
©IFIP, 2021. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in 33rd International Teletraffic Congress (ITC33), Avignon, France, 2021.

What You Need to Know About Optical Circuit
Reconfigurations in Datacenter Networks

Johannes Zerwas, Wolfgang Kellerer, Andreas Blenk
Chair of Communication Networks, Technical University of Munich, Munich, Germany

{johannes.zerwas,wolfgang.kellerer,andreas.blenk}@tum.de

Abstract—Increasing demand for flexibility in datacenter net-
works has led researchers to propose various designs of adaptable
topologies using optical circuit switching. However, reconfigura-
tions interrupt data transmissions that can diminish the benefit
of adapting physical networks. The state-of-the-art lacks detailed
models of end-to-end reconfiguration characteristics of involved
networking components like end-host NICs and switches. The
measurements of five commercially available programmable NICs
and switches demonstrate that end-to-end reconfiguration delays
indeed exhibit variability across devices and settings. The results
suggest, however, that their behavior can be modeled, which
opens new opportunities for scheduling algorithms.

Index Terms—Programmable Networks, Optical Circuit
Switching, Reconfiguration, Benchmarking, Model

I. INTRODUCTION

The past decade brought up many proposals for flexible
datacenter networks (DCN). One driver of flexibility are
programmable switches and NICs in end-hosts, e.g., using
OpenFlow [1] or P4 [2]. Yet another driver to cope with the
increased demand for flexibility are adaptive topologies that
use optical circuit switching [3]–[13]. Reconfigurable optical
devices complement the programmability on control and data
plane by a third dimension: the topology. An example is shown
in Fig. 1(a) where a static topology uses multi-hop paths to
provide connectivity between any rack pair. In contrast, the
adaptive topology temporarily sets direct connections between
the racks shifting whole link capacities at runtime (Fig. 1(b)).

Unfortunately, reconfiguring topologies comes at a cost: the
time it needs to reconfigure the optical hardware. Meanwhile,
data rates in DCNs are increasing to hundreds of gigabits.
Hence, even interruptions of hundreds of milli-seconds can
diminish the benefit of adapting networks. Indeed, optical
hardware exists that can cycle through given configurations
with reconfiguration times in the order of micro-seconds
(e.g., Mordia [9], RotorNet [6]) or even nano-seconds (e.g.,
Sirius [10]). However, this kind of hardware is specialized and
not widely available. Due to its cycling speeds, such hardware
is also limited in its programmability. The schedules are fixed
or can only be changed on a coarse time-scale [6], [10].

As an alternative to specialized hardware, milli-second
switching times can also be realized with commodity-off-
the-shelf (COTS) hardware. Optical circuit switches (OCS)
provide reconfigurations in order of milli-seconds and are
reconfigurable on-demand, such that a scheduling or matching
algorithm can determine the next configuration based on the
network state. Several prototypes based on COTS OCS were

...

(a) Programmable DCN with static
topology.

OCS

...

(b) Programmable DCN with adap-
tive topology.

Fig. 1. Programmable DCNs. (a) only control and data plane of packet
switches are programmable. (b) control and data plane and topology are
programmable.

built and their advantages are demonstrated, e.g., [3], [4],
[12], [14]. In order to facilitate the demanded planning and to
operate such reconfigurable DCNs (RDCNs) efficiently, solid
understanding of the reconfiguration behavior, its stability,
predictability and influence factors is necessary. Moreover,
having access to a performance model of reconfiguration times
can open possibilities to consider specific reconfiguration costs
and, thereby, reduce negative impacts.

The state of the art provides only singular measurements of
reconfiguration times for COTS devices [3]–[9]. Still, it has not
been thoroughly explored if and how existing programmable
networking equipment can cope with such reconfiguration. In
particular, a benchmark across different devices and varying
reconfiguration scenarios has not been done yet. This is
critical as previous evaluations of programmable networking
devices showed that they behave differently, e.g., with respect
to OpenFlow updates [15]. Moreover, many theory-oriented
works make varying assumptions about reconfiguration times
and often base them on previous measurements or the data
sheets of the OCSs [16]–[18]. Yet, these figures do not always
consider end-to-end reconfiguration delay of optical links,
i.e., the time until packets are received via the new circuit,
and the delay on the control plane. In addition, they neglect
potential variability, i.e., rely on the assumption that end-to-
end reconfigurations are deterministic.

This paper evaluates the reconfiguration behavior of pro-
grammable optical networks, i.e., networks consisting of
programmable switches, programmable end-devices and pro-
grammable optical hardware. To this end, a meta-analysis of
existing work on topological reconfigurations in DCNs draws
the landscape of such measurements. Based on the structure
of a reconfiguration command, the paper elaborates potential



factors of variability for the reconfiguration delay such as
number and frequency of reconfigurations. It contributes three
measurement procedures that are tailored for two classes of
devices: programmable switches and programmable NICs.
They leverage the potential of programmable COTS equip-
ment, i.e., no specialized measurement equipment is needed.
The evaluation provides insights into the behavior of five
programmable COTS networking devices under optical circuit
reconfiguration and verifies the hypotheses about the influence
factors. Thereby, it extracts the significant components of
end-to-end reconfiguration delay. Indeed, the measurements
demonstrate that end-to-end reconfiguration delays vary across
data plane devices. While the effect on the data plane interrup-
tions is limited, several factors, such as the number of circuits,
affect the control plane delays. However, they can be used to
predict reconfiguration times.

II. RELATED WORK

Related work spans two domains. First, we review existing
measurements of end-to-end reconfiguration delays and also
compare these to delays used in more theory-oriented works.
Second, a selection of performance modeling in the area of
programmable networks is listed.

A. Existing Measurements with Optically-switched RDCNs

While there is no dedicated measurement study for cir-
cuit switching in RDCNs, different prototypes exist and are
evaluated with respect to their reconfiguration delay. These
measurement results can be classified into two groups: RD-
CNs that use (pre-)calculated schedules and RDCNs with
programmable, on-demand reconfigurations. Table I overviews
the measurements and the involved network devices.

