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Abstract

The brains of living creatures are the most powerful information processing systems
that exist. Their versatility, adaptivity and efficiency are unmatched by any technical
system ever built. In addition, the neural circuitry they are made from is one of the most
complex structures known to date. Understanding how the brain works has become
one of the greatest challenges of our time. The continuous improvement in computing
technology, according to Moore’s law, that we have witnessed in the past few decades has
enabled a completely new perspective in meeting it. Brain models can now be defined
and simulated at unprecedented orders of magnitude and detail. Whereas the focus in
neuroscience is on the replication of biological ground truth at a high level of fidelity,
neural networks in artificial intelligence are optimized for computational power and task
performance.

However, modeling the brain’s embedding in its body and in its environment has been
given much less attention, even though embodiment has been widely recognized as a
central factor in learning and development. This is mainly because, to date, experiments
in this direction have been limited to simple conceptual studies or have required complex
setups with physical robots that suffer from long setup times and have limited flexibility.
With the development of virtual neurorobotics as a new field of research which lies at the
intersection of robotics, neuroscience and artificial intelligence, we are on the precipice
of a fundamental change. Virtual neurorobotics draws from advances in computing and
simulation technology to provide both the theory and the tools for embedding simulated
brains into simulated robots with a closed loop of perception, cognition and action.

This work introduces a novel framework for embodied learning that is built on the
paradigm of virtual neurorobotics. At its core is a brain-derived modular-hierarchical neu-
ral network architecture which combines the feature hierarchies learned by deep artificial
neural networks with the modular organization of biological brains. Its design and the
training of neural networks based on it are enabled by four main contributions along the
development process of virtual neurorobotics experiments. To begin with, we present two
novel extensions of the Neurorobotics Platform, a cloud-based simulation framework for
virtual neurorobotics. They enable massively parallel neurorobotics experiments and add
support for state-of-the-art neuromorphic processors. To provide a link between virtual
and physical neurorobotics, we present the TUM Robot Mouse, a 3D printed biomimetic
mouse robot with an actuated spine. Secondly, we identify organizational principles in the
brain that guide the development of the modular-hierarchical neural network architecture.
It is comprised of component networks that process input from individual sensory modal-
ities and hub networks that perform task-based data fusion of the component network
output. Thirdly, we propose a self-supervised training procedure with a novel topographic
loss function that enables the learning of common latent space representations between
component networks. Lastly, we introduce the concept of training protocols that mimic
biological development processes to optimize the training of modular-hierarchical neural
networks. A training protocol controls the temporal sequence of learning in component
and hub networks by defining a schedule with developmental steps and stages.
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The results of this work lay the foundations for new learning methods that actively
exploit robotic embodiment. From a practical perspective, the modularity of the proposed
architecture will enable better reuse of trained networks across applications. As different
sub-functions can be directly located in concrete modules, the integrated networks offer
many opportunities for increasing robustness and interpretability.
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Zusammenfassung

Die Gehirne von Lebewesen sind die leistungsfähigsten Informationsverarbeitungs-
systme, die es gibt. Ihre Vielseitigkeit, Anpassungsfähigkeit und Effizienz werden von
keinem je gebauten technischen System erreicht. Gleichzeitig zählen die neuronalen
Schaltkreise, aus denen sie aufgebaut sind, zu den komplexesten Strukturen, die bislang
bekannt sind. Zu verstehen, wie das Gehirn funktioniert, hat sich zu einer der größ-
ten Herausforderungen unserer Zeit entwickelt. Mit der stetigen Weiterentwicklung der
Rechnertechnik in den vergangenen Jahrzehnten gemäß dem Mooreschenen Gesetz hat
sich eine grundlegend neue Perspektive eröffnet, da Gehirnmodelle in nie dagewesenem
Umfang und Detailreichtum modelliert und simuliert werden können. Während der Fokus
in der Neurowissenschaft auf der detailgetreuen Nachbildung der Biologie liegt, werden
neuronale Netze im Bereich der Künstlichen Intelligenz im Hinblick auf Rechenleistung
und die Lösung konkreter Aufgabenstellungen optimiert.

Deutlich weniger Beachtung hat bislang die Modellierung der Einbettung des Gehirns
in seinen Körper und seine Umgebung gefunden, obwohl das Konzept von Embodiment
weithin als ein wesentlicher Faktor für Lernen und individuelle Entwicklung anerkannt
ist. Das ist vor allem darin begründet, dass experimentelle Untersuchungen zu diesem
Thema bislang auf sehr einfache konzeptionelle Studien beschränkt waren oder komple-
xe Versuchsaufbauten mit physischen Robotern erforderten, die sich nur unter hohem
Zeitaufwand einrichten lassen und unflexibel sind. Diese Situation ändert sich mit der
Entstehung der virtuellen Neurorobotik als neues Forschungsgebiet an der Schnittstelle
von Robotik, Neurowissenschaft und Künstlicher Intelligenz gerade grundlegend. Den
Ausgangspunkt hierfür bilden Fortschritte in Rechner- und Simulationstechnik, die in
der virtuellen Neurorobotik die Entwicklung neuer Theorien und Werkzeuge für die
Einbettung simulierter Gehirne in simulierte Roboter ermöglichen. Beide Simulationen
interagieren dabei in einem geschlossenen Regelkreis aus Perzeption, Kognition und
Aktion mit ihrer Umwelt.

In dieser Arbeit wird ein neuartiges Framework für Embodied Learning, also das
Lernen eines in einen Körper eingebetteten Systems, vorgestellt. Es baut auf dem Konzept
der virtuellen Neurorobotik auf, wobei der Kernbestandteil eine vom Gehirn abgeleitete
modular-hierarchische Architektur für neuronale Netze ist, die von tiefen neuronalen
Netzen gelernte Merkmalshierarchien mit den modularen Organisationsprinzipien bio-
logischer Gehirne vereint. Die Konzeptionierung dieser Architektur und das Training
von neuronalen Netzen, die auf ihr basieren, werden durch vier wesentliche Beiträge
entlang des Entwicklungsprozesses für virtuelle Neurorobotik-Experimente ermöglicht.
Erstens werden zwei Erweiterungen für die Neurorobotik-Plattform eingeführt, einer
Cloud-basierten Simulationsumgebung für die virtuelle Neurorobotik. Diese ermöglichen
zum einen hochgradig parallele Neurorobotik-Experimente und ergänzen zum anderen die
Unterstützung für aktuelle neuromorphe Prozessoren. Als Bindeglied zwischen virtueller
und physischer Neurorobotik wird die TUM Robotermaus vorgestellt, ein 3D-gedruckter
biomimetischer Mausroboter mit aktuierter Wirbelsäule. Zweitens werden Organisations-
prinzipien im Gehirn identifiziert, die die Grundlage für die Entwicklung der modular-
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hierarchischen Netzarchitektur bilden. Diese besteht aus Komponentennetzen, die die
Eingaben sensorischer Modalitäten verarbeiten, und Hub-Netzen, die deren Ausgaben
aufgabenspezifisch fusionieren. Drittens wird ein selbstüberwachtes Trainingsverfahren
mit einer neuartigen topographischen Fehlerfunktion vorgestellt, die das Lernen gemein-
samer latenter Datenrepräsentationen für die Komponentennetze ermöglicht. Zuletzt
wird das Konzept von Trainingsprotokollen eingeführt, die biologische Entwicklungs-
prozesse nachahmen, um das Training von modular-hierarchischen neuronalen Netzen
zu optimieren. Ein Trainingsprotokoll steuert die zeitliche Abfolge des Lernens in den
Komponentennetzen und Hubnetzen, indem es einen Zeitplan mit Entwicklungsschritten
und -stufen festlegt.

Die Ergebnisse dieser Arbeit legen die Grundlage für neue Lernverfahren, die Em-
bodiment in einem Roboter aktiv nutzen. Aus praktischer Sicht relevant ist, dass die
vorgestellte Netzarchitektur eine bessere Wiederverwendbarkeit von Teilmodulen in ver-
schiedenen Anwendungen ermöglicht. Da einzelne Funktionen in konkreten Modulen
lokalisiert sind, bieten die resultierenden Gesamtnetze eine Vielzahl von Möglichkeiten
zur Umsetzung höherer Robustheit und besserer Interpretierbarkeit.
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Logic will get you from A to B.
Imagination will take you everywhere.

Albert Einstein
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1
Introduction

It’s all mechanistic. We are mechanism. If we are machines, then in
principle at least, we should be able to build machines out of other stuff,
which are just as alive as we are.

Rodney Brooks, TED2003 [1]

What does it take to construct a machine that performs like a living creature? A system
that is autonomous and efficient, that senses and acts in real-time while it learns and
adapts? Does it require a bionic mechanical structure that looks and works just like our
body? Will it depend on a specific type of circuitry that is wired up like our brain? Or is
it just a matter of enough data and computational power?

Over the past centuries, humankind has come up with countless visions, theories and
plans of how to copy or imitate the feats of nature in artificial systems, ranging from the
harnessing of divine power in Homer’s Iliad [2] to the foundation of robotics as a new
scientific discipline in the 20th century. What is common to all of them is that they take
some form of inspiration from nature, be it the design of the body or be it the architecture
of the control system. Yet no robot has ever been built that is anywhere near as versatile,
efficient and flexible as its biological model. Currently, however, this seems about to
change: Compute power and storage have recently become affordable enough to train
large-scale deep neural networks (DNNs) on massively big data sets that outperform many
traditional methods from artificial intelligence by orders of magnitude. While it is true that
these networks share some very basic features with biological brains, they still operate
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1 Introduction

in a fundamentally different way. As DNNs are becoming more and more powerful, the
demand for training data and compute power is growing prohibitively large – just to train
a network that can only solve a single task [3]. What is it that makes biological brains
so much more versatile and efficient? Will the performance of artificial neural networks
(ANNs) automatically improve if they are made more similar to the neural circuitry of the
brain?

The success story of ANNs started with the adoption of only a few elementary organi-
zational principles from biological neural networks. Similarly, an aircraft is not a full copy
of a bird’s body but the technical implementation of a small set of common design princi-
ples. The challenge therefore lies in the identification of the constituent computational
and organizational principles of the brain that are missing in current ANN models. So far,
systematic research in this direction has been hindered by technical limitations: While
neuroscientists have collected tremendous amounts of data about the brain over the last
century, the knowledge gained from these individual studies is fragmentary and there are
no tools for integrating it into a common framework. At the same time, measurement
data are static snapshots and therefore offer only limited explanation about the functional
dynamics of the brain in response to sensory input and output. Computational models that
address this issue need to make assumptions and simplifications that also yield a rather
narrow and limited view of the brain. Progress in understanding the brain is consequently
becoming more and more limited by the tools available in neuroscience. Deciphering the
inner workings of the brain has become one of the biggest challenges in science to date.

This thesis builds on two recent methodological innovations that considerably widen
the possibilities for studying the brain. First of all, simulation neuroscience [4] establishes
a completely new experimental paradigm where measurements are used to synthesize
high-fidelity brain simulations that do not attempt to simplify but to indeed reflect all
details of the physical world. Secondly, neurorobotics [5] provides a novel tool set for
embedding these simulations inside robotic embodiments in order to study brain models
under realistic conditions as they interact through a body with the environment in a closed
loop of perception – cognition – action. Like simulation neuroscience, state-of-the-art
neurorobotics is based on simulations. This enables fully virtual brain research which
is not limited by any physical constraints. Multiple neurorobotics experiments can be
designed, instantiated and evaluated in parallel at almost no additional cost. The results
obtained from them are fully reproducible and do not depend on specific hardware or
certain environmental conditions, which, for the very first time, makes research on brain
models that interact with an environment fully reproducible.

The goal of this thesis is to show that it takes neither an exact copy of the body nor
a perfect simulation of the brain to build a machine that performs like a living creature.
The only requirement is to implement the essential principles that underlie biological
cognition. Based on findings from neuroscience and the tool set of neurorobotics, we
identify three of them that have been largely neglected until now: embodiment, modularity
and development. Each of them has been addressed earlier but they have never been
studied in depth together. This is only now possible with the new tool set provided
by neurorobotics and in particular the Neurorobotics Platform (NRP) [6] that has been
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1.1 Cognitive Systems – The Challenge Ahead

developed in the European Human Brain Project (HBP) [7]. By combing embodiment,
modularity and development in a novel modular neural network architecture, we will
show how the structure of the brain can be linked to the cognitive functions it implements
and that this link can only be established inside a body that is able to interact with its
environment. The work presented in this thesis lays the foundations for cognitive systems
that are not only brain-inspired but brain-derived since their design is directly derived
from computational principles that are known to be implemented in the brain rather than
just taking inspiration from them.

1.1 Cognitive Systems – The Challenge Ahead
The brains of living creatures are the most powerful and most versatile control systems
that exist. They enable survival under hostile conditions in ever-changing environments,
are capable of processing incomplete and noisy sensory input, can reason about both
concrete situations and abstract ideas, look ahead, plan the next steps and control the
body that connects them with the outside world. At the same time, they continuously
learn from experience and adapt to changes on the fly. In short: biological brains are
capable of cognition and the living creatures they belong to are cognitive systems. More
formally, cognition can be defined as follows [8]:

“Cognition is the process by which an autonomous system perceives its environment,
learns from experience, anticipates the outcome of events, acts to pursue goals, and
adapts to changing circumstances.”

The meaning of cognition is often reduced to thinking, which closely adheres to the direct
translation act of comprehension or investigation of the original Latin word cognitio [9].
Following the definition above, this work adopts a broader view where cognition encom-
passes all mechanisms and processes that enable a living creature or an artificial system
to act and interact autonomously in unconstrained dynamic environments to achieve its
goals. In this perspective, artificial intelligence (AI) is a branch of research on cognitive
systems.

The Robotics Paradox
The challenge of designing a cognitive system is best illustrated by the example of the
current state of the art in robotics. Modern robots are widely used in manufacturing where
they perform tasks that could previously only be done by skilled human workers after
years of training and experience. At the same time, they outperform these human workers
in both precision and speed. This would not be possible without processing the data from
many different sensors and adapting the action accordingly in real-time. At first glance,
this seems very similar to what humans and animals need to do in order to interact with
their environment. However, many of the tasks that we carry out with ease and often even
without thinking about them are still dauntingly far out of reach for robots. Strikingly,
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1 Introduction

Figure 1.1: Illustration of the robotics paradox. While robots outperform humans in tasks that usually
require years of training such as welding a car, seemingly simple routine tasks such as driving a car in a
crowded urban environment are still unsolved challenges. Left: Photo of a body shop in a car production
line by BMW Werk Leipzig from Wikimedia Commons licensed under CC BY-SA 2.0 DE. Right: Photo of
Shibuya Crossing in Tokyo.

this concerns especially simple everyday tasks like walking, handling and manipulating
objects, and navigating in cluttered environments, etc. This robotics paradox has been
pointed out already many times [10, 11, 12] and is illustrated in Figure 1.1. The core
statement of the paradox is that well-defined tasks in constrained environments are easy
to solve compared to typical everyday tasks. This is because the latter are hard to define
formally and usually take place in unconstrained dynamic environments. Traditional
modeling and programming therefore largely fail in solving them. How could one ever
cover all the variability and uncertainties for a simple task like picking up an item from a
store? What can be described with as little as a single sentence in natural language might
require completely different solution strategies that depend on seemingly trivial factors
like the time of the day or the current weather conditions (Is the store open? Can I go by
bike or should I take the bus?). On a smaller scale, even the location and placement of the
item in the store can result in completely different types of requirements (Can I get the
item myself or do I need to order it? Can I carry it or do I need a shopping cart?).

The robotics paradox exemplifies the challenge that is currently being faced in cog-
nitive systems research. Building a cognitive system is not about solving a task that
seems hard to us, but about designing a system that can adapt to arbitrary unconstrained
environments. Importantly, the latter does not apply to the numerous landmark achieve-
ments in the more recent history of AI. Prominent examples include the victory of the
IBM system Deep Blue over a world-class chess champion in 1997 [13], the defeat of a
world-class Go champion in 2016 by Google DeepMind’s AlphaGo [14] and the poker
AI Pluribus that outperformed professional human Poker players [15]. Similar progress
has been made in popular strategy video games with OpenAI Five that plays Dota 2 [16]
or DeepMind’s AlphaStar has reached a Grandmaster level in StarCraft II [17]. IBM’s
Watson and Project Debater have successfully competed against humans in quiz shows
and debates, respectively [18, 19]. This list could be continued with an endless number
of smaller success stories, in every of which some form of AI was applied to solve a
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1.1 Cognitive Systems – The Challenge Ahead

Figure 1.2: A newborn exploring its environment. The brain receives input data from multiple sensory
modalities at the same time and integrates them in order to generate appropriate actions. The results of the
interactions are specific to the environment and become aggregated over time to form memories that in turn
modulate how sensory input is interpreted and processed. The body model of the newborn is based on [20],
“Radar Robot Tin Toy” by rgrimble from Blend Swap is licensed under CC BY.

problem for the first time or to outperform existing methods. However, just like the
major breakthroughs in mastering complex games, they all address narrow problems in
well-defined constrained environments. The advantage of these problems is, of course,
that they can serve as reproducible benchmarks with clearly defined success criteria. For
example, the evolution of chess AIs can be tracked consistently across decades even though
algorithms and hardware have dramatically changed. Substantial progress in cognitive
systems research can only be made by defining similar tasks that channel research efforts
towards a common goal and that make scientific progress traceable.

Learning like a Baby

This work begins with the most basic task faced by newborns of virtually all higher animal
species. Babies are born with only little knowledge about their body, the environment it
is embedded in, and the laws that govern the interplay between them. They need to learn
how to survive in the world around them and how to make sense of what they perceive
from it. As illustrated in Figure 1.2, this process of learning and perception crucially
depends on the body and its senses. Information about the surroundings is gathered by
different sensory modalities such vision, touch or audition. Each of them captures only a
small and limited fraction of the ground truth and depending on the current conditions
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1 Introduction

(day vs. night), one might be more reliable than another one (vision vs. audition). As a
result, even though all sensory modalities are stimulated by the same environment, they
still produce very different sensory input streams. Perceiving and making sense of the
world means combining them into a single coherent representation. Technically, the main
task faced by a newborn, therefore, is a problem of sensor data fusion or, as it is commonly
referred to in neuroscience, multisensory integration.

Figure 1.2 already indicates that data fusion is not a passive process solely driven by
the outside world. This is because the sensory input is highly dependent on the actions
that control the body. Just a slight movement of the head can already entail a considerable
change in visual and proprioceptive stimuli that resonates with the information processing
in the brain and in turn determines the next action. This intricate reciprocal relationship
between perception and action is at the core of what a newborn does when it explores the
world and gains experience through playing and interacting. Over time, the sum of all
experiences is aggregated in the memory to form the basis for goal-directed purposeful
behavior. The exclusive focus of most current research on the resulting behavior without
addressing the processes from which it develops can be seen as one of the main reasons
why existing artificial cognitive systems only can solve very narrow tasks. They lack
appropriate means for processing, fusing and interpreting sensory information from the
world around them. Brooks summarizes this insight as follows [21]:

“This suggests that problem solving behavior, language, expert knowledge and
application, and reason, are all rather simple once the essence of being and reacting
are available. That essence is the ability to move around in a dynamic environment,
sensing the surroundings to a degree sufficient to achieve the necessary maintenance
of life and reproduction.”

This sets a clear frame for the challenge ahead. While the algorithms that were originally
developed for solving games have been successfully applied in many practical applications
that are focused on narrow tasks, substantial progress in understanding and replicating
the cognitive skills of living creatures will require a different approach. The starting point
for this thesis is therefore the simple problem outlined above: How can a newborn, without
any knowledge of the world around it, learn to perceive, act and understand?

1.2 Three Waves of Artificial Intelligence
The first principled efforts to model and implement the cognitive skills of living creatures
date back to 1956, when AI was established as a scientific discipline during the Dartmouth
Summer Research Project on Artificial Intelligence [22]. Its primary objective is the
development of computer systems with human-like capabilities that can act autonomously
in complex environments [23]. This sets the field apart from related disciplines such as
neuroscience or cognitive science, which are concerned with the discovery of the principles
underlying cognition, but not with their practical implementation in technical systems. AI
is therefore strongly embedded into computer science and its applications are commonly
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1.2 Three Waves of Artificial Intelligence

referred to as agents. Since its early beginnings, AI has gone through several waves during
which new models and methods were first taken up euphorically after promising initial
results before they were abandoned due to unsurmountable difficulties and limitations.
Each wave was governed by a prevalent modeling paradigm that set the main direction of
research with deep implications for the types of systems that were studied and the way
they were implemented.

The First Wave: Symbolic Reasoning

The focus of early AI research after the influential meeting at Dartmouth College was on
models of symbolic reasoning. A prototypical example is outlined in Figure 1.3. At the
core of every symbolic reasoning system is a knowledge base that stores facts and rules
about the world which are typically specified in a formal language such as logic. Content
needs to be provided manually by a programmer through knowledge engineering at the
appropriate level of abstraction. The actual “intelligence” of the system lies in an inference
engine that automatically computes answers to input queries based on the rules and facts
from the knowledge base. One of the most prominent and most influential symbolic AI
systems was the mobile robot Shakey that was developed between 1966 and 1972 [24].
It was equipped with a cognitive model that allowed it to navigate, plan and interact
in a reduced environment of simple geometric objects. While these restrictions might
seem quite narrow, the results of the project were groundbreaking. Some of the methods
developed for Shakey such as theA* algorithm for heuristic graph search [25] or the STRIPS
planning system [26] set standards in their respective fields that are still valid today. These

Figure 1.3: Example of a basic symbolic reasoning system. Knowledge is represented in first-order logic
formulas that are stored in a knowledge base. General rules and facts need to be explicitly provided by
a human programmer. The process of extracting these abstract rules from the underlying domain is
also known as knowledge engineering. During runtime, new facts are generated by an inference engine.
Knowledge representation is not limited to simple first-order logic. Real-world systems typically feature
many additions and refinements for more expressive power and better performance.
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early successes fueled expectations that technological progress, as predicted by Moore’s
law, would sooner or later automatically translate into more cognitive power. However,
as it turned out, purely symbolic AI suffers from inherent complexity issues that make
it impossible to apply it to real-world problems of practically relevant sizes, no matter
how much compute power and storage are available. While it has become extremely
successful in solving representation hungry problems [21] such as planning and reasoning,
applications have never moved beyond this very limited domain for mainly two reasons.
First of all, symbolic AI systems are based on extremely simplified assumptions about
the world, such as determinism, full observability and static time-independent behavior
[27]. Secondly, all of the system’s knowledge must be provided by the programmer, which
turned out to be impossible for real-world problems that have no compact mathematical
representation. Especially the second issue becomes immediately evident when trying
to provide a formal description of features for recognizing a face, a car or a cat in a
picture. This inherent shortcoming of rooting symbolic representations in the real world
is also referred to as the symbol grounding problem. But even if a system can be described
formally, the manual specification of knowledge bases remains a substantial bottleneck.

The Second Wave: Machine Learning
The inherent shortcomings of physical symbol systems (PSSs), as symbolic AI was formally
defined by Newell and Simon [28], shifted the focus of research towards new models
and methods. The main bottleneck of traditional reasoning systems such as the one in
the example from Figure 1.3 is the knowledge base. Defining an adequate knowledge
representation does not only require non-trivial problem-dependent abstractions engi-
neered by domain experts. It also involves considerable manual effort and is practically
impossible for domains that cannot be described formally. This is why machine learning
methods that automatically acquire knowledge from data became increasingly popular
and triggered the second wave of AI. Common machine learning systems have an archi-
tecture similar to the example in Figure 1.4 that depicts a basic image classifier. Its key
component is a model M that computes predictions for input samples. In the case of image
classification, the input samples are images and the output is an assignment to possible
classes with confidence levels. While the inference engine in symbolic reasoning systems
is a problem-agnostic generic component, M needs to be parameterized specifically for
the problem to be solved. This training process is typically accomplished by minimizing a
loss function that measures the prediction error for samples in the training data set. As
soon as an appropriate set of model parameters has been learned, M can be applied to new
samples outside the training set. Analogously to symbolic reasoning, the generation of
predictions is commonly referred to as inference. Successful training not only requires the
right choice of M but also a suitable representation of the input data. The first is mainly
guided by the concrete task to be solved. Common models for image classification include
simple linear basis function models such as polynomials or support vector machines
(SVMs) [29]. Although the underlying model fully determines the computational power of
the system, the actual challenge lies in choosing an adequate representation of the input
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Figure 1.4: Example of a basic machine learning system for image classification. A model M is trained with
sample images in a data set. During training, the parameters of M are adjusted to minimize classification
errors based on a loss function that measures how well M fits the data set. Traditionally, the model does not
operate on raw data. Instead, every input sample is converted to a set of features (e.g. colors, lines, shapes,
etc.), extracting only the information that is relevant for the actual learning process. This feature extraction
is also applied after the training phase during inference when M is used to compute predictions for new
samples.

data. The high dimensionality of raw data such as images, videos or speech makes the
extraction of features that are relevant for the learning task essential. In particular, these
features need to be robust against data transformations that do not change the semantics.
Different lighting conditions and viewpoints, for example, have considerable influence on
the appearance of an image but should not affect the classification result as long as the
actual content remains unchanged. Figure 1.5 illustrates the effects of the feature space
representation of the input data on the complexity of the machine learning problem. Both
graphs in the figure visualize the same 2D data set. On the left, samples are plotted in
cartesian coordinates. Every dot corresponds to a sample while the color indicates the
class it is assigned to (e.g. cat or bird). In the cartesian representation, the two classes
can only be separated by a circle. After transforming the data into polar coordinates,
however, the circles break up and the samples can be separated by a simple line. Clearly,
identifying relevant features for real-word data is far more complex. Finding and describ-
ing appropriate feature space representations therefore has gradually evolved to a new
bottleneck since it again depends on domain experts that need to analyze data manually
to identify and formalize invariants that capture the underlying semantics without being
affected by transformations and noise. Knowledge engineering has thereby been replaced
by feature engineering. In a sense, machine learning has shifted the abstraction bottleneck
of symbolic AI one level lower to defining appropriate abstractions for raw data. This lets
the training process and often also the size of M scale with compute power and storage.
However, the engineering of suitable features still needs to be done manually for every
problem domain and can be very complex, resulting in a new bottleneck.
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Figure 1.5: Example of a basic feature space transformation. Every colored dot in the two plots corresponds
to a data sample in 2D space. The color of a dot indicates the class the corresponding sample is assigned to.
In the left plot, all samples are represented in cartesian space and the two classes correspond to circles. After
transforming all samples to polar coordinates, the circles become lines. This feature space representation is
very advantageous as it enables separating the two classes with a simple line.

The Third Wave: Deep Learning

During the last decade, machine learning has rapidly evolved to the most powerful tool in
AI to date. This has been only possible after a seminal breakthrough resolved the feature
engineering bottleneck and set off an avalanche of developments that finally resulted
in the current third wave of AI. The starting point of this development were attempts
to solve the issue of feature engineering by learning not only the actual task but also
the features themselves. Clearly, feature learning or, as it is also called, representation
learning [30] seems like the next logical step after the transition from symbolic reasoning
to learning from examples. The actual breakthrough, however, was not due to a newmodel
or algorithm. Instead, it turned out that deep ANNs with many layers of neurons stacked
on top of each other are capable of automatically learning powerful hierarchical feature
space representations even from complex raw data such as images [31]. Remarkably, the
theoretical foundations of ANNs were laid already in the first half of the 19th century, more
than a decade before the Dartmouth conference [32]. What had suddenly changed was that
for the first time compute power and storage had reached a scale at which networks with a
sufficiently large number of layers and neurons could be simulated within reasonable time
at affordable cost. This is not to say, of course, that there has been no progress in theory
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since the publication of the first ANNs, but rather that the theoretical developments in
this field could only be fully capitalized when the necessary computational resources
became available. Deep learning finally gained unprecedented momentum when a deep
convolutional neural network (CNN) outperformed all competitors in the ImageNet Large
Scale Visual Recognition Challenge 2012 [33, 34]. The key to training a network with
millions of parameters on millions of raw images was to accelerate the training process
by offloading computation to GPUs. Today, this approach has become standard in both
academia and industry.

The focus of AI research has shifted almost completely to deep learning since it
scales exceptionally well with computational resources. Moore’s law thereby seems to
translate directly to more powerful models and more accurate predictions. However, with
growing task complexity the demand for compute power is increasing faster than the
performance gains predicted by Moore’s law [3]. At the same time, a new bottleneck
is already narrowing down possible applications of DNNs. Deep learning has replaced
manually engineered features by massively large data sets from which feature space
representations are learned automatically. This approach works well for problems for
which a sufficiently large body of data is available. Examples include images and videos
that can be downloaded together with contextual information from the internet. Data
for which this information is not available need to be labeled manually. Unlike feature
engineering, this labeling usually does not involve special domain knowledge but instead
requires the manual processing of millions of samples, which means that complexity is
traded in for quantity. The bottleneck is thereby shifted another level lower from data
abstraction to data description and feature engineering is replaced by what could be
called data engineering. Unlike before, this bottleneck can be resolved by simply spending
enough resources and leveraging new collaboration models such as crowdsourcing [35].
Nevertheless, manual data processing considerably narrows down the number of possible
applications and again imposes physical boundaries on what can be achieved with AI.
These limitations in particular apply to the seemingly simple task of a newborn learning
to understand, perceive and act in its environment defined at the end of the last section.
The newborn’s experience cannot be modeled as a static data set but is a stream of
experiences without labels that needs to be processed in real-time at a fraction of the
power consumption of a modern GPU.

1.3 The Case for Neurorobotics and Brain-Derived AI
At first glance, the ever-growing demand for more data and compute power of DNNs
appears to be mainly a problem of resources and costs. Most of the recent successes
mentioned in Section 1.1 would indeed not have been possible without millions of hours
of training in data centers. Unlike the engineering of knowledge representations or
features, the data bottleneck in deep learning could be considered rather a practical issue
than a theoretical limitation. Nevertheless, reducing the open challenges in the field to
generating data and accelerating computation would fall too short.
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Limitations of Deep Learning

DNNs have proven especially successful in processing images and natural language where
they outperform virtually all competing approaches. This makes them in particular also
attractive for applications in robotics and autonomous driving. But in contrast to con-
sumer applications such as image classification and speech recognition that have become
available on any recent smartphone, deep learning is only very slowly gaining momentum
in these fields. This is because of the high safety requirements for components that are
deployed on robots and autonomous cars, where any malfunction of a system component
may pose a life-threatening danger. Severe accidents with autonomous cars provide
appalling evidence for the necessity of failure-free operation [36, 37]. The complexity
of DNNs with millions of trainable parameters, however, makes any type of analysis or
verification challenging and produces undesired artifacts. Already small perturbations
of the input data that are invisible to humans can result in completely different network
output [38, 39]. Such adversarial examples can be used to attack systems that are based
on deep neural networks. These attacks are not limited to direct modifications of the
network’s input data but can also succeed when prepared images or objects are captured
from the physical world [40, 41, 42]. DNNs that implement control policies for a robot
simulation have been shown to be vulnerable to adversarial attacks, too [43].

Adversarial attacks on machine learning systems are not specific to deep learning and
were discovered earlier for traditionalmodels [44]. Whatmakes the problem so challenging
for DNNs is the huge number of trainable parameters and their end-to-end architecture.
The latter means that the mapping between raw input data and predicted output is
fully determined during learning without any external control except for parameterizing
algorithms and defining the network architecture. For this reason, DNNs and neural
networks in general are black boxes that do not offer any means for direct control over
the mapping they compute. It is therefore extremely difficult to explain why some input
triggers a specific output. Efforts towards making the decisions of neural networks
explainable have so far yielded methods for visualizing learned features and tracing back
predictions to those parts of the input data that triggered them [45]. Both approaches can
be combined to a powerful tool set for inspecting the inner workings of a network [46]
and getting an intuition of how information is processed along its layers. It is needless to
say that visualization is by no means a replacement for formal verification methods. Work
in this direction seeks, for example, to calculate reachable sets in the output for a given
variation in the input data [47] or bounds for perturbations in the input region that do not
affect the network’s prediction for a given sample [48, 49]. Another class of approaches
applies techniques from software testing to produce a set of inputs that maximizes the
coverage of different network activation states [50].

Visualizing and verifying DNNs will make them gradually available to an increasing
number of applications but it does not improve on their weaknesses and limitations. The
monolithic design of current DNN architectures makes the reuse of trained models across
different use cases hard. Adding knowledge after training is typically impossible since
neural networks suffer from catastrophic forgetting, which means that the performance
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of a network on the task that it was trained on degrades drastically as soon as training
is continued on a new task [51]. Any modular reuse of complete networks or network
components is thereby largely prohibited. This becomes a major issue as soon as the
network processes multimodal input from different data sources. Their integration is
completely intransparent and changes in one data source will most likely require re-
training the full network. And it especially this use case that is of high relevance to many
real-world applications in robotics.

Advances in Neuroscience: Towards Brain-Derived AI
The success of DNNs is often attributed to the fact that they take inspiration from the
brain and perform brain-like computation. Indeed, recent research has revealed that
they are the currently best models for neural activity in different regions of the visual
system [52, 53] and many algorithmic innovations in the field can be argued to have some
link to neuroscience [54]. In view of the substantial contributions DNNs have made to
so many fields of AI, it does not surprise that more and more efforts are emerging that
try to apply these findings to neuroscience [55, 56]. These successes should, however,
not distract from the limitations identified above. Knowledge transfer from neuroscience
mostly happens only for very small aspects and mainly for specific isolated functions
such as attention or memory [54]. Goodfellow et al. [57] summarize the current situation
as follows:

“The main reason for the diminished role of neuroscience in deep learning research
today is that we simply do not have enough information about the brain to use it as
a guide. To obtain a deep understanding of the actual algorithms used by the brain,
we would need to be able to monitor the activity of (at the very least) thousands of
interconnected neurons simultaneously.”

The narrow limitations of traditional experimental approaches have also become evident
in neuroscience. Collecting measurements from experiments is slow and costly while
at the same the huge body of data available already now can no longer be captured ef-
ficiently by the simplified abstract models put forward in computational neuroscience.
Brain simulations that integrate this data into a unified model offer a new perspective
to the field. Like deep learning, constructing these simulations at a relevant scale has
become possible only in recent years with the availability of sufficient amounts of af-
fordable compute power and storage. Most notably, this development has triggered two
major research efforts that have set out to revolutionize neuroscience: the Blue Brain
Project (BBP) [58, 59] and the Human Brain Project (HBP) [7, 60]. While the goal of
the BBP is to create and simulate a digital reconstruction of a juvenile rat’s neocortical
column on a high performance computer, the HBP expands on this vision by developing a
simulation-based digital infrastructure for virtual brain research. This sets it apart from
the many other brain initiatives launched worldwide that promote primarily traditional
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neuroscience. Both projects mark the beginning of a new direction of research called
simulation neuroscience [4]. High-fidelity brain simulations open up a virtually unlimited
space of exploration where new hypotheses can be tested within minutes and brain ac-
tivity can be probed at any level of detail. They therefore not only have the potential of
disrupting neuroscience but also to make substantial contributions to AI.

The coordinated efforts for setting up the technical research infrastructure that is
required for large-scale brain simulations have already triggered a cross-fertilization
between brain research and computer science. Besides the construction of optimized high
performance computers [58], novel neuromorphic microprocessors are being developed
that have architectures which are based on selected principles of neural information
processing in the brain [61, 62]. This in particular means that they are designed to
simulate spiking neural networks (SNNs) rather than standard ANNs to support the
simulation of brain models from computational neuroscience. SNNs not only enable the
implementation of a new set of learning rules [63], their execution on neuromorphic
chips is also extremely energy-efficient [64]. One of the main challenges in the field is,
however, the development of models and algorithms that actually leverage this potential.
While the hardware is available, applications are still very limited since most of the
current models and algorithms for SNNs do not even come close to the state of the art in
deep learning. The big data approach put forward for DNNs is not directly applicable to
neuromorphic computing. Knowledge transfer from neuroscience is therefore essential.
Brain simulations seem to be the much needed link between neuroscience and AI with the
potential to yield new brain-derived models that not simply take superficial inspiration
from the brain but that reflect new computational principles discovered by neuroscience.
It is important to note that this is a substantial difference to the prevalent brain-inspired
systems that use findings from brain research mainly as a guide. This is, of course, not to
say that brain-derived systems need to implement direct copies of what is observed in
the brain. Instead, the focus is on the identification and adoption of the most relevant
principles.

In practice, knowledge transfer between brain research and AI is hindered by incom-
patible goals: while the first aims to describe structure with measurements taken from
the brain, the latter implements a function with data from the task. The main challenge
towards brain-derived AI is therefore to bridge this gap and to link structure to function. In
this work, we argue that the key to closing this gap lies in embodiment, the grounding of a
brain model in an environment through a body by means of which it can act and interact.
Through the actions of the body, the output of a brain model that has been defined in
terms of its structure can be directly interpreted in terms of the resulting function. Seen
in perspective, it seems only natural that a simulation of the brain can only be realistic if
it receives the same input and output from the environment as a real brain does inside
its body. So far, systematic research on embodiment was not possible because of a lack
of the required tools and theories about how to connect a brain model to a body model.
With the emergence of neurorobotics as a new scientific discipline, this is now about to
change. The NRP developed in the HBP for the first time delivers a comprehensive tool
set for the principled study of embodiment.

14



1.3 The Case for Neurorobotics and Brain-Derived AI

The Neurorobotics Platform of the Human Brain Project

The NRP is an integrated simulation environment for connecting simulated brains to
simulated robotic bodies that has been developed by the Neurorobotics Subproject of the
HBP [5, 6]. It is a programmatic effort aimed not only at providing a tool for neurorobotics
research but at laying the foundations for a new methodology in neuroscience, robotics
and AI that is based on the study of embodied systems. The research behind the NRP
consequently goes considerably beyond the mere design, development and deployment
of a software system. Simulations of both brain models and robot systems have been
developed independently over decades. Connecting them to form a coherent embodied
systemwhere a bodymodel and a brainmodel exchange sensory data andmotor commands
in a closed loop is only possible with a new framework that enables the definition of
mappings between the two. Clearly, this is not only a technical issue but a fundamental
theoretical challenge that includes questions on internal representations, neural coding
and neuroanatomy.

The NRP’s tool set is specifically tailored to addressing these questions through virtual
neurorobotics experiments. Since all parts of these experiments are simulated, it is not
only possible to replicate physical experimental setups but also to define completely new
types of studies. Researchers are no longer constrained to any physical limitations but can

Figure 1.6: Web front end of the HBP Neurorobotics Platform. The screenshot depicts the platform’s
experiment designer, an interactive development environment for designing, running and visualizing
neurorobotics simulations directly in the web browser.
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observe the whole brain and the whole body at any level of detail. For example, whereas
even today’s most advanced technologies for single-neuron recording do not go beyond
the scale of a few thousands of neurons [65], neurorobotics simulations enable the full
observation of every neuron in the brain at any point in time.

Every neurorobotics experiment is comprised of four components: a brain simulation,
a robot simulation, transfer functions and an experiment protocol. While the transfer
functions define the flow of information between the brain model and the robot model,
the experiment protocol determines how the experiment is executed. This is very similar
to the physical world where protocols specify, for example, the steps required to start
an experiment and the conditions under which measurements need to be recorded. The
NRP makes all four components available through an interactive web front end that runs
without installation directly in the browser. Figure 1.6 depicts a screenshot of the platform
with an active experiment.The graphical user interface gives direct access to the simulated
environment and contains dedicated editors for the brain model and the transfer functions.
There is support for both DNNs and SNNs, which makes the NRP equally suited for AI
and neuroscience.

That experiments can be designed simply in the web browser without installing any
software packages is owed to the fact that the NRP is implemented as a cloud service. All
computationally intensive tasks such as the brain simulation run in a high performance
computing center. The web front end does not perform any computation but only serves
as a graphical user interface for setting parameters, starting the simulation and visualizing
the results. This architecture scales seamlessly with the amount of resources available
and natively supports massively parallel simulations for testing multiple hypothesis at a
time, parallelizing machine learning tasks or enlarging the space of exploration by testing
a brain model in a multitude of different environments. Applications of this framework
do not only lie in neuroscience but in particular also in the development of brain-derived
systems, which renders the NRP a unique tool for the knowledge transfer from brain
research to robotics, machine learning and AI in general.

1.4 Scope and Contribution of this Work
Up to now, none of the approaches put forward during the three waves of AI has managed
to address the challenge formulated at the end of Section 1.1: How can a newborn without
any knowledge of the world around it learn to perceive, act and understand? The goal of
this work is to show that neurorobotics has the potential to spark a fourth wave of AI
because it is the first research paradigm that is built on realistic embodiment and brain
modeling as first principles. While no biological brain exists without a body, work in both
AI and neuroscience is still primarily focusing on the study of disembodied systems. This
is to some extent due to a lack of appropriate tools. Neurorobotics research was so far
highly dependent on the availability of physical robots, which made progress costly and
slow. The NRP now offers a completely new perspective by virtualizing neurorobotics
experiments and thereby resolving all constraints of the physical world. In this work, we
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take advantage of this new research opportunity to develop a novel neurorobotics-based
learning framework that addresses the shortcomings of the current state of the art in
machine learning by leveraging the unique properties specific to embodied systems.

Problem Statement
How can the challenge of designing a system capable of learning to perceive, act and
understand be cast into a well-defined problem statement with a concise definition of
preliminaries and expected outcome? In the scope of this thesis, we argue that the
computational task solved by the brain can be formulated as a problem of task-based
sensor fusion. Learning to perceive, act and understand then means learning how to
integrate data from multiple modalities into a coherent representation that is optimized
for the task at hand. Based on this hypothesis, the problem statement can be formulated
as follows:

Let S be an embodied system comprised of a neural network-based brain model N
and a body model B that tries to solve a set of tasks T = {𝑡1, … , 𝑡𝑚} in an environ-
ment E. S interfaces with E through a set of sensory modalities M = {𝑚1, … , 𝑚𝑛}
and a set of actuators A = {𝑎1, … , 𝑎𝑜} that are both part of B = {M,A}. How can N
be designed so that the following three properties hold:

1. N solves a task 𝑡 ∈ T by interacting with E through A (embodiment)

2. N computes the actions for 𝑡 by integrating data from M (sensor fusion)

3. N optimizes data integration for every 𝑡 ∈ T individually (task adaptation)

In terms of Section 1.1, S corresponds to the newborn while N and B are its brain and
body, respectively. Analogously, M and A denote its senses and muscles. T could contain
tasks such as grasping an object or crawling towards a goal in its environment E.

Contribution
This thesis addresses the problem stated above by three main contributions which are
outlined in Figure 1.7. As illustrated in the diagram, the model input shifted closer towards
direct data input from the physical world throughout the three waves of AI: Whereas
symbolic reasoning required high-level abstractions from the ground truth, machine
learning introduced feature space conversions of the raw input and deep learning finally
enabled direct processing of raw data. In the course of this development, knowledge
engineering evolved to data engineering, which rendered the availability of appropriate
data sets the only remaining bottleneck. Neurorobotics completely alleviates the need for
any manual engineering since the embodied system learns through interaction with the
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environment and autonomously controls the collection of samples or, more appropriately,
experiences. Based on this paradigm, we make three main contributions:

1. As explained earlier, the NRP can drastically speed up research in neurorobotics
through the virtualization of experiments. To fulfill this potential, we develop a
framework for massively parallel virtual neurorobotics experiments with the NRP. Our
proposed approach supports modern cloud computing infrastructure and seamlessly
scales with the amount of resources available. Experiments can be configured and
controlled from a single point of entry and can exchange data through a shared
document data base.

2. We develop a new modular-hierarchical neural network architecture that is optimized
for task-based sensor data fusion along with a new learning algorithm that is
based on a novel topographic loss function. Its design is directly derived from the
architecture of the human cerebral cortex and has a structure that enables the
flexible re-use of component networks across tasks. This makes computations more
transparent compared to traditional monolithic deep neural networks.

3. We propose a new method for training modular-hierarchical neural networks based
on insights from human development. In our approach, training is not performed
from scratch on the full task but follows training protocols that increase task com-
plexity over time and therefore shape the exploration space to optimize the learning
process.

The framework for massively parallel virtual neurorobotics experiments is a technical
prerequisite for implementing and training the proposed network architecture. The mod-
ular design of this architecture draws on findings from neuroscience about the structure
from the brain. During training, the individual structural elements are directly linked to a
function that is expressed through the behavior of the neurorobotic system. Our approach
thereby integrates principles from both neuroscience and AI to deliver a theoretical basis
for the design of brain-derived systems. It is important to note the main motivation
behind the proposed method is not to make a quantitative improvement over a system
that is based on DNNs. The goal is rather to propose a qualitatively new methodology
that directly benefits from advances in deep learning and at the same time accommodates
relevant findings from neuroscience.

Structure and Outline
The structure of this work follows the scheme from Figure 1.7. Not shown are the Chap-
ters 2 and 3, which introduce theoretical concepts in brain modeling and neurorobotics
that will be relevant throughout this work. In Chapter 4, we develop a novel tool set for
virtual neurorobotics based on the NRP that enables massively parallel experiments and
adds support for the neuromorphic processor Intel Loihi [62]. The results are an important
prerequisite for the following chapters. We further present the TUM Robot Mouse, a
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3D printed biomimetic mouse robot with an actuated spine. It is designed with the goal
of providing a link between virtual and physical neurorobotics. In Chapter 5, we develop
the modular-hierarchical neural network architecture along with a training method that
is based on novel topographic loss function. We then introduce the concept of training
protocols in Chapter 6. All proposed models will be implemented and evaluated in the
NRP. Chapter 7 concludes this work and provides an outlook to practical applications and
future directions of research.

Figure 1.7: Contribution of this work in the context of the three waves of AI as defined in Section 1.2.
Neurorobotics resolves the bottlenecks of symbolic reasoning, machine learning and deep learning through
embodied closed-loop interaction with the task environment. Information from this environment no longer
needs to be processed manually but is automatically collected by the embodied system based on the task it
tries to achieve. The concept of the figure is based on [57].
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2
Models of the Brain

Biological brains enable living creatures to survive under hostile conditions in ever-
changing environments. They are capable of processing incomplete and noisy sensory
input, reasoning about both concrete situations and abstract ideas, looking ahead, planning
the next steps and controlling the body that connects them with the outside world.
They continuously learn from experience and adapt to changes on the fly. The neural
control system that gives rise to this capability is arguably one of the most intricate
structures known to date. The numbers in Figure 2.1 give proof of its impressive size
and complexity. How is it possible to understand such a complex structure that is so
delicate and inaccessible that even today’s most advanced technology can only capture a
tiny fraction of its inner workings?

Throughout history, there have been many attempts to explain how the brain works.
First mentions of the brain as an organ even date back to ancient Egypt more than 5000
years ago [73]. However, it was not before the beginning of the 20th century that modern
neuroscience was established as an acknowledged and scientifically grounded field of
research. This development would not have been possible without the invention of a new
tool. In 1873, the Italian biologist Camillo Golgi discovered a new staining method that for
the first time enabled the identification of individual cells in neural tissue, which laid the
foundation for the description of the brain as a network of independent interconnected
neurons put forward by the Spanish histologist Santiago Ramón y Cajal [74]. Since then,
progress in neuroscience has continued to be driven by innovations in tools ranging
from electron microscopy to electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI). But even today’s most advanced measurement devices produce
highly fractional data that reflect only a tiny portion of the whole brain. Devising models
that interpret and predict experimental findings has therefore become essential. The first
mathematical descriptions of the nervous systemwere conceived long before the invention
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Figure 2.1: The complexity of the human brain in facts and figures. The data are based on [66, 67, 68, 69, 70,
71], the drawing of the brain is a modified version of the original from [72] (public domain, PD-US-expired).

of the computer. Today, they have become a cornerstone of modern neuroscience and
also played an important role in the development of DNNs.

Brain modeling is the starting point for knowledge transfer between neuroscience and
AI, which makes it an indispensable prerequisite for the design of brain-derived devices.
This chapter introduces basic theoretical concepts of neural brainmodels. After identifying
a level of abstraction that is appropriate for the scope of this work, we introduce the
common foundations of neural networks in neuroscience and AI before discussing the
specific developments in each field in detail. The last section of this chapter highlights how
insights from brain modeling are driving the creation of novel neuromorphic chip designs
that aim to mimic computational principles which are hypothesized to be implemented in
the brain.

2.1 Levels of Detail in Brain Modeling
The complexity of the brain renders meaningful abstractions indispensable. This is
particularly exemplified by the astonishing numbers from Figure 2.1. Modeling the brain
therefore requires focusing on features that are most relevant in a particular context,
which means that every model is necessarily defined within a certain scope and serves a
specific purpose [75]. In theoretical neuroscience and computational neuroscience, one of
the main purposes of modeling is to quantitatively explain a set of experimental findings
or to provide quantitative predictions that can be verified or falsified experimentally.
This work, by contrast, uses neuroscientific findings to guide the design of a model that
solves a concrete task in a given environment on a specific computational substrate.
Compared to neuroscience, where the type of model being used is partly constrained by
the experimental data source, this results in a vast space of modeling approaches. It is
therefore essential to determine the right type of model at the most appropriate level of
abstraction that fits the intended purpose best.
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Types of Brain Models

In the context of this work, we will only consider brain models that can be executed as
brain simulations on a computer. Of special relevance in this context is the classification
by Dayan and Abbott [76], who have identified three different types of models that are
typically considered in theoretical neuroscience. As further elaborated by Levenstein et al.
[77], each of them answers a specific question:

• Mechanistic Models: “How does the phenomenon arise?”
Mechanistic models capture the actual implementation of a phenomenon in terms
of its low-level building blocks and their interactions with each other.
Example: Microarchitecture of a microprocessor that describes its implementation in
terms of logical gates.

• Descriptive Models: “What is the phenomenon?”
Descriptive models capture an observed phenomenon without specifying the under-
lying building blocks and processes that give rise to it. They are often also referred
to as phenomenological models.
Example: Description of a microprocessor in terms of assembly commands with corre-
sponding inputs and outputs.

• Interpretive Models: “Why does the phenomenon exist?”
Interpretive models “explain a phenomenon in terms of a function and goal” [77].
They thereby play an essential role in relating a specific phenomenon to its role for
cognition and behavior.
Example: Description of different functional units of a microprocessor and the features
that they implement.

These modeling types are closely related to the three levels of understanding proposed by
Marr [78], who distinguishes between computational theory (interpretive), representation
and algorithm (descriptive) and hardware implementation (mechanistic). It is obvious that
mechanistic

However, it is important to note that mechanistic, descriptive and interpretive models
cannot be treated in isolation from each other. They are interdependent and a model of
one type can be comprised of models of another type. In the microprocessor example,
the gates of the mechanistic model are themselves descriptive models of the underlying
electrical circuits. In this sense, mechanistic models can be seen as links between different
levels of abstraction, which are in turn described by descriptive and interpretive models
[77] . For this reason, this work will start from a mechanistic model in order to link
behavior to the underlying neural circuitry. Identifying the most appropriate level of
modeling for this task crucially depends on identifying the levels available.
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The Multiscale Organization of the Brain

As outlined in the definition above, mechanistic models require the specification of a
system’s building blocks and the dynamics of their interactions. With the brain, neither
of these two are fully known to date, which is why it has become common to draw
analogies to technical systems in an attempt to explain its inner workings. Over time,
these analogies have evolved along with technological development and range from steam
engines and radio frequencies to, most recently, circuits, networks and computations [79].
What is common to all these systems is that they are compound structures that are made
up of many different components, which themselves can be further diversified into sub-
systems. In a steam engine, for example, a connecting rod and a flywheel convert steam
pressure generated in a boiler into rotational motion, a radio is comprised of an antenna,
an amplifier and speakers, and a computer is built from a multitude of electrical circuits,
each of which has up to billions of transistors. All three devices spearheaded the state of
the art in engineering in their day and age. Breaking them down into different sub-systems
at different levels of abstraction has become the key to managing their complexity. Is it
also possible to identity such structure in the brain?

A key contribution in this direction, which had lasting impact on neuroscience, was
made by the German neuroanatomist Brodmann at the beginning of the 20th century [80].
Based on his studies of the cytoarchitecture of the of the human brain, he proposed
to subdivide the cerebral cortex into distinct areas. The term cytoarchitecture refers to
“the arrangement of cells in organs and tissues, particularly those in the neocortex” [81].
Figure 2.2 shows his original drawings. The left sketch provides a detailed overview of
the identified areas and the numbers they were assigned. In the map on the right, they
are grouped into larger brain regions, which can already be seen as a form of abstraction.
The Brodmann areas have become an important tool in neuroscience. In more recent

Figure 2.2: Drawings of the Brodmann areas for the lateral view of the human brain. Brodmann orig-
inally identified 52 different distinct areas. Left: Detailed map with areas defined by cytoarchitectonic
properties. Right: Main brain regions extracted based on the map on the left. The drawings are from [80]
(public domain).
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research, some of them could be directly mapped to specific cognitive functions and
state-of-the-art imaging techniques suggest the existence of 180 areas on each hemisphere
of the human brain [70]. In a modern version of the map from Figure 2.2, a high-resolution
brain atlas has been created with the goal of establishing a new reference map that serves
as a common basis for future research [82].

