required for the vQueues to operate efficiently under
different conditions (e.g., 330 Mbps in case C and D for the
specific QoS/rate targets per slice). On that account, an intel-
ligent control plane could adaptively assign slices to different
priorities, based on their requirements and the physical link
capacity, to meet their KPIs.

C. Packet Processing Latency

Experiment, Measurements & Evaluation Metrics. In the
SmartNIC setup, we assess the efficiency of our proposed
approach using virtual queues, following the methodology
presented in [10] and [11]. To that end, we compare the packet
processing latency of the vQueue pipeline to the corresponding
processing latency for the pipeline using P4 meters. To identify
the extra processing latency needed for meters and vQueue,
we measure the latency of a program with only L3 Forwarding
(L3Fwd) packet processing, which serves as a baseline.

Specifically, we change the experimentation setup as shown
in Fig. 16, using the MoonGen packet generator [36] to
benchmark the device-under-test (Netronome SmartNIC). Af-
ter loading the P4 implementation under test, MoonGen sends
1500 Byte UDP packets at 2.4 Gbps to the Netronome Smart-
NIC. The packets are processed in the card and then sent back
to MoonGen where packet latency is reported.

Additionally, we examine the impact of different actions
taken by each P4 implementation on packet processing latency,
by configuring the two traffic management implementations at
rates equal to 2.3 Gbps and 5 Gbps to be smaller (Mark Action)
and greater (No-Mark Action) than the 2.4 Gbps generated
traffic rate. We made sure that no packets are dropped by

SmartNIC

Packet
Generator

MoonGen
Latency
Results

1

2

3

4

P4 Target
Host

Meter

vQueue

Fig. 16: Testbed for evaluating processing latency.

Mark No-Mark Mark No-Mark

Case

0

5

10

15

20

L
a
te

n
c
y
 i
n
 m

ic
ro

s
e
c

L3Fwd

Meters

vQueue

Fig. 17: Packet processing latency.

the traffic management mechanisms as this will disrupt the
packet latency measurements. This was achieved by arbitrarily
increasing the dropping burst size, and by minimizing the
difference between the limited rate in the Mark-Action case,
i.e. 2.3 Gbps, and the sent rate, i.e. 2.4 Gbps, to make sure that
drop burst threshold is never reached (no packet is dropped).
Packet Processing Latency Results. The box plots of the
measured latency, in µs, corresponding to the different P4
implementations with different configurations is shown in
Fig. 17. We can observe that the traffic management mecha-
nism implemented in both vQueue and meter implementations
contributed an additional 8 µs on top of the L3Fwd baseline
pipeline. Additionally, the packet processing load of our
proposed vQueue implementation shows a slight advantage
compared to that of meter implementation, where the median
of the measured latency in the vQueue cases is 0.3 µs less than
that measured in the meter cases. Moreover, we can observe
that the packet processing latency of the two implementations
is invariant whether packets are marked or not. Memory-wise,
the reported usage of different memory types in both imple-
mentations is approximately the same, except for the usage of
Cluster Local Scratch memory (CLS), which is responsible for
storing frequently used data, where vQueue implementation
requires additional 2% of the available memory compared to
meter-based implementation.

An alternative implementation of the vQueue using one reg-
ister and one atomic section did not improve the performance,
as accessing a register was faster than the extra processing
required. Depending on the target and register constraints, it
might be possible to further optimize the algorithm striking the
right balance between resource usage and processing latency,
of course again at the cost of generalization.

VI. CONCLUSION

Programmable data planes support network flexibility, pro-
moting rapid development and prototyping cycles. How-
ever, most programmable devices still typically have non-
programmable traffic managers. In this paper, we propose the
use of virtual queues in the P4 pipeline and the application
of programmable virtual queue-based traffic management for
different P4 programmable targets. We show that the use of
the virtual queues not only enables bandwidth management

12

per slice as P4 meters do, it also allows us to ensure de-
lay bounds per slice, employing virtual queue-based AQM.
Essentially, we are taking a step towards fully customizable
data plane slices. We validate the performance of the proposed
approach focusing on elastic congestion-controlled traffic and
further investigate the correlation between the shared link and
network slices’ capacity required for the proposed approach
using vQueues to operate efficiently. We further look into the
portability of the approach, using the reference P4 software
switch and an NPU based hardware target. The proposed
implementation can be an alternative for built-in metering
implementations which, if present in a P4 hardware target,
require additional effort to assure portability. We showcase
that our design has a similar rate limiting performance, full
access to state information, and a slightly lower processing
delay compared to P4 Meters available on a P4 target. In the
future, we plan to evaluate other hardware targets and inves-
tigate programmable approaches for inter-slice scheduling, to
provide a fully programmable traffic management system.

ACKNOWLEDGMENT

This work has been partially funded by the EU H2020
5Growth Project (grant no. 856709).

REFERENCES

[1] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions architectures and open problems,” in Proc. IEEE HPSR,
2018, pp. 1–7.

[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 99–110.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[4] P4-Consortium. (2016) P4 16 Language Specification. https://p4.org/
p4-spec/docs/P4-16-v1.0.0-spec.html. Accessed: 2020-06-25.

[5] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as research commodity,” IEEE
micro, vol. 34, no. 5, pp. 32–41, 2014.

