
CommonRoad-RL: A Configurable Reinforcement Learning
Environment for Motion Planning of Autonomous Vehicles

Xiao Wang, Hanna Krasowski, and Matthias Althoff

Abstract— Reinforcement learning (RL) methods have gained
popularity in the field of motion planning for autonomous
vehicles due to their success in robotics and computer games.
However, no existing work enables researchers to conveniently
compare different underlying the Markov decision processes
(MDPs). To address this issue, we present CommonRoad-RL—
an open-source toolbox to train and evaluate RL-based motion
planners for autonomous vehicles. Configurability, modularity,
and stability of CommonRoad-RL simplify comparing different
MDPs. This is demonstrated by comparing agents trained
with different rewards, action spaces, and vehicle models on
a real-world highway dataset. Our toolbox is available at
commonroad.in.tum.de.

I. INTRODUCTION

Reinforcement learning (RL) approaches are increasingly
being used to handle motion planning for autonomous driv-
ing. In contrast to human-engineered motion planners, RL
algorithms learn the optimal behavior through rewards during
driving. In addition, complex tasks can be solved using
complex function approximators, such as neural networks,
to represent an agent. Researchers using RL for motion
planning typically create environment models specifically
tailored to the current research question. As a consequence,
many variations of the Markov decision processes (MDPs),
i.e., various action and state spaces, reward definitions, and
driving scenarios, exist in the literature [1], and because of
the effort and time required to implement several variations,
these processes are rarely compared with each other.

Besides varying MDPs, traffic data used in simulated
RL environments can originate from different sources, e.g.,
driver models or real traffic data. To compare different RL
approaches, traffic data must be integrated in a deterministic
way. The CommonRoad benchmark suite [2] offers a large
number of deterministic benchmark scenarios, either con-
structed from real traffic or by running the traffic simulator
SUMO [3], [4] in a deterministic way. In addition, all
scenario data are well-defined to easily extract meaningful
observations compared to extracting raw sensor data.

To effortlessly benchmark different MDPs of RL problems
for motion planning in autonomous driving, we provide a
configurable and deterministic RL environment. This RL
environment is automatically generated according to user
specifications using our novel toolbox CommonRoad-RL,
which profits the following benefits:

All authors are with the Department of Informatics, Technical University
of Munich, 85748 Garching, Germany.
xiao.wang@tum.de, hanna.krasowski@tum.de,
althoff@in.tum.de

• it provides comprehensive definitions of state spaces,
action spaces, and rewards for RL agents;

• it automatically creates a training and evaluation en-
vironment according to a configuration file defined by
users;

• it enables users to quickly test state-of-the-art RL
algorithms on real-world traffic scenarios, identifying
the ideal choice of an MDP and reducing potential
implementation errors;

• it offers a unified interface for several powerful motion
planning tools, such as an efficient drivability checker
[5], a map converter [6], a critical-scenario factory [7],
and a scenario designer [8];

• it is provided as open-source code and works with all
scenarios of the CommonRoad benchmark suite [2].

The remainder of this paper is structured as follows:
Section II discusses related tools. Section III describes
CommonRoad-RL and its features, and Section IV showcases
our tool using recorded highway data. We conclude and give
an outlook on future work in Section V.

II. RELATED WORK

Multiple open-source tools are available to train a driving
agent. Driving simulators [9]–[12] require an interface to
conduct RL, whereas RL environments [13]–[15] can be
directly connected to RL algorithms, albeit often only sup-
porting simple traffic simulations. We limit our review to
the most popular tools and refer interested readers to a more
comprehensive review [16]. An overview of the reviewed
tools is provided in Tab. I.

A. Autonomous Driving Simulators

CARLA [9] is an autonomous driving simulator with
realistic driving environments, including traffic signs and
lights as well as a variety of sensors. There are open-source
implementations to include CARLA in an RL environment,
and an open-source interface to import real-world traffic
data [17]. LGSVL [10] is a simulator similar to CARLA
that also includes realistic models of driving environments
and many different sensors. Furthermore, an RL environment
is provided that features continuous visual observation and
continuous actions to a realistic vehicle. TORCS [12] is a
racing simulator used for gaming and research. However,
TORCS only provides racing tracks and cannot be used to
simulate a realistic road environment. Automotive Simulator
[11] is a simulator for autonomous driving written in Julia. It
can import real-world road networks, driver models, and the
NGSIM dataset [18]. Available RL interfaces of CARLA,

https://commonroad.in.tum.de

TABLE I: Related tools and their supported features.

Tool RL
en

vir
on

men
t

Rea
lis

tic
sce

nar
ios

Rea
l tra

ffic data

Con
figu

ra
ble

M
DP

Doc
umen

tat
ion

CARLA [9] Ë Ë é Ë
LGSVL [10] Ë Ë é é Ë

TORCS [12] é é é
Automotive Simulator [11] é Ë Ë é é

BARK [13] Ë Ë Ë

highway-env [14] Ë é Ë

OpenAI gym [15] Ë é é é
CommonRoad-RL Ë Ë Ë Ë Ë

LGSVL, and TORCS do not feature a configurable obser-
vation and action space and, thus, are not easily adaptable.
For Automotive Simulator, there is no explicit RL environ-
ment implemented. Furthermore, real traffic data cannot be
imported into LGSVL and TORCS.