The ongoing efforts to map the building blocks of the brain have yielded important
insights as to how individual cells at the microscopic level form different areas at the
macroscopic level that in turn can, in some cases, be assigned specific cognitive functions.
Further research on each of these levels has revealed additional structures and layers of
organization, the most important of which are summarized in Table 2.1. At the lowest
level, molecular processes form the basis of cell physiology and determine how genetically
encoded information is expressed in the properties of a multitude of different types of
neural and glial cells. One level above, neurons form circuits that in turn are the building
blocks of the brain regions that have been partially identified by Brodmann. At the
highest level of organization, the whole brain itself is embedded in a body that provides an
interface to the external world. The different levels of abstraction haven been specifically
chosen for the context of this work, but can also be identified with the three levels of Marr
[78] mentioned before: system integration corresponds to computational theory, cognitive
architecture to representation and algorithm, and physical implementation to hardware
implementation. Logical implementation contributes to both of the last two in the list.

The components and processes along the hierarchy sketched in Table 2.1 span multiple
orders of magnitude in both space and time. Every macroscopic event, such as a small
movement of a finger tip, entails and is entailed by millions of cellular processes at
the microscopic level that are governed by molecular processes at the sub-microscopic
level. While the former may take seconds, the latter can happen within milliseconds.
The challenge of brain modeling lies in addressing those levels that are relevant for the
phenomena of interest. In general, these levels are not uniquely defined and, independent
of the investigated phenomenon, typically all levels are involved to some degree. The
mapping of phenomena to levels in the table therefore only serves as a guideline, but not
as a fixed assignment.

Balancing Abstraction and Detail
The task of a newborn making sense of its environment, formulated in Chapter 1, is clearly
defined at the uppermost level of organization in Table 2.1. Any candidate brain model that
is viable for addressing this challenge must therefore necessarily encompass all functions
and features that arise from the organization levels below. At first glance, there are two
obvious strategies for implementing such a model. In a purely interpretive modeling
approach, the entire brain can be described in terms of its cognitive skills that can be
technically realized as arbitrary computer programs. Optionally, some of these programs
may be identified with specific brain regions based on the functions they implement.
The result is a set of different cognitive processes that are orchestrated to give rise to
the desired behavior. Such a design strategy lends itself very well to common practices
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Table 2.1: Multiscale organization of the brain. The table covers only the most distinct levels of organization,
each of which can be further subdivided. Likewise, the attribution of phenomena to single levels does not
express a strict mapping but highlights common cases. Distances and times indicate the overall scale and
are partly based on [83, 84]. Molecular dynamics spans itself several time scales, which is why no order of
magnitude is specified. The drawing of the brain is adapted from a digitized version of the original in [85]
(public domain). Other sources of the drawings are referenced in Figures 1.2 and 2.4.

in software engineering and has been specifically put forward in the field of cognitive
architectures with many applications in AI and robotics [86]. At the other end of the
spectrum, one could try to construct a fully mechanistic bottom-up model that is defined
solely in terms of molecular processes.

It should be obvious that neither of the two alternatives outlined above would provide
a desirable brain model. While the first would be too coarse and too arbitrary to establish
a meaningful quantitative relationship to neuroscience, the second would not be manage-
able with respect to complexity and computational requirements. These two extremes
exemplify the trade-off between abstract models that take inspiration from the brain at the
conceptual level and detailed models that are directly derived from neuroscientific findings.
The most important constraint for choosing the right level of balance between them is
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that the mechanistic interactions between low-level components can still be interpreted
in terms of the full system’s behavior. This is impossible for models defined at molecular
level since the model size for tracing down an organism’s actions to the dynamics of
individual molecules is prohibitively large. Since at the same time the whole brain and its
regions have been identified as too coarse above, the possible levels of organization are
narrowed down to neurons and neural circuits. The decision for one of the two can be
constrained by the intended application and the available technical infrastructure.

Neural circuits are commonly described with neural mass models and neural field
models that abstract from single neurons by capturing the dynamics of larger neural
populations. Whereas mass models only address the temporal dynamics of population
activity, mean field models also represent its spatial distribution [87]. The main purpose
of these models is to provide a compact mathematical description of brain activity as
recorded by EEG or fMRI. Unlike the abstract cognitive architectures discussed before, they
can directly incorporate and explain experimental data while still being simple enough
to be analytically tractable [88]. Neural field models have been successfully employed
for the construction of larger brain models comprised of different subsystems [89] and
as components for a cognitive architecture in robotics [90]. It has been argued that
they are suited as a basis for embodied cognitive systems [91]. However, neural fields
by design fall short in capturing information about the detailed structure of the neural
circuitry that they represent. Specific questions about network architectures and fine-
grained connectivity patterns can therefore not be addressed at all. Moreover, software
and hardware development in recent years has had a strong focus on simulating neural
network models that are built from discrete neurons. Additionally, large-scale network
simulations are becoming an increasingly important tool in neuroscience. The focus on
populations in neural field modeling can leverage this progress only to a limited extent.
In the remainder of this work, we will therefore only consider only brain models that are
defined at the level of neurons.

Discrete Neuron Models

Biological neurons are intricate structures with a complexity that arguably even matches
that of the whole brain. Neuron models are therefore highly diverse and cover numerous
levels of abstraction akin to those outlined in Table 2.1 for the whole brain. Herz et al.
identify five modeling levels, the following three of which are especially relevant in the
scope of this thesis [92]:

• Detailed Compartmental Models: The functional properties of a neuron are closely
related to its spatial geometric structure or, more precisely, its morphology. This
type of model approximates morphological properties by discretizing them into
compartments, each of which has an own set of state variables.
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• Reduced Compartmental Models: Detailed compartmental neuron models can be
comprised of hundreds of compartments [59]. Reduced compartmental models
abstract from exact morphology and use compartments only to differentiate between
the most salient structures of a neuron. This not only reduces computational
complexity but also makes the system dynamics analytically tractable.

• Point Neuron Models: This class of models completely neglects spatial structure
and describes neural dynamics with a single compartment, which is why it is also
referred to as single-compartment models.

Even though they are computationally extremely demanding, brain models that are
built from networks of detailed compartmental neurons can be simulated at large scale
today [59]. The massive amounts of required compute power and the huge modeling
effort make them currently especially attractive for use cases in neuroscience where an
exceptionally high level of simulation fidelity is required. For research on how higher-
level phenomena arise from low-level neural dynamics, neurons can be approximated
sufficiently well by point neuron models. That this simplification is valid is supported
by a recently published method for the conversion of detailed compartmental models to
phenomenologically equivalent point neurons for a given activity regime [93]. Moreover,
a single complex neuron model can be approximated by a network of multiple point
neuron models [92]. Focusing on the latter consequently does not infer any computational
limitations. It does, however, provide a direct link to AI, where all current methods in
machine learning are based on point neurons.

Neural Information Coding: Spikes and Rates
Biological neurons transmit information through digital electrical impulses called action
potentials or spikes: the only information a spike carries is the time of its occurrence.
Consequently, all spikes emitted by a neuron have identical shape [94]. Information can
either be encoded in the precise spike timing or by temporal averaging over a spike train
to compute a spike rate. Deciphering the neural code used by the nervous system is one
of the most central questions in neuroscience and there are both models and experimental
evidence that support each of the two coding schemes. An overview of different codes is
provided in Figure 2.3.

In rate-based coding schemes, the identity of a neuron represents the stimulus or
feature that it encodes. Rate changes signal updates of the stimulus value that is in turn
encoded by the magnitude of the firing rate [95]. The early prevalence of rate-based
modeling is rooted in a huge body experimental studies where recorded stimuli could be
explained very well through rate codes. In this context, sensory cells are of particular
interest since they allow for a direct observation of relationship between an input signal
and the encoded neural output. Examples include mechanoreceptors in the skin where,
depending on the receptor type, the strength of a stimulus translates proportionally into
a firing rate [96]. Rate codes are also involved in higher levels of cognitive processing.
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Figure 2.3: Overview of different types of neural codes. Left: Single-neuron codes are realized by an
individual spiking neuron. Besides simple averaging-based rate coding, temporal codes can be expressed as
the timing of a spike with respect to a certain reference point (time-to-first-spike coding) or the phase of
some oscillatory background signal (phase coding). Right: Population codes are defined based on the output
of a set of neurons. Examples include population activity coding as a natural extension to single-neuron
rate codes and temporal coding through relative spike times (rank order coding) or synchronized spike
patterns (coding by synchrony). The latter also includes correlated sequences of spikes with fixed inter-spike
intervals (coding by correlation). The overview is based on [94]. The visualizations are adapted from [63]
by permission from Springer Nature Customer Service Centre GmbH, ©2016.

For example, neurons in the visual cortex respond only to specific visual stimuli [97, 98]
and grid cells in the entorhinal cortex fire as soon as the body is located on a vertex of the
spatial grid encoded by the cell [99]. A major drawback that is typically attributed to rate
coding schemes is the time required for decoding by temporal averaging. Maximum spike
rates imposed by physiological constraints moreover place a hard limit on the resolution
and value range that can be represented by rate coding. A potential remedy for this issue
are population codes, where individual values are encoded by the overall spike rate of a set
of neurons, which enables faster readout without limitations imposed by maximum firing
rates. In fact, the representation of visual stimuli or spatial locations by cells with specific
receptive fields in the visual cortex and the entorhinal cortex, respectively, is also a form of
population coding where each cell in the population represents a range of stimulus values.
In motor neuron populations that drive muscles, both types of rate coding have found
to be combined since muscle force is controlled by both firing rate and the number of
motor neurons activated [100]. The latter control scheme is also known as the recruitment
principle.

A potential advantage of temporal codes as opposed to rate codes is that the amount
of spikes required to transmit information can be considerably reduced. This has been
argued to be especially relevant in the visual system that is capable of recognizing a
photograph in less than 150ms [101]. Rate codes are most likely not sufficient to transmit
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information fast enough due to the delays caused by spike count averaging, which is
why rank order coding was proposed where only the relative sequence in which a set of
neuron fires is relevant [102]. Concrete experimental evidence for temporal spike coding
was observed from spike train recordings in the cortex during a fixed behavioral task
that contained repetitions of spike patterns emitted by the recorded populations [103].
More recently, affirmative results have been reported with more advanced probing and
analysis methods [104]. Importantly, the identified patterns could be mapped to specific
behaviors. In general, the synchronous firing of neural populations is hypothesized to be
an important mechanism for the coordination of distributed neural information processing
[105]. As Uhlhaas et al. [105] argue in their review, network oscillations play a key role in
temporal coding since they provide a reference for the synchronization of neural activity
or, in an alternative coding scheme, the encoding of information through phase-shifted
spike emission.

Choosing to transmit information through a temporal code narrows down the class
of possible neuron models to those that are capable of producing spikes. Rate codes can
also be implemented with simplified analog neuron models that approximate spike train
frequencies with real numbers. While typical ANNs are computationally less complex,
it has been shown that SNNs can implement certain functions with considerably less
units [106]. This trade-off is similar to that between multi-compartment and single-
compartment neuron models. One must, however, not mistakenly conclude that SNNs
should therefore be preferred. In general, there is not always a clear separation between
rate-based and spike-based codes. For example, the time-to-first-spike coding scheme
from Figure 2.3 can also be interpreted as a rate code since Δ𝑡 will also grow smaller for
increased firing rates [94]. In conclusion, both SNNs and ANNs are legitimate modeling
choices. The decision for one class of neuron models over another mainly depends on
the specific computational features that are required for the task at hand and, in the
case of neuroscience-driven studies, which types of measurement data are available. It is
important to note that spikes may not or not only serve a computational purpose. Sensory
neurons, for example, encode stimuli by analog voltages before they are converted to
spikes for transmission across longer distances in the nervous system [96]. That the
stimulus is not transmitted by analog values is therefore at least partly enforced by
the physical constraints of biological nervous tissue. Spike-based signaling can also be
implemented highly efficiently in CMOS-based electrical circuits as will be explained in
Section 2.4.

To summarize the findings above, this thesis will focus on both spiking and non-
spiking point neuron models. This level of abstraction is well balanced to bridge the
scale between embodied behavior and neural activity. At the same time, it allows for the
efficient hardware-accelerated simulation of large-scale network models.
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2.2 Common Roots of Brain Simulation and Artificial
Neural Networks

The neuron doctrine put forward by Cajal was the starting point for research on single
neurons and their modeling. With the discovery of neural cells as the constituent elements
of information processing in the brain, their identification and characterization became
one of the main research endeavors of modern neuroscience. While Cajal’s initial work
solely relied on morphological descriptions of different cell types, technological progress
enabled the analysis of additional features such as physiological and molecular proper-
ties [107]. What is common to all of these methods is that they reveal the overwhelming
complexity of both structure and function that is present in every single neuron. The
multitude of morphological phenotypes, connectivity patterns and biochemical processes
has challenged neuroscientists from the beginning on and the quest for a complete census
of neural cell types in the brain is still ongoing [4].

Building Blocks of Biological Neurons

Despite this diversity, virtually all neurons share similar qualitative functional character-
istics, the arguably most important of which is the already mentioned action potential or
spike. The constituent elements of spike-based neural information processing are illus-
trated in Figure 2.4. A typical neuron is comprised of a cell body, the soma, dendrites and

Figure 2.4: Generation and conduction of action potentials in biological neurons. Action potentials emitted
by presynaptic neurons travel along the dendrites and are integrated in the soma, resulting in a rise of
the membrane potential. As soon as the potential crosses a threshold, the neuron emits a spike that is
propagated along the axon towards postsynaptic neurons. The sketch of the neuron structure is based
on [108], the action potential trace is redrawn from the original recording in [109].

31



2 Models of the Brain

an axon.1 It receives input stimuli from presynaptic neurons through synaptic connections
at the dendrites that propagate incoming action potentials towards the soma where they
accumulate by increasing the postsynaptic neuron’s membrane potential. As soon as the
potential rises above defined threshold, the neuron elicits a spike that travels along the
axon towards the dendrites of other neurons. First recordings of the very specific voltage
trace of an action potential date back to the seminal work of Hodgkin and Huxley [109]
who for the first time reported exact measurements in the giant axons of squids in 1939.
These data later led to the formulation of the Hodgkin-Huxley neuron model in 1952
[110], which has remained one of the most detailed and expressive descriptions of neural
dynamics until the present day. However, whether a neuron model is appropriate or not
depends not only on its fidelity with respect to the reproduction of electrophysiological
ground truth but also on the actual scientific question at hand. This explains why there
is a plethora of different neuron models today and why simpler ones have not been
superseded by more complex ones. The following subsections will highlight the common
roots of today’s main streams of development and explain how modern ANNs and brain
simulations have emerged from them.

The Leaky Integrate-and-Fire Neuron Model

Even though the Hodgkin-Huxley neuron laid the foundations for modern high-fidelity
brain simulations, it was not the first mathematical description of a neuron. Already in
1907, Lapicque introduced a spiking neuron model that is today widely known as the
leaky integrate-and-fire (LIF) model [111, 112, 113]. It describes the temporal dynamics
of a spiking neuron with a functionally equivalent electrical circuit, an approach that
has evolved to one of the arguably most important techniques for the modeling and
simulation of single neurons. The main constituents of the model are summarized in
Figure 2.5. As indicated by the charges in the neuron at the top, the soma is negatively
charged at resting state with respect to the outside of the cell. While the exact value of
this resting state potential is influenced by many different factors, a common value that
is often assumed in simulations is −70mV. When the neuron receives input through its
synapses or when it emits a spike, the membrane potential changes. The influx and efflux
of charges is regulated by the cell membrane, which insulates the inside of the neuron from
its outside. Charges can only enter or leave through state-dependent ion channels that
are embedded in it. They control the generation of action potentials through an intricate
chain of biophysical processes. The functionally equivalent electrical circuit of the LIF
neuron abstracts from all these details and subsumes the complex interplay between
ion channels by a capacitor 𝐶 that emulates the behavior of a neuron’s cell membrane.
External input such as spikes or electrical stimulation are represented by the time-varying
input current 𝐼 (𝑡). In the absence of any stimulus, 𝐶 discharges through resistor 𝑅 until

1It is important to note that there are also other types of neurons with a different morphological
structure. In this work, we will only consider multipolar neurons as the one depicted in Figure 2.4.
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Figure 2.5: Functionally equivalent electrical circuit of a LIF neuron and the resulting membrane potential
trace for a constant input current 𝐼 (𝑡) = 𝐼0. As depicted in the sketch of the neuron at the top, the membrane
potential is negative at resting state. Charges are separated by the neuron’s cell membrane, which is
emulated by capacitor 𝐶. The figure is partly based on [94], the membrane voltage trace was generated
with NEST [114].

the membrane potential 𝑢(𝑡) reaches its resting state at 𝑢𝑟𝑒𝑠𝑡. The overall current in the
circuit therefore amounts to:2

𝐼 (𝑡) = 𝐼𝑅(𝑡) + 𝐼𝐶(𝑡) (2.1)

Both currents 𝐼𝑅 and 𝐼𝐶 that flow through 𝑅 and 𝐶, respectively, can be expressed in terms
of the current membrane voltage 𝑢(𝑡) by applying Ohm’s law and using 𝐼 (𝑡) = ̇𝑞(𝑡) = 𝐶 ̇𝑢(𝑡):

𝐼 (𝑡) =
𝑢(𝑡) − 𝑢𝑟𝑒𝑠𝑡

𝑅
+ 𝐶 ̇𝑢(𝑡) (2.2)

When substituting the membrane time constant 𝜏𝑚 = 𝑅𝐶 in the equation above, one arrives
at the canonical representation of the subthreshold dynamics of the leaky integrate-and-fire
neuron:

𝜏𝑚 ̇𝑢(𝑡) = −(𝑢(𝑡) − 𝑢𝑟𝑒𝑠𝑡) + 𝑅𝐼 (𝑡) (2.3)

Equation 2.3 is an ordinary linear differential equation that can be solved analytically [94].
It describes the dynamics of the neuron’s membrane potential as long as the neuron
does not emit a spike, which is commonly referred to as the subthreshold regime. For a

2The following derivation of the canonical mathematical representation of the standard LIF neuron is
based on [94].
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constant input current 𝐼 (𝑡) = 𝐼0, the solution 𝑢(𝑡) is an exponential function. This explains
the specific shape of the rising edges in the plot on the right side of Figure 2.5. What is,
however, not modeled by Equation 2.3, is the actual generation of spikes that are triggered
every time the membrane voltage crosses a fixed threshold 𝜗 from below. As plotted in
the voltage trace, this leads to an instantaneous decay of the membrane to voltage to the
reset potential. The spike generation is implemented by a separate reset mechanism that
monitors 𝑢(𝑡) and becomes active as soon as 𝜗 is reached from below:

∀𝑡𝑓 ∶ 𝑢(𝑡𝑓) = 𝜗 → lim
𝑡→𝑡+𝑓

𝑢(𝑡) = 𝑢𝑟𝑒𝑠𝑒𝑡 (2.4)

In the equation above, 𝑡𝑓 denotes the neuron’s firing time. Note that the reset potential 𝑢𝑟𝑒𝑠𝑒𝑡
can be different from 𝑢𝑟𝑒𝑠𝑡. Typically, it is chosen to be lower than 𝑢𝑟𝑒𝑠𝑡 in accordance with
measurements from biological neurons. A single spike at time 𝑡𝑓 is commonly represented
by the Dirac 𝛿 function 𝛿(𝑡 − 𝑡𝑓). The set of all spikes emitted by a neuron is referred to as
a spike train 𝑆(𝑡) that is accordingly defined as follows:

𝑆(𝑡) = ∑
𝑓
𝛿(𝑡 − 𝑡𝑓) (2.5)

Equations 2.4 and 2.5 complete the definition of the basic leaky integrate-and-fire neuron
model. Practical implementations may feature additional parameters, e.g. to control the
time of the neuron’s refractory period after an action potential during which no other
spike can be generated. In the plot of Figure 2.5, this dead time is visible as small plateaus
of constant membrane potential between voltage resets and subsequent rising edges
of 𝑢(𝑡).

The probably most salient feature of the LIF neuron is that it does not explicitly
model the process of spike generation in spite of being a spiking neuron. Instead, it
only outputs the resulting spike train 𝑆(𝑡). By contrast, the already mentioned Hodgkin-
Huxley model features a complex system of differential equations that capture the full
cycle of action potential generation without the need for any external reset mechanism.
It contains explicit mathematical descriptions of the dynamics of the ion channels in
the neuron’s membrane and represents them by means of electrical conductances. This
is why the Hodgkin-Huxley model belongs to the class of conductance-based neuron
models and is arguably one of its most important representatives. The LIF neuron is
a phenomenological model that abstracts from biological detail and only qualitatively
captures the experimentally observed behavior without accounting for the underlying
electrophysiological processes. At first glance, this makes it seem inferior to conductance-
based neuron models. However, in many applications, the specific nature of action
potentials renders the aforementioned inaccuracies practically irrelevant. Unlike other
processes in biology, spikes are digital all-or-none events. All information is encoded
in the fact whether a spike has occurred or not. The specific shape of a spike, i.e. the
course of the membrane potential during its emission, is irrelevant and typically identical
across different occurrences and neurons. Phenomenological neuron models exploit this
property to simplify the mathematical description. This makes them not only analytically
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Figure 2.6: Schema of a general analog neuron model. Inputs 𝑥𝑖 are weighted by their corresponding
synaptic weights 𝑤𝑖 before they are added. The neuron’s output is computed by applying an activation
function 𝑓 to the weighted sum. Typically, the bias term 𝑏 is replaced by a fixed input 𝑥0 = 1 with weight 𝑏.

tractable but also easier to simulate, especially in large-scale models where not the state of
only tens to hundreds but rather of millions to billions of neurons needs to be tracked. For
research in spike-based neural information processing where the focus is on computational
properties and not on biological modeling, the LIF neuron and its extensions are therefore
still among the most commonly used neuron models to date.

McCulloch-Pitts Cells
Even though LIF neurons are a considerable simplification of biological ground truth,
their temporal dynamics together with the discontinuous voltage reset mechanism span a
complex state space. This state space might be already too complex under the assumption
that only the occurrences of spikes are relevant while all other state variables such as
the membrane potential serve no specific computational purpose and are consequently
negligible in terms of information processing. This proposition formed the basis of the
seminal work by McCulloch and Pitts [32], who formulated a drastically reduced neuron
model in 1943. The McCulloch-Pitts cell has the same all-or-none output behavior like
spiking neuron models. However, external input is not represented through currents that
sum up in a capacitor. Instead, the neuron spikes as soon as it receives a minimum number
of concurrent excitatory inputs from presynaptic neurons. If only a single inhibitory
synapse becomes active, the spike is suppressed. Additionally, the model also accounts for
synaptic delays that determine when a spike emitted by a presynaptic afferent arrives at
the postsynaptic cell. This simple model no longer involves the computation of dynamical
states but is simply a function that describes a neuron’s output given a set of input signals.

The McCulloch-Pitts neuron laid the foundations for the development of the general
analog neuron model that has evolved to the standard building block of ANNs. Notably,
the modern definition is still very close the original formulation and mainly generalizes
some of the specific assumptions made by McCulloch and Pitts. Figure 2.6 provides an
overview of the model’s building blocks. The main simplification of common analog
neuron models compared to spiking neuron models is that they do not have an internal
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state which “memorizes” past inputs over a period of time.3 The dynamics equations
of the LIF neuron are replaced by an activation function 𝑓 ∶ ℝ ↦ ℝ that is applied to
the weighted sum of input signals 𝑥𝑖 to compute the neuron’s output. There is also a
fixed input bias 𝑏 that can be interpreted as an additional synapse with weight 𝑤0 and
constant input 1. The activation function 𝑓 fully determines the neuron’s computational
properties and can in principle be chosen arbitrarily. A small set of examples is depicted in
Figure 2.6. In the original McCulloch-Pitts cell, output signals were generated by a binary
step function in order to mimic the spikes of biological neurons. Over time, however,
the simple binary threshold logic was replaced by activation functions with continuous
output that can be interpreted as a spike rate. Moreover, the modern model no longer
contains inhibitory synapses that suppress all outputs. Instead, the weights 𝑤𝑖 can assume
both positive and negative real numbers with the former representing excitatory and the
latter inhibitory synapses.

Both the LIF neuron model and analog neuron models laid the foundations for new
fields of research that emerged in the following decades. While the first still remains one
of the most important tools in computational neuroscience and is today complemented
by models specialized for certain phenomena or describing dynamics at the molecular
level, the latter has been refined and extended for many different applications in machine
learning. The following two sections will highlight the main developments in neural
modeling in the respective fields and shed light on both the similarities and the differences
that emerged over time.

2.3 From Perceptrons to Deep Neural Networks

The neuron model by McCulloch and Pitts has become one of the arguably most important
tools of modern AI and machine learning. Even more groundbreaking was the new
paradigm that was put forward along with it. Differently from most neuroscientific
research at that time, which was mainly focused on the identification, description and
modeling of neural tissue, the McCulloch-Pitts cell was at the core of a new theory that
aimed to link the specific structure of a neural network to a well-defined computational
function [32]. Although limited to logical calculus, this theory for the first time enabled the
use of neural networks as a tool for goal-directed information processing. Nevertheless, it
took several decades until theory and computer technology had progressed far enough to
make neural networks practicable and competitive models of computation.

3In fact, there are also non-spiking neuron models that have an internal state. In the scope of this work,
however, we will always consider the most common case of stateless analog neuron models that operate in
the space of real numbers ℝ.
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Perceptrons

An important cornerstone for the modern definition of ANNs was laid with the devel-
opment of the Perceptron, a neural network model that is capable of learning pattern
recognition tasks, by Rosenblatt [115] in 1957. Unlike the networks considered in the
work by McCulloch and Pitts, its functionality is not defined or determined through an
analytical mapping between logical expressions and network topology. Like modern
neural networks, it is a statistical model that is capable of learning from data. Even though
Perceptrons are today commonly defined as neural networks with only a single neuron,
the original model is a brain-inspired neural network architecture scheme with many
different design parameters. A prototypical instantiation of that scheme with its main
building blocks is outlined in Figure 2.7. Input patterns are mapped to cells of a retina layer.
Like McCulloch-Pitts cells, all neurons in the model produce binary output signals. The
cells of the retina randomly project onto a layer of association cells with both excitatory
and inhibitory synaptic connections. If the total input of a neuron in the association
layer exceeds a threshold 𝜃, it in turn generates a binary output signal that is propagated
towards the response units. While connections between association cells and response
units are always excitatory, the efficacy of the signal transmission can change as part of
the learning process.

Figure 2.7: Main components of a Perceptron. Sensory input enters the system through the cells of the
retina that are randomly connected to association cells by excitatory (solid lines) and inhibitory (dashes lines)
connections. Association cells activate whenever the total input is above a defined threshold and stimulate
the subsequent response units through random excitatory connections. Only a subset of the connections is
shown. This specific instantiation of the Perceptron model is also called a Photoperceptron. The figure is
based on an illustration from the report by Rosenblatt [116].
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It is important to note that the Perceptron model outlined above is just one example
from a whole spectrum of different variants envisioned by Rosenblatt [116]. Since it
was designed to process visual input, it is called a Photoperceptron. Remarkably, it was
already mentioned in the original report that this type is suited for processing static input
patterns. A Perceptron capable of processing temporal input sequences such as audio
signals would then analogously be called a Phonoperceptron [115]. The distinction between
static and sequential input data is still one of the most important criteria for the design of
a neural network architecture today. This is also true for dataset augmentation methods
that generate additional training samples by applying different types of transformations
to the input data [117]. Initial experiments with the Perceptron were concerned with
rather simple tasks such as the discrimination of two letters with the actual dataset being
stored as dot images on punch cards. To ensure that the trained system recognized the
actual pattern rather than artifacts related to its specific input representation, the samples
were modified by a set of simple transformations [118].

A third pioneering contribution that emerged from the development of the Perceptron
was the construction of the Mark I Perceptron depicted in Figure 2.8, a device that was
specifically designed according to the principles of the theory put forward by Rosen-
blatt [119]. Unlike a computer program, the machine did not simulate the Perceptron
model but instead emulated it with dedicated electrical circuitry, which makes it one of
the first implementations of a neuromorphic processor. Already at that time, the main
motivation for building such a device was the insufficient scalability of standard computers
to large network models [118]. Neuromorphic engineering is now an established area of
research and has gained considerable momentum in recent years.

The Perceptron Learning Rule and the XOR Problem
While many of the concepts realized in the Perceptron were considerably ahead of their
time, the underlying theory was still in its infancy. This led Minsky and Papert to conduct
a fundamental study on the Perceptron’s computational capabilities [11]. The contribution
of their work was twofold. First, they provided a formal and compact formulation of
the Perceptron model that abstracts even more from biological detail than Rosenblatt’s
original version. In particular, their revised definition introduces synaptic weights as
model parameters, making it the basis of the modern standard analog neuron model from
Figure 2.6. Given an input vector 𝑥𝑖 the model output ̂𝑦𝑖 for a weight vector 𝑤𝑘 is computed
as follows:

̂𝑦𝑖 = 𝜃(𝑤𝑘𝑥𝑖) = 𝜃 (
𝑛
∑
𝑗=0

𝑤 𝑗
𝑘𝑥

𝑗
𝑖) (2.6)

All inputs of the neuron are scaled by their corresponding synaptic weights and summed.
𝜃 is similar to the binary step function from Figure 2.6 except that the output value for
negative arguments is not 0 but -1. The model learns by updating its weights according
to the following learning rule (adapted from [120]):

𝑤𝑘+1 = 𝑤𝑘 − 𝜂( ̂𝑦𝑖 − 𝑦𝑖)𝑥𝑖 (2.7)
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Figure 2.8: Photo of the Mark I Perceptron. The arrangement of processing elements in the device follows
the schema from Figure 2.7: Input patterns of the S-units are recorded by the camera shown on the left
and are then forwarded to the A-units that are located at the vertical black panel in the back. The output
display of the response units is located on the rightmost part of the machine [119]. Photo courtesy of the
National Museum of the U.S. Navy (public domain).

The equation above is the modern formulation of the Perceptron learning rule. 𝑤𝑘 denotes
the neuron’s current set of weights, 𝑦𝑖 the expected output for input 𝑥𝑖 and ̂𝑦𝑖 the actual
prediction of the model. 𝜂 is a learning rate that controls the magnitude of the weight
update. The output of the Perceptron is binary with 𝑦𝑖, ̂𝑦𝑖 ∈ {−1, +1}. Correct predictions
with ̂𝑦𝑖 = 𝑦𝑖 therefore leave the weight vector 𝑤𝑘 unchanged. Only classification errors
yield a weight update that is proportional to 𝑥𝑖 and 𝜂. These updates are applied directly
and individually for every input sample, which makes the Perceptron algorithm an online
learning rule. Closely related to this is ADALINE by Bernard Widrow, another early
neural network model that was specifically designed for being implemented as a physical
device [121, 122]. Both its neuron model and the learning rule are almost identical to the
Perceptron with the exception that neural output is not binarized through a threshold
function but directly returned as an analog value.

The second contribution by Minsky and Papert was a principled analysis of the classes
of problems that can be solved by the Perceptron. Even though they introduced an
extensive mathematical framework for their study, the result with the most lasting impact
is surprisingly evident: The Perceptron can only classify datasets that are linearly separable.
In particular, it cannot correctly classify the simple XOR dataset from Figure 2.9. The
data set contains only four sample points in 2D space with labels that are determined by
the values of the XOR function at their respective coordinates. The decision boundary 𝑥𝑏
spanned by the Perceptron is a line that separates the two subspaces with positively and
negatively classified data points, respectively:

0 = 𝜃(𝑤𝑘𝑥𝑏) = 𝑤𝑘𝑥𝑏 (2.8)
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Figure 2.9: Classification of the XOR dataset with the Perceptron. Every plot above corresponds to an
iteration of the algorithm. Positive and negative samples of the dataset are printed as circles and rectangles,
respectively. Colors highlight the sample for which the last weight update was computed. Green indicates
a correct classification and red an error. The black line indicates the decision boundary. Samples in the
shaded area classified as +1. As one can easily see, the dataset is not linearly separable, which is why the
decision boundary continuously changes without converging.

Already by mere visual inspection, one can directly see that the two classes of the dataset
are not linearly separable, which means that they cannot be separated by linear decision
boundary. As a result, the classifier learned by the Perceptron does not converge but
continues to jump between the two classes. One can prove that the learning rule from
Equation 2.7 always converges for linearly separable datasets [120]. The finding that the
model is not even capable of learning to classify such a simple problem was one of the
reasons for a drastic decline in neural network research at the onset of the first AI winter
in 1969.

Early Neural Networks beyond the Perceptron: Hopfield Networks
and Self-Organizing Maps
When the Perceptron was first presented in the popular press, it was called the “embryo
of an electronic computer” [123] with an “electronic ‘brain’ [that] teaches itself” and that
would one day be able to “walk, talk, see, write, reproduce itself and be conscious of
its existence” [123, 124]. The reaction to the discouraging results of Minsky and Papert
turned out to be just as inflated as these overly optimistic predictions. In the following
years, connectionism, the study of neural networks, became highly unpopular and research
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in AI shifted largely to symbolic representations, planning and logical reasoning methods.
It was not before the beginning of the 1980s that the interest in neural modeling started
to rise again. Within a surprisingly short time span, three important contributions where
made by Hopfield, Hinton and Sejnowski, and Kohonen. Hopfield [125] introduced a
completely new neural network architecture that implemented an associative memory
system. Unlike the Perceptron, Hopfield networks have recurrent connections and weights
can be computed analytically to store a set of memory patterns. Each pattern corresponds
to an activation state of all neurons in the network. While this state can in principle
be any real number, the original version of the network was built from Perceptron-like
neurons with binary output. Input is fed into the network by clamping a subset of the
neurons to their desired values. The activation dynamics then cause the other cells to
converge to the complete pattern that is cued by the input cells and thereby implement
the behavior of a content-addressable memory. Boltzmann machines are based on the
same principles but have different dynamics equations that make the activation frequency
of every neuron in the network correspond to the probability of a hypothesis [126]. This
allows for statistical inference by setting neurons that corresponds to known facts to
their observed values and for learning of latent space representations by hidden cells
that are not connected to any input. Differently from the Perceptron, the activation of
neurons is stochastic. The third influential network architecture from that time is the
self-organizing map (SOM) developed by Kohonen [127]. It introduced local competition
between neurons aligned on a sheet to learn topologically correct representation of input
data by means of a self-organizing process.

On the Computational Power of Artificial Neural Networks

The commonality of the three examples outlined above is that, although they implement
fundamentally different principles of computation, the underlying neuron models are
directly derived from the original Perceptron model. This clearly highlights that the
computational properties of a neural network depend more on its overall architecture
rather than on the specific behavior of its individual neurons. The minimum requirements
for a neural network architecture that is capable of performing meaningful computation
in a general sense were defined with the proof of the universal approximation theorem
(UAT) [128]: A neural network with only a single hidden layer of neurons between the
input and output units can approximate any Borel measurable function4 that is defined
on finite input and output spaces to any level of accuracy as long there are sufficiently
many units in the hidden layer. Notably, the activation functions can be chosen arbitrarily
as long as they are bounded and non-constant. For a given function, the UAT then
guarantees the existence of a neural network that approximates it. However, it does
not make any statement about the number of hidden units required or how to set the
network’s synaptic weights. What at first glance seems like a major impediment for

4In particular, all continuous functions are Borel measurable.
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practical applications was actually already solved at the time the proof appeared. The
development of the backpropagation algorithm, an efficient method for computing weight
updates in feedforward neural networks with any number of hidden layers, had already
started almost two decades before [129]. Today, it is still at the core of virtually all research
in ANNs.

Brain-Inspired Pattern Recognition with the Neocognitron
With the universal approximation theorem and the backpropagation algorithm, two im-
portant ingredients for modern ANNs were readily available by the end of the 1980s.
Nevertheless, machine learning research at that time was largely dominated by graphical
models, kernel methods and feature engineering. For the breakthrough of neural net-
works, two more components were still missing: appropriate architectures and sufficient
computational resources. An early contribution to the first part was the Neocognitron
by Fukushima [130], a neural network architecture for visual pattern recognition. The
synaptic connectivity of the network takes inspiration from the findings by Hubel and
Wiesel [98] on the organization of the visual cortex of the cat, where populations of
simple cells (S-cells) project onto populations of complex cells (C-cells). While the for-
mer respond to simple visual features such as lines at specific positions in the input
image, the latter aggregate the combined information received from the S-cells to detect
higher-level position invariant features in the input. In the Neocognitron, all neurons are
arranged in a layered network with alternating S-layers and C-layers. Cells within a layer
are organized in planes that are topographically consistent with the input image plane.
The subsets of neurons from the previous layer that project to S-cells in the next layer
have identical shape but are shifted across the image plane. This specific arrangement
of neurons and synaptic connections makes representations in later layers increasingly
abstract and enables the learning of representations that are invariant to the position of a
specific pattern. The Neocognitron can therefore recognize known patterns even if they
are shifted. Learning a specific pattern recognition task is, however, problematic since the
model’s original learning rule is unsupervised and therefore does not allow to enforce a
target mapping between input and output.

Deep Neural Networks
Lecun et al. [131] refined the bioinspired architecture scheme underlying the Neocog-
nitron in two important aspects. First, all weights of the network are trained through
backpropagation. Second, synaptic connectivity is constrained in such a way that the
resulting operations carried out between subsequent network layers are discrete convo-
lutions, each of which extracts a specific feature from the image. Figure 2.10 shows a
basic example. The convolutions act as filters that extract features from the input image.
Every filter is defined by a matrix, the convolution kernel, and converts the input image
to a feature map. As depicted in the figure, the detection of different types of features
requires different kernels and therefore results in multiple feature maps. At first glance,

42



2.3 From Perceptrons to Deep Neural Networks

Figure 2.10: Convolution-based image filters. Basic image features such as edges can be extracted by
applying a convolution kernel to the input image. The example above illustrates how the shape of the kernel
controls the extraction of horizontal edges (left), vertical edges (right) or both horizontal and vertical edges
(middle). Better kernels can enhance the extraction quality. The filtered images have been post-processed
for better visibility, the kernels are based on [132].

this seems very similar to traditional approaches in machine learning were suitable fea-
tures are engineered manually. The main innovation of CNNs is that the kernels are
encoded by synaptic weights that are optimized during the training of the networks. This
completely alleviates any need for feature engineering since the network learns the best
matching set of features automatically. It is remarkable that already the first modern CNN
successfully addressed a commercial use case. The data set that was created to train it for
the recognition of handwritten digits in zip codes is called MNIST and still widely used as
a baseline today.

The network developed by Lecun et al. [131] was still comparatively small in size.
Scaling its architecture to a modern deep CNN with multiple layers of neurons was only
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possible after further theoretical insights and, most importantly, sufficiently large data
sets and enough compute power had become available. While many different streams
of development contributed towards this goal [129, 133], there were two particularly
significant milestones that set the ground for the breakthrough of deep learning. Hinton
et al. [31] presented a new training procedure that enabled the learning of hierarchical
feature representations in deep belief networks (DBNs), a neural network architecture
built from stacked restricted Boltzmann machines. Unlike modern DNNs, this method
is based on unsupervised learning and outperformed all competing not task-tailored
backpropagation-based approaches at that time on the MNIST data set. As it turned
out, pre-training neural networks with this method in the first step made it possible to
apply the backpropagation algorithm in a second step to train the network on the actual
task [133]. The final breakthrough of modern DNNs was the introduction of the first
deep CNN that outperformed all other competing approaches in an image recognition
challenge. It was trained solely with backpropagation on a massively large data set and
leveraged GPUs for accelerated computing [134]. Importantly, it was not based on a new
theory or a single innovation but leveraged and integrated a tool set that had been in
development for decades.

Today modern AI has become unthinkable without DNNs, which is also reflected in
publication counts that have grown from about a hundred to tens of thousands papers per
year. The widespread adoption of deep learning-based models and methods in virtually
all fields of research and engineering has also been facilitated by efforts from industry on
the development of tools and standards that make the design of DNNs both comparatively
simple and affordable. In fact, the whole field is currently driven to a considerable extent
by large companies such as Google, Microsoft, Facebook, Huawei, Baidu and Sony, all
of which are providing their software frameworks as open source [135, 136, 137, 138,
139, 140]. The huge economic impact has even triggered the design of new hardware
accelerators that are specifically optimized for the training and execution of DNNs [141,
142, 143, 144].

Remarkably, modern DNNs are still based on the same principles that were discovered
decades before. It is therefore true that deep learning is to some extent inspired by the brain.
Also more recent developments in the field are argued to be influenced by neuroscience
research [54]. Nevertheless, the fieldwas largely driven by technical considerations already
before the breakthrough of DNNs. For example, recurrent neural networks with reciprocal
connections could not be trained efficiently before the introduction of long short-term
memory (LSTM), a new analog neural network model that mitigated the vanishing gradient
problem [145]. This model was designed with goal of optimizing the learning process
without any specific consideration of biological plausibility. As a result, modern DNNs
are largely based on neuroscientific research from the first half of the 20th century. Today,
brain simulations offer a new perspective for the transfer of findings from neuroscience
to AI.
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2.4 From Spiking Neurons to Large-Scale
Brain Simulations

The early work by Lapicque [111] and later Hodgkin and Huxley [110] on the mathe-
matical modeling of biological neurons laid the foundations for modern computational
neuroscience. Unlike indicated by the word computational, the focus of this branch of
neuroscience is not necessarily on the design computer-executable models but rather on
the modeling and analysis of neural dynamics [146]. However, only comparatively simple
models are analytically tractable, which is why the study of more complex or detailed ones
is not possible without computer simulations. As with AI, massive increases in computing
power in recent decades have enabled the study of ever-larger brain models. This makes
brain simulations no longer only a tool that supports theoretical studies but a promising
new field of research in neuroscience.

Simulation Neuroscience
Like virtually any other field of research, modern neuroscience would be unthinkable
without the computer. No other tool can manage the exploding amounts of data and no
other tool enables the efficient analysis of theoretical models. The advent of big data
in neuroscience has even lead to the foundation of neuroinformatics as a new branch of
informatics that is specifically concerned with the storage and organization of neurosci-
entific data [147]. Neural network simulators for computational neuroscience such as
GENESIS, NEURON, NEST and BRIAN have been in use since decades to enable modeling
and simulation based on task-tailored standardized tools and programming interfaces [114,
148, 149, 150]. But in all these use cases, the computer only assumes a supportive role
that complements and augments traditional methods, be it the acquisition of imaging data
during brain scans or the analysis of theoretical models. The underlying scientific practice
has largely remained unchanged for several decades. In many other fields of research
and engineering, the development has been quite different. Simulations have become
an indispensable cornerstone of scientific discovery in weather prediction, automotive
engineering and astronomy, just to name a few [151, 152, 153]. They no longer assume a
merely supportive role but have evolved to both the subject and methodology of research.
This has mainly become possible as a result of the continuous progression of Moore’s law,
which has enabled the construction of more powerful computers that can execute more
realistic simulations. Technically, simulating biological nervous systems at a high level of
detail is therefore in reach.

Simulation neuroscience has been proposed as a new branch of neuroscience that
bundles all research efforts on data-driven large-scale brain simulations [4]. At the core of
these simulations are highly realistic brain models that are designed to capture as much
biological detail as possible. Rather than condensing new hypotheses or experimental
findings into an abstract representation, simulation neuroscience strives to synthesize a
virtual simulated brain by integrating and unifying the vast amounts of largely isolated
neuroscientific theories and datasets. The resulting brain simulations are then no longer
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just computational models but comprehensive computer-executable implementations of
the knowledge and data that were used to build them. Not only can they be used to replicate
the data that they were created from but, more importantly, also to predict data that cannot
be measured. However, one cannot expect that there will ever be sufficient experimental
data to fully digitize a biological brain. Simulation neuroscience addresses this challenge
by not modeling individual brains but instead extracting principles that describe how
different types of neurons are structured and form synapses. From these principles that
are implemented as statistical rules, the actual brain model can be synthesized. Their
identification is one of the main scientific insights gained through simulation neuroscience
[4], which is best described by Richard Feynman’s famous postulate “what I cannot create,
I do not understand.”

Besides the knowledge gained from their construction, brain simulations also bear huge
methodological advantages with far-reaching impacts on neuroscience. Most importantly,
they decouple the subject of study from any physical constraints. The space of exploration
is no longer limited by experimental procedures or mathematical abstractions but only
by computing power and storage. Brain research can thereby benefit from the same
unprecedented efficiency gains that information and communications technology (ICT)
already made available to many other disciplines. In this sense, brain simulations lay
the foundations for the virtualization of neuroscience. They enable the recording of brain
activity at any desired temporal and spatial resolution. Physical measurement devices
become virtual probes that can be combined and distributed without any limitations and
that can be added in arbitrary number at no additional cost. This makes the complete
state of the simulated neural circuitry both observable and modifiable, which lays the
foundations for reproducible research and fosters exchange with AI.

Large-Scale Brain Simulations
There is no standardized set of criteria a brain simulation needs to fulfill in order to qualify
as a large-scale brain simulation. Simulation neuroscience only addresses a relatively
small subset of the field due to its focus on data-driven methods that aim to reconstruct
biological neural circuitry at an extremely high level of detail. The resulting simulations
necessarily become large in scale because the number of neurons needs to approximate
that of the biological modeling target. There are, however, also many other simplified
large-scale models that are neuroscientifically grounded. Even though they capture less
detail at the cellular level, they can still provide mechanistic explanations of emergent
phenomena on the network level and on the level of observable behavior. For this reason,
this work will adopt a wider scope for the term large-scale brain simulation that also
includes these simplified models. Table 2.2 provides an overview of selected research on
this topic starting with early work from the beginning of the 1980s. At that time, brain
simulations were considerably constrained by limited computing power and storage. But
while it is true that advances in computer science have over time enabled the creation
of increasingly large models, it is important to note that the number of neurons alone
is not necessarily directly related to the complexity of the model. Unlike in DNNs,
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Table 2.2: Overview of selected large-scale brain simulations.

Year Model Brain Region Neurons Model Type

1982 Traub and Wong [154] Hippocampus 1.00×102 Data-Driven
Compartmental Neurons
Static Synapses

1987 Pearson et al. [155] Somatosensory
Cortex

1.50×103 Simplified
Analog Point Neurons
Plastic Synapses

1988 Traub et al. [156] Hippocampus 9.90×103 Data-Driven
Compartmental Neurons
Static Synapses

1989 Finkel and Edelman [157] Visual Cortex 2.22×105 Simplified
Analog Point Neurons
Static Synapses

1997 Lumer et al. [158] Visual Cortex
and Thalamus

6.50×104 Simplified
Spiking Point Neurons
Static Synapses

2000 Medina et al. [159] Cerebellum 1.16×104 Data-Driven
Spiking Point Neurons
Plastic Synapses

2008 Izhikevich and Edelman [160] Cortex
and Thalamus

1.00×106 Data-Driven
Compartmental Neurons
Plastic Synapses

2009 Ananthanarayanan et al. [161] Visual Cortex
and Thalamus

1.62×109 Simplified
Spiking Point Neurons
Plastic Synapses

2012 Eliasmith et al. [162] Whole Brain 2.50×106 Abstract Functional
Spiking Point Neurons
Static Synapses

2012 Potjans and Diesmann [163] Neocortical
Microcircuit

8.00×104 Simplified
Spiking Point Neurons
Static Synapses

2012 Preissl et al. [164] 77 Cortical
Regions

6.50×1010 Simplified
TrueNorth Neurons
Static Synapses

2015 Markram et al. [59] Neocortical
Microcircuit

3.10×104 Data-Driven
Comparmental Neurons
Plastic Synapses

2019 Casali et al. [165] Cerebellar
Microcircuit

9.67×104 Data-Driven
Spiking Point Neurons
Static Synapses

2019 Antolík et al. [166] Visual Cortex 6.50×104 Data-Driven
Spiking Point Neurons
Plastic Synapses

2020 Billeh et al. [167] Visual Cortex 2.31×105 Data-Driven
Compartmental Neurons
Static Synapses
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neuron models are very diverse, ranging from simple point neurons to complex spatial
representations with hundreds of compartments. The computing power for simulating
a single detailed neuron can therefore be orders of magnitude higher than for a simple
one. The rightmost column of Table 2.2 summarizes basic model features that allow for a
better comparison between different studies. If synaptic transmission can change over
longer or shorter periods, the synapses are indicated as plastic. The distinction between
data-driven and simplified models is less obvious. Except for simulations that explicitly
focus on a data-driven workflow [59, 165, 166, 167], the classification in the table can
therefore only provide a rather coarse indication of how well a simulation is aligned to
biological ground-truth.

Notably, the earliest model in the table by Traub and Wong [154] was already data-
driven. The overall model only contained 100 neurons but employed a detailed compart-
mental representation of individual cells. It was specifically designed to explain findings
on neural synchronization that could not be derived from measurements alone. In com-
parison, the work by Finkel and Edelman [157] takes a top-down approach to investigate
how a recurrent connectivity scheme called reentry can enable the integration of differ-
ent streams of information in the visual cortex. Rather than augmenting experimental
findings, the goal is to explore a new hypothesis. While the brain model is based on the
structure of the primate visual system, it makes many simplifications. In particular, every
neuron in the network represents a whole group of biological neurons and therefore
outputs an activity average instead of individual spikes. Nevertheless, the simulation
responds to certain visual illusions in the same way as humans.

Massively large simulations that cover not only smaller fractions of brain regions
but larger areas up to the whole brain require simplifications and abstractions to remain
computationally feasible. For example, the cortical simulation by Izhikevich and Edelman
[160] is largely data-driven, based on compartmental neurons and even supports synaptic
plasticity. To enable efficient simulation, it employs a highly optimized phenomenologi-
cal neuron model that reproduces typical spike patterns of biological neurons without
simulating the underlying electrophysiological processes [168]. Ananthanarayanan et al.
[161] focus primarily on the efficient scaling of their newly developed simulation engine
to simulate a model of the visual cortex and thalamus which exceeds the size of the cat’s
cortex. Their model captures essential aspects of cortical activity but it is based on simple
LIF neurons and does not incorporate any detailed ground-truth data. This is different in
the whole-brain model Spaun by Eliasmith et al. [162]. It is also based on LIF neurons but
uses parameters from literature. Nevertheless, Spaun does not qualify as a data-driven
model because, even though biologically constrained, it is synthesized from functional
descriptions by means of a tool set called Neural Engineering Framework [169]. It is the
only brain simulation in this list that has been designed to expose actual observable
behavior and can solve basic tasks like image recognition or counting. The largest model
in terms of the number of neurons in Table 2.2 was published by Preissl et al. [164] and
also was created to demonstrate the scalability of the simulation on a high performance
computer. The underlying neuron model is even simpler than the LIF model and was also
implemented in hardware on IBM’s TrueNorth chip [170].
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The starting point for modern large-scale data-driven brain simulations was marked
by the synthesis of a highly detailed model of the neocortical microcircuit by Markram
et al. [59] in the BBP. While the total number of neurons in the model at first glance
seems comparatively slow, the simulation required the full capacity of a high performance
computer due to the high level of detail at which each cell was modeled. Even though it
was not engineered to reproduce any specific neural activity, the final model generated
the same firing statistics observed in experiments. More recent efforts in this direction by
Billeh et al. [167] have yielded a data-driven brain simulation of the mouse primary visual
cortex. Notably, the authors created two models with detailed compartmental neurons
and point neurons, respectively, and could prove that both types of models reproduced
network activity similarly well, which confirms that point neurons are an adequate level
of modeling in the scope of this work. Antolík et al. [166] even focused exclusively on
building a realistic data-driven model of the cat visual cortex solely from simple spiking
point neurons.

The different large-scale modeling efforts summarized in Table 2.2 are highly diverse.
Nevertheless, they also share two important common goals. First, there is a clear focus on
modeling cortical networks, especially the visual cortex. Only a few studies implement
simulations of the hippocampus and the cerebellum. Furthermore, there is also work
on modeling the spinal cord that is, however, only loosely related to brain simulations
and therefore not included in the table [171]. The same applies to extremely detailed
simulations of single neurons [172, 173] and the OpenWorm project, which aims to provide
a complete simulation of the nematodeCaenorhabditis elegans including its nervous system
with 302 neurons [174, 175]. Second, many of the presented studies use the developed
models to explore the influence of parameters on the resulting dynamic properties of
the neural circuitry. This exploration is completely impossible in experiments and less
informative in traditional reduced models. Even though the data produced by brain
simulations is just as complex and diverse as the measurements recorded with traditional
methods, the possibility of changing parameters and observing the resulting changes
opens up a completely new perspective for neuroscientific research.

Neuromorphic Computing
The origins of neuromorphic engineering date back to Mead [176], whose work laid the
foundations for the design of computing devices that “emulate the organization and
function of nervous systems” [177]. It is motivated by the unique computational properties
of biological brains that are unmatched by any traditional microprocessor developed so
far. Even though computers based on the von Neumann architecture outperform the brain
in some applications and with respect to some metrics, they are highly optimized for a
narrow set of features at the cost of versatility. Neuromorphic processors take inspiration
from the functional organization of the brain and are optimized for the efficient simulation
of SNNs. While this idea is not new, it has gained considerable momentum in recent years
with support of the HBP and due to growing interest in industry. Currently available
systems are still at prototype stage but have reached a level of maturity that allows for
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using them in productive research. In particular, recent designs support network models
of practically relevant sizes, which makes them suitable for both AI and large-scale brain
simulations.

