
Sampling-Based Trajectory Repairing for Autonomous Vehicles

Yuanfei Lin, Sebastian Maierhofer, and Matthias Althoff

Abstract— Ensuring the safety of autonomous vehicles is a
challenging task, especially if the planned trajectories do not
consider all traffic rules or they are physically infeasible. Since
replanning the complete trajectory is often computationally
expensive, efficient methods are necessary for resolving such
situations. One solution is to deform or repair an initially-
planned trajectory, which we call trajectory repairing. Our
approach first detects the part of an invalid trajectory that
can stay unchanged. Afterward, we use a hierarchical struc-
ture and our novel sampling-based algorithm informed closed-
loop rapidly-exploring random trees (informed CL-RRTs) to
efficiently repair the remaining part of the trajectory. We
evaluate our approach with different traffic scenarios from the
CommonRoad benchmark suite. The computational efficiency
is demonstrated by comparing the computation times with those
required when replanning the complete trajectory.

I. INTRODUCTION

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Autonomous vehicles have to solve the challenging task of
finding feasible solutions in partially unknown, complex, and
dynamic environments under severe real-time constraints.
Recently, machine learning approaches have been widely
used in motion planning problems of autonomous vehicles
[1], [2], which aim to develop safe driving policies. However,
these approaches often lack safety guarantees, and the ob-
tained trajectories may disobey traffic rules. Additionally, it
is possible that no safe action is found in the remaining time
prior to a collision, which often occurs in highly dynamic
environments. As replanning the complete trajectory would
be computationally expensive, we present a novel approach
for repairing invalid trajectories (cf. Fig. 1).

A. Literature Overview

Below, we concisely review related works on trajectory
planning, criticality assessment, and trajectory repairing.

a) Trajectory planning: Overviews of trajectory plan-
ning algorithms for autonomous vehicles are presented in [3],
[4]. Graph-search-based planners discretize the configuration
space by a graph to find an optimal path using search
algorithms, such as Dijkstra [5] or A* [6]. The authors of
[7] present the concept of a state lattice, which is a discrete
graph on a continuous state space respecting differential
constraints. Edges in the graph can be precalculated, which
are often called motion primitives [8]–[10]. However, for
high-dimensional motion models, the number of possible
state combinations is often exploding, which leads to high
computational costs [11].

All authors are with the Department of Informatics, Technical University
of Munich, 85748 Garching, Germany.
yuanfei.lin@tum.de,

sebastian.maierhofer@tum.de, althoff@tum.de

ego vehicle cut-off state repaired trajectory

other vehicle most likely trajectory

initial trajectory

Fig. 1: Sketch of trajectory repairing: The initially-planned trajectory of the
ego vehicle collides with the predicted obstacle trajectory. In our approach,
the part of the ego vehicle’s trajectory starting from the cut-off state can be
repaired to avoid the collision.

Sampling-based algorithms randomly create samples and
connect pairs of samples if a feasible solution exists between
them. In particular, rapidly-exploring random trees (RRTs)
have been shown to be effective for solving trajectory plan-
ning problems in complex configuration spaces [12]–[14].
To be more suitable for autonomous vehicles, an RRT is
combined with closed-loop controllers in [15], [16], which
is called closed-loop RRT (CL-RRT). However, the sampling
strategy may still lead to high computational costs when
searching the entire solution space. Improved sampling tech-
niques exploiting heuristics are presented in [17]–[19], which
are primarily designed for the shortest path computation
without considering complex vehicle models.

Most interpolating curve-based planners, e.g., Bézier
curves [20] and spline curves [21], are suitable for path
smoothing in combination with a planner. However, dynam-
ically feasible control commands are not directly obtained,
and extra hyperparameters are introduced to adjust the posi-
tion of control points. As an alternative, polynomial curves
can effortlessly consider the position, angle, and curvature
constraints of vehicles [22].

b) Criticality assessment: We use criticality assessment
metrics to find the time when the repaired trajectory section
begins. We call the corresponding state the cut-off state, see
Fig. 1.

The following criticality metrics have been used in the
literature: Time-to-collision (TTC) is the time that remains
until a collision between two vehicles if their collision
course and speed difference are maintained. A more precise
measure is time-to-react (TTR), which returns the maximum
remaining time for the last possible evasive maneuver since it
does not require the assumptions made for TTC. The authors

of [23] approximate the TTR as the maximum of time-
to-brake (TTB), time-to-steer (TTS), and time-to-kickdown
(TTK), which are the maximum remaining times to execute
evasive braking, steering, and accelerating, respectively. To
determine the TTR, [24] lists an underapproximating method
with high accuracy and flexibility, whilst an overapproximat-
ing approach by iteratively calculating the reachable set of
the ego vehicle is proposed in [25].

c) Trajectory repairing: Compared to motion planning
approaches, there exist much few studies on trajectory re-
pairing. For instance, Pham and Nakamura introduce a fast
trajectory correction algorithm in [26], which deforms the
initially-planned trajectory by the so-called affine transfor-
mations. Similarly, a repairing algorithm for RRTs called
Dynamic RRTs is introduced in [27], which only removes
the invalid parts of the tree and maintains the rest. However,
these approaches either barely include the constraints of the
surrounding environments or do not consider the nonholo-
nomic properties of vehicles, so that they cannot be directly
applied to autonomous vehicles.