1) RDCNs with pre-calculated schedules: Mordia [9] pro-
poses a custom-built OCS that supports arbitrary reconfigu-
rations. By opting for 2D-MEMS and WSSs instead of 3D-
MEMS, Mordia achieves reconfiguration times of 11.5µs
on average. The prototype represents ToRs by hosts, which
are equipped with Myricom 10G-PCIE-8B dual port NICs
and DWDM transceivers. An FPGA-based controller com-
municates the active circuits and synchronizes the hosts via
an out-of-band channel. The reconfiguration times are not
further decomposed. ReacToR [7] extends the Mordia OCS
prototype and emulates ToRs with FPGAs (HTG-V6HXT-
100GIG-565). The reconfiguration times are in line with those
from Mordia. A deeper analysis of potential influence factors
on reconfiguration time is not given.

RotorNet [6] is another custom circuit switch implemen-
tation. Also here, host-based measurements of end-to-end
reconfiguration times are performed using Myricom 10G
NICs. They show delays of 150µs. Out-of-band notifications
synchronize the hosts and the circuit switch. RotorNet follows
a demand-oblivious reconfiguration approach, i.e., reconfigu-
rations are pre-determined and cannot be varied at runtime.
Sirius [10] uses an optical fabric with passive components.
Circuits are set up using arrayed-waveguide gratings and
transceivers with tunable lasers that use certain wavelengths

according to a pre-determined schedule. Connections are re-
alized via FPGAs (Xilinx UltraScale VCU108). Tuning the
lasers can operate at nano-seconds speed so that end-to-end
reconfiguration times of 3.84 ns are achieved.

The aforementioned prototypes provide all end-to-end re-
configurations < 1ms. However, they address a different use-
case in which circuit scheduling is not performed on-demand
but uses pre-defined schedules. Those schedules are either
fixed or changed on a coarse time-level.

2) RDCNs with on-demand reconfigurations: The majority
of programmable RDCNs with on-demand reconfigurations
uses full crossbar, 3D-MEMS-based OCS or Wavelength
Division Multiplexing-based (WDM) switching. The Helios
prototype [3] uses a commercially available Glimmerglass
OCS with 64 ports and connects Fulcrum Monaco switches
with 10G ports. The authors report on several configuration
changes and firmware modifications necessary on the switch
such as deactivating debouncing and electronic dispersion
compensation (EDC), which were conducted with support
from the manufacturer. They drill down the reconfiguration
time into two components: The reconfiguration time on the
data plane is 27ms; the control plane adds another 170ms in
case of synchronous requests to the OCS and 30ms in case
of asynchronous requests. However, the measurements do not
investigate how reconfiguration parameters or the networking
devices affect end-to-end reconfiguration delay.

OSA [4] and WaveCube [12] use the same testbed. It con-
sists of a Polatis Series 1000 32-port OCS and CoADna Wave-
length Selective Switches (WSS). The measurements of the
optical receive power report reconfiguration times of 14ms for
the WSSs and 9ms for the OCS. The authors do not provide
further insights into the end-to-end reconfiguration times nor
details about the used NICs that connect to the optical fabric.
Flat-tree [8] uses a commercially available 192-port OCS. Xia
et al. estimate the end-to-end reconfiguration time based on
observed TCP throughput to be between 2−2.5 s. This includes
also forwarding rule updates on the ToR switch. The authors
do not report how individual components contribute to the
end-to-end delay. Similarly coarse observations are provided in
xWeaver [14]. Here, the observed time for the TCP throughput
to restore after reconfiguration is around 300ms. Again, details
of the used equipment are not provided.

In constrast to this, MegaSwitch [11] provides a detailed
overview of the used devices. The prototype bases on Broad-
com Pronto-3922 switches, running in Open vSwitch mode,
with InnoLight 10GBASE-ER DWDM SFP+ transceivers. The
custom-built optical fabric uses WSSs and is controlled by
a Raspberry Pi. The authors split the total reconfiguration
time into three components: the optical reconfiguration delay
(3ms), the added overhead due to flow updates on the packet
switches (13ms), and the control plane delay (7ms). While
this provides an initial model for the total reconfiguration time,
it does not cover potential influence factors of the individual
components.

ProjecToR [5] relies on free-space optics for switching and
uses TI DLP Discovery 4100 kits with 0.7 XGA chipsets



TABLE I
OVERVIEW OF EXISTING RECONFIGURATION MEASUREMENTS: NAME, IF CIRCUIT SWITCHING IS PROGRAMMABLE, IF (TOR) SWITCHES ARE USED FOR

AGGREGATION, THE ENDPOINTS OF THE LINKS, IF ONLY COMMERCIALLY AVAILABLE EQUIPMENT IS USED, MEASURED DATA PLANE RECONFIGURATION
DELAY, AND IF RECONFIGURATION DELAYS ARE DRILLED DOWN.

Name Programmable Connects via switch Data plane device (Switch/FPGA/NIC) Uses COTS OCS Delays Drills down
Mordia 7 7 Myricom 10G-PCIE-8B (N) 7 11.5µs 7
ReacToR 7 (3) HTG-V6HXT-100GIG-565 (F) 7 11.5µs 7
RotorNet 7 7 Myricom 10G NICs (N) 7 150µs 7
Sirius 7 7 Xilinx UltraScale VCU108 (F) 7 3.84ns 3
Helios 3 3 Fulcrum Monaco 24-port 10G (S) 3 27ms 3
OSA/WaveCube 3 7 some 1G NICs (N) 3 9ms 7
Flat-tree 3 3 Not specified 3 2 − 2.5s 7
xWeaver 3 3 Not specified 3 300ms 7
MegaSwitch 3 3 Broadcom Pronto-3922 (S) 7 3ms 3
ProjecToR 3 7 TI DLP Discovery 4100 (F) 7 12µs 7

This paper n/a 3/7 multiple 3 7.5ms − 1.5s 3

as forwarding equipment. The reconfiguration measurements
focus on loss of light duration due to mirror adjustments
and are in the order of 12µs. Measurements of end-to-end
reconfiguration delays are not provided. Due to the distributed
nature of ProjecToR, it differs from our use-case.