Most neuromorphic chips are manufactured with the same CMOS fabrication processes
that are also used for standard von Neumann microprocessors. This makes it obvious
that it is impossible to directly copy molecular processes from the brain to create a
neuromorphic circuit. Instead, it is required to determine a meaningful level of abstraction
that is compatible with the features and constraints of CMOS technology. The natural
starting point common to all neuromorphic processor architectures are the state update
equations of spiking neuron models such as those of the LIF neuron from Section 2.2.
Depending on how these equations are realized on the chip, it is possible to distinguish
two main classes of neuromorphic systems:

• Analog Neuromorphic Processors: The functionally equivalent electrical circuit of
the neuron model is realized physically on the chip. Capacitances, voltages, current
flows, etc. are directly represented by corresponding components on the chip, which
is why the neural network is not simulated but emulated.

• Digital Neuromorphic Processors: The dynamics of the neuron model are simulated
by digital circuitry with the design space ranging from optimized von Neumann
processors to custom architectures.

Analog designs can operate extremely fast and efficiently since they can fully leverage
the electrical properties of the circuitry on the chip. At the same time, however, these
properties also impose constraints. For example, the emulation speed is fully determined
by the laws of electrodynamics and, like in every analog system, there is noise. Some
limitations can be mitigated by combining the analog circuitry with additional digital
control logic. This approach is very common for realizing synaptic connectivity since
direct connections between neurons like in the brain are not a viable design choice.
Technically, dense connectivity would be extremely hard or even impossible to realize
with CMOS technology. Practically, a fixed connectivity pattern would confine users
to a very limited set of network architectures and applications. Most neuromorphic
chips therefore share connections between neurons through time multiplexing, which is
possible because electrical circuits can operate at much higher frequencies than biological
neural tissue. In addition, the synaptic connectivity becomes freely configurable, which
makes it possible to support many different types of network architectures. In summary,
the use of dedicated circuits to compute or emulate neural dynamics and optimized
interconnects for synaptic transmission are the two key characteristics of both analog
and digital neuromorphic processors.

The multitude of implementation choices for neuromorphic systems opens up a vast
design space that is reflected by the huge diversity of available architectures. Three
prominent neuromorphic processors are listed in Table 2.3. SpiNNaker and BrainScaleS
are developed in the HBP whereas Loihi is a research chip by Intel. Common to all three
of them is that they have been made available to larger communities. Even though they
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Table 2.3: Schematic diagrams of the neuromorphic chip designs SpiNNaker, BrainScaleS and Intel Loihi.
For the former two, the first column depicts the functional layout of a single chip and the right column the
layout of a system comprised of multiple chips. For Loihi, the two columns correspond to an individual core
and a full chip, respectively. Multiple chips can be connected in a layout similar to those of the other two
architectures. Neuron numbers correspond to maximum values for BrainScaleS and Loihi. In SpiNNaker,
they depend on the neuron and network models. SpiNNaker and BrainScaleS transmit spikes based on the
AER scheme. The drawings are partly adapted from Walter et al. [61] and are based on the corresponding
original publications [62, 178, 179, 180].
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are research-focused systems, they support large-scale neural network models and can be
programmed flexibly through high-level programming interfaces. Each of them represents
a unique approach to neuromorphic computing.

SpiNNaker is arguably the most conventional among them. Each chip is comprised of
18 von Neumann processor cores that are based on the widespread ARM architecture [180].
Neural dynamics are therefore not emulated like on fully neuromorphic designs with
custom circuitry but implemented as a simulation program. The speedup is gained through
a custom mesh-based routing system that is optimized for asynchronous spike-based
communication and highly scalable from a single chip to up to 216 chips [181]. All nodes
of a SpiNNaker system are organized in mesh of toroidal topology in which each chip
can only communicate with its direct neighbors as visualized in Table 2.3. Since the
actual neural computation runs on the ARM cores of the individual chips, it is possible to
implement many different types of neuron models and learning rules. Another special
feature is SpiNNaker’s redundant design. Out of the 18 processor cores, one is reserved as
a spare. Similarly, additional diagonal connections in the routing mesh can compensate
for defect links. In the HBP, a large-scale system with 28 800 chips has been set up [182].
In general, SpiNNaker is able to simulate neural network models in biological real-time,
which means that the temporal scale of neural dynamics is identical to that in the brain.
However, the actual execution speed is highly dependent on the model. For example,
van Albada et al. [183] simulated a version of the cortical column model by Potjans and
Diesmann [163] from Table 2.2 with 80 000 neurons on 217 chips at a speed 20 times lower
than biological real-time.

A fundamentally different system design compared to that of SpiNNaker is realized
in the BrainScaleS system [179, 184, 185]. It is a hybrid neuromorphic architecture with
analog neuron circuitry and digital signal transmission. The system’s core element is
the HICANN (High Input Count Analog Neural Network) chip that can host up to 512
analog neurons and runs at a speed 104 times faster than biological real-time. Unique to
BrainScaleS is its wafer-scale integration. Individual chips are not cut and individually
packaged but instead remain on a wafer with a total of 384 units. Chip defects can be
addressed by reconfiguring the system appropriately to exclude malfunctioning circuits.
The BrainScaleS system built in the HBP is comprised of a total of 20 wafers [182]. This in
principle not only enables support for large-scale models but also the coverage of extended
timescales due to the considerable speed-up. However, the increased performance brought
by physical emulation of neuron states also entails less flexibility. It is not possible to
change the neuron model other than by adjusting the parameters of the built-in adaptive
exponential integrate-and-fire model [186]. Similarly, while the architecture supports
learning, the dynamics of synaptic updates are largely determined by the hardware. Users
can therefore only configure variations of the chip’s trace-based learning mechanism.
Especially the latter point will be addressed in the successor system BrainScaleS-2 [187].

Loihi by Intel in many ways combines different aspects of SpiNNaker and BrainScales.
The architecture has an asynchronous design with dedicated digital circuits for a LIF
neuron model [62]. A single chip has 128 cores, each of which can host 1024 LIF neurons.
Loihi is highly scalable and supports systems with up to 4096 cores per chip and up
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to 16 384 chips. The fact that it is the most recent architecture in Table 2.3 becomes
especially evident in its flexibility. Even though the underlying neuron model is hard-
wired like in BrainScaleS, it is possible to specify multicompartmental neurons. Similarly,
even though learning is based on spike traces, Loihi offers many trace variables and
additional synaptic tags that can be combined by the user to specify learning rules. Three
additional von Neumann cores allow for further customization. An important feature
of the overall architecture is its determinism. In SpiNNaker and BrainScaleS, multiple
simulation runs of the same network with identical input may yield different results due
to the nondeterministic routing system and noise in the analog circuitry, respectively.
Loihi enforces determinism by means of a synchronization mechanism that can also be
leveraged to adjust the simulation speed.

The brief overview above only introduces the main features of three of the most
relevant neuromorphic architectures. Not only are there many other neuromorphic
processors, each of them also incorporates a huge set of features enabled by unique
design choices [61, 188]. It is therefore challenging to make direct comparisons, especially
since there are no standardized benchmarks [189]. More importantly, performance is not
the only criterion when deciding for or against a particular neuromorphic computing
platform. For example, BrainScaleS is not suited for most applications in robotics due to
the highly accelerated simulation speed that does not fit the timescales in the physical
world. Moreover, the energy consumption of the overall system is too high for embedded
applications, which partly results from the fact that it has been designed with data
center applications in mind, where it can deliver high throughput at high efficiency. It is
interesting to note that also standard GPUs have been demonstrated to deliver competitive
performance for SNN simulations [190].

Workloads with high throughput that are typical for data centers do typically not
occur in the field where robots need to process sensory input to adjust their motion
or autonomous cars need to capture relevant objects on the road to compute optimal
trajectories. In these applications, low energy consumption and short latencies are key
requirements that are not met by traditional von Neumann architectures. Especially
SpiNNaker and Loihi are very well suited for robotics due to their very low total power
draw, the easy scalability to the needs of the application and the ability to run in biological
real-time. This can even hold in the unfavorable case where ANNs are simulated on a
neuromorphic processor. As Blouw et al. [64] have demonstrated for a keyword spotting
task, Loihi is extremely efficient for network inference real-time applications where only
one sample at a time is processed. In comparison, the performance of modern GPUs
can only be leveraged when a large number of samples is processed in parallel, which is
typically not the case in robotic perception tasks. Neuromorphic processors therefore bear
a huge potential for real-time sensor data processing. Major challenges for widespread
use in practical applications are the definition of appropriate standardized programming
interfaces and the development of SNN models that match the performance and versatility
of DNNs. Particularly with respect to the latter point, efforts are underway for all three
systems presented in this section [191, 192, 193].
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Foundations of Neurorobotics

Brain simulations establish a computational link between the anatomical and physiological
properties of nervous tissue and the patterns of neural activity that emerge from them.
In this sense, they are a tool to analyze and explain the brain’s structure and do not
provide any direct insight into its function, i.e. the cognitive processes and externally
observable behavior that neural activity gives rise to. Linking structure to function cannot
be achieved with neural modeling and brain simulations alone, for they can only account
for what happens in the brain, but not why. Explaining the latter is only possible if both
the causes and effects of neural activity are realistic and fully accessible. More concretely,
this implies that the brain must be studied in its natural “habitat”: embedded in a body
that is situated in an environment. Only then one can expect neural activity to be realistic
and interpretable in terms of concrete perceptions and actions. This elementary insight
is widely known as embodiment and has been investigated in neuroscience, cognitive
science and robotics alike. So far, the lack of a principled scientific methodology and
corresponding tools has hindered substantial progress, rendering embodiment largely
a hypothesis rather than a proven principle. In recent years, however, technological
innovations in computer science and robotics brought new momentum to the field by
enabling the development of neurorobotics as a scientific discipline with exclusive focus
on embodied systems.

The early beginnings of neurorobotics date back to the mid 20th century and thus even
before the foundation of modern robotics [194]. At that time, computer science was also
still in its infancy. The first neurorobots were simple mobile devices driven by vacuum
tubes that allowed them to follow sensory cues and even learn simple stimulus response
patterns [195, 196]. Later systems benefited from the rapid advances in computing
technology and started to embed detailed brain simulations in physical robots that were
able to interact with their environments [197]. Nevertheless, major progress in the field
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has so far been held back by the considerable financial and technical effort required to set
up a neurorobotics system. High costs for customized robots result in the construction of
proprietary one-of-a-kind experimental setups, make modifications difficult and results
irreproducible. This situation is about to change with a new state-of-the-art methodology
put forward by the Neurorobotics Subproject of the HBP: Like in many other fields before,
neurorobotics research can be substantially accelerated through virtualization, which
means replacing physical robots by robot simulations.

This chapter introduces the theoretical foundations of neurorobotics and the archi-
tecture of the HBP Neurorobotics Platform. Section 3.1 discusses the basic features of
embodied systems and outlines how they can serve cognitive processes such as perception
and learning. The insights gained from this discussion form the basis for the formal defi-
nitions of neurorobotics and neurorobotics experiments in Section 3.2. Finally, Section 3.3
provides an overview of how virtual neurorobotics experiments can be modeled in the
NRP.

3.1 Theoretical Foundations of Embodied Systems
In the context of this work, embodiment describes an artificial or biological organism with
a control system (the brain) that has an interface (the body) through which it can act in and
interact with the outside world (its environment) where it is situated. Figure 3.1 provides
a graphical summary. The central tenet of embodied systems research is that the body is
not simply a mere housing for the brain with sensors and actuators but actually plays a
constitutive role in its functioning. This is programmatically brought to the point by the
title “How the body shapes the way we think” of the seminal book on embodied intelligence
by Pfeifer and Bongard [198]. Embodiment stands in stark contrast to traditional views in
AI, robotics and also neuroscience, where sensory experience and physical interaction are
typically treated as arbitrarily interchangeable input and output channels. Embodiment
makes the body an active component of cognitive processing by leveraging the specific
structure induced by body morphology and sensor response properties in the sensorimotor
space. The prerequisite for this structure to emerge is that the brain can interact with the
environment through the body in a closed loop of perception, cognition and action.

Closed-Loop Perception – Cognition – Action

The processing sequence of perception – cognition – action (PCA) has evolved to a
standard model in AI [23] and is also a central element of cybernetics, that Wiener [199]
defines as the study of “control and communication in the animal and the machine.”
Figure 3.2 puts all involved stages into the context of a basic robot grasping task. From a
conceptual point of view, the loop is comprised of an inner part, the cognitive model M,
and an outer part, the environment. They are connected to each other through perception
and action, which are realized by the body’s sensors and actuators, respectively.
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Figure 3.1: Embedding of an embodied system in its environment. An embodied artificial or biological
organism is comprised of a control system, the brain, and its body, through which it can interact with
the environment where it is situated by perceiving and acting. The interaction with the environment is
constrained by the specific morphology of the body.

Figure 3.2: Schematic description of how an embodied system interacts with its environment in a closed
PCA loop. Independently of the actual realization of the cognitive model M, which may be a biological
brain or any type artificial brain model, the core of embodiment is the direct interaction of that model with
the environment through its body. By means of this body, the output of M gets transformed into an action
in the environment that in turn determines the following perceptual input captured by the sensors.
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In general, M can take any arbitrary form ranging from a symbolic rule-based system
to a biological brain. The framework can consequently be used to describe artificial and
biological systems alike. In the scope of this work, M will implicitly always refer to
some form of neural brain model, be it an artificial neural network or a large-scale brain
simulation. Special consideration also needs to be given to the perception stage, which by
definition refers to “the conscious experience of sensory stimulation” [200]. This is in line
with traditional system architectures in AI with a strict separation between the conversion
of external stimuli to internal representations and reasoning processes operating on them.
Since such separation is not possible in the brain, we limit the perception stage to sensing,
i.e. the reception and encoding of sensory stimuli. It is important to note that this decision
by no means renders the perception stage a simple mechanical process. In fact, sensing
has always been an independent research topic within neuroscience. The action stage
will be analogously confined to the actuation of the body including low-level control
mechanisms that are not directly related to the brain.

By shifting all higher cognitive functions into M, the main interaction in the PCA
loop occurs between the brain model and the environment. Unlike in traditional systems
following the PCA scheme, the perception and action stages of embodied systems do
not decouple cognition from the body and its environment but instead establish a tightly
coupled closed loop between them. It is exactly this closed loop that is essential to embodied
systems, which is why we will also refer to them as closed-loop systems. In the example
from Figure 3.2, the goal of the robot is to grasp the cup next to it on the table. Assuming
that the gripper is equipped with sensors for contact forces, the robot can sense when it is
touching the cup and try to lift it. Readings from its joint torque sensors provide additional
information on whether the grasp was successful and how much torque is required for
lifting. When operating in a closed loop, the actions of the robot, i.e. the movements of its
joints, cause changes in the sensor readings that in turn inform the selection of the next
action. The system is therefore closely coupled to its environment and changes therein are
an essential factor in the information processing of the cognitive model M. Importantly,
this coupling would be drastically weakened if low-level sensorimotor information was
filtered out in the perception and action stages. Wiener [199] summarizes the importance
of closed-loop feedback as follows:

“The central nervous system no longer appears as a self-contained organ, receiving
inputs from the senses and discharging into the muscles. On the contrary, some of
its most characteristic activities are explicable only as circular processes, emerging
from the nervous system into the muscles, and re-entering the nervous system
through the sense organs, whether they be proprioceptors or organs of the special
senses.”

Morphological Computation
A fully closed PCA loop is the most important prerequisite for embodied systems but
only provides the technical basis. In order for the body to be leveraged as an active part
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of cognitive processing, a corresponding computational principle must be acting on top.
This was addressed with the introduction of the concept of morphological computation,
which expresses that cognitive processing, here referred to as computation, is not limited
to the brain but also includes the body. Pfeifer et al. [201] have popularized the concept
as follows:

“By ‘morphological computation’ we mean that certain processes are performed by
the body that otherwise would have to be performed by the brain.”

The term has found widespread adoption in many different areas of robotics. But as Müller
and Hoffmann [202] argue, it still misses a rigorous definition, especially since the phe-
nomena attributed to it typically only have very little in common with computation at all.
Based on a study of different robot systems that incorporate some form of morphological
computation, they identify three distinct realizations of the concept:

• Actual morphological computation

• Morphology facilitating perception

• Morphology facilitating control

Actual morphological computation as defined by Müller and Hoffmann [202] is mainly
relevant in terms of computational theory and refers to cases where a body acts as a form
of computer in the literal sense of the word. Hauser et al. [203] propose a theoretical
framework for the formal analysis of the computational capabilities that models compliant
bodies as generic mass-spring systems. This abstraction enables them to show that if
the dynamic response of a body to an input signal is sufficiently rich, any nonlinear
time-invariant filter with fading memory can be computed from a weighted linear readout
that is derived from the current system state, e.g. the lengths of all springs in a mass-
spring system. It is important to note that the computation carried out does not depend
on a specific form of movement pattern but rather leverages the dynamic effects of the
disturbances caused by impinging input signals. Even simple input stimuli can elicit highly
non-linear spatiotemporal response patterns in compliant mechanical systems. Akin to a
feature space projection, the body projects input into a complex state space representation
by means of its dynamics. Rigid mechanical structures such as industrial robots that are
designed with the goal of minimizing the complexity of their body dynamics do not exhibit
such rich response properties and therefore are not capable of performing morphological
computation.

In a broader perspective, the specific form of morphological computation described
above can be seen as an instance of reservoir computing, a concept that was originally
developed as a design and training method for neural networks [204]. Figure 3.3 provides a
schematic overview of themain components. A common feature of all reservoir computing
systems is the tripartite structure comprised of simple input and output layers that interface
with the reservoir. The readout layer typically computes a weighted linear combination
of the reservoir states. While other methods are possible, the actual main distinction
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Figure 3.3: Overview of a typical reservoir computing system. Input data are fed into the reservoir, a
dynamical system that can be realized as a computational model (e.g. a neural network) or a physical system
(e.g. a mass-spring system). In turn, the reservoir produces a complex nonlinear response pattern that
is sampled by a set of readout units as a weighted sum. The set of weights 𝑤𝑖 that produces the desired
mapping from input to output is commonly determined automatically by a learning algorithm. Adapted
from [63] by permission from Springer Nature Customer Service Centre GmbH, ©2016.

between different approaches lies in the realization of the reservoir. Echo state networks
and liquid state machines, the two pioneering reservoir computing methods, are based on
reservoirs of random recurrent ANNs or SNNs with fixed weights [205, 206]. The neurons
and their connectivity serve no specific purpose other than producing rich spatiotemporal
patterns in response to input signals and can therefore replaced by any other dynamical
system such as the body of a living creature or a robot. Further research on physical
reservoir computing also investigated reservoirs made from electrical circuits, photonic
systems or even biological neuron cultures on microelectrode arrays [207].

Morphological computation in the sense defined by Müller and Hoffmann [202] takes
no advantage of body morphology other than exploiting its dynamics. It does neither
leverage how a body is adapted to a task or an environment nor does it bear any direct
relation to the actual motion of the body, which is in direct contradiction with the core idea
of embodiment, where the body actively interfaces the brain with its environment. In the
context of this work, morphological computation in the sense of reservoir computing will
be mainly considered as a conceptual proof that the body can support cognitive processing
in the brain. The focus will be on howmorphological computation can facilitate perception
and control. Three examples from biology illustrate best how closely physical processes
in the body and cognitive processes in the brain are intertwined with each other:

• In the spiral-shaped cochlea of the human inner ear, different regions of the basi-
lar membrane along the inner spiral are sensitive to decreasingly lower sound
frequencies with increasing distance from the entry point. An incoming sound
signal is thereby spatially separated into its different component frequencies, a
phenomenon called tonotopy [208]. This operation is akin to a Fourier transform
that is automatically performed as a result of the physical structure of the cochlea
and would otherwise need to be implemented by neurons in the brain.
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Figure 3.4: Main components of the neuromusculoskeletal system of the human body. Control is distributed
across both the nervous system and the body. The latter is comprised of a rigid skeleton that is antagonis-
tically actuated by a total of around 640 muscles [209]. Unique body properties such as the compliance
of muscular tissue and the softness of the skin enable morphological computation. The rendering of the
skeleton was generated with OpenSim [210].

• The specific placement of sensory receptors on the human body shapes the structure
of sensory input (e.g. the eyes of the human head always move at the same time)
and thereby reduces the complexity of the input space. At the same time, sensory
streams from different modalities such as vision, hearing, touch and proprioception
are correlated by the coupling through the body (e.g. grasping an object induces
visual, tactile and proprioceptive sensory feedback). Sensory input is therefore not
only actively modulated by movements of the body as described by the PCA loop
but also synchronized, which further facilitates processing in the brain [198].

• The neuromusculoskeletal system of humans depicted in Figure 3.4 is inherently
compliant. This is because unlike in a typical industrial robot that is fully rigid,
the bodies of vertebrates are comprised of both soft and rigid materials. The rigid
skeleton acts as a scaffold that ensures overall structural integrity. Its individual
bones are held together by the tissue of muscles, tendons and ligaments, which
account for compliance. The combination of both makes tasks such as walking con-
siderably simpler since inaccuracies in motor control signals or uneven ground are
automatically compensated by the body without the need for any active regulation.

Especially the construction of artificial musculoskeletal systems has been become
a major research topic in robotics. Typically, the resulting robots are based on fully
custom designs that are only built a single time as a proof of concept. This is why
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musculoskeletal robots are comparatively rare and expensive even though material costs
are often lower than for industrial robots. A notable exception is MYOROBOTICS, a toolkit
for building musculoskeletal robots from a small set of basic mechanical and electronic
components [211]. Its core feature are artificial muscles that are built from spring-mounted
electric drives and coil up a thin tendon-like wire. Movements of the tendon transmit the
force to the actual joint. Based on this principle, the toolkit enables the rapid construction
of a huge set of morphologies optimized for different tasks. This flexibility is important
when building robots that can leverage morphological computation. As pointed out by
Pfeifer et al. [201], the optimization of the body for a specific task in a specific environment
trades off efficiency against versatility. Passive dynamic walking machines, for example,
require no control system at all but can only perform a single task in the environment
they have been designed for.

Enactive Cognition
At the beginning of this section, it was emphasized that the PCA loop is an essential
component of embodied systems. Morphological computation naturally operates in this
loop as the body mediates between the brain and the environment. Its main contribution
therefore lies in shaping sensory experience and physical interaction. And while it is in
some cases even possible to provide a quantitative account of the computational contribu-
tion of the body in the sense that the controllers operating in the corresponding robot
can be simplified, morphological computation still operates primarily on a low level of
abstraction. At first glance, this seems to preclude the direct participation of embodiment
in any cognitive processes beyond low-level perception and motor control. The theory of
enactive cognition put forward by Varela et al. resolves this issue by laying the theoretical
foundations that link seemingly low-level embodiment to high-level cognition [212]:

“In a nutshell, the enactive approach consists of two points: (1) perception consists
in perceptually guided action and (2) cognitive structures emerge from the recurrent
sensorimotor patterns that enable action to be perceptually guided.”

While morphological computation addresses the mechanistic effects of embodiment on
perception and action, i.e. an organism’s sensorimotor experience, enactivism aims to
explain phenomenologically how this experience forms the basis of cognitive process-
ing. Even though enactive cognition does not directly rely on any properties of body
morphology, it is critically shaped by an organism’s unique embodiment.

To fully understand the definition quoted above, it is necessary to know about its
epistemological background. The origins of enaction lie in the concept of autopoiesis
conceived by Varela et al. [213] as a definition of living organisms.1 Autopoietic systems
are characterized by an organization that is “continually self-reproducing” [215]. Put

1As outlined by Wilson and Foglia [214], different notions of enaction have developed over time with
distinct views on the role of autopoiesis. In the context of this work, we will only refer to the autopoietic
enactivism of Varela et al. [212].
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Figure 3.5: Schema of the three constituents of an enactive cognitive system and their interrelations. An
organism is an autonomous system of components linked by processes that maintain themselves. Its nervous
system expands the repertoire of interactions in which it can engage with the environment to which it is
structurally coupled. The description and the figure are adapted and extended from [215].

differently, this means that the components and processes an autopoietic unity is comprised
of operate to maintain themselves intact and distinct from their environment. Any
system with an organization that differs from this basic structure is allopoietic. Whereas
autopoietic systems are necessarily autonomous, allopoietic systems are not. This becomes
immediately evident at the example of a standard industrial robot operating at an assembly
line: Even though it automatically executes a certain task, it requires programming (not
autonomous) and regular maintenance (not autopoietic). It is important to note that
both practical considerations and technical constraints limit the utility of the concept of
autopoiesis in the design of artificial cognitive systems. Its actual value for this domain
lies in its contribution to the development of the theory of enactive cognition.

The starting point of enactive cognition are the reciprocal interactions between an
autopoietic system and its environment. Figure 3.5 provides a schematic overview of all
entities involved. The autopoietic system is indicated by the two loops at the top, the
outer of which symbolizes the property of self-reproduction that maintains the system’s
structure as a unity. It is structurally coupled with the environment. This means that, in the
terminology of Maturana and Varela [215], perturbations by the system will cause changes
in the environment and vice versa. It is essential that enactivism does not view these
changes as goal-directed. They are mere reactions arising from the structural coupling
and their nature is, in the case of the autopoietic system, determined by the system’s
concrete realization in terms of sensors, actuators and possibly a nervous system. If
present, the latter vastly increases the repertoire of sensorimotor response patterns. Over
time, the history of interactions with the environment shapes the autopoietic system’s
individual development, its ontogeny. This process of adaptation also includes changes in
the nervous system that can, for example, be interpreted as learning.

With the concept of structural coupling in place, the definition of enactive cognition
from the beginning of this section can now be made more concrete: Perception is an
active process that generates patterns of sensorimotor experience in a closed PCA loop
established through structural coupling. These patterns are the foundation of cognitive
processing and, consequently, cognition in an enactive system is solely based on its unique
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individual sensorimotor experience that it collects as it interacts with the environment. It
has no general and objective internal representation of the world to which perceptions
are mapped. The complete abandonment of representations in favor of unique individual
experience is the central hypothesis of enactivism [212]. It entails that it is only possible
to understand the brain – or rather an individual brain – by taking into account its full
ontogenetic history. Starting from a phylogenetically predetermined configuration at
birth, it is shaped through embodied interaction with its structurally coupled environment.
Changes in the body or the environment will therefore be reflected by changes in the brain,
resulting in a fully individual cognitive framework. These properties make enactivism
not only an explanation for inter-individual differences of brain structure and for the
effects of external factors on individual development. They also make a strong case for
neurorobotics.

The subjective nature of environmental perception had already been proposed before
Varela et al. [212] by zoologist Jakob von Uexküll in his work Umwelt und Innenwelt der
Tiere with the definition of the Funktionskreis, arguably one of the first appearances of the
PCA loop [216]. In his terminology, this circle connects a living creature’s environment
(Umwelt) with its inner world (Innenwelt) through a perception world (Merkwelt) and an
effects world (Wirkungswelt). Crucially, the environment is a completely subjective experi-
ence of the organism that only reflects a very specific subset of all its surroundings [216]:

“Was uns als außenstehenden Beobachtern der Umwelt der Tiere ammeisten auffällt,
ist die Tatsache, daß sie nur von Dingen erfüllt ist, die diesem speziellen Tier allein
angehören.”

Uexküll [216] further argues that the constituents of both Merkwelt and Wirkungswelt
are tied to objects in the environment and it is these objects to which living creatures
adapt. This concept has become known as affordances [217], which can be loosely de-
scribed as opportunities to engage in interaction. In enactivism, it is reflected by the
shift away from propositional knowledge (“knowledge that”) to commonsense knowledge
(“knowledge how”) that is required in unstructured real-world environments as described
in Chapter 1 [212].

The principles laid down by enactivism have had significant influence on robotics.
Arguably most famous is the subsumption architecture conceived by Brooks [10, 21]
in an effort to realize autonomous robots without any internal representation of the
world. The method proved very successful for a range of simple behaviors and even laid
the foundations for the vacuum cleaning robot Roomba [218], one of first robots to be
deployed at large scale outside of manufacturing plants. Robotics is also a key tool for an
objective quantitative analysis of the effects of enaction. Lungarella et al. [219] derived
a set of different information theoretic measures to quantify the effects of embodied
interaction on sensorimotor data streams. In a series of robotics experiments, they were
able to demonstrate that closed-loop embodied interaction with the environment not
only induces statistical regularities but also affects the flow of information in the PCA
loop [220, 221]. Importantly, not only learning but also changes in body morphology were
shown to have a direct effect on the structure of the data.
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3.2 A Modern Definition of Neurorobotics
The first neurorobotics systems – and arguably even the first modern robots in general –
were the “tortoises” by neurophysiolgist William Grey Walter [195]. While their design
was of striking simplicity with a control system of only two vacuum tubes, they realized a
closed PCA loop with two motors and two sensors for light and touch. The advancement
of both robotics and neuroscience over time allowed the construction of increasingly
advanced neurorobotics systems. But the diversity of brain research and the strong
focus on traditional algorithmic methods in robotics led neurorobotics to remain in a
rather small niche with many independent strands of exploration ranging from neural
translations of existing algorithms to artificial experimental studies of ontogenetic neural
development. This situation has only changed recently when neurorobotics research
gained huge momentum as part of the HBP. With the development of the NRP, it is now
for the first time possible to formulate a common scientific objective and a principled
methodology for neurorobotics.

Directions of Research in Neurorobotics
First mentions of neurorobotics date back at least to 1987, even though the actual term
used at that time was neurobotics [222]. Nevertheless, it was already introduced in the
context of studying sensorimotor loops at the intersection of robotics and neuroscience.
Over time, the scope has widened and neurorobotics today also refers to research on
human-machine interfaces, prosthetics and rehabilitation robotics [223]. While these
medical applications will not be considered any further, it is important to note that the
contributions of this work can still be of relevance for them. To aid the formulation of
a principled scientific objective for neurorobotics, the following paragraphs provide an
overview of different directions of research.

Neural Implementations of Traditional Algorithms from Robotics A mainly
computationally motivated approach to neurorobotics is to implement existing robotics
algorithms with SNNs. Based on the Neural Engineering Framework [169], Menon et al.
[224] modeled an analytically derived operational space force controller [225] for a robot
with three degrees of freedom as a SNN running on the neuromorphic processor Neurogrid
[226] in real-time. Bouganis and Shanahan [227] proposed a SNN controller for the arm of
a humanoid robot which was inspired by the standard kinematics equations from robotics.
However, unlike in the work by Menon et al. [224], the network learned the desired
behavior completely autonomously via spike timing-dependent plasticity (STDP) [228]. The
field of robot path planning was addressed by the work of Ponulak and Hopfield [229]
who conceived a neural implementation of the wavefront planner [230] based on spiking
neurons and STDP. An important advantage of converting traditional robotics algorithms
to functionally equivalent neural networks is that existing systems and architectures
can be easily reused. On the downside, the additional insight gained by this method is
limited to the implementation level, which is mainly relevant for practical applications of

65



3 Foundations of Neurorobotics

neuromorphic computing. As can be seen in the examples from this paragraph, effects of
embodiment or a closed PCA loop are generally neglected.

Conceptual Studies Fully leveraging the potential of neurorobotics therefore requires
the development new models and experiments. To reduce the complexity involved in
setting up a brain model, a robot and defining the connection between them, many studies
rely on simplified experimental setups that are limited to the minimum set of components
which is necessary to study the targeted phenomenon. Pioneering work in this direction
was done by Braitenberg [231] who constructed a series of simple vehicles as thought
experiments. Each of them is comprised of a small set of sensors and actuators that are
connected to a simple nervous systems of only a few neurons. Despite this simplicity,
the emerging behaviors are considerably diverse. Mobile robot platforms similar to
the vehicles by Braitenberg [231] have become a very common tool in neurorobotics.
For example, Floreano and Mattiussi [232] synthesized a controller for collision-free
visually guided navigation by adapting a network of spiking neurons with an evolutionary
algorithm. Di Paolo [233] trained a small SNNwith a combination of genetic programming
and STDP to implement phototaxis in simulated robots. Florian [234] applied a similar
approach to a larger network in order to train a robot to push objects around. Obstacle
avoidance based on a spiking neural controller was investigated by Wang et al. [235].
Arena et al. [236] also studied obstacle avoidance but additionally conducted experiments
on different goal-directed navigation tasks. Starting from a predefined set of system
responses, the authors implemented a STDP-based classical conditioning rule which
enabled the robot to learn the desired behavior. Brandi et al. [237] investigated classical
conditioning in a mixed-reality setup with a physical robot navigating on a virtual reality
track. Their goal was not to develop a robot controller but to test a hypothesis on how
the cerebellum can learn sequences of actions through classical conditioning. However,
the employed cerebellum model was purely computational and did not include any neural
network simulation. Operant conditioning for neurorobotics was addressed by recent
work of Cyr et al. [238]. The authors designed a minimal neural circuit consisting of only
three neurons and evaluated it successfully both in simulations and on a physical robot.

Embodied Cognitive Models The reduced models applied in the studies from the last
paragraph limit both the types of cognitive phenomena that can be modeled and the degree
of neuroscientific detail. Pioneering work on more comprehensive neurorobotics systems
was the brain-inspired neural network for trajectory control developed by Miyamoto
et al. [239]. Their model had a cerebellar component that was capable of learning the
inverse dynamics of an industrial robot manipulator online during the execution of a
trajectory. The trained model generalized to different speeds and other trajectories. Reeke
et al. [197] introduced the Darwin Series of Brain-Based Devices to study more high-level
cognitive phenomena [194]. Darwin I and Darwin II, the first two of these automata, were
neural network models designed for pattern recognition and categorization. The first
actual neurorobotics system was Darwin III. It was comprised of a simulated robot arm

66



3.2 A Modern Definition of Neurorobotics

with four joints, an actively actuated “eye” and sensors for touch and kinesthesia. The
underlying neural architecture had different subsystems for oculumotor control, reaching
and touch. Sensori stimuli from the different modalities were integrated by the neural
model to categorize the objects the robot interacted with. Later versions of Darwin were
physical mobile robot platforms that, for example, were capable of stimulus tracking
and object sorting [240], learned selectivity for visual patterns [241] or developed place
fields in a model of the hippocampus [242]. Cox and Krichmar [243] investigated how
neuromodulation can be used as a means of associating behaviors to perceived stimuli on
a mobile robot platform. An even simpler robot with two degrees of freedom for balancing
a tray was the basis of the research by Probst et al. [244]. The goal was to move the tray in
order to keep a ball placed on top of it in a desired region. Most notably, control was based
on reservoir computing in a spiking neural network with parameters and connectivity
similar to layer IV of the cortex. Tani [245] proposed Multiple Timescales Recurrent
Neural Networks to represent both high-level plans and low-level action primitives in
hierarchically organized artificial neural networks. Interestingly, the hierarchy emerged
through different timescales assigned to the individual components of the networks. In a
series of neurorobotics experiments, the author investigated the formation of functional
hierarchies during multimodal interaction with the environment. Finally, Conradt et al.
[246, 247] implemented neuromorphic stimulus tracking and learning by demonstration
on a mobile robot platform that was equipped with a SpiNNaker system.

Biomimetic Robot Control The connection of brain models to robots is especially
promising in the field of biomimetic robotics, where morphology and actuation are
designed to closely match the bodies of living creatures. Neurorobotics not only enables
research on brain-derived control systems for non-rigid and highly redundant mechanical
structures, but it can also benefit from the realistic embodiment realized by these types
of robots. Influential work in this direction was published by Ijspeert et al. [248] who
developed a robot with a salamander-like morphology. Locomotion was implemented
by a central pattern generator (CPG) model [249] of the spinal cord that was based on
coupled nonlinear oscillators. The rhythmic control output generated by this model drove
the limbs of the salamander robot and reproduced biological locomotion patterns. In
earlier work, the spinal cord model was realized as an ANN that was parameterized with
a genetic algorithm [250]. CPGs were also applied to study the crawling motions of
infants [251]. Klein and Lewis [252] developed a biomimetic bipedal walking machine
and controlled it with a SNN which implemented both cyclic and reflexive behavior in a
reflex-driven CPG architecture. Research with focus on the exact modeling and simulation
of the musculoskeletal structure of the human body with methods from robotics was
published by Nakamura et al. [253]. The proposed musculoskeletal model was comprised
of a musculotendon network attached to a rigid skeleton. Muscles, tendons, ligaments
and cartilage were represented as wires with two or more contact points. By applying
an inverse dynamics algorithm to motion capturing data, it was possible to compute
muscle tensions completely non-invasively. In later work, the musculoskeletal model was
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further refined and augmented by a neuromuscular network built from artificial neurons
[254]. After learning to reproduce muscle tensions computed from motion capturing
data, the network was successfully applied in a simulation of the patellar tendon reflex.
Sreenivasa et al. [255] considered a considerably simpler musculoskeletal model with
only one antagonist pair of muscles to model the human arm stretch reflex. However,
differently from Murai et al. [254], the authors used spiking neurons organized in different
pools to model the spinal reflex network. The neural parameters were inferred from
physiological data and the results of the simulation were validated against real-world
experiments.

Enactive Systems With the complete abandonment of representations in enactivism,
neurorobotics is a key tool for research on enactive systems. Only when both the brain
and the body can be fully observed is it possible to study how an enactive system develops
while interacting with its environment. Floreano et al. [256] and Suzuki et al. [257,
258] conducted a series of experiments with physical robots on active perception to
investigate the influence of embodied closed-loop perception on information processing
in neural networks. Receptive field formation in a series of neural network controllers
that were generated using genetic algorithms and a Hebbian online learning rule was
shown to be strongly dependent on whether the robot’s control output was based on the
current camera input. Importantly, sampling of the visual input space was more focused
when control was visually guided. A practical example of leveraging affordances is the
Differential Extrinsic Plasticity learning rule by Der and Martius [259], which exploits the
dynamics of mechanical systems to generate stable motion patterns. In an experiment
with a MYOROBOTICS humanoid robot arm, the rule was capable of learning different
motion patterns, whose shape depended directly on the form of interaction the robot
engaged in (e.g. rotating motions when it was connected to a wheel) [260]. Remarkably,
the underlying control mechanism was extremely simple and required neither complex
modeling nor extensive computation, clearly highlighting the central role of the robot’s
embodied interaction with the environment. Closely related to enactivism is the field
of cognitive developmental robotics, which aims to explain human cognition through the
simulation of ontogenetic developmental processes [261]. This is very different from
traditional approaches of modeling a fully developed system and in line with the enactive
paradigm. Following this approach, Kuniyoshi and Sangawa [262] connected a simplified
musculoskeletal model of an infant to a basic artificial nervous system comprised of
spinal reflex circuits, CPGs and an abstract model of the cortex. In a series of synthetic
experiments, the authors investigated the emergence of coordinated movement primitives
from spontaneous interactions with the environment. In later work, the infant model
was extended to include tactile sensors distributed over the skin [263] and a simulated
nervous system of spiking neurons was used to study the formation of sensorimotor
maps through simulated interaction of a fetus with its uterine environment [264, 265].
Remarkably, by varying simulation parameters, the authors demonstrated how abnormal
preterm conditions can lead to degenerate sensorimotor maps. Other experiments with
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the infant model include the investigation of the role of sensory constraints in the self-
organization of sensorimotor behavior [266] and the analysis of the effect of development
on the formation of neural circuits in the spinal cord [267]. Nagai et al. [268] proposed
a model for the emergence of the mirror neuron system from sensorimotor maps. The
mirror neuron system enables action recognition and is thus an important prerequisite
for the development of empathy during interactive social development.

Deriving a Definition for Neurorobotics
The brief overview presented above aims at identifying relevant directions of research
in neurorobotics. In-depth reviews are outside the scope of this work and have been
published earlier [269, 270, 271, 272]. Moreover, there is not only a dedicated journal for
neurorobotics [273] but also a technical committee in the IEEE Robotics and Automation
Society [274]. It becomes evident from the huge variety of different approaches that
neurorobotics research cannot be identified with a specific class of models or methods.
The essence lies in the closed-loop connection of some type of brain to some type of body.
A comprehensive definition needs to detail which types of brains and bodies are eligible
for neurorobotics systems. Krichmar [270] proposed the following set of criteria:

“A neurorobot has the following properties:

1. It engages in a behavioral task.

2. It is situated in a real-world environment.

3. It has a means to sense environmental cues and act upon its environment.

4. Its behavior is controlled by a simulated nervous system having a design that
reflects, at some level, the brain’s architecture and dynamics.”

While a system that satisfies these four properties obviously qualifies as a neurorobotics
system, this definition is very constraining. First, the engagement in a behavioral task is
common but not necessary. For example, the study of emergent phenomena like in the
experiments by Yamada et al. [264] does not involve any goal-directed behavior. Likewise,
also many other studies on enactive cognition are not covered by this definition. Second,
the limitation of neurorobotics to real-world environments is too narrow. Krichmar
[270] argues that “simulating an environment can introduce unwanted and unintentional
biases to the model.” Even though this argument is valid and in line with Pfeifer and
Bongard [198], state-of-the-art simulation tools make it increasingly less relevant. More
importantly, the most advanced research topics in neurorobotics can only be investigated
in simulations. This is best illustrated at the example of biological musculoskeletal systems
that can only be simulated but not replicated in physical robots. Kaplan [275] suggested
a less concise but also more general definition of neurorobotics that does not require
engagement in a behavioral task and also includes simulations:

“At the interface of neuroscience and robotics, neurorobotics is the science and
technology of embodied autonomous neural systems. Neural systems include brain-
inspired algorithms (e.g. connectionist networks, artificial spiking neural nets),
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computational models of biological neural networks (e.g. large-scale simulations of
neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural
nets). Such neural systems can be embodied in machines with mechanic, pneumatic,
electromagnetic or any other forms of physical or virtual actuation. This includes
robots, prosthetic, wearable systems, virtual reality environments but at also, at
smaller scale, micro-machines and, at the larger scales, furniture and infrastructures.
[...] The grand challenge of neurorobotics is to build a well-founded experimental
science of embodiment.”

It is important to note that this definition, in contrast to the one by Krichmar [270], also
includes systems such as neuroprostheses where the brain is not a simulation but actual
biological tissue. Other examples include work on closed-loop control of a mobile robot
based on recordings from biological neurons cultured on a high-density microelectrode
arrays [276, 277].

Neither of the two definitions presented above captures the essence of current neu-
rorobotics research. While the one by Krichmar [270] only addresses a rather narrow
class of models, the one by Kaplan [275] covers the most relevant aspects of the field
but seems too unspecific. We therefore propose a new definition that is motivated by
the unique research opportunity of neurorobotics and grounded in the analysis of the
research landscape from the last subsection:

Neurorobotics is a field of research at the intersection of robotics, neuroscience,
cognitive science and AI that provides both the theory and the tools for connecting
brains to robotic bodies in a closed loop of perception, cognition and action. A
neurorobotics system is comprised of four components:

1. A brain, which can be any type of neural system that transforms perceptual
input into motor output, ranging from simple artificial neural networks to
highly detailed large-scale brain simulations and observable biological neural
systems.

2. A robotic body, which can be any type of physical or simulated mechanical
structure that can interact with an environment through sensors and actuators,
ranging from simple mobile robot platforms to highly detailed simulations of
biological musculoskeletal systems.

3. Amapping that establishes a closed loop between brain and body by specifying
how perceptual input from the body is mapped to the brain and how motor
output from the brain is mapped to the body.

4. A physical or simulated environment in which the system is situated.

The definition is different from the two before because it is explicitly centered around
the establishment of a closed PCA loop, but does not require autonomy or leveraging
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any effects of embodiment as is the case in the text by Kaplan [275]. This is not meant to
imply that embodiment and enaction are not at the core of neurorobotics research. In fact,
one of the main motivations of this work is to show that neurorobotics is a key tool for
investigating them. However, the less restrictive formulation of the definition allows for
the inclusion of the growing body of research on DNNs for robotics [278]. Furthermore,
biological neural systems such as the neuron cultures investigated by Maruyama et al.
[276] and Masumori et al. [277] are considered neurorobotic systems but neuroprostheses
are not. This is because the latter are “connected” to complete biological brains that can
be neither fully inspected nor modified, which is in direct contradiction to the main goal
of neurorobotics.2

Neurorobotics Experiments

With a comprehensive definition of neurorobotics in place, it is now possible to introduce
neurorobotics experiments. The term experiment is motivated by the close relation of
neurorobotics to neuroscience and the specific nature of closed-loop systems. Like in
the case of large-scale brain simulations, the dynamics of neurorobotics systems with
brain and body models of practically relevant detail and size are too complex for purely
theoretical analysis. Conducting experiments to observe the resulting neural activity and
its relation to behavior is therefore essential. Figure 3.6 depicts a schematic overview of all
components involved in a neurorobotics experiment. At the core is a neurorobotics system
which is comprised of a robot and a brain simulation. We will refer to the latter also simply
as the brain. Both are connected to each other in a closed loop through a mapping that
defines how sensory stimuli and motor commands are relayed to the brain and the robot,
respectively. A second closed loop is established between the robot and the environment.
Whereas the first loop is responsible for neural signaling, the second one enables physical
interaction between the neurorobotics system and its surroundings. Only through the
combination of both of these loops, can a closed PCA loop be established. In real-world
experiments, the physical interaction loop is automatically present by the laws of physics
as long as there are no artificially imposed constraints. Virtual experiments require a
physics simulation that reflects the embedding in the environment at the required level of
fidelity.

The development of a neurorobotics experiment encompasses five steps and the
process is akin to traditional experiments in the natural sciences or in robotics. These
are: design, instantiation, setup, execution and evaluation. Table 3.1 provides an overview.
Every new type of experiment starts with the design of a general protocol that describes
all of the components involved and the variables to be observed. In fact, this protocol
does not only define a single experiment, but a whole class of experiments that, for

2This does, of course, not exclude the use of neurorobotics tools for research and development in
neuroprosthetics. The main point is that the type of insight gained thereby is fundamentally different from
actual neurorobotics experiments.
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Figure 3.6: Schematic overview of a neurorobotics experiment. Designing an experiment starts with the
definition of the neurorobotics system by specifying the routing of neural signals between the robot and
the brain. The environment is comprised of all required objects external to the robot and coupled to it
through physical interaction. Red and green arrows indicate parameters of the experimental protocol and
measurements, respectively. Note that the schema applies equally to both simulated and physical robots.
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Table 3.1: The five steps in the development of a neurorobotics experiment.

Step Description Example

Design Specification of a general class of experi-
ments based on a research goal, including
descriptions of supported types of robots,
sensors and environment layouts as well
as the system architecture.

An experiment prototype for robot grasp-
ing tasks with a set of generic program-
ming interfaces.

Setup Implementation of a concrete physical or
virtual experimental setup based on the
design specification.

An industrial robot with a prismatic two-
finger gripper is placed next to a set of
objects. It contains a model of the motor
cortex with a learning rule that enables
it to grasp objects based on visual input
from a camera.

Instantiation Definition of experiment parameters. The objects placed next to the robot are
colored wooden bricks; the parameters of
the cortical model are set according to
data from a recent publication.

Execution The experiment is executed. Depending
on the design and setup, a pre-defined
protocol is carried out. The user may in-
teract with the system and visualize state
parameters in real-time.

The robot arm is controlled by the cortical
model to grasp one brick after another. A
live visualization displays the neural ac-
tivity of the cortical model.

Evaluation Data recorded during experiment execu-
tion are evaluated.

Spike traces of neurons in the simulated
cortical model are compared to data from
the literature.

example, addresses a scientific question about grasping, navigation, vision, etc. From
an engineering perspective, experiments of the same class will share a common system
architecture and use similar software components. The concrete robot and brain models
as well as the details of the environment are defined in the setup step, where the actual
experiment is built. In the case of a physical setup, this step involves setting up the
robot including auxiliary equipment, deploying all required software and preparing the
brain simulation. Virtual setups are prepared by implementing or including the required
models and integrating them into a physics simulation. Note that virtual setups can
easily be shared with others, making conducting an experiment considerably simpler and
faster. Before the experiment is ready for execution, the setup must be instantiated by
setting the parameters of the robot, the brain model and the environment. In a grasping
experiment, for example, this step includes preparing the object the robot should grasp.
Virtual experiments make it possible to instantiate a single setup arbitrarily often in
parallel and with different parameters. After instantiation, all aspects of the experiment
are fully defined and the actual execution can begin. Depending on the type of study, the
experiment can be interactive or fully automated according to a fixed protocol. The orange
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arrows in Figure 3.6 provide examples of possible inputs that can be applied or changed
during the runtime of the experiment. Data can be recorded just like in a traditional
experiment for further analysis in the final evaluation phase, as indicated by the green
arrows. A special feature of fully virtual experiments is that the neurorobotics system can
be fully inspected at runtime. Since all components are simulated, the complete system
state is transparent at any point in time, without any limitations of physical measurement
devices.

3.3 The HBP Neurorobotics Platform
The HBP Neurorobotics Platform, which has already been introduced in Section 1.3, is
developed as a task-tailored tool for the design and conduction of neurorobotics experi-
ments. While there are other tools that connect brain models to some form of embodiment,
none of them is as comprehensive as the NRP. For example, AI-SIMCOG [279], NeuVision
[280], Simbrain [281] and SpikingLab [282] provide integrated toolkits that include both
neural network simulators and a robot simulators. However, the latter support only
extremely limited 2D environments without any advanced modeling of sensors, actuators
and physics. The systems conceived by Gamez et al. [283, 284] and Cofer et al. [285]
employ realistic simulations of the robot and its environment but are limited to specific
robot models such as CRONOS and iCub or biomechanical systems, respectively. Finally,
Weidel et al. [286], Voegtlin [287], and Jordan et al. [288] proposed interfaces for connect-
ing neural simulators to robot simulators in a systematic way. But while such interfaces
are at the core of every neurorobotics system, lots of additional software infrastructure
is required to conduct actual neurorobotics experiments. The unique advantage of the
NRP among these different approaches is that it combines high-fidelity simulations with
maximum flexibility and scalability. This feature set is realized by a software architecture
that has been optimized for the unique requirements of neurorobotics experiments.

System Architecture
A key motivation for the development of the NRP was to provide a tool for investigating
embodied large-scale brain simulations. The realization of this specific feature entailed
two design decisions that make the system architecture considerably different from other
tools for neurorobotics research. First, the NRP needs to provide a comprehensive world
simulation to ensure that the quality of the simulated robots and environments does not
fall behind the brain simulation. Second, it must be possible to run experiments on high
performance computing infrastructure that has enough resources to simulate models of the
required size and at the targeted level of detail. To accommodate these requirements, the
NRP is implemented as a web service. This makes it possible that experiments run in data
centers that host the required computing resources while users can still directly interact
with them through a web-based application. A schematic overview of the resulting system
architecture with the main components and interfaces is depicted in Figure 3.7. Owing to
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Figure 3.7: Schematic overview of the system architecture of the HBP Neurorobotics Platform.
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the realization as a web service, the architecture is layered according to the different types
of compute loads and execution environments involved in a neurorobotics experiment
running on the NRP.

NRP Back End The core of the NRP is the NRP Back End shown at the bottom of
Figure 3.7. It hosts both the brain simulation and the environment simulation as well as a
set of web-based communication and management services. The architecture is designed
to support different implementations for both simulations so that users can integrate
the tools that are best suited for their use cases. For example, while neural models are
provided as PyNN [289] scripts and simulated with NEST [290] by default, there is also
support for SpiNNaker (modeling with PyNN) [180] and Nengo (modeling with NEF) [291].
In Section 4.2, the mechanisms that enable this flexibility will be discussed in more detail
for an NRP extension that adds support for the neuromorphic processor Intel Loihi as a
brain simulator. Even though the interface to the environment simulation also supports
modularity, the only tool that is currently supported is an extended version of the open-
source robotics simulator Gazebo [292] with support for musculoskeletal simulations
based on OpenSim [210]. In contrast to many other robotics simulators, Gazebo is an
open-source project, which makes it possible that the complete NRP is released under an
open-source license. The fact that the complete codebase is fully accessible is especially
important for research projects where new models can only be investigated by extending
the system’s feature set and where large-scale simulations on high performance computers
are only possible by adapting the components to match the requirements of the underlying
software infrastructure.