Another possible way to repair trajectories is to modify
the invalid sections of the planned trajectory with timed
elastic bands [28]. The initial trajectory is modeled via a
chain of points connected by ideal springs. The repaired
trajectory is then derived from a multi-objective least-squares
optimization by adding extra constraints. Nonetheless, it is
impossible to guarantee that a physically feasible solution
can be obtained within a short time since deformations may
result in trajectories that are not drivable. The authors of [29]
mention a method for handling infeasible trajectories in the
optimizer, where only parts of the trajectories are replanned.
However, there exists no metric for determining the time
intervals of the remaining parts.

B. Contributions

This paper presents a computationally efficient sampling-
based trajectory repairing approach for arbitrary traffic sce-
narios. Unlike existing works, our approach simultaneously
realizes the following features:

1) automatic selection of the invalid trajectory section that
must be repaired on the basis of criticality measures;

2) efficient computation through separating the repairing
problem into a high-level and a low-level planning
problem; and

3) integration of quintic polynomials as a reference path
into the CL-RRT algorithm to improve trajectory
smoothness and computational efficiency.

The remainder of this paper is structured as follows: In
Sec. II, some preliminaries are introduced. We provide an
overview of our repairing approach in Sec. III. The detection
of the cut-off state, the procedure to generate the reference
path, and the modified CL-RRT algorithm are described in
Sec. IV and V. We evaluate our approach in Sec. VI and
conclude it in Sec. VII.

II. PRELIMINARIES

A. Problem Statement

We define the trajectory repairing problem for autonomous
vehicles based on [13], [30]. Let X ⊂ Rn be the state space
as the possible set of states x, Xobs ⊂ X be the set of
collision states, Xfree = X \ Xobs be the resulting set of
permissible states, and U ⊂ Rm be the set of admissible
control inputs u. The motion of the vehicle can be modeled
by a dynamical system

ẋ(t) = f(x(t), u(t)). (1)

We further introduce the initial state x0 and the set of
desired states Xg ⊂ Xfree in the goal region of the planning
problem. The solution of (1) for an input trajectory u(·)
within a time interval [t0, th] is then denoted by the state
trajectory x(·), satisfying the following constraints:

x(t0) = x0, x(th) ∈ Xg,
x([t0, th]) ∈ Xfree, u([t0, th]) ∈ U .

(2)

Note that x([t0, th]) ∈ Xfree is a short form of ∀t ∈ [t0, th] :
x(t) ∈ Xfree, which holds for the entire state trajectory if no
time interval is provided. Also, we are interested in repaired
trajectories that minimize the following cost function [11]:

min
u

∫ T

0

‖u(t)‖2dt+ ρT, s.t. (1), (2), (3)

where the parameter ρ ≥ 0 determines the relative impor-
tance of the planning horizon T := th − t0 versus the
smoothness of the trajectory.

B. Vehicle Model

A kinematic single-track model [31] is used since it
captures the relevant vehicle dynamics (cf. Fig. 2). The
five-dimensional state vector x = [sx, sy, δ, v,Ψ]T consists
of the two-dimensional position at the center of the rear
axle [sx, sy]T , the steering angle δ, the longitudinal ve-
locity v, and the orientation Ψ. The control input vector
u = [vδ, along]

T contains the steering velocity vδ and the
longitudinal acceleration along . Overall, the kinematics can
be written in state-space form as follows:

ẋ1 = x4 cos(x5), ẋ2 = x4 sin(x5),

ẋ3 = u1, ẋ4 = u2, ẋ5 =
x4

lwb
tan(x3),

(4)

where lwb is the wheelbase.

y

x

lwb

v

sy
sx

δ

Ψ

Lfwη

target line
Fig. 2: Kinematic single-track model with the pure-pursuit strategy for
tracking the current target line.

C. Definitions

For the remainder of this paper, we require the following
definitions:
Definition 1 (Homotopy Class):
Two paths are homotopic if one can be deformed into the
other without passing on or looping around obstacles [32].

Definition 2 (Frenét Frame):
A Frenét frame is a moving coordinate system, where the
kinematic properties of a particle are described along a
continuous and differentiable curve in three-dimensional
Euclidean space [33].

Definition 3 (Dubins Path):
Dubins path describes the shortest curve between two con-
figurations [sx, sy,Ψ]T of forward-only vehicles with a con-
strained turning radius [34]. For the detailed calculation of
Dubins paths’ length, we refer the readers to [35].

