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Abstract

Systems of hyperbolic partial differential equations (PDE) are used to model physical
phenomena important to numerous scientific fields, from neutron star mergers in astro-
physics to earthquakes and tsunamis in seismology. ExaHyPE (“An Exascale Hyperbolic
PDE Engine”) is a customizable high-performance engine, that can be used by an in-
terdisciplinary research team to simulate these phenomena. It employs a discontinuous
Galerkin (DG) method combined with explicit one-step arbitrary high-order derivative
(ADER) time-stepping on adaptive Cartesian meshes. The ADER-DG numerical scheme
is broken down into customizable cell-local single-thread compute kernels, which form the
performance-critical components of the engine. These kernels can be optimized toward
a target hardware, and also tailored toward a given application, giving the engine its
adaptability. To customize its kernel, ExaHyPE relies on code generation.

My main contribution to ExaHyPE is the development of the Kernel Generator. To
guide its design, I defined three roles ExaHyPE’s users could take, and distinguished im-
plementing the kernels’ algorithms from performing the architecture-aware optimizations.
Taking inspiration from web application development practices, the Kernel Generator fol-
lows a Model-View-Controller architectural pattern and uses the Jinja2 template engine.
Jinja2’s template language abstracts the code to be generated, isolating low-level opti-
mization macros, from architecture-oblivious algorithmic templates using them. This sep-
aration decouples and streamlines the workflows of ExaHyPE’s identified user roles, which
is illustrated by the development of the ExaSeis application from the point of view of each
role. Furthermore, I optimized the generated kernels toward modern CPU architectures,
focusing on Skylake used by the SuperMUC-NG supercomputer. I employed aggres-
sive vectorization and reformulated tensor contractions as Loop-over-GEMM using the
specialized BLAS library LIBXSMM as backend. The performance-critical kernels were
further optimized in incremental steps, each introducing a new kernel variant: first re-
engineering the numerical schemes to increase cache-awareness and reduce memory stalls,
then using hybrid data layouts to increase vectorization opportunities. Using the most
advanced variants, ExaHyPE’s applications can be fully vectorized, with a Navier-Stokes
solver achieving 31.7% of peak performance on a single node of SuperMUC-NG.
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1 Introduction

1.1 Motivations for a customizable exascale hyperbolic PDE
engine

In our modern understanding of physics, the evolution of many types of systems can be
determined by systems of Partial Differential Equations (PDE). In particular, physical
phenomena propagating in a wave-like form are described by hyperbolic PDE systems.
Some of these phenomena, such as earthquakes and tsunamis, can have a direct impact
on the life of millions of people. Whereas others, for instance the gravitational waves
produced during the merger of a binary neutron star system, provide insight into the
fundamental laws of physics and the history of our universe. As the hyperbolic PDE
systems describing these phenomena often do not have a usable analytical solution, the
only way to compute the evolution of these systems is to do it step by step with a numerical
solver. Grand challenge simulations, such as neutron star mergers, are problems of this
kind of particular scientific interest and difficulty.

Developing a numerical solver for a grand challenge simulation requires not only exper-
tise in the phenomenon’s specific domain area, but also in numerical schemes to develop
sophisticated high-order numerical methods. The simulation itself uses a large amount of
computational power to be performed with a high enough resolution, required to produce
scientifically useful results. For this reason, the solver also needs to be designed for mod-
ern supercomputing platforms, which requires expertise in high performance computing
and code optimization to fully exploit the performance potential of modern hardware
architectures. Therefore, the simulation of a grand challenge from the ground up requires
the combined work of an interdisciplinary research team over multiple months or even
years.

The consortium behind the ExaHyPE project (“An Exascale Hyperbolic PDE Engine”)
aims to prevent such long development processes by providing a software engine for
modelling and simulating a wide range of hyperbolic PDE systems. To solve systems
of this kind, ExaHyPE employs a state of the art discontinuous Galerkin (DG) method
combined with explicit one-step arbitrary high-order derivative (ADER) time-stepping
on adaptive Cartesian meshes. As a high-performance engine, domain experts can use
ExaHyPE’s generic canonical PDE system to model various kind of problems, including
grand challenges, and thus simulate them on modern supercomputing platforms.