Closed-Loop Engine Both the environment simulation and the brain simulation are
external tools and, apart from some minor adaptations, not part of the NRP development.
This is because the main contribution lies not in providing a simulation engine but a tool
set for realizing closed-loop experiments based on a principled workflow. In this sense,
the NRP acts as a middleware that connects existing simulation engines. The required
application logic is implemented by the Closed-Loop Engine (CLE), which was developed
from the ground up in the HBP. It manages, connects and synchronizes the environment
simulation and the brain simulation. This involves the launch and termination of instances
of each simulator on start and stop of an experiment, as well as the exchange of data
for closed-loop operation during runtime. The latter requires the translation between
different interfaces and representations: Control commands and sensor readings from
Gazebo are made available through the Robot Operating System (ROS) [293], whereas
neural simulators are typically based on the Python programming language. To connect
the two simulations, the CLE needs to act as a hub that translates between different
communication protocols and data representations as illustrated in Figure 3.8. Both the
environment simulation and the robot simulation run in parallel for a defined duration
of simulated time Δ𝑡 before they are paused. Depending on model size and complexity,
the actual simulation time may be shorter or longer than Δ𝑡 and is in particular different
for both simulations. The step-wise execution of an experiment with fixed time steps
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Figure 3.8: Synchronization of the environment simulation and the brain simulation by the CLE of the
NRP. Each simulation runs independently until the simulated time has progressed by the global time step Δ𝑡.
At the end of each step, the output of one simulation becomes the input of the other for the next time step.
The encoding and decoding of data is handled by TFs.

enforces that both the brain and the environment models remain in temporal synchrony
independently of their execution speed. In a sense, the closed loop is unrolled over time.
As soon as both simulations have progressed independently by Δ𝑡, the CLE maintains
information synchrony by forwarding the output of one simulation to the next timestep’s
input of the other. Unlike the conversion between different interfaces and the enforcement
of temporal synchrony, information synchrony cannot be established automatically and
depends on two specifications:

• Sensorimotor Mapping: The sensorimotor mapping determines how sensor infor-
mation and motor commands are relayed between the brain model and the robot
model. It provides an exact specification which neurons or regions of the brain
receive the output of which sensors of the robot and, conversely, which actuators
of the robot receive control commands from which neurons or brain regions.

• Encoding of Information: The robot and the brain model typically use different tech-
niques to encode sensorimotor information. For example, common robot sensors
provide measurements as real numbers while spiking neuron models communicate
by exchanging digital pulses. Connecting both requires a specification of how
to translate back and forth between the different representations of information
expected by the robot and the brain.

It is these two specifications that define the closed PCA loop between the brain and
the body. Their definition is at the core of neurorobotics research, which is why they
represented by a dedicated NRP concept called transfer function (TF). TFs enable the
definition of both sensorimotor mappings and the conversion between different repre-
sentations of information. They are based on the Python programming language, which
allows for the implementation of any desired behavior [294]. As shown in Figure 3.8,
the CLE invokes the TFs defined for an experiment on every synchronization of the two
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simulations. Data exchange therefore only happens in between two simulation steps,
accounting for a transmission delay of up to Δ𝑡 for an individual signal. For this reason,
Δ𝑡 can be adjusted individually for an experiment to meet the required accuracy. The
back end also contains a programmable state machine for automating control flows in
NRP experiments. However, this component is not relevant in the context of this work
and will therefore not be discussed in more detail. Instead, an alternative approach to the
design of experimental protocols will be presented in Section 4.1.

NRPBack EndWeb Services The NRP Back End is designed to run fully independently
on both local and remote computing resources. For this reason, it exposes only a small
set of well-defined services that are accessible by other applications through a REST-
based interface. Examples include commands for launching simulations, managing TFs or
querying the system health. In addition, clients can connect directly to Gazebo and ROS
through web sockets for live visualization and control of running experiments.

NRP Front End TheNRP Front End depicted in the upper part of Figure 3.7 encompasses
all components and services that mediate between the user and the experiments running
on the NRP Back End. Technically, it is comprised of two sub-layers that run on the client
computer of the user and the server in the data center, respectively. As can be seen at the
top of the figure, the NRP can be accessed through three tools that realize two different user
interfaces. The main entry point is a web application with an Experiment Manager and an
Experiment Viewer that run in the browser without any installation. With the manager,
users can upload new experiment descriptions, create experiment instances from templates
and launch existing experiments on a back end. When an experiment is launched, the
tool automatically switches to the viewer depicted in Figure 1.6 and the middle inset at
the top of Figure 3.7. It is the NRP’s main graphical user interface and combines tools
for editing (Environment Editor, Brain Editor, etc.) and visualizing (3D environment
rendering, plotting, etc.) neurorobotics experiments. Both the Experiment Viewer and the
Experiment Manager are designed for direct user interaction with individual experiments.
The Python API provides an alternative interface to the NRP that can be accessed from
other applications. This makes it possible to automate the execution of experiments,
which is an important prerequisite for parameter optimization or testing a brain model in
many different environments.

NRP Front End Services All services required by the web applications and the Python
API are implemented in the lower sub-layer of the front end and run on a remote host.
Figure 3.7 lists some of the main components such as services for user authentication
and storage. One of the most important of them in the context of this work is the NRP
Back End Proxy, which manages all available NRP Back Ends. This is necessary because
a typical NRP installation in a high performance computing center comprises only one
front end but multiple back ends. The NRP Back End Proxy is therefore essential for
running multiple experiments in parallel. In particular, the number of back ends available
determines the number of experiments that can run at the same time.
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Virtual Neurorobotics Experiments
The NRP combines all features and components required to conduct virtual neurorobotics
experiments within a fully digital integrated tool chain that covers all characteristics
outlined in Figure 3.6. An important precondition for this approach to work is a dig-
ital representation of all relevant aspects of an experimental setup. In the NRP, this
representation is realized as shown in Figure 3.9 by a set of configuration files.

Every NRP experiment is defined by an Experiment Configuration file that contains
meta information such as name, author and description, general settings such as robot and
camera configurations, as well as references to further model configuration files. Among
those is the Environment Model that needs to be provided in the Simulation Description
Format (SDF), a file format for robots and 3D environments that is used by Gazebo. The
environment model file may itself again reference further external content such as other
model files, 3D object meshes and simulation plugins. In general, all model definitions
and corresponding resource files are not stored along with the experiment but in a central
repository so that they can be shared across different experiments.

At the core of the experiment is the actual embodied system that is comprised of a
brain model, a robot model and a mapping between them. All three of them are defined
in the CLE Configuration file, which is the second mandatory external reference in the
experiment configuration. Like the environment model, the Robot Model needs to be
provided as a Gazebo-compatible SDF description and is by default stored in a shared
repository. The BrainModel is provided as a Python script and stored inside the experiment
directory. Its content is typically fully user defined with the structure depending largely
on the employed brain simulator. Code for TFs can be provided directly inside the CLE
configuration file or inserted as references to external Python code. Like the file format
for the experiment description, that for the CLE configuration is based on the Extensible
Markup Language (XML).

Besides the environment model and the CLE configuration, the experiment description
can optionally contain two further file references. The first is a ROS Launch Script which
lets users automatically start ROS components on launch of an experiment. As will be
shown in Chapter 4, this feature makes it possible to extend experiments with features
and control logic beyond the functionality offered by TFs and ensures compatibility to
commonly used tool chains and software stacks in robotics. Finally, it is also possible
to specify experimental protocols as configurations for the state machine execution
environment that is included by default in every NRP installation.

The NRP’s experiment description format covers the Setup phase from Table 3.1. Its
structure provides effective guidance for the configuration of closed-loop systems and is
at the same time open enough to accommodate a huge variety of different experimental
setups. However, it does not yet offer any support for advanced experiments with possibly
hundreds of parallel simulations, which are mandatory for replicating the perceptual
experience of living creatures within a practical time frame. For this reason, the following
chapter will introduce an extension of the NRP for parallel distributed learning.
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Figure 3.9: Configuration file hierarchy of an NRP experiment. The annotations at the bottom of each file
indicate the file type. Typically, not all configuration and model files of an experiment reside in a common
directory. Instead, objects that are shared between several experiments such as models or ROS packages are
stored in globally accessible repositories. Lines between files therefore indicate references. Some of the
depicted file types such as the Environment Model may contain further references to external sources that
are not shown in the figure.
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Neurorobotics Experiments

The HBP Neurorobotics Platform provides a powerful framework for virtual neurorobotics.
It already contains a baseline set of models and experiments that are readily available
after installation by default. They range from simple tutorials for phototaxis on a mobile
robot with only a few neurons to a complex show case experiment with a musculoskeletal
simulation of the mouse body that is based on a neuroscientific study [295]. Creating
variations of these templates or extending them is to a large extent possible directly
from within the NRP using the tools of the front end’s web applications. However,
the design of new types of experiments requires extending the underlying simulation
framework. This chapter introduces two novel extensions for the NRP that add support for
a completely new experiment class and take advantage of hardware acceleration. Section 4.1
describes a framework for parallel distributed learning that supports running hundreds
of experiment instances at the same time to accelerate training and expand the space
of collected experiences. It is universal and not limited to a specific application or area
of research. Section 4.2 targets the acceleration of experiments with brain models that
are based on SNNs by providing a new interface to the neuromorphic processor Intel
Loihi that is fully integrated into the NRP. Real-world validation is an essential part of
virtual experiments. In Section 4.3, we present a novel biomimetic mouse robot that
complements the aforementioned musculoskeletal simulation of the mouse body to enable
knowledge transfer between virtual NRP experiments and validation studies in real-world
environments.
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4.1 Massively Parallel Neurorobotics Experiments
The goal of virtual neurorobotics experiments is to reproduce real-world sensorimotor
experience as closely as possible, both in terms of quality and quantity. High quality refers
to the fidelity of the simulation as well as the underlying robot and environment models.
Compared to previous tools, the NRP sets a high standard in this regard by adopting
Gazebo for the environment simulation and adding support for musculoskeletal modeling.
A downside of this approach is the high computational complexity, which slows down the
experiment simulation. As a result, the quantity of sensorimotor experience that can be
generated in the course of an experiment within practical time frames is limited. However,
this quantity is essential because it is directly related to the coverage of the sensorimotor
space. As von der Malsburg [296] points out, the description of the human genome
corresponds to about one gigabyte of data and the environment can be described by only a
few gigabytes of 3D models. By contrast, the description of the synaptic connectivity in a
developed brain amounts to a petabyte of data. This complexity emerges during ontogeny
from countless unique interactions with the environment. In the following subsections,
we develop an approach to reproducing this rich body of sensorimotor experience with
the NRP. It takes advantage of state-of-the-art cloud computing to run hundreds or even
thousands of experiment simulations concurrently. The development of the required
framework, models and algorithms is guided by a real-world case study on robot grasping
by Levine et al. [297] that relied on physical robots for parallelization. An important
goal of this section besides the extension of the NRP is therefore also to highlight the
advantages of virtual over physical robotics. The results reported in this section have
been partly published in [298].

A Case Study on Data-Driven Robot Grasping
The reliable grasping of objects is a long-standing research topic in robotics with a huge
variety of different approaches ranging from analytical methods [299] to DNNs in the
cloud [300]. Typically, they incorporate a huge body of implicit or explicit knowledge
about the problem domain. Levine et al. [297] proposed a purely data-driven method that
is capable of learning how to grasp objects completely from scratch without any prior
knowledge by replacing manual engineering with massive amounts of data. While not
taking explicit advantage of embodiment, the method requires training data of both high
quality and quantity. The exclusive focus on data makes it an ideal prototypical use case
for guiding and validating the development of the technical infrastructure for massively
parallel experiments on the NRP. In the remainder of this subsection, we therefore provide
a brief summary of the experimental setup based on the description by Levine et al. [297,
301, 302]. The findings will later guide the development of a simulation of the experiment
in the NRP.

Figure 4.1 provides an overview of the experimental setup with a total of 14 identical
7-DoF robots. Each of them is equipped with a compliant underactuated two-finger
gripper and a camera that is mounted to a fixed stand behind the robot. In front of every
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Figure 4.1: Parallel data collection for learning to grasp objects on multiple robots. Top: Overview of the
experimental setup. The robots are placed in front of a trays filled with objects. Each of them is equipped
with a with a compliant underactuated two-finger gripper and a fixed mounted monocular RGB-D camera.
Bottom: The trays of all 14 robots that were used in the experiment. Adapted from Levine et al. [302] by
permission from Springer Nature Customer Service Centre GmbH, ©2017.

robot is a tray filled with objects. There are no details provided about the object types
considered in the experiment except that they were “chosen among common household
and office items, and ranged from a 4 to 20 cm in length along the longest axis” [297]. It is
further stated that complexity was increased in a later set of experiments, where “around
1100 different objects” [297] were used. This figure provides an upper bound for the
initial experiment phase. To increase diversity, the camera position slightly differed from
robot to robot as well as the objects in the trays. During the runtime of the experiment,
additional variation between the robots was introduced through individual wear and tear
of the grippers. Moreover, the content of the trays was replaced manually from time
to time. The amount of objects in a single tray and the replacement frequency are not
communicated by the authors. An important constraint enforced through the encoding
of robot motion commands is that the gripper is always facing downwards at an angle
that is perpendicular to the base of the tray. Movement is only possible around z-axis.
Some example configurations are shown in Figure 4.1. As a result, objects in the tray can
only be grasped from the top with pinch-type grasps [303]. It is important to note that
this implies a drastic reduction of the action space compared to unconstrained grasping
with multiple fingers.

With the limitation of the experiment to a single predefined grasp type, the only task
remaining is to move the robot to a configuration where closing the gripper will most
likely result in the successful grasp on an object. A key feature of the experiment is that
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the control of the robot is implemented by a single DNN N that computes grasp success
probabilities solely based on monocular RGB images from the cameras mounted behind
the robots1 and a relative motion command defined in task space with respect to frame
of the robot base. More concretely, the network approximates the following probability
function:

N(I0, I𝑡, 𝑣) ≈ 𝑃(∃𝑜 ∈ 𝑇 𝑟𝑎𝑦(𝑡). 𝑟𝑜𝑏𝑜𝑡_𝑡 𝑡𝑝(𝑝, 𝑡) ∧ 𝑚𝑜𝑣𝑒(𝑣 , 𝑡) ⟹ 𝑔𝑟𝑎𝑠𝑝(𝑜, 𝑡 + 1)) (4.1)

In the equation above, I0, I𝑡 and 𝑣 denote an unobstructed camera image of the tray, a
camera image of the tray taken from the same perspective but also showing the current
position of the robot arm in time step 𝑡, and a task space motion vector. 𝑇 𝑟𝑎𝑦(𝑡) is the set
of all objects in the tray in front of the robot in time step 𝑡, 𝑟𝑜𝑏𝑜𝑡_𝑡 𝑡𝑝(𝑝, 𝑡) expresses that
robot’s tool tip is at position 𝑝 in time step 𝑡, 𝑚𝑜𝑣𝑒(𝑣 , 𝑡) denotes that the tool tip center
of the robot moves and rotates along 𝑣 in time step 𝑡 and 𝑔𝑟𝑎𝑠𝑝(𝑜, 𝑡 + 1) is true iff the
robot successfully grasps object 𝑜 when closing the gripper in time step 𝑡 + 1. Deriving
an analytical solution for the right hand side of Equation 4.1 requires exact knowledge
of all objects and their positions in the tray, as well as an algorithm to compute whether
closing the gripper at task space position 𝑝 + 𝑣 will result in a successful grasp. While
the former is a computer vision task that is particularly complex when there are many
objects that can occlude each other, the latter is only possible with a physics model that
is capable of computing contact forces between the gripper and the objects. N needs to
solve both of them at the same time solely based on visual information from the camera
images I0 and I𝑡. Figure 4.2 shows the network architecture.

Training the prediction network effectively comes down to solving a binary image
classification problem. The difference lies in the structure of the input which encompasses
two images and a vector instead of only a single image. Collecting a corresponding data
setD is only possible with a baseline control algorithm that executes grasp attempts before
N is available. To resolve this issue, Levine et al. [297] apply a bootstrapping procedure
that starts by issuing random motion vectors 𝑣 to collect a base data set D0. This enables
the training of a first version N1 of the grasp prediction network, which then serves as a
basis for iterative data collection and training. In total, the parameters of N are re-trained
four times with additional data:

D = D0 ∪ D1 ∪ D2 ∪ D3 ∪ D4 (4.2)

In the above equation D𝑖 denotes the data set collected with network N𝑖 for 𝑖 > 0. The
final grasp prediction network results from training on the full data set D. The samples
in every set D𝑖 are collected over multiple time steps 𝑡 ∈ (1, … , 𝑇), the last of which
always corresponds to closing the gripper. Every time step 𝑡 of an episode 𝑒 yields a
sample 𝑆𝑒𝑡 = (I𝑒0, I𝑒𝑡 , 𝑝𝑒𝑇 −𝑝𝑒𝑡 , 𝑙𝑒). 𝑝𝑒𝑡 denotes the robot’s current configuration and 𝑝𝑒𝑇 its final
configuration in that episode. In particular, the last sample from an episode always has the

1Actually, the cameras captured RGB-D images that are available in the data set released along with
the experiment [304]. Nevertheless, the depth information is not used in the control loop of the robots.
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Figure 4.2: Architecture of the grasp prediction network N(I0, I𝑡, 𝑣). conv, pool and fc denote convolution
layers, max pooling layers and fully connected layers. If not stated otherwise, the stride size of all convolution
and max pooling layers is 1. Layer conv1 is assumed to be applied without padding while all further
convolutions use padding to preserve the feature map dimensions. Furthermore, all convolution layers
apply batch normalization. The motion vector is mapped to a fully connected layer that is then spatially
tiled across all feature map dimensions to enable direct addition to the output of pool2. fc2 is connected
to a single neuron with a sigmoidal activation function to map the network output to a probability value.
Adapted and extended from [297].

form 𝑆𝑒𝑇 = (I𝑒0, I𝑒𝑇, 0, 𝑙
𝑒), which means that no motion command is issued and the gripper

closes. If the grasp is successful the label 𝑙𝑒 is set to true. In the original experiment, the
episode duration was increased from 𝑇 = 2 to 𝑇 = 10 during data collection, resulting in
an increment of two after each training phase.

What is still missing yet is a method for leveraging the predictions of N in the robot’s
control loop. The network alone can only assess the quality of a task space motion 𝑣 with
respect to grasp success. Determining a motion vector 𝑣∗ that maximizes N(I0, I𝑡, 𝑣∗) is
implemented in a separate control function that samples candidate solutions based on the
Cross-Entropy Method (CEM), a gradient-free optimization algorithm [305]. While the
robot moves and I𝑡 changes, 𝑣∗ is continuously updated to compensate for model errors by
generating new samples around the current robot configuration for the CEM optimization.
N thereby becomes the model M of a closed PCA loop as illustrated in Figure 3.2. As
Levine et al. [297] point out, the control loop is solely based on visual input. The approach
can therefore be described as special type of visual servoing, which is a common task in
traditional robotics. But unlike earlier work in the field, there is no camera calibration
required. Therefore, N effectively learns hand-eye coordination.
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Virtual Experimental Setup for the Neurorobotics Platform
Creating a digital twin of the robot grasping experiment involves not only the virtualization
of the complete physical setup but also of the experiment protocol that is applied for
data collection. This subsection addresses the Design and Setup phases as introduced
in Table 3.1. The instantiation and execution phases will be discussed in the next two
subsections. An overview of the final NRP experiment is depicted in Figure 4.3.

Models As the model library of the NRP is primarily aimed at use cases from neuro-
science, most NRP-related components of the virtual experiment need to be designed
from the ground up. A natural starting point is the modeling of the robot along with
an appropriate gripper and control interfaces. Like the latest version of the original
experiment, the digital version on the NRP is based on a KUKA LBR iiwa robot. This
specific model not only has seven degrees of freedoms (DoFs), but it is also widely used
in both research and industry, which makes it a valuable addition to the NRP’s model
library for a broad range of applications. 3D models and a URDF description of the robot
are readily available as of part the ROS Industrial Program [306]. The gripper of the robot
is based on a URDF model of a Schunk WSG 50 parallel gripper with two fingers [307] and
3D meshes of a similar Schunk PG 70. The fingers of the gripper were designed with the
3D modeling software Blender [308]. In summary, the overall setup is comprised of the
robot, the gripper and the tray containing the objects to be grasped. As can be seen in

Figure 4.3: Digital twin of the robot grasping experiment in the NRP “Holodeck”, a digital lab space for
virtual neurorobotics experiments. A KUKA LBR iiwa robot equipped with a Schunk PG 70 parallel gripper
is placed next to a tray with random objects. The content of the tray is captured by an RGB camera mounted
behind the robot.
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Figure 4.3, there is a close correspondence to the setup of the physical experiment shown
in Figure 4.1. Since both the robot and the gripper model are specified as URDF macros,
replacing them by other models is possible with little effort.

What is still missing yet are 3D models of the objects to be grasped by the robot. Even
though selecting and adding them may appear to be a trivial task at first glance, it is
actually one of the major challenges in creating the virtual experiment. This is due to
the large number and wide variety of objects required. Not only do they have to have
shapes and sizes that are compatible with the capabilities of the robot’s gripper, but they
must also represent a diverse range of geometries and appearances. Also, their 3D meshes
need to meet a number of common quality criteria, such as watertightness and correct
orientation of surface normals. While a large number of 3D models are freely available
online, selecting, checking and adapting them involves time-consuming and cumbersome
manual work. For this reason, the setup includes a set of about 1000 procedurally generated
random objects that have been published specifically for applications in robotics [309,
310]. Some of them are depicted in Figure 4.3. As an alternative, the experiment also
contains a small selection of everyday objects.

Controllers The modeling efforts discussed so far only cover the robot’s kinematics.
In general, it is also necessary to define all parameters governing its dynamics, such
as frictions, forces and inertia. To accurately reproduce the robot’s dynamics, careful
calibration is required and the final results depend significantly on the quality of the
physics simulation. However, this effort is only required when the goal of the experiment
is to develop a model or algorithm that takes into account the robot’s dynamics. This
is, for example, the case when training a low-level force controller. Since the control
algorithm described in the last subsection solely outputs relative motion vectors in task
space, no detailed modeling of the system dynamics is required as long as the robot has an
inverse kinematics model and supports position control in joint space. To realize the latter,
the robot’s model was extended to work with the ros_control framework [311], which
provides standard control interfaces for ROS and corresponding reference implementations
of joint position controllers. In a sense, position control hides possible inaccuracies of the
dynamics simulation and thereby makes the simulated robot highly accurate with respect
to the ground truth of the actual physical experiment. Inverse kinematics transformations
are computed by MoveIt, a software framework for robot motion planning that interfaces
with ros_control [312]. The only exception where force control is applied instead of
position control is the robot’s gripper, in order to ensure that objects can be grasped even
when their exact geometry is unknown. Because the fingers of the simulated gripper are
rigid, this approach can be seen as an approximation of the compliant gripper used in the
physical experiment.

Programming Interfaces In terms of Table 3.1, the virtual model of the experiment
described so far corresponds to the Setup phase, where a general experiment class from
the Design phase is instantiated with concrete models for the robot, the brain and the
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environment. In a more general view, the experiment class can be defined as grasping.
It describes the overall domain addressed by the experiment and experiments from the
same class naturally share many common features, such as the presence of some form
of hand or gripper and a set of objects that the robot should grasp. Likewise, there are
common commands, such as closing the gripper and checking whether an object was
successfully grasped. This makes it possible to define a general application programming
interface (API) for an experiment class that abstracts common functionality from specific
implementations. Individual experiment classes are thus effectively determined by their
unique APIs.

The definition of an API is not only of conceptual relevance, but has two important
practical implications. First and foremost, prospective users who want to test a brain
model in a specific experimental setup only need to know the high-level API rather than
the low-level interfaces from the NRP, Gazebo, ROS and other components that might be
involved. Conducting experiments thereby becomes considerably easier and requires less
technical knowledge. Secondly, a standardized API makes it possible to switch seamlessly
between different setups of the same class to evaluate the performance of a brain model
in different settings. The experiment API for grasping is implemented in Python and
comprises all functionality that is required for the experiment protocol outlined in the last
subsection. Similar approaches to standardizing the interfaces of virtual environments
have been published earlier, with prominent examples being OpenAI Gym [313] and
Reinforcement Learning Coach [314]. Most related to this work are attempts to provide
OpenAI Gym-compatible interfaces for Gazebo [315, 316, 317]. However, they exclusively
target reinforcement learning and lack the software infrastructure required for massively
parallel experiments, which will be introduced in the next subsections.

Complete Experiment Figure 4.4 summarizes all components of the NRP Grasping
Experiment based on the schema from Figure 3.9 The arguably most salient difference
is that many components defined by the latter are missing, particularly the brain model
and the TFs. For this reason, the CLE configuration only needs to be included in order
to specify the robot model and simulation parameters, which is why it is grayed out in
the schema. Both the brain model and the TFs are implemented externally and connect
to the experiment through the Experiment API, which, together with the robot model,
forms the system’s core. As can be seen in the figure, there are actually three different
model files that are related to the robot. The main specification that also hosts the
configuration for the ros_control framework is contained in the robot’s URDF description.
A corresponding SDF model for Gazebo can be automatically generated from it. Finally,
the SRDF configuration contains additional parameters required for computing the robot’s
inverse kinematics. All three components located in the lower part of the right branch of
the schema are implemented as ROS packages. They are managed by a ROS launch script
which is referenced in the global experiment description file.

The NRP Grasping Experiment is designed to reflect all relevant features of the orig-
inal physical setup as closely as possible. Nevertheless, there are still qualitative and
quantitative differences. Table 4.1 provides an overview. One of the main deviations is
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Figure 4.4: Overview of all components of the NRP Grasping Experiment. The schema instantiates
the general structure of NRP experiments from Figure 3.9. Unused components are left out. The CLE
Configuration is grayed out because it is required technically, even though the experiment uses an external
brain model and therefore does not include any TFs. Even though they are not part of the actual experiment
definition but added during runtime through the Experiment API, the object models are shown since they
are constituent parts of the experiment. The dotted line between the Gazebo Robot Model and the ROS Robot
Model indicates that the SDF model is generated automatically from the URDF model.
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Table 4.1: Comparison of the virtual and physical experiment setups for robot grasping. The properties of
the physical experiment are based on the description by Levine et al. [297] of the more recent setup with
the KUKA LBR iiwa robot.

Virtual NRP Experiment Physical Experiment

Robot KUKA LBR iiwa KUKA LBR iiwa

Gripper Schunk PG 70 two-finger gripper,
fully acutated

Compliant two-finger gripper,
underactuated

Objects ≈1000 procedural rigid objects ≈1100 “large, small, hard, soft, deformable,
and translucent” [297] objects

Physics Rigid body dynamics Soft body dynamics

Performance Scales with computing power Fixed to real time

Costs Usage-dependent cloud fees > 60 000 EUR for the robot alone [318]

Setup Time Seconds to minutes Hours to days

the limitation to rigid body dynamics imposed by Gazebo. Consequently, there are also
differences in the gripper and the types of objects considered. It is planned that future
releases of the NRP will address this point by adding support for alternative simulation
engines. Nevertheless, the main characteristics of the physical setup are conserved and
there are no conceptual limitations. The second major point of distinction is the effort
required to install and run the experiment. Adding another virtual robot only takes sec-
onds to minutes while scaling up the physical experiment is not only very expensive but
also takes considerably longer. Moreover, when running the NRP on cloud infrastructure,
there are no fixed costs and the experiment can be scaled to an arbitrary number of robots
working in parallel. Virtual experiments such as the NRP Grasping Experiment thereby
augment physical experiments not only quantitatively but also qualitatively by making it
possible to address new research questions that would otherwise involve high investments
in infrastructure or take too long to be practically feasible.

Extended NRP System Architecture
So far, the NRP Grasping Experiment comprises only a single robot. Extending the config-
uration files to include additional ones is technically feasible, but generally unfavorable in
terms of complexity and scalability. Both Gazebo and ROS are designed to simulate and
control a single experiment and cannot be easily parallelized in a cluster. It is therefore
not possible to take advantage of distributed computing infrastructures and the maximum
experiment size becomes effectively limited to the capacity of a desktop computer. Further
challenges include the separation of all robots within a single ROS name space and the
high volume of data transfer that would need to be handled by a single ROS core process.
For this reason, parallelization in the virtual experiment is realized by launching multiple
experiment instances rather than adding multiple robots to a single instance. This is made
possible by the NRP’s distributed system architecture that is in the following extended to
support large-scale experiments with potentially thousands of parallel instances.
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Default System Architecture The NRP bundles many interdependent software com-
ponents, ranging from the simulation engines in the back end to the web applications in
the front end. Installing them individually is error-prone and not practical for large setups.
This is why the front end and the back end are also available as preconfigured images
for the container-based OS-level virtualization framework Docker [319, 320]. They are
self-contained and run on any platformwith support for Docker and the x86-64 instruction
set architecture, independently of the installed operating system and library versions.
Importantly, the encapsulation inside containers makes it easy to scale up simulations
and launch multiple NRP instances on a single machine, making the system completely
independent of the underlying computing infrastructure. In the default distribution of the
NRP, a single front end container manages multiple back end containers to support parallel
access by different users. A simplified schema of the underlying system architecture is
depicted in Figure 4.5. Depending on its performance, a single compute node can host
multiple back end containers. All of them operate completely independently and are
assigned dynamically as soon as a new experiment is launched from the front end. As
user data, models and experiments are provisioned through a shared storage on the front
end compute node, every back end can execute every experiment.

Extensions for Parallel Experiments The default system architecture of the NRP
supports the parallel execution of multiple experiments, but not the execution of parallel
experiments. The difference between the former and the latter lies in the dependences
between the individual experiment simulations running on the back ends. In a parallel
experiment, they run in a common context, process data that belongs to a single neu-
rorobotics experiment and possibly share data with each other. This is fundamentally
different from a number of independent simulations that run concurrently and motivates
the extension of the NRP system architecture presented in Figure 4.6. The arguably most
salient feature is the increased number of components located on the front end node,
which now hosts additional data storage servers and management interfaces. Table 4.2
lists the software packages chosen for each of the services.

At the core of the extended system architecture is a central data base that is accessible
by all NRP instances. It not only stores metadata of experiments and collected raw data
but also serves as a central parameter server that distributes experiment settings to all

Table 4.2: Selected implementations of the additional services defined in the extended NRP system archi-
tecture. All chosen frameworks are open-source and freely available.

Service Implementation Source

Object Storage MinIO [322]

Data Base MongoDB [323]

Data Base GUI mongo-express [324]

Dashboard Metabase [325]
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Figure 4.5: Default system architecture of the NRP with Docker-based deployment. The outer boxes
correspond to compute nodes. Docker containers and storage are highlighted in blue and green, respectively.
Tags in rounded boxes indicate exposed interfaces. In particular, HTTP refers to a web application and WS
denotes a web socket.

Figure 4.6: Extended system architecture of the NRP for parallel distributed learning. Symbols and
abbreviations are identical to Figure 4.5. Storage in the back ends is only available to local containers. The
interface Wire refers to the communication protocol of the MongoDB document data base [321].
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Figure 4.7: Document type definitions for the data base of the extended NRP system architecture. The
schema only depicts the most relevant parts of the actual implementation. Variables printed in bold letters
at the top of every document definition denote primary keys. Every conducted experiment is identified by a
document of type Run that is referenced by all other documents related to this experiment. The document
types are grouped into three different categories for the definition of experiments, the raw data generated
during runtime and the post-processed data set.

back ends. To account for the rather dynamic nature of the data generated in robotics
experiments, a document-oriented data base was chosen instead of a traditional relational
data base. This allows for an easy adaptation of the data scheme when the experimental
protocol changes or additional data needs to be stored. Moreover, document-oriented
data bases are better suited for storing raw data, which fits very well to the requirements
of neurorobotics experiments. Figure 4.7 provides a summary of the document structure
defined for the NRP Grasping Experiment. Every run of the experiment is represented
by an instance of the document type Run, which is referenced by all data base entries
resulting from its execution.2 It points to one or more documents of type RunInstance
that represent individual experiment simulations running on NRP back ends and, for
example, store the object models the robot is supposed to grasp in the corresponding
instance of the experiment. Analogously, individual grasp attempts are stored along
with all parameters in documents of type Sample. To keep the memory footprint of the
data base low for increased responsiveness to queries, image data is stored separately
in an object storage. Consequently, the individual samples only contain file references.
Taken together, RunInstance and Sample are the results of the experiment execution
phase as defined in Table 3.1. The instantiation and evaluation phases are represented

2While redundancies are typically avoided in traditional data base schemes, accessing the corresponding
Run from every document considerably simplifies the most common queries and is therefore advantageous
for this specific use case.
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Figure 4.8: Dashboard for monitoring the data collection in parallel distributed NRP experiments. The
depicted view displays not only the progress of the current experiment run and the number of executed
grasp attempts but also statistics of individual objects.

by InstanceConfig and TrainingData, respectively. The former maps back ends to runs
for parameter distribution at launch. The latter stores post-processed raw data from
the execution phase, which is the main result of an experiment run in the case of the
NRP Grasping Experiment. Actual metrics for a quantitative evaluation of the robots’
performance can be computed based on the raw data from the execution phase. It is
important to note that all document definitions can be easily extended to support other
types of data and experiments. Even though the developed framework is motivated by
the NRP Grasping Experiment, it is therefore nevertheless universal and flexible. A major
advantage of using a data base to store the results of experiments is the possibility to
query and analyze data. This makes it possible to create interactive dashboards with
live statistics from running experiments. Figure 4.8 depicts an example from the NRP
Grasping Experiment with detailed information about the experiment progress and grasp
success rates.

To realize massively parallel experiments, the NRP system architecture has not only
been extended but also optimized for performance. This is why the model and experiment
storage now resides locally in every back end node tomitigate bandwith bottlenecks during
the launch of hundreds of simulations at the same time. Configuration and setup files are
still located on the front end to enable the fast deployment of updates for components
such as the Experiment API, which is installed automatically when a new back end Docker
container is created. A new experiment launch script supports starting all simulations of
a run within minutes through parallel calls of the NRP’s Python API.
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Parallel Distributed Learning
The virtual experiment setup enables the collection of training data analogously to the
physical experiment. In tests on a compute cluster, the new architecture easily scaled to
more than 100 parallel experiment simulations that collected data and stored it in the data
base. Runs across instances were randomized in terms of the objects in the tray and the
camera position. In the following, we will present concrete results from the NRP Grasping
Experiment before the section closes with a discussion of how the developed system can
be applied to other experimental setups.

NRP Grasping Experiment Following the design of original physical experiment,
the NRP Grasping Experiment is split into two iterative phases for data collection and
training. Figure 4.9 provides an overview. In the data collection phase, all experiment
simulations perform grasp attempts and store them in the data base. Every attempt is
split into multiple time steps 𝑇, after each of which a new motion command generated.
At the beginning of the training process, samples are collected randomly with 𝑇 = 2. In
the first time step, the gripper moves along a randomly generated motion vector before it
stops and closes in the second step. Figure 4.10 shows an example from the NRP Grasping
Experiment. The top row corresponds to time step 𝑡 = 1, the bottom row to time step
𝑡 = 2. Each sample not only contains a view of the tray at the corresponding time step
but also an unobstructed camera image that was captured at the beginning of the attempt
before the robot moved into the field of view. The three components of the motion vector
in the rightmost column are drawn individually at fixed angles to visualize their relative
lengths.

As soon as enough samples have been collected, they can be exported for training.
This step not only includes the conversion into an appropriate file format such as TFRecord

Figure 4.9: Parallel distributed learning in the NRP Grasping Experiment. Grasping data collected in the
parallel experiment instances are used to train the grasp prediction network N. After every training step, the
updated weights are deployed to the simulations on the back ends to collect further data with the improved
network model.
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Figure 4.10: Samples of grasp attempts collected with the NRP Grasping Experiment. The format of the
samples follows the definition from the physical experiment [297]. Each sample is comprised of two camera
images with an unobstructed view on the tray and with a view of the current position of the robot’s gripper,
respectively. The components of the generated motion vector and the label of the sample are depicted in the
rightmost column. Both samples belong to a single grasp attempt with two steps, in the second of which
the gripper stops moving and closes.

for TensorFlow [135], but also allows for additional pre-processing, such as sub-sampling
the data set to guarantee an even distribution of positive and negative grasp attempts
during the training phase. The actual success rate before sub-sampling can also serve as
an indicator of how closely the overall dynamics of the physical experiment are captured
by the virtual one. Figure 4.11 summarizes the results of hundreds of virtual experiment
runs with random grasp attempts for three different numbers of objects. As expected,
grasp success increases with a growing amount of objects in the tray. Not shown in the
plot is the simulation time trade-off that occurs due to the increased complexity of the
physics simulation for larger numbers of objects. The overall range of success rates is in
line with the numbers reported by Levine et al. [297]. That the maximum rate of about
20 % is lower than the 30 % in the physical experiment can be explained by the fact that
the simulation only supports rigid body dynamics and therefore requires a more exact
positioning of the gripper compared to a compliant system. After exporting the collected
data and training the grasp prediction network N, the network weights can be deployed
to all experiment simulations to collect further training data.
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Figure 4.11: Box plot with success rates of random grasp attempts for different object numbers in the NRP
Grasping Experiment. Data for each number of objects were collected from 100 simulations that executed
450 000 grasp attempts. More objects increase the success rate at the cost of simulation time. Success rates
fall in a similar range as the 10 % – 30% reported for the physical experiment. The lower maximum rate is
most likely due to the simulation’s limitation to rigid body dynamics.

Support for other Experiment Types The extensions introduced in this section
provide the basis for parallel distributed learning with the NRP. Even though some of the
components such as the data base have so far only been discussed in the context of the NRP
Grasping Experiment, they can be easily adapted to support other types of experiments. In
particular, in Chapter 5 the system will be applied to a setup with a modified environment
and a completely different learning task. Finally, the overall architecture also supports
other types of distributed learning where a model is trained online during data collection
such as A3C or IMPALA [326, 327]. Even though these methods do not build up sets of
training samples, the data base can be still used for parameter distribution and storing
meta data.

4.2 Neuromorphic Neurorobotics Experiments
with Intel Loihi

The system developed in the previous section enables accelerated virtual neurorobotics
experiments through massively parallel scaling. Especially applications where system
performance is mainly limited by the speed of the environment simulation can benefit
from this approach. One of the arguably most common use cases that falls into this
category is the control of robots with DNNs, where a single GPU is often sufficient to
serve multiple simulations at the same time [328]. This is fundamentally different for SNN
models that support online learning and have a complex internal dynamic state, which
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cannot be shared across several experiment instances.3 Moreover, simulating them is often
more computationally demanding than the environment simulation. The acceleration
of neurorobotics experiments that are based on SNNs is therefore a strong use case for
the neuromorphic processors introduced in Chapter 2. By default, the NRP supports
SpiNNaker [180] through its PyNN interface [289]. In this section, we introduce an
extension for the neuromorphic processor Intel Loihi and its Python-based programming
interface Nx Net API [329]. The new framework works with both locally attached Loihi
devices and off-site systems in the cloud.

Requirements and Architecture
The Nx Net API is part of Nx SDK, Intel’s software development kit for Loihi. Even though
it is based on Python, the required software environment differs considerably from that
provided by the NRP, which precludes a direct integration. For this reason, the preferred
way to connect the two systems is to provide a network-based interface that handles all
communication between the robot simulation and the brain simulation. This also makes
it possible to connect to remote Loihi systems in the cloud. The interface needs to support
two types of operations:

• Synchronization: The neural network simulation on Loihi needs to be synchronized
with the NRP’s global time step Δ𝑡 to ensure that both simulations progress at equal
speed independently of the actual computation time. As explained in Chapter 3,
this is accomplished by executing each of them in chunks of length Δ𝑡.

• Data Transfer : Input and output of the neural network simulation must be made
available in the TFs of the NRP experiment.

Both features have been realized based on a client-server architecture that is depicted in
Figure 4.12. In the schema, there is only a single NRP node for both the front end and
the back end because this is the most typical setup for local installations. Support for the
distributed setups from Figures 4.5 and 4.6 is technically feasible but requires additional
user management to control access to Loihi, which is outside the scope of this work.
The core component of the Nx Net API is the NRP Loihi server application on the Loihi
compute node that contains the description of the brain model, controls the simulation
and exchanges data with the NRP node through a Python socket. A client application
running on the NRP node connects to the server to send data from the robot and receive
the output of the brain simulation in TFs. All communication between server and client
is channeled through an SSH tunnel which secures the connection and implements the
user authentication for accessing the Loihi system.

3This argument does not apply, for example, to setups where DNNs are approximated by SNNs. However,
approaches in this direction typically do not fully exploit the computational features of SNNs and can
therefore be considered a specific implementation technique for DNNs. It is further important to note that
there are also DNNs that have an internal state due to recurrent connections or specific neuron models.
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Figure 4.12: Extended system architecture of the NRP with support for Intel Loihi. Symbols and abbrevi-
ations are identical to Figure 4.5. SKT refers to a socket connection. The Loihi system is connected to a
different node, possibly at a remote site. Communication with the NRP is handled by a transfer function
that connects to a server application running on the Loihi node through a Python socket.

NRP Extensions for Nx SDK

The client required for the communication between an NRP experiment and Loihi can be
set up in two different ways. In the following two paragraphs, we first develop a method
that leverages the TF framework and does not require any changes in the NRP’s code
base. Based on this initial prototype, we then introduce an extension of the NRP CLE that
adds full-featured native Loihi support.

Custom Integration with Transfer Functions Since the TFs of the NRP are based
Python, they can implement virtually any desired algorithm. More concretely, they are
not limited to simple basic numerical operations on the data exchanged between the
robot and the brain model but can contain complex control flows and access functions
from imported Python modules. It is therefore possible to implement the complete Loihi
client application within a TF. This approach was realized as a proof of concept for the
Braitenberg Vehicle Experiment that is part of the NRP’s showcase experiments. The setup
is comprised of a mobile robot platform placed in between two screens with adjustable
colors. It is controlled by a neural network which implements phototaxis so that the
robot always drives towards red objects. By adjusting the screen content appropriately
over time, the robot can be made to drive back and forth within its workspace. The
neural network model is extremely simple and contains only eight neurons (Nx Net
compartments) and six synapses (Nx Net connections). It receives two input signals that
encode the presence of red color in the left and right half of the camera image and outputs
rotational speeds for the left and right wheels of the robot. Both client and server exchange
the corresponding values directly as spikes rates and wheel speeds, which means that no
spikes are transmitted. Since all client code is contained within a single transfer function,
no modifications of the NRP’s code base were required. However, the overall setup is
highly specific to both the NRP experiment and the neural network model. Changes in
any of the two will in most cases also require changes in the code for client and server.
Flexibility is thereby traded off with comparatively high manual implementation effort.
Moreover, some of the NRP’s features such as the spike train monitor are not available
with this method.
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Extension of the NRP’s Closed-Loop Engine As outlined in Section 3.3, the CLE of
the NRP connects and synchronizes the environment simulation and the brain simulation.
Because both of them are accessed through open APIs, it is possible to replace them by
alternative software packages as long as the required interfaces are implemented. For
example, the CLE by default supports not only NEST but also Nengo and SpiNNaker.
Neural simulators integrated this way provide full support for all features of the NRP,
which makes using them a lot more convenient compared to the custom TF from the last
paragraph. Figure 4.13 provides a schematic overview of the interfaces implemented for
Loihi. The CLE accesses every simulation via two interfaces, the control adapter and
the communication adapter. They are responsible for controlling the execution of the
simulation and the exchange of data through devices, respectively. Devices are accessed
by transfer functions and include, for example, spike detectors and spike generators. All
functionality for providing these features needs to be implemented by the server. As a
result, the Loihi control and communication adapters only contain client code for relaying
requests from the CLE to the actual Loihi endpoint. This was realized by replacing the
basic server application from the last paragraph with a dispatcher that serves both adapters
through a Python socket [330]. A special challenge turned out to be the mapping of the
Nx Net API to the NRP’s communication adapter interface, which was designed based on
the feature set of PyNN. Differently from the initial prototype, the new server application
implements efficient synchronization based on Sequential Neural Interfacing Processes
(SNIPs), an interfacing mechanism of Nx SDK.

Figure 4.13: Native support for Intel Loihi in the NRP CLE. The adapter components for the brain simulation
forward CLE commands and requests to a server component with direct access to Loihi. Only the most
relevant components and dependences are shown. Adapted and extended from [330].
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With the new extension, Loihi can be used without any restrictions and with the
same set of features available for the other brain simulators of the NRP. The barrier
synchronization implemented by the chip [62] allows for an efficient stepwise progression
of the simulation as required by the CLE. Experiments can therefore run in biological real
time if the connection to the server has low latency. This is especially the case when the
Loihi system is directly attached to the NRP node and the network socket can be replaced
by a Unix domain socket.

4.3 Biomimetic Neurorobotics with the
TUM Robot Mouse

The virtual development of models and algorithms with the tools introduced in this chapter
augments the exploration space and accelerates development in research and engineering
alike. In particular, designing a model or algorithm in a virtual NRP experiment is more
efficient than on a physical system, even if fine-tuning is still required to compensate for
slight differences between the simulation and the real world. A major challenge, however,
is the transfer of results from neuroscience to robotics. Whereas experiments with brain
simulations require body models that capture the kinematic and dynamic properties of
the bodies of living creatures as closely as possible, work in robotics typically targets
simplified mechanical structures that are technically feasible. As discussed in Section 3.1,
these differences can have a huge impact on the structure and functioning of the connected
brain models. There is consequently a huge potential in optimizing knowledge transfer
from neuroscience to robotics by providing a set of complementary body models that cover
a full range of use cases from virtual neuroscience to neuromorphic engineering. The NRP
includes a realistic musculoskeletal model of the mouse that mainly targets applications in
neuroscience. This not only because a huge body of findings in neuroscience is based on
the mouse [331], but also because highly detailed atlases of the mouse brain are available
[332, 333, 334]. When this model is complemented by an appropriate robot as illustrated
in Figure 4.14, a principled workflow for transferring results from neuroscience to robotics
becomes available. This section introduces the design goals and main components of
the first version of the TUM Robot Mouse that laid the foundations for a full series of
small-sized biomimetic robots with mouse-like morphology.

Design Goals

A central design goal for the TUM Mouse Robot was to build a small and inexpensive
research platform from easily accessible components that captures the most characteristic
morphological features of the mouse. The rationale behind this approach is twofold:
Aiming for a small overall size not only makes the robot more similar to its biological
counterpart but also constrains the design space in a favorable way. Focusing on low-cost
components allows for rapid design iterations and makes it possible to build multiple
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Figure 4.14: Vision for the TUM Robot Mouse. The robot complements the musculoskeletal mouse body
simulation provided by the NRP and can be made available both as a physical device and as a simulation
model, enabling a principled workflow for knowledge transfer from neuroscience to applications in robotics
and neuromorphic engineering. Photo of the robot adapted from [335].

robots with custom modifications. In summary, these considerations lead to the following
strategy for the development of the robot mouse:

• Biomimetic Design: The robot not only mimics the size and appearance of the
mouse body but also selected features of its biomechanics. This makes it possible
to leverage embodiment effects and provides guidance for reducing the size of the
robot’s actuation system.

• Legged Locomotion: To reduce complexity and achieve the targeted size of a mouse,
the initial version of the robot is designed with a focus on basic legged locomotion.
This will provide a basis for later iterations to add sensors and refine mechanics for
other tasks such as grasping and jumping.

• Rapid Manufacturing: All custom parts of the robot are built with rapid manufac-
turing techniques such as 3D printing to enable the implementation of innovative
designs with lowmanual assembly effort and high reproducibility. Another opportu-
nity of additive manufacturing is the procedural design of kinematic structures [336].

The use of rapid manufacturing methods opens up an interesting perspective for the study
of embodiment. Low material costs and the simplicity of generating new parts on demand
enables research on how morphological changes interact with neural processes directly
on a physical system. Examples include the modeling of developmental progression (e.g.
body growth) or abrupt changes (e.g. lesions).

Keeping the size of the robot mouse small and lightweight offers many advantages
beyond a close correspondence to the body morphology of biological mice. It provides the
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prerequisites for high agility and versatility, making the robot suitable for a broad range
of tasks and environments. Importantly, these specific features are also relevant in many
industrial applications, such as inspection tasks in rough terrain. The size constraints
also have immediate effects on the system’s electronics. Traditional microcontroller units
(MCUs) with appropriate specifications in terms of both size and power consumption
offer only very little computing power far below the requirements of typical AI models
and brain simulations. This makes the robot mouse a unique testbed for neuromorphic
systems like SpiNNaker or Intel Loihi.

Core Components and Initial Version of the Robot
The basic conceptual design of the robot mouse as a biomimetic legged walking robot
sets a clear direction for the initial development phases. In an extensive study of the limb
kinematics of small mammals such as rats, Fischer et al. [337] highlight that besides the
legs also spine movement plays an essential role in walking. This insight sets the frame
for the development road map of the robot, which is centered around the design of a
biomimetic hind leg and a flexible actuated spine.

Design of the Leg There is a plethora of research on biomimetic legged locomotion
ranging from insect-like hexapods to mammalian and amphibian quadrupeds to humanoid
bipeds [338, 339]. Not less diverse are the mechanisms and materials that have been
proposed for mimicking the properties of biological musculoskeletal systems. Of special
relevance for the leg of the robot mouse is the pantograph design conceptualized by Witte
et al. [340], which is based on observations from the study of gaits of small mammals.
Of particular relevance is the finding that the femur (proximal/upper link) is in matched
motion with the metatarsus (distal/lower link), which means that they are effectively
parallel to each other [337]. This kinematic invariant can be leveraged to reduce the
complexity of the mechanical design and makes it possible to build a complete leg from
only three links and two actuators. The parallel configuration of femur and metatarsus
can be realized with passive elastic elements that add compliance to the system, which,
for example, improves walking on uneven ground. The starting point for the design of
the mouse leg is the pantograph leg realized for the robot Cheetah-cub [341]. Figure 4.15
depicts three substantial development stages. Early prototypes were built from laser cut
acrylic plastic and rubber bands [342]. Movements are generated by motors that twist a set
of strings around each other to shorten their overall length and in turn apply a retracting
force to the leg at their attachment point. These twisted string actuators are specifically
designed for lightweight robots and were applied earlier in robotic hands [344, 345]. With
the twisting of the string mainly requiring high rotational speed rather than high torque,
this actuation principle seems very well suited for size-constrained applications but is
challenging in terms of control. The initial version of the leg depicted in the left part
of Figure 4.15 suffered from issues with the routing of the rubber bands that could be
mitigated in a second 3D printed prototype that is shown in the middle. In summary,
however, the overall design turned out to be challenging to realize at the desired level of
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robustness and maturity. For this reason, the third version of the leg shown on the right
of Figure 4.15 is based on a more traditional mechanical design with springs, servomotors
and a force sensor at the bottom of the foot. It was successfully integrated in the first
version of the robot mouse [335].

Design of the Spine As noted earlier, the spine plays an essential role in biological
locomotion. So far, detailed biomimetic models have been mainly developed for humanoid
robots such as ECCEROBOT, Roboy or Kengoro [346, 347, 348]. Karakasiliotis et al. [349]
developed a salamander-like robot with an artificial spine that was optimized to reproduce
biological motion data from cineradiographic recordings. A drastically reduced design
was proposed by Weinmeister et al. [350] who extended the Cheetah-cub robot with a
spine comprised of a single compliant joint for improved turning motion. The goal for the
robot mouse was to identify a mechanism that strikes the right level of balance between
this reductionist approach and the highly detailed spine models developed for humanoid
robots.

One of the first prototypes is shown in Figure 4.16. It is built from 3D printed vertebrae
that are lined up on a steel cable routed through holes in their centers. The shapes of the
individual vertebrae are derived as approximations of the actual biological morphology
with variations that occur along the extent of the spine fromhead to tail being neglected. Of
special importance are the vertebral discs placed between adjacent vertebrae because they
act as passive joints and make the spine compliant. In the artificial spine, they are replaced
by silicone that is cast between the vertebrae. This approach is highly advantageous
because the silicon not only mimics the functioning of the vertebral discs but also of the
ligaments that surround the spine and provide both compliance and structural integrity.
The fully assembled spine is actuated through nylon wires that are routed through holes
at different positions in the vertebrae. Besides the servomotors depicted in the figure,
additional tests were conducted with Nitinol-based shape memory alloys that change their

Figure 4.15: Hind leg designs for the TUM Robot Mouse. Left : An early prototype made from laser cut
acrylic with rubber bands and twisted string actuators [342]. Middle: Refined design with 3D printed
components [342]. Right : Final design for the first version of the robot mouse with springs and servomotors.
[343]. Images adapted from [342] and [343].
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shape depending on the temperature. Even though movements with this type of actuator
are too slow to actively support walking, the extremely compact size of the overall system
make this design an interesting option for other applications where speed is less relevant.

Initial Version of the Robot and Outlook The leg design presented in the last
paragraph forms the basis of the first version of the TUMRobotMouse shown in Figure 4.17.
While there is no spine yet, there are forelegs with a dedicated design. Walking is
implemented with an open-loop controller that runs directly on the robot. One of the
main challenges in the completion of this first prototype turned out to be the assembly of
the compliant components. While the main parts of the leg are 3D printed, the spring
mechanism is manually crafted and cannot be easily replicated. The same applies to the
spine model, where the casting of the silicon and the routing and fixation of the nylon
wires require lots of care to achieve good results. Moreover, the durability of the overall
mechanism is not clear yet since the prototype was deformed after a force test. A highly
promising direction for the future development of the robot is to print components that
not only have the desired geometry but also the required material properties. This idea
has been realized in two further prototypes of the leg and the spine that are depicted in
Figure 4.18.