III. OVERALL ALGORITHM

Fig. 3 provides an overview of our trajectory repairing
algorithm. We first detect whether the initially-planned tra-
jectory disobeys traffic rules, which is performed by our
previously-published traffic rule monitor [36]. For collision
checking, the CommonRoad Drivability Checker [37] is
utilized. Afterward, the TTR is computed to determine the
cut-off state, and quintic polynomials are generated as a high-
level reference path starting from the cut-off state to reach the
goal region (cf. Sec. IV). Based on the optimal polynomial,
the informed CL-RRT algorithm repairs the section of the
initial trajectory starting from the cut-off state (cf. Sec. V).
We consider only scenarios with collisions in this work, but
our approach can be easily extended to other types of traffic
rule violations.

initial trajectory

disobeys traffic rules? control layerno

yes

compute TTR

cut-off state

generate reference path

reference path

execute informed CL-RRT

repaired trajectory

Fig. 3: Flowchart of the sampling-based trajectory repairing approach.

IV. REFERENCE PATH GENERATION

After obtaining predicted trajectories of other traffic par-
ticipants and planned motions of the ego vehicle, we utilize
the TTR to compute the cut-off time tcut and generate the
reference path via quintic polynomials to first explore the
state space and to guide the sampling process.

A. Cut-off State Detection

To retain sufficient space for possible driving maneuvers
starting from the cut-off state, we underapproximate the TTR
using the evasive maneuvers in Tab. I, which are visualized
in Fig. 4.

TABLE I: Description of evasive maneuvers.

Metric Description

TTB Full braking with maximum deceleration
TTK Full acceleration until reaching the maximum velocity
TTS Full steering to the left or right with maximum steering

angle until the relative orientation change is equal to ± π/4

planned trajectory

TTSleft

TTSright

π/4
TTK

TTB

Fig. 4: Illustration of different evasive maneuvers. The white points indicate
the start of the corresponding maneuvers.

An anytime-capable TTR algorithm modified from [24]
is presented in Alg. 1. Given the initial trajectories of all
traffic participants, the algorithm collects possible evasive
maneuvers of the ego vehicle (line 1). Afterward, the function
DETECTCOLLISION(·) calculates the TTC (line 2). The TTR
is equal to 0 if a collision has already happened (line 4). If
no collision is detected, we set the TTC and TTR to infinity
(line 6). In all other cases, the function SEARCHTTM(·) uses
the binary search algorithm described in [24] to detect the
maximum remaining time for executing a maneuver TTMm,
m ∈ M (line 9). After iterating through all maneuvers, the
TTR is determined (line 11).

Algorithm 1 Compute TTR.

Require: P0: Set of planned and predicted trajectories
1: M ← SETEVASIVEMANEUVERS(P0)
2: TTC ← DETECTCOLLISION(P0)
3: if TTC == 0 then
4: TTR ← 0
5: else if TTC == ∞ then
6: TTR ← ∞
7: else
8: for all m ∈ M do
9: TTMm ← SEARCHTTM(m, TTC, P0)

10: end for
11: TTR ← max{TTMm | m ∈ M}
12: end if
13: return TTR

B. Path Generation

Quintic polynomials minimize the jerk when connecting
two vehicle states [38], which can be generated in the Frenét
frame analogously as in [9]. The movement of vehicles is
decoupled into the longitudinal motion s(t) along a Frenét

curve and the lateral motion d(t) perpendicular to the Frenét
curve. The two coordinates and their derivatives form the
Frenét state vector f = [s, ṡ, s̈; d, ḋ, d̈]T .

We first use the Dijkstra search algorithm to create a route
without considering other obstacles, which determines the
shortest path through the road network from the cut-off state
to the goal region. This path is chosen as the longitudinal axis
of the Frenét frame. Next, we use a series of avoidance points
[39] to generate polynomials covering all possible homotopy
classes. The avoidance points [sa, da]T are shifted laterally
from the point [sv, dv]

T , where a traffic rule is violated for
the first time, e.g., the first collision point with an obstacle
(cf. Fig. 5a):

sa = sv, da ∈{dv + dmin +
i

nd
(dmax − dmin)

| 0 ≤ i ≤ nd, i ∈ N},
where dmin and dmax are the minimum and maximum
permissible lateral offsets, respectively, and nd is the number
of path candidates, which can be specified according to the
vehicle width w, e.g., nd = 2(dmax−dmin)/w. To connect
the cut-off state to the goal region by quintic polynomials,
there exist 12 unknown coefficients to be determined:

s(t) = α5t
5 + α4t

4 + α3t
3 + α2t

2 + α1t+ α0,

d(t) = β5t
5 + β4t

4 + β3t
3 + β2t

2 + β1t+ β0, t ∈ [0, T̃],

where T̃ := th − tcut is the remaining time horizon.
As boundary conditions, the cut-off Frenét state fcut and
the goal Frenét state fg are derived via the coordinate
transformation introduced in [9]. According to [38], some
coefficients are determined directly:

α0 = scut, α1 = ṡcut, α2 =
1

2
s̈cut,

β0 = dcut, β1 = ḋcut, β2 =
1

2
d̈cut,

and other coefficients are determined using matrices as T̃ 3 T̃ 4 T̃ 5

3T̃ 2 4T̃ 3 5T̃ 4

T 3
a T 4

a T 5
a

α3

α4

α5

 =

 sg−scut−ṡcutT̃− 1
2 s̈cutT̃

2

ṡg−ṡcut−s̈cutT̃
sa−scut−ṡcutTa− 1

2 s̈cutT
2
a

 ,
 T̃ 3 T̃ 4 T̃ 5

3T̃ 2 4T̃ 3 5T̃ 4

T 3
a T 4

a T 5
a

β3

β4

β5

 =

 dg−dcut−ḋcutT̃− 1
2 d̈cutT̃

2

ḋg−ḋcut−d̈cutT̃
da−dcut−ḋcutTa− 1

2 d̈cutT
2
a

 ,
where Ta = sa−scut

sg−scut
T̃ is the intermediate time value of the

avoidance points.

C. Reference Path

To provide smooth trajectories using the Frenét states, the
cost for each polynomial π is modified from [22, (3)] as

J(π) = ω1

∫ T̃

0

s̈(t)dt+ ω2

∫ T̃

0

d̈(t)dt+ ω3p(π), (5)

where p(π) represents the penalty function, which could be
chosen as the inverse of the distance to the colliding obstacle
or the degree of traffic rule violations, and ω1 to ω3 are
weights that need to be manually tuned.

x

y

d
s

(a) Generated path set in the Frenét frame.

(b) Transformed paths in the Cartesian frame.

s

d avoidance point

cut-off state

goal region

obstacle [sv, dv]
T

optimal reference path ΓrpFrenét curve

Fig. 5: Illustration of path generation and coordinate transformation.

After sorting the costs in ascending order, we transform the
corresponding paths from the Frenét frame into the Cartesian
frame (cf. Fig. 5b). Then, we traverse the list of paths in the
Cartesian frame and choose the first collision-free path as
the reference path Γrp.

V. REPAIRING USING INFORMED CL-RRT

After obtaining the reference path, we repair the section
of the invalid trajectory starting from the cut-off state. To
shrink the planning problem to subsets of the original domain
similarly as in [17], [18], an informed CL-RRT is presented
based on the reference path (cf. Fig. 6 and Alg. 2), which
extends the CL-RRT with respect to the sampling strategy,
the controller design, and the tree expansion method. Each
expanded node contains information about the current vehi-
cle state, the cost from the root to the node, and the reference
to its predecessor.

reference command created trajectory
vehicle state obstaclesreference path

(a) CL-RRT (b) Informed CL-RRT

goal region

n

s

sample

p∗

Fig. 6: Comparison between the CL-RRT and the informed CL-RRT.

A. Sampling Strategies

It is inefficient to generate samples within the entire state
space in a purely random manner [16]. To make better
use of the reference path, we adopt a sampling method
that generates samples following a Gaussian mixture model
distribution analogously to [40] (lines 1 and 2 in Alg. 2).
The equidistant points on the reference path are chosen as
centers of the Gaussians (cf. Fig. 7). As a result, the samples
are located in the vicinity of the reference path. Each sample
s is a quadruple (sx,s, sy,s,Ψs, vcmd), where Ψs denotes
the orientation of the sample and vcmd denotes the desired
velocity (line 6). To provide the capability of vehicles moving
from the current sample to the goal region, Ψs is chosen to
be equal to the heading of its closest point p∗ on the reference
path Γrp (cf. Fig. 6b):

Ψs = Ψp∗ with p∗ = arg min
p∈Γrp

‖[sx,s sy,s]T − p‖. (6)

Afterward, we use the same evaluation function for node
selection as the original CL-RRT algorithm, which attempts
to connect a sample to a node with the shortest Dubins path’s
length (line 7).

B. Trajectory Creation

After obtaining the target line, i.e., a straight line connect-
ing a node to a sample, the function CREATETRAJECTORY(·)
runs a forward simulation of the vehicle to create a state
trajectory starting from the state in the node to reach the

Algorithm 2 Informed CL-RRT.

Require: xcut: Cut-off state, Xg , Xfree
1: Γrp ← REFERENCEPATH(xcut, Xg , Xfree)
2: G ← GAUSSIANMIXTUREMODEL(Γrp)
3: Ctraj ←∞
4: T , sg ← INITIALIZETREE(xcut, Xg)
5: while not REACHTIMELIMIT() do
6: s ← SAMPLE(G, Xfree)
7: nmin ← FINDMINUMUMEVALUATEDNODE(s, T)
8: x̃(·) ← CREATETRAJECTORY(nmin, s)
9: if x̃(·) ∈ Xfree then

10: ñ ← CONVERTSTATESTONODES(x̃(·))
11: T ← ADDNODESTOTREE(T , ñ)
12: for all n ∈ ñ do
13: if WITHINGOALORIENTATION(n, sg) then
14: x̂(·) ← CREATETRAJECTORY(n, sg)
15: if x̂(·) ∈ Xfree and REACHGOAL(x̂(·))

and COST(x̂(·)) < Ctraj then
16: Ctraj ← COST(x̂(·))
17: xsel(·)← x̂(·)
18: end if
19: end if
20: end for
21: end if
22: end while
23: return xsel(·)

