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Abstract

In the last years, the field of quantum many-body systems has seen a sharp development,
specifically in simulating interacting systems. However, a crucial challenge for current
computational methods is the efficient numerical simulation of nonequilibrium real-time
evolution due to the high-dimensionality of quantum systems. The state-of-the-art shows that
artificial neural network encodings of quantum many-body wave function efficiently describe
the time dynamics.

In this thesis, an efficient machine learning-inspired approach has been employed to simulate
the time dynamics. The neural-network quantum states are used to approximate the implicit
midpoint rule method for solving the time-dependent Schrödinger equation. The proposed
neural network architecture for the wave-function ansatz is the RBM (Restricted Boltzmann
Machine), which has been shown to represent the ground state of various Hamiltonians with
high accuracy. As a concrete example, this thesis studies the application of the transverse-
field Ising model on a one-dimensional lattice of different sizes, which exhibits an accuracy
comparable to the stochastic configuration method. To deal with the high-dimensionality of a
transverse-field Ising model on a lattice with periodic boundary conditions, the use of the
GPU is employed in delivering results for larger lattice sizes. Observations show that the use
of the GPU is critical for achieving results in large systems.
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1 Introduction

This chapter details the motivation behind the thesis and its impact, along with a review of
the related work in quantum many-body systems simulations.

1.1 Motivation

Among the various fields of science, quantum mechanics can be regarded as one of the most
fascinating and challenging topics. However, it is possibly the hardest to grasp in the classical
world. The wave function Ψ is a fundamental object in quantum physics, which contains all
the information of a quantum state, be it a single particle or a complex molecule [1]. In the last
years, the field of quantum many-body systems has seen a sharp development, specifically
in simulating interacting systems. However, a crucial challenge for current computational
methods is the efficient numerical simulation of nonequilibrium real-time evolution due to
the high-dimensionality of quantum systems. The motivation of the thesis is to find a strategy
to reduce the exponential complexity of the many-body wave function Ψ , which in our case
depends on the time-dependent Schrödinger equation.

The Schrödinger equation is a linear partial differential equation that governs the wave
function of a quantum-mechanical system [2].

i
∂ψ

∂t
= Hψ. (1.1)

A system in quantum physics is governed by a matrix H, called the Hamiltonian, which
describes the energy configuration of the given system and determines the interaction between
its particles. In Schrödinger’s equation (1.1), H governs how a quantum state changes over
time and the argument t denotes the time dependence of Ψ. In large many-body systems, the
size of the Hamiltonian grows exponentially with the L number of spin configurations, as
H ∈ C2L×2L

. Therefore, the complexity of the system as a whole increases exponentially.
Specifically, in this thesis, the transverse-field Ising model was used. It features particles
arranged on a regular lattice with nearest neighbor interactions determined by the alignment
or anti-alignment of spin projections. The model has the following Hamiltonian:

H = −h ∑
j

σx
j − J ∑

{i,j}
σz

i σz
j , (1.2)
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1 Introduction

where J is a parameter that represents the spin-spin interaction, h is a parameter that represents
the external field, i and j are label lattice sites. The notation {i, j} indicates that sites i and j
are nearest neighbors.

1.2 Related Work

Due to investigating one- and two-dimensional lattice quantum many-body systems at large
sizes, there is a need for continuous search of numerical techniques to provide accurate
verification of quantum simulations. Therefore, multiple approaches have been developed to
solve this issue.

In the last decades, tensor networks (class of many-body wavefunctions of complexity
fixed by a parameter known as bond dimension [3]) have been developed and applied to
classically simulate quantum many-body systems, representing the large wave function with
a set of local tensors connected via auxiliary indices. Lately, tensor networks have been
adapted for supervised learning [4], taking advantage of the variational studies in quantum
mechanics and developments in machine learning. According to [1], tensor networks are a
compression approach for solving the quantum many-body problem, which relies on the
efficient representation of the wave function. Also, there are numerical approaches to solving
the quantum many-body problem, which sample a finite number of physically relevant
configurations of the wave function [1]. This includes stochastic approaches like the quantum
Monte Carlo (QMC) and its improved version, stochastic reconfiguration, which rely on
probabilistic frameworks typically demanding a positive-semidefinite wave function [1].

However, both the stochastic reconfiguration and tensor networks fail in some cases, mostly
due to the sign problem in quantum Monte Carlo and to the inefficiency of current tensor
networks in high-dimensional systems [1]. As a result, despite the success of these methods,
a large number of issues exist.