The new leg is a single monolithic component that is ready for use as soon as the
printing process is finished. A new design replaces the springs and joints by 3D printed
compliant structures. The same principles also enable the design of an alternative mech-
anism for the spine, which is shown on the right side of the figure. Of course, there
are many more opportunities to enhance the TUM Robot Mouse. The initial version
presented in this thesis provides a promising foundation for future developments. In

Figure 4.16: Prototype of the spine for the TUM Robot Mouse. Individual vertebrae are 3D printed and lined
up on a steel cable that is routed through holes in their centers. Smaller nylon threads routed through the
outer parts are attached to servomotors. Silicone casted between the vertebrae fixates the spine’s structure
and makes it flexible. Image adapted from [351].
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fact, there are already new versions of the robot available that incorporate improved
components based on those from Figure 4.18 [352]. Further directions of research include
the integration of advanced sensors and the development of sophisticated perception and
control algorithms with support for learning. First work in this direction has been already
completed. Figure 4.19 depicts a prototype of an actuated head with cameras.

Figure 4.17: Initial version of the TUM Robot Mouse. The photo depicts the first version of the robot which
does not contain a spine yet [335].

Figure 4.18: Fully 3D printed leg and spine in a refined version of the TUM robot mouse. The images are
adapted from a video by Kok Choong Ng.
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4.3 Biomimetic Neurorobotics with the TUM Robot Mouse

Figure 4.19: Prototype of an actuated head with cameras for the TUM Robot Mouse.

107





5
A Brain-Derived

Modular-Hierarchical
Neural Network Architecture

Neurorobotics provides the scientific and technological framework that enables the study
of brain function in the context of directly observable behavior of an embodied system
in a concrete environment. Connecting a simulated brain to a simulated body in a
neurorobotics experiment greatly enhances neuroscientific studies and is the foundation
for fully virtualized closed-loop neuroscience. The main motivation underlying this type
of study is to investigate the emergent properties of a brain-body system. Results can
be compared to biological ground-truth data to validate the underlying brain simulation
or to predict the influence of a specific set of parameters. While this approach can also
yield insight for new brain-derived models and methods in AI and robotics, the brain
simulations considered in neuroscience are in general too complex and too specific to
be used directly in technical applications. In particular, much of the detail especially in
data-driven neuroscientific brain models might not always be required to achieve the
desired functionality.

The complexity of biological neural networks makes meaningful abstractions essential
when transferring insights and principles from neuroscience to AI. As already mentioned
in Chapter 1, this is best illustrated at the example of an aircraft: Building a machine that
can fly was not accomplished by replicating the full morphology of a bird’s body. Instead,
the unique profile of the wings turned out to be the most essential feature that enables
both birds and aircrafts to fly. ANNs and in particular DNNs are an outstanding example of
how the adoption of only a few basic principles from brain organization can already result

109



5 A Brain-Derived Modular-Hierarchical Neural Network Architecture

in an extremely powerful computational tool. At the same time, the open challenges in
terms of efficiency and robustness faced by state-of-the-art DNNs discussed in Chapter 1
also highlight that biological brains feature many other mechanisms that have so far been
largely neglected. While it can be argued that research in machine learning still takes
some inspiration from neuroscience [54], neural networks in the brain are nevertheless
organized in a fundamentally different way. Identifying the computationally relevant
principles underlying these differences is an open research question.

A striking feature of biological brains that has so far received only little attention in the
design of ANNs is their highly diversified anatomical and functional architecture with a
wealth of different neuron morphologies and synaptic connection patterns. In this chapter,
we argue that this architecture is a key principle of distributed modular information
processing in the brain and that ANNs can considerably benefit from incorporating it.
The first sections provide a principled review of the architectural design features that
allow biological neural networks to process information in a robust modular way and
link these insights to current shortcomings of ANNs. Based on these findings, a novel
brain-derived modular-hierarchical neural network (MHNN) architecture is introduced
in Section 5.2. Drawing on this architecture, we develop a novel training procedure for
the self-supervised learning of multisensory maps that is based on a topographic loss
function in Section 5.3.

5.1 Functional Specialization and Modularity
in the Brain

Table 2.1 highlights that the brain is not an amorphous mass of nervous tissue but an
intricately structured and highly interconnected information processing system with
multiple levels of organization. Each of them comprises a wealth of further sub-structures
and sub-systems, all of which contribute together to the overall cognitive performance.
One of the most diverse organizational layers is the level of single cells, which comprises
a huge wealth of diverse neuron morphologies. The identification and classification of
different neural cell types has therefore become a major endeavor in neuroscience that
has started with the seminal work of Cajal and is still ongoing today [353]. An obvious
question arising in this context is what the purpose of each of these cell types is or,
more concretely, how a neuron’s computational properties are related to its physical
morphology. This applies analogously to the different brain regions, many of which had
already been mapped at the beginning of the 20th century [80, 107]. But even though
considerable knowledge has accumulated about the building blocks of the brain and their
functional purpose, it is still an unsolved problem how they interact to construct a unified
coherent perception of the world. Solving this binding problem [354] will not only provide
insight into one of the key principles of information processing in the brain, but also shed
light on how to design technical systems that are as robust to perturbation and structural
damage.
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Linking Cell Types to Computational Functions

The classification of different types of neurons in the brain is a complex task. At the
most basic level, it is possible to distinguish three different neuron types based on the
number of processes emerging from the soma: unipolar neurons, bipolar neurons and,
most importantly, multipolar neurons [355]. Especially the latter, however, are highly
diverse and require more fine-grained classification schemes. These include not only
cell morphology but also electrophysiological and genetic criteria. For example, a state-
of-the-art in-depth analysis revealed 38 morphological and 17 electrophysiological cell
types in the mouse visual cortex alone [356]. Even though the total number of distinct
types of neurons in the human brain is still unknown, it is assumed that there might be
hundreds [357].

Neuron Morphology In some cases, the specific properties of a neuron are directly
related to its function, which especially applies to retinal neurons or sensory receptors
in the skin. But besides these rather obvious cases, most diversity can be observed in
multipolar neurons of the central nervous system. A salient feature of these neurons are
their complex dendritic trees that relay stimuli towards the soma. Figure 5.1 depicts four
examples. The neurons are sampled from four regions of the mouse brain. While the
cell bodies seem very similar, the dendrites considerably differ from each other, which

Figure 5.1: Examples of different neuron morphologies in the mouse brain. The most salient feature of
every neuron type is its unique dendritic tree structure. From left to right: cerebellar Purkinje cell [358],
neocortical pyramidal cell in the occipital lobe [359], medium spiny neuron in the basal ganglia [360], retinal
ganglion cell [361]. Neuron morphologies were retrieved from NeuroMorpho.org [362] and visualized with
NeuroMorphoVis [363].
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raises the questions if dendritic morphology serves any computational purpose. In a
simulation-based study, Stiefel and Sejnowski [364] generated dendrite models with
genetic algorithms that were tuned to compute the linear summation or determine the
order of incoming signals, respectively. Each of the two optimization goals yielded
dendrite structures that resembled those of different types of biological neurons. Similar
results were reported by Torben-Nielsen et al. [365]. Concrete experimental insights on
the role of dendrites have accumulated for cortical pyramidal neurons as the one shown
in Figure 5.1. These cells have a distal apical dendrite that receives feedback information
from within the brain whereas feedforward signals are received closer to the soma. Since
these two signal streams can amplify each other, pyramidal cells are hypothesized to
implement an associative learning mechanism that relates internal feedback signals to
feedforward sensory perception [366]. Drawing from this insight, Urbanczik and Senn
[367] proposed a synaptic plasticity rule where weight updates depend on the electric
potential in an extremely simplified single-compartment dendrite model. It is also worth
noting that this rule later was employed to derive a biologically plausible approximation
of the backpropagation algorithm [368].

Synaptic Connectivity An arguably more evident purpose of diversified dendrite
morphology is the facilitation of different patterns of synaptic connectivity. But spatial
proximity is only a necessary precondition for the formation of a synaptic connection and
not a sufficient one becausemolecular processes make neurons selective for specific targets.
Even the spatial location on the target neuron where the actual synapse is formed is not
chosen arbitrarily, which becomes most evident in layer-specific connectivity patterns in
the cortex [369]. This directed neural growth is mainly guided by molecular processes
that dominate early developmental phases [370]. In the large-scale cortical microcircuit
reconstruction by the BBP, the diversity of neurons and connections was reconstructed
digitally by first capturing exact cell morphologies from biological tissue. They were then
cloned with validated statistical variations of branching angles and section lengths. The
actual circuit model was built by placing predefined ratios of different neuron types inside
a volume element before assigning appropriate morphological and electrophysiological
profiles [59]. Synapes were finally created algorithmically by enforcing constraints that
resulted from a set of interrelated anatomical properties which had been identified in the
cortical microcircuit [371]. While this reconstruction has been shown to yield realistic
synaptic connectivity, it does not capture the actual biological processes that give rise to
it. In the brain, the first phase during which molecular processes drive the formation of
neurons and synapses is followed by an activity-driven phase, where sensory perception
“initializes” this scaffold connectome by adapting connection strengths and pruning
synapses [370, 372]. These observations give clear proof of the fact that embodiment is
an essential non-negligible constituent of learning processes in the brain, an insight that
will crucially guide the methodology developed in this and the next chapter. They also
play a key role in the theory of neuronal group selection or, as it is often referred to, neural
Darwinism put forward by Edelman [373]. The first two of the organizational principles
that it postulates for the formation of biological neural circuits closely correspond to the
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molecular phase and the activity-driven phase, respectively. Remarkably, Edelman [373]
recognized the importance of simulations to validate his theoretical predictions and even
conducted neurorobotics experiments.

Receptive Fields The synaptic connectivity of a neuron largely determines its recep-
tive field, the “portion of sensory space that can elicit neuronal responses when stimu-
lated” [374]. Receptive fields establish a direct connection between a neuron’s responses
and the sensory input space. More concretely, this means that, for example, a sensory
neuron responds to mechanical stimulation of a certain area of the skin. This concept also
translates to cells that are more distant from sensory input. One of the arguably most
well-known studies on this topic was a series of experiments by Hubel and Wiesel [97],
who recorded activity in the visual cortex of the cat. They identified neurons with recep-
tive fields that are sensitive to light stimulus patterns with specific shapes and directions.
Receptive fields therefore give clear proof of functional specialization in single neurons.
It was shown that near sites of sensory input the structure of receptive fields is closely
related to the morphology of the neurons’ dendritic trees [375, 376, 377]. According to
measurements from dendrites of cortical neurons, however, there is no universal corre-
spondence between structure and function. In fact, the observed neurons received input
that would have allowed for the formation of whole range of different receptive fields,
which suggests a significant computational role of individual neurons [378]. There is also
evidence that sensory stimuli perceived during a critical period after birth have strong
influence on receptive field formation in cortical neurons [379].

Grandmother Cells One of the probably most compelling evidences for functional
specialization of single neurons is the giant Mauthner cell of the teleost fish. When this
neuron is removed, animals loose a very specific escape behavior and have less chances
of survival when exposed to predators [380]. This result is insofar remarkable as that it
confirms the existence of mappings between neurons and very concrete functions. Such
correspondence is also often claimed to exist in the brains of primates in the form of the
“Grandmother Cells” [381]. As indicated by the name, these cells refer to a hypothesized
special class of neurons that encodes the presence of a high-level concept, such as a
specific face. Experimental evidence in favor of this hypothesis was reported Quiroga
et al. [382] who indeed identified neurons in the human cortex that were activated by
specific persons and objects. Intriguingly, they responded independently of the visual
appearance of the stimulus and also recognized drawings orwritten names. On lower levels
of abstraction, other neurons have been found that are sensitive to object classes [383],
color [384] or orientation [97]. Similarly, also neurons in the auditory system specialize for
preferred stimuli [385] and the human auditory cortex has been shown to be tonotopically
organized [386]. Another seminal contribution was the discovery of place cells [387], head
direction cells [388] and grid cells [99] that are assumed to encode space for orientation and
navigation. One must, however, not conclude from these results that the representation of
information in the brain is fully understood. They are rather small pieces that still need
to be fit together by an integrative theory.
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Segregated Information Streams across Brain Regions

That specialization plays a role in the overall architecture of the brain already becomes
evident from its diversified anatomical structure. Many of its components are discernible
by mere visual inspection, and in some cases it is even possible to draw direct conclusions
about the their functions. This is best illustrated at the example of the medulla oblongata
that connects the brain and the spinal cord. Another salient component of the brain is
the cerebellum, which plays an important role in motor control.1 Even though there are
many more anatomically distinct components, the mapping to corresponding functions
is usually less clear and in particular not evident from the anatomical structure. This is
especially true for the mammalian cortex, which is thought to be the center of all higher
cognitive functions.

Cortical Regions The first in-depth analysis of the cortex was provided by Brodmann
[80], who created the cell type atlas presented at the beginning of Chapter 2. Remarkably,
some of the brain regions that he determined solely based on microscopic anatomical
analysis later turned out to be centers of specific functions. But the discovery of these
correspondences required methods that allowed for relating observed behavior to those
parts of neural tissue that give rise to it. In the early days of neuroscience, the only
source for this type of information were brain lesions. In lesion studies, the parts of the
brain that are involved in a cognitive function are inferred indirectly by determining
the behavioral effects of the loss or damage of a part of the brain. The starting point
for this area of research was the identification of a brain region involved in language
processing by Pierre Paul Broca in 1861 and was later followed by similar findings on
“memory, hemispheric specialization, emotion, vision and motor control” [390]. Even
though modern neuroimaging techniques such as fMRI and other recent methodological
developments have the potential of replacing lesion studies, it is argued that lesions still
can provide unique insights that can complement alternative measurements [391].

The overall architecture of the cortex shares the same basic structure across all mam-
mals [392]. Nevertheless, the concrete parcellation into differently sized cortical areas is
individual to every species. Even though the cytoarchitectonic properties applied by Brod-
mann [80] to identify distinct regions are still valid today, more recent mapping efforts
leverage multimodal data including connectivity, neural receptive fields, topographic input
space representation and function [70, 393]. Notably, connectivity data have turned out to
be particularly suited for this task. A general observation in cortical organization is the
spatial proximity of functionally related areas [394]. The main areas are spatially grouped
by modality into the visual cortex, the auditory cortex, the somatosensory cortex and the
motor cortex [395]. Each of these cortical structures is subdivided in several regions that

1It should be noted that it is has more recently been hypothesized that the cerebellum also contributes
to cognitive tasks. Interestingly, Koziol et al. [389], the authors of a review that summarizes support for this
claim, note that the confinement of the cerebellum to movement tasks also reflects traditional thinking that
separates mind and body.
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Figure 5.2: Illustration of the dorsal and ventral visual pathways. The ventral stream processes information
related to object appearance (what? ) and flows through V1 → V2 → V4 towards the inferotemporal cortex.
VP is only shown for completeness. The dorsal stream process information related to object location and
motor control (where? and how? ). It flows through V1 → V2 → V3 → V5 towards the parietal cortex [397].
Only feedforward connectivity is shown. Cortical regions are highlighted qualitatively based on Tootell
et al. [398] and Logothetis [399], the drawing of the brain is a modified version of the original version by
Brown [72] which is in the public domain of the United States (PD-US-expired).

process increasingly abstract information. This is best illustrated at the example of the
visual cortex that is partly sketched in Figure 5.2: Information enters in area V1 and then
proceeds to subsequent areas, including V2 and V3. In general, receptive field sizes of cells
increase and represented stimuli become more abstract along the path [394]. As described
in the last section, neurons in early processing stages of the visual cortex respond to very
basic forms and shapes while neurons in higher cortical areas may even be sensitive to
specific faces. Another characteristic of cortical regions distant from sensory input is the
processing of multiple sensory modalities, which is reflected in more diverse connectivity.
These parts of the cortex are commonly referred to as association areas [394].

Cortical Pathways A direct consequence entailed by the subdivision of the cortex
into multiple regions is the existence of corresponding pathways that interconnect them.
One of the most prominent findings in this direction was the discovery of a dorsal stream
and a ventral stream in the visual system by Mishkin et al. [396]. Figure 5.2 depicts
them together with the involved brain regions. Both pathways originate at the primary
visual cortex V1 and start to diverge after V2. On the way towards inferotemporal cortex
and parietal cortex, respectively, they pass through different cortical areas with specific
functional properties. As a result, each pathway specializes on processing a different type
of information: The dorsal stream processes position, motion and speed for enabling the
localization of objects, whereas the ventral stream processes form, color and texture for
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object perception [394]. Like for individual brain regions, lesion studies played a central
role in the identification of these functions. Ventral and dorsal pathways have also been
identified in other cortical systems such as the auditory cortex [394, 400]. Moreover,
there is also evidence for even more fine-grained specialization in the visual system with
separate processing of form, movement and other properties [401]. It is interesting to
note that sensory input seems to be converted from physical measurements to qualitative
perceptions in the hierarchies along the streams. A study of the human visual system with
fMRI has revealed that color as a subjective perception only occurs in higher cortical areas
whereas those close to sensory input only represent the actual physical input stimuli [402].
Clearly, light has no color in a physical sense just like pain does not exist outside the
living creature that feels it. Moreover, all information processed by the brain is encoded
in spike trains independently of its qualitative criteria. From this, one may conclude that
information streams encode the actual meaning of a stimulus, a concept that is akin to
that of labeled line codes [403].

Information Segregation and Binding The findings about regions and pathways
highlight two computational paradigms implemented in the mammalian cortex: hierarchi-
cal and parallel processing [393]. This means that information streams along pathways
are concurrent and representations become increasingly abstract within each of them
on the way from early sensory areas towards association regions. As exemplified by the
dorsal and ventral portions of the visual system, every stream computes only a subset of
the features that can be perceived from the sensory input. Information thereby becomes
segregated. Nevertheless, the resulting perception of the external world is unified. This is
even more remarkable when considering that we can perceive a multitude of different
things at the same time and still each of them is assigned the matching information from
the individual streams (e.g. cars with different colors along a street). The question of
how this is accomplished has come to be known as the binding problem [404]. An evident
solution to this issue would be combination-coding cells that encode the presence of a
specific subset of stimuli (e.g. one cell for each combination of car, color and position).
However, such an approach would, of course, only be viable for limited domains since
the whole space of perception can be impossibly covered by allocating specialized cells
for every combination of attributes [354]. Other theories therefore stress the role of the
interactions between multiple neurons to bind features. Binding by synchrony posits
that the synchronized firing of neurons links information across different processing
streams [405]. Even though experimental data has indeed proved the occurrence of syn-
chronized neural firing, von der Malsburg [354] argues that the temporal resolution of
biological neurons is too coarse to rely on synchrony as the only mechanism of binding
and proposes that information is represented by interconnected subsets of neurons called
network fragments [406, 407]. In this model, it is the active connectivity between neu-
rons that defines the binding, from which it follows that connections can be switched
instantaneously to activate different network fragments.
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The Connectome The theory put forward by von der Malsburg [406] highlights the
importance of the brain’s connectivity, the connectome [408]. So far, pathways have been
treated as discrete entities that operate largely independently to compute distinct functions.
The actual anatomical connectivity scheme is considerably more complex. Connection
patterns between cortical regions are typically symmetric and there is considerable cross
talk between different processing streams [393]. As DeYoe and van Essen [409] point out,
there is furthermore no direct mapping between basic sensory features and individual
streams, since every of them processes data that contribute to the function it computes.
This observation is supported by more recent experimental findings which revealed that
tactile input stimuli can be decoded equally well by neurons in both the somatosensory
cortex and the primary visual cortex [410]. It is also known that the cortex can compensate
for damage of neural tissue (e.g. after a stroke) or changes in sensory input (e.g. because
of blindness) through dynamic reorganization [411]. From these examples it becomes
clear that the connectome is by no means a simple structure. Its complex anatomical
architecture enables the emergence of diverse activity patterns, which are also referred to
as functional connectivity. In fact, the functional specialization of brain regions can be seen
as a consequence of the underlying anatomical connectivity: As Passingham et al. [412]
have shown, brain regions have unique connectional fingerprints, i.e. connections from
and to other cortical regions. As we will elaborate in more detail in the next sections, the
intricate connectome of biological neural networks is one of the most important features
that distinguishes them from ANNs.

5.2 Design Principles of Modular-Hierarchical
Neural Networks

Most state-of-the-art neural network models are based on largely monolithic architec-
tures that lack a clear separation of pathways and functions. Even though it has been
demonstrated that different sub-tasks of a problem can be localized in distinct parts of
a network, there is no reuse of functionality and identical sub-tasks are learned multi-
ple times at different locations [413]. These results highlight a fundamental difference
between information processing in the brain and in ANNs: While DNNs can learn hierar-
chical presentations that bear similarities to those in the mammalian cortex [414], they
lack the brain’s functional specialization and modularity outlined in the section before. A
plethora of different modular neural network (MNN) architectures have been proposed to
address this shortcoming, but none of them has come even close to the success of DNNs.
In this section, we develop a novel brain-derived neural network architecture that is both
modular and hierarchical. It adopts a modular computational paradigm that is centered
around task-based sensor data fusion and combines it with the powerful hierarchical
feature representations of DNNs. As a preparation, we first provide an overview of the
main features of common MNN architectures.
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Modular Neural Networks
Like in the case of ANNs, the development of MNNs was initially motivated by brain
research with published work dating back to the end of the 1980s [415]. Gallinari [416]
defines MNNs as “systems in which several NNmodules cooperate with each other or with
other techniques to complete a global task.” Neural network modules are independent
sub-networks, each of which realizes a specific functionality such as the computation of a
function or the detection of a class of patterns. In particular, individual modules can be
based on different models and trained with different learning algorithms, which enables
the design of hybrid systems that apply several types of computation and learning at the
same time. Practical motivations for investigating MNNs include complexity reduction,
model reuse and the incorporation of existing knowledge, fusing data from multiple
sources, multi-task learning, and increased robustness [416]. In addition, the localization
of concrete functions in distinct modules provides a direct insight into the operation
of the system, facilitating the interpretation of its output. Especially interpretability is
a key issue in current neural network research and one of the main challenges in the
development of safety-critical systems such as automated driving functions.

Design Principles There is a huge body of research on MNNs that has been regularly
covered by extensive reviews [415, 416, 417, 418, 419, 420]. In the following, we will
therefore only focus on the main design principles for MNNs that have been identified in
these contributions. Based on a general conceptual framework proposed by Auda and
Kamel [415], the development of a MNN can be divided into three steps:

1. Decomposition: The task to be solved is split into sub-tasks for the neural network
modules. The decomposition can be defined manually based on a global system ar-
chitecture (user-defined functions are mapped to individual modules), derived from
intrinsic task properties (structure of the input data), or by specifying an algorithm
that will be executed before or during training (e.g. evolutionary algorithms [420]).

2. Training: The modular component networks are trained individually (loosely cou-
pled) or jointly (tightly coupled) [419]. Depending on the type of modularization,
the network topology might be adapted during the training process.

3. Fusion: The output of all modules is merged through competitive and cooperative
processes that may be realized as simple arithmetic operations or as trainable
models [420]. Depending on the type of architecture, modules might be connected
directly with each other so that the output of one module becomes the input of
another.

At first glance, modularity adds additional complexity to the network design. Rather than
focusing on the development and training of a single model, it is now required to specify
multiple networks along with their mutual interactions. However, network modules that
implement a comparatively narrow sub-task can be typically made considerably smaller

118



5.2 Design Principles of Modular-Hierarchical Neural Networks

than a monolithic network which learns a complex task end-to-end. Moreover, training is
faster, requires less data, and every module can be implemented with the architecture and
learning rule that is best suited for its task [415]. For example, when parsing the content
of a website, images are best processed with a CNN while text is typically parsed with
recurrent neural networks. Another advantage of modularity is the clear separation of
different domains within the network. This opens up a promising direction of research
on continual learning [421] without catastrophic forgetting [51]. In terms of practical
implementation, MNNs enable a direct mapping of computational tasks to the target
hardware, which is especially important for neuromorphic processors and distributed
heterogeneous computing systems. The huge success of DNNs has recently also led to the
adoption of MNNs as modeling tools in neuroscience, where they outperformed traditional
methods [422].

Basic Modular Neural Network Architectures The main step in the design of a MNN
is the decomposition of the task as outlined above. It not only determines the overall
architecture of the network but also applicable methods for the subsequent training
and fusion phases. Ensemble models constitute the arguably most basic class of MNN
models. They are based on the fact that when training a set of neural networks on
an identical problem, each of them will arrive at a different solution due to variations
during the learning process (e.g. random weight initialization, stochastic weight updates,
etc.). Depending on the task, the aggregated ensemble output is then computed from the
responses of the individual networks by applying operations such as majority voting or
averaging. It has been shown that the resulting generalization error is never larger than
the average error of the ensemble networks [423]. Clearly, this approach is only effective
as long as there is a sufficient amount of diversity within the ensemble. The Mixtures of
Local Experts model by Jacobs et al. [424] addresses this issue with a training procedure
that assigns different sub-tasks to expert networks. A key element of this architecture
is a separate gating network which combines the outputs of the individual experts. It
could be shown that the architecture is capable of automatically separating the where
and what components of an object localization and detection task [425]. Remarkably,
each sub-task was mapped to the expert network with the most appropriate architecture.
Both ensemble and mixtures of experts models form the basis of many other architectures.
Another important direction of research is the application of evolutionary algorithms
to automatically synthesize MNNs for a given task. Examples include the use of graph
grammars to generate MNNs for gait control of six-legged robots [426] and the learning
of modular action policies for the computer game Ms. Pacman [427].

Modular Deep Neural Networks Even though DNNs are mainly based on monolithic
architectures, the hierachical feature representations learned by them can be seen as a
basic form of modularity. Since especially low-level features are identical across related
tasks, the corresponding network layers can be reused to accelerate training [428]. More
fine-grained reuse within network layers is realized in a modular layer proposed by
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Kirsch et al. [429]. It is comprised of a library of modules and a controller that activates a
subset of them depending on the current input. In the work by Tani [245] on Multiple
Timescales Recurrent Neural Networks, individualmodules in a hierarchy of recurrent neural
networks are coordinated by the relative time scales of their internal dynamics. Modules
representing higher levels of abstraction run at slower time scales and provide context
for lower levels. The concept was implemented in a neurorobotics experiment where a
humanoid was able to learn new high-level action sequences without changing connection
weights in a subordinate network for basic motion primitives. Addressing static image
data rather than dynamic motion patterns, Cireşan et al. [430, 431] applied traditional
ensemble methods with averaging to form committees of CNNs. At the time of publication,
their model achieved best-in-class results in handwritten character recognition and traffic
sign classification. A fundamentally different method for designing modular DNNs was
introduced by Andreas et al. [432]. Their Dynamic Module Neural Network dynamically
composes modules to compute answers for natural language questions on a data base or
on images. Based on a fixed set of module networks that correspond to sub-tasks of the
question answering process (e.g. locating an object in an image), the system combines
traditional semantic parsing with reinforcement learning to automatically generate a MNN
that computes the answer to the input question. Another line of research addresses the
incremental modular augmentation of neural networks by addingmodules as new tasks are
learned. The Progressive Neural Networks introduced by Rusu et al. [433] are extended by
adding new columns as laterally connected parallel layers next to the ones of the original
network. When learning a new task, only the weights of the corresponding column are
adapted. The method was successfully applied to transfer a model trained in simulation to
a physical robot [434]. A similar model was developed by Terekhov et al. [435]. Modularity
also plays an important role in reinforcement learning for robotics. For example, Devin
et al. [436] presented a method for learning modular action policies which enables reusing
learned task knowledge on different robots by replacing a corresponding task-specific part
of the network. It is important to note, however, that DNNs in reinforcement learning
can in general be replaced by other function approximators. The modularity is therefore
not a particular feature of the underlying network architecture.

Multimodal Modular Neural Networks Systems that process information frommulti-
ple sensory modalities such as vision, hearing or proprioception provide a natural starting
point for the definition of MNN architectures. The separation of individual modalities into
different modules results in unimodal areas that need to be integrated by an association
mechanism. More technically, this means that multimodal MNNs implicitly or explicitly
realize some form of data fusion. A key research question in this context is the learning
of joint internal representations for multiple modalities. One of the first DNN models
addressing this question was conceived by Ngiam et al. [437] who constructed a bimodal
deep autoencoder model from a bimodal DBN. The latter in turn was comprised of two
modality-specific restricted Boltzmann machines (RBMs) that were trained individually on
video and audio data. While the system could not outperform an architecture optimized
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for a single modality, performance was better compared to the fully unimodal RBM base-
line. Interestingly, the authors could demonstrate cross-modal interaction by replicating
the McGurk effect [438]. One of the main reasons for the limited performance of the model
was that not all of the learned features were multimodal. Correlational neural networks
address this shortcoming with a similar autoencoder architecture but employ standard
backpropagation with a loss function that maximizes the correlation between the latent
space representations of the involved modalities [439]. Droniou et al. [440] proposed an
architecture that clusters the input data and at the same time learns a low-dimensional
manifold representation for each cluster. By sharing the network layers for clustering
and manifold projection among multiple modalities, the system could learn multimodal
representations. Feature extraction was realized with an autoencoder that preprocessed
the input data. A widely used approach that can be seen as a direct extension of standard
deep CNNs are architectures with multiple parallel processing streams which merge near
the output layer. For example, Eitel et al. [441] presented a late fusion object recognition
network comprised of two separate streams for image and depth data. Each of them
was trained individually before joint training in the final network. Rathi and Roy [442]
developed a multimodal SNN architecture with an unsupervised STDP-based learning
rule. Cross-modal correlations were detected by connections between the inner layers of
two three-layered unimodal networks.

Multimodal Architectures Based on Self-OrganizingMaps SOMs are an alternative
to autoencoders that is especially common in bioinspired models [127]. They are typically
implemented as two-dimensional grids of neurons that learn a topological mapping of
the input space by means of a competitive process with local facilitation and global
inhibition. In this sense, they can be interpreted as cortical maps that self-organize to
represent their respective sensory input modalities. Lallee and Dominey [443] proposed
multi-modal convergence maps as an extension of SOMs to implement the convergence-
divergence zone theory by Damasio [444] and study the learning of body schemata in
robotics. Individual sensory modalities were represented by unimodal maps that projected
onto a shared amodal map. In a series of experiments, they demonstrated the elicitation
of motor response after stimulating the learned maps and cross-modal effects such as
improved visual recognition of the robot’s hand through the inclusion of proprioceptive
data. Visual input was encoded as a raw vector of pixels or preprocessed by a pattern
matching system. The model by Axenie et al. [445] employs SOMs to learn individual
maps for sensory input channels. The maps are fully connected with each other and learn
correlations with a Hebbian plasticity rule. Based on information theoretic measures,
an algorithm automatically determines which modalities are associated with each other
directly from raw input signals. The system was evaluated on ego-motion estimation
of a quadrotor. More recently, Khacef et al. [446] proposed a new SOM variant that is
inspired by the theory of reentry by Edelman and Gally [447] that was mentioned earlier
in Section 2.4. It is based on two SOMs and an algorithm that associates correlated units
by managing connectivity and updating cross-modal weights with Hebbian learning.
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The system was evaluated on a classification task where multimodality was exploited
to reduce the required amount of labeled data during training and to increase accuracy
during inference.

Architecture Definition
From all the different architecture concepts outlined above, it is evident that multimodal
MNNs fit best to the characteristics of both artificial and biological embodied systems.
From a robotics perspective, individual modules can be directly matched with the sensors
available in the system. From a neuroscience perspective, the identification of modules
with sensory modalities reflects the organization of the sensory cortex into distinct
modality-specific areas. The three main types multimodal of MNN architectures discussed
before can be summarized as follows:

• Multimodal Deep Autoencoders: Self-supervised learning of latent representations
of the input space with support for feature hierarchies. Learning a concrete task
requires additional processing stages.

• Multimodal SOMs: Unsupervised learning of topological representations of the input
space without direct support for hierarchical feature representations. Learning a
concrete task requires additional processing stages.

• Multistream DNNs: Supervised learning of concrete tasks. Input data is first pro-
cessed in separate streams of network layers that merge into a single output stream.

Each of these architectures implements functionality that captures some aspect of cortical
processing. Deep autoencoders can learn hierarchical feature representations, SOMs form
topological representations of the input space and multistream DNNs fuse sensory infor-
mation to achieve a specific task. However, there is no architecture yet that implements
all three of these characteristics at the same time. Therefore, in this section, we introduce
a novel brain-derived neural network architecture called modular-hierarchical neural net-
works (MHNNs) that combines modular and hierarchical processing with task-based data
fusion. After providing a formal description of the architecture in terms of its individual
network modules and their synaptic connectivity with each other, we present an algorithm
for learning lateral connections between network modules based on multimodal input
data. A novel algorithm for training the modality-specific component networks will be
introduced subsequently in Section 5.3.

Component and Hub Networks The key concept of the new network architecture
is an explicit separation between the processing of sensory input and the generation of
control output. While these terms are motivated by robotics applications, there is, in
general, no restriction to a particular type of data. Thus, in the case of a standard image
recognition task, the output can also be a classification result. Figure 5.3 provides an
overview of the main components of the architecture. The separation of input and output
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Figure 5.3: Example instantiation of the proposed MHNN architecture. Component networks process exter-
nal inputs (e.g. vision, hearing, proprioception, etc.) and transform them into abstract latent representations.
Colors indicate the different modalities processed by the networks. Task-specific hub networks fuse latent
space data in order to compute the system’s output (e.g. motor control, pattern recognition, etc.). The
visualizations of the individual networks serve as illustrations.

leads to a bipartite network topology with twofold modularity. It is therefore possible to
decompose the set Modules(N) of all modules in a MHNN N as follows:

Modules(N) = C ⊍ H with C = {C1,C2, … ,C𝐼} and H = {H1,H2, … ,H𝐾} (5.1)

C denotes a set of component networks, each of which processes a stream of sensory input
data. Following the definition from the problem statement in Section 1.4, the set of all
input streams corresponds to a system’s modalities M. A key concept of MHNNs is that
there is a bijective mapping 𝑐 ∶ M → C between modalities and component networks,
which means that each modality is processed by a dedicated neural network. This specific
design choice is actually less restrictive than it might first appear. Each modality can still
be processed along different parallel processing streams in a single component network.
For example, Rueckl et al. [448] developed a simple neural network model of the dorsal
and ventral streams in the visual cortex that predicted both object location and identity.
More generally, it is also possible to process a single modality by two completely different
component networks at the same time by inserting the corresponding branches as separate
streams at the input layer. But, by definition, component networks that process more than
one modality at the same time are not allowed. This is because data fusion is implemented
by the hub networks H that compute the system’s output. In terms of the definition from
Section 1.4, there is exactly one hub network for each task 𝑡 ∈ T. Analogously to the
component networks, this relation can be expressed as a bijective mapping ℎ ∶ T → H.
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The output of each hub network corresponds to a command for the system’s actuators
A. As stated earlier, the definition is also applicable to non-robotic use cases where A
simply denotes the model’s output. As illustrated in Figure 5.3, every hub network can
be connected to any number of component networks. Solving the task assigned to the
network, therefore, implicitly entails fusing the data from all connected modalities. Due
to the direct correspondence between hubs and tasks, the sensor fusion is inherently
task-based and fulfills all criteria formulated in Section 1.4.

Modular and Hierarchical Processing Despite its conceptual simplicity, the network
architecture defined in the last paragraph incorporates many findings from neuroscience.
While there is, in principle, no restriction on the implementation of the component
networks, the main idea behind the architecture is that they are realized as DNNs that
automatically learn hierarchical feature space representations of the input modalities. Un-
like in common end-to-end learning tasks, where a monolithic network directly computes
the target output from raw input data, the component networks considered here only need
to convert the input into an abstract and more compact latent space representation, as
indicated in Figure 5.3. Possible network types include not only autoencoders, but also the
feature layers of DNNs. Appropriate network architectures can be selected based on the
type of input data (e.g. CNNs for images, simple multilayer ANNs for proprioception). The
mapping of high-dimensional data streams on the input side of the component networks
to compact representations in a latent space corresponds well to hierarchical cortical
information processing. CNNs in particular have turned out to be powerful models for
predicting the processing of visual input along the ventral stream [53, 449]. The data
processed at each layer of a component network becomes increasingly abstract towards
its output layer. This direction is reversed in the hub networks, where latent internal
representations are transformed to concrete control output. In summary, data processed
by the complete network is first converted into an abstract internal representation in the
component networks before it is projected back to the system’s output space in the hub
networks. This hierarchical scheme captures basic principles of cortical processing. At
the same time, the combination of multiple component and hub networks allows for the
implementation of parallel processing streams akin to the cortical pathways discussed in
Section 5.1. As a result, the proposed architecture combines both modular and hierarchical
processing in a single brain-derived model.

The notion of hub networks or hubs is motivated by findings about the brain’s con-
nectome. Studies with tools from graph theory have revealed that networks in biological
brains exhibit a small-world structure with clusters of highly interconnected areas and
sparse connectivity between them [450]. A specific feature of these networks is the
existence of communities and hubs. While the former can be identified with independent
modules for segregated information processing, the latter play an essential role in relaying
information between different parts of the brain [451]. In a theoretical study of the cortical
connectivity in the cat brain, Zamora-López et al. [452] found evidence that hubs also
performmultisensory integration or, in technical terms, data fusion. It is important to note
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that the nodes of brain network models in neuroscience do not necessarily correspond to
individual neurons, but often relate to specific measurement sites or brain regions [451].
At this point, the correspondence between the proposed network architecture and cortical
networks becomes evident. The layers of all network modules can be interpreted as
cortical regions that, in turn, form the nodes of the graph model. Within in each module,
the layers form a community. While this applies to both component and hub networks,
only the latter receive and fuse information from multiple network modules, which is
very closely analogous to the cortical hubs that have been identified in biological brains.

Connectivity of Hub Networks What is still missing is a specification of the con-
nectivity between component and hub networks. An overview of the general scheme is
depicted in Figure 5.3. The shape of the input layer Input(H𝑘) of a hub H𝑘 is determined
by the output layer shapes of the component networks Components(H𝑘) from which it
receives data:

|Input(H𝑘)| = ∑
C∗∈Components(H𝑘)

|Output(C∗)| (5.2)

As a result, every input unit of a hub network can be matched to an output unit of a
component network. All subsequent layers of H𝑘 can be freely defined based on the
assigned task. The definition of connectivity between component and hub networks
can thereby be reduced to the identification of relevant input modalities for each task.
Depending on the type of task and the domain knowledge available, there are two different
approaches for determining Components(H𝑘):

• Manual Mapping: Meaningful mappings between components and hubs are obvious
in many settings and Components(H𝑘) can be specified manually. In a visual
servoing task, for example, camera input is mandatory and proprioceptive state
information about the robot will considerably ease control.

• Learning: Especially for complex compound tasks, the determination of relevant
input modalities is not trivial. In particular, there might be more than one viable
choice for Components(H𝑘) with the best one being dependent on the quality of
the data retrieved from the individual component networks. Therefore, the model
needs to learn its configuration automatically.

A promising approach for learning the component network set of hub H𝑘 is to start
training H𝑘 on its associated task with all component networks C connected. This means
that H𝑘 initially receives input from all available modalities. During learning, the weights
of the synapses originating from those component networks that are most informative
for the task can be expected to grow more than those of synapses that do not provide
relevant input. Synapses from components to H𝑘 that are below a defined threshold can
then be removed from the network. In fact, network pruning is a separate research topic
that has gained momentum with the growing size and complexity of DNNs. Blalock
et al. [453] conclude in an extensive review that the pruning of network parameters
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based on their magnitudes as suggested here “substantially compresses networks without
reducing accuracy.” By pruning, component networks with weak connectivity to H𝑘
are automatically removed from Components(H𝑘). At the end of the process, H𝑘 is only
connected to the most relevant modalities. With the definition of its component network
set Components(H𝑘), every hub H𝑘 is assigned a connectivity profile that is specific for
its associated task. This is in line with findings from the cortex where the “connectional
fingerprints” of a region assume a primary role in the definition of its function [454].
Also the synaptic pruning process is directly motivated by findings from neuroscience:
Huttenlocher [455] found that the synaptic density in the brains of infants between one
and two years is up to 50 % higher than in adult brains. Furthermore, “immature synaptic
profiles had a nearly symmetrical appearance” [455]. These results underpin that the
connectome of the brain is not a fixed and purely genetically encoded structure, but
undergoes considerable development, during which neural pathways are shaped and
synaptic density decreases as a result of individual experience.

Lateral Connectivity of Component Networks Data fusion in the hub networks
starts from the latent representations generated by the component networks. But as
already indicated before in Section 5.1, there is accumulating evidence for cross-modal
interactions in early sensory cortices [456, 457]. These findings are in line with the
concept of reentrant connectivity between neuronal groups in the group selection theory
by Edelman [373]. One of the main features of reentry is that it enables the detection
and enforcement of correlations between different sensory streams. Correlated activity
contains low-level information about the relationships between modalities. If the typical
pattern of correlations during normal operating conditions is known, it becomes possible
to detect anomalies and possibly compensate for unreliable input caused by occlusions,
changing environmental conditions or sensor failure. A potential drawback of reentry
is its strong reliance on recurrent connectivity. On the one hand, this enables rich
network dynamics and reciprocal regulation of different regions of the network. On
the other, both connections and parameters must be carefully balanced and adjusted,
respectively, to maintain a stable level of network activity without exploding bursts of
neural activation that self-amplify through recurrent connections. To mitigate these issues,
MHNNs are based on a simplified version of reentry without recurrence that is still capable
of correlation detection. By omitting recurrent connections, dynamic instabilities such as
exploding network activity are completely avoided. Figure 5.4 schematically illustrates
the main concept in an example system where a component network for modality 𝑚1
receives lateral input from the networks for 𝑚2 and 𝑚3. We denote the lateral input to a
component network as Lateral(⋅). In the context of Figure 5.4, this expression evaluates
as follows:

Lateral(𝑚1) = {𝑚2, 𝑚3} , Lateral(𝑚2) = Lateral(𝑚3) = ∅ (5.3)

Each synaptic connection from 𝑚2 or 𝑚3 to 𝑚1 can be thought of as a correlation indicator,
which means that only neurons with highly correlated activity are connected. Since
correlations are therefore considered only between pairs of neurons from two modalities,
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Figure 5.4: Schematic illustration of lateral connectivity in MHNNs. The component network in the
center receives input from two other modalities. Synaptic strengths are indicated by the thickness of the
connections. Note that input layers are not connected to limit the detection of correlations to deeper layers
that are more likely to encode abstract features.

the proposed method is applicable to any component network 𝑖 with |Lateral(𝑚𝑖)| ≥ 1. As
indicated in the figure, lateral connections are defined exclusively for component networks.
This design choice is not guided by neuroscientific findings but rather limits complexity
compared to unconstrained connectivity between component and hub networks. With
every lateral connection representing a high correlation between two neurons, one can
identify two possible modes of operation:

• Anomaly Detection: The activities of two highly correlated neurons that are laterally
connected can be predicted from each other. An anomaly can therefore be inter-
preted as mismatch between the predicted and the actual activity for a high number
of neurons in a component network. The threshold for identifying a mismatch
can be scaled by the correlation coefficient of the corresponding pair of neurons.
Examples of common sources of anomalies include sensor failure or decreased
sensor performance due to adverse environmental conditions.

• Early Data Fusion: The additional information provided by laterally connected
neurons can be leveraged for early data fusion. Re-training a component network
after adding lateral connectivity enables the integration of information from related
modalities already at an early stage. However, cyclic dependences between different
modalities need to be avoided in order to prevent self-amplifying activities due to
recurrent feedback.

Early data fusion at component network level is considerably different from late data
fusion in the hub networks. Whereas the former is intended to associate sensory streams
that process related information (e.g. position estimate of an object based on visual
and auditory information), the latter is task-based and can combine streams that encode
fundamentally different types of information (e.g. object position and object identity). The
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concrete instantiation of the architecture with components, hubs and their connections
directly depends on the targeted system and will therefore not be considered further
at this point. In the following, we instead propose an algorithm for establishing lateral
connectivity between component networks based on correlated neural activity.

Correlation-Based Learning of Lateral Connections with Synaptic Pruning As
discussed before, the lateral connections between a pair of component networks encode
correlated activity of the corresponding neurons. In the example from Figure 5.4, the
correlation strength is indicated by the line width of the synaptic connections. Especially
in the case of very deep component networks with many layers and possibly millions of
neurons, the identification of correlated neural activity becomes a major computational
challenge. Not only are there millions of potential synapses but the activity profiles
also need to be tracked over thousands of input patterns. Models that compute a full
correlation matrix between all pairs of neurons like the one presented by Axenie et al.
[445] are therefore not applicable. Moreover, the assumption of full synaptic connectivity
is also unrealistic from a biological perspective. In this light, it is important to revisit the
development of the connectome in the brain outlined in Section 5.1. On a conceptual
level, synaptic development encompasses two stages that will in the following be referred
to as growth and pruning. In the first stage that occurs during early development, an
abundance of synaptic connections are made [455]. The formation of the connectome does
not occur until the second stage of ontogenetic development, when unneeded synapses
are pruned. These seminal findings not only show that the development of the brain is
shaped by interaction with the environment, but they can also be transformed into an
efficient algorithm for creating lateral connectivity between component networks.

The complete algorithm for the synthesis of lateral connections between two compo-
nent networks is outlined in Algorithm 1 and encompasses three steps. At the beginning,
a set of undirected lateral connections L is created randomly by sampling pairs of neurons
from both networks. The probability distribution that controls the sampling process must
not necessarily be uniform. For example, lateral connections between the input layers
have been completely omitted in Figure 5.4 to focus connectivity on deeper network
layers. In general, those can be expected to represent more abstract features of the input
signals and in turn are more likely to be invariant across modalities. The number of lateral
connections can be controlled by a parameter 𝜌 as the fraction of the maximum number
of lateral connections between the two component networks.

After initialization, the synaptic weights are still undefined. Learning the correlations
between connected units requires comparing neural activities in response to corresponding
multimodal input patterns that are presented to both component networks at the same
time. For this reason, the outer loop in the second step iterates over all samples in the
data set D and computes the activations 𝑁̂1, 𝑁̂2 of all neurons in the component networks.
When applied to all samples in D, this yields a set of pairs of network activation patterns:

D = {(𝑚1
1, 𝑚1

2), … , (𝑚𝐾
1 , 𝑚𝐾

2 )} ↦ {(𝑁̂ 1
1 , 𝑁̂ 1

2 ), … , (𝑁̂𝐾
1 , 𝑁̂𝐾

2 )} (5.4)
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Algorithm 1: Learning Lateral Connections between Component Networks

Input:
C1,C2 : Two component networks C1 = (𝑁1, 𝑆1) and C2 = (𝑁2, 𝑆2) ∈ C with neurons

𝑁𝑖 and synapses 𝑆𝑖 ⊆ 𝑁𝑖 × 𝑁𝑖 for modalities 𝑚1 and 𝑚2
D : A multimodal input data set D = {(𝑚1

1, 𝑚1
2), … , (𝑚𝐾

1 , 𝑚𝐾
2 )} with corresponding

samples from modalities 𝑚1 and 𝑚2

Parameters:
𝜌 : Random lateral connectivity ratio
𝜃 : Synaptic pruning threshold

Output:
L : A set of lateral undirected synaptic connections L ⊆ {{𝑛1, 𝑛2} | 𝑛1 ∈ 𝑁1, 𝑛2 ∈ 𝑁2}
𝑤L(⋅) : A synaptic weight function 𝑤L ∶ L → [−1, 1]

Step 1: Formation of Random Lateral Synapses
1 L ← ∅
2 while |𝐿| < 𝜌|𝑁1||𝑁2| do
3 Sample random 𝑛1 ∈ 𝑁1 and 𝑛2 ∈ 𝑁2
4 L ← L ∪ {𝑛1, 𝑛2}
5 end

Step 2: Learning of Correlated Activity
6 𝑘 ← 1; ̄𝜇(⋅) ← 0; ̄𝜎2(⋅) ← 0; cov(⋅) ← 0
7 foreach (𝑚𝑘

1, 𝑚𝑘
2) ∈ D do

8 Compute all neuron activations 𝑁̂ 𝑘
1 ← C1(𝑚𝑘

1) and 𝑁̂ 𝑘
2 ← C2(𝑚𝑘

2)
9 foreach 𝑙 = {𝑛1, 𝑛2} ∈ L do

Update neuron activity means, variances and covariance
10 ̄𝜇𝑘(𝑛1) ← SampleMean(𝑘, 𝑛̂𝑘1, ̄𝜇𝑘−1(𝑛1))
11 ̄𝜇𝑘(𝑛2) ← SampleMean(𝑘, 𝑛̂𝑘2, ̄𝜇𝑘−1(𝑛2))
12 ̄𝜎2𝑘 (𝑛1) ← SampleVar(𝑘, 𝑛̂𝑘1, ̄𝜇𝑘(𝑛1), ̄𝜎2𝑘−1(𝑛1))
13 ̄𝜎2𝑘 (𝑛2) ← SampleVar(𝑘, 𝑛̂𝑘2, ̄𝜇𝑘(𝑛2), ̄𝜎2𝑘−1(𝑛2))
14 cov𝑘(𝑛1, 𝑛2) ← SampleCov(𝑘, 𝑛̂𝑘1, 𝑛̂𝑘2, ̄𝜇𝑘(𝑛1), ̄𝜇𝑘(𝑛2), cov𝑘−1(𝑛1, 𝑛2))

Compute new activity correlation for weight update

15 𝑤L(𝑛1, 𝑛2) ← cov𝑘(𝑛1, 𝑛2)/√ ̄𝜎2𝑘 (𝑛1) ̄𝜎2𝑘 (𝑛2)
16 end
17 𝑘 ← 𝑘 + 1
18 end

Step 3: Correlation-Dependent Pruning of Synapses
19 foreach 𝑙 ∈ L do
20 if |𝑤L(𝑙)| < 𝜃 then L ← L ⧵ 𝑙
21 end
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The activations of individual neurons 𝑛1 ∈ 𝑁1 and 𝑛2 ∈ 𝑁2 can then be defined accordingly
as follows:

𝑛̂𝑖 = {𝑛̂1𝑖 , … , 𝑛̂𝐾𝑖 | 𝑛̂𝑘𝑖 ∈ 𝑁̂ 𝑘
𝑖 } for 𝑖 ∈ {1, 2} (5.5)

𝑛̂1 and 𝑛̂2 provide the basis for computing the sample means ̄𝜇(⋅), the sample variances ̄𝜎2(⋅)
and the sample covariances cov(⋅) for connected pairs of neurons in the two component
networks:

̄𝜇(𝑛𝑖) =
1
𝐾

𝐾
∑
𝑘=1

𝑛̂𝑘𝑖 for 𝑖 ∈ {1, 2} (5.6)

̄𝜎2(𝑛𝑖) =
1

𝐾 − 1

𝐾
∑
𝑘=1

(𝑛̂𝑘𝑖 − ̄𝜇(𝑛𝑖))2 for 𝑖 ∈ {1, 2} (5.7)

cov(𝑛1, 𝑛2) =
1

𝐾 − 1

𝐾
∑
𝑘=1

(𝑛̂𝑘1 − ̄𝜇(𝑛1))(𝑛̂𝑘2 − ̄𝜇(𝑛2)) (5.8)

Note that Equations 5.7 and 5.8 include Bessel’s correction to compensate for bias in the
sampling variance and covariance [458]. The weights 𝑤L(⋅) between pairs of laterally
connected units {𝑛1, 𝑛2} ∈ L can now be defined as the statistical correlation of their
activations on D [459]:

𝑤L({𝑛1, 𝑛2}) =
cov(𝑛1, 𝑛2)

√ ̄𝜎2(𝑛1) ̄𝜎2(𝑛2)
(5.9)

In the following, 𝑛will refer to an arbitrary neuron in one of the two component networks.
Computing lateral weights with Equation 5.9 from Equations 5.7 and 5.8 involves storing
all activation patterns observed for all lateral synapses L on data set D. Depending on
the size of L and D, this might require very large amounts of storage and thus can be
very inefficient. Algorithm 1 therefore implements an incremental method that was
originally proposed by Welford [460] to compute sample means, sample variances and
sample covariances in a single pass over D. The online update for the sample mean ̄𝜇(⋅)
can be directly derived from Equation 5.6:

For 𝑘 ≥ 1 and ̄𝜇0(𝑛) ≔ 0:

SampleMean(𝑘, 𝑛̂𝑘, ̄𝜇𝑘−1(𝑛)) =
1
𝑘
(𝑛̂𝑘 + (𝑘 − 1) ̄𝜇𝑘−1(𝑛)) (5.10)
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The sample mean is required to compute both sample variances, covariances and correla-
tions in the subsequent steps. At the core of Welford’s incremental online algorithm for
the sample variance is the following identity [460]:

𝑆𝑘(𝑛) =
𝑘
∑
𝑙=1

(𝑛̂𝑙 − ̄𝜇𝑘(𝑛))2

= 𝑆𝑘−1(𝑛) +
𝑘

𝑘 − 1
(𝑛̂𝑘 − ̄𝜇𝑘(𝑛))2

(5.11)

̄𝜎2𝑘 (𝑛) =
1

𝑘 − 1
𝑆𝑘(𝑛)

= 𝑘 − 2
𝑘 − 1

̄𝜎2𝑘−1(𝑛) +
𝑘

(𝑘 − 1)2
(𝑛̂𝑘 − ̄𝜇𝑘(𝑛))2

(5.12)

Equation 5.12 already includes Bessel’s correction. The online update function for the
sample variances in Algorithm 1 can therefore be computed as follows:

For 𝑘 ≥ 1, ̄𝜇0(𝑛) ≔ 0 and ̄𝜎20 (𝑛) ≔ 0 :

SampleVar(𝑘, 𝑛̂𝑘, ̄𝜇𝑘(𝑛), ̄𝜎2𝑘−1(𝑛)) =
𝑘 − 2
𝑘 − 1

̄𝜎2𝑘−1(𝑛) +
𝑘

(𝑘 − 1)2
(𝑛̂𝑘 − ̄𝜇𝑘(𝑛))2 (5.13)

The update equations for the sample covariance can be derived analogously:

𝐶𝑘(𝑛1, 𝑛2) =
𝑘
∑
𝑙=1

(𝑛̂𝑙1 − ̄𝜇𝑘(𝑛1))(𝑛̂𝑙2 − ̄𝜇𝑘(𝑛2))

= 𝐶𝑘−1(𝑛1, 𝑛2) +
𝑘

𝑘 − 1
(𝑛̂𝑘1 − ̄𝜇𝑘(𝑛1))(𝑛̂𝑘2 − ̄𝜇𝑘(𝑛2))

(5.14)

cov𝑘(𝑛1, 𝑛2) =
1

𝑘 − 1
𝐶𝑘(𝑛1, 𝑛2)

= 𝑘 − 2
𝑘 − 1

cov𝑘−1(𝑛1, 𝑛2) +
𝑘

(𝑘 − 1)2
(𝑛̂𝑘1 − ̄𝜇𝑘(𝑛1))(𝑛̂𝑘2 − ̄𝜇𝑘(𝑛2))

(5.15)

For 𝑘 ≥ 1, ̄𝜇0(𝑛1) ≔ 0, ̄𝜇0(𝑛2) ≔ 0, ̄𝜎20 (𝑛1) ≔ 0 and ̄𝜎20 (𝑛2) ≔ 0:

SampleCov(𝑘, 𝑛̂𝑘1, 𝑛̂𝑘2, ̄𝜇𝑘(𝑛1), ̄𝜇𝑘(𝑛2), cov𝑘−1(𝑛1, 𝑛2)) =

= 𝑘 − 2
𝑘 − 1

cov𝑘−1(𝑛1, 𝑛2) +
𝑘

(𝑘 − 1)2
(𝑛̂𝑘1 − ̄𝜇𝑘(𝑛1))(𝑛̂𝑘2 − ̄𝜇𝑘(𝑛2)) (5.16)

All estimates of sample means, sample variances and the sample covariance are updated
online for all laterally connected neurons as new samples are processed. In particular,
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Algorithm 1 computes mean and variance updates each time a neuron is visited, which
does not change the result but becomes increasingly inefficient the more neurons are
participating in multiple lateral connections. In practice, however, this can be easily
avoided by maintaining a list neurons that have already been processed in the current
iteration. As soon as all values for a connection 𝑙 have been updated, the resulting weight
𝑤L(𝑙) can be computed according to Equation 5.9. In the last step of the algorithm, all
synapses with an absolute weight |𝑤L(𝑙)| below a user-defined threshold 𝜃 are finally
pruned from the network. As a result, only neurons with high directly or indirectly
correlated activity remain laterally connected. The final connection weights store the
correlation coefficients of neuron activities with respect to the multimodal input data
set D. This means that the lateral connectome is shaped by the system’s experience and
depends on the structure of both its body and the environment.

