
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Learning Domain-Specific Predicates in
Decision Trees for Explainable Controller

Representation

Christoph Weinhuber

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Learning Domain-Specific Predicates in
Decision Trees for Explainable Controller

Representation

Lernen von domänespezifischen Prädikaten
in Entscheidungsbäumen für die

Repräsentation erklärbarer Controller

Author: Christoph Weinhuber
Supervisor: Univ.-Prof. Dr. Jan Křetínský
Advisor: M.Sc. Pranav Ashok, M.Sc. Maximilian Weininger
Submission Date: 04.09.2020

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 04.09.2020 Christoph Weinhuber

Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Jan Kretínský for making
this thesis possible and providing me the opportunity to do research in such fascinating
topic.

Secondly, I cannot stress enough how deeply grateful I am for my research advisors
M.Sc. Maximilian Weininger and M.Sc. Pranav Ashok. Their continuous support,
constructional guidance and infinite patience remains unmatched. I am especially
thankful for the positive working environment they have created; they always had time
for me and every single question could be asked. It was the most exciting topic I have
ever encountered and I enjoyed every single day working on it.

Last but not least, I would like to thank my mother for all her care and energy she
invested in me throughout my academic path and my girlfriend for her unconditional
support and always being my partner in crime.

Abstract

Controller which arise during the model checking process provide valuable insights
into the system under examination. But often this advantage gets buried under their
opaque size. Recent work addressed this problem and demonstrated the use of decision
trees for controller representation which resulted in several advantages. However, the
explainability of certain decision trees is still insufficient. To overcome this problem
we present a concept to enrich decision trees with algebraic predicates. We propose
several different approaches to leverage domain knowledge presented by the user,
either automatically or semi-automatic. Furthermore, we extend the current version
of dtControl with all proposed concepts and methods. Finally, we demonstrate the
advantages and applicability of our approach on different controller models where we
yield great gains in both size and explainability.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Related Work 6

3. Preliminaries 8
3.1. Controller . 8
3.2. Decision Tree Learning . 9

3.2.1. Predicate . 10
3.2.2. Impurity Measure . 11
3.2.3. Decision Tree . 13
3.2.4. Predicate Generator . 15
3.2.5. Decision Tree Induction Algorithm 15

3.3. Curve Fitting . 17

4. Richer Domain Predicates 19
4.1. Predicate Tailoring . 19

4.1.1. Coefficients . 19
4.1.2. Feature Constraints . 22
4.1.3. Further Optimizations . 23

4.2. Decision Tree Induction Algorithm . 24
4.2.1. Richer Domain Strategy . 24
4.2.2. Priority Strategy . 25
4.2.3. Semi Automatic Strategy . 25
4.2.4. Further Optimizations . 26

5. Implementation 27
5.1. Libraries . 27

5.1.1. NumPy . 27
5.1.2. SymPy . 27

v

Contents

5.1.3. SciPy . 28
5.2. dtControl . 28

5.2.1. Predicate Parser . 30
5.2.2. DT Learning . 32
5.2.3. Documentation . 36

6. Evaluation 37
6.1. Cruise Control . 37
6.2. Preexisting Prototype . 38
6.3. Optimization . 39
6.4. Infinite Coefficient Performance . 40
6.5. Limitations . 41

7. Future Work 43
7.1. Tree Edit Distance Predicate Generation 43
7.2. Specialized Curve Fitting algorithm . 44
7.3. Coefficients . 44

7.3.1. Interval constraints for Infinite Coefficients 44
7.3.2. Curve Fitting for Finite Coefficients 44

8. Conclusion 45

A. Appendix 46
A.1. Handcrafted Strategy for Cruise Control 46
A.2. Infinite Coefficient Performance - Predicates 46
A.3. Cruise Control Model Specification . 47

List of Figures 48

List of Tables 50

Bibliography 51

vi

1. Introduction

We live in a world entirely surrounded by computer systems. Their development in the
past several decades led up to the point that almost every aspect of our day-to-day life
can be improved by a technical device. From the smart electric toothbrush providing
plaque detecting mechanism [Col20] to the connected fridge with Spotify [Sam] nearly
every single object we interact with can be enhanced. Above all, our reliance on those
systems developed in such a fast pace that society is not even aware of the sheer amount
of hidden computer systems they depend on, on a daily basis. A common and popular
example can be found within a car. Safety-relevant components like braking or airbags
are all already based on embedded software solutions. Coupled with the increased
flexibility and improved cost-efficiency more components are going to follow [BK08,
Foreword]. Beyond this development of higher usage and dependency on those sys-
tems, we could also observe their growing complexity. While there were 400,000 lines
of source code in the first space shuttle [Dun], a car in 2009 could already contain close
to 100,000,000 lines of code [Cha]. Meanwhile, [Lip82] traced the correlation of growing
complexity and incorrect systems and concluded that an increase in complexity leads to
more errors per line of code. History has shown even one single accidentally duplicated
line of code can already cause a huge disaster, as happened in February 2014 with
the bug known as "The Apple goto fail bug". This single incorrect line of code caused
a significant security flaw by letting keys pass a test incorrectly. A more recent and
more dramatic example can be found within Boeing’s malfunctioning system called
"Maneuvering Characteristics Augmentation System" which was designed to correct
stabilisation issues of the Boeing 737 MAX. This incorrect software caused two planes
to crash in October 2018 and five months later in March 2019, causing the death of 346
people [DOT20].
One general lesson which can be extracted from every disaster is presented by Dias et
al., who investigated this accident, in their golden rule:

"[S]afety always comes first. Critical safety issues are non-negotiable and should always
be addressed in the first place, no matter the costs." [DOT20, Chapter 7.1, p.193]

But how to prove a system’s correctness despite the ever-increasing complexity? This
question opened up a whole new challenge in computer science and one auspicious

1

1. Introduction

approach is presented within the field of Model Checking.

Figure 1.1.: A schematic overview of an example workflow with 10 rooms [JZ17] and
SCOTS [RZ16]. Heater control symbol from [LeF18], controller obtained
from [MPM20] and decision tree acquired from [Ash+20a].

Model Checking
Model Checking [CGP01] is currently one of the most effective verification techniques
to automatically detect and prove the absence of bugs. Figure 1.1 depicts an exemplary
model checking workflow. The first input to the model checker is the system which
is going to be checked. As a concrete example, consider a heater control system that
controls the temperature of 10 connected rooms by turning the heaters on or off. The
second input to the model checker is a list of properties which the heater control system
should satisfy. In 1.1, the concrete property expects the temperature of the 10 connected
rooms to always be between 18 and 20. The model checker itself validates if the system
always satisfies the given properties. Edmund M. Clarke describes in [Cla+18, Chapter
1.1] the basic classical form of model checking in three separated parts:

Model
The system under examination will be mapped to a finite transition system,
called System Model. Depending on the Property Specifications and the actual
behaviour of the system under examination, the exact modeling language can
vary. In Figure 1.1, the model is represented by the heater control system for 10
rooms.

2

1. Introduction

Specification
The Property Specification contains a list of properties which the system under
examination should satisfy. Typical checked properties are presented by [BK08]
e.g. deadlocks, valid response or general response time. In Figure 1.1, the
specification expects the temperature always to be between 18 and 20.

Model Checking
This part defines a process in which an algorithm checks whether the given
property specifications are satisfied at every given state of the System Model. If
the model checking algorithm succeeds (i.e. memory was sufficient and it doesn’t
take infeasibly long) it will either verify or detect a violated property specification.
Similar to the modeling process, the exact algorithm can vary depending on
the initial conditions. However, this thesis focuses on algorithms constructing
controllers as in SCOTS [RZ16], Uppaal Stratego [Dav+15] and PRISM [KNP11].

The resulting controllers returned by the model checking algorithm are represented
as lookup tables. These lookup tables typically store the corresponding actions for
every state of the system, also known as state-action pairs. These lookup tables either
describe precisely how the system exactly fulfils the property specifications or present a
specific violated specification through a counterexample. In addition, when a controller
satisfies a given property specification, its state-action pairs can directly be used to
implement an embedded device which will therefore also satisfy the property specifica-
tion. However, since controllers are typically represented as lookup tables, this results
in several disadvantages, as reported in [Jac20] and [Ash+20a].
One of their major drawbacks can be traced back to their size. Not only do controllers
end up having several millions of different states, but moreover they can also contain
non-determinism. Thereby, the key advantage of providing valuable insights gets
buried under their sheer, opaque size, and complexity. Additionally, since controllers
and their strategies can be utilised to operate on embedded devices, either those devices
need large amounts of memory or the controller-strategy size needs to be drastically
compressed.

Current Situation. A practical solution towards this problem is presented by the
open-source tool dtControl [Ash+20a]. dtControl enables a controller to be modeled
as a decision tree and thus typically achieves, for standard benchmarks from literature,
a 96% size reduction while still preserving all guarantees. Apart from transferring
controllers into a space-saving format, these resulting trees can reveal patterns within
the controller and therefore increase the overall understandability and confidence of
the controller correctness.

3

1. Introduction

Limitations. Nevertheless, the comprehensibility of controllers like Cruise Control
suffers frequently. Although their size is effectively compressed, the outcome is not
guaranteed to provide valuable insights into the exact behavior of the controller. In
many cases, there is additional domain knowledge about the controller’s behavior
available, which could potentially simplify the representation of controller. Further-
more, for some controllers like Cruise Control there are even preexisting handcrafted
strategies available which could effectively represent the whole controller. However,
the main problem until now was that controllers were treated like black boxes and
even if there was additional domain knowledge available it could not be productively
used to simplify the representation. There only exists a prototype that requires the
user to handcraft a grammar from the domain knowledge. This process is prohibitively
complicated and error prone; also, it does not scale to more than a few knowledge items.

Contribution This work addresses the problem of small and explainable controller
representation. To achieve both of these goals, we will presents several theoretical
concepts to enrich decision trees with algebraic predicates. Additionally, we propose
several different approaches to leverage domain knowledge presented by the user,
either automatically or semi-automatic. Hereby we additionally introduce a dedicated
user-interface for the semi-automatic approach. Through this interface a user can both
provide domain knowledge and control the decision tree induction process. Further-
more, we provide a detailed explanation on exactly how we extended and implemented
all concepts and methods within the current version of dtControl. Finally, we demon-
strate our approach on several different controller models.

Structure. This thesis is organized as the following:

• Chapter 2 contains all the related work which is relevant for understanding the
theory and its implementation.

• Chapter 3 provides the definitions for all important notions and terms we build
upon throughout this work.

• Chapter 4 introduces all theoretical concepts to enrich decision trees with algebraic
predicates.

• Chapter 5 focuses on the practical implementation of the theory and provides de-
tailed information on how exactly we extended the current version of dtControl.

• Chapter 6 demonstrates our approach on several different controller models.

• Chapter 7 provides different concepts and ideas for the future which could
potentially improve dtControl.

4

1. Introduction

• Chapter 8 concludes this work by providing a summary of the presented approach.

5

2. Related Work

In this chapter we introduce the related work which is relevant for the theory and
its implementation presented in this thesis. The first half of this chapter summarizes
theory related work which mainly consists of decision trees and curve fitting. The
second half concludes this chapter by presenting all related tools which we either build
upon or compare our work to.

Decision Tree. Decision trees can be typically found within the field of Machine
Learning. One of the standard references for decision trees is given by [Mit97, Chapter
3]. In general, every decision represents decision-making guidelines, based on empirical
data. Their key advantage of hierarchically presenting these decision-making guide-
lines make them especially profitable for our use-case, namely representing controller
models. Previous work of [Ash+20a] and [Brá+15] provide a detailed analysis of the
benefits which decision trees provide for controller representation.

One key extension for decision trees is presented within the concept of oblique deci-
sion trees [Mur+93]. This concept extended decision trees in a way, that hyperplane
predicates could be used and not only axis-parallel predicates. The last key extension
was the concept of algebraic decision trees [Yao92], which enabled the usage of algebraic
predicates. Currently there only exist automatic induction algorithms for axis-parallel
decision trees and oblique [HKS93] decision trees. Popular examples for axis-parallel
induction algorithms are ID3 [RM14, Chapter 7.2] [Qui86] or CART [RM14, Chapter
7.4] [Bre+84, Chapter 2.4].