Artificial neural networks and their expansion in the latest years proved useful to help solve
numerous problems in science, such as robotics, bioinformatics, medical image analysis, etc.
Specifically, the success of neural networks has been proven in high dimensional problems,
such as finding the eigenvalue and eigenfunction of the Fokker-Planck operator [5] and the
prediction of three neutronic parameters for the Ringhals-1 BWR unit [6]. Therefore, due to
the expansion of artificial neural networks, proven results in high dimensional problems, and
the need for dimensionality reduction in quantum systems, neural networks were investigated
and proven to solve the quantum many-body problem [1] [7] [8].

Neural networks have an advantage in handling large entanglement [7] in comparison with
tensor network methods, which are limited to relatively short time intervals. This is due
to the fact that the increase of entanglement with time requires an exponential increase of
virtual bond dimensions [7]. In [9], the authors determine the computational difficulty of
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1 Introduction

Matrix Product States (MPS) ground states, for which the ground state is a MPS of size.
For these Hamiltonians,[9] shows that finding the ground state (or a polynomial-accuracy
approximation) is an NP-hard problem. This implies that finding an MPS approximation
of these ground states can not be computed by classical computers. Also, [3] proves that
quantum states can not be approximated by convex combinations of tensor networks with
low bond dimension. Therefore, the virtual bond dimension bounds the tensor networks to
small systems.
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2 Method

This chapter presents an overview of the project in section 2.1 and the employed neural
network architecture - Restricted Boltzmann Machine in section 2.2. In section 2.3, the custom
cost function is detailed, together with the mathematical explanation of its gradients, which
are computed taking into consideration complex differentiability.

2.1 Overview

As mentioned in the previous chapter, the disadvantages of the tensor networks and stochastic
reconfiguration methods have demanded the introduction of new methods for solving the
quantum many-body problem. As the problem can be summarized dimensional reduction
and feature extraction, [1] investigated the use of artificial neural networks, as the networks
can easily be modified and adapted to describe and analyze a quantum system. The authors
used a Restricted Boltzmann Machine (RBM) to both find an unknown ground state of a
given Hamiltonian H and extend it to the time-dependent Schrödinger’s equation 1.1. Their
results proved the versatility of their method, which was then extended in the next years.

In [7] and [8], the research has also been extended to a Convolutional Neural Network (CNN),
for which a RBM is a special case of a fully connected single layer CNN with a fixed activation
function [8]. Also, in [7], the RBM architecture demonstrates similar results to the stochastic
reconfiguration. Therefore, this project is based on [7], replicating the results of the RBM
on the Ising chain and extending it to have Graphics Processing Unit (GPU) support. By
employing GPU support, the goal is to be able to analyze larger systems.

Firstly, it’s important to discuss the goal of the project. The goal is to solve the time-dependent
Schrödinger 1.1 by approximating a time step of a ordinary differential equation (ODE) by
using using gradient descent on neural network quantum state at the next step. In this case,
the variational ansatz is ψ[θ], where the term θ is a complex vector containing time-dependent
variational parameters [7]. Therefore, it is possible to find the gradients of ψ with respect to
θ and derive an ODE for θ [7]. For each time step, the network parameters are optimized
to minimize an error between ψ[θn+1] and ψ[θn]. The cost function can be compactly in
least-squares form as

C(θ) = ||Aψ[θ]− b||2, (2.1)

where A is the sparse submatrix of I + i∆t
2 H corresponding the spin configuration σ(j) and
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2 Method

vector b has entries bj = ((I − i∆t
2 H)ψ[θn])(σ(j)) [7]. The cost function and its gradients will

be further discused in subsection 2.3.

 ψ(s,t) 

Figure 2.1: Schematic illustration of the proposed method.

Fig. 2.1 shows a schematic illustration of the proposed method’s pipeline. Given spin
a configuration s generated randomly, blue and red referring to the spin ↑ and ↓ state,
functions as the input to an Artificial Neural Network (ANN) whose output at the end is the
corresponding wave function amplitude ψs. The neural-network proposed is the RBM, which
consists of two layers of neurons. The input of the visible layer is the spin configuration s
with the system size L, where the quantum Hilbert space dimension is 2L.