Links to Hebbian Synaptic Plasticity Even though the computation of lateral weights
as described in Algorithm 1 does not include any direct reference to neuroscientific models
of synaptic plasticity, it can actually be interpreted as a normalized and covariance-based
extension of Hebb’s well-known rule “what fires together wires together” [461]:

Δ𝑤𝑘
L({𝑛1, 𝑛2}) = 𝜂𝑛̂𝑘1𝑛̂𝑘2 (5.17)

In the equation above, the weight update in step 𝑘 is defined as the product of neuron
activities scaled by a learning rate 𝜂. Weight changes are thereby effectively driven
by correlated activity of the presynaptic and the postsynaptic neuron. However, the
simplicity of the rule imposes narrow constraints on the dynamics of the weight update.
In particular, weights can only increase. For this reason, many variations of the basic
Hebb rule have been proposed. Sejnowski et al. [462] introduced a covariance-based
version as a model of synaptic plasticity in the hippocampus:

Δ𝑤𝑘
L({𝑛1, 𝑛2}) = 𝜂(𝑛̂𝑘1 − ̄𝑛1)(𝑛̂𝑘2 − ̄𝑛2) (5.18)

̄𝑛1 and ̄𝑛2 denote the average firing rates of neurons 𝑛1 and 𝑛2. One can easily see that
Equation 5.18 is similar to the update term in Equation 5.15 when the coefficients are
neglected. For large values of 𝑘, the left term’s coefficient converges to 1 while that of the
right one converges to 0. Equation 5.18 can therefore be thought of as an approximation
of Equation 5.15 when assuming a decaying learning rate 𝜂. The main difference between
the two update rules is that the two terms in Equation 5.15 are weighted by the number
of samples and therefore converge to a limit, while the average neural activity in 5.18 is
computed only for a certain sliding time window. Furthermore, the final learning rule
in Algorithm 1 from Equation 5.9 also applies normalization based on neuron activation
variances. This is required because the activation statistics of individual neurons in the
component networks may differ considerably from each other. In case they can assumed
to be similar for all neurons, the denominator in Equation 5.9 can be approximated by a
constant factor that can be included in the learning rate 𝜂. Interestingly, normalization is
hypothesized to play an important role in the brain [463].

132



5.3 Self-Supervised Learning of Deep Multisensory Neural Maps

5.3 Self-Supervised Learning of Deep Multisensory
Neural Maps

The neural network architecture developed in the previous section requires that compo-
nent networks map raw input to a compact abstract representation, but is completely
agnostic of the actual implementation. Possible choices include autoencoders or the
feature layers of pre-trained DNNs. The most appropriate architecture can be selected
independently for each component network. As a result, the generated latent space
representations are specific to each modality and need to be fused individually in each
hub network. While this general approach is fully in line with the design principles of
the architecture, it does not exploit the complementarity of multiple correlated sensory
streams that are available in embodied systems. In this section, we introduce a training
procedure along with a novel loss function for learning a joint sensory map across two
different modalities. After the specification of the underlying experimental setup in the
NRP in the next subsection, we first present an algorithmic framework for the uncon-
strained self-supervised learning of common latent space representations across different
modalities. In the main part of this section, this framework is extended with a novel
topographic loss function that enables the learning of cortex-like topographic maps. The
models and algorithms developed in this section have been implemented based on an
extended version the framework presented in [464].

Experimental Setup and Data Set
The development of machine learning models that process data from multiple input
modalities is very challenging due to the requirement for corresponding multimodal data
sets. Each sample contained therein must be of the form ((𝑚𝑘

1, ..., 𝑚𝑘
𝐼 ), 𝑙

𝑘), where 𝑚𝑘
𝑖 is the

current input from modality 𝑚𝑖 and 𝑙𝑘 is an optional label. While multimodal data sets are
less common in traditional machine learning domains such as image processing, they are
easily available in embodied systems, where sensors automatically produce correlated
streams of data for multiple modalities. Neurorobotics is therefore an essential tool for
the study of multisensory phenomena. This subsection introduces an experimental setup
for the NRP that has been designed to generate multimodal data sets with both visual and
proprioceptive information.

NRP Experiment The experiment is set up in the virtual lab environment of the NRP
and is centered around the model of the KUKA LBR iiwa robot introduced in Section 4.1.
Figure 5.5 depicts the complete system in the NRP Web Front End. The robot is placed on
a platform in the virtual lab environment of the NRP to enable free and unconstrained
movement in all directions. Differently from Section 4.1, there is no tool attached because
the data collection process does not involve any object manipulation. Instead, the tip of the
outermost joint is highlighted by a green sphere. This is because the main objective of the
experiment is to enable the recording of correlated multimodal data streams related to the
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Figure 5.5: NRP experiment for the collection of multimodal training data as required by deep multisensory
neural maps. The setup is based on the KUKA LBR iiwa robot model introduced in Section 4.1. Instead of a
gripper, a green sphere is attached to the robot’s last link in order to provide a salient visual stimulus that
indicates the workspace position. The blue dots are a visualization of the sampling space and correspond
to samples from the multimodal data set D𝑚𝑎𝑝. The insets on the right display additional camera views
of the scene. During data collection, joint angles (proprioception) and camera data (vision) are recorded
simultaneously.

robot’s current joint configuration and workspace position. Towards this end, the setup
provides not only sensor readings of the current joint angles but also includes a camera
with a complete view of the scene from the front. An inverse kinematics model enables
the direct movement of the robot to target workspace positions, which is required for
the data collection procedure discussed in the next paragraph. The experiment supports
parallel distributed execution with the framework from Section 4.1. This is an important
prerequisite for the rapid generation of new samples without extended processing time.

Generation of the Data Set The design of the experimental setup directly determines
the structure of the data captured from it. There are two complementary sensory modali-
ties, which both implicitly encode the workspace position of the robot’s outermost link:
Sensors in the individual joints measure angles and the camera in front of the robot
captures images of the scene including the green sphere at the last joint’s tip. With both
the joint angle readings and the camera images being recorded simultaneously from the
system, they are automatically correlated. New samples can therefore be easily retrieved
by changing the robot configuration and capturing the resulting sensor output. How-
ever, unlike the joint angles, the monocular camera images do not provide a full spatial
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description of the scene. While this can in principle be easily addressed by adding a
second camera or a depth sensor to the experiment, capturing the full three-dimensional
workspace of the robot is not essential for the development of the models and algorithms
presented in this section. For this reason, we will only consider robot configurations with
the tip located on the plane 𝑦 = 0 that is parallel to the image plane of the camera. We
denote the robot’s configuration space by ℂ𝐾𝑈𝐾𝐴. Based on the specification provided by
the manufacturer, it can be described as follows [465]:

ℂ𝐾𝑈𝐾𝐴 = [±170°] × [±120°] × [±170°] × [±120°] × [±170°] × [±120°] × [±175°] (5.19)

The motion ranges of the individual joints are listed starting with the base joint at the
bottom. Moving the robot tip randomly to different positions 𝑝𝑘 ∈ ℝ2 on the plane and
capturing the corresponding joint angles 𝑞𝑘 ∈ ℂ𝐾𝑈𝐾𝐴 and camera images I𝑘 ∈ ℝ512×512×3
yields a multimodal data set D𝑚𝑎𝑝:

D𝑚𝑎𝑝 = {((𝑞0, I0), 𝑝0) , … , ((𝑞𝐾, I𝐾), 𝑝𝐾)} (5.20)

Algorithm 2 provides a formal description of the generation of D𝑚𝑎𝑝. To create a new
sample, the algorithm generates a random workspace position 𝑝𝑘 on the half-annulus
covering the portion of the plane 𝑦 = 0 that is reachable by the robot. The corresponding
robot configuration is then determined using the MoveIt motion planning framework.
Targets 𝑝𝑘 for which the motion planner fails are discarded. Furthermore, self-collisions of
the robot with the green sphere at its tip are neglected because it is only visual marker and
not a structural part of the robot. Since only target positions are specified, the system can
in principle produce arbitrary orientations. As it turns out, this approach, although biased
by the motion planner, leads to good coverage of the range of motion of each individual
joint. For experiments that require both the robot’s tool tip position and orientation, the
setup can be easily extended to sample complete target poses. The final data set D𝑚𝑎𝑝 is
shown in Figure 5.6 and contains a total of 102 000 samples, of which three selected ones
are visualized in Figure 5.7.

Component Networks

Following the architecture description from Section 5.2, the two modalities contained in
D𝑚𝑎𝑝 are processed by two individual component networks C𝑣 𝑖𝑠 and C𝑝𝑟𝑜 for vision and
proprioception, respectively. To account for the fundamentally different nature of visual
and proprioceptive data, each network has a different architecture. In the next paragraphs,
both component networks are specified and evaluated on a supervised learning task.
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Algorithm 2: Generation of the Multimodal Data Set D𝑚𝑎𝑝

Input:
E𝑁𝑅𝑃 : NRP experiment as shown in Figure 5.5

Output:
D𝑚𝑎𝑝 : A multimodal data set D𝑚𝑎𝑝 = {((𝑞0, I0), 𝑝0) , … , ((𝑞𝐾, I𝐾), 𝑝𝐾)}

Parameters:
𝐾 : The number of samples to be generated
𝑟𝑚𝑖𝑛 : Minimum radius of the sampling space
𝑟𝑚𝑎𝑥 : Maximum radius of the sampling space

Generate samples with the robot tip on the half-annulus (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥) in the plane 𝑦 = 0
1 𝑘 ← 0; D𝑚𝑎𝑝 ← ∅
2 while 𝑘 < 𝐾 do
3 Generate uniform random numbers 𝑟𝑘, 𝜑𝑘 ∈ [0, 1]
4 𝑟𝑘 ← √𝑟𝑘 ⋅ (𝑟2𝑚𝑎𝑥 − 𝑟2𝑚𝑖𝑛) + 𝑟2𝑚𝑖𝑛
5 𝜑𝑘 ← 𝜑𝑘𝜋
6 (𝑥𝑘, 𝑧𝑘) ← (𝑟𝑘 cos 𝜑𝑘, 𝑟𝑘 sin 𝜑𝑘 + E𝑁𝑅𝑃.robot_offset)
7 if E𝑁𝑅𝑃.move_robot(𝑥𝑘, 0, 𝑧𝑘) then
8 𝑞𝑘 ← E𝑁𝑅𝑃.joint_angles()
9 I𝑘 ← E𝑁𝑅𝑃.camera_image()

10 𝑝𝑘 ← (𝑥𝑘, 𝑧𝑘)
11 D𝑚𝑎𝑝 ← D𝑚𝑎𝑝 ∪ ((𝑞𝑘, I𝑘), 𝑝𝑘)
12 𝑘 ← 𝑘 + 1
13 E𝑁𝑅𝑃.move_robot(“default_configuration”)
14 end
15 end

Figure 5.6: Workspace positions of all 102 000 samples in the multimodal data set D𝑚𝑎𝑝. The coloring serves
as a reference to visualize latent space representations in subsequent figures.
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Figure 5.7: Visualization of selected samples from the multimodal data set D𝑚𝑎𝑝. Each row corresponds
to a single sample and each column contains a different representation of the robot’s workspace position,
which is defined as the center of the green sphere attached to the outermost link. The images in the left
column depict a front view of the robot’s current configuration, while the corresponding joint angles and
workspace coordinates of the center of the sphere at the tip are shown in the middle and right column,
respectively. Since the sampling of robot configurations is constrained to a fixed two-dimensional plane in
the workspace with 𝑦 = 0, only the 𝑥- and 𝑧-coordinates of the workspace position are shown. The shaded
area in the right column indicates the sampling space.
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Network Architecture Figure 5.8 provides an overview of the architectures of the
image network C𝑣 𝑖𝑠 and the proprioception network C𝑝𝑟𝑜. The latter directly receives raw
joint angles as input and is therefore set up as a simple fully connected neural network
with four hidden layers and ReLU(⋅) activation functions. Each of the inner layers is
followed by a batch normalization layer. After an initial expansion of the representation
space, the network input is finally compressed to two dimensions in the output layer
and thereby mapped to the latent space as shown in Figure 5.3. The output dimension
of the vision network C𝑣 𝑖𝑠 is identical to enable the learning of a common latent space
representation. Like in the proprioception network, the value range of the output layer
is constrained by a tanh(⋅) activation function as introduced in Figure 2.6. But since
the input is not a low-dimensional robot configuration but a high-dimensional camera
image, the network is built from convolution layers with continuously decreasing filter
sizes. Unlike in common DNN architectures for image classification, there are no pooling
layers. This is because these layers are applied to construct position-invariant feature
space representations. Filtering out position-related information, however, would make
it impossible to reliably map the location of the sphere to a workspace position. For the
intended application, the omission of pooling layers is therefore an essential design choice.
It should be noted that the design of C𝑣 𝑖𝑠 and C𝑝𝑟𝑜 not necessarily maximizes performance
or efficiency. In fact, there may be many other architectures that perform better on
D𝑚𝑎𝑝. The main goal in this work is rather to minimize model complexity to reduce
side effects and to put the focus on the proposed learning method. Nevertheless, other
functionally equivalent types of neural networks are equally applicable to the learning
methods presented in this section.
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Figure 5.8: Architectures of the component networks C𝑣 𝑖𝑠 and C𝑝𝑟𝑜. conv and fc denote convolution layers
and fully connected layers, respectively. Both output layers are fully connected. The convolution layers of
C𝑣 𝑖𝑠 (left) have ReLU(⋅) activation functions. Stride width s and padding p are annotated below each layer
next to the kernel size. C𝑝𝑟𝑜 (right) is comprised of fully connected layers with ReLU(⋅) activation functions.
Not shown are the batch normalization layers that follow after every inner layer of both networks. Each of
the two output layers applies a tanh(⋅) activation function. Both networks project to a two-dimensional
space that corresponds to the latent space from Figure 5.3. The network parameters are based on [464].
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Supervised Training Both C𝑣 𝑖𝑠 and C𝑝𝑟𝑜 are implemented with the PyTorch deep
learning library and the PyTorch Lightning interface [137, 466]. To evaluate the networks’
baseline performance with respect to the extraction of information related to the robot’s
workspace position, they were trained individually on the ground truth positions 𝑝𝑘 stored
in D𝑚𝑎𝑝. In particular, D𝑚𝑎𝑝 can be split into two unimodal data sets for each modality:

D𝑣 𝑖𝑠
𝑚𝑎𝑝 = {(I0, 𝑝0) , … , (I𝐾, 𝑝𝐾)} (5.21)

D𝑝𝑟𝑜
𝑚𝑎𝑝 = {(𝑞0, 𝑝0) , … , (𝑞𝐾, 𝑝𝐾)} (5.22)

As a result, the training of the networks can be formulated as a standard supervised
learning task. The prediction error for a set of 𝑁 samples is computed as the mean squared
error (MSE) between the ground truth positions 𝑝1, … 𝑝𝑁 and the network prediction
̂𝑝1, … , ̂𝑝𝑁 :

MSE(𝑝1, … 𝑝𝑁; ̂𝑝1, … , ̂𝑝𝑁) =
1
𝑁

𝑁
∑
𝑛=1

‖𝑝𝑛 − ̂𝑝𝑛‖22 (5.23)

Minimizing this error function also minimizes the Euclidean distances between the latent
space projections of both networks. The tanh(⋅) activation functions of the networks’
output units were omitted in this particular experiment because the dimensions of the
workspace exceed their value range of (−1, 1). The training was performed in PyTorch
with the Adam optimizer [467]. All parameters used for the training of the models
presented in this section are documented in Appendix A.1.

Results Figure 5.9 provides a visual summary of the results. While the plots and errors
are shown for the full data set, only 40 % of the samples were used for training and
validation. As one can clearly see, both networks have learned the general topography of
the workspace. The overall higher accuracy of the proprioception network can partly be
explained by the limited resolution of the camera and the fact that samples in D𝑚𝑎𝑝 with
neighboring workspace positions might have been reached with different orientations
and are thus represented by considerably different camera images. By contrast, the joint
angles processed by the proprioception network provide a complete and unambiguous
description of the robot’s workspace position. The error shown in Figure 5.9 is computed
based on the Euclidean distances between sample workspace positions, which are easier
to interpret for the considered problem setup than the MSE. Mean distances above the
spatial mapping plots are computed from the pairwise workspace distances between
25 000 samples of D𝑚𝑎𝑝 and capture the overall spatial extent of the latent space mapping.
The mean errors for the mapping error plots are computed as the mean of the distances
between predicted positions and ground truth. For both C𝑣 𝑖𝑠 and C𝑝𝑟𝑜, the mean distances
and their standard deviations correspond well to the those of the ground truth positions.
In summary, these findings show that both component networks are in principle capable
of mapping their input space to a common representation of the robot’s workspace, which
is an essential prerequisite for the learning method introduced in the next two subsections.
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Figure 5.9: Input space mappings learned by the vision network C𝑣 𝑖𝑠 and the proprioception network C𝑝𝑟𝑜
after supervised training on D𝑣 𝑖𝑠

𝑚𝑎𝑝 and D𝑝𝑟𝑜
𝑚𝑎𝑝. Left : Distribution of the workspace sample positions inferred

by the networks. Sample colors correspond to those in Figure 5.6. Means of the pairwise workspace sample
distances computed on a subset of the data set and their standard deviations are noted at the top of each
row. Right : Visualization of the Euclidean norm of the network prediction error. Means of the Euclidean
distance error on the full data set and their standard deviations are noted at the top of each row. The upper
limits of the the colorbars are saturation values and do not correspond to the maximum error.
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Multimodal Self-Supervised Learning

Training the component networks C𝑣 𝑖𝑠 and C𝑝𝑟𝑜 with external supervision on workspace
positions is unrealistic from the point of view of a self-contained embodied system that
has no access to ground truth information. In the following, we therefore develop a
self-supervised training procedure that requires only data from the two input modalities
of D𝑚𝑎𝑝. The basic idea behind the concept of self-supervision is best explained in the
context of the four main machine learning paradigms illustrated in Figure 5.10. While
unsupervised learning solely operates on unlabeled samples (I𝑘 and q𝑘 in the case of
D𝑚𝑎𝑝) with the goal of identifying latent structure in the data, supervised learning aims
to map input samples to pre-defined outputs specified by labels (𝑝𝑘 in the case of D𝑚𝑎𝑝).
Generating labeled data sets is one of the main challenges in supervised learning and
a key prerequisite for entering new application domains. Self-supervised learning as
defined in this work applies algorithms from supervised learning to unlabeled data by
applying a loss function that does not depend on any labels. A prominent example
for this class of systems are autoencoder networks that aim to reconstruct their input
at the output layer. As the error function used for this type of network measures the
reconstruction quality by comparing the system’s reconstructed output with the original
input, no labels are required. With only one data source being involved that is mapped
onto itself, autoencoders are commonly referred to as unsupervised models even though
the underlying learning method is self-supervised. In the next paragraph, the learning of
a common latent representation from D𝑚𝑎𝑝 is formulated as a self-supervised learning
problem with a corresponding loss function. The latter forms the basis of the actual
learning algorithm that will be described afterwards.

Figure 5.10: Overview of the four main machine learning paradigms. The description of semi-supervised
learning is based on the definition by Zhou and Belkin [468].
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Problem Setup The overall problem setup is illustrated in Figure 5.8. When considering
both component networks as a single model, the resulting architecture is akin to that of a
typical autoencoder where data pass through a low-dimensional latent space bottleneck
in the middle of the network. The difference lies in the data flow: While autoencoders
process input in feedforward direction only, the data flows through the vision network
C𝑣 𝑖𝑠 and the proprioception network C𝑝𝑟𝑜 point in opposite directions to meet at the
latent space located at the center. This is essential to make both component networks
encoders that map their respective input modality to the latent space. In an autoencoder,
the portion of the network following after the latent space becomes a decoder that maps
back to the input space, which makes it impossible to use it as a component network.

Basic Self-Supervised Loss With both C𝑣 𝑖𝑠 and C𝑝𝑟𝑜 processing their inputs indepen-
dently of each other, their latent output spaces differ by default. Synchronizing them
by minimizing the difference between their latent space projections of D𝑚𝑎𝑝 yields a
self-supervised learning problem with the following loss functions:

ℒ 𝑠𝑒𝑙𝑓
𝑣 𝑖𝑠 (C𝑣 𝑖𝑠⟨I⟩,C𝑝𝑟𝑜⟨𝑞⟩) = MSE (C𝑣 𝑖𝑠⟨I⟩,C𝑝𝑟𝑜⟨𝑞⟩) +

𝜁
̄𝜎2(C𝑣 𝑖𝑠⟨I⟩) + 𝜀

(5.24)

ℒ 𝑠𝑒𝑙𝑓
𝑝𝑟𝑜 (C𝑣 𝑖𝑠⟨I⟩,C𝑝𝑟𝑜⟨𝑞⟩) = MSE (C𝑣 𝑖𝑠⟨I⟩,C𝑝𝑟𝑜⟨𝑞⟩) +

𝜁
̄𝜎2(C𝑝𝑟𝑜⟨𝑞⟩) + 𝜀

(5.25)

Both losses are defined for batches ⟨I⟩, ⟨𝑞⟩ of samples from D𝑚𝑎𝑝 and compute the MSE
between the latent space projections of C𝑣 𝑖𝑠 and C𝑝𝑟𝑜. However, the MSE alone would
easily lead to trivial solutions where both networks produce identical constant output
for all inputs. This is addressed by the second part of the loss functions, which adds
the inverse variance of the projection of the current batch scaled by a hyperparameter
𝜁 to promote the spread of data points over the whole latent space. 𝜀 is a small positive
constant which ensures that the loss does not diverge for small variances. In the literature,
the problem of synchronizing latent space representations is also referred to as manifold
alignment [469].

Learning Algorithm Equations 5.24 and 5.25 require the latent space output of both
C𝑣 𝑖𝑠 and C𝑝𝑟𝑜 to compute the current loss for the weight updates, which implies that the
two networks need to be trained at the same time. This is challenging from a technical
point of view since the output of the two loss functions for identical inputs changes
after each weight update. Both networks are therefore trained on a moving target with
direct effects on the convergence and stability of the learning process. To address this
issue, losses for one network are computed based on a cached version of the other that
is gradually updated over time. The cached networks C̃𝑣 𝑖𝑠 and C̃𝑝𝑟𝑜 are also referred to
as target networks, a concept originally introduced in the context of deep reinforcement
learning [470, 471]. The complete training procedure is described in Algorithm 3 and starts
with two randomly initialized component networks C𝑣 𝑖𝑠 and C𝑝𝑟𝑜. In every epoch 𝑒 ∈ 𝐸,
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Algorithm 3: Multimodal Self-Supervised Learning

Input:
D𝑚𝑎𝑝 : A multimodal data set D𝑚𝑎𝑝 = {((𝑞0, I0), 𝑝0) , … , ((𝑞𝐾, I𝐾), 𝑝𝐾)}
C𝑣 𝑖𝑠 : Component network for vision with randomly initialized weights
C𝑝𝑟𝑜 : Component network for proprioception with randomly initialized weights

Parameters:
ℒ𝑣 𝑖𝑠 : Loss function for the vision network
ℒ𝑝𝑟𝑜 : Loss function for the proprioception network
𝐸 : Number of training epochs
𝑏 : Batch size
𝜏 : Target network update rate
Γ𝑣 𝑖𝑠 : Optimization parameters for C𝑣 𝑖𝑠
Γ𝑝𝑟𝑜 : Optimization parameters for C𝑝𝑟𝑜

Initialize the target networks
1 C̃𝑣 𝑖𝑠 ← C𝑣 𝑖𝑠; C̃𝑝𝑟𝑜 ← C𝑝𝑟𝑜
2 foreach 𝑒 ∈ [1…𝐸] do

Iterate over the full data set in batches of size 𝑏
3 foreach ⟨I⟩, ⟨𝑞⟩ ∈ ⟨D𝑚𝑎𝑝, 𝑏⟩ do

Compute loss gradients with respect to synaptic weights
4 𝑔𝑣 𝑖𝑠 ← ∇C𝑣 𝑖𝑠

ℒ𝑣 𝑖𝑠(C𝑣 𝑖𝑠⟨I⟩, C̃𝑝𝑟𝑜⟨𝑞⟩)
5 𝑔𝑝𝑟𝑜 ← ∇C𝑝𝑟𝑜

ℒ𝑝𝑟𝑜(C̃𝑣 𝑖𝑠⟨I⟩,C𝑝𝑟𝑜⟨𝑞⟩)

Update network weights
6 C𝑣 𝑖𝑠 ← Optimizer(C𝑣 𝑖𝑠, Γ𝑣 𝑖𝑠, 𝑔𝑣 𝑖𝑠)
7 C𝑝𝑟𝑜 ← Optimizer(C𝑝𝑟𝑜, Γ𝑝𝑟𝑜, 𝑔𝑝𝑟𝑜)

Perform soft target network updates
8 C̃𝑣 𝑖𝑠 ← (1 − 𝜏)C̃𝑣 𝑖𝑠 + 𝜏 C𝑣 𝑖𝑠

9 C̃𝑝𝑟𝑜 ← (1 − 𝜏)C̃𝑝𝑟𝑜 + 𝜏 C𝑝𝑟𝑜
10 end
11 end

the data set D𝑚𝑎𝑝 is split into batches of size 𝑏 that form the basis for the computation of
losses and gradients. The actual weight updates are applied in Lines 6 and 7 by a gradient-
based optimizer. For example, Optimizer(⋅) expands as follows for basic stochastic gradient
descent and Γ = {𝜂}:

Optimizer(C, Γ, 𝑔) = C − 𝜂𝑔 (5.26)

In this work, we instead use the PyTorch implementation of the Adam optimizer that
is based on stochastic gradient descent but in addition “computes individual adaptive
learning rates for different parameters from estimates of the first and second moments of
the gradients” [467]. It is important to note, however, that there is no requirement for
using any specific optimization algorithm.
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Results The results of two runs of Algorithm 3 over ten epochs each are shown in
Figure 5.11. While both of them visualize the full data set D𝑚𝑎𝑝, training and validation
were carried out on 40% of the samples. Mean distances and latent space errors are
computed analogously as described for Figure 5.9. In both runs, the two component
networks converge to common latent space representations. The errors are comparable
to those from supervised training but are not sufficient to fully describe the quality of the
results, which can be seen from the significant differences between the two representations
learned in the two runs. We will therefore consider three factors for characterizing the
quality of the learned latent space representations:

• Scale: The overall spatial extent of the latent space projection of D𝑚𝑎𝑝 as described
by the mean pairwise distances between sample positions.

• Topography: The degree of correspondence between the layouts of the ground truth
workspace and the latent space.

• Error : The mean Euclidean distance between corresponding samples in the latent
space projections of C𝑣 𝑖𝑠 and C𝑝𝑟𝑜.

The scale of the latent space puts the magnitude of the error into context. For example,
in degenerate cases where both component networks only produce constant output the
error vanishes. But at the same time, the scale as described by the mean pairwise sample
distance also converges to zero, resulting in an diverging relative error:

Relative Latent Space Error =
Mean Latent Space Error

Mean Distance
(5.27)

In general, small scales do not necessarily correspond to disadvantageous latent space
representations but may still be undesirable. This is especially true if the scale decreases
during training and numerical precision is lost over time with negative implications on
the quality of the latent space representation. Both error and scale are only concerned
with the spatial extent and alignment of the representations learned by C𝑣 𝑖𝑠 and C𝑝𝑟𝑜.
An even more important property is how well the learned latent space representation
preserves topographic features of D𝑚𝑎𝑝 in the robot’s workspace. In qualitative terms, a
good topographic mapping reproduces the overall layout of the workspace as observed
through the camera such that neighborhood relationships are preserved [472]. More
formally, the concept of topographic organization can be defined as follows [473]:

“The arrangement of components in a structure, particularly the orderly spatial
relationship between the distribution of neural receptors in an area of the body and
a related distribution of neurons representing the same functions in cortical sensory
regions of the brain. [...]”

In the representation learned during Example Run 1, it is possible to discern the different
areas of the workspace. However, the separation is not sharp and there is considerable
overlap. Some areas like the purple one seem to be torn apart and are widely distributed
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Figure 5.11: Visualization of the results of two selected runs of Algorithm 3 with losses ℒ 𝑠𝑒𝑙𝑓
𝑣 𝑖𝑠 and ℒ 𝑠𝑒𝑙𝑓

𝑝𝑟𝑜
from Equations 5.24 and 5.25. Shaded areas indicate the output range of the tanh(⋅) activation function. The
upper limits of the the colorbars are saturation values and do not correspond to the maximum error.
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Figure 5.12: Visualization of the learning progress in Example Run 1 from Figure 5.11. Shaded areas
indicate the output range of the tanh(⋅) activation function. The upper limits of the the colorbars are
saturation values and do not correspond to the maximum error.
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over the output space. The result from Example Run 2 has a completely different shape
with decreased spatial separation at the bottom. This is also manifested in a smaller mean
distance with lower standard deviation.

The development of the latent space representation during training in the first run
from network initialization to the final epoch is outlined in Figure 5.12. Most evident
is the expansion of the projection that can be observed already by the end of the first
epoch. Unlike that of the proprioception network, the projection of the vision network
already contains discernible colored clusters directly after initialization, which is partly
due to the fact that the green sphere in the camera images directly encodes the robot’s
workspace position. With the background of the scene remaining unchanged apart from
the robot arm, the output of C𝑣 𝑖𝑠 is mainly influenced by the location of the sphere. By
contrast, the proprioceptive input processed by C𝑝𝑟𝑜 resides in the robot’s configuration
space, which has a completely different topology. This explains why all colors appear to
be mapped completely randomly after initialization and demonstrates the huge impact of
the network architecture on the representational power of a model for a specific domain.
In conclusion, Algorithm 3 applied with the losses defined in Equations 5.24 and 5.25 can
learn common latent space representations for C𝑣 𝑖𝑠 and C𝑝𝑟𝑜. However, the topologies of
these representations emerge randomly and do not necessarily capture the characteristics
of the robot’s workspace well.

Learning Aligned Multisensory Maps with Topographic Loss
The formation of the latent space with the loss functions introduced in the last subsec-
tion is mainly driven by the initial network weights and the randomness of stochastic
gradient descent-based optimization. It is therefore impossible to control the emerging
topography. This is best illustrated in Figure 5.11, where two runs of the algorithm yield
two qualitatively completely different results. Even though both exhibit basic structure,
none of them reflects the topography of the robot’s workspace well. Providing additional
information as a prior that informs the learning process is therefore essential. In the
following, we develop an extension of the basic loss functions from Equations 5.24 and 5.25
and introduce a training protocol that balances between individual map formation and
cross-modal synchronization. The proposed methodology is motivated by findings about
topographic map representations that have been discovered in the brain and which are
hypothesized to play a key role in cognitive processing.

Topographic Maps in the Brain Topographic maps have been found to be a key
principle for the representation of sensory input in the brain, especially the mammalian
neocortex [474]. A prototypic example is the retinotopic mapping from the sensory
receptor cells of the eye to the primary visual cortex. Importantly, the density of the
cortical representation is not uniform but higher in regions processing foveal input. The
concept of topographic organization therefore does not establish a formal but rather a
qualitative property of cortical maps [472]. A review byKaas [474] of experimental findings
about cortical maps provides an overview of their structure and function. Especially
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early regions “reflect the order of the receptor sheet with the greatest fidelity” [474]. In
general, however, there are redundant maps and each map may not be uniform but contain
duplications and distortions. Redundancy can serve the representation of different features
(e.g. shapes and motion) or a single feature at different scales (i.e. mapping resolutions).
While topographic maps are considered essential for perception, there are also maps that
represent information related to action such as those encoding body movement in the
motor cortex. Furthermore, the neocortex is not the only brain region where topographic
maps have been identified. The superior colliculus is an important center for multisensory
integration. It contains maps for vision, hearing, somatosensation and movement that
are aligned to each other. In particular, it was shown that the development of auditory
maps is shaped by visual maps [475, 476]. These findings are directly in line with the
main features of the model developed in this work.

Self-Supervised Learningwith Topographic Loss The latent space loss considered so
far is regularized by the inverse variance of the corresponding component network’s latent
space projection to encourage spatially diverse mappings and to prevent convergence to
trivial solutions. However, the variance does not provide any direct measure of whether
the learned mapping is topographic. At the same time, the topography of a mapping is
a global property, while gradient based optimization only processes a small batch with
randomly drawn of the data set in each step. The challenge therefore lies in breaking
down the topographic preservation of neighborhood to a differentiable loss function that
enables gradient-based optimization of the global layout of the space solely based on local
information. In the following, we realize this goal by developing a topographic loss that
optimizes the latent space mapping based on two competing losses. They replace the
variance-based regularization term and encode two topographic measures:

• Neighborhood Loss: Encodes the of the preservation of neighborhood. The loss
grows as samples that lie close in the workspace move apart from each other in the
latent space.

• Separation Loss: Encodes how well different neighborhoods are separated from each
other. The loss grows as neighborhoods that lie in separate parts of the workspace
begin to overlap in the latent space.

Both loss terms contain notions of neighborhood and closeness for sets of samples. Ap-
plying them to batches of randomly selected points is therefore not possible. Instead, we
consider a to our knowledge novel sphere batching method that is described in Algorithm 4.
Rather than picking arbitrary samples from D𝑚𝑎𝑝 in every batch, sphere batches are sam-
pled around a randomly generated set of 𝑆 midpoints ⟨𝑐⟩, each of which corresponds to a
sphere with radius 𝑟. The sampling procedure ensures that the spheres in the batch to not
overlap. As soon as an appropriate set of sphere centers has been generated, the algorithm
retrieves all samples from D𝑚𝑎𝑝 that lie inside the spheres based on their workspace posi-
tions and their Euclidean distances from the corresponding centers. This can be efficiently
implemented with a 𝑘-d tree [477] that is defined on the workspace positions of D𝑚𝑎𝑝.
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Algorithm 4: Sphere Batching

Input:
D𝑚𝑎𝑝 : A multimodal data set D𝑚𝑎𝑝 = {((𝑞0, I0), 𝑝0) , … , ((𝑞𝐾, I𝐾), 𝑝𝐾)}

Parameters:
𝑆 : Number of spheres per batch
𝑟 : Sphere radius in the workspace
𝑏 : Batch size
𝐵 : Number of batches

Output:
⟨D𝑚𝑎𝑝, 𝑆, 𝑟 , 𝑏, 𝐵⟩𝒮 : A set of 𝐵 sphere batches with tuples (⟨[I]⟩, ⟨[𝑞]⟩, ⟨[𝑝]⟩). Each

batch contains 𝑆 non-overlapping spheres with camera im-
ages ⟨[I]⟩𝑠 = [I𝑠0 , … , I𝑠𝐾], joint angles ⟨[𝑞]⟩𝑠 = [𝑞𝑠0 , … , 𝑞𝑠𝐾] and
workspace positions ⟨[𝑝]⟩𝑠 = [𝑝𝑠0 , … , 𝑝𝑠𝐾]. Each of the lists ⟨[I]⟩𝑠,
⟨[𝑞]⟩𝑠, ⟨[𝑝]⟩𝑠 in a batch corresponds to a sphere with radius 𝑟 and
contains at most ⌊𝑏/𝑆⌋ samples. The first elements in the lists
of samples are the sphere centers.

Generate 𝐵 sphere batches
1 ⟨D𝑚𝑎𝑝, 𝑆, 𝑟 , 𝑏, 𝐵⟩𝒮 ← ∅
2 foreach 𝑘 ∈ [0…𝐵 − 1] do

Generate random centers for 𝑆 non-overlapping spheres with radius 𝑟
3 [((𝑞0𝑘 , I

0
𝑘), 𝑝

0
𝑘) , … , ((𝑞𝑆−1𝑘 , I𝑆−1𝑘 ), 𝑝𝑆−1𝑘 )] ← RandomSpheres(D𝑚𝑎𝑝, 𝑆, 𝑟)

Generate up to ⌊𝑏/𝑆⌋ random samples in each sphere ((𝑞𝑠, I𝑠), 𝑝𝑠)
4 ⟨[I]⟩𝑘 ← ∅; ⟨[𝑞]⟩𝑘 ← ∅; ⟨[𝑝]⟩𝑘 ← ∅
5 for 𝑠 ∈ [0… 𝑆 − 1] do

Get a list of all samples in the sphere excluding the center
6 ⟨[I]⟩𝑠𝑘, ⟨[𝑞]⟩

𝑠
𝑘, ⟨[𝑝]⟩

𝑠
𝑘 ← KDTree(D𝑚𝑎𝑝).query_sphere(((𝑞𝑠, I𝑠), 𝑝𝑠) , 𝑟) ⧵ ((𝑞𝑠, I𝑠), 𝑝𝑠)

Select up to ⌊𝑏/𝑆⌋ − 1 random samples from each list
7 ⟨[I]⟩𝑠𝑘← ChooseRandom(⟨[I]⟩𝑠𝑘, ⌊𝑏/𝑆⌋ − 1)
8 ⟨[𝑞]⟩𝑠𝑘← ChooseRandom(⟨[𝑞]⟩𝑠𝑘, ⌊𝑏/𝑆⌋ − 1)
9 ⟨[𝑝]⟩𝑠𝑘← ChooseRandom(⟨[𝑝]⟩𝑠𝑘, ⌊𝑏/𝑆⌋ − 1)

Add sphere center samples to the beginning of the lists
10 ⟨[I]⟩𝑠𝑘← Append([I𝑠𝑘], ⟨[I]⟩

𝑠
𝑘)

11 ⟨[𝑞]⟩𝑠𝑘← Append([𝑞𝑠𝑘], ⟨[𝑞]⟩
𝑠
𝑘)

12 ⟨[𝑝]⟩𝑠𝑘← Append([𝑝𝑠𝑘], ⟨[𝑝]⟩
𝑠
𝑘)

Add sphere to batch
13 ⟨[I]⟩𝑘← Append(⟨[I]⟩𝑘, ⟨[I]⟩𝑠𝑘)
14 ⟨[𝑞]⟩𝑘← Append(⟨[𝑞]⟩𝑘, ⟨[𝑞]⟩𝑠𝑘)
15 ⟨[𝑝]⟩𝑘← Append(⟨[𝑝]⟩𝑘, ⟨[𝑝]⟩𝑠𝑘)
16 end
17 ⟨D𝑚𝑎𝑝, 𝑆, 𝑟 , 𝑏, 𝐵⟩𝒮 ← ⟨D𝑚𝑎𝑝, 𝑆, 𝑟 , 𝑏, 𝐵⟩𝒮 ∪ (⟨[I]⟩𝑘, ⟨[𝑞]⟩𝑘, ⟨[𝑝]⟩𝑘)
18 end
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Figure 5.13: Visualization of a sphere batch in the workspace and its latent space projection during an
early training epoch. The batch contains 𝑆 = 8 spheres with 8 samples each, resulting in a total batch size
of 𝑏 = 64. Neighborhood loss (samples outside their spheres) and separation loss (overlapping spheres) are
marked in red. The visualization is based on [464].

Depending on the distribution of D𝑚𝑎𝑝 and the user-defined sphere radius, the number of
samples in each sphere will in general be different. In the last step, random subsets of the
samples in each of the spheres are drawn to ensure that the total number of samples in
the sphere batch does not exceed the maximum user-defined batch size 𝑏. An example
of a single sphere batch is depicted in Figure 5.13. The clustering of samples around the
midpoints of the spheres is clearly visible. In the original workspace, the spheres do not
overlap with each other and none of the samples lies outside its corresponding sphere.
This is not the case for the latent space projection, where overlapping areas between
spheres and samples that are not mapped into their spheres are marked in red color.

Topographic Loss Functions The concepts of neighborhood loss and separation loss
defined in the last paragraph can be directly translated into two loss functions ℒ 𝑛𝑏ℎ and
ℒ 𝑠𝑒𝑝 that are defined for latent space projections ⟨[𝑙]⟩ of a sphere batch (⟨[I]⟩, ⟨[𝑞]⟩, ⟨[𝑝]⟩)
by C𝑣 𝑖𝑠 or C𝑝𝑟𝑜:

ℒ 𝑛𝑏ℎ(⟨[𝑙]⟩) = 1
𝑆

𝑆−1
∑
𝑠=0

1
|⟨[𝑙]⟩𝑠|

∑
𝑙∈⟨[𝑙]⟩𝑠

max(0, ‖𝑙𝑠𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑙‖2 − 𝑟) (5.28)

ℒ 𝑠𝑒𝑝(⟨[𝑙]⟩) = 1
𝑆2

𝑆−2
∑
𝑠1=0

𝑆−1
∑

𝑠2=𝑠1+1
max(0, 2𝑟 − ‖𝑙𝑠1𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑙𝑠2𝑐𝑒𝑛𝑡𝑒𝑟‖2) (5.29)

The parameters in the equations above are defined as in Algorithm 4. Equation 5.28 sums
the distances to the hulls for those samples that are projected to latent space positions
outside of their spheres. For each sphere, the sum is normalized by the number of samples
it contains. Analogously, the final sum for all spheres is normalized by the total number
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of spheres 𝑆. Equation 5.29 computes the pairwise distances between all spheres in the
batch. Overlap is computed based on the radius 𝑟 and sphere midpoint distances. The
sum of all overlaps is normalized by the squared number of spheres. This is because the
maximum number of overlaps for 𝑆 spheres is equal to 𝑆(𝑆 − 1)/2 and therefore lies in
𝒪(𝑆2). With the two loss terms from Equations 5.28 and 5.29, the overall topographic loss
for a sphere batch can now be computed as follows:

ℒ 𝑡𝑜𝑝(⟨[𝑙]⟩) = 𝛽𝑛𝑏ℎ ℒ 𝑛𝑏ℎ(⟨[𝑙]⟩) + 𝛽𝑠𝑒𝑝 ℒ 𝑠𝑒𝑝(⟨[𝑙]⟩) (5.30)

The coefficients 𝛽𝑛𝑏ℎ and 𝛽𝑠𝑒𝑝 are hyperparameters that make it possible to adjust the
influence of the neighborhood loss ℒ 𝑛𝑏ℎ and the separation loss ℒ 𝑠𝑒𝑝.

Results of Individual Unsupervised Training The topographic loss from Equa-
tion 5.30 can be used to train C𝑣 𝑖𝑠 and C𝑝𝑟𝑜 completely unsupervised without any target
output. The corresponding training procedure is implemented in Algorithm 5. Figure 5.14
shows two examples of latent space representations that were learned over 20 epochs. It

Algorithm 5: Multimodal Unsupervised Learning with Sphere Batching

Input:
D𝑚𝑎𝑝 : A multimodal data set D𝑚𝑎𝑝 = {((𝑞0, I0), 𝑝0) , … , ((𝑞𝐾, I𝐾), 𝑝𝐾)}
C𝑣 𝑖𝑠 : Component network for vision with randomly initialized weights
C𝑝𝑟𝑜 : Component network for proprioception with randomly initialized weights

Parameters:
𝐸 : Number of training epochs
𝑆 : Number of spheres per batch
𝑟 : Sphere radius in the workspace
𝑏 : Batch size
𝐵 : Number of batches
Γ𝑣 𝑖𝑠 : Optimization parameters for C𝑣 𝑖𝑠
Γ𝑝𝑟𝑜 : Optimization parameters for C𝑝𝑟𝑜

1 foreach 𝑒 ∈ [1…𝐸] do
Iterate over 𝐵 sphere batches with maximum size 𝑏

2 foreach ⟨[I]⟩, ⟨[𝑞]⟩ ∈ ⟨D𝑚𝑎𝑝, 𝑆, 𝑟 , 𝑏, 𝐵⟩𝒮 do
Compute loss gradients with respect to synaptic weights

3 𝑔𝑣 𝑖𝑠 ← ∇C𝑣 𝑖𝑠
ℒ 𝑡𝑜𝑝(C𝑣 𝑖𝑠⟨[I]⟩)

4 𝑔𝑝𝑟𝑜 ← ∇C𝑝𝑟𝑜
ℒ 𝑡𝑜𝑝(C𝑝𝑟𝑜⟨[𝑞]⟩)

Update network weights
5 C𝑣 𝑖𝑠 ← Optimizer(C𝑣 𝑖𝑠, Γ𝑣 𝑖𝑠, 𝑔𝑣 𝑖𝑠)
6 C𝑝𝑟𝑜 ← Optimizer(C𝑝𝑟𝑜, Γ𝑝𝑟𝑜, 𝑔𝑝𝑟𝑜)

7 end
8 end
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is obvious at first glance that both of them do not only reproduce the topography of the
workspace very well but that the training is also consistent across the two runs, which is
a big difference to the results of purely self-supervised learning in Figure 5.11. Neverthe-
less, there are still deviations that can be explained by the random initialization of the
network weights and the random sampling of sphere batches. Figure 5.15 illustrates the
development of the latent space representations of C𝑣 𝑖𝑠 and C𝑝𝑟𝑜 over time. Remarkably,
both networks have learned a good approximation of the workspace topography already
by the end of the first epoch. This is also directly reflected in the plots of ℒ 𝑛𝑏ℎ and
ℒ 𝑠𝑒𝑝 in Figure 5.16, where the losses decrease rapidly at the beginning of the training
for both component networks. As can be seen in the output of C𝑝𝑟𝑜 at the end of epoch
20, the perceived quality of the representation may sometimes drop during training. The
increased overlap between yellow and red areas in the upper half of the latent space is
also expressed by an increase of the separation loss towards the end of the training. These
effects can also be explained by the random nature of sphere batching and can be easily
mitigated by selecting the best epoch at the end of a training run.

Figure 5.14: Visualization of the results of two selected runs of Algorithm 5 with the topographic loss ℒ 𝑡𝑜𝑝

from Equation 5.30. Shaded areas indicate the output range of the tanh(⋅) activation function.
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Figure 5.15: Progress of the training over selected epochs in Example Run 1 from Figure 5.14.
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Figure 5.16: Development of the neighborhood losses and separation losses during Example Run 1 from
Figure 5.14. Each graph shows both the original data (one data point represents 50 training steps) and a
running average with windows size 10.

Results of Joint Self-Supervised Training The topographic loss enables both C𝑣 𝑖𝑠
and C𝑝𝑟𝑜 to learn topographic maps of the workspace. But unlike the maps learned with
the self-supervised training method from Algorithm 3, the maps are not aligned to each
other. This directly motivates the definition of the topographic map loss functions ℒ𝑚𝑎𝑝

𝑣𝑖𝑠
and ℒ𝑚𝑎𝑝

𝑝𝑟𝑜 that combine self-supervised learning and topographic loss:

ℒ𝑚𝑎𝑝
𝑣𝑖𝑠 (C𝑣 𝑖𝑠⟨[I]⟩,C𝑝𝑟𝑜⟨[𝑞]⟩) =

= {
ℒ 𝑡𝑜𝑝(C𝑣 𝑖𝑠⟨[I]⟩) if 𝑒𝑝𝑜𝑐ℎ ≤ 𝐸𝑤𝑎𝑟𝑚−𝑢𝑝

𝛼𝑣 𝑖𝑠 MSE (C𝑣 𝑖𝑠⟨[I]⟩,C𝑝𝑟𝑜⟨[𝑞]⟩) + ℒ 𝑡𝑜𝑝(C𝑣 𝑖𝑠⟨[I]⟩) if 𝑒𝑝𝑜𝑐ℎ > 𝐸𝑤𝑎𝑟𝑚−𝑢𝑝
(5.31)

ℒ𝑚𝑎𝑝
𝑝𝑟𝑜 (C𝑣 𝑖𝑠⟨[I]⟩,C𝑝𝑟𝑜⟨[𝑞]⟩) =

= {
ℒ 𝑡𝑜𝑝(C𝑝𝑟𝑜⟨[q]⟩) if 𝑒𝑝𝑜𝑐ℎ ≤ 𝐸𝑤𝑎𝑟𝑚−𝑢𝑝

𝛼𝑝𝑟𝑜 MSE (C𝑣 𝑖𝑠⟨[I]⟩,C𝑝𝑟𝑜⟨[𝑞]⟩) + ℒ 𝑡𝑜𝑝(C𝑝𝑟𝑜⟨[q]⟩) if 𝑒𝑝𝑜𝑐ℎ > 𝐸𝑤𝑎𝑟𝑚−𝑢𝑝
(5.32)
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Both loss functions can be adjusted to only apply topographic loss during a warm-up
period at the beginning of the training. This ensures that random artifacts that are only
caused by the initialization of networks do not slow down the learning process. The
alignment of both component networks therefore only begins after they have a acquired
an early meaningful representation of the workspace. ℒ𝑚𝑎𝑝

𝑣𝑖𝑠 and ℒ𝑚𝑎𝑝
𝑝𝑟𝑜 can be directly

applied in Algorithm 3 when the batch operation in Line 3 is at the same time replaced
with the sphere batching method defined in Algorithm 4. Figure 5.17 depicts the results of
three runs with different parameters over 50 epochs each. Already basic settings without
warm-up and equal weights for the MSE term in both networks yield a common latent
space representation. Its layout can be controlled by scaling the MSE. In Example Run
2, the parameter value 𝛼𝑣 𝑖𝑠 in ℒ𝑚𝑎𝑝

𝑣𝑖𝑠 is very small while 𝛼𝑝𝑟𝑜 in ℒ𝑚𝑎𝑝
𝑝𝑟𝑜 is comparatively

large. As a result, the representation learned by C𝑝𝑟𝑜 adapts to that of C𝑣 𝑖𝑠. This effect
reproduces the findings on topographic map alignment in the brain mentioned at the
beginning of this section, where auditory maps have been found to be shaped by visual
maps. Example Run 3 was executed with equal learning rates but a warm-up period
𝐸𝑤𝑎𝑟𝑚−𝑢𝑝 of 20 epochs. The overall result resembles that of the first run but the mean
error is bigger despite comparable mean distance values. However, this issue is not
directly related to the warm-up time, which becomes evident in Figure 5.18, where the
progress during training in Example Run 3 is summarized. At the end of the last warm-up
period, the results are in line with those from Figure 5.14. Only one epoch later, both
representations are closely aligned and the latent space error compares well to Example
Run 1. In later epochs, the the alignment decreases and the latent space error grows.
Possible reasons are the competition between the MSE loss and the topographic loss, as
well as the stability issues observed earlier in the purely self-supervised learning setup.
This behavior can be prevented by, for example, freezing one network after a reaching
defined training epoch and continue to train only the other. The actual development of
the loss over the complete training time for both Example Run 1 and Example Run 3 is
plotted in Figure 5.19. At the end of the warm-up period, there is an immediate increase in
the total loss as the MSE term is activated. The quick recovery to loss values comparable
to those in Example Run 1 are in line with the quick alignment of the latent spaces after
only a single training epoch.