Curve Fitting. Curve Fitting as presented in [Arl94; Kol84] describes a common opti-
mization technique which can be typically found in the field of Data Science. Typically,
the objective of Curve Fitting is to calculate certain parameters within a function in a
way that this function will reproduce desired data points. Within the field of Curve
Fitting we mostly utilize the concept of Least Square Fitting [Adc77; ADC78; ARW01].

Tool. Throughout this thesis, all presented concepts are implemented within the
open-source tool dtControl. dtControl was firstly presented in [Ash+20a] and enables
a controller to be modeled as a decision tree. Previous work of [Jac20] already extended
dtControl by providing several different decision tree induction algorithms. Never-

6

2. Related Work

theless, the explainabilty of these decision trees is still insufficient. The aim of this
thesis is to provide new features which increase the explainability of the decision tree
representation. Hereby only one alternative to dtControl exists, a prototype which is
presented by [Akm19]. This prototype requires the user to handcraft a grammar from
the domain knowledge which is prohibitively complicated and error prone.

7

3. Preliminaries

In this chapter, all important notions and terms are introduced. In particular, we
cover all definitions used in Chapter 4, starting with the general concept of a controller,
followed by an introduction of our highly utilized data structure decision tree, with its
related concepts, namely Predicate, Impurity Measure and Information Gain. This chapter
ends with an explanatory description of Curve Fitting.

3.1. Controller

Controllers form the cornerstone of this work as we try to reduce their size and increase
their understandability. As previously mentioned in chapter 1, Controllers can be
described as state-action pairs synthesized by model checking algorithms1. In general,
these state-action pairs provide detailed information about the behavior of the modeled
system. They either describe how the modeled system exactly satisfies the given prop-
erty specifications or represent a specific violated specification via a counterexample.
Similar to the definition of [Jac20, Chapter 3.1], which was inspired by [Brá+15; Ash+19],
we introduce the term Controller as the following:

Definition 1 Controller. Let S be the set of all possible states and A = { f : S → S}
be the set of all possible actions.
A Controller C ⊆ S× A is a set of state-action pairs. Important properties distinguished
in this thesis are:

• Performing the action f to a corresponding state is called Transitioning. Transitions
do not have to be deterministic.

Controller C is deterministic if ∀(s, a) ∈ C. @ (s, a′) ∈ C with a 6= a′. This work
assumes the determinism of every Controller but it should be remembered that
any non-deterministic controller can be converted into a deterministic one by
assigning labels to sets of actions [Jac20, Chapter 5.4].

1This work focuses on model checking algorithms implemented in tools such as SCOTS [RZ16], Uppaal

Stratego [Dav+15] and PRISM [KNP11].

8

3. Preliminaries

• Some controllers may require memory usage.

This thesis only encompasses memoryless controllers. However, it should be noted
that any controller with memory usage can be converted into a memoryless
controller by mapping the memory into different states [BK08, Chapter 10.6.4].

3.2. Decision Tree Learning

This subsection starts by introducing an example data set used throughout the following
sections. Within this chapter, standard decision tree learning is applied to the example
data set and the corresponding definitions are introduced on the fly.

Running Example. The data set displayed in Table 3.1 contains nutrition informa-
tion of raw fruits. Each row is an own instance of a represented Label, visualized by
the last column "Fruit". The first four columns "Calories", "Vitamin C Percentage",
"Tasty" and "Gram protein" are referred to as Features. Features can be described as the
attributes of a label. The basic concept of every decision tree learning algorithm is to
process and generalize the feature columns in order to predict the label of an unknown
object.

Note. Many other resources refer to Labels as Target Variables or to Attributes in-
stead of Features.

Note. Any arbitrary Controller C with h = |C| can be converted to a data set with h
rows by mapping its States to Features and its corresponding Actions to Labels.

Note. Features and Labels can either be referred to as Categorical, e.g the "Tasty"
feature in Table 3.1 or Numerical, e.g. the remaining Features. For simplification, this
work insists on numerical features and encodes internally every categorical feature
with a unique value (similar to the concept of a dummy variable [Guj70]). A concrete
example for the "Tasty" feature: True→ 1 and False→ 0.

Note. To specify the explicit values inside features of a data set D, with rows h
and number of features b, the variable DX = ((v1,1, . . . , v1,b), . . . , (vh,1, . . . , vh,b)) will be
used. Analog for the label-space with DY. Throughout this work, we will use the terms
Features/Labels as synonyms for DX/DY.
Running Example. DX and DY for the data set displayed in Table 3.1 have the following
structure: DX = ((130, 8, True, 1), . . . , (50, 50, True, 1)) and DY = ((Apple), (Apple),
(Banana), (Honeydew-Melon), (Tangerine), (Strawberries), (Pineapple)).

9

3. Preliminaries

Note. For a higher compatibility within mathematical definitions used throughout this
thesis, a mapping between features/labels and (x,y)-coordinates can be performed.
DX = ((v1,1, . . . , v1,b), . . . , (vh,1, . . . , vh,b)) can also be described by a feature vector, con-
taining h b-dimensional vectors, representing x-coordinates. Analog for converting DY

into a label vector, representing y-coordinates.

Table 3.1.: Running Example data set containing exemplary nutrition values of fruits.
Data set consists of four feature columns and one label ("Fruit"). Nutrition
values extracted from [FN].

Calories Vitamin
C Per-
centage

Tasty Gram
protein

Fruit

130 8 True 1 Apple2

130 8 False 1 Apple3

110 15 True 1 Banana
50 45 True 1 Honeydew-

Melon
50 45 True 1 Tangerine
50 160 True 1 Strawberries
50 50 True 1 Pineapple

3.2.1. Predicate

A Predicate is a (composition of) function(s) that maps all members of DX within a data
set D to the boolean domain.

Definition 2 Predicate. Let F be a set containing all features represented in a data set
D. The predicate function p(x) = g(f (x)) over a data set D takes as input a variable
set of feature combinations X1 × X2 × · · · × Xn with Xn ⊆ F resulting in

p : (X1, X2, . . . , Xn)→ {True, False}

Within this context, the function f : (X1, X2, . . . , Xn) → R represents an arbitrary
algebraic term and the function g : y → {True, False} with y ∈ R represents an

2Red Apple.
3Green Apple.

10

3. Preliminaries

arbitrary function into the boolean domain. Inspired by [Brá+15, Chapter 5.2], we place
restrictions on g and assume predicates of following structure:

[f (x) ∼ const]

with ∼ ∈ {≤,≥,>,<,=} and const ∈ R.

Note. To provide a higher consistency throughout the following chapters, an al-
ternative Feature referencing pattern will be introduced: xi ("x_i" in source-code) for
referencing the Feature at index i, with i ∈N0.

Note. To reference the portioned sub data sets after applying a predicate, we will
use: Dtrue and Dfalse.

Running example. For the data set of Table 3.1, with

F = {Calories, Vitamin C Percentage, Tasty, Gram Protein}

possible Predicates are depicted in Figure 3.1 and Figure 3.2.

3.2.2. Impurity Measure

There are several different impurity measurements available4 which all use a variety of
metrics. In general, every impurity measurement calculates the "randomness" of labels
within a data set D by comparing its heterogeneity.

Entropy

One common exemplary impurity measurement, as introduced by [Sha48], is referred
to as Entropy:

Entropy(D) = − ∑
label∈D

Pr[label] ∗ log2(Pr[label])

Running example. Consider the two sub data sets Dtrue and Dfalse, depicted in the
example predicate of Figure 3.1:

Entropy(Dtrue)

= −(Pr["Banana"] ∗ log2(Pr["Banana"])+ · · ·+Pr["Pineapple"] ∗ log2(Pr["Pineapple"]))
= −(1

5 ∗ log2(
1
5) + · · ·+

1
5 ∗ log2(

1
5)) ≈ 2.3

Entropy(Dfalse) = −(Pr["Apple"] ∗ log2(Pr["Apple"])) = 0
4See [Jac20, Chapter 5.3] for an overview of all impurity measurements present in dtControl.

11

3. Preliminaries

Figure 3.1.: An example predicate using the Calories Feature to split the data set.

Figure 3.2.: An example predicate using a combination of Calories, Vitamin C Percent-
age and Gram Protein to split the data set.

12

3. Preliminaries

Information Gain

Information Gain provides an extension to the Entropy measurement for general usage
within the context of predicates and decision trees. It quantifies the reduction of "ran-
domness" of labels after using a predicate p on the current data set D. One standard
Information Gain Formula is given by [Mit97, Chapter 3.4.1.2]:

IG(D, p) = Entropy(D)− (
|Dtrue|
|D| ∗ Entropy(Dtrue) +

|Dfalse|
|D| ∗ Entropy(Dfalse))

Running example. Consider the predicate p = [Calories ≤ 110] depicted in Figure 3.1,
over the data set D illustrated by Table 3.1:

IG(D, p) = 2.52− (
5
7
∗ 2.3 +

2
7
∗ 0) ≈ 0, 88

3.2.3. Decision Tree

Decision trees (DT) can be typically found within the field of Machine Learning. Over
the years two different main application tasks developed. Regression trees5 and classifi-
cation trees. This work focuses on the latter one. The aim of a classification tree is to
provide decision-making guidelines, based on empirical data, to predict the discrete
label of an unknown object. Their ability to hierarchically present a large amount of
information enables them to display those guidelines both efficiently and explainable.
Previous work of [Ash+20a; Brá+15] has also shown the applicability and benefits of
using decision trees for controller representation.

Terminology. Every decision tree consists of several nodes illustrated by circles. Each
node represents a unique subset of data. Every node is connected by a directed edge
(arrow) which represents a possible decision. The first node on top of the decision tree
and without any incoming edge, is called the root node. Every other node has one
incoming edge. Every node with an outgoing edge represents a predicate and a subset
of the initial data. Due to the fact that we work with boolean predicate functions, every
node can have maximum two outgoing decision edges. Nodes without any outgo-
ing edges are called leaves and represent the estimated Labels at that current data subset.

Note. The height of a decision tree is the longest possible consecutive path from the root
node to an arbitrary leaf node. The decision tree depicted in Figure 3.3 has a height of 3.

5Typically used to predict continuous Labels/Target Variables. Common and popular example is
estimating house prices based on data of similar house sales.

13

3. Preliminaries

Figure 3.3.: Decision tree representation of Table 3.1 created with Axis Aligned Splitting
Strategy.

Note. At every node within a decision tree the current sub data set gets partitioned.
Therefore, every node represents its own unique subset of feature-label combinations.

Note. In Figure 3.3, the leaf labeled "[Honeydew Melon, Tangerine]" contains a set
of two possible predicted Labels. This is because the data set of table 3.1 "Honeydew
Melons" and "Tangerines" can not be differentiated and therefore this behavior is correct.
The remaining labels {Apple, Banana, Strawberries, Pineapple} can all be differentiated
and thus every remaining label has their own leaf.

Definition 3 Decision Tree. Let L be a set containing all labels and p be the predicate
function over the current data set D. Building upon the definition presented by [Jac20],
we define a decision tree recursively as:

1. A DT of height h = 0 is a leaf containing a subset of labels Y ⊆ L.

2. A DT of height h + 1 is a tuple (p, T) with

• T = (Ttrue, Tfalse) being a tuple representing the two child sub-trees with
height(Ttrue) ≤ h ∧ height(Tfalse) = h or
height(Tfalse) ≤ h ∧ height(Ttrue) = h.

• p is the predicate function used at the current node.

14

3. Preliminaries

3.2.4. Predicate Generator

Definition 4 Predicate Generator. A Predicate Generator for a data set D can be de-
scribed as a function f : D → p with p being the generated predicate. In other words,
a predicate generator contains a concrete pattern to create individual predicates for a
specific data set.

Note. The aim of this thesis is to provide a new predicate generator that is able
to include domain knowledge.

Example Axis Aligned Strategy. One common pattern to create predicates is called
Axis Aligned, e.g. [Jac20, Chapter 5.2.1]. Let D be the current data set and F be the set
containing all Features within D. For every feature f ∈ F we introduce a sorted tuple
fsort = (v1, . . . , vn) with vi < vi+1 and n being the number of unique values present in
f . Hereby, every member of fsort represents one of these unique values. In other words,
fsort can be described as a sorted list of unique values present in the Feature f. The
concrete pattern to create Axis Aligned Predicates is given by the following:

Iterate over every feature f ∈ F and generate fsort:

For i < n with i ∈N:

Calculate the average value of vi and vi+1:

avg =
vi + vi+1

2

Add predicate of structure [f ≤ avg)] to collection.