Furthermore, ExaHyPE’s ADER-DG numerical scheme is broken down into customiz-
able cell-local single-thread compute kernels, which are executed in parallel and form the
performance-critical components of the engine. Using code generation, the kernels are au-
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tomatically optimized toward a target hardware, and tailored toward a given application.
The code generation itself is customizable, so that the produced kernels used by the en-
gine can be modified, should new requirements arise. Experts in numerical methods can
implement more advanced numerical schemes as new kernel variants, and experts in code
optimization can add support for new hardware architectures to the kernels’ fine tuning.
The architecture of the code generation utilities aims at streamlining its expansions, and
also clearly separates the algorithms’ abstractions from the low-level architecture specific
optimizations so that experts in one field can work independently of the other.

This thesis focuses on the code generation in ExaHyPE. First, I present how code gen-
eration structures the overall design of ExaHyPE and how this and the architecture of
the code generation utilities themselves streamlines the workflow of an interdisciplinary
research team implementing a grand challenge simulation. Then, I introduce my opti-
mization of the generated kernels toward Intel’s Skylake CPU architecture, with both
low-level code optimization and algorithm modifications such as the introduction of new
formulations of some kernels and the use of hybrid data layouts.

1.2 Thesis structure

This thesis is structured in four parts.

Part I provides introductory information. Chapter 2, outlines the mathematical back-
ground of ExaHyPE and introduces the ADER-DG algorithm and its kernels.

Part II focuses on the design of ExaHyPE and the code generation utilities. Chap-
ter 3 introduces three user roles and with them justifies the use of code generation and
presents the modular design of ExaHyPE. Chapter 4 discusses how I redesigned the code
generation utilities using a Model-View-Controller architectural pattern and the Jinja2
template engine, to fulfill the previously identified user roles’ requirements. Chapter 5
presents a real use case of application implementation, with the development of the Exa-
Seis application from the point of each of the user roles.

Part III discusses the optimization of ExaHyPE’s kernels. Chapter 6 introduces the code
optimization background necessary for the later chapters of this part. Chapter 7 presents
my overall optimization of kernels, using modern compiler capabilities and a Loop-over-
GEMM formulation to optimize the tensor contractions with a BLAS library. Chapter 8
focuses on my optimization of the linear SpaceTimePredictor kernel in successive steps,
each introducing a new kernel variant and tackling the bottlenecks I identified when
benchmarking the previous variant. Chapter 9 outlines further proofs of concepts to gain
insight on potential future work.

Part IV concludes this thesis with a summary of my scientific contribution.



2 An ADER-DG Solver for hyperbolic PDE
systems

This chapter introduces the numerical concept behind ExaHyPE. In Section 2.1, we
discuss hyperbolic PDE systems and introduce the canonical PDE system solved by
ExaHyPE. It can be used to formulate the PDE systems of various physical phenomena,
that can therefore be simulated with ExaHyPE. The ADER-DG numerical scheme is then
briefly outlined in Section 2.2, and we see how its steps can be isolated into independent
kernels. The kernels are the critical components to customize and optimize ExaHyPE,
their generation and optimization is the focus of this thesis.

As the numerical scheme itself is not the focus of this work, only the key concepts are out-
lined. A more detailled description of the ADER-DG scheme as well as its mathematical
justifications can be found in [1, 2].