The RMB ansatz is applied to a one- dimensional transverse-field Ising model, which consists
of a chain of spins that interact with their nearest neighbors and are subject to an external
magnetic field, called h. Its Hamiltonian is given by Eq.1.2. This system undergoes a phase
transition from the ferromagnetic to the paramagnetic regime at h = J in one dimension and
at h= J = 3:04438(2) in two dimensions [7]. Therefore, the coupling constant J is set to 1.

The initial state was found by performing a Hamiltonian quench with respect to the field
strength h [7]. Firstly, the network parameters are optimized to represent the ground state for
h = 1.5 and then changed to h = 0.75 for the real time evolution. The ground state, which
is the state of the lowest energy [2], is important to the initialization of RBM weights. By
definition, finding the ground state of a quantum many body system is analogous to finding
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2 Method

the eigenfunctions which result in the lowest eigenvalues for a particular Hamiltonian [2].
For a small system, it’s possible to simply use iterative methods to calculate the eigenvalues
and eigenvectors of the Hamiltonian matrix, which would give the ground state. However, in
the case of this project, the ground state was generated using Stochastic Reconfiguration (SR)
[10]. The main idea of SR is to modify the parameters of a trial wave function in such a way
that it approaches the ground state along a path dictated by the projection 1− εH, where ε is
chosen such that 1− εH ≥ 0 [11]. The ground state generation with SR proves to be good
enough for delivering the expected results.

The optimizable neural network parameters(a - the bias of the ’visible’ layer, b - the bias of the
’hidden’ layer, w - the weights between the ’hidden’ and ’visible’ layer) are complex-valued
parameters. In this project, we represent complex-valued parameters as two real-valued sets
of parameters that are connected according to the algebraic rules induced by split-complex
arithmetic [12]. Therefore, we can rewrite each operation as a combination of algebraic
operations between the real and imaginary parts. In subsection 2.3, the reasoning behind
representing the complex parameters in such a way will be detailed. Therefore, we have:
a = areal + i ∗ aimag, b = breal + i ∗ bimag, w = wreal + i ∗ wimag, where areal , aimag, breal , bimag,
wreal , wimag are real-valued parameters. The cost function, written having areal , aimag, breal ,
bimag, wreal , wimag as terms, will be derived with respect to them. Therefore, the gradients are
calculated with respect to each term, which will give the gradient step for the optimization.

In the next part, the main algorithm for optimization inside the RBM neural network will be
detailed.

Data: ainitial , binitial , winitial
Result: ψtlist
for i in range (time_steps) do

add last ψt to list;
while optimizing_steps < limit do

Energypast, ψpast - calculated with aprevious, bprevious, wprevious;
variable_list = [a_real, a_imag, b_real, b_imag, w_real, w_imag];
new_gradients = gradient of cost_function w.r.t. variable_list;
update a, b, w with new_gradients in Adam optimizer;
calculate loss;

end
re-initiliaze a, b, w with ainitial , binitial , winitial ;

end
Algorithm 1: Training sequence in RBM structure.
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2.2 Restricted Boltzmann Machine

As mentioned previously, the neural network architecture proposed is the RBM, which has
been shown to represent the ground state of Hamiltonians with high accuracy [7]. Boltzmann
machines are named after the Boltzmann distribution (also known as Gibbs distribution),
which is a part of statistical mechanics.

h1

h3

h2

v1
v4

v3

v2

Figure 2.2: Boltzmann Machine architecture.

In Fig. 2.2, we have a visual representation of a Boltzmann machine architecture. Compared
with neural networks, which do not have any connections between the input nodes, a
Boltzmann Machine has connections among the input nodes. It is shown in Fig.2.2 that all
the nodes are connected to all other nodes irrespective of whether they are visible or hidden
nodes, which allows them to share information among themselves.

Hidden layer

Visible layerσ1
z
 σ2

z
 σ3

z
 σN

z
 

h1 h2 h3 hMh4

Figure 2.3: Restricted Boltzmann Machine architecture.