Running example. To illustrate all possible Axis Aligned predicates created by the
algorithm, the modified decision tree in Figure 3.4, displays the collections of created
predicates at every given node. This modified tree is based on the data of Table 3.1.
The encoding of the categorical features within the "Tasty" Feature was according to
their numerical value, meaning True→ 1 and False→ 0.

3.2.5. Decision Tree Induction Algorithm

The Decision Tree Induction Algorithm can be described as a strategy to automatically
construct a decision tree for a data set D. In general, every induction algorithm consists
of two separate components, a predicate generator and an impurity measure. As
previously mentioned in Section 3.2.2, there are several different impurity measures
to choose from. Technically, every decision tree induction algorithm follows the same
greedy top-down approach [Mit97]:

15

3. Preliminaries

1. Create a node for the current data set D′.

2. Utilize the predicate generator to create a collection of suitable predicate candi-
dates.

3. If every predicate candidate partitions D′ in one single subset,
(e.g. D′true = D′ ∧D′false = ∅ or D′false = D′ ∧D′true = ∅)
return the labels of D′.

4. Else use the best predicate candidate according to the chosen impurity measure-
ment and apply the induction algorithm on the sub trees D′true and D′false.

Note. Throughout this work, we will often use the term strategy or decision tree building
strategy as synonym for a decision tree induction algorithm.

Figure 3.4.: Schematic DT containing all possible Axis Aligned Split for every node.
Based on data set depicted by Table 3.1.

16

3. Preliminaries

3.3. Curve Fitting

Curve fitting is a common optimization technique especially prominent within the field
of Data Science. It can be used as a tool to calculate parameters within a function f ,
in a way that f will reproduce desired data points. The process of determining the
optimal parameters is also called fitting.

When applying curve fitting within this work, we assume that we have a desired
function6 we would like to fit to preexisting data points, as depicted in Figure 3.5 by
black crosses.

2 4 6 8
−6

−5

−4

−3

−2

Figure 3.5.: Example scatter-plot of collected data
points (black cross) with the desired fit-
ted function (blue) and an illustration
of the error in accuracy (red).

At first glance, a trend across
the scattered points can eas-
ily be detected. To optimize
the process of Curve Fitting, it
is recommended to fit a func-
tion which already embodies
the existing trend of the data
points. Therefore, for this ex-
ample, the function f (x) =

m ∗ x + t will be fitted to the
data points. Before the ac-
tual calculation can start, an ex-
act metric for the accuracy of
the current fit has to be de-
fined.

One standard technique to fit a
function to an arbitrary set of data
is called Least Square Fitting. The
idea behind this strategy is to cal-

culate the parameters of our function f in order to minimize the Root Mean Square
which is given by:

RMS(f) =

√
1
n

n

∑
i=1

(yi − f (xi))2

with n being the number of different data points and xi,yi being the coordinates of the
data point i. Intuitively, the goal can be illustrated by trying to minimize the accuracy

6Generally, any arbitrary function can be fitted to any data points. It only depends on the desired
accuracy.

17

3. Preliminaries

error represented as a red line in Figure 3.5. For an overview of the general concept of
Least Square Problems, we refer to [NW06, Chapter 10]. With assistance of the library
[Oli06] or respectively its function [Num], one can immediately obtain the optimized
values for the example function f . The final result for the example in Figure 3.5 was

f (x) = −0.53024607 ∗ x− 1.55673274

with RMS(f) ≈ 0.255.

Note. To maintain consistency throughout code examples, we will reference every
occurrence of Curve Fitting by:

curveFit(f , X, Y)

with f being the function to be fitted, X describing an ordered list of x coordinates and
Y representing the corresponding y coordinates (see notes in Chapter 3.2.3 for map-
ping between features/labels and coordinates). To reduce complexity we assume that
curveFit will directly substitute the parameters within function f for their fitted values.

Example. In Figure 3.5, curveFit returns instead of [−0.53024607,−1.55673274] directly
the term f (x) = −0.53024607 ∗ x− 1.55673274.

18

4. Richer Domain Predicates

This chapter introduces several different extensions for predicates and decision tree
induction algorithms. We start by providing a detailed explanation of the theory
behind Richer Domain Predicates and introduce its related concepts namely Finite
Coefficients, Infinite Coefficients and Feature Constraints. Building upon the concept
of Richer Domain Predicates, several different general and domain specific extensions
for decision tree induction algorithms are introduced. Throughout the sections, we
also provide further optimization techniques, to increase the productiveness of our
concepts.

4.1. Predicate Tailoring

The limits of predicates following the simplified structure defined in Section 3.2.1 are
quickly reached. Especially, when expressions contain individual restrictions or only
a certain premonition for a (potentially) more promising structure is available. To
overcome those limitations and provide a broader range of individual customization
options, the concept of Predicate Tailoring is introduced. Predicate Tailoring, as presented
within this work, describes the general possibility to both extend and restrict predicates
in a variety of different ways which will be presented in the following subsections.

4.1.1. Coefficients

The first step towards a variety of different customization options is done by enabling
the usage of general coefficients within a predicate. This subsection introduces all
possible modification capabilities available to coefficients.

Note. To maintain consistency, the following sections refer to coefficients as ci ("c_i" in
source-code) with i ∈N0.

Finite Coefficients

Finite Coefficients form the basic framework for the usage of coefficients within predicates.
Previously, several individual predicates were needed to express alternatives. Now,

19

4. Richer Domain Predicates

Finite Coefficients provide the opportunity to bundle these variations into one single
predicate. Building upon Definition 2 introduced by Section 3.2.1, the structure of
predicates using Finite Coefficients can be described as the following:

[termf ∼ const; coef_def]

with the extension of termf being an arbitrary algebraic term using Finite Coefficients
defined in coef_def. The general idea is to utilize Finite Coefficients ci within termf and
extend the finished predicate with a semicolon, followed by the concrete coefficient
definition Ci ⊆ R with ci ∈ Ci.

Note. For computational reasons, the only restriction we insist on is |Ci| ∈N. However,
it should be noted that specifying too many or too large sets results in an infeasibly
large set of predicates.

Running Example. Exemplary predicates, demonstrating the range of modification
capabilities for Finite Coefficients (based on data set depicted in Table 3.1):

• [
√

x0 ∗ c0 + log(x1)−
x2

c1
≤ c2; c0 in {−1

3
,

1
3
}; c1 in {1,2}; c2 in {

√
2, π}]

• [1.0546e− 34 + 90− c0 ≥ x0; c0 in {0, 12}]

• [e10 + ln(2) +
x2

c0
≥ 0; c0 in {−1

9
,

2
3
}]

• [sin(cos(12)) + cc1
0 ≤ x1; c0 in {1, 2, 3}; c1 in {4}]

Note. We extend the work of existing studies and include the possibility to utilize
Elementary functions within the term of a predicate (cf. [Lio33b; Lio33c; Lio33a]).

Infinite Coefficients

Infinite Coefficients extend the concept presented by Finite Coefficients and enable
the usage of more generic terms. Building upon the structure of Finite Coefficients,
predicates using Infinite Coefficients can be described as:

[termi ∼ const]

with the extension of termi being an arbitrary algebraic term using Infinite Coefficients.
The general concept is to utilize coefficients without a definition and instead use Curve
Fitting to heuristically determine their exact substituted value.

20

4. Richer Domain Predicates

Determine Infinite Coefficient Values. In order to find a suitable value for an In-
finite Coefficient, we introduce Algorithm 1. The function getMask(label, Y), utilized
within Algorithm 1, returns a Label Mask LM = (lm1, . . . , lm|Y|). Depending on ∼, the
concrete values of lmi can vary. Let Y = (y1, . . . , y|Y|) be the tuple representation of
all labels within the current data set D (similar to definition of DY) and label be an
arbitrary member of Y:

• ∼ ∈ {≥,≤,>,<}: lmi = 1 if label equals yi, else lmi = -1

• ∼ ∈ {=}: lmi = 0 if label equals yi, else lmi = -1

Running Example. Considering the data set D depicted in Table 3.1 with ∼ ∈ {≤}.
Evaluating getMask("Apple",DY} would return LM = (1, 1,−1,−1,−1,−1,−1).

Algorithm 1 Determine Infinite Coefficient ci

for label in unique(DY) do
labelMask← getMask(label, DY)
curveFit(termi,DX, labelMask)
collection← termi

end for

return term in collection with min. Impurity

Note. Algorithm 1 computes for every unique label one individual substitution value
for the coefficient. In the end, the predicate with the lowest impurity will be returned.

Running Example. The general concept of Infinite Coefficients alone is already ca-
pable of replacing and extending complete predicate generator patterns like Axis-
Aligned or Linear Classifier [Jac20, Chapter 5.2]. The whole linear classifier strat-
egy for data set 3.1 can be represented by a predicate with the following structure:
[x0 ∗ c0 + x1 ∗ c1 + x2 ∗ c2 + x3 ∗ c3 ≤ 0]. Within Chapter 6.5 we recapitulate this concept.

21

4. Richer Domain Predicates

Finite and Infinite Coefficients

This subsection introduces a concept to combine both the usage of Finite and Infinite
Coefficients within a predicate of structure:

[termfi ∼ const; coef_def]

In general this concept consists of:

1. Processing Finite Coefficients

2. Processing Infinite Coefficients

The first step starts with generating all possible combinations of Finite Coefficients and
subsequently substituting these combinations into copies of the original term termfi.
Each copy represents one possible unique combination and after the first step, all
remaining coefficients will be infinite ones. Therefore, it is possible to apply the concept
of Algorithm 1 to each copy.

Note. However, it should be avoided to combine too many Finite and Infinite Co-
efficients together as that can easily end up in a combinatorial explosion.

4.1.2. Feature Constraints

The concept of Feature Constraints is provided for explicit situations where the usage of a
predicate is only valid under certain constraints within the current data set. Previously,
a predicate could be applied potentially at every state of a data set. Now, Feature
Constraints provide the opportunity to restrict certain predicate usage. Hereby, we
provide the opportunity to define a valid range for selected features to be in. Only
if every value of a selected feature is in this valid range, the predicate can be used.
The general structure of predicates using Feature Constraints can be described as the
following:

[termfc ∼ const; feat_def]

with termfc being an arbitrary algebraic function. The explicit Feature Constraints are
specified in feat_def. To reduce the number of definition combinations for an arbitrary
feature xi and its restriction set Xi, we restrict Xi to be one single part of its domain
space. This work assumes that every definition of Xi will be given by either a finite set
representation with |Xi| ∈N or an Interval representation (e.g [d, e), [d, e], (d, e), (d, e]
with d, e ∈ R∪ ”∞”∪ ”−∞").

22

4. Richer Domain Predicates

Running Example. Extending the predicate depicted in Figure 3.1, to be only valid at a
"Vitamin C Percentage" greater or equal to 45, one would obtain: [x0 ≤ 110 ; x1 in [45, ∞)]

4.1.3. Further Optimizations

Union Feature Constraints. In order to improve and simplify the explicit definition of
sets utilized throughout Feature Constraints (and Finite Intervals), the mathematical
Union Operator for sets is provided. Previously several individual predicates were
needed to express various different valid Feature Constraint interval options.

Now, one can bundle all this variations into one single feat_def. For instance, the
variety of valid Feature Constraint Intervals given by Xi, X’i, . . . , can now be arranged
into one single predicate with

[term ∼ const ; xi in Xi ∪ X‘i ∪ . . .]

Curve Fitting Strategies. At this time, we are proving four different Curve Fitting
strategies, namely Levenberg-Marquardt, Trust Region Reflective, Dogleg Algorithm and
Optimized.

The Levenberg-Marquardt strategy as mentioned by [Lev44; Mar63] and later im-
proved by [TS12], is the fastest fitting technique and therefore applied the most within
this thesis. However, within the chosen implementation of this work this strategy can
only be utilized whenever the number of scattered data points is greater or equal to the
number of parameters to fit. For further information on the detailed implementation
we refer to [NW06, Chapter 10.3] and Chapter 5.