2.1 Hyperbolic PDE systems and related applications

2.1.1 ExaHyPE’s Canonical PDE System

Hyperbolic PDE systems can be used to model a wide range of phenomena involving
waves. ExaHyPE’s solves systems that can be expressed in the form of the following
canonical PDE system (2.1):

d Nps
0 oQ
P P -F B =S & 2.1
7TV FQ+) B(Q 3 =8SQ+ ) (21)
material matrix Aux =1 source i=1
ncp point sources

where on a computational domain Q € R? with Q : Q € R? — R¥ being the state vector
of the v conserved variables:

e P is the material matriz term,

e F(Q) is the flur term,
B;(Q) represents a non-conservative part and thus 2?21 Bi(Q) 2—2 is the non-

conservative product (ncp) term,

S(Q) is the source term,

d; are the given nps moment-tensor point sources.
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This canonical PDE system is highly customizable as each term can be disabled if desired.
For example, if no material matrix is required to model a given phenomenon, then it can
be set to the identity matrix in the application. Likewise setting S(Q) = 0 removes this
particular term from the system. ExaHyPE’s numerical scheme automatically adapts
itself to its application’s PDE system’s formulation to avoid wasting computations on
unused terms.

2.1.2 Grand challenge simulations in astrophysics and seismology

In its initial project proposal, ExaHyPE aimed to be able to perform two grand challenge
simulations. These applications PDE system formulations are taken from ExaHyPE’s
release paper [3].

Binary neutron stars merger with GRMHD

ALF2: M =135M, — i
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(a) Extrinsic curvature (b) Gravitational waves at 50 Mpc

Figure 2.1: (a): Contour colors of the trace of the extrinsic curvature generated by two rotating
Gaussian density distributions, figure taken from [4]. (b): Gravitational waves for
the ALF2-M185 binary at a distance of 50 Mpc, figure taken from [5].

The first grand challenge simulation originates from astrophysics with the simulation of
gravitational waves emitted by the merger of a binary neutron stars, see e.g [6, 7, 8].
Figure 2.1a illustrates the typical wavefield generated by a rotating binary, here idealized
Gaussian density distributions, and Figure 2.1b shows the gravitational waves predicted
by a simulation of a neutron stars merger using the ALF2-M135 model, performed by
Hanauske et al. [9]. Here the merger lasted close to 15ms with the first doted line at
t = 0 marking the start of the merger and the second one 14ms later the formation of the
resulting black hole’s event horizon. Interest in this topic grew over the last decade, with
on the one hand the increasing computational capacity making such simulations possible,
and on the other hand the gravitationnal wave detectors LIGO and Virgo coming online.
The two detectors measured the gravitational waves emitted by a neutron star merger
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for the first time in 2017 [10], hence providing real world measurements to compare the
models to.

In astrophysics, a neutron star internal structure can be modelled as an electrically ide-
ally conducting fluid with comparable hydrodynamic and electromagnetic forces. To do
so the equations of classical magnetohydrodynamics (MHD) are used to model the cor-
responding fluid dynamics. Furthermore, due to the strong gravitational fields of such
astrophysical objects, the background space-time is included in the model in the form of a
non-conservative product using the standard 3+ 1 split of General Relativity (GR) to de-
compose the four-dimensional space-time manifold into 3D hyper-surfaces parameterised
by a time coordinate ¢ [11].

Following the form of ExaHyPE’s canonical PDE system (2.1), and using Einstein sum-
mation convention over repeated indexes, the resulting GRMHD model can be written
as:

VD av'D — B'D 0 ‘
V5 oT} - B'S; V(T80 — 3T 0, — T79; ")
T ~a(S"=v'D)-p'T \/Ty(Sjaj_-oe - %Ti_kﬁjaj%k —__Tfajﬂj)
9 \/TYBJ +V, (Owlfﬁl)B] 7(cwj 7[.3])31 n _6'78i(\/§31)+_@\/’7’}{]1&i¢ _o
ot 1) 0 VAacd;(yABY) — B8 ¢ ’
iy 0 0
154 0 0
Ym 0 0
SN——
=Q =F(@Q =Si,BiQ) gt

where 7,5 = 1,2,3 and m = 1...6.
The details of this formulation can be found in [11, 12, 13].