0.0

x10−2

14.3
28.6
42.8
57.1
71.4
85.7
100.0

Fig. 7: Contour of the Gaussian mixture sampling. The black crosses denote
the centers of the Gaussians. The right colorbar shows the contour lines of
the probability distribution.

vicinity of the sample (lines 8 and 14 in Alg. 2). During the
trajectory creation, a closed-loop controller is used to move
and stabilize the vehicle along the given target line. Since
we only need to simulate feasible trajectories, which are not
actually executed, robust trajectory tracking controllers [41]
are unnecessary. In our implementation, steering and velocity
controllers are used similarly as in [16].

1) Steering Controller: The pure-pursuit controller is
simple to implement and is flexible with respect to path
representations. It returns the desired steering angle

δd = tan−1

(
2lwb sin(η)

Lfw

)
, (7)

where Lfw is the forward drive look-ahead distance and η is
the heading of the look-ahead points on the target line from
the rear axle based on the vehicle orientation (cf. Fig. 2).
Different from the original CL-RRT, we use the steering
velocity instead of the steering angle as the lateral input
to avoid jerky motions. As a result, the steering controller
combines the pure-pursuit controller with a PI controller (cf.
Fig. 8). The PI controller can be written as

vδ = KP,δ(δd − δ) +KI,δ

∫ t

0

(δd − δ)dτ, (8)

where KP,δ and KI,δ are the proportional and integral gain,
respectively. The linear stability analysis of the steering
controller is similar to that of [15].

Pure-pursuit vδPI Vehicle
Model

δ

δd
Controller - Controller

x

Fig. 8: Structure of the steering controller.

2) Velocity Controller: For velocity tracking of the de-
sired value vcmd, we adopt the same PI controller as in [16].
Additionally, the acceleration variation needs to satisfy the
jerk limit to enhance comfort by including the constraint
da
dt ∈ [jmin, jmax], where jmin and jmax denote the mini-
mum and maximum allowable jerk values, respectively.

C. Tree Expansion

The initial cost of the repaired trajectory Ctraj is set to
infinity (line 3 in Alg. 2). After initializing the RRT with the
cut-off state and choosing the center of the goal region as
the goal sample sg (line 4), we sample until the user-defined

time limit is reached. When the collision-free trajectory x̃(·)
is generated using the closed-loop simulation, each state of
the trajectory is converted into a node and added to the tree
(lines 10 and 11). At the same time, if the orientation of
the connecting line between the node and the goal sample is
located in the desired goal orientation interval (line 13), i.e.,

Ψn,sg
= tan−1

(
sy,sg − sy,n
sx,sg

− sx,n

)
∈ [Ψg,min,Ψg,max],

a new target line connecting the node to the goal sample is
forwarded to the controller (line 14). We return the collision-
free trajectory with the lowest cost. (lines 15–18).

VI. EVALUATION

We evaluate our approach with traffic scenarios from
the CommonRoad benchmark suite1 [31]. Our approach is
implemented in Python and executed on a computer with an
Intel i7 1.90 GHz processor and 24 GB of DDR4 2400 MHz
memory. We use the polynomial sampling-based motion
planner introduced in [9] to compute an initial trajectory and
then repair it using our approach if needed. To predict the
movement of dynamic obstacles, the set-based prediction tool
SPOT [42] is used. The parameters of the ego vehicle are
listed in Tab. II. In addition, the maximum execution time
of all algorithms is limited to 1.0 s.

TABLE II: Parameters of the ego vehicle.

Parameter Symbol Value

Vehicle size l, w 4.508 m, 1.610 m
Wheelbase lwb 2.578 m
Velocity interval [vmin, vmax] [0.0, 50.8] m/s
Maximum acceleration amax 11.5 m/s2

Jerk interval [jmin, jmax] [−10, 10] m/s3

Steering angle interval [δmin, δmax] [−1.066, 1.066] rad
Steering velocity interval [vδ,min, vδ,max] [−0.4, 0.4] rad/s
Time step size ∆t 0.1 s

A. Static Obstacles on the Driving Lane

The first evaluated scenario is a rural two-lane road2. In
this scenario, two static obstacles block the ego vehicle’s
driving lane, creating a narrow passage close to the goal
region (parameters listed in Tab. III). The obstacles represent,
e.g., construction sites or parked vehicles. The initial planner
shrinks the size of the obstacles to first explore the state space
with low computational effort, which relaxes the planning
problem but generates a trajectory that collides with the
obstacle b2 at the 24th time step (cf. Fig. 9a). Figs. 9b–
9c show the results using our approach, which modifies the
initial trajectory. We mark the occupancy of the ego vehicle
with a collision in red and without in blue and the trajectory
starting from the cut-off state in green.