The Trust Region Reflective Approach [GQT66; Sor82] is slower than the Levenberg-
Marquardt strategy, but its advantage is that it can potentially compute a fit even if the
number of scattered data points is less than the number of parameters to fit.

To combine both the advantages of the Levenberg-Marquardt strategy and the Trust
Region Reflective approach, we introduced a new strategy called Optimized. The
Optimized strategy compares the number of scattered data points to the number of
parameters and utilizes as often as possible the Levenberg-Marquardt strategy. Only in
the edge case where the number of data points is less than the number of parameters
the Trust Region Reflective Approach will be deployed.

Finally, the Dogleg Algorithm which was first introduced by Michael J. D. Powell in
[LA05], builds upon the Levenberg-Marquardt strategy and combines it with explicit
aspects of the Trust Region approach. The accuracy of the Dogleg Algorithm is higher
than previously presented strategies but it is by far the slowest strategy which is the
reason why we refrain from using it.

23

4. Richer Domain Predicates

Curve Fitting Process Optimization. Predicates covered within this work only contain
relations ∼∈ {≥,≤,>,<,=}. Every single one of these relations partitions its whole
input space. Therefore, the Curve Fitting process provides room for optimizations due
to the fact, that not a "perfect" fit, to the corresponding label mask, has to be computed.
For instance: Let LM = (1, 1,−1, 1) be an exemplary label mask for the predicate p
= [x1 − c1 ≥ 0]. It is not necessary for the Curve Fitting process to exactly fit to the
y-coordinates (1, 1,−1, 1). The label mask LM = (1, 1,−1, 1) is only a representation
which describes the destination partition. In other words, every coefficient assignment,
which evaluates to a result (a, b, c, d) with a, b, c, d ∈ R and a, b, d ≥ 0 and c ≤ 0, would
be a 100% accurate fit.

4.2. Decision Tree Induction Algorithm

Building upon the introduced Richer Domain Predicates, we propose several different
extensions to increase the usability and performance of standard decision tree induction
algorithms.

4.2.1. Richer Domain Strategy

The Richer Domain Strategy is the standard strategy to process Richer Domain Predicates.
The main difference between this decision tree induction algorithm and preexisting
algorithms is that the collection of possible predicates C is already fixed at the beginning.
This means that the predicate generator does not have to create the predicates itself.
Similar to section 3.2.5, the workflow of the Richer Domain Strategy can be described
as the following:

1. Create a node for the current data set D′.

2. Pre-process the predicate collection C.

Create all combinatorial combinations of Finite Coefficients.

Apply curve fitting on predicates with Infinite Coefficients.

3. If every predicate candidate partitions D′ in one single subset,
(e.g. D′true = D′ ∧D′false = ∅ or D′false = D′ ∧D′true = ∅)
return the labels of D′.

4. Else use the best predicate candidate according to the chosen impurity measure-
ment and apply the induction algorithm on the sub trees D′true and D′false.

24

4. Richer Domain Predicates

4.2.2. Priority Strategy

The Priority Strategy encapsulates the concept of using several different decision tree
induction algorithms at the same time. Additionally, every decision tree induction
algorithm (St)i gets an individual priority (pr)i > 0 assigned. This corresponding
priority is later taken into account when calculating the impurity of the predicate pi.
For an exemplary data set D, every algorithm (St)i proposes a predicate pi. Thereby,
the extended impurity is calculated as the following:

Impuritynew(pi) =
Impurity(pi)

(pr)i

After updating the new impurities, the Priority Strategy will use the predicate candidate
with the lowest impurity.

Fallback Strategy. The concept of a Fallback Strategy extends the Priority Strategy
by providing a safety backup predicate. In general, the Fallback Strategy developed
out of the idea to use one or several main strategies whenever possible and in the edge
case within a node where all main strategies fail1, the Fallback Strategy suggests an
alternative predicate. To maintain consistency within the Priority Strategy, we will
assign a Fallback Strategy the exclusive priority of 0.

Note. It is important to make sure that all Fallback predicates with a priority of
0 have to be processed separated from the predicates with a priority > 0, to avoid
dividing by zero.

4.2.3. Semi Automatic Strategy

The Semi Automatic Strategy comes with its own graphical user interface and the idea
is to provide control for the user. Within this graphical user interface, the user can
enter and process custom Richer Domain Predicates and manually select the predicates
at every node. In addition, this interface also provides suitable alternative predicate
options from which the user can choose from. To the current state, following alternatives
are offered:

• Axis Aligned Strategy.

• Linear Classifier [Jac20, Chapter 5.2].

1A decision tree building strategy fails at a node, when the strategy is not capable of generating possible
predicates which reduce the impurity of that node.

25

4. Richer Domain Predicates

• Linear Classifier with the extension of only producing custom linear combinations,
specified by the user.

At every node, the user is presented a list of all manually entered predicates as well as
the proposed alternatives. This list is sorted by impurity. Then the user can select their
preferred split, taking into account both the impurity as well as the explainability of the
predicates. This possibility of taking explainability into account is the key advantage
of the semi automatic strategy, as this is something that is extremely important, yet
almost impossible to judge for a machine.

4.2.4. Further Optimizations

Within this thesis, one of the most computationally intensive processes is to determine
the impurity. The reason behind that lies in the massive size of most of the controller
data set. Therefore, we introduce the idea of an optimized tree search before actually
computing the impurity. The idea is to store all used predicates which were used on
the direct ancestor path (between the current node and the root node). Through this
concept two advantages arise.

1. The impurity calculation of predicates which evaluate to a term that can be found
within the ancestor path, can directly be skipped since one predicate cannot
reduce the impurity of a consecutive path twice. The reason for that is based
on our definition of a predicate in Section 3.2.1. A subset that has already been
partitioned by p cannot be partitioned again by p.

2. Predicates which cannot be found within the ancestor path but still do not reduce
the impurity at a node will also not reduce the impurity of descendant nodes.
Therefore, the impurity calculation for that predicate within descendant nodes
can also be skipped. Intuitively, this can be described by the fact that if one
predicate p assigns every feature of D′ to the same partition, then it will also
assign every sub set of features with S′ ⊆ D′ to the same partition.

26

5. Implementation

Building upon the related concepts presented within Chapter 4, this section examines
their concrete implementation. The first section contains an introduction to our relevant
and frequently utilized libraries namely NumPy, SymPy and SciPy. The second section
provides a general overview of dtControl and describes all implemented extensions.
All extended and added functionalities for dtControl are introduced in their chrono-
logical order, as they appear in the extended workflow. We start by introducing our
new custom predicate parser and follow up with an introduction to the extended
internal predicate object-representation. Finally, we propose several different decision
tree induction algorithm extensions, for the preexisting DT Learning component in
dtControl.

5.1. Libraries

5.1.1. NumPy

NumPy [Oli06] is an open-source Python library providing both efficient functions, as
well as data structures to process and store large amounts of sorted data. We used
NumPy data structures to store and represent all controllers used within dtControl.

5.1.2. SymPy

SymPy [Meu+17] is an open-source Python library, which enables symbolic arithmetic
computation. The concept of symbolic computation is to use symbols as representation
for mathematical objects instead of numerical terms. Every term will remain in its
unevaluated symbolic form. Therefore, every mathematical object is represented exactly
until we explicitly evaluate the term to its numerical value [Symb].
Frequently used features. Apart from the common usage of SymPy as a library to
represent arbitrary terms, especially the features Sympify [Syma] and Lambdify [Symc]
were used. Sympify provides a parser to convert mathematical expressions presented
within a string into processable SymPy object-representations. Lambdify is widely used
within the context of Curve Fitting. It provides the efficient functionality to convert a
SymPy Expression into a lambda function.

27

5. Implementation

5.1.3. SciPy

SciPy [Vir+20] is an open-source Python library which builds upon the NumPy library
and provides several different numerical and mathematical algorithms for scientific
computing.
Frequently used features. SciPy’s curve fitting implementation called curve_fit, is
extensively used within the context of Curve Fitting due to its robustness and user
friendliness.

5.2. dtControl

dtControl as presented by [Ash+20a] and [Jac20] is an open-source tool which can
be applied on synthesized controllers. The general concept encapsulates the idea to
make use of the in many ways beneficial data structure decision tree and use it for
the controller representation. dtControl thereby provides the unique opportunity to
translate the advantages of decision trees [Ash+20a; Brá+15] to controllers. This results
in:

1. Hierarchical decision making support, resulting in an efficient controller repre-
sentation which reduces the overall controller size.

2. Enabling the usage of decision tree learning techniques to increase the understand-
ability of the overall modeled controller and thereby increasing the confidence of
controller-correctness.

Workflow. The general workflow of dtControl as presented by [Ash+20a; Jac20], is
depicted in Figure 5.1. Here, dtControl accepts one argument as input which can be of
several different types. Typically, the input argument represents a controller, synthe-
sized by tools like SCOTS [RZ16], Uppaal Stratego [Dav+15] or PRISM [KNP11]. After
the controller input is provided, the user can select from several different predefined
decision tree induction algorithms [Jac20, Chapter 4.2]. Afterwards, dtControl starts to
construct the decision tree which represents the input controller. The component "DT
Learning" in Figure 5.1, represents the decision tree induction algorithm, as defined in
section 3.2.5. Respectively, the component "Predicates" represents section 3.2.1 and the
component "Impurity measures" represents section 3.2.2. Note that dtControl acts as a
closed system which does only take several inputs at the beginning. Especially, there is
no possibility to directly influence the DT Learning process. In other words, there is
no chance to manipulate the decision tree while it is being built. It describes a closed
workflow where after the input phase one final output will be generated. The generated
output consists of a DOT and a C file which encodes the decision tree representation of

28

5. Implementation

the input controller. Additionally, several benchmarks are presented.

Figure 5.1.: Overview of the workflow of dtControl. Graphic extracted from [Jac20,
Chapter 4.2.1] which was adapted from [Ash+20b].

Extended Workflow. To actually make use of the introduced theoretical concepts pre-
sented in Chapter 4, the general workflow of dtControl was improved. The improved
workflow of dtControl is depicted in Figure 5.2. The blue color hereby represents
extended or added components. The main extension comes with the user interface.
Through this interface, a user can directly influence the DT Learning component or
directly add custom predicates as presented by Chapter 4. Thereby, it is possible for a
user to fully control the exact decision tree induction process during the constructing
of the final decision tree. The following sections cover all extended and added func-
tionalities for dtControl in their chronological order, as they appear in the extended
workflow.

29

5. Implementation

Figure 5.2.: Overview of the extended workflow of dtControl. The blue color represents
extended or added components. Graphic based on [Jac20, Chapter 4.2.1]
which was adapted from [Ash+20b].

5.2.1. Predicate Parser

The largest component within the extended user interface is a new predicate parser. The
parser converts single expressions represented by a string into processable predicate-
objects which can be used throughout the DT Learning component. The parser accepts
all Predicate Tailoring concepts, presented in Chapter 4.1. The accepted predicate
structure can be summarized as the following:

[term ∼ const; def]

with term being an arbitrary arithmetic term (also possibility for Elementary functions),
∼ ∈ {≤,≥,>,<,=} and def containing all definitions for utilized Finite/Infinite Coeffi-
cients or Feature Constraints within term. In order to simplify the parsing process of def,
we defined a grammar G which represents all accepted definitions by the parser. The
explicit grammar can be found in the developer documentation of dtControl1. Every
single parsed predicate is represented by an object called "RicherDomainPredicate".

1https://dtcontrol.readthedocs.io/en/latest/

30

5. Implementation

The overall design goal for the "RicherDomainPredicate" class was to build upon the
preexisting "Split" class (depicted in Figure 5.3) and extend it with the concepts of
Predicate Tailoring.

Note. Additional design goals of the predicate parser are its user friendliness and an
extensive input validation. To ensure the user friendliness, the predicate parser reacts
to over 30 common structural mistakes individually and presents the explicit invalid
part. Furthermore, to ensure the general correctness of the predicate parser, we created
several different test cases for every individual parser functionality.

Figure 5.3.: A schematic overview of the new introduced "RicherDomainPredicates"
class, implementing/extending the preexisting "Split" class. ("Split" class
extracted from [Jac20, Chapter 6.3.2]).