Restricted Boltzmann Machines are a variant of Boltzmann machines with a difference that
their neurons form a bipartite graph, which means there are no connections between nodes of
the same layer. In Fig. 2.3 we have a visual representation of the RBM artificial network, which
is constituted of one visible layer of L nodes, corresponding to the physical spin variables in a
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chosen basis (S = σ1, .., σL), and a single hidden layer of M auxiliary spin variables (h1, ..., hM).
The ’visible’ and the ’hidden’ layer are fully connected with each other but have no intra-layer
connections [7]. The construction of the RBM corresponds to a variational expression for the
quantum state:

ψ(σ) = ∑
hi

e∑j ajσj+∑i bihi+∑i,j wijhiσj , (2.2)

where aj, wij and bi are the optimizable network parameters and hi are the auxiliary spin
variables, which only take ± 1 values. To be specific, a is the bias of the ’visible’ layer, b the
bias of the ’hidden’ layer and w the weights between the ’hidden’ and ’visible’ layer.
The ansatz from Eq.2.2 can be transformed by sumation over hi:

ψ(σ) = ∑
hi

e∑j ajσj+∑i bihi+∑i,j wijhiσj

= ∑
hi

e∑j ajσj e∑i hi(bi+∑j wijσj)

= e∑j ajσj ∏
i

e(bi+∑j wijσj) + e−(bi+∑j wijσj)

= e∑j ajσj ∏
i

2cosh(bi + ∑
j

wijσj),

(2.3)

where cosh(x) = ex+e−x

2

One of the advantages of using an RBM is that constructing the Hamiltonian is not necessary at
every point but instead is possible to use the analytical expression for the local energy H|ψ(σ)〉

ψ(σ)
.

In the following lines, the analytical expression for the local energy will be provided, taking
into consideration the RBM architecture and the Transverse-field Ising model, which gives
the Hamiltonian model from Eq. 1.2. For numerical stability, the cosh(x) is exp(log(cosh)),
therefore, the logarithmized Eq. 2.3 becomes:

log ψ (σ) = ∑
j

ajσj + ∑
i

log

(
2 cosh

(
bi + ∑

j
wijσj

))
. (2.4)

Therefore, taking into consideration Eq.2.4, Eq.2.3 is, in a numerical stable form:

ψ (σ) = exp

(
∑

j
ajσj + ∑

i
log

(
2 cosh

(
bi + ∑

j
wijσj

)))

= exp

(
∑

j
ajσj

)
∏

i
2 cosh

(
bi + ∑

j
wijσj

)
.

(2.5)
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To compute the local energy for the RBM and Transverse-field Ising model, it is necessary to
apply the Hamiltonian of Eq.1.2 and the formula for ψ(σ) of Eq.2.5.

Elocal =
H |ψ (σ)〉

ψ (σ)
= −h

∑
k

σx
k |ψ (σ)〉

ψ (σ)

= −h

∑
k

exp

(
−akσk + ∑

j/∈k
ajσj

)
∏
i

2 cosh

(
bi − wikσk + ∑

j/∈k
wijσj

)

exp

(
∑
j

ajσi

)
∏
i

2 cosh

(
bi + ∑

j
wijσi

) − J ∑
{i,j}

σz
i σz

j ψ (σ)

ψ (σ)

= −h

∑
k
(−2akσk)∏

i
2 cosh

(
bi − wikσk + ∑

j/∈k
wijσj

)

∏
i

2 cosh

(
bi + ∑

j
wijσj

) − J ∑
{i,j}

σσ′ψ (σ)

ψ (σ)

= −h

N
∑
k

e−2akσk ∏
i

cosh

(
bi + ∑

j 6=k
wijσj − wikσk

)

cosh

(
bi + ∑

j
wijσj

) − J ∑
{i,j}

σσ′.

(2.6)

It is essential to mention that σz
i σz

j becomes σσ′ due to the fact that the spin configuration is
flipped for the nearest neighbors.
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2.3 Cost function and gradient methods

This section covers the topic of the cost function in subsection 2.3.1. Also, it tackles the
calculation of gradients for the optimization step while considering complex differentiability
in subsections 2.3.2 and 2.3.3.

2.3.1 Cost function

As mentioned in the previous section, it is possible to find the gradients of ψ with respect to θ

and use the chain rule to derive an ODE for θ [7]. Therefore, the cost function for our system
can be written similar to the paradigm of neural network training, as in [7], in contrast with
SR [10]. Furthermore, the network parameters are optimized to minimize an error between
ψ[θn+1] and ψ[θn], similar to the paradigm of minimizing an error between the ground truth
labels and the predicted labels in simple neural networks. The error is defined by∥∥∥ψ [θn+1]−Φ∆t (ψ [θn])

∥∥∥ , (2.7)

where Φ∆t is the discrete flow of a numerical ODE method applied to the time-dependent
Schrödinger Eq.1.1 [7].