1commonroad.in.tum.de
2CommonRoad ID: ZAM Urban-3 3

60 70 80 90 100

0

5

x [m]

y
[m

]

ego
trajectoryvehicle goalobstacle b1

staticinitial

static obstacle b2
(a) Initial configuration.

60 70 80 90 100

0

5

x [m]

y
[m

]

cut-off
state trajectory

repaired
trajectories

created

(b) Repaired trajectory using informed CL-RRT.

a
[m
/s

2
]

-0.2

0.0

0.2

0

Ψ
[r
a
d

]
-0.5

0.0

0.5

3.02.01.50.5 1.0 2.5 3.5
t [s]

4.0

cut off

(c) The motion profiles (Ψ, a) of the repaired trajectory (cf. Fig. 9b).

60 70 80 90 100

0

5

x [m]

y
[m

]

cut-off
state primitives

motion

(d) Repaired trajectory using A*.

Fig. 9: Scenario with static obstacle in driveway.

TABLE III: Parameters of the rural two-lane scenario (cf. Fig. 9).

Parameter Description

Ego vehicle xego = [60m, 0.06m, 0 rad, 9m/s, 0.02 rad]T

Static obstacle [sx, sy ,Ψ]b1 = [85m, 4m, 0.02 rad]T

[sx, sy ,Ψ]b2 = [85m,−1m, 0.02 rad]T

[l, w]b1,b2 = [4m, 2.5m]T

Goal region [sx, sy , l, w]goal = [92.5m, 0m, 5m, 1.6m]T

[Ψg,min,Ψg,max] = [−0.2, 0.2] rad

Time horizon t0 = 0.0 s, th = 3.0–5.0 s

Criticality TTC = 2.4 s, tcut = TTR = 2.0 s

B. Comparison with A* Search Algorithm

We compare our approach with the A* search algorithm
described in [10]. Motion primitives are generated by a
so-called constraint graph, which consists of all possible
trajectories starting from the same initial state under the same
physical boundaries (cf. Tab. II). A vast amount of motion
primitives in the search graph results in high computational
costs although they can be generated offline. Determining the

commonroad.in.tum.de

20

40

30

10

20

0

50

0 10 30

driving
direction

b1

b2
b3

ego
vehicle

initial trajectory

most likely
trajectory

goal

(a) Initial configuration.

20

40

30

10

20

0

50

0 10 30

cut-off
state

repaired trajectory

trajectories
created

(b) Repaired trajectory.

Fig. 10: Urban T-intersection scenario.

TABLE IV: Parameters of the urban T-intersection scenario (cf. Fig. 10).

Parameter Description

Ego vehicle xego = [0m, 0m, 0 rad, 7m/s, 0.02 rad]T

Other vehicles [sx, sy ,Ψ, v]b1 = [5.9m, 40.8m,−1.3 rad, 14m/s]T

[sx, sy ,Ψ, v]b2 = [14.5m, 7.3m,−1.6 rad, 14m/s]T

[sx, sy ,Ψ, v]b3 = [22.2m, 1.9m, 2.9 rad, 12m/s]T

[l, w]b1,b2,b3 = [4.8m, 2m]T

Goal region [sx, sy , l, w]goal = [18.4m, 10.4m, 2.3m, 3.1m]T

[Ψg,min,Ψg,max] = [1.3, 1.7] rad

Time horizon t0 = 0.0 s, th = 3.0–5.0 s

Criticality TTC = 2.8 s, tcut = TTR = 1.5 s

resolution of the search graph may be challenging when bal-
ancing the tradeoff between time complexity and optimality
of the search process. Additionally, possible solutions may be
missed due to the inappropriate choice of motion primitives
from the constraint graph (cf. Fig. 9d). Compared to the A*
search algorithm, our approach does not need to consider the
discretization of the state space. Furthermore, we generate
feasible trajectories without selecting them from a large set
of candidates.

C. Urban T-Intersection

We also evaluate our approach on an urban T-intersection3

(cf. Fig. 10a), where the ego vehicle passes through the
intersection along with three other vehicles bi, i ∈ {1, 2, 3}
(parameters listed in Tab. IV). The most likely trajectories
of the vehicles are marked in black. However, due to the
time limit, the initially-used planner fails to provide a safe
trajectory to reach the goal and the intermediate planned
result enters the opposite lane. After detecting the cut-off
state, our repairing algorithm generates a collision-free and
physically feasible trajectory respecting the right-of-way rule
(cf. Fig. 10b).

3CommonRoad ID: DEU Ffb 2 1 T-1

D. Computation Costs

Tab. V compares the two scenarios in terms of their
computation costs using our approach, which consists of the
computation times for the cut-off state, the reference path,
and the first solution of the informed CL-RRT algorithm.
In addition, the computational costs of repairing a trajectory
from the initial state using the informed CL-RRT algorithm
and replanning the complete trajectory using the polynomial
sampling-based planner are listed, where the time horizon
of each sampled polynomial is chosen as 1.4 s. The results
show that our approach has a significant advantage in compu-
tational efficiency, particularly when generating the first safe
and physically feasible trajectory. Since the first evaluated
scenario has a shorter remaining time horizon after cutting
off, its computational costs are smaller.