31

5. Implementation

Example. The following example examines the correct usage of the "RicherDomain-
Predicate" attributes. Consider an exemplary predicate p, containing all presented
concepts within the field of Predicate Tailoring:

p = [c1 ∗ x1 − c2 + x2 − c3 ≤ 0; x2 in {1, 2, 3}; c2 in {1, 2, 3}; c3 in {5, 10, 32, 40}]

Figure 5.4.: Exemplary "RicherDomainPredicate"
class representing predicate p.

In Figure 5.4, the exact "Richer-
DomainPredicate" representation
for p is displayed. The attribute
"feature_interval" contains all Fea-
ture Constraints as presented in
Chapter 4.1.2. To symbolize the
absence of Feature Constraints
we assign the infinity interval for
unconstrained features. The at-
tribute "coef_interval" contains all
coefficients used throughout p,
with their corresponding inter-

vals. Note that in order to differentiate a Finite Coefficient from an Infinite Coefficient,
we directly assign the Infinity Interval to Infinite Coefficients. The "term" attribute con-
tains the actual term used within the predicate p. All coefficients, terms and intervals
are directly represented as SymPy objects to provide an increased compatibility later
on. The "priority" attribute enables the usage of the Priority Strategy and contains by
default the value 1. Its theoretical concept is covered in section 4.2.2. In the following
section 5.2.2, we present its actual usage. The "coef_assignment" attribute is assigned
during the execution of the Richer Domain Strategy and will later contain the actual
selected/calculated values for the Finite and Infinite Coefficients.

5.2.2. DT Learning

Within this chapter, all extensions regarding the DT Learning component are covered.
The "Automatic" subsection thereby contains all decision tree induction algorithms
which follow a linear and automatic workflow. The Semi Automatic subsection contains
the introduced concept of section 4.2.3 and combines all presented concepts within this
thesis.

Automatic

Richer Domain Strategy. Similar to section 4.2.1, the Richer Domain Strategy describes
the most general decision tree induction algorithm to automatically process Richer

32

5. Implementation

Domain Predicates. However, this strategy in combination with the predicate parser
is already capable of processing complete handcrafted strategies and utilize them to
represent an input controller. The general workflow of the Richer Domain Strategy can
be described as the following:

1. Pre-process the predicate collection C, presented by the predicate parser.

Create all combinatorial combinations of Finite Coefficients by executing

get_coef_combinations().

Apply curve fitting on predicates with Infinite Coefficients by executing

fit(fixed_coefs2, x, y).

Store the current coefficient assignment in the attribute "coef_assignment".

2. Return the best predicate candidate according to the chosen impurity measure-
ment.

Limitations. It should be noted that in order to use the (automatic) Richer Domain
Strategy as only decision tree induction algorithm, a complete collection of predicates
(domain knowledge) is required at startup of the system. However, the problem is that
most of the time only a limited amount of domain knowledge is available. In order to
overcome this problem we provide the Priority Strategy.

Priority Strategy. The Priority Strategy, as presented in Chapter 4.2.2, encapsulates the
concept of combining different decision tree induction algorithms and assigning each
algorithm one priority. This priority will later be taken into account when calculating
the impurities of their corresponding predicates. It should be kept in mind, that the
exclusive priority of 0 should only be assigned to fallback strategies which are only
used when every other strategy with priority > 0 fails.

Note. The key advantage of this strategy is that one could easily and automatically
"enrich" every arbitrary decision tree induction algorithm with custom predicates.

Further Optimizations. To provide a general comparability with the Priority Strategy
and the concept of the optimized tree search presented in section 4.2.4, we also extended
the preexisting "SplittingStrategy" class (depicted in Figure 5.5). The "priority" attribute
thereby represents the assigned priority value for the Priority Strategy. The "root"
attribute contains a reference to the root node of the current DT which is being built.

2The fit functionality for Richer Domain Predicates can directly be called on top of a combinatorial
combination.

33

5. Implementation

In order to generate the ancestor path needed for the optimized tree search (section
4.2.4), the current node is stored in the attribute "current_node".

Figure 5.5.: A schematic overview of the new introduced "RicherDomainPredicates"
class, implementing/extending the preexisting "SplittingStrategy" class.
("SplittingStrategy" class extracted from [Jac20, Chapter 6.3.2]).

Semi Automatic

The Semi Automatic Strategy, as theoretically presented in section 4.2.3, comes with
its own command line interface. An exemplary state of the interface for the Semi
Automatic Strategy, applied on the data set of Table 3.1, is depicted in Figure 5.6.

Figure 5.6.: An exemplary state of the semi-automatic command line interface, obtained
with the data set of Table 3.1.

34

5. Implementation

At the top of the command line interface, current feature information is displayed.
If there is additional information about labels available, a similar information table
for labels will be displayed. The "Standard And Alternatives" section at the bottom
is hereby the most important. This table displays all alternative predicates proposed
by the Axis Aligned Strategy (section 3.2.4), the Linear Classifier [Jac20, Chapter 5.2]
and the extended Linear Classifier (section 4.2.3). At this point of the command line
interface we accept several different commands, as depicted in figure 5.7:

Figure 5.7.: Help window of the semi-automatic command line interface, displaying all
possible commands.

One of the most used commands at this state would be /add <Expression>. This
command allows the user to directly call the predicate parser to parse an expression.

Running Example. Consider the example predicates p1 = [Calories ≤ 110] and
p2 = [−0.017928 ∗Calories− 0.0091571 ∗VitaminC + 1.3235 ∗ Protein ≤ 0], depicted in
Figure 3.1 and Figure 3.2. To parse these predicates, the user must simply enter /add
followed by the predicate expression. The result of the commands is depicted in Figure
5.8. The concrete commands used in the example:

• /add x_0 <= 110

• /add -0.017928 * x_0 - 0.0091571 * x_1 + 1.3235 * x_3 <= 0

Note. We only allow feature references of structure "x_i" with i ∈ N0 (see Definition
3.2.1) since not every controller data set contains specific feature/label names. Analog
structure for coefficients "c_i" with i ∈N0.

To finally select a predicate, the user can choose from several commands, as depicted
in Figure 5.7. Thereby, the simplest option is the /use <Index> command. With this
command the user can manually select an index from the list and the corresponding
predicate is returned/used for the current data set. In conclusion, the semi automatic

35

5. Implementation

strategy provides the possibility to generate completely individual decision trees for an
input controller.

Figure 5.8.: Semi-automatic command line interface after parsing the predicates of
Figure 3.1 and Figure 3.2.

5.2.3. Documentation

Throughout the development of the presented extensions several different test cases
were created. Additionally, very detailed logger statements (including information
statements) were used throughout the code. For more information on test cases,
logger or general implementation details we refer to the developer documentation of
dtControl3.

3https://dtcontrol.readthedocs.io/en/latest/

36

6. Evaluation

This chapter contains the evaluation of our presented concepts. We examine important
capabilities of dtControl and also point out its limitations. We start by introducing the
controller model we mainly used for evaluation. Within this section, we also comment
on a preexisting work to which we compare our current version of dtControl. The
following chapter evaluates the Optimized Tree Search technique, presented in Section
4.2.4. Additionally, we also evaluate the performance of Infinite Coefficients, by using
an increasing number of Infinite Coefficient within terms of a predicate. Finally, the last
chapter concludes the evaluation by pointing out a limitation of Infinite Coefficients,
which are present when working with significantly large data sets. For general time
tracking we used the benchmark subsystem introduced by [Jac20, Chapter 6]. All
evaluations were performed on a machine with a 2.9 GHz 6-Core Intel Core i9 processor
and 32 GB 2400 MHz DDR4 RAM.

6.1. Cruise Control

Cruise Control as presented by [LMT15], describes a common problem in adaptive
cruise control. Two cars called Ego and Front drive behind each other along a one-lane
road, as depicted in Figure 6.1.

Figure 6.1.: Exemplary overview of the Cruise
Control model. Figure extracted from
[LMT15].

We are in control of Ego and our
goal is avoid crashing into the car
in front of us (Front). Therefore
we try to maintain a safety dis-
tance of at least 5. Depending on
given environment variables like
distance, velocity or acceleration
of both cars, we can choose the
acceleration of our own car, Ego.

However, while generating this controller, we can specify different individual min/-
max ranges within the environment-variables (velocity, acceleration, sensor distance).
Therefore, different controller sizes were generated, to evaluate the performance of our
proposed theory. Additionally, Cruise Control was used throughout a preexisting work

37

6. Evaluation

[Akm19] which introduced a similar prototype to include domain knowledge into the
decision tree induction algorithm. In order to enable a higher compatibility with the
preexisting work, we have chosen to utilize the same controller as input, namely Cruise
Control.

Handcrafted Strategy. Within the preexisting work of mentioned prototype, [Akm19,
Chapter 5.2] also introduces a specific handcrafted strategy for Cruise Control. This
handcrafted strategy can be described as a set of 4 predicates, which were specifically
constructed for Cruise Control, in order to represent this controller as small and under-
standable as possible. We therefore utilized this handcrafted strategy frequently within
the evaluation of our own concepts. The detailed handcrafted strategy of [Akm19] can
be found in the appendix A.1.

6.2. Preexisting Prototype

Within this section, we evaluate the execution time of the Richer Domain Strategy
(optimized version) against the preexisting prototype of [Akm19]. Both dtControl and
the prototype are using the same handcrafted strategy presented in [Akm19, Chapter
5.2]. In [Akm19], the prototype was evaluated on several different sizes of Cruise
Control. The best execution times (in seconds) are summarized in Table 6.1.

Table 6.1.: Summarized evaluation results of the prototype in [Akm19].

Name Min Max Size1 Time (s)
velocity velocity

Cruise_medium 0 8 48 781 42.00
Cruise_large −6 16 130 269 128.00

Unfortunately, we were not able to replicate the exact same model with the same
number of state-action pairs as in [Akm19], due to the fact that several other variables
were not described (e.g. sensor distance). Therefore, we set the values we knew from
that work and then overapproximated the size of the controller. The exact model
specification we used in our evaluation can be found in the appendix A.3. The obtained
execution times (in seconds) are depicted in Table 6.2.

1Number of state-action pairs

38

6. Evaluation

Table 6.2.: Obtained result for comparison with prototype of [Akm19].

Name Min Max Size2 Time (s)
velocity velocity

Cruise_medium 0 8 262 251 13.43
Cruise_large −6 16 390 213 15.56

Results. Even tough our input controllers were at least twice as big as the input in
[Akm19], we were still able to outperform the prototype. In detail, we decreased the
run time of the handcrafted strategy on Cruise_medium by 68% and the run time on
Cruise_large by 88%.

6.3. Optimization

Within this section, we evaluate the execution time of our optimization technique
called Optimized Tree Search, defined in section 4.2.4. We compare an optimized
version of the Richer Domain Strategy which uses the Optimized Tree Search technique
with an "un-optimized" version of the Richer Domain Strategy which does not use
this technique. To increase the reliability of the comparison, we generated 5 different
versions of the Cruise Control model with each having a different size. To reproduce
our obtained results, we provide detailed information about our used models in Table
6.3.

Table 6.3.: Overview of all generated Cruise Control versions.

Name Sensor Min Max Size3

distance velocity velocity

Cruise_150 150 −6 16 390 213
Cruise_200 200 −6 16 562 488
Cruise_500 500 −6 16 1 602 891
Cruise_800 800 −6 16 2 643 291
Cruise_1100 1100 −6 16 3 683 691

In Table 6.4, we compare the execution time of the "un-optimized" strategy to the
execution time of the optimized strategy. As input predicates for the Richer Domain

2Number of state-action pairs
3Number of state-action pairs

39

6. Evaluation

Strategy, we use the handcrafted strategy of [Akm19]. The execution time is hereby
measured in seconds.

Table 6.4.: Execution time overview of different sizes of Cruise Control, depending on
sensor distance.