B. RL Training Environments

BARK [13] is a simulation framework for behavior bench-
marking of autonomous driving. It supports real traffic data,
driver models, and multi-agent RL. The provided scenarios
are highway, merging, and intersection scenarios. Another
open-source RL environment is highway-env [14], which
models ten different types of scenarios (e.g., highway, round-
about, and intersection scenarios) as well as supports a
modular state and action space. While a multi-agent setting is
possible, traffic participants other than cars are not supported,
and road networks cannot be imported. OpenAI gym [15]
defines a common interface for RL environments, which
can be easily combined with open-source RL algorithms.
In addition, OpenAI gym contains a collection of different
RL environments; the most appropriate one for autonomous
driving is the CarRacing environment. However, in CarRac-
ing, there are no traffic participants, and a task cannot be
easily adapted to realistic roads.

To summarize, among all existing tools, only BARK and
highway-env support configurable MDPs. Yet, only a few
types of states and actions are supported by them in contrast
to CommonRoad-RL.

III. COMMONROAD-RL

A. Overview

CommonRoad-RL enables motion planning for au-
tonomous driving in realistic traffic scenarios. Subsequently,
we briefly summarize the key features of CommonRoad-RL.

1) Scenario specification: CommonRoad-RL fully adopts
the scenario specification of CommonRoad [2]. In Common-
Road, a driving scenario consists of a road network, static
obstacles, dynamic obstacles, and an initial state as well as
a goal region of the planning problem. In CommonRoad
benchmarks, a road network is represented as lanelets [19],

which is more lightweight and yet as expressive as other for-
mats, such as OpenDRIVE [20]. In addition, CommonRoad
provides a map converter ([6] is included in [8]), which
converts maps from OpenDRIVE [20] and OpenStreetMap
[21] into lanelets and supports the manual creation of own
maps in a graphical editor.

Currently, CommonRoad benchmarks offer more than
4 000 open-source scenarios, including highways, intersec-
tions, roundabouts, and race tracks. The number of scenarios
is constantly increasing because the scenario factory [7] gen-
erates scenarios automatically by downloading maps from
all over the world and generating traffic with the SUMO
simulator [3]. In addition, we provide a tool1 to convert
popular traffic datasets, which are publicly available for
scientific purposes. Currently, the supported datasets include
highD [22], inD [23], and INTERACTION [24]. We will
release converters for more popular datasets in the future.

2) Configurable Markov decision process: We model mo-
tion planning problems for autonomous vehicles as a finite-
horizon, discounted MDP, defined by a 5-tuple (S, A, P , r,
γ), where S represents the set of states; A represents the
set of actions; P : S × A × S → R returns the transition
probabilities; r : S × A × S → R returns the immediate
reward; γ ∈ (0, 1) is the discount factor. If the agent can
only observe partial information from the environment, the
perceived part of the state space S is referred to as the
observation space.

Each work for RL-based motion planning for autonomous
vehicles uses different state spaces, action spaces, and re-
wards [1]. CommonRoad-RL provides a comprehensive def-
inition of MDPs, which are commonly used in the literature.
Furthermore, users can easily modify existing MDPs using
a configuration file, which allows them to easily compare
different configurations. In addition, our modular architecture
simplifies the creation of new MDPs from scratch if the
desired ones are not provided.

3) Core modules: Our architecture is shown in Fig. 1 as
a unified modeling language (UML) class diagram2, where
our class is inherited from the OpenAI gym.Env [15].
CommonRoad-RL consists of four core modules:

• observation contains information about the envi-
ronment, including states of the ego vehicle, states of
surrounding traffic participants, topological information
about the road network, and information about the goal
region;

• action defines different kinds of actions, including
control inputs of different vehicle models and discrete
actions for high-level planning;

• termination defines the conditions when an episode
ends;

• reward provides a sparse and dense definition of
reward functions.

1commonroad.in.tum.de
2uml.org

https://commonroad.in.tum.de
https://uml.org

gym.Env CommonRoadEnv

Composition
Generalization

1

ObservationCollector TerminationActionReward

1 1 1

1

1..N

Observation

EgoObservation SurroundingObservationGoalObservationLaneletObservation

ContinuousAction DiscreteAction

Fig. 1: UML class diagram of CommonRoad-RL.

B. Observation Space

We define observations that are commonly used in the
literature in four categories, as shown in Tab. II. Note that we
represent some observations in a Frenet frame [25] aligned
with the centerline of a lane occupied by the ego vehicle,
whereas the global frame is a Cartesian coordinate system.