In conclusion, existing measurements for RDCNs with on-
demand reconfigurations that rely on commercially available
equipment consistently achieve reconfiguration times in the
order of milli-seconds. The modeling and evaluation of impact
factors is on a basic level and only individual points are pro-
vided. A comprehensive investigation and model are missing.

B. Reconfiguration Delays Used in Theory Papers

Prior algorithmic or theoretically-focused studies are ori-
ented at measurement results such as listed above. Depending
on which particular approach is targeted, the used reconfigura-
tion delays vary. Works that aim at pre-calculating schedules
consider the micro-second scale values. For instance, Sol-
stice [16] uses 20µs; Sunflow [18] considers delays between
10µs and 100ms. Similarly, Vargaftik et al. [17] use 20µs and
20ms depending on the evaluated switch. C-Share represents
an approach which calculates circuits on demand. The used
delay is 20ms. In summary, these works are based on measure-
ment results of other works and do also not consider potential
variability of the reconfiguration delay in their evaluations.

C. Performance Models for Programmable Network Devices

Predictability and evaluation of performance models as a
general concept has already been explored for other aspects
of programmable networks. Harkous et al. [19] analyze the
influence of P4 constructs on packet processing latency. Scholz
et al. [20] model packet rates, latencies and resource consump-
tion of two classes of P4 targets in dependence of matching
types and table sizes of P4 programs. Katsikas et al. [21]
provide such evaluations for programmable NICs and further
evaluate impacts of reconfiguring such devices. Performance
modeling has also been conducted for programmable control
planes. For instance, van Bemten et al. [15] assess the pre-
dictability with respect to correctness and latency of reconfig-
urations of commercially available OpenFlow switches. Other
works provide specific benchmarking and modeling tools for
such software defined networks [22], [23].

RX1

Switch

Controller

OCS

Host

Host

Host

Host

RX2

Switch

TX

Host

Fig. 2. Example of a programmable optical link. Three programmable
networking devices (1 host, 2 switches) are connected via an on-demand
reconfigurable OCS. An external controller handles all the components.

III. MEASURING END-TO-END RECONFIGURATION DELAY
OF PROGRAMMABLE OPTICAL LINKS

The review of programmable, on-demand RDCN prototypes
shows consistent values for the reconfiguration delays. But
the end-to-end reconfiguration delay of programmable optical
links has not been modeled in detail yet.

Fig. 2 shows a programmable optical link. The link is
terminated by control- and/or data-plane programmable inter-
faces, e.g., an end-host-based (Smart-)NIC or FPGA (left),
or an OpenFlow or P4-capable switch (right). The NICs
are equipped with duplex optical transceivers to send and
receive data via separate circuits. The optical link traverses
an on-demand configurable (programmable) OCS. An external
controller handles the components.

A reconfiguration takes several steps. First, the controller
sends the new configuration to the OCS. After processing
the command, the OCS sets the new circuit in place. The
transmitter and receiver of the new circuit need to synchronize
their clocks so that the receiver can correctly recover the
signal [10]. Link connectivity is then communicated to higher
layers and ultimately to the (forwarding) application. Eventu-
ally, the controller updates forwarding rules or configuration
of the programmable devices. The exact process depends on
the specific firmware and operating system of the device.

A. Modeling

This paper focuses on the optical switching part. Recon-
figuration delays due to forwarding rule updates are out of
scope here. Similarly to previous proposals [3], [11], the model
contains two components for the end-to-end reconfiguration
delay: data plane downtime to and control plane delay tc.



TX RX1

RX2

Initial Simplex Duplex

OCS

TX RX1

RX2
OCS

TX RX1

RX2
OCS

Simplex All Con

TX RX1

RX2
OCS

Fig. 3. Circuits and reconfigurations on the OCS. Ports TX, RX1 and RX2
connect to programmable networking devices. Each port consists of two fibers
(in/out). The figure left (Initial) shows the initial circuits. The other three parts
show the reconfiguration cases: Simplex, Duplex and Simplex All Con.

Since processing on the control plane happens before the data
plane is interrupted, the sum of both provides the total delay:

tr = to + tc. (1)

In programmable RDCNs, the reconfigurations can vary in
several dimensions with potential impacts on the reconfigura-
tion time. Influence factors can be all attributes of a reconfig-
uration command that can be modified by the controller. We
consider as candidates the number of modified ports n and the
distances between the ports d, which are reconfigured.

Moreover, the data plane downtime might depend on the
used devices x (categorical). The review of related work has
shown that two classes are being used: host-based and switch-
based interfaces (cf. Fig. 2 left and right). Many proposed
designs conceptually rely on a (programmable) top-of-rack
switch as an aggregation point towards the circuit-switched
fabric, e.g., [3], [11], [14]. Interestingly, directly connecting
an OCS to the hosts can provide benefits in certain situations,
e.g., for distributed machine learning [24].