Strategy Cruise_150 Cruise_200 Cruise_500 Cruise_800 Cruise_1100

un-optimized 20.47 28.51 82.82 141.25 193.02
optimized 15.56 21.97 77.03 129.24 179.76

Results. Note that the optimized Richer Domain Strategy in combination with the
handcrafted strategy is capable of processing over 3.5 Million state-action pairs in
under 3 minutes. Unfortunately we only had one handcrafted strategy available which
typically generates a decision tree with 11-13 nodes. In theory however, the Optimized
Tree Search is expected to increase the performance even more once there are more
predicates and a tree with a sufficient height. Within our evaluation, the Optimized
Tree Search always decreased the overall run time. However, due to the fact that our
selected handcrafted strategy only consists of 4 predicates which mostly generate a
decision tree with 11-13 nodes, the run time reduction does not have a significant
impact. On Cruise_150 for example, we were able to reduce the run time by at least
24%. Due to the small number of predicates, we only achieved a run time reduction of
6% on Cruise_1100.

6.4. Infinite Coefficient Performance

Within this section, we evaluate the performance of Infinite Coefficients. For this task,
we delete an increasing number of expressions within the predicates of the handcrafted
strategy of Cruise Control and substitute them with Infinite Coefficients. This concept
is evaluated on "Cruise_medium" (with 262251 state-action pairs, see section 6.2) and
the resulting execution time is measured in seconds. The predicates which were used
throughout this section can be found in the appendix A.2.

Results. The results depicted in Table 6.5 clearly emphasize once again that an in-
creasing number of infinite coefficients is also associated with an increasing run time.
Within our evaluation we obtained on average around 30%-47% run time increase per
Infinite Coefficient. Additionally, an increase of Finite Coefficient also resulted in a
bigger decision tree with more nodes. Nevertheless, in the last column it can be seen

40

6. Evaluation

that despite five deleted expressions the number of nodes is very low considering that
"Cruise_medium" contains 262251 state-action pairs.

Table 6.5.: Comparison of number of Infinite Coefficients and execution time.

Coefficients Nodes Inner Nodes Time (s)

0 13 6 13.43
1 37 18 55.39
2 37 18 59.40
3 47 23 101.45
4 47 23 107.79
5 99 49 140.26

6.5. Limitations

Within this final section, we recapitulate the range of capabilities and limitations for
the Richer Domain Strategy. Consider the running example data set presented in Table
3.1. To imitate the Axis Aligned Strategy (3.2.4) on the mentioned data set4, we could
simply provide the following predicates to the Richer Domain Strategy:

• [x_0 <= c0]

• [x_1 <= c1]

• [x_2 <= c2]

• [x_3 <= c3]

Results. Within the following section, we compare the execution time (in seconds) of
the dedicated Axis-Aligned implementation with the Richer Domain Strategy (Rebuilt
Axis). Additionally to the fruits data (Table 3.1), we evaluate the same concept on
"Cruise_medium" (section 6.2) and "Cruise_200" (section 6.3). The results are depicted
in Table 6.6. Within the comparison of the fruits case study, the execution time of the
dedicated Axis Aligned implementation was 99.9% faster. Nonetheless, we obtained a
final decision tree of the same structure and accuracy for both strategies. However, for
the comparison of Cruise_medium and Cruise_large, it is important to note that the
safety guarantees are not preserved anymore. Here we only obtained an accuracy of

4Identical concept can be applied on Cruise Control, by adding remaining axis predicates for "x_4", "x_5"
and "x_6"

41

6. Evaluation

Table 6.6.: Comparison of dedicated Axis Aligned and Richer Domain Strategy imitating
Axis Aligned.

Case Study Strategy Nodes Inner Nodes Time (s) Accuracy (%)

Fruits
Dedicated Axis 9 4 0.002 100
Rebuilt Axis 9 4 7.78 100

Cruise_medium
Dedicated Axis 293 146 2.53 100
Rebuilt Axis 493 246 1548.13 99.99

Cruise_200
Dedicated Axis 661 330 6.52 100
Rebuilt Axis 41 143 571 3625.68 99.99

99.99%. Additionally, the execution time of the dedicated Implementations were 99%
faster.

Limitations. Especially while working on controllers with several millions of state
action pairs, it is important to avoid using Infinite Coefficients alone. Although it is
theoretically possible to use predicates which only consist of one Infinite Coefficient, as
seen in the fruits case study, this concept should be used with caution. The reason for
that can be found within the curve fitting algorithm. As seen in Section 6.4, a reasonable
amount of Infinite Coefficients can be used within an actual term. However, a term
should definitely not only consist of one Infinite Coefficient. Above a certain value of
state-action pairs almost every curve fitting algorithm will not be able to compute a fit
with a sufficient accuracy and therefore the resulting decision tree will not preserve all
guarantees.

42

7. Future Work

In this chapter we introduce several different concepts and ideas which could poten-
tially improve dtControl. The first section proposes an alternative concept based on
tree edit distance and syntax tree representation of predicates to automate the process
of predicate generation. The second section proposes a new customized Curve Fitting
technique based on partitioning. The last section contains two extensions for both
coefficient-types. The first of these extensions proposes the concept of interval con-
straints for Infinite Coefficients and the second one introduces a potentially promising
optimization to avoid the combinatorial explosion of Finite Coefficients.

However, these extensions only represent suggestions to get closer to the overall goal
of this research branch. In general, the overall goal is to create a tool which represents
controllers as decision trees in a both intuitive and space-saving format (while still
preserving guarantees). Within this thesis, we proposed a semi-automatic concept
which relies on frequent user interaction. Ideally, future work only requires one or two
domain expressions at the startup and automatically return this "ideal" decision tree.

7.1. Tree Edit Distance Predicate Generation

Parallel to the presented concepts within this work we followed a completely alter-
native approach to automatically generate predicates. In general, the idea was that a
user presents a collection of general expressions which are relevant within the area of
application of the controller model. For example physics equations of motion for the
Cruise Control model. Afterwards, the second step consists of generating all possible
expressions within a fixed tree edit distance of the syntax tree of mentioned equations.
However, one important aspect while generating predicates with the tree edit distance
approach is to maintain the type compatibility of the generated expressions. Unfortu-
nately, during the time of this thesis we did not find any suitable tool for checking this
compatibility. One very promising approach for the future is presented by a SymPy
module which is currently under development. The aim of this module is to provide
unit support for the preexisting SymPy library [Symd].

For this alternative approach we already implemented the functionality to create
the corresponding syntax tree of a Richer Domain Predicate. Additionally, we provide

43

7. Future Work

the functionality to compute the lowest tree edit distance between two Richer Domain
Predicates. For this purpose we implemented an adapter interface to make use of the
state-of-the-art algorithm for tree edit distance, called APTED [PA16; PA15].

7.2. Specialized Curve Fitting algorithm

To overcome the limitations presented in Chapter 6.5, it might be advantageous to
develop a customized Curve Fitting algorithm. Inspired by Chapter 4.1.3, it would be
reasonable to create a new metric of accuracy depending on the obtained partitions.
The general idea would be to redefine the aim of the Curve Fitting process. Instead
of achieving a high accuracy in the sense of Least-Square Error, the accuracy should
solely depend on the obtained partitions.

7.3. Coefficients

7.3.1. Interval constraints for Infinite Coefficients

Currently, Infinite Coefficients as presented by Chapter 4.1.1 do not support the possi-
bility to restrict their values to a certain interval. Enabling the possibility to define such
constraints could result in a useful extension for this work. During the experimental
phase of this work, parallel to the Curve Fitting implementation of Scipy [Vir+20],
we investigated an alternative Curve Fitting library called LMFIT [New+14]. LMFIT
provides the possibility to define such constraints. However, after several case studies
we have made the decision to use the SciPy version, as it was much more flexible, robust
and overall easier to connect with the features provided by the SymPy Library. LMFIT
required an extensive problem definition in advance to the Curve Fitting process which
we mostly could not provide due to the continuously changing structure of terms.

7.3.2. Curve Fitting for Finite Coefficients

To overcome the problem of obtaining an infeasibly large set of potential predicates
whenever the user specifies too many or too large sets of possible Finite Coefficient-
values, it would be worth investigating whether curve fitting could be advantageous. As
a concrete example, consider a predicate p with p = [x_0 < c_0; c_0 in {1,2,. . . ,9999}].
Instead of brute-forcing every combination and calculating its corresponding impurity,
we could use curve fitting on p′ with p′ = [x_0 < c_0’] and substitute c_0 with the
member in {1, 2, . . . , 9999} which is the closest to the fitted value of c_0’. In this context
it would also be worth considering to determine the best label mask combination in
advance instead of applying Curve Fitting to every label mask combination.

44

8. Conclusion

In this work, we have addressed the problem of small and explainable controller repre-
sentation. To achieve both of these goals, we have enriched decision trees with algebraic
predicates - probably coming from domain knowledge. We have proposed several
approaches to leverage domain knowledge given by the user, either automatically or
semi-automatic. To demonstrate the advantages and applicability of our approach, we
have implemented all concepts in the current version of dtControl. Our experiments
showed that this approach can yield great gains in both size and explainability; however,
the method is still limited in its scalability. This thesis is one step in the direction of
automatically compressed and explainable controllers and thus a step leading to a
world where we can verify and validate all the computer systems that are present in
our day-to-day life.

45

A. Appendix

A.1. Handcrafted Strategy for Cruise Control

Handcrafted strategy for Cruise Control, extracted from [Akm19]; converted to a valid
format, accepted by the predicate parser of Section 5.2.1. "minV" and "maxV" describe
the minimum velocity and the maximum velocity of the Cruise Control model.

• x_2+((−2− 2)/(2))+ (x_5− x_3)+ ((x_5+ 1∗ (−2))− (x_3+ 1∗ 2)) ∗ (((minV−
x_5)/(−2))− 1)+ (((0− (−2)) ∗ (((minV− ((x_3+ 2)− 2∗ ((((minV− x_5)/(−2))−
1))))/(−2)))2)/(2)) + (minV− ((x_3 + 1 ∗ 2) + ((((minV− x_5)/(−2))− 1)) ∗
(−2))) ∗ ((minV− ((x_3 + 2)− 2 ∗ ((((minV− x_5)/(−2))− 1))))/(−2)) <= 5

• x_2+((−2− 0)/(2))+ (x_5− x_3)+ ((x_5+ 1∗ (−2))− (x_3+ 1∗ 0)) ∗ (((minV−
x_5)/(−2))− 1)+ (((0− (−2)) ∗ (((minV− ((x_3+ 0)− 2∗ ((((minV− x_5)/(−2))−
1))))/(−2)))2)/(2)) + (minV− ((x_3 + 1 ∗ 0) + ((((minV− x_5)/(−2))− 1)) ∗
(−2))) ∗ ((minV− ((x_3 + 0)− 2 ∗ ((((minV− x_5)/(−2))− 1))))/(−2)) <= 5

• x_3 <= minV

• x_3 <= maxV− 2

A.2. Infinite Coefficient Performance - Predicates

The exact predicates used to evaluate the performance of the Infinite Coefficients;
converted to a valid format, accepted by the predicate parser of Section 5.2.1. For
coefficient usage i ∈ {0, 1, 2, 3, 4, 5} only coefficients "c_j" with j < i were used. The
original handcrafted strategy can be found in A.1.

• x_2+ c_0+ (x_5− x_3) + ((x_5+ 1 ∗ (−2))− (x_3+ c_4)) ∗ (((0− x_5)/(−2))−
1)+ (((0− (−2)) ∗ (((0− ((x_3+ 2)− 2∗ ((((0− x_5)/(−2))− 1))))/(−2)))2)/(2))+
(0− ((x_3 + 1 ∗ 2) + ((((0− x_5)/(−2))− 1)) ∗ (−2))) ∗ ((0− ((x_3 + 2)− 2 ∗
((((0− x_5)/(−2))− 1))))/(−2)) <= c_1

• x_2+ c_2+(x_5− x_3)+ ((x_5+ 1 ∗ (−2))− (x_3+ 1 ∗ 0)) ∗ (((0− x_5)/(−2))−
1)+ (((0− (−2)) ∗ (((0− ((x_3+ 0)− 2∗ ((((0− x_5)/(−2))− 1))))/(−2)))2)/(2))+

46

A. Appendix

(0− ((x_3 + 1 ∗ 0) + ((((0− x_5)/(−2))− 1)) ∗ (−2))) ∗ ((0− ((x_3 + 0)− 2 ∗
((((0− x_5)/(−2))− 1))))/(−2)) <= c_3

• x_3 <= 0

• x_3 <= 12

A.3. Cruise Control Model Specification

Exact Cruise Control model specifications used throughout the Evaluation (Chapter 6).