For the ODE y′(t) = f (t, y(t)), with time-step ∆t, the implicit midpoint rule is:

yn+1 = yn + ∆t f
(

tn +
∆t
2

,
1
2
(yn + yn+1)

)
, (2.8)

which leads, in the specific case of Eq. 1.1, to:

ψ [θn+1] ≈ ψ [θn]− i ∆t H
(

ψ [θn+1] + ψ [θn]

2

)
. (2.9)

It’s important to mention that the implicit midpoint method has important advantages for
our system: it preserves the form of Hamiltonian dynamics and it doesn’t contain any
intermediate terms that would complicate the network optimization [7].
Therefore, the cost function for a single implicit midpoint rule time step becomes:

C (θn+1) =
N

∑
j=1

∣∣∣∣((I +
i∆t
2

H
)

ψ [θn+1]−
(

I − i∆t
2

H
)

ψ [θn]

)(
σ(j)
)∣∣∣∣2 , (2.10)

which can be represented in the least squares form shown in Eq.2.1, a more compact form.
As the goal is to minimize the cost function with respect to the network parameters of
gradient descend, this cost function should be evaluated at every time step when updating
the parameters. Also, partial derivatives of C(θ) with respect to θ should be calculated for
every gradient descend, and parameters update step. Because C(θ) is not a holomorphic
function and network parameter θ (therefore a, b, w) is complex-valued, direct derivation is
not possible. Therefore, other mathematical techniques have to be employed for the derivation
of the cost function. This topic will be discussed in the next subsection.
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2.3.2 Complex differentiability

As mentioned previously, the cost function set to minimize is real-valued. Therefore, some
information about real-valued complex functions and differentiability will be added, as it
plays a crucial role in the optimization process.

In complex theory, a complex number z ε C is a number that can be represented in the form
z = x + i ∗ y, where x and y are real numbers and i is a symbol called ’the imaginary unit’,
which satisfies the equation i2 = −1.
A complex function f has the form: f : C→ C, f (z) = u(z) + i ∗ v(z), where u, v : R→ R.
The complex function f is called complex-differentiable at x, if and only if the following limit
exists [13]:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

. (2.11)

A function that is complex differentiable everywhere is called entire [13]. A complex-valued
function of one or more complex variables that is entire and complex differentiable is called
holomorphic.

To give some context, the cost function C, discussed in the previous subsection, is a function
of a single complex number z and its complex conjugate z∗, which can be written as C(z,z∗)
[14]. Due to the fact that C is a mapping from a complex number to a real number, it is
in general a non-holomorphic function, namely ∂C

∂z∗ 6= 0 [14]. Therefore, the Wirtinger or
Dolbeault operators are employed to compute gradients of the cost function with respect to
complex-valued parameters, which are defined as:

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂x

)
,

∂

∂z∗
=

1
2

(
∂

∂x
+ i

∂

∂x

)
, (2.12)

with z = x + i ∗ y. For real-valued functions, like the cost function 2.1, the partial derivatives
with respect to x and y can be obtained from the Wirtinger derivative [7] via:

∂ f
∂x

= 2Re
(

∂ f
∂z

)
,

∂ f
∂y

= −2Im
(

∂ f
∂z

)
. (2.13)

The Wirtinger operators act on real-differentiable function f : U → C (where U ε C is a
subset of C), for which being holomorphic is not necessary. Therefore, we can apply the
Wirtinger operators to our non-holomorphic cost function. In case the function is indeed
holomorphic, the Cauchy-Riemann equations imply that the Wirtinger derivative ∂

∂z is equal
to the complex derivative of the function and the conjugated Wirtinger derivative vanishes
[7]:

∂ f (z)
∂z

= f ′(z),
∂ f (z)
∂z∗

= 0, f holomorphic. (2.14)

11
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To apply the chain rule, the basic principle of backpropagation, to non-holomorphic functions,
the property of the Wirtinger operators that many non-holymorphic functions are differen-
tiable in their real and imaginary parts is exploited. Therefore, having the Wirtinger operator,
the chain rule is straightforward to compute and verify:

∂

∂z
(g ◦ f ) =

(
∂g
∂w
◦ f
)
�

∂ f
∂z

+

(
∂g

∂w∗
◦ f
)
�

∂ f ∗
∂z

. (2.15)

Combined with the chain rule, the gradients of the cost function in Eq. 2.10 [7] are:

∂C (θ)

∂θl
=

∂C
∂(Aψ)

∂(Aψ)

∂ψ

∂ψ

∂θl

=

〈
Aψ [θ]− b|A ∂ψ [θ]

∂θl

〉
.