Since the deployed transceivers are bidirectional, i.e., use
two circuits, there are three ways of reconfiguration: Simplex
(SI), Duplex (DU) and Simplex All Con. (SAC) (Fig. 3). The
ports TX, RX1 and RX2 connect to optical transceivers, e.g., as
shown in Fig. 2. SI changes only the circuit, which carries the
traffic to RX2. This represents the case of setting unidirectional
links, a widely adopted assumption in theoretic work [16].
Moreover, it is the least demanding reconfiguration as it
requires only one change. Thereby, TX always receives optical
power on its receiver. As a consequence, link establishment or
failure routines as defined by IEEE 802.3 are not triggered on
TX. However, some NICs might run these routines at RX1
leading to unintended behavior. For instance, shutting off the
transmitter of RX1 results in loss of signal at TX which in
turn stops transmitting [3]. To avoid such disconnects, DU
configures both circuits to RX2. This is also a natural choice
if traffic is transmitted bidirectionally. Finally, SAC constructs
a ring over all involved transceivers with the same intention
as DU, i.e., to avoid triggering link failure routines. However,
it creates unidirectional circuits and thereby, provides more
flexibility [3]. The reconfiguration type c is the fourth impact
factor. Thus, we hypothesize as relation for the data plane
downtime:

to = D(n, d, x, c). (2)

The control plane delay might also depend on the modified
ports n. Moreover, COTS OCSs usually come with a number

Start Traffic from

TX to RX1

Send

command 

Last packet

on RX1 

First packet

on RX2 

Data plane

downtime 
Control plane

latency 

t

Fig. 4. Idealized timeline of the measurement. Characteristic duration of
reconfiguration (red braces). RX1 and RX2 are the ports between the circuit
is changed.

of control plane protocols p (categorical), e.g., TL1 [25] or
Netconf [26]. We obtain for the control plane delay:

tc = C(n, p). (3)

The following measurements evaluate the hypothesized rela-
tionships above.

B. Measuring data plane downtime and control plane delay

1) Data plane measurements: To assess the hypothesized
relations for the data plane interruption, the measurement
applies the process as shown in Fig. 4. A traffic source sends
a continuous stream of packets over an existing link from
TX to RX1. The controller sends a command to reconfigure
the circuit to another receiving port (RX2) at time tcmd. The
downtime of the data plane is given as

to = tRX2 − tRX1 (4)

where tRX1 is the time of the last packet received by RX1 and
tRX2 is the time of the first packet received by RX2.

2) Control plane measurement: The measurement of tc
uses a similar approach as the data plane one. We exclude
any timings needed calculating the new configuration, e.g., for
collecting demand statistics or executing matching algorithms.
Accordingly, we define tc as shown in Fig. 1, from sending
the command message tCMD to the OCS until reception of the
last packet on RX1:

tc = tRX1 − tCMD. (5)

C. Testbed

The testbed is built around a Polatis Series 6000n OCS [27]
with 32 in- and 32 out-ports. The OCS runs firmware version
6.7.5.34. The devices are use FS.com 10GBASE-LR SFP+
1310nm (SMF) transceivers [28]. The measurements compare
two classes of data plane devices: programmable NICs de-
ployed in hosts and programmable switches. For the host-
based cases, we consider three NICs with different expected
levels of programmability (from low to high): a regular NIC
(Intel X710-DA4 [29]) with DPDK [30] support, a SmartNIC
(Agilio CX 2x10G [31]) with support for P4 and DPDK and
an FPGA (NetFPGA-SUME [32]) with prepared support for
P4 and the full programmability of FPGAs.

The switch-based measurements are conducted using two
OpenFlow-based switches: Pica P3297 [33] and Dell S4048-
ON [34]. The switches run in default configuration and only
make simple forwarding decisions. The exact settings of the



Fig. 5. Setups for host-based measurements: Setups consist of a traffic generator, which includes also the OCS controller, and a measurement server. The
measurement server hosts the NICs under test. Arrow heads indicate direction of optical light and packets. Red arrows indicate the packet streams that are to
be measured.

measurement cases are detailed later (cf. Sec. IV-A1 for host-
based and Sec. IV-A2 for switch-based).

Traffic and packet dumps are generated on two servers
running Ubuntu 18.04 (4.15.0-47-generic kernel) with 128 GB
of RAM and an Intel Xeon Silver 4114@2.2 GHz (20 cores).
The traffic generating server also runs the controller of the
OCS, which connects via a dedicated management network. It
uses iPerf 2.0.10 to generate a single UDP flow consisting of
1000B packets at a rate of 2Gbps (≈ 250Kpps). This trans-
lates to a packet inter arrival time of ≈ 4µs, which provides a
sufficient temporal resolution for the reconfigurations, which
are expected to be in the order of milli-seconds.1 Presented
results are based on 30 runs of at least 10 s duration.

IV. EVALUATING DATA PLANE DOWNTIME

We start with evaluating the data plane component. After
introducing the detailed configurations, results for the data
plane devices are compared and potential influence factors
from Sec. III-A are analyzed.

A. Detailed Setup

The settings to measure data plane reconfiguration behavior
in the host-based and switch-based cases vary slightly due
to the capabilities of the considered devices. The general
assumption is that the links are homogeneous, i.e., that both
endpoints use the same device model. Combining different
devices makes attribution of effects harder and is left for future
work. Overall, this leads to three setups:

1) Host-based: The two data plane programming abstrac-
tions DPDK and P4 provide both sufficient precision for
time measurements in the order of milli-seconds [35], [36].
However, neither DPDK nor P4 is supported by all of the
devices under test. Hence, we propose two approaches and
also evaluate the impact of using DPDK or P4 on the mea-
surements. The SmartNIC supports both of them, which helps
to put the obtained results into relation.

1Specifically, the data sheet of the OCS states a switching time of 25ms.

Switch (static fwd)

Set IP.ToS=1

Tap

 

T R

10G

T R

10G

T R

10G

T R

10G

T R

10G

Traffic Generator

T R

10G1G

iPerf  Controller

Measurement

dagsnap

OCS

Endace

DAG 10X4-s

TX RX1 RX2

Fig. 6. Setup for switch-based measurements: It consists of the switch
under test, a traffic generator, which includes also the OCS controller, and
a measurement server. Arrow heads indicate direction of optical light and
packets. Red arrows indicate the packet stream that is dumped by an Endace
DAG 10X4-S.

a) DPDK (Fig. 5(a)): The first approach uses a custom
DPDK [30] application to measure the data plane downtime.
The application consists of two threads. Each thread polls
bursts of packets from its assigned port, i.e., RX1 or RX2.
When packets from the traffic generator are received, the
current cycle count (from the CPU) is read and saved as
the last time a packet was received. Similarly, the timestamp
of the first received packet per port is also stored. The data
plane downtime is directly calculated from these two collected
timestamps. The DPDK application uses the available poll
mode driver of the NICs. It is available for the Intel NIC and
the SmartNIC. However, it relies on SW timestamping since
HW timestamping is not supported by the used Intel NICs.