Waves propagation in elastic solids

Coming from seismology, the second grand challenge simulation concerns long-range seis-
mic risk assessment. Earthquakes can be simulated by Hooke’s law and the conservation
of momentum to model the velocities, stress and strain of a heterogeneous medium [16].
The implementation of a related ExaHyPE application, ExaSeis, is presented and dis-
cussed in Chapter 5. Figure 2.2 shows some results obtained with ExaSeis, here the
simulation of an earthquake at mount Zugspitze [15].

While ExaHyPE uses adaptive Cartesian meshes, they can be extended to allow the mod-
elling of complex topography. A first approach, used by the ExaSeis application, maps
ExaHyPE’s adaptive Cartesian mesh to a complex topography via high-order curvilin-
ear transformations [17, 18]. A second one, used in another application, represents the
topography as a smooth field using a diffuse interface method [19].
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(a) Seismic wavefield
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Figure 2.2: (a): 3D snapshots of the absolute velocity of the propagating seismic wavefield for
the Zugspitze model at ¢ = 15, simulated with ExaSeis. (b): resulting seismograms
(green) compared with a reference implementation using the finite difference code
WaveQLab [14]. Figures adapted from [15]
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Ignoring mesh transformations, the propagation of waves in elastic solids is modeled by:

0 (o 0 E\up) 0 v\

a(p’v)_‘—v'(a)—F( 0 0 vV o) \(i-/ ’
N N ~ ~~ - :Z'}:O‘si
=Q =F(Q =YL BiQ 52

oz,

where the vector v denotes the velocity, p the mass density, and o the stress tensor, which
can be written in terms of its six independent components. The moment-tensor point
source ¢ is used to model the initial impulsion at the epicenter of the earthquake.

2.1.3 Other applications

Other physical phenomena described by hyperbolic PDE systems can also be simulated
using ExaHyPE. These formulations are taken from ExaHyPE’s release paper [3].

Shallow Water Simulations

water level

Figure 2.3: Simulation of the 2011 Tohoku tsunami using shallow water equations, figure adapted
from [20]

The shallow water equations describe fluid flow in cases whose horizontal length scales
are considerably greater than the vertical length scale. They are commonly used in
atmospheric and oceanic modeling, for example to model tsunamis caused by underwater
earthquakes, such as illustrated in Figure 2.3 with a simulation of the 2011 Tohoku
tsunami performed, using ExaHyPE, by Rannabauer et al. [20]. Unlike the previous
grand challenge simulations, shallow water simulations only use two spatial dimensions
and a small amount of variables, with a much simpler PDE system. Thus, they are also
useful for teaching purposes.
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They can be written as:

h hu  hv 0
0 | hu hu?  huv hg 0, (b+ h)
ot | hv TV huv ho? | T hgoy(b+h) | 0,
b 0 0 0
SN—— ~~
=Q =F(Q) =%  Bi(Q) 29

where h denotes the height of the water column, (u,v) the horizontal flow velocity, b the
bathymetry and g the gravity constant.

Compressible Navier-Stokes models

° \ 0.30
020

Potential Temp. Difference

Figure 2.4: Collision of two air bubbles at different temperatures in ExaHyPE, using the com-
pressible Navier-Stokes equations. Figures adapted from [21].

With some minor modifications to the canonical PDE system (2.1), ExaHyPE is extensi-
ble to some non-hyperbolic equations, such as the parabolic compressible Navier-Stokes
equations [22]. Figure 2.4 shows the collision of two air bubbles at different temperatures,
simulated using these equations in ExaHyPE by Krenz et al. [21].

Navier-Stokes models, used to simulate the dynamics of viscous fluids, are given by:

PR pv 0
5 pv | +V - v pv+ Ip+0(Q,VQ) = | —gkp |,
pE v-(IpE+1Ip+0(Q,VQ)) — sV(T) 0
—
-Q =F(Q,VQ) =5(Q)

where viscous effects in the flux term are modelled by the stress tensor 0(Q,VQ). To
accomodate this application’s requirement, the flux from (2.1) was expanded to allow
VQ as input in a previous work presented in [23].