(2.16)

2.3.3 Optimization technique

Based on the previous section, where the importance and usage of Wirtinger operators
is highlighted, and taking into consideration the fact that the cost function 2.1 is non-
holomorphic, the gradient calculation should employ the Wirtinger derivatives.

However, although using the Wirtinger operators is valid for our project, a simpler and
equivalent approach is possible: split a complex number into a tuple of two real numbers and
rewrite the functions in terms of the tuple accordingly [14]. Therefore, for a = areal + i ∗ aimag,
b = breal + i ∗ bimag, w = wreal + i ∗wimag the optimization is done with respect to variables areal ,
aimag, breal , bimag, wreal , wimag. The cost function and the adjancent calculation are re-written
with respect to the six variables mentioned earlier. For example, variable a (the bias of the
visible layer) becomes a = t f .complex(areal , aimag). Variables b and w have a similar shape:
b = t f .complex(breal , bimag), w = t f .complex(wreal , wimag).

Because the cost function 2.1 is written with respect the six variables areal , aimag, breal , bimag,
wreal , wimag, the gradients are also calculated with respect to each of the variables and updated
in the same manner. This is possible due to automatic differentiation, which was employed to
make the computation easier.

Advantages and disadvantages

This section highlights the advantages and disadvantages of using the optimization method
presented earlier: splitting a complex number into a tuple of two real numbers and rewriting
the functions in terms of the tuple [14].

Firstly, the method was employed for the purpose of this thesis. Splitting a complex number
into real and imaginary parts takes advantage of automatic differentiation (of Tensorflow
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[15]), making the computation easier. Therefore, because of the system size, using a built-
in differentiation in Tensorflow [15] proves to be faster than a hand-written function that
calculates the Wirtinger derivative.

However, in [14], the authors compare the two approaches. They consider we consider a
simple example in which they take a complex function of two complex numbers, z = az + i ∗ bz

and w = aw + i ∗ bw, with az, bz, aw, bw real numbers:

g(z, w) = zw. (2.17)

For y = u + i ∗ v, another complex number, the adjoint function of g is defined as:

g(u, v) = ((uaw + vbw, vaw − ubw), (uaz + vbz, vaz − ubz)), (2.18)

which is fairly cumbersome to computer ever for this case. However, as this example already
shows, this approach results in deeper nested functions in the backward process, which
would usually consume more memory and reduce the efficiency of the computation [14].
Therefore, according to [14], this method is not efficient computationally for deep neural
networks. In the case of this thesis, the two methods are not compared computationally, but
due to the fact that RBM has only two layers (hidden and visible layers), the computational
issue mentioned in [14] should not arise.

Implementation details

This section covers the implementation details in Tensorflow [15], focusing on the gradient
calculation and variable updates.

Firstly, it was essential to define an optimizer suitable for the task and that gives good results
in general. Therefore, the Adam optimizer (built in the Keras package) was chosen. Adam
optimization is a Stochastic Gradient Descent (SGD) method that is based on the estimation
of first-order and second-order momentum.

opt = tf.keras.optimizers.Adam(learning_rate=learning_rate)

Figure 2.4: Initialize Adam optimizer with chosen learning rate.

Secondly, defining the variable list is important for the automatic differentiation. In our case,
there are the six variable mentioned earlier: areal , aimag, breal , bimag, wreal , wimag.
Tensorflow [15] provides the tf.GradientTape API for automatic differentiation, which is
computing the gradient with respect to the chosen input, in our case, the variable list. The
operations are recorded inside the "tape", where the cost function is placed. Once the
operations are recorded, GradientTape.gradient(target, sources) calculates the gradient of

13



2 Method

var_list = [self.a_real, self.a_imag, self.b_real, self.b_imag,

self.w_real, self.w_imag]

Figure 2.5: Variable list defined.

the target with respect to the chosen variables. The Adam optimizer then uses the new
gradients to update the variables.

with tf.GradientTape() as tape:
cost_fn = self.cost()

grads_list = tape.gradient(cost_fn, var_list)
opt.apply_gradients(zip(grads_list, var_list))