VII. CONCLUSIONS

We have presented a sampling-based approach for au-
tonomous vehicles to repair invalid trajectories in arbitrary
traffic scenarios and demonstrated its benefits using real
traffic data. In contrast to existing planning and repair-
ing approaches, our approach reasonably uses the initially-
planned trajectories based on criticality measures. This leads
to significantly less computational effort than replanning the
complete trajectory from scratch, especially when traffic rule
violations are minimal close to the goal. With our approach,
the smoothness of the repaired trajectory is first ensured
by interpolating the reference path, which is resolution
optimal among all possible homotopy classes. In addition,
our approach generates comfortable, stable, and directly
executable motions using a closed-loop controller, which
enables autonomous vehicles to safely and efficiently handle
complex traffic situations.

ACKNOWLEDGMENTS

The authors gratefully acknowledge partial financial sup-
port by the BMW Group within the CAR@TUM project and
the German Research Foundation (DFG) grant AL 1185/3-2.

REFERENCES

[1] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. of
the IEEE Int. Conf. on Intelligent Transportation Systems, 2020, pp.
1–7.

[2] S. Aradi, “Survey of deep reinforcement learning for motion
planning of autonomous vehicles,” IEEE Transactions on Intelligent
Transportation Systems, 2020. [Online]. Available: https://doi.org/10.
1109/tits.2020.3024655

[3] D. Gonzalez Bautista, J. Pérez, V. Milanes, and F. Nashashibi, “A
review of motion planning techniques for automated vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp.
1135–1145, 2016.

[4] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[5] S. J. Anderson, S. B. Karumanchi, and K. Iagnemma, “Constraint-
based planning and control for safe, semi-autonomous operation of
vehicles,” in Proc. of the IEEE Intelligent Vehicles Symposium, 2012,
pp. 383–388.

[6] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
Int. Journal of Robotics Research, vol. 29, no. 5, pp. 485–501, 2010.

https://doi.org/10.1109/tits.2020.3024655
https://doi.org/10.1109/tits.2020.3024655

TABLE V: Average number of samples and computation times of 100 simulation runs for each scenario. Their mean and standard deviation (cf. numbers
in brackets) are listed. To repair from the initial state, we use the informed CL-RRT algorithm without integrating the cut-off state. Replanning denotes
that the complete trajectory is recomputed with the polynomial sampling-based planner.

Scenario Repairing from the cut-off state Repairing from Replanning
Cut-off state Reference path Informed CL-RRT Total the initial state

Rural static obstacle 9.8 (0.1) ms 8.0 (0.1) ms 3.6 (3.0) samples, 39.0 (31.6) ms 56.8 (36.8) ms 438.5 (425.5) ms 511.4 (5.5) ms
Urban T-intersection 14.5 (0.2) ms 7.6 (0.1) ms 4.2 (3.8) samples, 44.3 (34.9) ms 66.4 (35.2) ms timeout timeout

[7] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in Proc. of the Int. Symposium on Artificial
Intelligence, Robotics and Automation in Space, 2005, pp. 308–333.

[8] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[9] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frénet frame,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2010, pp. 987–993.

[10] J. Salvado, L. M. Custódio, and D. Hess, “Contingency planning for
automated vehicles,” in Proc. of the IEEE Int. Conf. on Intelligent
Robots and Systems, 2016, pp. 2853–2858.

[11] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems,
2017, pp. 2872–2879.

[12] S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic
planning,” Int. Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. Journal of Robotics Research, vol. 30, no. 7,
pp. 846–894, 2011.

[14] J. H. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of
time-optimal off-road vehicle maneuvers using the RRT*,” in Proc.
of the IEEE Conf. on Decision and Control and European Control
Conference, 2011, pp. 3276–3282.

[15] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How, “Mo-
tion planning in complex environments using closed-loop prediction,”
in Proc. of the AIAA Guidance, Navigation and Control Conference
and Exhibit, 2008, pp. 7166:1–22.

[16] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[17] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in Proc. of the IEEE Int. Conf. on
Intelligent Robots and Systems, 2014, pp. 2997–3004.

[18] D. Kim, J. Lee, and S. Yoon, “Cloud RRT*: Sampling cloud based
RRT*,” in Proc. of the IEEE Int. Conf. on Robotics and Automation,
2014, pp. 2519–2526.

[19] J. Gammell, S. Srinivasa, and T. Barfoot, “Batch informed trees
(BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, 2015, pp. 3067–3074.

[20] D. Gonzalez Bautista, J. Pérez, R. Lattarulo, V. Milanes, and
F. Nashashibi, “Continuous curvature planning with obstacle avoidance
capabilities in urban scenarios,” in Proc. of the IEEE Int. Conf. on
Intelligent Transportation Systems, 2014, pp. 1430–1435.