Name Sensor
Distance

Min
velocity

Max
velocity

Size1

Cruise_medium 200 0 8 48781
Cruise_large 150 -6 16 390213
Cruise_150 150 -6 16 390213
Cruise_200 200 -6 16 562488
Cruise_500 500 -6 16 1602891
Cruise_800 800 -6 16 2643291
Cruise_1100 1100 -6 16 3683691

Table A.1.: Overview of all generated Cruise Control versions.

1Number of state-action pairs

47

List of Figures

1.1. A schematic overview of an example workflow with 10 rooms [JZ17] and
SCOTS [RZ16]. Heater control symbol from [LeF18], controller obtained
from [MPM20] and decision tree acquired from [Ash+20a]. 2

3.1. An example predicate using the Calories Feature to split the data set. . 12
3.2. An example predicate using a combination of Calories, Vitamin C Per-

centage and Gram Protein to split the data set. 12
3.3. Decision tree representation of Table 3.1 created with Axis Aligned

Splitting Strategy. 14
3.4. Schematic DT containing all possible Axis Aligned Split for every node.

Based on data set depicted by Table 3.1. 16
3.5. Example scatter-plot of collected data points (black cross) with the de-

sired fitted function (blue) and an illustration of the error in accuracy
(red). 17

5.1. Overview of the workflow of dtControl. Graphic extracted from [Jac20,
Chapter 4.2.1] which was adapted from [Ash+20b]. 29

5.2. Overview of the extended workflow of dtControl. The blue color repre-
sents extended or added components. Graphic based on [Jac20, Chapter
4.2.1] which was adapted from [Ash+20b]. 30

5.3. A schematic overview of the new introduced "RicherDomainPredicates"
class, implementing/extending the preexisting "Split" class. ("Split" class
extracted from [Jac20, Chapter 6.3.2]). 31

5.4. Exemplary "RicherDomainPredicate" class representing predicate p. . . 32
5.5. A schematic overview of the new introduced "RicherDomainPredicates"

class, implementing/extending the preexisting "SplittingStrategy" class.
("SplittingStrategy" class extracted from [Jac20, Chapter 6.3.2]). 34

5.6. An exemplary state of the semi-automatic command line interface, ob-
tained with the data set of Table 3.1. 34

5.7. Help window of the semi-automatic command line interface, displaying
all possible commands. 35

5.8. Semi-automatic command line interface after parsing the predicates of
Figure 3.1 and Figure 3.2. 36

48

List of Figures

6.1. Exemplary overview of the Cruise Control model. Figure extracted from
[LMT15]. 37

49

List of Tables

3.1. Running Example data set containing exemplary nutrition values of
fruits. Data set consists of four feature columns and one label ("Fruit").
Nutrition values extracted from [FN]. 10

6.1. Summarized evaluation results of the prototype in [Akm19]. 38
6.2. Obtained result for comparison with prototype of [Akm19]. 39
6.3. Overview of all generated Cruise Control versions. 39
6.4. Execution time overview of different sizes of Cruise Control, depending

on sensor distance. 40
6.5. Comparison of number of Infinite Coefficients and execution time. . . . 41
6.6. Comparison of dedicated Axis Aligned and Richer Domain Strategy

imitating Axis Aligned. 42

A.1. Overview of all generated Cruise Control versions. 47

50

Bibliography

[Adc77] R. J. Adcock. “Note on the Method of Least Squares.” In: The Analyst 4.6
(1877), pp. 183–184. issn: 07417918.

[ADC78] R. J. ADCOCK. “A problem in least squares.” In: The Analyst 5.1 (1878),
pp. 53–54.

[Akm19] S. M. Akmese. “Generating Richer Predicates for Decision Trees.” Bachelo-
rarbeit. Technische Universität München, 2019.

[Arl94] S. L. Arlinghaus. “Practical handbook of curve fitting.” In: (1994).

[ARW01] S. J. Ahn, W. Rauh, and H.-J. Warnecke. “Least-squares orthogonal dis-
tances fitting of circle, sphere, ellipse, hyperbola, and parabola.” In: Pat-
tern Recognition 34.12 (2001), pp. 2283–2303. issn: 0031-3203. doi: https:
//doi.org/10.1016/S0031-3203(00)00152-7.

[Ash+19] P. Ashok, J. Kretínský, K. G. Larsen, A. L. Coënt, J. H. Taankvist, and M.
Weininger. “SOS: Safe, Optimal and Small Strategies for Hybrid Markov
Decision Processes.” In: Quantitative Evaluation of Systems, 16th International
Conference, QEST 2019, Glasgow, UK, September 10-12, 2019, Proceedings. Ed.
by D. Parker and V. Wolf. Vol. 11785. Lecture Notes in Computer Science.
Springer, 2019, pp. 147–164. doi: 10.1007/978-3-030-30281-8_9.

[Ash+20a] P. Ashok, M. Jackermeier, P. Jagtap, J. Kretínský, M. Weininger, and M.
Zamani. “dtControl: Decision Tree Learning Algorithms for Controller
Representation.” In: CoRR abs/2002.04991 (2020). arXiv: 2002.04991.

[Ash+20b] P. Ashok, M. Jackermeier, P. Jagtap, J. Kretínský, M. Weininger, and M.
Zamani. “dtControl: decision tree learning algorithms for controller rep-
resentation.” In: HSCC ’20: 23rd ACM International Conference on Hybrid
Systems: Computation and Control, Sydney, New South Wales, Australia, April
21-24, 2020. Ed. by A. Ames, S. A. Seshia, and J. Deshmukh. ACM, 2020,
30:1–30:2. doi: 10.1145/3365365.3383468.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and
Mind Series). MIT Press, 2008. isbn: 026202649X.

51

https://doi.org/https://doi.org/10.1016/S0031-3203(00)00152-7
https://doi.org/https://doi.org/10.1016/S0031-3203(00)00152-7
https://doi.org/10.1007/978-3-030-30281-8_9
https://arxiv.org/abs/2002.04991
https://doi.org/10.1145/3365365.3383468

Bibliography

[Brá+15] T. Brázdil, K. Chatterjee, M. Chmelik, A. Fellner, and J. Kretínský. “Coun-
terexample Explanation by Learning Small Strategies in Markov Decision
Processes.” In: Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Ed.
by D. Kroening and C. S. Pasareanu. Vol. 9206. Lecture Notes in Computer
Science. Springer, 2015, pp. 158–177. doi: 10.1007/978-3-319-21690-
4_10.

[Bre+84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984. isbn: 0-534-98053-8.

[CGP01] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
2001. isbn: 978-0-262-03270-4.

[Cha] R. N. Charette. This Car Runs on Code - IEEE Spectrum. url: https://
spectrum.ieee.org/transportation/systems/this-car-runs-on-code.

[Cla+18] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of Model
Checking. 1st. Springer Publishing Company, Incorporated, 2018. isbn:
3319105744.

[Col20] Colgate-Palmolive. Colgate Announces Breakthrough Technology Designed To
Revolutionize Oral Health. Jan. 2020. url: https://web.archive.org/
web/20200902071858/https://www.prnewswire.com/news-releases/
colgate-announces-breakthrough-technology-designed-to-revolutionize-
oral-health-300981306.html?tc=eml_cleartime (visited on 09/02/2020).

[Dav+15] A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist.
“Uppaal Stratego.” In: Tools and Algorithms for the Construction and Analysis
of Systems - 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings. Ed. by C. Baier and C. Tinelli.
Vol. 9035. Lecture Notes in Computer Science. Springer, 2015, pp. 206–211.
doi: 10.1007/978-3-662-46681-0_16.

[DOT20] M. Dias, R. de Oliveira Albergarias Lopes, and A. Teles. “COULD BOEING
737 MAX CRASHES BE AVOIDED? FACTORS THAT UNDERMINED
PROJECT SAFETY.” In: 8 (Apr. 2020), pp. 187–196. eprint: https://www.
researchgate.net/publication/340621972_COULD_BOEING_737_MAX_
CRASHES_BE_AVOIDED_FACTORS_THAT_UNDERMINED_PROJECT_SAFETY.

[Dun] B. Dunbar. Shuttle Computers Navigate Record of Reliability. url: https:
//web.archive.org/web/20200819123136/https://www.nasa.gov/
mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html
(visited on 08/19/2020).

52

https://doi.org/10.1007/978-3-319-21690-4_10
https://doi.org/10.1007/978-3-319-21690-4_10
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://web.archive.org/web/20200902071858/https://www.prnewswire.com/news-releases/colgate-announces-breakthrough-technology-designed-to-revolutionize-oral-health-300981306.html?tc=eml_cleartime
https://web.archive.org/web/20200902071858/https://www.prnewswire.com/news-releases/colgate-announces-breakthrough-technology-designed-to-revolutionize-oral-health-300981306.html?tc=eml_cleartime
https://web.archive.org/web/20200902071858/https://www.prnewswire.com/news-releases/colgate-announces-breakthrough-technology-designed-to-revolutionize-oral-health-300981306.html?tc=eml_cleartime
https://web.archive.org/web/20200902071858/https://www.prnewswire.com/news-releases/colgate-announces-breakthrough-technology-designed-to-revolutionize-oral-health-300981306.html?tc=eml_cleartime
https://doi.org/10.1007/978-3-662-46681-0_16
https://www.researchgate.net/publication/340621972_COULD_BOEING_737_MAX_CRASHES_BE_AVOIDED_FACTORS_THAT_UNDERMINED_PROJECT_SAFETY
https://www.researchgate.net/publication/340621972_COULD_BOEING_737_MAX_CRASHES_BE_AVOIDED_FACTORS_THAT_UNDERMINED_PROJECT_SAFETY
https://www.researchgate.net/publication/340621972_COULD_BOEING_737_MAX_CRASHES_BE_AVOIDED_FACTORS_THAT_UNDERMINED_PROJECT_SAFETY
https://web.archive.org/web/20200819123136/https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html
https://web.archive.org/web/20200819123136/https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html
https://web.archive.org/web/20200819123136/https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html

Bibliography

[FN] C. for Food Safety and A. Nutrition. Nutrition Information for Raw Fruits,
Vegetables, and Fish. url: http://web.archive.org/web/20200902073917/
https://www.fda.gov/food/food- labeling- nutrition/nutrition-
information-raw-fruits-vegetables-and-fish (visited on 08/07/2020).

[GQT66] S. M. Goldfeld, R. E. Quandt, and H. F. Trotter. “Maximization by Quadratic
Hill-Climbing.” In: Econometrica 34.3 (1966), pp. 541–551. issn: 00129682,
14680262.

[Guj70] D. Gujarati. “Use of Dummy Variables in Testing for Equality between
Sets of Coefficients in Two Linear Regressions: A Note.” In: The American
Statistician 24.1 (1970), pp. 50–52. doi: 10.1080/00031305.1970.10477181.
eprint: https://www.tandfonline.com/doi/pdf/10.1080/00031305.
1970.10477181.

[HKS93] D. G. Heath, S. Kasif, and S. Salzberg. “Induction of Oblique Decision
Trees.” In: Proceedings of the 13th International Joint Conference on Artificial
Intelligence. Chambéry, France, August 28 - September 3, 1993. Ed. by R. Bajcsy.
Morgan Kaufmann, 1993, pp. 1002–1007.

[Jac20] M. Jackermeier. “dtControl: Decision Tree Learning for Explainable Con-
troller Representation.” Bachelorarbeit. Technische Universität München,
2020.

[JZ17] P. Jagtap and M. Zamani. “QUEST: A Tool for State-Space Quantization-
Free Synthesis of Symbolic Controllers.” In: Quantitative Evaluation of
Systems - 14th International Conference, QEST 2017, Berlin, Germany, September
5-7, 2017, Proceedings. Ed. by N. Bertrand and L. Bortolussi. Vol. 10503.
Lecture Notes in Computer Science. Springer, 2017, pp. 309–313. doi:
10.1007/978-3-319-66335-7_21.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification
of Probabilistic Real-time Systems.” In: Proc. 23rd International Conference
on Computer Aided Verification (CAV’11). Ed. by G. Gopalakrishnan and
S. Qadeer. Vol. 6806. LNCS. Springer, 2011, pp. 585–591.