Figure 2.6: Gradient calculation and variable update.
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3 Results and performance comparison

3.1 Results

For the simulations, three systems with variable sizes were considered, for which L is number
of visible states, M is the number of hidden states and n the number of sampled spin
configurations. The systems are:

1. L = 5, M = 25, n = 1000
2. L = 7, M = 35, n = 2000
3. L = 12, M = 60, n = 2000

The coupling constant J has been set to 1, while the ground state was represented for
hinitial = 1.5 and then changed h to 0.75 for the real time evolution [7]. As mentioned
previously, the optimizer is Adam, which has been initialized with learning rate such as 1e-3
and 1e-4. The number of optimization steps varies from 500 per time step to 5.000 per time
step.

The code was run in two Anaconda environments, one CPU-based and one GPU-based. For
the CPU-based environment, there are the following packages: Tensorflow 2.3.0, Numpy
1.19.2, Python 3.8.5 etc. For the GPU-based environment, there are the following packages:
Tensorflow 2.0.0, CUDA 10.0.130, cudnn 7.6.5, Python 3.7.0.

3.1.1 Training loss

This section presents the training loss decrease for different learning rates and optimization
steps. All the results shown in Fig.3.1, Fig.3.2, Fig.3.3 and Fig.3.4 are for the system with
L=12.
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3 Results and performance comparison

Figure 3.1: Plot of training loss for 1e-4 learning rate and 1.000 optimization steps.

Figure 3.2: Plot of training loss for 1e-4 learning rate and 5.000 optimization steps.
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3 Results and performance comparison

Figure 3.3: Plot of training loss for 1e-3 learning rate and 1.000 optimization steps.

Figure 3.4: Plot of training loss for 1e-3 learning rate and 5.000 optimization steps.

Table 3.1 shows a comparison between the training hyperparameters (learning rate and
optimization steps) for the system with L = 12 and their impact. The last column of the table

17



3 Results and performance comparison

Table 3.1: Final loss values for different learning rates and optimization steps, for the system
L=12.

Learning rate Optimization steps Final loss value

1e-4 500 ≈ 7.2863625

1e-4 1.000 ≈ 5.6571192

1e-4 2.000 ≈ 2.90747203

1e-4 3.000 ≈ 1.09232501

1e-4 5.000 ≈ 0.4844158

1e-3 500 ≈ 0.7859934

1e-3 1.000 ≈ 0.2871249

1e-3 2.000 ≈ 0.145365

1e-3 3.000 ≈ 0.1010354

1e-3 5.000 ≈ 0.0715654

displays the final loss value, showcasing how fast the loss can decrease.

3.1.2 Time evolution error

As a measure of accuracy, the time evolution error is calculated as in [7]. This is shown in the
subsequent plots. As in [7], there are three different wave functions: the exact one (ψ(t)); the
one obtained by the exact midpoint time-evolution, (ψ∆(t)); and the one represented by the
network, (ψN(t)). Therefore, the error of the network with respect is to the exact state is:

ε(t) = ψ(t)− ψN(t). (3.1)

This error is the sum of the error due to the the midpoint method and the error due to the
network optimization:

ε(t) = ε∆(t) + εN(t). (3.2)

The plots compare network error with the midpoint error, which both increase time-dependent.
For the method to have good results, the error should be as close to zero to zero as possible,
therefore it is important to have many optimization steps.
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3 Results and performance comparison

Figure 3.5: Time evolution error for 5 visible states, learning rate of 1e-3 and 1.000 optimization
steps per time step.

Figure 3.6: Time evolution error for 5 visible states, learning rate of 1e-3 and 5.000 optimization
steps per time step.
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3 Results and performance comparison

Figure 3.7: Time evolution error for 7 visible states, learning rate of 1e-3 and 1.000 optimization
steps per time step.

Figure 3.8: Time evolution error for 12 visible states, learning rate of 1e-4 and 5.000 optimiza-
tion steps per time step.

20



3 Results and performance comparison

Figure 3.9: Time evolution error for 12 visible states, learning rate of 1e-3 and 1.000 optimiza-
tion steps per time step.

By analyzing the final loss values and the time evolution errors for the experimented scenarios,
the conclusion is that, for good results, there is a need for a low learning rate and a large
number of optimization steps (5.000 or more) per time step. Therefore, this emphasis the
importance of fast computation, required in the case of a slow-converging loss and thousands
of optimization steps.