b) P4 (Fig. 5(b) and Fig. 5(c)): The second approach
uses P4. Thus, it is limited to the NetFPGA and the SmartNIC.
The setups between these two differ due to the different num-
ber of ports of the cards. A simple application forwards packets
from the traffic generator (from virtual port with SmartNIC or
physical port with NetFPGA) via port TX towards the OCS.
Packets received on either RX1 or RX2 are forwarded to a
virtual port that is exposed to the operating system. The IP type
of service field (ToS) is set to 1 when the packet is received
on RX2. In addition, the application adds an In-band Network
Telemetry (INT) header containing the time of the packet



SI

SA
C

D
U SI

SA
C

D
U SI

SA
C

D
U SI

SA
C

D
U

101

102

103

D
ow

nt
im

e
[m

s]

SmartNIC
(DPDK)

SmartNIC
(P4) NetFPGA

(P4)

Intel
(DPDK)

(a) Host-based.

SI

SA
C

D
U SI

SA
C

D
U

0.0

0.5

1.0

1.5

2.0

D
ow

nt
im

e
[s

]

P3297 S4048-ON

(b) Switch-based.

Fig. 7. Data plane downtime. Comparison of the five devices, the reconfig-
uration cases (SI,DU,SAC) and measurement approaches (P4, DPDK). Only
SmartNIC shows low downtimes of ≈ 7.5ms and low variance. Both switches
show downtimes > 1s. SI did not succeed for the switches and the Intel NIC.

reception. Precision of the timestamp is 5 ns on the NetFPGA2

and 20 ns on the SmartNIC3. Finally, the packets are collected
using tcpdump. This setup provides two ways to obtain the
downtime: from the timestamps in the INT data and from the
timestamps in the packet dump. The downtime is given as the
difference of the timestamp of first packet with IP.ToS = 1
and the timestamp of last packet with IP.ToS = 0. If not
stated otherwise, the INT data is used.

2) Switch-based (Fig. 6): The setup for the switches fol-
lows a similar idea as that of the P4-based measurements
with NetFPGA. The traffic generator sends traffic to the
switch under test. The switch forwards the packets without
modification on another port (TX) to the OCS. The OCS loops
back to a third port (RX1) or fourth port (RX2). For packets
received on RX2, the switch sets IP.ToS = 1. Independent of
the port, packets are forwarded to the initial port. The outgoing
direction of this port connects to a fiber tap and eventually
to an Endace DAG 10X4-S to dump the packets. P3297 and
S4048-ON realize this forwarding using OpenFlow rules.

B. Results: Comparing devices and reconfiguration cases

1) Host-based: Fig. 7(a) illustrates the data plane downtime
for the host-based devices and the different measurement
approaches. It further compares the three reconfiguration cases
SI, SAC, DU, which results in 12 settings. Green triangles
indicate the average values. We first note that only Smart-
NIC provides consistent values of ≈ 7.5ms for all three
reconfiguration settings and also has low variance across the
measurement runs. If only one circuit is modified (SI), Intel
NIC loses connectivity, i.e., no packets are received on RX2.
Hence, the downtime cannot be calculated. SmartNIC and
NetFPGA have downtimes in the order of 10ms. However,
NetFPGA’s behavior is hardly predictable. It shows high
variability with values > 100ms.

In the DU case, all candidates manage the reconfiguration.
SmartNIC achieves 7.6ms on average while NetFPGA is
around 11.8ms on average. For SmartNIC, the difference
between INT-based and DPDK-based values is about 0.5ms
on average. Thus, both measurement approaches are viable

2The value was retrieved from https://github.com/NetFPGA/P4-NetFPGA-
public/wiki/Workflow-Overview#p4-netfpga-extern-library

3This value was received via correspondence with Netronome.

4 8 12 16 20 24 28 32
Num. modified circuits

7.4

7.5

7.6

7.7

7.8

D
ow

nt
im

e
[m

s]

Fig. 8. Data plane downtime against num. of modified circuits. Downtime is
measured with SmartNIC (P4), SI case. No significant impact is observable.

here. For Intel, the average downtime is around 292ms. This
is significantly larger than the expected 25ms of the OCS. An
explanation might be given by the specific firmware or driver,
e.g., with slow implementations of link set up routines.4

2) Switch-based: Fig. 7(b) shows boxplots of the data plane
downtimes for the switch-based measurements. We note that
the SI case does not succeed for any switch. The switches turn
off RX1 and subsequently also TX so that no further packets
are transmitted after the reconfiguration has finished. For SAC
and DU, both switches show a data plane downtime > 1s on
average and median. While for P3297 both timings are around
≈ 1.1 s, S4048-ON has larger downtimes for DU compared to
SAC. The behavior is consistent over the runs but the reasons
could not be clarified.

The conclusions for to of the switches are negative. Data
plane downtimes above 1s translate to extreme losses of
network capacity over time hindering the use of COTS packet
switches on the edge of a circuit-switched or hybrid fabric.
These observations confirm the ones from [3] and [11]. As
suggested by [3] and also confirmed in discussions with
two industry partners, this behavior is not related to the
switching ASIC but roots in the firmware of PHY and MAC
layer components, e.g., stems from tuning of physical link
parameters during link setup.

C. Results: Analyzing Influence Factors

After evaluation of reconfiguration behavior of the five
networking devices, we turn our focus on how the number
of modified circuits and port distance impact the data plane
downtime. Since SmartNIC performed best, we use it for the
following analysis.