[Kol84] W. Kolb. Curve Fitting for Programmable Calculators. Syntec, Incorporated,
1984. isbn: 9780943494029.

[LA05] M. L. A. Lourakis and A. A. Argyros. “Is Levenberg-Marquardt the most
efficient optimization algorithm for implementing bundle adjustment?” In:
Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1.
Vol. 2. 2005, 1526–1531 Vol. 2.

53

http://web.archive.org/web/20200902073917/https://www.fda.gov/food/food-labeling-nutrition/nutrition-information-raw-fruits-vegetables-and-fish
http://web.archive.org/web/20200902073917/https://www.fda.gov/food/food-labeling-nutrition/nutrition-information-raw-fruits-vegetables-and-fish
http://web.archive.org/web/20200902073917/https://www.fda.gov/food/food-labeling-nutrition/nutrition-information-raw-fruits-vegetables-and-fish
https://doi.org/10.1080/00031305.1970.10477181
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1970.10477181
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1970.10477181
https://doi.org/10.1007/978-3-319-66335-7_21

Bibliography

[LeF18] D. LeFebvre. Photo by Dan LeFebvre on Unsplash. Dec. 2018. url: https:
//web.archive.org/web/20200902073526/https://unsplash.com/
photos/mAwE-fqgDXc (visited on 09/02/2020).

[Lev44] K. Levenberg. “A METHOD FOR THE SOLUTION OF CERTAIN NON
– LINEAR PROBLEMS IN LEAST SQUARES.” In: Quarterly of Applied
Mathematics 2 (1944), pp. 164–168.

[Lio33a] J. Liouville. “Note sur la détermination des intégrales dont la valeur est
algébrique.” In: Journal für die reine und angewandte Mathematik 10 (1833),
pp. 347–359. eprint: http://gdz.sub.uni- goettingen.de/en/dms/
loader/img/?PID=GDZPPN002139332.

[Lio33b] J. Liouville. “Premier mémoire sur la détermination des intégrales dont la
valeur est algébrique.” In: Journal de l’École Polytechnique 14 (1833), pp. 124–
148. eprint: https://gallica.bnf.fr/ark:/12148/bpt6k433678n/f127.
item.r=Liouville.

[Lio33c] J. Liouville. “Second mémoire sur la détermination des intégrales dont la
valeur est algébrique.” In: Journal de l’École Polytechnique 14 (1833), pp. 149–
193. eprint: https://gallica.bnf.fr/ark:/12148/bpt6k433678n/f152.
item.r=Liouville.

[Lip82] M. Lipow. “Number of Faults per Line of Code.” In: IEEE Trans. Software
Eng. 8.4 (1982), pp. 437–439. doi: 10.1109/TSE.1982.235579.

[LMT15] K. G. Larsen, M. Mikucionis, and J. H. Taankvist. “Safe and Optimal
Adaptive Cruise Control.” In: Correct System Design - Symposium in Honor
of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, Oldenburg,
Germany, September 8-9, 2015. Proceedings. Ed. by R. Meyer, A. Platzer, and
H. Wehrheim. Vol. 9360. Lecture Notes in Computer Science. Springer,
2015, pp. 260–277. doi: 10.1007/978-3-319-23506-6_17.

[Mar63] D. W. Marquardt. “An Algorithm for Least-Squares Estimation of Non-
linear Parameters.” In: Journal of the Society for Industrial and Applied Math-
ematics 11.2 (1963), pp. 431–441. doi: 10.1137/0111030. eprint: https:
//doi.org/10.1137/0111030.

[Meu+17] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rock-
lin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig,
B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson,
F. Pedregosa, M. J. Curry, A. R. Terrel, Š. Roučka, A. Saboo, I. Fernando,
S. Kulal, R. Cimrman, and A. Scopatz. “SymPy: symbolic computing in
Python.” In: PeerJ Computer Science 3 (Jan. 2017), e103. issn: 2376-5992. doi:
10.7717/peerj-cs.103.

54

https://web.archive.org/web/20200902073526/https://unsplash.com/photos/mAwE-fqgDXc
https://web.archive.org/web/20200902073526/https://unsplash.com/photos/mAwE-fqgDXc
https://web.archive.org/web/20200902073526/https://unsplash.com/photos/mAwE-fqgDXc
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002139332
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002139332
https://gallica.bnf.fr/ark:/12148/bpt6k433678n/f127.item.r=Liouville
https://gallica.bnf.fr/ark:/12148/bpt6k433678n/f127.item.r=Liouville
https://gallica.bnf.fr/ark:/12148/bpt6k433678n/f152.item.r=Liouville
https://gallica.bnf.fr/ark:/12148/bpt6k433678n/f152.item.r=Liouville
https://doi.org/10.1109/TSE.1982.235579
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.7717/peerj-cs.103

Bibliography

[Mit97] T. M. Mitchell. Machine learning, International Edition. McGraw-Hill Series
in Computer Science. McGraw-Hill, 1997. isbn: 978-0-07-042807-2.

[MPM20] J. Mathias, A. Pranav, and W. Maximilian. dtControl. 2020. url: https:
//dtcontrol.model.in.tum.de/ (visited on 09/02/2020).

[Mur+93] S. K. Murthy, S. Kasif, S. Salzberg, and R. Beigel. “OC1: A Randomized
Induction of Oblique Decision Trees.” In: Proceedings of the 11th National
Conference on Artificial Intelligence. Washington, DC, USA, July 11-15, 1993.
Ed. by R. Fikes and W. G. Lehnert. AAAI Press / The MIT Press, 1993,
pp. 322–327.

[New+14] M. Newville, T. Stensitzki, D. B. Allen, and A. Ingargiola. LMFIT: Non-
Linear Least-Square Minimization and Curve-Fitting for Python. Version 0.8.0.
Sept. 2014. doi: 10.5281/zenodo.11813.

[Num] NumPy. numpy.polyfit. url: http://web.archive.org/web/20200902074339/
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.
html (visited on 08/08/2020).

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer New York,
2006. doi: 10.1007/978-0-387-40065-5.

[Oli06] T. E. Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.

[PA15] M. Pawlik and N. Augsten. “Efficient Computation of the Tree Edit Dis-
tance.” In: ACM Trans. Database Syst. 40.1 (Mar. 2015). issn: 0362-5915. doi:
10.1145/2699485.

[PA16] M. Pawlik and N. Augsten. “Tree edit distance: Robust and memory-
efficient.” English. In: Information Systems 56 (2016), pp. 157–173. issn:
0306-4379. doi: 10.1016/j.is.2015.08.004.

[Qui86] J. R. Quinlan. “Induction of Decision Trees.” In: Mach. Learn. 1.1 (1986),
pp. 81–106. doi: 10.1023/A:1022643204877.

[RM14] L. Rokach and O. Maimon. Data Mining With Decision Trees: Theory and
Applications. 2nd. USA: World Scientific Publishing Co., Inc., 2014. isbn:
9789814590075.

[RZ16] M. Rungger and M. Zamani. “SCOTS: A Tool for the Synthesis of Symbolic
Controllers.” In: Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control, HSCC 2016, Vienna, Austria, April 12-14,
2016. Ed. by A. Abate and G. E. Fainekos. ACM, 2016, pp. 99–104. doi:
10.1145/2883817.2883834.

55

https://dtcontrol.model.in.tum.de/
https://dtcontrol.model.in.tum.de/
https://doi.org/10.5281/zenodo.11813
http://web.archive.org/web/20200902074339/https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
http://web.archive.org/web/20200902074339/https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
http://web.archive.org/web/20200902074339/https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1145/2699485
https://doi.org/10.1016/j.is.2015.08.004
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1145/2883817.2883834

Bibliography

[Sam] Samsung. Play music on your Family Hub smart fridge. url: https://web.
archive.org/web/20200902072347/https://www.samsung.com/us/
support/answer/ANS00062814/ (visited on 09/02/2020).

[Sha48] C. E. Shannon. “A mathematical theory of communication.” In: Bell Syst.
Tech. J. 27.4 (1948), pp. 623–656. doi: 10.1002/j.1538-7305.1948.tb00917.
x.

[Sor82] D. Sorensen. “Newton’s method with a model trust region modification.”
In: SIAM Journal on Numerical Analysis 19 (1982), pp. 409–426.

[Syma] SymPy. core.sympify. url: http://web.archive.org/web/20200902074429/
https : / / docs . sympy . org / latest / modules / core . html (visited on
08/08/2020).

[Symb] SymPy. Introduction- What is Symbolic Computation? url: http://web.
archive.org/web/20200617155325/https://docs.sympy.org/latest/
tutorial/intro.html (visited on 08/08/2020).

[Symc] SymPy. Lambdify. url: http://web.archive.org/web/20200902074528/
https://docs.sympy.org/latest/modules/utilities/lambdify.html
(visited on 08/08/2020).

[Symd] SymPy. Unit systems. url: http://web.archive.org/web/20200902074745/
https://docs.sympy.org/latest/modules/physics/units/index.html
(visited on 08/08/2020).

[TS12] M. K. Transtrum and J. P. Sethna. Improvements to the Levenberg-Marquardt
algorithm for nonlinear least-squares minimization. 2012. arXiv: 1201.5885
[physics.data-an].

[Vir+20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.
Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der
Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E.
Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand
erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and S. 1. 0. Contributors. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python.” In: Nature Methods 17 (2020), pp. 261–272. doi:
https://doi.org/10.1038/s41592-019-0686-2.

[Yao92] A. C. Yao. “Algebraic Decision Trees and Euler Characteristics.” In: 33rd
Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylva-
nia, USA, 24-27 October 1992. IEEE Computer Society, 1992, pp. 268–277.
doi: 10.1109/SFCS.1992.267765.

56

https://web.archive.org/web/20200902072347/https://www.samsung.com/us/support/answer/ANS00062814/
https://web.archive.org/web/20200902072347/https://www.samsung.com/us/support/answer/ANS00062814/
https://web.archive.org/web/20200902072347/https://www.samsung.com/us/support/answer/ANS00062814/
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://web.archive.org/web/20200902074429/https://docs.sympy.org/latest/modules/core.html
http://web.archive.org/web/20200902074429/https://docs.sympy.org/latest/modules/core.html
http://web.archive.org/web/20200617155325/https://docs.sympy.org/latest/tutorial/intro.html
http://web.archive.org/web/20200617155325/https://docs.sympy.org/latest/tutorial/intro.html
http://web.archive.org/web/20200617155325/https://docs.sympy.org/latest/tutorial/intro.html
http://web.archive.org/web/20200902074528/https://docs.sympy.org/latest/modules/utilities/lambdify.html
http://web.archive.org/web/20200902074528/https://docs.sympy.org/latest/modules/utilities/lambdify.html
http://web.archive.org/web/20200902074745/https://docs.sympy.org/latest/modules/physics/units/index.html
http://web.archive.org/web/20200902074745/https://docs.sympy.org/latest/modules/physics/units/index.html
https://arxiv.org/abs/1201.5885
https://arxiv.org/abs/1201.5885
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/SFCS.1992.267765

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Preliminaries
	Controller
	Decision Tree Learning
	Predicate
	Impurity Measure
	Decision Tree
	Predicate Generator
	Decision Tree Induction Algorithm

	Curve Fitting

	Richer Domain Predicates
	Predicate Tailoring
	Coefficients
	Feature Constraints
	Further Optimizations

	Decision Tree Induction Algorithm
	Richer Domain Strategy
	Priority Strategy
	Semi Automatic Strategy
	Further Optimizations

	Implementation
	Libraries
	NumPy
	SymPy
	SciPy

	dtControl
	Predicate Parser
	DT Learning
	Documentation

	Evaluation
	Cruise Control
	Preexisting Prototype
	Optimization
	Infinite Coefficient Performance
	Limitations

	Future Work
	Tree Edit Distance Predicate Generation
	Specialized Curve Fitting algorithm
	Coefficients
	Interval constraints for Infinite Coefficients
	Curve Fitting for Finite Coefficients

	Conclusion
	Appendix
	Handcrafted Strategy for Cruise Control
	Infinite Coefficient Performance - Predicates
	Cruise Control Model Specification

	List of Figures
	List of Tables
	Bibliography