3.2 GPU performance

This section covers the computation improvements of using a GPU to run the large compu-
tations on, compared to a CPU. For these experiments, a personal computer with GeForce
MX130, 2GB RAM GPU was used. As mentioned previously, a GPU-based environment was
used, with the following packages: Tensorflow 2.0.0, CUDA 10.0.130, cudnn 7.6.5, Python
3.7.0.

The table 3.2 shows a comparison between the GPU and CPU performances for the three
systems (L=5, L=7, L=12) and different optimization steps. The improvements for the GPU-
based system are significant, especially in larger sizes. Therefore, this has shown that using a
GPU is a viable option, even necessary for achieving results in extensive systems.
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3 Results and performance comparison

Table 3.2: Performance summary and comparison between GPU and CPU performances per
time step.

L - visible states M - hidden states Optimization steps Sample size CPU GPU

5 25 500 100 16.246 s 9.3745 s

5 25 1000 1000 32.562 s 18.849 s

5 25 5000 1000 162.46 s 93.745 s

7 35 500 2000 30.6178 s 19.6185 s

7 35 1000 2000 61.2556 s 39.242 s

7 35 5000 2000 306.178 s 196.185 s

12 60 500 2000 1,634.2653 s 817.689 s

12 60 1000 2000 3,268.5507 s 1,636.380 s

12 60 5000 2000 1,6342.6535 s 8,181.929 s
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4 Conclusion

Throughout this thesis, it was demonstrated that methods for neural network optimization
constitutes an accurate approach to describe the real time evolution of quantum wave
functions. The neural network architecture used for the wave-function ansatz was the RBM,
which has been shown to preserve the physicality of our system. The neural network quantum
states approximated the implicit midpoint rule method for solving the time-dependent
Schrödinger equation, while optimizing the network with respect to a custom cost function .

As a concrete example, this thesis studied the applicability of the transverse-field Ising model
on a one-dimensional lattice of different sizes L=5, L=7, and L=12. The motivation of the
thesis was to find a strategy to reduce the exponential complexity of the many-body wave
function. Therefore, the use of the GPU was employed in delivering viable results. Simulation
results have shown that using a GPU is a viable option, even necessary for achieving results
in extensive systems.

Although the method has been proven accurate, the project can be extended towards a GPU
parallelization technique for reducing the computation time even further. Also, the neural
network architecture and the energy function can be generalized by employing the use of
CNNs or Deep Boltzmann machine (DBM)s. Nevertheless, the method employed in the thesis
has promising results for its simulations, comparable to the state-of-the-art.
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5 Future work

This thesis has investigated how the neural networks can be used to describe the real time
evolution of quantum wave functions, focusing on the RBM architecture. However, the
approach can be extended.

Input Convolution

Feature Extraction Classification

Pooling
Fully 

Connected
Output

Figure 5.1: Schematic diagram of a basic convolutional neural network (CNN) architecture.

To begin with, the neural network architecture can be generalized to a CNN, as researched in
[7] and [8]. As mentioned in [8], CNNs include the RBMs as a special case of a fully connected
single layer CNN with a fixed activation function. The hidden layer size, which specifies the
size of an RBM, corresponds to the number of channels in a a CNN architecture, and the
filter size equals the linear extend of the system [8]. In contrast with the simple architecture
of RBMs, CNNs are deep neural networks with sparse connectivity and feature extraction
layers. In Fig. 5.1, a schematic diagram of a basic CNN is shown, where convolution (feature
extraction) layers and pooling (feature selection) layers are highlighted. Considering the time
evolution governed by the two-dimensional Ising model on a LxL lattice, the deep nature of
CNNs could be exploited for large systems. According to [7], the ansatz for the wave function
is ψ(σ) = exp(CNN(σ)), where CNN(σ)is the output of a CNN.

Moreover, due to the power limitations of RBMs, there are extensions of their architecture,
which preserve physical system properties and applicability in quantum many-body systems.
For example, DBMs [16] have at least two hidden layers and no intra-layer connection,
in contrast with RBMs. In [16], reinforcement learning has been used to train DBMs to
approximate ground states.

24



5 Future work

Furthermore, in this thesis, only one GPU has been employed. The computation time in
table 3.2 could be improved by integrating more resources. Future work aims at GPU
parallelization [17], in order to mitigate the computation time for large lattices. In [8], the
authors use a parallel implementation of the time evolution algorithm.
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