Further details on the implementation of these equations and the related applications can
be found in [21, 24].

10



2.2 ADER-DG solver

2.2 ADER-DG solver

To numerically solve any PDE system taking the canonical form (2.1), ExaHyPE employs
a high-order discontinuous Galerkin (DG) approach. First introduced by Reed et al. [25]
for the neutron transport equation in nuclear physics, DG schemes were subsequently
extended to general hyperbolic PDE systems in a serie of papers by Cockburn et al. [26,
27, 28, 29, 30].

Within the DG framework, the arbitrary high-order derivative (ADER) DG approach,
first introduced by Toro and Titarev [31], allows for higher-order accuracy in time and
space. The ADER-DG scheme avoids the problem of increasing number of stages for
increasing polynomial degree exhibited by classical Runge-Kutta-DG schemes, leading to
better performance and time-to-solution [32]. ExaHyPE uses the ADER-DG formulation
proposed by Dumbser et al. [2].

2.2.1 Numerical method outline

We here only briefly outline the numerical method, detailled in [2], to introduce the
corresponding algorithm. Furthermore for the sake of simplicity, we restrict ourselves to
a simplified form of the canonical PDE system using only a flux term:

d
5Q+V-FQ) =0, on QCRY de?2,3. (2.2)

To solve this PDE system using the ADER-DG scheme, the computational domain €2
is discretized on a space-time Cartesian grid I' of cubic cells K, and the state vector
Q is replaced by ¢p, a piecewise high-order polynomial of degree N. Within each mesh
element (cell), the polynomial basis of g, is constructed as tensor products of Lagrange
polynomials over Gauss-Legendre nodes.

The ADER-DG methods works in three steps using a weak formulation of its PDE system.
To obtain the weak formulation, we multiply (2.2) with a space-time test function 6y,
from same space of piecewise polynomials as ¢, and we integrate it over a space-time
slice K x [T, T + AT] made of one cell and a time interval:

THAT g T+AT
/ / Oy, —— dadt + / / 0,V - F(qp)dzdt =0 (2.3)
KJr ot K Jr

Prediction

For each cell K, we can implicitly solve the weak formulation (2.3) to produce a cell-local
space-time prediction gj|k. This can be done by performing an integration by parts on
the first term of (2.3), which results in a fix point problem [1]. To solve the resulting fix
point problem, ExaHyPE relies by default on a robust method using Picard iterations as
introduced by Dumbser et al. [33]. If the PDE system is linear, then ExaHyPE can instead

11
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use a more efficient Cauchy-Kowalewsky procedure, as initialy proposed by Gassner et
al. [34].

The prediction is made while ignoring neighboring cells, and therefore, yields jumps along
the cell faces in ¢; and F(gj).

Riemann solver

At each face-adjacent cell boundary, we solve the Riemann problem resulting from the
previous step to obtain a numerical flux G(qj;, F(q;;)) for each of the two cells.

By default ExaHyPE employs a Rusanov flux. However, this can be changed by the user
to take into account the application’s specificities.

Correction

In the correction phase, we traverse the mesh again and in each cell we solve

/K On (an(T + AT) — ;(T)) d = (2.4)

T+AT T+AT
[ [ Ve Fa s [ [ onGla Pl dsai
KJT OK JT

Volume Integral Surface Integral

The equation (2.4) is derived from (2.3) by partially integrating both terms [33].

The two terms on the right-hand side of (2.4) can be computed separately. Thus, the
correction step is split into a volume integral and a surface integral substep, with only
the latter requiring the numerical normal flux from the previous step.

Stable time step computation

Adjustments to the time step increment AT may be needed due to nonlinear effects or
mesh adaptations. They would need to be performed before the first step at the start of
the ADER-DG loop to determine a valid AT.

An upper bound on the time step increment is expressed by the Courant—Friedrichs—Lewy
(CFL) condition [35]:

FL
AT < CFLy _dz

, 2.5
= d(2N +1) |Amax] (25)

where dz is mesh size, |Apax| the maximum signal velocity, and CFLy < 1 is a stability
factor that depends on the polynomial order [19, 33].