[6] S. S. Kunniyur and R. Srikant, “An Adaptive Virtual Queue (AVQ)
algorithm for active queue management,” IEEE/ACM Transactions on
networking, vol. 12, no. 2, pp. 286–299, 2004.

[7] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,”
IEEE/ACM transactions on networking, vol. 15, no. 6, pp. 1333–1344,
2007.

[8] P4-consortium. (2020) Behavioral Model (bmv2). https://github.com/
p4lang/p4c/blob/master/p4include/v1model.p4. Accessed: 2020-08-01.

[9] Netronome. (2020) Netronome Agilio SmartNics. https:
//www.netronome.com/products/smartnic/overview/. Accessed: 2020-
08-01.

[10] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer, “Towards
understanding the performance of p4 programmable hardware,” in 2019
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS). IEEE, 2019, pp. 1–6.

[11] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer, “P8: P4
with predictable packet processing performance,” IEEE Transactions on
Network and Service Management, 2020.

[12] A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan, “No
silver bullet: extending SDN to the data plane,” in Proceedings of the
Twelfth ACM Workshop on Hot Topics in networks. ACM, 2013, p. 19.

[13] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approximat-
ing Fair Queueing on Reconfigurable Switches,” in USENIX Symposium
on Networked Systems Design and Implementation, 2018, pp. 1–16.

[14] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim, A. Krishna-
murthy, and A. Sivaraman, “Programmable calendar queues for high-
speed packet scheduling,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), 2020, pp. 685–699.

[15] C. Cascone, N. Bonelli, L. Bianchi, A. Capone, and B. Sansò, “Towards
approximate fair bandwidth sharing via dynamic priority queuing,”
in Local and Metropolitan Area Networks (LANMAN), 2017 IEEE
International Symposium on. IEEE, 2017, pp. 1–6.

[16] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proceedings of the
2016 ACM SIGCOMM Conference. ACM, 2016, pp. 44–57.

[17] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “SP-PIFO: approximating
push-in first-out behaviors using strict-priority queues,” in 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), 2020, pp. 59–76.

[18] V. Shrivastav, “Fast, scalable, and programmable packet scheduler in
hardware,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 367–379.

[19] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal packet
scheduling,” in 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), 2016, pp. 501–521.

[20] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, and R. Steinmetz,
“P4-CoDel: Active Queue Management in Programmable Data Planes,”
in Proceedings of the IEEE 2018 Conference on Network Functions
Virtualization and Sofwtare Defined Networks. IEEE, 2018, pp. 27–29.

[21] R. Kundel, A. Rizk, J. Blendin, B. Koldehofe, R. Hark, and R. Steinmetz.
(2020) P4-codel: Experiences on programmable data plane hardware.

[22] C. Papagianni and K. De Schepper, “PI2 for P4: An active queue
management scheme for programmable data planes,” in Proceedings
of the 15th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 84–86. [Online].
Available: https://doi.org/10.1145/3360468.3368189

[23] M. Menth, H. Mostafaei, D. Merling, and M. Häberle, “Implementation
and Evaluation of Activity-Based Congestion Management Using P4
(P4-ABC),” Future Internet, vol. 11, no. 7, p. 159, 2019.

[24] S. Laki, P. Vörös, and F. Fejes, “Towards an AQM Evaluation Testbed
with P4 and DPDK,” in Proceedings of the ACM SIGCOMM 2019
Conference Posters and Demos, ser. SIGCOMM Posters and Demos ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
148–150. [Online]. Available: https://doi.org/10.1145/3342280.3342340

[25] Y.-W. Chen, L.-H. Yen, W.-C. Wang, C.-A. Chuang, Y.-S. Liu, and C.-C.
Tseng, “P4-enabled bandwidth management,” in 2019 20th Asia-Pacific
Network Operations and Management Symposium (APNOMS). IEEE,
2019, pp. 1–5.

[26] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, and N. Foster, “p4v: Practical
verification for programmable data planes,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication.
ACM, 2018, pp. 490–503.

[27] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, and M. Budiu,
“DC.p4: Programming the forwarding plane of a data-center switch,” in
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research. ACM, 2015, p. 2.

[28] T. P. A. W. Group. (2018, November) P416 portable switch architecture
v1.1. [Online]. Available: https://p4.org/p4-spec/docs/PSA-v1.1.0.html

[29] P4-consortium. (2020) V1 Model. https://github.com/p4lang/
behavioral-model. Accessed: 2020-08-01.

[30] J. Heinanen and R. Guerin. (1999) RFC2698: A two rate three color
marker.

[31] Netronome. (2017) Mapping P4 to SmartNICs. https://p4.org/assets/p4
d2 2017 nfp architecture.pdf. Accessed: 2020-05-25.

[32] 5Growth-consortium. (2020) Initial implementation of 5G End-to-End
Service Platform. https://5growth.eu/deliverables/.

[33] B. Briscoe, “The native AQM for L4S traffic,” arXiv preprint
arXiv:1904.07079, 2019.

[34] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM computer communication review, vol. 41, no. 4, pp.
63–74, 2011.

[35] Netronome. (2020) Traffic class configuration. https://groups.google.
com/g/open-nfp/c/kNqO8mSTupE. Accessed: 2020-08-01.

[36] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings of
the Internet Measurement Conference (IMC). ACM, 2015, pp. 275–287.