1) Number of modified circuits: Fig. 8 shows boxplots of
the downtime against the number of modified circuits. The
number of circuits ranges up to 32, which marks the maximum
number of circuits that can be set simultaneously with a 32x32
OCS. The values of dataplane downtime range from 7.5ms to
8ms. Moreover, the median value decreases slightly with the
number of modified circuits. Fitting the following linear model

D(n) = δ + γ · n (6)

4For verification, we run the measurements with two firmware versions and
contacted Intel to obtain explanations about this behavior, however without
any success.



OCS RX1TX

RX2

(a) Initial.

OCS RX1TX

RX2

(b) After reconfiguration.

Fig. 9. Setup for shoelace measurement. Black lines indicate fibers. Colored
arrows are circuits. The optical link uses all ports of the OCS. The figure
shows a sub-set of ports due to space limitations.

3 5 6 7 8 9 11
Num. chained circuits

11
12
13
14
15
16

D
ow

nt
im

e
[m

s]

Fig. 10. Dataplane downtime
against number of chained circuits
in the shoelace setup. Downtime is
measured with SmartNIC (P4), SI
case. Downtime increases with num-
ber of chained circuits.

1 3 5 7 9 11 13 15
Port distance

6.4

6.9

7.4

7.9

8.4

D
ow

nt
im

e
[m

s]

Fig. 11. Data plane downtime
against the port distance. Downtime
is measured with SmartNIC (P4), SI
case. Port distance is viewed from
outside perspective. No clear pattern
is visible.

shows a slope of γ = −8.39 · 10−7 and an intercept of δ =
0.0076s with p = 0.0032, which is significant for α = 0.05.
However, this slope is below the temporal resolution which
is ≈ 4µs according to the packet sending rate. Thus, this
decrease has to be considered as measurement noise.

A natural question that arises when changing multiple
circuits is whether these reconfigurations happen at the same
time. The current setup can only measure downtime of a
single optical link. Therefore, a setup similar as the shoe-lace
proposed in [15] is used. Fig. 9 illustrates the circuits. The
other components are the same as for the SmartNIC setup in
Fig. 5(c). TX is connected to the traffic generator and RX1 and
RX2 are connected to the respective ports of the SmartNIC
on the measurement host. The idea is to redirect the signal
through multiple ports with fiber loopbacks, and to request to
reconfigure these ports simultaneously. Thereby, the downtime
would increase if the reconfigurations happen sequentially in
the OCS. Specifically, this kind of measurement provides the
time between the first port being disconnected and the last port
being connected.

Fig. 10 shows boxplots for the data plane downtime against
the number of chained circuits, i.e., the length of the shoelace.
For all settings, the variance in the downtimes is low, which
states a deterministic behavior given the number of changed
circuits. Moreover, an increase of the downtime with the
number of chained circuits is evident. Specifically, chaining
only three circuits the average value is 11.1ms while the
value is 15.3ms for chaining 15 circuits. Considering also
the number of modified circuits does not significantly impact
the downtime for a single optical circuit, this means that the
changes are applied sequentially.

2) Port Distance: A second parameter that can impact the
downtime is the (physical) distance between the ports RX1
and RX2 at the OCS. Intuitively, one would assume a linear

OCS
TXRX1

1 3 5 15...RX2:

Fig. 12. Port numbers as used for the port distance measurement.

relationship between distance d and the data plane downtime:

D(d) = δ + γ · d. (7)

Fig. 12 indicates RX2 with increasing distances to RX1
(1, 3, 5...). The distances are given as the number of ports
between RX1 and RX2 on the horizontal axis from an outside
view of the OCS. The results (Fig. 11) show no clear pattern.
The major part of the values lies between 7 and 8ms. Fitting
the model gives a slope of γ = 6.81 · 10−6 with p = 0.273
which is not significant. Thus, we cannot conclude if the port
distance affects the data plane downtime.

Takeaway: Data plane devices react differently to OCS
reconfigurations. While the NICs achieve small downtimes,
the tested switches with default configurations are less suited
for such scenarios. The considered influence factors do not
show any significant impacts on the data plane downtime. The
data plane component is considered as constant. However, we
note that multiple reconfigurations happen sequentially.

V. EVALUATING CONTROL PLANE DELAY

While the downtime of the dataplane affects the actual
resource usage, it is also important to consider the behavior of
the OCS’s control plane. Slow reaction here leads to delayed
setting of the new circuits or requires issuing the command
ahead of time so that changes are in place at the right time.

A. Detailed Setup

The delay on the control plane is measured using the same
setup as for the P4-based measurements with the SmartNIC.
In addition to the data plane, also the control plane traffic
is captured using a 1G network tap and tcpdump (Fig. 13).
The control plane delay as described in Sec. III-B can directly
be calculated from the timestamps in the dump file. Com-
paring measurements of the SmartNIC showed only a small
difference (< 1%) between tcpdump and the P4 program. The
evaluated protocols are TL1 [25], a widely used management
protocol for the optical domain and the more generic network
management protocols Netconf [26] and Restconf [37].

B. Results: Single Reconfiguration

1) Control Plane Protocols: Fig. 14 shows empirical CDFs
of the obtained delays for the three control plane protocols. It
also compares the results for running the OCS for > 180 days
and for running it only a few days (< 5 days). In both cases,
TL1 reacts significantly faster than Netconf and Restconf.
After the restart (< 5 days), TL1 takes 85ms on average to
apply the changes while Netconf and Restconf take 245ms
and 257ms. These values are in the same range as observed
in prior studies [3]. Netconf and Restconf obtain almost the
same timings. The reason for this is that both use the YANG



Measurement

SmartNIC(P4)

Set IP.ToS=1

RX1 RX2

 
1 33 3 35 11 43

T R

10G

T R

10G

tcpdump

Traffic Generator

SmartNIC(P4)

TX

T R

10G

iPerf

1G

CPlane

 Controller

Tap

1G

OCS

Fig. 13. Measurement setup for control plane case. The setup is the same as
for the SmartNIC case. The control plane traffic is tapped and also dumped.