12



2.2 ADER-DG solver

2.2.2 ADER-DG algorithm

The steps of the ADER-DG scheme can be slightly reordered to increase data locality,
resulting in the simplified Algorithm 1.

Algorithm 1 Simplified algorithm implementing a ADER-DG scheme with reordered
steps to increase data locality

T+ 0
for cell K € I' do
qn(0)|x  adjustSolution(K,0) // Initialization
end for
while T' < Tg,, do
AT <+ timestep(qn(T)) // Time increment
for cell K €' do
(g |k, F(q))| k) < predictor(qn(T)|x, AT) // Prediction
(g5 |or, F'(q;)|or) < extrapolate(q;|x, F'(q;)| k) // Extrapolation
an(T + AT)|k < qn(T) |k
qn(T + AT)|g+=volumeIntegral (F'(q;|x, AT)) // Volume Integral
end for

for face-connected cells K1, Ko € I do
(G(a;, F(a3)) k. G(a5, F(q;))) K, < RiemannSolve(
aplox lorcy s arloxs |oxy s F(ay)lor, lok,, F(a))|or, lorx,) // Riemann Solver

qn(T' + AT)| g, +=faceIntegral(G(q}, F(q;)) K, ) // Surface Integral
qn(T + AT)| g, +=faceIntegral(G(q;, F(q}))K>) // Surface Integral
end for
T+ T+AT
end while

We start by initializing the representation ¢ of the state tensor ) in each cell. The goal
of the simulation is to evolve the tensors ¢, (-)|x in each cell K.

Thus, as long as the simulation time is below the desired final time, the main loop proceeds
in steps.

1. First we compute the optimal stable time step increment using the CFL conditions.
2. Then in each cell and without communication between cells:

a) We compute local space-time prediction g; |k and the associated predicted flux
F(q})|k, for example using Picard iterations.

b) These predictions are projected to the cell boundary to prepare for the Rie-
mann solver step. The projected state (qf |sx) and flux (F(qj)|ox) predictions
are one dimension smaller and need to be stored for later.

¢) We perform the volume integral part of the correction step immediatly as it
only requires the cell-local state and flux predictions as input, these predictions
are not required afterward and can be discarded after this.

13
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3. Following the prediction step, for each pair of face-connected cells, we solve the
local Riemann problem using the prepared projections of the predictions. Here
communication may be required to obtain both cells projected predictions.

4. The resulting numerical fluxes are then applied as the surface integral part of the
correction step on their corresponding cell.

2.2.3 Expansion of the ADER-DG scheme

The simplified Algorithm 1 can be expanded in multiple ways. These expansions are not
directly relevant to this thesis and thus are here only briefly outlined.

Adaptive mesh refinement

Adaptive Mesh Refinement (AMR) enables the use of cells of different sizes, which can be
exploited by applications to only have a fine mesh on “interesting” parts of the domain,
greatly reducing the number of cells required to obtain scientifically relevant results.
AMR can be trivially added to the ADER-DG algorithm by including restriction and
prolongation operators to perform a new step to refine or coarsen cells in accordance
with application-specific criteria and to adapt the projected solutions around the Riemann
solver step when cells interact with neighbors of a different resolutions [2].

A posteriori limiter

The ADER-DG scheme can suffer from numerical instabilities introduced by disconti-
nuities in the DG solution. For this reason, Algorithm 1 can be extended with an a
posteriori limiter as described by Dumbser et al. [1] and Zanotti et al. [2]. In short, at
the end of the time step before updating the cell, we check if the new cell solution verifies
both numerical criteria, using a relaxed discrete maximum principle, and physical ones
specificied by the application, e.g. the water column height in a shallow water application
has to be positive in each cell. If a cell does not verify all criteria, then it is marked as
troubled. It and its surrounding are projected to a finer regular mesh in their state be-
fore the time step. Then the time step is recomputed using a more robust ADER-WENO
finite volume solver limiter and the resulting solution for the troubled cell is projected
back to the DG mesh. The implementation of the a posteriori limiter in ExaHyPE’s
ADER-DG scheme is detailled in [36].