Conclusion In summary, the proposed training procedure, which is based on a novel
topographic map loss function and a corresponding sphere sampling algorithm, can
successfully learn common latent space projections from multimodal input. It is therefore
an essential component for building MHNNs. Compared to standard batching where
each training batch is generated from arbitrary samples in the data set, the introduced
sphere batching method encodes information about the spatial structure of the input
space. This is because the sampling of points within a sphere and ensuring that spheres
do not overlap requires a distance metric between samples. In Algorithm 4, this metric
is derived from the Euclidean distances between samples in the workspace. Sphere
sampling thereby implicitly leverages ground truth data for training. It is important to
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Figure 5.17: Visualization of the results of three selected runs of Algorithm 3 with different parameters
for the topographic map losses ℒ𝑚𝑎𝑝

𝑣𝑖𝑠 and ℒ𝑚𝑎𝑝
𝑝𝑟𝑜 from Equations 5.31 and 5.32. The upper limits of the the

colorbars are saturation values and do not correspond to the maximum error.
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Figure 5.18: Progress of the training over selected epochs in Example Run 3 from Figure 5.17. The upper
limits of the the colorbars are saturation values and do not correspond to the maximum error.
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Figure 5.19: Development of the total loss during Example Run 1 and Example Run 3 from Figure 5.17.
Each graph shows both the original data (one data point represents 50 training steps) and a running average
with window size 10.

note, however, that this is not a shortcoming of the proposed method but rather a key
feature because it is a means to encode the desired structure of the latent space. As the
results from Figure 5.11 illustrate, the latent space representations that emerge during
purely self-supervised learning are very different from the original workspace topography.
Moreover, neighborhood relations are also encoded in the brain, where, for example,
the retinotopic mapping mentioned earlier directly projects from the retina to the visual
cortex. Another important aspect is that the sensory input streams of embodied systems
are always continuous. Stimuli that are temporally close to each other are therefore
automatically bounded by a small sphere in the input space. In this sense, sphere batching
can be thought of as mimicking the perceptual input patterns of embodied systems in a
batched representation that is amenable gradient-based optimization. The alignment of
the maps shaped by topographic loss is achieved through self-supervised learning. While
care must be taken to ensure stability and convergence, the data from the training runs
show that both networks converge quickly to a common latent space topography.

The trained networks effectively perform a dimensionality reduction of their input
spaces, which is why the proposed method is closely related to SOMs [127]. However,
the latter only support unsupervised training. While the learning of common latent
spaces is possible as in the already discussed work by Lallee and Dominey [443], the
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mode of representation is completely different. The networks trained in this work return
continuous output values and therefore can represent data at any resolution. In SOMs, by
contrast, the space is discretized as every output value is represented by an individual
neuron. It can be argued that this form of representation is more biologically plausible.
But in principle, the analog output of the component networks can also be projected
onto a neural sheet. What SOMs completely lack, however, is the learning of feature
hierarchies. This is naturally possible with method introduced here. On a broader
perspective, topographic loss can also be seen as a method for preserving topological
properties in the input space. Learning topology-preserving homeomorphic mappings
is an active field of research in machine learning and results in this direction have been
published only recently [478, 479].
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6
Developmental Embodied Learning

A special feature of the MHNN architecture introduced in the last chapter is the inde-
pendence of the individual network modules of each other. In principle, all component
networks can be trained separately as demonstrated in Section 5.3, where two networks for
multimodal visual and proprioceptive input learned individual latent space representations
solely based on topographic loss. The fusion of data streams from the individual networks
only becomes relevant when they jointly provide the information required to execute a
task that is implemented by a hub network. At the same time, pre-trained component
networks can be aligned by establishing lateral connections or through self-supervised
learning as described in Algorithms 1 and 3. These examples indicate that MHNNs not
only encode spatial separation of information as expressed by the diversification into
different network modules but also give rise to a temporal order that is determined by
the sequence of learning algorithms applied to individual modules and the complete
network. In this chapter, we will investigate how the temporal order of learning can be
formalized and actively employed to enhance the learning process. In fact, scheduled
learning over subsequent phases is a key principle in the development of living creatures.
In Section 6.1, we first review the biological background and previous work in robotics
before we introduce the concept of training protocols. The findings will be applied in
the implementation of two different types of hub networks for multisensory integration
and inverse kinematics learning in Sections 6.2 and 6.3, respectively. Both networks are
developed and evaluated in virtual neurorobotics experiments for the NRP.

161



6 Developmental Embodied Learning

6.1 Modeling Biological Development with
Training Protocols

The human brain is able to learn and adapt throughout its lifetime. After birth, different
skills develop in different phases. For example, babies learn to crawl before they learn to
walk. The laws and processes that govern the gradual and ordered acquisition of skills are
summarized under the term cognitive development [480]. An influential theory in this field
was proposed by Piaget [481], who postulated that child development encompasses four
subsequent phases: “(1) the sensorimotor stage from birth to 2 years, (2) the preoperational
stage from 2 to 7 years, (3) the concrete-operational stage from 7 to 12 years, and (4) the
stage of formal operations that characterizes the adolescent and the adult” [482]. Most
related to this work is the first stage, which is further sub-divided into different phases that
start with the refinement of repetitive reflexive movements. In the last phases, children
become capable of pursuing goal-directed actions with trail-and-error learning eventually
being replaced by mental imagery. Continuing from there, the subsequent three stages
describe the development of language and abstract logical reasoning [482]. Interaction
with the environment is essential during the sensorimotor stage, which clearly highlights
the importance of embodiment. It can therefore only be fully modeled and investigated
with a neurorobotics approach. While the staged model of cognitive development is not
the only theory available, it implicitly reflects the fact that the development of the brain
has also found to be organized in different phases and provides a guideline for technical
implementations.

Brain Development and Body Growth

Developmental processes observed in the human brain have already motivated the formu-
lation of Algorithm 1 in Section 5.2, where unused synapses are pruned based on sensory
input correlations after an initialization phase. As already mentioned in the last chapter,
neuroscientific evidence for synaptic pruning was published by Huttenlocher [455], who
found that the synaptic density in newborns increases during the first two years of live
and is up to 50 % higher than in adults. The existence of a time window with increased
synaptic density means that postnatal brain development is temporally structured. During
critical periods “brain circuits that subserve a given function are particularly receptive
to acquiring certain kinds of information or even need that instructive signal for their
continued normal development” [483]. Anatomical changes in the brain resulting from
them are more substantial and lasting than at other points in the life of an individual.
In a review, Hensch [483] summarizes evidence for critical periods for all main sensory
modalities and identifies important characteristics. In line with the theory of embodiment,
a key factor is sensory experience that is gained during interaction with the environment.
Importantly, it is not only required to drive development within a critical period but
also drives the progression of periods. At the same time, the different pathways and
information processing hierarchies in the brain also impose an order on the timing and
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Figure 6.1: Stages in the development of the primary visual cortex of the mouse. During the critical period,
the response properties of neurons become aligned between both eyes [484]. Adapted from [484] with
permission from Elsevier.

duration of the critical periods in different brain regions. Figure 6.1 depicts a critical period
in the postnatal development of the mouse brain. After the formation of the retinotopic
map, the neurons of both eyes begin develop their receptive fields and become selective
for different orientations. During a critical period, the response properties become aligned
between the two eyes [484].

The development of the body proceeds in parallel to that of the brain. Its growth
is not only of quantitative but also of qualitative nature. For example, visual acuity
drastically increases during the first six months after birth [482]. Visual sensory input
thereby undergoes considerable changes. Similarly, the growth of the body and its muscles
necessitates adaptation of motor control until adulthood. Starting from the fetal phase
and lasting until several months after birth, infants start to perform general movements
that arise from the exploration of the individual joints [485]. From a robotics perspective,
this seems similar to motor babbling where sensory input is generated by random joint
movements.

Developmental Robotics
The study of developmental processes in living creatures not only sheds light on devel-
opment itself but also the cognitive skills it gives rise to. Designing and implementing
components of cognitive systems by mimicking developmental progression rather than
trying to reproduce their final functions can therefore yield biological insight and at the
same time potentially produce better results. As pointed out by Cangelosi and Schlesinger
[486], already Turing [487] noted:

“Instead of trying to produce a programme to simulate the adult mind, why not
rather try to produce one which simulates the child’s ? If this were then subjected to
an appropriate course of education one would obtain the adult brain. [...] We have
thus divided our problem into two parts. The child-programme and the education
process.”
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The modeling and simulation of biological development are at the core of developmental
robotics, a branch of robotics that is closely related to neurorobotics and the theory of
embodiment. Applying its methods and principles to neurorobotics makes it possible to
study closed-loop systems in full biological detail by adding the dimension of time as an
experimental parameter. Importantly, the systematic study of many developmental effects
such as body growth is only possible in virtual neurorobotics experiments that are not
limited by the constraints of physical robots.

Themultitude of factors governing development as well as the diversity of theories that
have been put forward are reflected by a broad range of different directions of research
in developmental robotics. Related work was already partly discussed in Section 3.2
in the context of embodiment, highlighting the close connection between these areas.
Lungarella et al. [488] and Asada et al. [261] provide extensive reviews and highlight
relevant findings from biology and cognitive science. As outlined in Figure 6.2, research
in developmental robotics has in particular been influenced by the phases of Piaget [481].
The focus of this work is on early stage individual development starting from the phase
of sensorimotor mapping that was addressed in Section 5.3. An important factor of
developmental progression in this stage are constraints imposed by the body. For example,
the visual system of infants is not fully developed at birth [489]. However, the decreased
sensory resolution may actually be beneficial during early development since it limits the
amount information that needs to be processed [488, 490]. Findings from both biology and
robotics on visual development furthermore suggest that correlated sensory input acquired
in a closed PCA loop from the environment is equally important [258, 491]. According to a
theory originally put forward by Bernstein [492], motor control is also affected by a form
of self-induced developmental progression. He postulated that to reduce task complexity
during the learning of new skills, joints far away from the body are initially freezed and
the dimensionality of the control problem is thereby decreased. As learning progresses,

Figure 6.2: Phases of functional development identified by Asada et al. [261] for research in cognitive
developmental robotics. The early phases correspond closely to Piaget’s sensorimotor stage.
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they are gradually freed again [488]. While experimental evidence is mixed and depends
on many factors including the type of skill, there are nevertheless results that support the
existence of a freezing mechanism [493]. There is also evidence, however, that the number
of DoFs can decrease rather than increase over time [488]. But even though the biological
significance and implementation of the freezing and freeing of DoFs are not yet fully
elucidated, the principle has already been successfully applied in robotics. In a systematic
study on robotic developmental progression, for example, Gómez et al. [494] implemented
a training procedure that gradually increased the resolution of a robot’s sensory inputs,
subsequently freed individual robot joints, and incrementally augmented a neural network-
based controller. Learning a foveation task with this method was faster compared to a
system where all modalities were initialized with full complexity. Ivanchenko and Jacobs
[495] showed improved performance in a simple trajectory following task when two of
three joints were initially frozen and feedback gains decreased during the training process.

Training Protocols
The findings from biology, neuroscience and robotics clearly highlight the importance of
development. It is not only a natural extension of the concept of embodiment but also
provides biologically grounded tools for guiding learning processes and managing task
complexity. Now, we will formalize this idea with two key concepts that are derived from
the principles of developmental progression as discussed in the last two subsections:

• Schedules: Development in the brain is shaped by critical periods that follow care-
fully adjusted schedules. Different brain regions undergo their critical period at
different points in time. The order also depends on the hierarchical relationships
between regions.

• Stages: Development occurs in stages (e.g. walking is preceded by crawling). In
particular, learning starts from simple tasks as indicated in Figure 6.2 and proceeds
to complex ones. While learning motor tasks, individual joints may be frozen to
reduce task complexity.

While schedules are defined intrinsically in terms of brain development, stages are defined
extrinsically in terms of task complexity. Both concepts can be directly mapped to
corresponding building blocks of the MHNN architecture from Chapter 5. The modality-
specific component networks are trained to transform input data into a latent space
representation before hub networks are trained on concrete tasks based on their output.
This order of training defines a schedule. The learning processes in the hub networks
can be further sub-divided into subsequent stages with increasing complexity. Both
schedules and stages define sequences of steps for the training of MHNNs that control
an embodied system. In this work, we will refer to these sequences as training protocols.
Figure 6.3 depicts an example of a training protocol for target reaching, based on visual
and proprioceptive input. The construction of the network is based on a schedule with
four steps. At the beginning, two component networks for proprioception and vision
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Figure 6.3: Schematic illustration of a training protocol. The protocol is comprised of a schedule with four
steps, the last of which encompasses three stages. In steps 1 – 3, two component networks for proprioception
and vision are first trained individually before lateral connections are added from the former to the latter.
The hub network added in step 4 is trained over three stages to move a robot’s tool center point to a desired
workspace position. As indicated by the green spheres, the required positioning accuracy increases from
stage to stage.
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are trained independently of each other. Alternatively, both networks could also be
trained jointly with Algorithm 5 and then be added in a single step. In step 3, lateral
connections are computed according to Algorithm 1. The hub network that implements
the actual reaching task is instantiated in the last step of the protocol and trained in three
stages. As indicated by the decreasing radius of the green spheres, the required positioning
accuracy increases with every stage, which means that the complexity of the task gradually
increases, too. Depending on the type of the embodied system, its input modalities and
the tasks to be learned, the resulting training protocol will be different. However, the
general strategy of training component networks and hub networks independently of each
other and possibly over several stages remains identical. Next, we will take advantage
of training protocols to implement two neurorobotics experiments that highlight how
hub networks can fuse multimodal input from component networks, and how training in
stages can modulate the learning process, respectively.

6.2 Neuromorphic Data Fusion
The focus in Chapter 5 was on the definition of the architecture schema for MHNNs
and on the design of a novel training procedure for latent space representations that
are synchronized across component networks. Such representations lend themselves
extremely well to data fusion tasks because there is no further alignment of input signals
required. As outlined earlier, there is also a huge body of biological evidence for the
existence of aligned sensory maps in the superior colliculus, which is an important center
of multisensory integration [496]. Neurons in this region have been found to respond
particularly well to stimuli that originate from the same location and occur at the same
time. In addition to these two principles, which are commonly referred to as the “spatial
rule” and the “temporal rule”, there is also an “inverse effectiveness rule” which establishes
an inversely proportional relationship between a neuron’s unimodal and multimodal
responses [497]. In this section, we will focus on the first two rules and demonstrate
how probabilistic population codes (PPCs) enable multisensory integration with aligned
topographic maps. PPCs were originally proposed by Ma et al. [498] and are based on
spiking neuron models. We will instantiate the model for a prototypical localization
task as an experiment in the NRP. The results reported in this section have been partly
published in [499].

Multisensory Integration with Maximum Likelihood Estimation
One of the primary motivations for data fusion, which is commonly referred to as multi-
sensory integration in the context of brain research, is to reduce the uncertainty of a state
estimate by combining multiple complementary measurements. It is therefore an essential
concept for modeling and understanding how the brain integrates data from different
sensory modalities such as vision, hearing, proprioception and touch into a unified and
coherent perception of the environment. Findings from psychophysical experiments
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indicate that the brain integrates sensory information based on maximum likelihood
estimation (MLE) [500]. In the following, we will derive an integrated estimate for a
stimulus (e.g. the location of an object) from individual estimates provided by two different
modalities (e.g. vision and sound). Let 𝑠, 𝑠1 and 𝑠2 denote a stimulus and its estimates that
are derived from two input modalities. Further assume that both 𝑠1 and 𝑠2 are subject to
independent Gaussian noise [501]:

𝑠1 = 𝑠 + 𝜖1 with 𝜖1 ∼ 𝒩 (0, 𝜎21 ) ⇒ 𝑠1 ∼ 𝒩 (𝑠, 𝜎21 ) (6.1)

𝑠2 = 𝑠 + 𝜖2 with 𝜖2 ∼ 𝒩 (0, 𝜎22 ) ⇒ 𝑠2 ∼ 𝒩 (𝑠, 𝜎22 ) (6.2)

The two equations above directly yield the probability for a specific pair of observations
from both modalities 𝑠1 and 𝑠2:

𝑝(𝑠1, 𝑠2 ∣ 𝑠) = 𝑝(𝑠1 ∣ 𝑠) ⋅ 𝑝(𝑠2 ∣ 𝑠)

= 1

√2𝜋𝜎
2
1

exp (−
(𝑠1 − 𝑠)2

2𝜎21
) ⋅ 1

√2𝜋𝜎
2
2

exp (−
(𝑠2 − 𝑠)2

2𝜎22
) (6.3)

The MLE for 𝑠 is determined by computing a stimulus value for 𝑠 that maximizes the
probability 𝑝(𝑠1, 𝑠2 ∣ 𝑠). Computing the log-likelihood of 𝑝(𝑠1, 𝑠2 ∣ 𝑠) and taking the
derivative with respect to 𝑠 yields:

log 𝑝(𝑠1, 𝑠2 ∣ 𝑠) = −1
2
log 2𝜋𝜎21 −

(𝑠1 − 𝑠)2

2𝜎21
− 1
2
log 2𝜋𝜎22 −

(𝑠2 − 𝑠)2

2𝜎22
(6.4)
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Based on Equation 6.5, the MLE for 𝑠 can now be computed as follows:
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⋅ 𝑠2 (6.6)

As it turns out, the MLE for 𝑠 is simply a weighted sum of the two estimates 𝑠1 and 𝑠2.
Importantly, the variance 𝜎2 of 𝑠 is always lower than the variances 𝜎21 and 𝜎22 of the
individual estimates:
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=
𝜎21 𝜎22

𝜎21 + 𝜎22
≤ 𝜎2𝑖 for 𝑖 ∈ {1, 2}

(6.7)

It is interesting to note that the derivedMLE is actually identical to a maximum a posteriori
estimation if the probability distribution 𝑝(𝑠) of the stimulus is uniform.
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Probabilistic Population Codes
The fact that the brain integrates sensory information by likelihood maximization raises
the question how Equations 6.6 and 6.7 can be implemented by neural circuits. As it turns
out, even a single multi-compartmental neuron can perform the required computations by
representing individual estimates in its dendrites [502]. However, this requires adjusting
the neuron’s morphology and its dynamic properties specifically for the data fusion
task. We will therefore instead consider an alternative model by Ma et al. [498] called
probabilistic population codes (PPCs) that can be implemented with simple LIF point
neurons. It encodes the MLE in the structure of the network rather than in the morphology
and dynamics of individual neurons, which makes it compatible to a broad range of
neuromorphic processors. The following description of the PPC model is based on the
original publication by Ma et al. [498].

Stimulus Encoding and Reconstruction At the core of PPCs is the representation
of estimates about a stimulus with population activity codes as illustrated in Figure 2.3.
Figure 6.4 depicts an example of a population code with six neurons. For an input stimulus
𝑠, the mean firing rates 𝑟(𝑠, 𝑠∗𝑛 ) of the individual neurons in the population are determined
by identically shaped Gaussian tuning curves:

𝑟(𝑠, 𝑠∗𝑛 ) =
1

√2𝜋𝜎2𝑟
exp (−

(𝑠 − 𝑠∗𝑛 )2

2𝜎2𝑟
) (6.8)

𝑠∗𝑛 denotes the preferred stimulus of neuron 𝑛 and 𝜎𝑟 the tuning curve width. In the
example from the figure, the firing rates resulting from the stimulus value indicated by
the black triangle are plotted at the preferred stimulus location of each neuron. For a
modality 𝑚 that is represented by 𝑁 neurons with actual firing rates 𝑟𝑛𝑚, we will in the
following denote the population code as 𝑟𝑚 = (𝑟1𝑚, … , 𝑟𝑁𝑚 ). We will further assume that all
neurons within a population fire independently of each other with Poisson-distributed
rates [498]:

𝑝(𝑟𝑚 ∣ 𝑠) =
𝑁
∏
𝑛=1

𝑝(𝑟𝑛𝑚 ∣ 𝑠) =
𝑁
∏
𝑛=1

𝑟(𝑠, 𝑠∗𝑛 )𝑟
𝑛
𝑚 ⋅ 𝑒−𝑟(𝑠,𝑠

∗
𝑛 )

𝑟𝑛𝑚!
(6.9)

By applying Bayes’ theorem, the probability of the stimulus 𝑝(𝑠 ∣ 𝑟𝑚) can be reconstructed
from the population code 𝑟𝑚:

𝑝(𝑠 ∣ 𝑟𝑚) =
𝑝(𝑟𝑚 ∣ 𝑠) ⋅ 𝑝(𝑠)

𝑝(𝑟𝑚)
(6.10)

𝑝(𝑟𝑚) can be computed by marginalizing 𝑝(𝑟𝑚 ∣ 𝑠) over 𝑠. In particular, we will assume a
uniform prior for 𝑠. The reconstructed probability density of an estimate for 𝑠 is shown
in Figure 6.5. In the population code on the left side of the figure, the confidence of the
estimate for an input stimulus 𝑠 is encoded by the intensity of the neurons’ activity. More
reliable estimates therefore result in higher firing rates and a higher population gain 𝑔𝑚.
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6 Developmental Embodied Learning

Figure 6.4: Example of neural population coding with tuning curves. Input stimuli lie in the interval
[15, 35] and are represented by a population of six neurons as indicated by the colored dots at the bottom
of the graph. The position of each neuron on the 𝑥-axis corresponds to its preferred stimulus value. All
neurons have identically shaped Gaussian tuning curves that are centered around the preferred stimulus
values. The triangles correspond to the population activity for one concrete stimulus value 𝑠 = 25.

Figure 6.5: Stimulus reconstruction from PPCs. Left : Firing rates of the individual neurons in the population.
The ground truth input stimulus 𝑠 = 25 is indicated by the black triangle. More reliable estimates are
represented by higher firing rates. The confidence is therefore encoded in the gain 𝑔𝑚 of the population
response. As indicated by the orange line, 𝑔𝑚 corresponds its peak height. Right : Reconstructed probability
density function for 𝑝(𝑠 ∣ 𝑟𝑚). The variance 𝜎 2

𝑚 is inversely proportional to the population gain. The figure
is based on [498].
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6.2 Neuromorphic Data Fusion

Note that changes in the gain only affect the peak height of the population activity but not
its width. As illustrated in the graph on the right, the reconstructed stimulus is normally
distributed with a variance 𝜎2𝑚 that is inversely proportional to the population gain 𝑔𝑚:

𝑔𝑚 ∝ 1
𝜎2𝑚

⇔ 𝑔𝑚 = 𝜌 1
𝜎2𝑚

for 𝜌 ∈ ℝ (6.11)

In summary, higher confidence as expressed by increased firing rates corresponds to lower
variance and standard deviation of the stimulus estimate [498, Supplementary Materials].
Further examples of stimulus reconstructions for different population gains are shown in
Figure 6.8.

Multisensory Integration The main advantage of the population coding scheme
introduced in the last paragraph is that it gives way to an extremely simple method of
computing the MLE from two stimulus estimates as described in Equations 6.6 and 6.7.
Let 𝑟𝑚1 and 𝑟𝑚2 be the population codes for the estimates of a uniformly distributed
stimulus 𝑠 captured by modalities 𝑚1 and 𝑚2. Further assume that both populations have
the same size and have identical tuning curves. If these conditions hold, the multisensory
population code 𝑟𝑚𝑠 that corresponds to the MLE can be simply computed as the sum of
the two unimodal codes 𝑟𝑚1 and 𝑟𝑚2 [498]:

𝑟𝑚𝑠 = 𝑟𝑚1 + 𝑟𝑚2 (6.12)

This is because 𝑟𝑚𝑠 is also Poisson-distributed with gain 𝑔𝑚𝑠 = 𝑔𝑚1+𝑔𝑚2 . With the variance
of the decoded stimulus distribution being inversely proportional to the gain, one can
further conclude for 𝜎2𝑚𝑠:

𝑔𝑚𝑠 = 𝑔𝑚1 + 𝑔𝑚2 = 𝜌 ( 1
𝜎2𝑚1

+ 1
𝜎2𝑚2

) != 𝜌 1
𝜎2𝑚𝑠

⇒ 𝜎2𝑚𝑠 =
1

1
𝜎2𝑚1

+ 1
𝜎2𝑚2

(6.13)

The resulting value for 𝜎2𝑚𝑠 corresponds exactly to to that of the MLE in Equation 6.7. Note
that the proportionality coefficient 𝜌 is identical for 𝑔𝑚1 and 𝑔𝑚2 because the populations
share identical tuning curves. For the same reason, the stimulus means encoded by 𝑟𝑚1 ,
𝑟𝑚2 and consequently also by 𝑟𝑚𝑠 are also identical when neglecting the reconstruction
error caused by the stochasticity of the population activity. Equation 6.6 for the mean of
the integrated MLE is therefore trivially fulfilled, too. It can be shown that this method
can be extended to more general settings. In particular, tuning curves do not need be
identical for all input populations when the integrated estimate is not simply the sum but
a linear combination of the population activities [498].
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A Neurorobotics Experiment for Multisensory Integration
The PPC model for multisensory integration can be directly evaluated in a neurorobotics
experiment in the NRP. Figure 6.6 shows a screenshot of the realized setup. It contains
two robots that are placed inside the virtual laboratory. An iCub humanoid robot [503]
is standing in the center of the free space with the head directed towards the other end
of room, where a Clearpath Husky [504] mobile robot is driving back and forth along a
straight line. The iCub acts as a passive observer of the Husky robot’s current position. A
view from one of its head cameras is shown in the right half of the simulation view. In
the experiment, the Husky is assumed to be localized by both vision and sound.

Network Architecture The architecture of the network that fuses both estimates is
depicted in Figure 6.7. Since the focus of this experiment is to evaluate the PPC model in
a neurorobotics context, the activity of the two input populations is computed directly
from the simulated ground truth position of the Husky robot. However, adding models
for localization by vision and sound is in principle possible and does not require any
modifications of the experimental setup or the network model. For example, the location
stimulus can be provided by component networks that have been trained with topographic
loss. The robot’s position along the path is mapped to the interval [0, 50], which is covered
by 51 neurons in each of the three populations. As outlined in the figure, the neurons of
the populations for vision and hearing are Poisson spike generators whose rates are set
based on the tuning curve output and a user-defined gain factor. Both of them project to a
third population with LIF neurons. Only units with identical preferred stimulus values are
connected. The network was simulated with NEST [505] both inside and outside of the
NRP experiment. Parameters were adjusted to ensure that the response of the population
encoding the multisensory integration estimate corresponds to the sum of the input rates
received from the two unimodal populations. All model parameters are documented in
Appendix A.2.

Results Figure 6.8 summarizes the simulation results for a fixed input stimulus 𝑠 = 25.
The gain of the sound estimate was set to half the value of that for the vision estimate
to reflect the higher accuracy of localizing the Husky robot visually along its trajectory.
As one can clearly see, both gains add up in the response of the population encoding of
the integrated estimate. In the bottom row, the stimulus probability is reconstructed for
every population response. Distribution means and standard deviations were determined
by fitting Gaussians to the resulting density functions. The retrieved values for 𝜎𝑉, 𝜎𝑆 and
𝜎𝑀 are consistent with Equation 6.7. Due to the stochasticity of the encoding scheme,
the computed means are slightly different from the original stimulus. However, the error
of the vision estimate is significantly reduced after fusion with the sound estimate. This
clearly highlights the relevance of mechanisms for robust multisensory integration in
brain-derived systems.

The network was also evaluated directly in the NRP experiment, where the current
ground truth stimulus was fed into the network in every time step of the simulation.

172



6.2 Neuromorphic Data Fusion

Figure 6.6: Simulation of the PPC model in the NRP. The experiment is comprised of an iCub robot [503]
that “observes” a mobile Clearpath Husky robot [504] as it drives on a straight line back and forth through
the room. The insets on the right side depict the camera view and the population codes for the multisensory
position estimate (orange), the visual position estimate (blue) and the auditory estimate (green). Top: As
long as the Husky robot is visible, the gain of the visual position estimate is higher than that of the auditory
one. Bottom: When the robot drives behind one of the two benches, the visual gain decreases.

173



6 Developmental Embodied Learning

Figure 6.7: Neural network architecture for a virtual neurorobotics experiment on audio-visual localization
with PPCs. The populations for vision and sound have identical tuning curves. All three populations
contain 51 neurons each. The actual object location is directly retrieved from the NRP experiment. Adapted
from [499].

Figure 6.8: Simulation results for population codes and reconstructed stimulus estimates for vision, sound
and multisensory integration. The ground truth input stimulus 𝑠 = 25 provided to the network model from
Figure 6.7 is indicated by the dashed line. Spike rates are averaged over 100 s to reduce the influence of
stochastic fluctuations on the population activity and the stimulus reconstructions. Means and standard
deviations were determined by fitting a Gaussian to the reconstructed probability density.
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Additionally, as shown at the bottom of Figure 6.6, the gain of the vision stimulus decreased
as soon as the Husky robot was occluded by one of the two benches. A special challenge
of implementing the PPC model in neurorobotics is to retrieve a reliable readout of the
population code within a simulation time step. In Figure 6.8, neuron firing rates were
averaged over a duration of 100 s to reduce stochastic fluctuations. This is not possible in
a neurorobotics experiment where the input constantly changes and the current estimate
needs to be available at any point time with low latency. To address this issue, the
simulation time step was increased to 50ms and every position was represented by 100
neurons instead of only a single one. The latter modification makes it possible to get
reliable estimates even within a relatively short time span. An alternative approach that
requires fewer neurons but introduces additional latency beyond the simulation time step
is to compute moving average of the population activities.

6.3 Staged Reinforcement Learning
PPCs fit well with the concept of training protocols because every sensory modality is
represented by an own population of neurons. The population activities can be computed
from raw sensory input data by component networks that have been trained individually
based on a schedule. What is still missing yet is a method for training hub networks
in stages during a schedule step, as shown in Figure 6.3. In this section, we develop a
framework for implementing staged training in the NRP. In the first part, we introduce a
formal definition of training stages and present a prototypical neurorobotics experiment
to which it can be applied. It is based on a reaching task that requires learning the inverse
kinematics of a robot arm with seven DoFs and supports increasing the task complexity
over time. In the second part of this section, we use our novel framework to extend the
Deep Deterministic Policy Gradient (DDPG) reinforcement learning algorithm with support
for staged training. The resulting staged DDPG algorithm is then evaluated against its
baseline version in the NRP on the described reaching task. The models and algorithms
developed in this section are implemented based on an extended version of the training
environment presented in [506].

Implementation of Training Protocols in the NRP
Developmental progression over several stages within a training protocol step can be
modeled along three different but interdependent dimensions: the body, the brain and the
environment. As the body becomesmore capable (e.g. freeing of joints), the brain can learn
more complex behaviors (e.g. coordinated movements) that in turn make it possible to
solve more complex tasks in the environment (e.g. target reaching). Virtual neurorobotics
is a key technology for the systematic investigation of these effects, because it allows
the modeling of developmental processes without the constraints imposed by real-world
robotics experiments. In particular, this makes it possible to investigate phenomena that
cannot be replicated with physical robots, such as body growth. Studies on developmental

175



6 Developmental Embodied Learning

processes form a new class of neurorobotics experiments that is not based on a static
description of the robot and its environment but instead on specification of how they
evolve over time. In the following, we define both an experiment for the NRP with support
for developmental progression and a control interface for modeling its subsequent stages.

Experiment Setup Figure 6.9 depicts an overview of the complete NRP experiment.
It is based on a simplified version of the KUKA LBR iiwa robot model from Section 4.1
that is placed in the virtual laboratory. There is no tool attached and only joint space
control is available. The goal of the experiment is to control the robot to reach a randomly
sampled target position with the outermost link’s tip. In Section 4.1, the target is marked
by the center of the green sphere and the required positioning accuracy is indicated by
the sphere’s radius. In order for the robot to reach the target, it is effectively required to
learn a controller that computes its inverse kinematics, which is the main purpose of the
experiment. All observations from the environment, including the target position, are
directly provided as numerical values. The setup can be easily extended for learning from
visual input by adding cameras.

A key feature of the experimental setup is that it supports variation along two main
dimensions. First, the task can be changed by randomizing the position of the spherewithin
the robot’s workspace. A visualization of the sampling space is depicted in Figure 6.10.
At the same time, the positioning accuracy for a reaching movement to be considered

Figure 6.9: NRP experiment for staged reinforcement learning with training protocols. The setup is based
on the KUKA LBR iiwa robot model introduced in Section 4.1, but only contains a joint space controller.
The green sphere can be generated dynamically and marks a target position in the workspace. To reach this
position with the tip of the last joint, the robot needs to learn an inverse kinematics model.
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successful can be freely adjusted as indicated by the different sphere sizes in the example
from Figure 6.11. This makes it possible to gradually increase the complexity of the task
by decreasing the target sphere volume over subsequent training stages. The second main
dimension of variation lies in the robot’s kinematic configuration. Its seven DoFs not
only make control complex despite the simplicity of the task, but are also redundant and
thereby enable the investigation of the effect of freezing and freeing individual joints
according to the theory of Bernstein [492].

Definition of Training Stages In the scope of this work, we will investigate devel-
opmental progression along the two lines of variation implemented by the experimental
setup described above. This requires a specification of how the set of active robot joints
and the required positioning accuracy evolve throughout the learning process. In its most
general form, the progression of parameters can be modeled as follows:

Stage(𝑑) = (F𝑑, 𝑜𝑑,H𝑑) ∈ ℝ7×7 × ℝ7 × R𝑀×𝑁 (6.14)

The function Stage(⋅) maps every development stage 𝑑 to a linear transformation from
joint control commands 𝑐𝐽 ∈ ℝ7 to a constrained control space:

𝑐𝐽 ↦ F𝑑 𝑐𝐽 + 𝑜𝑑 (6.15)

Additional hyperparameters for the training in the current stage, such as the required
positioning accuracy, can be provided in the optional matrix H𝑑. The encoding of joint
constraints in a linear mapping enables not only the freezing and freeing of joints but also
makes it possible to induce fixed correlations between their movements. This is in line
with experimental studies, where motion data from individual joints is often analyzed in
terms of its cross-correlations [493]. In a sense, a frozen joint is not necessarily fixed to a
constant angle but rather tightly correlated to the motions of other joints. From a robotics
point of view, Equation 6.15 can be interpreted as the definition of an underactuated
system for an appropriate choice of the constraint matrix F𝑑. When Stage(⋅) is modeled
with a function approximator such as a neural network, it can, for example, be trained in
an outer optimization loop to automatically determine appropriate training protocols for
different types of tasks. This can be interpreted as a form of meta-learning [507].

Staged DDPG Algorithm
Both the neurorobotics experiment from Figure 6.9 and the definition of developmental
stages from Equation 6.14 are completely agnostic of the actual training procedure. The
proposed developmental model is therefore not a new learning algorithm but a method
for guiding and shaping the training process. Candidate solutions for the reaching task
in the experiment can be easily evaluated by checking if the robot’s tip is located in the
target sphere. However, without any prior knowledge, it is not obvious how to produce
good candidate solutions in the first place. Following the schema from Figure 5.10, this
problem setup lends itself well to a reinforcement learning approach. In particular, we
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Figure 6.10: Visualization of the sampling space for target points. Samples are drawn from a hemisphere
that is centered around the robot arm. Unreachable positions close the robot’s base are left out. The depicted
samples are part of a data set that is used for evaluating the robot’s performance.

Figure 6.11: Increasing accuracy requirements in the target reaching experiment from Figure 6.9 over
subsequent training stages. The three spheres are centered at the same target position. Increased positioning
accuracy requirements are indicated by decreasing sphere volumes.
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will investigate how the DDPG algorithm for deep reinforcement learning algorithm can
be extended to support the stages of training protocols. The application of reinforcement
learning to solve a task is also fully in line with MHNNs, where the hubs perform task-
based sensor fusion. As the reward signal in reinforcement learning is directly related to
task performance, the hubs automatically learn to integrate and fuse their component
network input to accomplish the assigned task.

Related Work The concept of training protocol stages developed in this section is
similar to what is called curriculum learning in traditional machine learning [508]. Similar
to stages, a curriculum imposes a temporal order on the training process by setting
constraints on the data processed that evolve as learning progresses. In a general non-
embodied setting, however, the definition of a curriculum is less obvious than for a
concrete physical task. Possible choices include an increase of the amount of noise in
the data or the growth of the vocabulary in a language processing task with the goal of
faster training and better performing models [508]. Defining curricula is much easier in
reinforcement learning applications, where the task to be solved often can be naturally
made easier by simplifying the goal or by introducing subtasks such as proposed in a study
by Riedmiller et al. [509]. In competitive multi-agent settings, curricula can also emerge
automatically as opposing agents create increasingly complex tasks for their opponents.
Such autocurricula have, for example, been investigated by Baker et al. [510], who reported
that the trained agents automatically learned to use tools during an emergent sequence of
phases. Closely related to the method developed in this section is the pioneering work by
Lungarella and Berthouze [511, 512]. They investigated the gradual freeing of DoFs in
a humanoid robot, where the knee and hip joints were controlled by neural oscillators.
The system was freely suspended with the goal of producing swinging motions through
leg movements. Freeing the knee joints after the stabilization of the hip joints resulted in
robust convergence to stable motor patterns, which was not the case when both joints
were unlocked from the beginning on. When the experimental setup was later extended to
include non-linear perturbations from the environment, freeing the second joint neither
produced consistent results nor led to improved performance. However, it was observed
that alternating freeing and freezing of the joint could re-stabilize the system [511, 513]. In
an experiment on developmental learning of robot grasping by Savastano and Nolfi [514],
an incremental training process was defined in terms of basic reflexes and constraints
in the neural system. The achieved performance was superior to a non-developmental
baseline and the system turned out to freeze the outer joints of the robot arm at the
beginning before they were freed in later phases. Stulp and Oudeyer [515] applied a direct
reinforcement learning algorithm to learn a reaching task. Based on their findings on
the amount of exploratory movements of each joint, they concluded that the algorithm
automatically freezed outer degrees of freedom at the beginning of the learning process.
However, it should be noted reaching motions were only trained for two fixed goals. A
formal framework for developmental learning was proposed by Lee et al. [516]. It is
called “Lift-Constraint, Act, Saturate” and describes the subsequent lifting of constraints
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as experiences gathered by acting under the current constraint set saturate. Differently
from the method developed in this work, the framework is not defined formally but rather
outlines a general strategy for developmental learning. Moreover, to our knowledge, we
also for the first time combine developmental learning based on the freezing and freeing
of joints with deep reinforcement learning.

Reinforcement Learning As a preparation for the development of the staged DDPG
algorithm, this paragraph briefly introduces the theoretical foundations of reinforcement
learning based on the work by Sutton and Barto [517]. At the core of all reinforcement
learning problems is the modeling of the environment with Markov decision processes
(MDPs) as illustrated in Figure 6.12. As one can easily see, the overall structure is very
similar to that of an embodied system which is coupled to its environment through a
closed PCA loop. The agent, however, does not need to be embodied and the interaction
with the environment is abstracted as a sequence of states 𝑠𝑡 ∈ 𝑆, actions 𝑎𝑡 ∈ 𝐴 and
rewards 𝑟𝑡 ∈ 𝑅 ⊂ ℝ. In this introduction, we will only consider finite discrete-time MDPs
with 𝑡 ∈ ℕ and a finite number of states and actions. As rewards are deterministic and
depend on both actions and states, 𝑅 is finite, too. The environment dynamics are modeled
by a state transition probability function 𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) [517, p. 48]:

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) = 𝑝(𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) for 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 and 𝑟 ∈ 𝑅 (6.16)

Figure 6.12: Schematic illustration of the PCA-loop in an MDP for reinforcement learning. The individual
components of the system can be directly mapped to those from Figure 3.2. In particular, the cognitive
model M is instantiated by a policy 𝜋 that is executed by a reinforcement learning agent. The perception is
comprised of a state description 𝑠𝑡 of the environment and a reward 𝑟𝑡 for the last action 𝑎𝑡−1. The figure is
based on a schema by Sutton and Barto [517, p. 48].
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While the set of possible actions in a time step 𝑡 may depend on the state 𝑠𝑡, we will
assume that all actions are eligible in every state. This makes sense in a robot control task
where any command can be issued to the robot independently of the robot’s configuration.
Commands that cannot be executed (e.g. due to joint limits) are not excluded from the
action set but simply result in the same state. In summary, an MDP can be specified as a
tuple (𝑆, 𝐴, 𝑅, 𝑝) of states, actions, rewards and a state transition probability function.

The interactions of the agent with its environment result in a sequence of states,
actions and rewards. At time step 𝑡, the future reward for a specific trajectory in the state
space is defined as the return 𝑔𝑡 [517, p. 55]:

𝑔𝑡 =
∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+𝑘+1 = 𝑟𝑡+1 + 𝛾𝑔𝑡+1 (6.17)

In the equation above, 𝛾 is a discount rate that determines the weight given to future
rewards. The actual value of 𝑔𝑡 not only depends on the states and rewards of the
environment but in particular also on the policy 𝜋 that an agent employs to select its next
action 𝑎 in state 𝑠:

𝜋(𝑎 ∣ 𝑠) = 𝑝(𝑎𝑡 = 𝑎 ∣ 𝑠𝑡 = 𝑠) (6.18)

The expected return resulting from following policy 𝜋 in state 𝑠 ∈ 𝑆 and time step 𝑡 is
formalized as the state value function 𝑣𝜋(𝑠) [517, p. 58]:

𝑣𝜋(𝑠) = 𝔼𝜋 [𝑔𝑡 ∣ 𝑠𝑡 = 𝑠] = E𝜋 [
∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+𝑘+1 | 𝑠𝑡 = 𝑠] (6.19)

Analogously, the action value function 𝑞𝜋(𝑠, 𝑎) computes the expected return resulting
from following policy 𝜋 after taking action 𝑎 ∈ 𝐴 at state 𝑠 ∈ 𝑆 in time step 𝑡 [517, p. 58]:

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋 [𝑔𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = E𝜋 [
∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+𝑘+1 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (6.20)

Both the state value function and the action value function can be computed recursively
as defined by the Bellman equations [517, p. 59]:

𝑣𝜋(𝑠) = ∑
𝑎∈𝐴

𝜋(𝑎 ∣ 𝑠) ∑
𝑠′∈𝑆, 𝑟∈𝑅

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) (𝑟 + 𝛾𝑣𝜋(𝑠′)) (6.21)

𝑞𝜋(𝑠, 𝑎) = ∑
𝑠′∈𝑆, 𝑟∈𝑅

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) (𝑟 + 𝛾 ∑
𝑎′∈𝐴

𝜋(𝑎′ ∣ 𝑠′) 𝑞𝜋(𝑠′, 𝑎′)) (6.22)

The main goal of reinforcement learning is to determine an optimal policy 𝜋∗ that yields
the maximum attainable expected return [517, pp. 62 – 63]:

𝑣∗(𝑠) = max
𝜋

𝑣𝜋(𝑠) (6.23)

𝑞∗(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎) (6.24)
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𝑣∗ and 𝑞∗ are the optimal state and action value functions of the MDP. Based on 𝑞∗(𝑠, 𝑎), a
candidate solution for 𝜋∗ can be directly derived by taking only those actions that maximize
𝑞∗(𝑠, 𝑎) in every state 𝑠 and every time step 𝑡. The challenge of reinforcement learning
problems lies in the fact that both the model parameters of the MDP and the optimal value
function 𝑞∗(𝑠, 𝑎) are typically unknown. They therefore need to be approximated based
on experiences (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1) gained from interaction with the environment. In the
Q-learning algorithm, this is achieved by applying the following update rule to compute
estimates for 𝑞(𝑠𝑡, 𝑎𝑡) with update step size 𝛼 [517, p. 131]:

𝑞(𝑠𝑡, 𝑎𝑡) ← 𝑞(𝑠𝑡, 𝑎𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾max
𝑎∈𝐴

𝑞(𝑠𝑡+1, 𝑎) − 𝑞(𝑠𝑡, 𝑎𝑡)) (6.25)

The update rule is completely independent from the policy that generates the experiences
(𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1), which is why Q-learning is called an off-policy algorithm. It has been
shown to converge to the optimal action value function as long as the policy provides
sufficient coverage of the state space [517, p. 131]. Therefore, it is important that the agent
not only exploits the knowledge it has already gained, but also explores the environment
at the cost of possibly less immediate reward.

DDPG Algorithm The optimal value function 𝑞∗(𝑠, 𝑎) in the formal reinforcement
learning framework introduced so far is only defined for discrete state and action spaces.
Essentially, it corresponds to a table that maps states and actions to their corresponding
optimal action values. Moreover, if the action space 𝐴 is continuous, choosing an action
that maximizes 𝑞∗(𝑠, 𝑎) would entail running a computationally expensive optimization
procedure in every time step and is therefore impractical [471]. Policy gradient meth-
ods offer a solution to this issue by training a parameterized policy 𝜋(𝑎 ∣ 𝑠, 𝜃𝜋) directly
with gradient-based optimization instead of deriving it from 𝑞∗(𝑠, 𝑎). The performance
of the policy 𝜋(𝑎 ∣ 𝑠, 𝜃𝜋) (the actor) can then be assessed by a value function approxi-
mator 𝑞(𝑠, 𝑎 ∣ 𝜃𝑞) (the critic) that is trained in parallel and supports a continuous action
space [517, p. 331]. In the DDPG algorithm by Lillicrap et al. [471], both the actor and
the critic are modeled as DNNs N𝜋 and N𝑞, which makes the method directly applica-
ble to the training of hubs in MHNNs. As the actor is no longer a probabilistic policy
but instead implements a direct mapping from states to actions, it will be denoted as a
function 𝜇(𝑠 ∣ N𝜇).

Both the actor 𝜇(𝑠 ∣ N𝜇) and the critic 𝑞(𝑠, 𝑎 ∣ N𝑞) can be trained with standard gradient-
based optimization algorithms. As 𝜇 is deterministic, experience needs to be collected
off-policy with respect to 𝜇 from a stochastic policy 𝛽 to ensure sufficient exploration,
which yields a discounted state visitation distribution 𝜌𝛽 [518]. Assuming that 𝜇 always
chooses actions that maximize 𝑞(𝑠, 𝑎 ∣ N𝑞), the loss function for the critic can now be
defined as follows [471]:

ℒ𝑞(N𝑞, 𝑦𝑄(⋅ ∣ N𝑞,N𝜇)) =

𝔼𝑠𝑡∼𝜌𝛽, 𝑎𝑡∼𝛽, 𝑟𝑡+1∼𝑝(𝑟 ∣𝑠𝑡,𝑎𝑡) [(𝑞(𝑠𝑡, 𝑎𝑡 ∣ N𝑞) − 𝑦𝑄(𝑟𝑡+1, 𝑠𝑡+1 ∣ N𝑞,N𝜇))
2
] (6.26)
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Its second argument is the function stated below:

𝑦𝑄(𝑟𝑡+1, 𝑠𝑡+1 ∣ N𝑞,N𝜇) = 𝑟𝑡+1 + 𝛾𝑞 (𝑠𝑡+1, 𝜇(𝑠𝑡+1 ∣ N𝜇) ∣ N𝑞) (6.27)

Note that the loss function in Equation 6.26 has the same form as the update term of the
original Q-learning rule in Equation 6.25. Minimizing the loss therefore corresponds to van-
ishing updates in Equation 6.25 and thus convergence to the optimal action value function.
The actor is not trained on a loss but on a performance objective 𝐽𝛽(N𝜇) [471, 518]:

𝐽𝛽(N𝜇) = ∫
𝑆
𝜌𝛽(𝑠𝑡) 𝑞 (𝑠𝑡, 𝜇(𝑠𝑡 ∣ N𝜇) ∣ N𝑞)) 𝑑𝑠𝑡

= 𝔼𝑠𝑡∼𝜌𝛽 [𝑞(𝑠, 𝑎 ∣ N𝑞)|𝑠=𝑠𝑡, 𝑎=𝜇(𝑠𝑡∣N𝜇)]
(6.28)

Based on 𝐽𝛽(N𝜇), the deterministic policy gradient can now be computed as follows [471]:

∇N𝜇𝐽𝛽(N𝜇) ≈ 𝔼𝑠𝑡∼𝜌𝛽 [∇N𝜇𝑞(𝑠, 𝑎 ∣ N𝑞)|𝑠=𝑠𝑡, 𝑎=𝜇(𝑠𝑡∣N𝜇)]

= 𝔼𝑠𝑡∼𝜌𝛽 [∇𝑎𝑞(𝑠, 𝑎 ∣ N𝑞)|𝑠=𝑠𝑡, 𝑎=𝜇(𝑠𝑡∣N𝜇)∇N𝜇𝜇(𝑠 ∣ N𝜇)|𝑠=𝑠𝑡]
(6.29)

Equations 6.26 and 6.29 form the basis of the DDPG algorithm.

Staged DDPG Algorithm We have extended the original version of the DDPG algo-
rithm by Lillicrap et al. [471] with support for training protocol stages in Algorithm 6.
An earlier version of this algorithm was presented in [506]. The developmental pro-
gression defined in the training protocol is reflected by an additional outer loop that
iterates over all stages of the scheduling step. At the beginning of each development
stage 𝑑, the current parameters are retrieved from the stage definition function Stage(⋅)
introduced in Equation 6.14. Within every stage, the default training loop of the DDPG
algorithm is executed for the number of episodes and time steps defined by the stage’s
hyperparameters H𝑑. The target networks Ñ𝑞 and Ñ𝜇 store delayed copies of N𝑞 and N𝑞,
respectively, to stabilize the learning process. In addition, experiences collected during
the interaction with the environment are added to a replay buffer B𝑑. Depending on the
training protocol, it is retained or cleared at the beginning of a new stage. By learning
from batches that are drawn randomly from this buffer, correlations between subsequent
experiences can be resolved, which is essential for stochastic-gradient-based optimization.
As suggested by Fujimoto et al. [519], the action noise required for exploratory behavior
is drawn from a normal distribution instead of an Ornstein-Uhlenbeck process. The most
important difference from the original DDPG algorithm is the selection of the next action
𝑎𝑡 in Line 8. Rather than directly executing the action returned by the policy, the joint
constraints imposed by the current stage are applied according to Equation 6.15. As a
result, Algorithm 6 implements the stages defined by the training protocol.
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Algorithm 6: Staged DDPG Algorithm

Input:
E : An environment defined as a Markov decision process (𝑆, 𝐴, 𝑅, 𝑝)
N𝜇 : Actor network with randomly initialized weights
N𝑞 : Critic network with randomly initialized weights

Parameters:
𝐷 : Number of developmental stages in the training protocol
Stage(⋅) : Training stage function as defined in Equation 6.14
𝑏 : Batch size
𝜏 : Target network update rate
Γ : Optimization parameters

Set up replay buffer and initialize target networks
1 B0 ← ∅; Ñ𝜇 ← N𝜇; Ñ𝑞 ← N𝑞
Iterate over 𝐷 stages of developmental progression

2 foreach 𝑑 ∈ [1…𝐷] do
Retrieve parameters for the current stage 𝑑 and initialize the replay buffer

3 F𝑑, 𝑜𝑑,H𝑑 ← Stage(𝑑)
4 B𝑑 ← InitializeBuffer(H𝑑[retain_replay_buffer],B𝑑−1)
5 foreach 𝑒 ∈ [1…H𝑑[epochs]] do
6 𝑠1 ← Initial state of E with respect to H𝑑
7 foreach 𝑡 ∈ [1…H𝑑[time_steps]] do

Execute an action based on the constrained policy and exploration noise
8 𝑎𝑡 ← F𝑑(𝜇(𝑠𝑡 ∣ N𝜇) + 𝒩 (0,H𝑑[𝜎𝑒𝑥𝑝]2)) + 𝑜𝑑
9 𝑠𝑡+1, 𝑟𝑡+1 ← Execute action 𝑎𝑡 in E(𝑠𝑡,H𝑑[E])

Add the retrieved observation to the replay buffer
10 B𝑑 ← Append(B𝑑, (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1))

Sample a random batch of size 𝑏 from the replay buffer
11 ⟨(𝑠𝑖, 𝑎𝑖, 𝑟𝑖+1, 𝑠𝑖+1)⟩ ← GetSamples(B𝑑, 𝑏)

Update the critic network N𝑞

12 𝑔𝑞 ← ∇N𝑞
ℒ𝑞(N𝑞⟨(𝑠𝑖, 𝑎𝑖, 𝑟𝑖+1, 𝑠𝑖+1)⟩, 𝑦𝑄(⋅ ∣ Ñ𝑞, Ñ𝜇)⟨(𝑠𝑖, 𝑎𝑖, 𝑟𝑖+1, 𝑠𝑖+1)⟩)

13 N𝑞 ← Optimizer(N𝑞, Γ, 𝑔𝑞)

Update the actor network N𝜇
14 𝑔𝜇 ← ∇N𝜇

𝐽𝛽(N𝜇⟨(𝑠𝑖, 𝑎𝑖, 𝑟𝑖+1, 𝑠𝑖+1)⟩)
15 N𝜇 ← Optimizer(N𝜇, Γ, 𝑔𝜇)

Perform soft target network updates
16 Ñ𝜇 ← (1 − 𝜏)Ñ𝜇 + 𝜏 N𝜇
17 Ñ𝑞 ← (1 − 𝜏)Ñ𝑞 + 𝜏 N𝑞
18 end

19 end
20 end
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Experimental Evaluation
Algorithm 6 and the NRP experiment from Figure 6.9 provide all components required for
training a hub network in stages according to a training protocol. In the next paragraph,
we instantiate them with concrete models and parameters. Based on the target reaching
task defined by the experiment, we then investigate two different types of stages. We
first consider a training protocol in which the difficulty of the reaching task is gradually
increased by decreasing the radius of the target as learning progresses. In the second type
of protocol, the target radius remains constant, but the robot’s DoFs are gradually freed.
Finally, in the last paragraph, we provide a summary of our main results.