10−1 100

C-plane delay [s]

0.00

0.25

0.50

0.75

1.00

C
D

F

TL1
< 5 days

Netconf
>180 days

Restconf

Fig. 14. CDF of control plane delay for three control plane protocols. TL1
performs significantly better than Netconf and Restconf.

data model of the OCS and apart from the connections, ssh for
Netconf and https for Restconf, are handled by the same code
in the OCS’s firmware. All control plane interfaces show low
standard deviations of 16.6ms for TL1, 57.7ms for Netconf
and 37.6ms for Restconf.

Comparing the two temporal cases, there is a strong soft-
ware aging behavior of the OCS: over 180 days of operation,
the control plane delay increases by one order of magnitude.
While this is mainly a quality management issue, operators
need to account or monitor such aspects when deploying
demand-aware RDCNs [38].

2) Number of Modified Circuits: As for the data plane
considerations, the number of modified circuits might also
impact the control plane delay. Fig. 15 shows boxplots of the
control plane delay against the number of modified circuits,
i.e., the control plane message size. For TL1, the mean values
indicate a steady increase in the delay from around 84ms for
only one circuit being changed to around 102ms when 32
circuits are changed. The behavior seems to be linear, so we
assume the following relationship:

C(n) = δ + γ · n. (8)

Performing linear regression results in values γ = 0.000561
and δ = 0.086393 with a confidence of p = 0.00341 which
is significant for α = 0.05. For Netconf, a similar behavior is
observable. The obtained parameters from the linear regression
are γ = 0.01779 and δ = 0.279702 with p < 10−10.
This relationship seems to be intuitive. However, knowing
how the control plane behaves opens new possibilities for
scheduling reconfigurations and for using available resources
more efficiently. We also note some severe outliers in the
data. These indicate unpredictable behavior, which might

1 9 13 17 25 32
Num. modified circuits

0.07

0.09

0.11

0.13

0.15

0.17

C
-p

la
ne

de
la

y
[s

]

(a) TL1.

1 9 13 17 25 32
Num. modified circuits

0

1

2

3

C
-p

la
ne

de
la

y
[s

]

(b) Netconf.

Fig. 15. Control plane delay against number of modified circuits. For TL1
and Netconf a linear relationship is observable.

0.2 0.3 0.5 0.8 1.0 1.5 2.0 3.0
Reconfiguration period [s]

0

1

2

3

4

5

C
-p

la
ne

de
la

y
[s

]

0.0

0.2

0.4

0.6

0.8

1.0

N
um

.r
ec

on
fig

ur
at

io
n

ev
en

ts

Fig. 16. Control plane delay against reconfiguration period. For each period,
20 consecutive reconfigurations of one circuit are executed. TL1 is used.

hinder application of today’s commercially available OCS for
frequent reconfigurations, which is evaluated in the following.

C. Results: Multiple reconfigurations

The obtained models for the control plane delay provide a
lower bound on the reconfiguration period that is possible with
the evaluated OCS. However, up to here, the reconfigurations
have been performed in a “one-shot” style. Thus, the question
arises whether the OCS behaves consistently with periodic
reconfigurations, i.e., under constant load.

To assess this, the OCS is stressed with 20 consecutive re-
configurations via the TL1 interface with inter reconfiguration
periods between 0.2 s and 3.0 s. Fig. 16 illustrates control plane
delays and the fraction of successful reconfigurations. First,
we note that for low reconfiguration periods about 30% of the
reconfiguration requests are not successfully executed (blue
line). This number steadily decreases along with the variance
over the runs with higher periods. For large reconfiguration
periods, the control plane delay is in the expected range around
100ms. With decreasing reconfiguration period, the delay and
also the number of outliers, i.e., values that exceed 1.5 times
the inter-quartile range, increases. Thus, stable operation with
low reconfiguration periods is hardly possible with the current
firmware of the OCS.

Takeaway: The control plane component of for reconfigu-
ration times is less deterministic than the data plane one. We
observe significant influence of the command parameterization
on the control plane delay. Furthermore, the measurements
have larger variances and also show a significant number of
outliers. Putting modest stress to the control plane results in
loss of reconfigurations. The behavior is explainable with the
reliance on software for processing.



VI. CONCLUSION

Optical circuit switching in DCNs has received more and
more attention in the past years. While topology adaptation
enhances the network’s flexibility, reconfigurations lead to
interruptions that can diminish the advantages of such adaptive
topologies. This paper studies the end-to-end reconfiguration
delays of programmable optical links using a commodity OCS.
It presents a measurement methodology and investigates the
behavior of five programmable networking devices.

The measurements reveal indeed varying performance
across the devices. Furthermore, we observed that the spe-
cific reconfiguration request impacts the delay on the con-
trol plane. Interestingly, many theory-oriented works neglect
this variability, i.e., rely on the assumption that end-to-end
reconfigurations of optics is deterministic. The measurement
results report that reconfiguration times are predictable, but
not constant – a fact that should be considered in future work.

ACKNOWLEDGMENT

This work has received funding by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy as part
of the project 5G Testbed Bayern mit Schwerpunktanwendung
eHealth. This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) - 438892507.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM SIG-
COMM CCR, vol. 44, no. 3, pp. 87–95, 2014.

[3] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid
electrical/optical switch architecture for modular data centers,” in Proc.
ACM SIGCOMM 2010, pp. 339–350.

[4] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen, “Osa: An optical switching architecture for data
center networks with unprecedented flexibility,” IEEE/ACM Trans. on
Networking, vol. 22, no. 2, pp. 498–511, 2013.

[5] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,
G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper,
“Projector: Agile reconfigurable data center interconnect,” in Proc. ACM
SIGCOMM ’16, pp. 216–229.

[6] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proc. ACM SIGCOMM ’17, pp. 267–280.

[7] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker,
G. Papen, A. C. Snoeren, and G. Porter, “Circuit switching under the
radar with reactor,” in Proc. 11th USENIX NSDI ’14, pp. 1–15.