[21] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Rein-
holtz, D. Hong, A. Wicks, T. Alberi, D. Anderson, S. Cacciola et al.,
“Odin: Team VictorTango’s entry in the DARPA urban challenge,”
Journal of Field Robotics, vol. 25, no. 8, pp. 467–492, 2008.

[22] L. Wang, Z. Wu, J. Li, and C. Stiller, “Real-time safe stop trajectory
planning via multidimensional hybrid A*-algorithm,” in Proc. of the
IEEE Int. Conf. on Intelligent Transportation Systems, 2020, pp. 1–7.

[23] J. Hillenbrand, A. M. Spieker, and K. Kroschel, “A multilevel collision
mitigation approach – its situation assessment, decision making, and
performance tradeoffs,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 7, no. 4, pp. 528–540, 2006.

[24] A. Tamke, T. Dang, and G. Breuel, “A flexible method for criticality

assessment in driver assistance systems,” in Proc. of the IEEE Intelli-
gent Vehicles Symposium, 2011, pp. 697–702.

[25] S. Soentges, M. Koschi, and M. Althoff, “Worst-case analysis of the
time-to-react using reachable sets,” in Proc. of the IEEE Intelligent
Vehicles Symposium, 2018, pp. 1891–1897.

[26] Q. Pham and Y. Nakamura, “A new trajectory deformation algorithm
based on affine transformations,” IEEE Transactions on Robotics,
vol. 31, no. 4, pp. 1054–1063, 2015.

[27] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation, 2006, pp.
1243–1248.

[28] C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram,
“Trajectory modification considering dynamic constraints of au-
tonomous robots,” in Proc. of the German Conf. on Robotics, 2012,
pp. 1–6.

[29] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
Bertha — a local, continuous method,” in Proc. of the IEEE Intelligent
Vehicles Symposium, 2014, pp. 450–457.

[30] C. Pek and M. Althoff, “Fail-safe motion planning for online ver-
ification of autonomous vehicles using convex optimization,” IEEE
Transactions on Robotics, vol. 37, no. 3, pp. 798–814, 2021.

[31] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719–726.

[32] D. Yi, M. A. Goodrich, and K. D. Seppi, “Homotopy-aware RRT*:
Toward human-robot topological path-planning,” in Proc. of the
ACM/IEEE Int. Conf. on Human-Robot Interaction, 2016, pp. 279–
286.

[33] M. G. Wagner and B. Ravani, “Curves with rational Frenet-Serret
motion,” Computer Aided Geometric Design, vol. 15, no. 1, pp. 79–
101, 1997.

[34] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[35] J. Enright, E. Frazzoli, K. Savla, and F. Bullo, “On multiple UAV
routing with stochastic targets: Performance bounds and algorithms,”
in Proc. of the AIAA Guidance, Navigation, and Control Conference
and Exhibit, 2005, pp. 1–15.

[36] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intelligent Vehicles Symposium, 2020, pp. 752–759.

[37] C. Pek, V. Rusinov, S. Manzinger, M. C. Üste, and M. Althoff,
“CommonRoad Drivability Checker: Simplifying the development and
validation of motion planning algorithms,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2020, pp. 1013–1020.

[38] J. R. Movellan, “Minimum jerk trajectories,” 2011. [Online].
Available: https://inc.ucsd.edu/mplab/tutorials/minimumJerk.pdf

[39] U. Lee, S. Yoon, H. Shim, P. Vasseur, and C. Demonceaux, “Local
path planning in a complex environment for self-driving car,” in Proc.
of the IEEE Int. Conf. on Cyber Technology in Automation, Control
and Intelligent, 2014, pp. 445–450.

[40] Y. Chen, H. Ye, and M. Liu, “Hierarchical trajectory planning for
autonomous driving in low-speed driving scenarios based on RRT and
optimization,” arXiv preprint arXiv:1904.02606, 2019.

[41] D. Calzolari, B. Schürmann, and M. Althoff, “Comparison of trajec-
tory tracking controllers for autonomous vehicles,” in Proc. of the
IEEE Int. Conf. on Intelligent Transportation Systems, 2017, pp. 1–8.

[42] M. Koschi and M. Althoff, “Set-based prediction of traffic partici-
pants considering occlusions and traffic rules,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 2, pp. 249–265, 2021.

https://inc.ucsd.edu/mplab/tutorials/minimumJerk.pdf

	Introduction
	Literature Overview
	Contributions

	Preliminaries
	Problem Statement
	Vehicle Model
	Definitions

	Overall Algorithm
	Reference Path Generation
	Cut-off State Detection
	Path Generation
	Reference Path

	Repairing using informed CL-RRT
	Sampling Strategies
	Trajectory Creation
	Steering Controller
	Velocity Controller

	Tree Expansion

	Evaluation
	Static Obstacles on the Driving Lane
	Comparison with A* Search Algorithm
	Urban T-Intersection
	Computation Costs

	Conclusions
	References