Reinforcement Learning Setup As usual in reinforcement learning, the training
process is organized in episodes. Every episode is comprised of a number of steps, each
of which corresponds to a single iteration of the PCA loop from Figure 6.12. At the
beginning of an episode, the robot moves to a random start configuration and a random
target position 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 is drawn from the sampling space ℙ𝑡𝑎𝑟𝑔𝑒𝑡 ⊂ ℝ3 depicted in Figure 6.10.
The sampling procedure ensures that the generated configurations and target positions
comply to the constraints imposed by the currently active training stage. An episode ends
after at most 20 steps or when the robot reaches the target with an accuracy defined by
the radius 𝑟𝑡𝑎𝑟𝑔𝑒𝑡. Based on the robot’s joint limits from Equation 5.19, the experiment’s
state space 𝑆 and action space 𝐴 can be defined as follows:

𝑆 ∶ℂ𝐾𝑈𝐾𝐴 × ℙ𝑡𝑎𝑟𝑔𝑒𝑡 (6.30)

𝐴 ∶(−1, 1)7 (6.31)

Analogously, the signatures of the actor and the critic are specified as stated below:

𝜇(𝑠 ∣ N𝜇) ∶ℂ𝐾𝑈𝐾𝐴 × ℙ𝑡𝑎𝑟𝑔𝑒𝑡 → (−1, 1)7 (6.32)

𝑞(𝑠, 𝑎 ∣ N𝑞) ∶ℂ𝐾𝑈𝐾𝐴 × ℙ𝑡𝑎𝑟𝑔𝑒𝑡 × (−1, 1)7 → ℝ (6.33)

The state space 𝑆 not only includes the current configuration of the robot but also the
position of the target. The actions are relative motion commands in the robot’s joint
space. Before they can be executed, they must be mapped from the input action space 𝐴
to the robot’s actual action space ℂ𝐾𝑈𝐾𝐴. To retrieve the robot’s new target configuration,
the resulting motion command is added to its current configuration. In the last step,
invalid target joint angles are clipped with respect to ℂ𝐾𝑈𝐾𝐴. The reward for an action
is computed based on the negative workspace distance between the position 𝑝𝑡𝑜𝑜𝑙 of the
robot’s tool tip center the target position 𝑝𝑡𝑎𝑟𝑔𝑒𝑡. To encourage the actor to reach the
target in as few steps as possible, every step further adds a fixed negative reward of −1.
This is motivated by the fact that oscillatory movements close to the target result in many
additional steps but add only little negative distance-based reward. The complete reward
function is defined as follows:

𝑟(𝑝𝑡𝑜𝑜𝑙) = {
−‖𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑡𝑜𝑜𝑙‖ − 1 if ‖𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑡𝑜𝑜𝑙‖ > 𝑟𝑡𝑎𝑟𝑔𝑒𝑡
15 if ‖𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑡𝑜𝑜𝑙‖ ≤ 𝑟𝑡𝑎𝑟𝑔𝑒𝑡

(6.34)
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Network Architecture and Training The architectures of the actor network N𝜇 and
the critic network N𝑞 are shown in Figure 6.13. Both networks are comprised of two
fully connected hidden layers with ReLU(⋅) activation functions. To ensure that the actor
only generates valid actions 𝑎 ∈ 𝐴, its output units have tanh(⋅) activation functions.
The output unit of the critic has a linear activation function, as the reward function
from Equation 6.34 can yield both positive and negative value function predictions. Both
networks were implemented in TensorFlow [135] and Keras [520] using the reinforcement
learning framework keras-rl [521], which supports OpenAI Gym-compatible environments
and provides an implementation of the DDPG algorithm. The extension of the framework
required for training protocols as well as an OpenAI Gym interface for the NRP were
presented in [506]. The interface also contains a forward kinematics model of the robot
for training without the NRP. This enables considerably faster training compared to
the full-featured NRP experiment, which also simulates the robot’s dynamics and the
complete environment. The forward kinematics are computed with the tool ikpy [522]
based on the robot’s original URDF model that is also used in the NRP experiment. As the
experimental setup considered in this section only requires the simulation of the robot’s

Figure 6.13: Architectures of the actor network N𝜇 and the critic network N𝑞. Both networks are comprised
of two fully connected hidden layers with ReLU(⋅) activation functions. The output of the actor is limited
to the robot’s action space 𝐴 by a tanh(⋅) activation function. Note that the generated actions also need to
be post-processed by adding exploration noise, transforming them into the robot’s physical action space
ℂ𝐾𝑈𝐾𝐴, and applying the constraint mapping of the currently active stage.
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forward kinematics, all results presented in the next paragraphs were obtained with the
ikpy-based robot model to speed up training. Apart from small numerical deviations, tests
of the trained models in the NRP yielded identical results, proving the validity of this
approach. Of course, more complex experiments involving visual input, robot dynamics
and interaction with the environment require training in the NRP. The hyperparameters
of the networks and the training algorithm were adjusted based on proven values for
similar types of tasks available as part of Stable Baselines3, a collection of implementations
of reinforcement learning algorithms [523, 524]. Synaptic weight updates were computed
using the Adam optimizer [467]. In order to obtain unbiased results, all experiments
described in the following were executed 100 times each with different random seeds.
All hyperparameters used for the training of the models presented in this section are
documented in Appendix A.3.

Results of Training with Environment-Based Stages In a first experiment, we
evaluated Algorithm 6 on a training protocol with environment-based stages. It is listed
in Table 6.1. All joints of the robot are unlocked throughout all stages, except for the
outermost one. This is because there is no tool attached and therefore the angle of the
outermost joint does not affect the workspace position of the robot’s tip. The main param-
eter of the protocol is the target radius 𝑟𝑡𝑎𝑟𝑔𝑒𝑡, which decreases over time. As a result, the
required positioning accuracy increases and the complexity of the reaching task grows.
Correspondingly, the standard deviation 𝜎𝑒𝑥𝑝 of the exploration noise decreases in each
stage, and the last two stages are considerably longer in terms of the number of steps.
Before the actual training of the actor and critic networks starts, there is a warm-up phase
with Hd[warm-up] steps, during the which the system collects experience from the envi-
ronment to fill the replay buffer of Algorithm 6. The results of 100 training runs with this
protocol are summarized in Figure 6.14. The left column shows the basline performance
resulting from training without the progression of task complexity. Compared to the
protocol from Table 6.1, both the target radius 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 and the standard deviation 𝜎𝑒𝑥𝑝 of the

Table 6.1: A training protocol with environment-based stages. Diag(⋅) defines a diagonal matrix, with the
first entry in the argument corresponding to the robot’s base joint. H𝑑[𝑟𝑡𝑎𝑟𝑔𝑒𝑡] specifies the target radius
for the reward function from Equation 6.34 and H𝑑[𝜎𝑒𝑥𝑝] the standard deviation for the exploration noise
applied in Line 8 of Algorithm 6. H𝑑[steps] and H𝑑[warm-up] determine the total number of PCA steps
performed in the corresponding stage and the length of the warm-up period, respectively.

Stage 𝑑 F𝑑 𝑜𝑑 H𝑑[𝑟𝑡𝑎𝑟𝑔𝑒𝑡] H𝑑[𝜎𝑒𝑥𝑝] Hd[steps] H𝑑[warm-up]

1 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.40 0.070 40 000 1000

2 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.30 0.050 30 000 500

3 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.25 0.042 30 000 500

4 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.20 0.035 30 000 500

5 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.15 0.025 150 000 500

6 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.10 0.017 200 000 500
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Figure 6.14: Results from 100 training runs of Algorithm 6 with environment-based stages. The data points
from each run are averages from 1000 PCA cycles. Left: Training with fixed target radius 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 = 0.1 and
exploration noise as described in Table 6.1. Right : Training with the full protocol from Table 6.1.

Table 6.2: Evaluation of the models trained in Figure 6.14. The figures were computed from the average
performance metrics of the individual models, the relative change refers to the mean values.

Metric No Stages Environment-Based Stages Change

Mean SD Min Max Mean SD Min Max

Success Rate 0.072 0.044 0.012 0.329 0.794 0.144 0.414 0.997 1003%

Reward −26.745 2.326 −30.382 −14.267 4.838 5.945 −10.295 13.716 118%

Episode Steps 18.838 0.709 14.658 19.803 6.348 2.794 1.924 13.350 −66%

Target Distance 0.444 0.053 0.239 0.552 0.101 0.033 0.053 0.206 −77%
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Figure 6.15: Histogram of the target reaching success rates of the models trained in Figure 6.14. The
success rates were determined with the evaluation data set described in the text. Left: Training with fixed
target radius 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 = 0.1 and exploration noise as described in Table 6.1. Right : Training with the full
protocol from Table 6.1.

exploration noise were set to their final values from the first stage on. Another difference
is that the replay buffer is not cleared at the end of each stage. This is only required when
𝑟𝑡𝑎𝑟𝑔𝑒𝑡 changes in a new stage and stored observations become invalid. In essence, this
corresponds to standard training without a protocol, but with a discrete exploration noise
decay.

It is obvious at first glance that training with environment-based stages clearly out-
performs the baseline version without training protocol. At the beginning of each stage,
the performance drops, but always remains above the value from the start of the training,
which shows that knowledge is retained across the stages. Within each stage, learning
progresses at a higher rate compared to the baseline. This in particular also applies to
the final stage, where the values of the target radius 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 are identical for both versions.
The final models from all runs were evaluated on a test data set with 50 000 samples, each
consisting of a random target position and a start configuration for the robot. This ensures
that the evaluation results are consistent and reproducible. A subset of the sample target
positions is depicted in Figure 6.10. Table 6.2 provides a summary of the results that was
computed based on the average performance metrics of the individual runs on the test
data set. The target reaching success rate is orders of magnitude higher when training
with environment-based stages, with the best model achieving close to 100 %. Even the
model with the worst test results still outperforms the best one from the baseline training
runs. The increase of the overall model performance can also be seen in Figure 6.15, which
shows histograms of the target reaching success rates for both training without stages
and training with environment-based stages. Tests with more steps in the last stage of the
protocol from Table 6.1 indicate that the number of models with a success rate of close to
100 % can be further increased through longer training.
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Results of Training with Robot-Based Stages In the following, we will consider a
different type of training protocol that implements robot-based stages and thus corre-
sponds to the second main dimension of variation of the experiment introduced at the
beginning of this section. This makes it possible to study the freezing and freeing of DoFs,
which is hypothesized to guide the learning of motor skills in humans. Table 6.3 defines a
training protocol that frees the robot’s DoFs in a sequential order from its base to the tip.
Like before, the robot’s outermost joint always remains locked. Since some joints share
the same rotation axis in specific constraint configurations, they are not freed one after
another, but in a sequence which ensures that the reachable workspace grows from stage
to stage. Compared to the environment-based training protocol from Table 6.1, the target
radius 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 and the standard deviation 𝜎𝑒𝑥𝑝 of the exploration noise remain constant
over all stages. Moreover, the replay buffer is retained, which is why only the first stage
includes a warm-up phase. An important difference from environment-based stages is
that the space reachable by the robot changes in every stage. Therefore, when sampling a
new target at the beginning of an episode, it is not possible to select an arbitrary point in
the robot’s workspace, as it may not be reachable with the current set of constraints. For
this reason, sampling is performed in the configuration space for stages in which one or
more of the robot’s first six joints are frozen. The resulting target point is then computed
with the ikpy-based robot model mentioned earlier. In general, this sampling method does
not yield a uniform coverage of the portion of the workspace that is reachable in a certain
protocol stage. However, this is compensated for by switching to uniform workspace
sampling as soon as all six joints are freed in the final stage.

Figure 6.16 provides a summary of 100 training runs. While not as high as for
environment-based stages, there is still a considerable performance gain compared to
training without stages. The performance losses at the beginnings of the stages are larger,
which seems natural as the addition of further joints can be interpreted as the definition
of a new learning task. Within the individual stages, the systems learns faster than the
baseline version. This is in particular also true for the last stage, where all joints are
unlocked, indicating that knowledge from the previous stages is retained. The results
of the evaluation of the trained models on the test data set are listed in Table 6.6 and
histograms of the target reaching succes rates are shown in Figure 6.19. As in the case of
training with environment-based stages, not only does the average success rate improve
with the training protocol, but also the distribution of target reaching success rates.

To further investigate the effectiveness of training with robot-based stages, we evalu-
ated another training protocol with an identical sequence of robot joint constraints but
a larger target radius 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 = 0.2. Its definition is listed in Table 6.4, the corresponding
evaluation results are available in Figure 6.17, Table 6.7 and Figure 6.20. The increased
target radius turns out to simplify the task significantly. Already the baseline models
achieve good results and the performance gain from staged training is lower. However, as
can be seen from the distribution of success rates in Figure 6.20, almost all staged training
runs yield high performance, while the baseline runs have a much higher variance. This
clearly shows that training protocols can be beneficial even for simple tasks where they
are not strictly necessary to achieve good results.
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The sequential freeing of DoFs is only one possibility for the definition of the training
protocol stages. This raises the question of how the specific sequence of robot joint
constraints that is applied during training influences the learning process. The training
protocol defined in Table 6.5 encompasses the same total number of steps as the that from
Table 6.3. In particular, the lengths of the final stages are identical. The difference is that
the DoFs are not unlocked sequentially. Instead, the protocol iterates over different subsets
of joints that increase in size as learning progresses. Note that not all possible combinations
are considered to limit the length of the protocol. For example, the combination of the
fifth and the sixth joint is omitted because it covers only a very small portion of the robot’s
workspace. The training progress and the evaluation results are provided in Figure 6.18,
Table 6.8 and Figure 6.21. In contrast to all other training protocols implemented so far,
the performance of the models trained in stages lies below the baseline. During the first
stages, the systems learns quickly, similar to the training with the schedule from Table 6.3
in Figure 6.16. However, the performance starts to decrease by the end of the third stage
and the learning speed becomes very slow in all subsequent stages. These results indicate
that the specific order in which the robot’s DoFs are freed and frozen has a substantial
impact on the effectiveness of training protocols. A possible explanation for the observed
behavior is that an unfavorable training protocol can push the system towards suboptimal
regions of the solution space, similar to a poor choice of hyperparameters.

Conclusion Our results clearly show that both environment-based stages and robot-
based stages can improve the learning process significantly. This makes the training
protocol framework introduced in this thesis a promising new tool for learning not only
in neurorobotics, but robotics in general. Based on the results presented in this section,
a wide range of future directions of research opens up. An important next step is the
combination of environment-based stages and robot-based stages in a single protocol.
Since the application of training protocols is not limited to Algorithm 6, it will also be
interesting to evaluate them on other algorithms such as TD3, which is an improved
version of the original DDPG algorithm [519]. Another research topic is the definition of
training protocol stages. In a first step, future versions of the framework could include
support for dynamic stage lengths, which will make it possible to automatically proceed to
the next stage when the performance saturates or, like in the third stage of the training runs
shown in Figure 6.18, starts to decrease. A second step is then to not only automatically
adapt stage lengths but to learn the definition of the complete training protocol. The
identification of meaningful stages is very challenging, which is particularly reflected
in the finding that the specific sequence in which the robot’s DoFs are freed and frozen
directly impacts the performance of training with robot-based stages. The automatic
generation of task-optimized training protocols will not only make them more easily
usable, but also enable comparative studies with data from biology.
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Table 6.3: A training protocol with robot-based stages and sequential freeing of DoFs. The columns are
defined as in Table 6.1.

Stage 𝑑 F𝑑 𝑜𝑑 H𝑑[𝑟𝑡𝑎𝑟𝑔𝑒𝑡] H𝑑[𝜎𝑒𝑥𝑝] Hd[steps] H𝑑[warm-up]

1 Diag(1, 1, 0, 0, 0, 0, 0) 0 0.10 0.042 80 000 1000

2 Diag(1, 1, 0, 1, 0, 0, 0) 0 0.10 0.042 80 000 0

3 Diag(1, 1, 1, 1, 0, 0, 0) 0 0.10 0.042 80 000 0

4 Diag(1, 1, 1, 1, 0, 1, 0) 0 0.10 0.042 80 000 0

5 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.10 0.042 250 000 0

Table 6.4: A training protocol with robot-based stages and sequential freeing of DoFs with lower target
reaching accuracy compared to Table 6.3. The columns are defined as in Table 6.1.

Stage 𝑑 F𝑑 𝑜𝑑 H𝑑[𝑟𝑡𝑎𝑟𝑔𝑒𝑡] H𝑑[𝜎𝑒𝑥𝑝] Hd[steps] H𝑑[warm-up]

1 Diag(1, 1, 0, 0, 0, 0, 0) 0 0.20 0.042 20 000 1000

2 Diag(1, 1, 0, 1, 0, 0, 0) 0 0.20 0.042 20 000 0

3 Diag(1, 1, 1, 1, 0, 0, 0) 0 0.20 0.042 20 000 0

4 Diag(1, 1, 1, 1, 0, 1, 0) 0 0.20 0.042 20 000 0

5 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.20 0.042 270 000 0

Table 6.5: A training protocol with robot-based stages and non-sequential freeing of DoFs. The columns
are defined as in Table 6.1.

Stage 𝑑 F𝑑 𝑜𝑑 H𝑑[𝑟𝑡𝑎𝑟𝑔𝑒𝑡] H𝑑[𝜎𝑒𝑥𝑝] Hd[steps] H𝑑[warm-up]

1 Diag(1, 1, 0, 0, 0, 0, 0) 0 0.10 0.042 50 000 1000

2 Diag(0, 0, 1, 1, 0, 0, 0) 0 0.10 0.042 50 000 0

3 Diag(1, 0, 0, 1, 0, 0, 0) 0 0.10 0.042 50 000 0

4 Diag(0, 1, 1, 1, 0, 0, 0) 0 0.10 0.042 80 000 0

5 Diag(1, 1, 1, 1, 0, 0, 0) 0 0.10 0.042 90 000 0

6 Diag(1, 1, 1, 1, 1, 1, 0) 0 0.10 0.042 250 000 0
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6.3 Staged Reinforcement Learning

Figure 6.16: Results from 100 training runs of Algorithm 6 with robot-based stages. The data points from
each run are averages from 1000 PCA cycles. Left: Training without stages. Right : Training with the
protocol from Table 6.3.

Table 6.6: Evaluation of the models trained in Figure 6.16. The figures were computed from the average
performance metrics of the individual models, the relative change refers to the mean values.

Metric No Stages Robot-Based Stages Change

Mean SD Min Max Mean SD Min Max

Success Rate 0.093 0.056 0.019 0.289 0.199 0.087 0.022 0.617 114%

Reward −25.913 2.948 −30.365 −16.486 −20.560 4.307 −29.989 −1.722 21%

Episode Steps 18.497 0.900 15.286 19.690 16.891 1.437 9.564 19.647 −9%

Target Distance 0.436 0.061 0.281 0.542 0.335 0.072 0.122 0.527 −23%
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Figure 6.17: Results from 100 training runs of Algorithm 6 with robot-based stages and low positioning
accuracy. The data points from each run are averages from 1000 PCA cycles. Left: Training without stages.
Right : Training with the protocol from Table 6.4.

Table 6.7: Evaluation of the models trained in Figure 6.17. The figures were computed from the average
performance metrics of the individual models, the relative change refers to the mean values.

Metric No Stages Robot-Based Stages Change

Mean SD Min Max Mean SD Min Max

Success Rate 0.867 0.129 0.436 0.999 0.967 0.036 0.830 1.000 12%

Reward 7.367 6.098 −12.119 14.246 12.307 1.923 5.431 14.516 67%

Episode Steps 4.756 2.670 1.512 12.832 2.543 0.965 1.344 5.843 −47%

Target Distance 0.170 0.051 0.107 0.339 0.131 0.016 0.104 0.180 −23%
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Figure 6.18: Results from 100 training runs of Algorithm 6 with robot-based stages and both freeing and
freezing of DoFs. The data points from each run are averages from 1000 PCA cycles. Left: Training without
stages. Right : Training with the protocol from Table 6.5.

Table 6.8: Evaluation of the models trained in Figure 6.18. The figures were computed from the average
performance metrics of the individual models, the relative change refers to the mean values.

Metric No Stages Robot-Based Stages Change

Mean SD Min Max Mean SD Min Max

Success Rate 0.093 0.056 0.019 0.289 0.041 0.039 0.013 0.286 −56%

Reward −25.913 2.948 −30.365 −16.486 −29.949 3.024 −37.040 −17.019 −16%

Episode Steps 18.497 0.900 15.286 19.690 19.413 0.610 15.533 19.829 5%

Target Distance 0.436 0.061 0.281 0.542 0.539 0.103 0.282 0.869 24%
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Figure 6.19: Histogram of the target reaching success rates of the models trained in Figure 6.16. The
success rates were determined with the evaluation data set described in the text. Left: Training without
stages. Right : Training with the protocol from Table 6.3.

Figure 6.20: Histogram of the target reaching success rates of the models trained in Figure 6.17. The
success rates were determined with the evaluation data set described in the text. Left: Training without
stages. Right : Training with the protocol from Table 6.4.

Figure 6.21: Histogram of the target reaching success rates of the models trained in Figure 6.18. The
success rates were determined with the evaluation data set described in the text. Left: Training without
stages. Right : Training with the protocol from Table 6.5.
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7
Conclusion and Outlook

This work has brought together ideas, concepts, findings and models from a highly diverse
range of different fields of research centered around robotics, AI and neuroscience. The
common thread that links these disciplines is embodiment, which is sometimes made the
focus of study, as in developmental robotics, and sometimes completely neglected, as in
data-driven AI. Currently, there is still a huge gap between research on embodied systems
and traditional approaches. While the former are typically argued to have a huge potential
of answering central questions in brain research and overcoming longstanding challenges
in robotics and AI, the latter deliver better results in practice and are easier to handle
both analytically and technically. The core idea that we have developed and realized
over the past chapters is to bridge this gap by designing a new framework for brain-
derived learning that draws from insights in brain research to combine the conceptual
elegance of embodiment with the practical advantages of data-driven AI. In the following
three sections, we will summarize our main contributions, highlight prospective practical
applications, and identify future directions of research.

7.1 Main Contributions of this Work
Our main contributions focus on the individual steps required to design and train a
learning embodied system as outlined in Figure 1.7. Chapters 2 and 3 introduce the
theoretical background that is required for a principled implementation of the concepts
developed in the subsequent chapters. Our first main contribution is the formulation of a
modern definition of neurorobotics.
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7 Conclusion and Outlook

A Modern Definition of Neurorobotics We have developed a new definition of
neurorobotics that takes into account the most recent results in the field. It also gives way
to the introduction of a formal concept for neurorobotics experiments. The specification of
experiment classes makes it possible to abstract from concrete experimental setups and
thereby cover a wide range of variations. Having a multitude of models is essential in
order to capture the diversity of the real world and can only be reproduced efficiently in
large scale in simulations. For this reason, all of the ideas and concepts developed in this
work have been implemented in the HBP Neurorobotics Platform.

Large-Scale Virtual Neurorobotics The new tool set developed in Chapter 4 based
on the NRP, makes it possible to run parallel distributed experiments with an arbitrary
number of simulation instances. This makes high-performance computing accessible
for the first time to robotics and thereby introduces a substantial paradigmatic change.
Physical robotics experiments are very constrained due to high costs and complex setup
procedures. Virtual experiments, by contrast, are only limited by computing power and
storage, both of which have become highly scalable with the widespread adoption of cloud
computing. An indicator for the capability of the new tool can be seen in the fact that
none of the neurorobotics experiments implemented in this work has ever been executed
on a physical robot.

Neuromorphic Computing for Neurorobotics The second extension for the NRP, a
network-based interface to Intel’s neuromorphic chip Loihi, makes it possible to accelerate
neurorobotics experiments with spiking neuron models at high speed and efficiency. In
fact, the NRP can be seen as a virtual development environment for embedded neuro-
morphic algorithms with applications ranging from highly-energy efficient wearables to
adaptive systems with on-chip learning for automotive applications.

Biomimetic Neurorobotics The TUM Robot Mouse enables the transfer of knowledge
from virtual neurorobotics experiments with highly realistic musculoskeletal body models
to physical robots. Its compliant designwith an actuated spine takes advantage of advances
in rapid manufacturing, which makes it possible to produce the robot body at low cost
with 3D printing. Design changes can thus be implemented quickly with little effort. This
makes the robot a unique tool that complements virtual neurorobotics experiments. While
the initial versions of the robot were built with a focus on locomotion, a first prototype of
the head with cameras is already available. Its small size makes the TUM Robot Mouse
also an interesting tool for industrial applications such as inspection tasks.

Brain-Derived Modular Neural Networks The definition of a novel brain-derived
modular-hierarchical neural network (MHNN) architecture is one of our main contribu-
tions. It is based on findings about the modular organization of the brain and employs
state-of-the-art DNNs as individual building blocks. Unlike previous models, this makes
it possible to take advantage of automatically learned deep feature hierarchies, and at the
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same time enables individual functions to be localized in sub-networks. The resulting
networks are therefore more transparent than traditional monolithic neural networks.
While other modular neural network architectures have been proposed earlier, our ar-
chitecture is unique in two important aspects. First, the support for standard DNNs and
gradient-based optimization enables compatibility to a huge body of existing network
models and software tools. Second, there are two types of network modules: modality-
specific component networks that process sensory input and task-specific hub networks
that produce behavioral output based on data received from the component networks.
Data fusion is performed individually in every hub network and therefore task-based.

Self-Supervised Learning of Deep Multisensory Maps The individual component
networks of MHNNs project raw input data into an abstract latent space. In the brain,
such projections have been found to be topographic representations of the input spaces
that are aligned across modalities in some brain regions. To date, SOMs are one the most
common neural network architectures for modeling cortical maps. However, they do
not support hierarchical feature extraction like DNNs. This work has introduced a novel
topographic map loss that enables gradient-based learning of topographic maps. We
have shown that two neural networks can be trained in parallel based on this loss in a
self-supervised setup to enable the learning of a common aligned topographic map. By
changing the hyperparameters of the loss function, it is possible to select one dominant
network that determines the shape of the final map. Interestingly, similar phenomena
have been observed in the brain, where the formation of auditory maps in the superior
colliculus is guided by visual maps.

Training Protocols Our final contribution is a concept for training protocols that
controls the temporal order of learning processes in component networks and hub net-
works through schedules and stages. While curriculum learning has long been applied
in machine learning, our work is the first to explore the application of a bio-inspired
curriculum that is defined in terms of the DoFs of an embodied system to state-of-the-art
deep reinforcement learning algorithms.

7.2 Practical Relevance

MHNNs are directly motivated by the findings about functional specialization in biological
brains discussed at the beginning of Chapter 5. While it is possible to argue that they
capture information processing in the brain more closely than standard ANNs, this does
not necessarily imply that they are also better suited to practical applications in AI. But
as it turns out, functional specialization across different component networks bears very
promising potential for a number of implementation challenges that have not yet been
addressed by DNNs.
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Modular Neural Architectures An obvious feature of MHNNs is the possibility of
specifying system architectures. Monolithic DNNs are thereby replaced by structured
descriptions with discrete components that are closely intertwined with each other. This
is an approach that has been pursued for decades, primarily in symbolic AI as part of the
research on cognitive architectures [86]. The advantages of being able to explicitly state
the actual structure of the system compared to defining it implicitly as part of a purely
data-driven learning process are twofold. Firstly, a transparent system architecture makes
it easier to better understand the resulting computations and to identify possible failure
modes. Unexpected behavior can be traced to specific components and the interactions
between them. Secondly, the individual building blocks of the architecture become re-
usable. This is very different from DNNs that must be re-trained for new domains even
when only a small part of the input is different. Even if one cannot expect the components
of a MHNN to be as clearly separated as in traditional software engineering, just the mere
possibility of localizing sub-systems and their interactions goes considerably beyond the
common practice in current AI systems.

Artificial Lesions for Neuromorphic Chips As outlined in Section 5.1, lesions have
played a central role in the anatomical localization of brain functions. More than that, they
also provide implicit information about the brain’s resistance to physical damage. Based
on a functional brain atlas, it is, for example, possible to predict cognitive impairments
from brain injuries at different locations. Even though the quality of these predictions can
vary greatly due to inter-individual differences and the general complexity of structural
changes caused by brain injuries, nothing comparable has been achieved yet for ANNs.
This does not mean that artificial lesions have not been considered. In fact, dropout [525],
a common technique to avoid the overfitting of training data, is based on the random
deactivation of neural units. But these “artificial lesions” provide no additional insight
into how the structure of a neural network is related to its function. Such information is
highly relevant in many practical applications, where the microcircuits of the processor
that executes a neural network model can suffer from local defects due to imperfect
manufacturing or due to aging during operation. Being able to predict the functional
consequences of these structural defects can help to reduce manufacturing costs (as long
as performance degradation caused by a defect remains below a certain threshold) and to
ensure fault-tolerant operation (by guaranteeing that common defects do not severely
degrade performance).

Interpretability An implicit assumption behind the idea of quantifying the effects of
structural damage to a neural network on its functional performance is that different
sub-networks or neurons serve different purposes that are of different criticality. This
becomes most obvious with the example of a DNN for classification, where damage to
one of the neurons in the output layer directly results in the loss of recognizing the class
this neuron represents. Effects are likely to be less drastic for a neuron that represents the
value of an input pixel. Predictions for the effect of damage to the input and output layer
are relatively easy because each neuron inside them has a concrete semantic meaning.
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However, it is extremely challenging to draw similar conclusions for other layers of the
network, where information is no longer clearly separable as a direct consequence of
the currently prevalent monolithic deep architectures. By contrast, a modular network
design with clear spatial separation of distinct functions across the network architecture
allows for a better judgment of damage. In particular, this works not only for simple cases
like classes or pixels but also for complete functional sub-systems. A striking example in
this context is the mushroom body in the brain of the fly Drosophila melanogaster. Lesion
studies have revealed that the loss of this part of the brain, even though it comprises only
about 2500 neurons [526], impairs associative learning of odor cues [527]. MHNNs with
clearly localized functions therefore have a great potential for safety-critical applications,
where a continuous real-time assessment of system performance is indispensable.

Self-Repairing Neuromorphic Systems Parts of an integrated circuit might fail dur-
ing operation. As long as the overall integrity of the chip is preserved, it may continue to
operate with the defective components. A common source of defects are imperfections in
the manufacturing process. Issues arising at this early stage can be mitigated by redun-
dancies in the design of the chip that make it possible to simply disable malfunctioning
components on the die [526]. In general, better techniques for handling manufacturing
defects can increase yield and lower production costs. However, improving yield solely
based on hardware is limited to measures taken during the design phase of the chip. Once
the functional degradation of a specific hardware defect becomes predictable, even units
that fail testing can still be viable for some applications. In a sense, this is comparable to
earlier approaches where CPUs with malfunctioning cores were sold for a lower price,
since they still could be used for computationally less demanding tasks [528].

As already described, MHNNs fit perfectly into this concept since they allow for a direct
mapping between possible hardware defects and performance degradation. An important
prerequisite is, however, that the network is executed on a neuromorphic system where
the execution units on the chip actually correspond to neurons and synapses. In traditional
von Neumann processors, storage and computation are highly centralized, which implies
that defects usually affect the system globally. Defects that are already known directly
after manufacturing can be handled offline in a safe environment. By contrast, chip failure
during runtime in applications such as automated driving is potentially highly safety-
critical. With standard monolithic DNNs, there is usually no way to assess the system’s
remaining reliability and the corresponding system must consequently be shut down
completely. In MHNNs, defects can be directly mapped to the corresponding functional
components of the network. Operation can be continued if the overall system can still
function reliably enough (e.g. when radar data can no longer be processed and camera
images are sufficient for the current environmental conditions). It may even be possible to
relocate network components to undamaged parts of the chip, just like biological brains
can recover from injury through gradual reorganization of the cortical network. The
idea of self-repairing control systems is, in fact, already several decades old and has been
studied extensively in the field of aviation [529].
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7.3 Future Directions of Research
The results of this work mark a starting point for many new directions of research.
They are motivated by both open questions that can be addressed by directly extending
the models and algorithms presented in the previous chapters and by completely new
challenges that can be solved with the framework of virtual neurorobotics and advanced
embodied learning.

Neural Modeling As outlined in Chapter 2, there is a huge diversity of different
neural coding schemes. In the scope of this thesis, we have only considered rate codes
implemented by simple analog neurons or, in the case of the PPC model from Section 6.2,
by spiking LIF neurons. The simulation of this model in the NRP revealed a major
disadvantage of population codes. The latency for transmitting new stimuli is limited
by the time that is required to average the population activity. Shorter time windows
for averaging can decrease the latency, but will result in lower accuracy. Encoding
information with precisely timed spikes therefore promises to be faster and also more
efficient, because fewer spikes must be generated in order to transmit a stimulus. The
low latencies observed in the human visual system suggest that even the brain employs
advanced spike coding to realize fast response times [101]. In general, the encoding and
representation of information in the brain is still not fully understood. Neurorobotics
offers a promising perspective by enabling the study of emerging neural activity during
closed-loop interaction with the environment. Neural codes that develop as a result of
this interaction can be directly interpreted in terms of the behavior that is related to them.

Integrating them into an NRP experiment will enable the simulation of body growth,
which is another unique feature of virtual experiments that cannot be realized with
physical robots on the same scale and level of detail. Finally, in the future, training
protocols should be evaluated on online learning algorithms that do not require separate
phases for training and inference.

Advanced Training Protocols Training protocols have a high potential for guiding
and shaping the learning of complex systems. This is also reflected by the fact that
curriculum learning is widely applied in many machine learning tasks. The training
protocol mechanism developed in Chapter 6 can be extended along many different dimen-
sions. Most importantly, the stages are currently fixed, which makes them, in essence,
a complex hyperparameter. By following a meta-learning paradigm training protocols
can become part of the learning process in the future. This will also allow for better
assessment of the impact of different scheduling variables on the system’s performance.
Rather than only considering the freezing and freeing of physical joints, an interesting
avenue for future studies would be to analyze and modulate the dimension of the control
space as discussed by Newell and Vaillancourt [531]. In particular, this may include the
developmental progression of the complexity of the neural system. Another promising
addition is the automatic definition of tasks through autocurricula. Recent work in this
direction was published by Plappert et al. [532], who trained a system with asymmetric
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Figure 7.1: Modeling of body growth. The 3D body models cover all developmental stages from Carnegie
stage 13 (an embryo about one month old) until adulthood. They are based on [20] and [530].
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self-play between two agents. While one of them learns to create increasingly challenging
tasks, the other learns to solve them. The second line of extending training protocols
consists in enhancing the simulation of the body and the environment. As illustrated in
Figure 7.1, we have already started working on a series of human body models that cover
all developmental stages.

Natural Language Processing This work has mainly focused on sensorimotor learning.
From a developmental point of view, this makes sense because basic perception and motor
control are acquired at the beginning of the developmental process outlined in Figure 6.2.
A longstanding research question is how models for low-level sensorimotor interaction
can be combined with symbolic models for logical reasoning and natural language pro-
cessing. The modular neural network architecture for question answering developed by
Andreas et al. [432] partly achieves this task by mapping natural language questions to
building blocks of neural networks. However, these networks need to be generated on
the fly for every single question. The development of a unified model that integrates
neural networks with formal grammars is not only a scientifically interesting research
topic but also has huge practical relevance. Especially the programming of robots is still
quite cumbersome and error-prone, and can greatly benefit from a language model that is
formally well-defined and at the same time grounded in the environment. Work in this
direction has already been published by Giuliani and Knoll [533].

Virtual Synthesis of Robotic Systems – A Vision A long-term research vision that is
rooted in the contributions of this work and which builds on the research topics identified
above is the virtual synthesis of robotics systems. Knoll and Walter [534] outlined this
vision as an approach to generate a factory layout from scratch, solely based on the
description of the product to be manufactured. The interface between the human and the
robot is thus radically simplified and reduced to the formulation of the actual goal without
any intermediate steps of abstraction. Realizing this vision is only possible through a
complete virtualization of the robot and its environment. As described in this thesis,
this will enable highly accelerated training in massively parallel simulations and allow
huge solution spaces to be covered within realistic time frames and without physical
constraints. Only then it becomes possible to completely automate manufacturing tasks
without lengthy planning and programming. The results of this thesis and the research
topics presented in the last paragraphs, such as advanced training protocols or language
processing that is grounded in the environment, mark important milestones towards this
vision.

In this thesis, we have developed tools, models and methods for advanced embodied learning
solely based on virtual neurorobotics experiments. The transition from physical experiments
to large scale simulations of virtual environments marks a disruptive paradigm shift in
robotics. We hope that our findings will contribute significantly to this shift and will advance
the state of the art in brain-derived cognitive models for robotics.
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Parameters of Models and Algorithms

A.1 Deep Multisensory Neural Maps

Parameters for the Generation of the Multimodal Data Set

Table A.1 lists the parameters that were used to generate themultimodal data setD𝑚𝑎𝑝 with
Algorithm 2. The environment parameter E𝑁𝑅𝑃.robot_offset is 0.36, default_configuration
refers to the robot’s upright home position with all joint angles set to 0. The simulations
were executed with an extended version of the NRP release 3.0.0.

Table A.1: Parameters for the generation the multimodal data set D𝑚𝑎𝑝 with Algorithm 2.

Parameter Value Description

𝐾 102 000 The number of samples to be generated

𝑟𝑚𝑖𝑛 0.410 Minimum radius of the sampling space

𝑟𝑚𝑎𝑥 1.096 Maximum radius of the sampling space
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Hyperparameters for the Training Algorithms and Loss Functions

The following tables list the hyperparameters that were used to train the different variants
of deep multisensory maps on the multimodal data set D𝑚𝑎𝑝, including the baseline from
Figure 5.9, which was generated with supervised learning. Unless otherwise indicated,
the parameter values are identical for the vision network C𝑣 𝑖𝑠 and the proprioception
network C𝑝𝑟𝑜. The neural network models were implemented with PyTorch 1.8.0 and
PyTorch Lightning 1.0.8. All models were trained with the Adam optimizer [467] and all
training sessions were started with different random seeds.

Table A.2: Hyperparameters for Figure 5.9. Supervised training of the vision network C𝑣 𝑖𝑠 and the
proprioception network C𝑝𝑟𝑜 on D𝑣 𝑖𝑠

𝑚𝑎𝑝 and D𝑝𝑟𝑜
𝑚𝑎𝑝 with the MSE loss function from Equation 5.23.

Parameter Value Description

𝑏 64 Batch size

𝜂𝑣 𝑖𝑠 2.42×10−5 Learning rate for C𝑣 𝑖𝑠

𝜂𝑝𝑟𝑜 7.54×10−4 Learning rate for C𝑝𝑟𝑜

𝛽1 9.00×10−1 First moment exponential decay rate in the Adam optimizer

𝛽2 9.99×10−1 Second raw moment exponential decay rate in the Adam optimizer

𝜀𝐴𝑑𝑎𝑚 1.00×10−8 Denominator offset in the Adam optimizer

𝜆𝑣 𝑖𝑠 5.30×10−3 L2 weight decay factor for C𝑣 𝑖𝑠

𝜆𝑝𝑟𝑜 1.14×10−5 L2 weight decay factor for C𝑝𝑟𝑜

Table A.3: Hyperparameters for Figures 5.11 and 5.12. Self-supervised training of the vision network C𝑣 𝑖𝑠

and the proprioception network C𝑝𝑟𝑜 on D𝑚𝑎𝑝 with Algorithm 3 and the loss functions ℒ 𝑠𝑒𝑙𝑓
𝑣 𝑖𝑠 and ℒ 𝑠𝑒𝑙𝑓

𝑝𝑟𝑜 from
Equations 5.24 and 5.25.

Parameter Value Description

𝑏 64 Batch size

𝜂𝑣 𝑖𝑠 1.00×10−3 Learning rate for C𝑣 𝑖𝑠

𝜂𝑝𝑟𝑜 1.00×10−3 Learning rate for C𝑝𝑟𝑜

𝛽1 9.00×10−1 First moment exponential decay rate in the Adam optimizer

𝛽2 9.99×10−1 Second raw moment exponential decay rate in the Adam optimizer

𝜀𝐴𝑑𝑎𝑚 1.00×10−8 Denominator offset in the Adam optimizer

𝜆𝑣 𝑖𝑠 1.00×10−5 L2 weight decay factor for C𝑣 𝑖𝑠

𝜆𝑝𝑟𝑜 1.00×10−5 L2 weight decay factor for C𝑝𝑟𝑜

𝜁 1.00×10−3 Inverse variance factor in ℒ 𝑠𝑒𝑙𝑓
𝑣 𝑖𝑠 and ℒ 𝑠𝑒𝑙𝑓

𝑝𝑟𝑜

𝜀 1.00×10−7 Denominator offset in ℒ 𝑠𝑒𝑙𝑓
𝑣 𝑖𝑠 and ℒ 𝑠𝑒𝑙𝑓

𝑝𝑟𝑜

𝜏 1.00×10−2 Target network update rate in Algorithm 3
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Table A.4: Hyperparameters for Figures 5.14 and 5.15. Unsupervised training of the vision network C𝑣 𝑖𝑠
and the proprioception network C𝑝𝑟𝑜 on D𝑚𝑎𝑝 with the topographic loss function ℒ 𝑡𝑜𝑝 from Equation 5.30
based on Algorithms 4 and 5.

Parameter Value Description

𝑏 64 Batch size

𝑆 8 Number of spheres per batch

𝑟 9.00×10−2 Sphere radius in the workspace

𝜂𝑣 𝑖𝑠 1.00×10−3 Learning rate for C𝑣 𝑖𝑠

𝜂𝑝𝑟𝑜 1.00×10−3 Learning rate for C𝑝𝑟𝑜

𝛽1 9.00×10−1 First moment exponential decay rate in the Adam optimizer

𝛽2 9.99×10−1 Second raw moment exponential decay rate in the Adam optimizer

𝜀𝐴𝑑𝑎𝑚 1.00×10−8 Denominator offset in the Adam optimizer

𝜆𝑣 𝑖𝑠 1.00×10−5 L2 weight decay factor for C𝑣 𝑖𝑠

𝜆𝑝𝑟𝑜 1.00×10−5 L2 weight decay factor for C𝑝𝑟𝑜

𝛽𝑛𝑏ℎ 1.00×10−2 Neighborhood loss factor in ℒ 𝑡𝑜𝑝

𝛽𝑠𝑒𝑝 5.00×10−2 Separation loss factor in ℒ 𝑡𝑜𝑝

Table A.5: Hyperparameters for Example Run 1 from Figure 5.17. Self-supervised training of the vision
network C𝑣 𝑖𝑠 and the proprioception network C𝑝𝑟𝑜 on D𝑚𝑎𝑝 with Algorithm 3 and the topographic map loss
functions ℒ𝑚𝑎𝑝

𝑣𝑖𝑠 and ℒ𝑚𝑎𝑝
𝑝𝑟𝑜 from Equations 5.31 and 5.32.

Parameter Value Description

𝑏 64 Batch size

𝑆 8 Number of spheres per batch

𝑟 9.00×10−2 Sphere radius in the workspace

𝜂𝑣 𝑖𝑠 1.00×10−3 Learning rate for C𝑣 𝑖𝑠

𝜂𝑝𝑟𝑜 1.00×10−3 Learning rate for C𝑝𝑟𝑜

𝛽1 9.00×10−1 First moment exponential decay rate in the Adam optimizer

𝛽2 9.99×10−1 Second raw moment exponential decay rate in the Adam optimizer

𝜀𝐴𝑑𝑎𝑚 1.00×10−8 Denominator offset in the Adam optimizer

𝜏 1.00×10−2 Target network update rate in Algorithm 3

𝜆𝑣 𝑖𝑠 1.00×10−5 L2 weight decay factor for C𝑣 𝑖𝑠

𝜆𝑝𝑟𝑜 1.00×10−5 L2 weight decay factor for C𝑝𝑟𝑜

𝛼𝑣 𝑖𝑠 1.00×100 MSE loss factor in ℒ𝑚𝑎𝑝
𝑣𝑖𝑠

𝛼𝑝𝑟𝑜 1.00×100 MSE loss factor in ℒ𝑚𝑎𝑝
𝑝𝑟𝑜

𝛽𝑛𝑏ℎ 1.00×10−2 Neighborhood loss factor in ℒ 𝑡𝑜𝑝

𝛽𝑠𝑒𝑝 5.00×10−2 Separation loss factor in ℒ 𝑡𝑜𝑝
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Table A.6: Hyperparameters for Example Run 2 from Figure 5.17. Self-supervised training of the vision
network C𝑣 𝑖𝑠 and the proprioception network C𝑝𝑟𝑜 on D𝑚𝑎𝑝 with Algorithm 3 and the topographic map loss
functions ℒ𝑚𝑎𝑝

𝑣𝑖𝑠 and ℒ𝑚𝑎𝑝
𝑝𝑟𝑜 from Equations 5.31 and 5.32. The MSE loss factor is is higher for ℒ𝑚𝑎𝑝

𝑝𝑟𝑜 than for
ℒ𝑚𝑎𝑝

𝑣𝑖𝑠 .

Parameter Value Description

𝑏 64 Batch size

𝑆 8 Number of spheres per batch

𝑟 9.00×10−2 Sphere radius in the workspace

𝜂𝑣 𝑖𝑠 1.00×10−3 Learning rate for C𝑣 𝑖𝑠

𝜂𝑝𝑟𝑜 1.00×10−3 Learning rate for C𝑝𝑟𝑜

𝛽1 9.00×10−1 First moment exponential decay rate in the Adam optimizer

𝛽2 9.99×10−1 Second raw moment exponential decay rate in the Adam optimizer

𝜀𝐴𝑑𝑎𝑚 1.00×10−8 Denominator offset in the Adam optimizer

𝜏 7.00×10−1 Target network update rate in Algorithm 3

𝜆𝑣 𝑖𝑠 1.00×10−5 L2 weight decay factor for C𝑣 𝑖𝑠

𝜆𝑝𝑟𝑜 1.00×10−5 L2 weight decay factor for C𝑝𝑟𝑜

𝛼𝑣 𝑖𝑠 1.00×10−3 MSE loss factor in ℒ𝑚𝑎𝑝
𝑣𝑖𝑠

𝛼𝑝𝑟𝑜 2.00×100 MSE loss factor in ℒ𝑚𝑎𝑝
𝑝𝑟𝑜

𝛽𝑛𝑏ℎ 1.00×10−2 Neighborhood loss factor in ℒ 𝑡𝑜𝑝

𝛽𝑠𝑒𝑝 5.00×10−2 Separation loss factor in ℒ 𝑡𝑜𝑝

Table A.7: Hyperparameters for Example Run 3 from Figure 5.17. Self-supervised training with warm-up of
the vision network C𝑣 𝑖𝑠 and the proprioception network C𝑝𝑟𝑜 on D𝑚𝑎𝑝 with Algorithm 3 and the topographic
map loss functions ℒ𝑚𝑎𝑝

𝑣𝑖𝑠 and ℒ𝑚𝑎𝑝
𝑝𝑟𝑜 from Equations 5.31 and 5.32.

Parameter Value Description

𝐸𝑤𝑎𝑟𝑚−𝑢𝑝 20 Number of warm-up training epochs

𝑏 64 Batch size

𝑆 8 Number of spheres per batch

𝑟 9.00×10−2 Sphere radius in the workspace

𝜂𝑣 𝑖𝑠 1.00×10−3 Learning rate for C𝑣 𝑖𝑠

𝜂𝑝𝑟𝑜 1.00×10−3 Learning rate for C𝑝𝑟𝑜

𝛽1 9.00×10−1 First moment exponential decay rate in the Adam optimizer

𝛽2 9.99×10−1 Second raw moment exponential decay rate in the Adam optimizer

𝜀𝐴𝑑𝑎𝑚 1.00×10−8 Denominator offset in the Adam optimizer

𝜏 1.00×10−2 Target network update rate in Algorithm 3

𝜆𝑣 𝑖𝑠 1.00×10−5 L2 weight decay factor for C𝑣 𝑖𝑠

𝜆𝑝𝑟𝑜 1.00×10−5 L2 weight decay factor for C𝑝𝑟𝑜

𝛼𝑣 𝑖𝑠 1.00×100 MSE loss factor in ℒ𝑚𝑎𝑝
𝑣𝑖𝑠

𝛼𝑝𝑟𝑜 1.00×100 MSE loss factor in ℒ𝑚𝑎𝑝
𝑝𝑟𝑜

𝛽𝑛𝑏ℎ 1.00×10−2 Neighborhood loss factor in ℒ 𝑡𝑜𝑝

𝛽𝑠𝑒𝑝 5.00×10−2 Separation loss factor in ℒ 𝑡𝑜𝑝
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A.2 Neuromorphic Data Fusion
All simulations of the network model outside the NRP were performed with NEST 2.20.1.
The simulation of the full experiment was executed on an extended version of the NRP
release 3.0.0 using the included NEST 2.12.0.

The neural populations in the network model from Figure 6.7 are comprised of 51
neurons that represent a value range of [0, 50]. In the NRP experiment, they were replaced
by 51 populations of 100 neurons each to compensate for the shorter simulation time step.
The neurons in the sensory input populations were NEST poisson generators of type
poisson_generator. The population activities for an input stimulus were determined by
Gaussian tuning curves with receptive field size 𝜎𝑟 = 3 as described in Equation 6.8. The
actual spike rate was computed by multiplying the tuning curve output with a gain factor
that encoded the confidence of the estimate. In Figure 6.8, the gains of the vision estimate
and the sound estimate were set to 𝑔𝑉 = 80.0 and 𝑔𝑆 = 40.0, respectively. In the NRP
experiment from Figure 6.6, the gain 𝑔𝑉 for the vision estimate was dynamically varied in
the interval [25.0, 80.0] depending on the current degree of occlusion of the Husky robot,
which was computed based on the robot’s current position. The population representing
the integrated multisensory estimate was comprised of LIF neurons of type iaf_psc_alpha,
whose parameters were set as listed in Table A.8.

Table A.8: Parameters of the LIF neurons in the neural population for multisensory integration from the
network model shown in Figure 6.7. The parameter descriptions are adapted from [535].

Parameter Value Description

E_L −70.0mV Resting membrane potential

C_m 80.0 pF Membrane capacitance

tau_m 10.0ms Membrane time constant

t_ref 1.0ms Duration of the refractory period

V_th −55.0mV Spike threshold

V_reset −70.0mV Reset membrane potential

tau_syn_ex 2.0ms Rise time of the excitatory synaptic alpha function

tau_syn_in 2.0ms Rise time of the inhibitory synaptic alpha function

I_e 0.0 pA Constant input current

V_min −∞mV Minimum membrane potential

All neurons were connected with the one_to_one connection pattern of NEST. This
means that all neurons in the two populations encoding the sensory input were connected
to the corresponding neurons in the population encoding the integrated multisensory
estimate. All synaptic connections are based on NEST’s static_synapse model with a fixed
weight of 500 and a transmission delay of 1.0ms.
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A.3 Staged Reinforcement Learning
The models were implemented with TensorFlow 1.14.0, Keras 2.3.1 and keras-rl 0.4.2. The
kinematics model of the robot for accelerated training was generated with ikpy 2.3.3
and the results were validated with an extended version of the NRP release 3.0.0. The
hyperparameters listed in Table A.9 apply to both the actor network N𝜇 and the critic
network N𝑞.

Table A.9: Hyperparameters for staged reinforcement learning with Algorithm 6.

Parameter Value Description

𝑏 128 Batch size

|B| 1.000 00×105 Size of the replay buffer in Algorithm 6

𝜂 1.00×10−3 Learning rate

𝛽1 9.00×10−1 First moment exponential decay rate in the Adam optimizer

𝛽2 9.99×10−1 Second raw moment exponential decay rate in the Adam optimizer

𝜀𝐴𝑑𝑎𝑚 1.00×10−7 Denominator offset in the Adam optimizer

𝜏 1.00×10−2 Target network update rate in Algorithm 6

𝛾 9.80×10−1 Discount factor in Equation 6.27
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