[8] Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang, and T. S. E. Ng,
“A Tale of Two Topologies: Exploring Convertible Data Center Network
Architectures with Flat-tree,” in Proc. ACM SIGCOMM ’17, pp. 295–
308.

[9] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond
circuit switching into the data center,” ACM SIGCOMM CCR, vol. 43,
no. 4, pp. 447–458, 2013.

[10] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,
F. Karinou, S. Lange, K. Shi, B. Thomsen, and H. Williams, “Sirius: A
Flat Datacenter Network with Nanosecond Optical Switching,” in Proc.
ACM SIGCOMM ’20, pp. 782–797.

[11] L. Chen, K. Chen, Z. Zhu, M. Yu, G. Porter, C. Qiao, and
S. Zhong, “Enabling Wide-spread Communications on Optical Fabric
with MegaSwitch,” in 14th USENIX NSDI ’17), pp. 577–593.

[12] K. Chen, X. Wen, X. Ma, Y. Chen, Y. Xia, C. Hu, and Q. Dong,
“WaveCube: A scalable, fault-tolerant, high-performance optical data
center architecture,” in IEEE INFOCOM, 2015, pp. 1903–1911.

[13] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E.
Ng, M. Kozuch, and M. Ryan, “C-Through: Part-time Optics in Data
Centers,” in ACM SIGCOMM ’10, pp. 1–12.

[14] M. Wang, Y. Cui, S. Xiao, X. Wang, D. Yang, K. Chen, and J. Zhu,
“Neural Network Meets DCN: Traffic-driven Topology Adaptation with
Deep Learning,” in Proc. ACM SIGMETRICS ’18, pp. 1–25.

[15] A. van Bemten, N. Deric, A. Varasteh, A. Blenk, S. Schmid, and
W. Kellerer, “Empirical Predictability Study of SDN Switches,” in Proc.
ACM/IEEE ANCS ’19, pp. 1–13.

[16] H. Liu, M. Kaminsky, G. Porter, A. C. Snoeren, M. K. Mukerjee, C. Li,
N. Feltman, G. Papen, S. Savage, S. Seshan, G. M. Voelker, and D. G.
Andersen, “Scheduling techniques for hybrid circuit/packet networks,”
in Proc. ACM CoNEXT ’15, pp. 1–13.

[17] S. Vargaftik, K. Barabash, Y. Ben-Itzhak, O. Biran, I. Keslassy,
D. Lorenz, and A. Orda, “Composite-Path Switching,” in Proc. ACM
CoNEXT ’16, pp. 329–343.

[18] X. S. Huang, X. S. Sun, and T. E. Ng, “Sunflow: Efficient Optical Circuit
Scheduling for Coflows,” in Proc. ACM CoNEXT ’16, pp. 297–311.

[19] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer, “Towards
Understanding the Performance of P4 Programmable Hardware,” in
Proc. ACM/IEEE ANCS ’19, pp. 1–6.

[20] D. Scholz, H. Stubbe, S. Gallenmuller, and G. Carle, “Key Properties
of Programmable Data Plane Targets,” in Proc. ITC 32, 2020, pp. 1–9.

[21] G. P. Katsikas, “What You Need to Know About (Smart) Network
Interface Cards,” in Proc. 22nd PAM, 2021, pp. 319–337.

[22] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An Open Framework for OpenFlow Switch Evaluation,” in
Proc. PAM, 2012, pp. 85–95.

[23] A. Blenk, A. Basta, L. Henkel, J. Zerwas, W. Kellerer, and S. Schmid,
“Perfbench: A Tool for Predictability Analysis in Multi-Tenant Software-
Defined Networks,” in Proc ACM SIGCOMM ’18 Posters and Demos,
pp. 66–68.

[24] M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick, K. Bergman,
A. Vahdat, B. Klenk, and E. Ebrahimi, “A Network Architecture for Fast
Training of Distributed Machine Learning with Silicon Photonics,” pp.
1–21, 2019.

[25] Telcordia. GR-831. [Online]. Avail-
able: https://telecom-info.njdepot.ericsson.net/site-
cgi/ido/docs.cgi?ID=SEARCH&DOCUMENT=GR-831

[26] M. Björklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” RFC 6020, Oct. 2010. [Online].
Available: https://rfc-editor.org/rfc/rfc6020.txt

[27] Polatis Series 6000. [Online]. Available: https://www.polatis.com/
[28] FS.com 10GBASE-LR SFP+ 1310nm (SMF). [Online]. Available:

https://img-en.fs.com/file/datasheet/10g-base-lr-1310nm.pdf
[29] Intel X710-DA4. [Online]. Available:

https://www.intel.de/content/www/de/de/products/docs/network-
io/ethernet/network-adapters/ethernet-x710-brief.html

[30] Data Plane Development Kit. [Online]. Available: https://www.dpdk.org/
[31] Netronome - Agilio CX SmartNICs. [Online]. Available:

https://www.netronome.com/products/agilio-cx/
[32] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,

“Netfpga sume: Toward 100 gbps as research commodity,” IEEE micro,
vol. 34, no. 5, pp. 32–41, 2014.

[33] Pica P3297 Datasheet. [Online]. Available: https://www.pica8.com/wp-
content/uploads/pica8-datasheet-48x1gbe-p3297.pdf

[34] Dell S4048-ON Datasheet. [Online]. Avail-
able: https://i.dell.com/sites/doccontent/shared-content/data-
sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf

[35] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe, “P4STA:
High Performance Packet Timestamping with Programmable Packet
Processors,” in Proc. IEEE/IFIP NOMS ’20, pp. 1–9.

[36] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Proc. ACM
IMC ’15.

[37] A. Bierman, M. Björklund, and K. Watsen, “RESTCONF
Protocol,” RFC 8040, Jan. 2017. [Online]. Available: https://rfc-
editor.org/rfc/rfc8040.txt

[38] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proc. IEEE International Conference on Software Reliability
Engineering Workshops (ISSRE Wksp), 2008, pp. 1–6.