As a beneficial side effect, the a posteriori limiter also increases the resilience of the
ADER-DG scheme to soft errors by detecting and correcting faults which would otherwise
lead to a fatal failure [37].

Fused steps

Without change to them, the steps of Algorithm 1 can be reordered to fuse some loops,
therefore reducing the amount of mesh traversals and communication required. This
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“fused” variant of the ADER-DG algorithm was implemented in ExaHyPE by Dominic
Charrier and is described in [38, 36].

2.2.4 Kernels

Algorithm 1 relies on cell or cell-boundary local computations such as the predictor. In
ExaHyPE, they are isolated into kernels. As each kernel only processes a single cell or
face-boundary of the mesh, and this independently of the rest of it, they are implemented
as single-threaded functions. The scheme’s parallelization is then achieved by distributing
sub-domains of the mesh and executing the kernels in parallel.

From Algorithm 1 we can identify the step-related main kernels:

SpaceTimePredictor (STP): This kernel generates the local prediction g, (T)|x
and also performs the extrapolation by projecting it and its associated flux to the
cell boundary to obtain ¢ |sx and F(q})|ok-

Volumelntegral: It performs the volume integral substep of the correction step
as described in (2.4) using the prediction from the STP kernel. For optimization
purpose, it is often integrated to the STP kernel as its last substep.

RiemannSolver: It solves the Riemann problem at each face-boundary to produce
the numerical flux G(q;, F(q;))k; required for the surface integral correction. By
default it implements a Rusanov flux.

Facelntegral: It performs the surface integral substep of the correction step as
described in (2.4) for one of a cell’s faces, using the associated numerical flux from
the RiemannSolver.

StableTimeStepSize: This kernel computes the optimal time step increment
(AT)|x for a cell using the CFL condition. The time step increment used for
the current time step is then the minimum over all the cells.

We also have the following supporting kernels:

SolutionAdjustment: It initializes the cells (g, (0)|x) and can be used to override
the value of a cell during the simulation.

SolutionUpdate: The prediction and correction steps only compute an update to
the local solution. At the end of the time step, this kernel applies the update to
the current solution g, (T)|x to replace it with g, (T + AT)|xk.

BoundaryConditions: Cells at the domain boundary are missing some face neigh-
bors for the RiemannSolver kernel. This kernel applies the application’s defined
boundary condition to obtain the missing data.

To support the a posteriori limiter, some additional kernels are also available to detect
troubled cells and perform a time step using a finite volume scheme, which itself is also
decomposed into kernels. Furthermore, projection kernels are used to scale up or down a
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cell or cell’s face for the adaptive mesh refinement scheme and for the limiter’s projection
back and forth between the DG space and the FV mesh.

The kernels are the critical components of the ADER-DG scheme in multiple regards.

First, they are the components who call the application’s PDE terms. Thus by using
kernels, ExaHyPE isolates the overall ADER-DG scheme from the application’s imple-
mentation of the PDE system, with the kernels at the interface between the two.

Second, in a simulation, almost all floating point operations are performed either directly
inside the kernels or in the application’s functions called by the kernels. The high-order
approach of ADER-DG, compared to other schemes such as Finite Volume, results in nu-
merous tensor contraction operations in the kernels, increasing their arithmetic intensity
and ensuring they are compute-bound and not memory-bound on modern CPU archi-
tectures. Therefore their optimization is key to ExaHyPE’s performance. In particular,
the SpaceTimePredictor kernel is the prime target for optimizations as it consumes up
to 90% of an application’s runtime, as was reported in ExaHyPE’s second project report
[5].

Finally, the kernels implement the fine details of the ADER-DG scheme. By having them
isolated as a black box, we can swap them to change the numerical scheme implemented.
For example, as mentioned when outlining the prediction step, we use Picard iterations
for nonlinear applications and a Cauchy-Kowalewsky procedure for linear ones. As the
prediction step is performed by the SpaceTimePredictor kernel, linear and nonlinear
implementations of this kernel are available. Likewise the RiemannSolver employing a
Rusanov flux can be replaced by another one if necessary.

For these reasons, the kernels are the focus of this work, from their generation
using a customizable Code Generation utility, to their optimization toward modern
CPU-based architectures using vectorization, hybrid data layouts, and support for
highly optimized BLAS libraries.
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3 Architecture of ExaHyPE

This chapter presents the overall architecture of ExaHyPE. As this is an overview of
the whole engine, multiple concepts introduced here are detailled in later parts of this
thesis.

At the beginning of the project, a separation between two types of ExaHyPE’s users was
made to guide the design process of the engine. This separation was later further refined
into three user roles, each with separate areas of expertise and responsibilities. From the
description and analysis of these user roles, we defined four requirements for ExaHyPE’s
design as the project matured from its prototype stage. To fulfill these requirements,
ExaHyPE is designed using a modular architecture with its components optimized and
bound by generated code.

The user role description and analysis are performed in Section 3.1, ending with the
introduction of the design requirements. Section 3.2 justifies the choice of code generation
combined with a modular design to obtain the required customizability and separation of
concerns. Then, looking at the resulting workflow to develop an application, ExaHyPE’s
components are identified. Finally Section 3.3 presents each component and outlines the
design choices made for it and the paradigm it follows.

3.1 User roles

3.1.1 Domain experts and engine developers

After looking at the usual development process of a grand challenge application by a
medium-sized interdisciplinary team, the ExaHyPE development team defined early on
a clear separation between the domain experts on one side, and the experts in numerical
schemes and code optimization on the other.

The domain experts are the typical users of ExaHyPE, with an expertise in fields not
related to computer science. They desire to use ExaHyPE to easily simulate the math-
ematical model they developed to describe a given physical phenomenon of their field.
For example such domain experts could be the astrophysicists that have formulated the
GRMHD model shown in Section 2.1.2.

The latters are the ones that can adapt the engine, both to the needs of the application
developed by the domain experts, and to further optimize it to fully exploit the potential
of the hardware on which the simulation is performed. These engine developers are
typically not experts in the applications field, but instead have a background in High
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Performance Computing (HPC) related fields. The members of the ExaHyPE consortium
developing the engine itself, such as myself, belong to this group. However, we also
expect some members of an external interdisciplinary team to take this role, should the
application developed by their team require a new numerical scheme or be run on a new
hardware architecture.

This split between domain experts and engine developers is also seen in other PDE frame-
work where the users can customize the engine itself, such as Firedrake [39, 40].

3.1.2 Formalization of user roles

While the initial split between domain experts and engine developers isolated the domain
experts from more HPC oriented experts, we quickly noticed that the latter group needed
to be further refined. As described in Section 2.2.4, the critical engine components are
isolated in the kernels that need to be tailored toward a given application and optimized
for the target architecture. Thus, the engine developers are expected to perform these
two kind of optimizations of the kernels. However, they require two separate areas of
expertise: On the one hand adapting the algorithm of the kernels to modify the overall
numerical scheme, and on the other hand performing a low-level optimization of the
implementation. Therefore, 1 created two new roles from the engine developer one: the
algorithm expert and the optimization expert.

Some leftover responsibilities were left in the engine developer description, such as imple-
menting the overarching ADER-DG algorithm or the parallelization scheme. However,
these responsibilities are expected to be taken by members of the ExaHyPE consortium
while developing the engine, and not require further user input once the project is fi-
nalized, as the ADER-DG overall scheme itself should not require further modifications.
Consequently, no user role was defined for this. I also formalized in the same way the
role of the domain expert as an application expert.

Each member of a team working with ExaHyPE can be described as an expert taking
one or 