The surrounding traffic participants can either be detected
by lane-based adjacency relative to the ego vehicle or by
Lidar-like beams. Both detection methods are provided in
CommonRoad-RL and are shown in Fig. 2. The shape and
range of the sensing area as well as the number of Lidar-like
beams are user-defined parameters.

C. Action Space

The action space of MDPs can be discrete or continuous.
For discrete action spaces, either continuous control inputs
are discretized or high-level planning decisions are used.
If high-level planning decisions are modeled by discrete
spaces, a low-level controller is required to execute high-
level actions. CommonRoad-RL currently features a discrete
action space and multiple continuous action spaces.

Our continuous action spaces are defined by control in-
puts for the following vehicle models: point-mass model,
kinematic single-track model, single-track model, multi-body
model, and yaw-rate model. The yaw-rate model is similar to
the kinematic single-track model but uses yaw-rate as input
[26]. The definition of the other models can be found in the
CommonRoad documentation3.

The discrete action space of CommonRoad-RL contains
longitudinal and lateral jerk inputs to a vehicle model. We
discretize the jerk values as

ji = −jmax +
2i

nk − 1
jmax,

where jmax is the maximum jerk possible for the ego
vehicle, nk represents the number of discrete actions, and
i ∈ {0, . . . , nk}. This is performed analogously for the lateral
and longitudinal jerks. When a jerk value would result in an
acceleration outside the friction circle, we project it on the
friction circle to consider the friction limit of tires.

3commonroad.in.tum.de/model_cost_functions

TABLE II: Observation space definition.

Observation Unit Description

Ego-Vehicle-Related

velocity m/s velocity
acceleration m/s2 acceleration
jerk m/s3 jerk
relative heading rad yaw angle in the Frenet frame
steering angle rad steering angle
steering angular velocity rad/s steering angular velocity

turn rate rad/s
first derivative of yaw angle
in the global frame

Road-Network-Related

relative offset m
offset to lane centerline;
positive means right of centerline

lane curvature m−1 curvature of closest centerline point
left marker distance m lateral distance to left lane marking
right marker distance m lateral distance to right lane marking
left road edge distance m lateral distance to left road edge
right road edge distance m lateral distance to right road edge
off-road∗ − if vehicle drives out of roadway

Goal-Related

Euclidean goal distance m Euclidean distance to goal region

longitudinal goal dis-
tance

m
longitudinal distance to goal region
in Frenet frame

lateral goal distance m
lateral distance to goal region
in Frenet frame

remaining time steps − remaining time steps defined in the
goal specification

relative goal orientation rad
smallest orientation deviation to
interval of goal orientations

relative goal velocity m/s
smallest velocity deviation to
interval of goal velocities

goal reached∗ − if ego vehicle reaches the goal re-
gion

time out∗ − if there is no remaining time

Surrounding-Traffic-Participants-Related

collision∗ − if ego vehicle collides with other
traffic participants

Lane-based surrounding detection (see Fig. 2a)

distance to surrounding
participants

m distance between ego vehicle and six
lane-based surrounding traffic par-
ticipants (within rsense)

relative velocity to sur-
rounding participants

m/s relative velocity between ego vehi-
cle and six lane-based surrounding
traffic participants

Lidar-based surrounding detection (see Fig. 2b)

Lidar-like beams 1-N m distance of N Lidar-like beams
(within rsense)

range rate Lidar-like
beams

m/s relative velocity of reflection points

∗ Boolean variables

https://commonroad.in.tum.de/model-cost-functions

v

rsense

not in adjacent lane

outside sensing range

Lidar-like beam

detection point

ignored vehicle

detected vehicle

ego vehicle

sensing area

left follow left lead

same follow same lead

right follow right lead

further away than right follow

(a) Lane-based detection for six adjacent vehicles within a
circular sensing range

v

rsense

outside sensing range

(b) Lidar-based surrounding detection using 12 Lidar-like
beams within a circular sensing range

Fig. 2: Environment detection in CommonRoad-RL.

D. Termination and Rewards

Users can select several termination conditions in
CommonRoad-RL using the binary variables in Tab. II:

• 1reach_goal = 1 if the ego vehicle reaches the goal area.
• 1collision = 1 if the ego vehicle collides with others.
• 1off_road = 1 if the ego vehicle drives off-road.
• 1time_out = 1 if the time limit of the scenario is reached.
• 1safe_dist = 1 if the safe distance between the ego

vehicle and its leading vehicle is violated.

Let c� denote coefficients for each reward term. We define
a sparse reward function as:

rsparse = rreach_goal + rcollision + roff_road + rtime_out, (1)

where

r� = c� · 1�.

In addition, we define a dense reward function as:

rdense = rsparse + rcloser + rsafe_dist + rroad_center, (2)

TABLE III: Related tools and their supported datasets.

Tool Supported datasets

BARK [13] INTERACTION
CRTS [17] NGSIM , openDD [29]
CommonRoad-RL NGSIM, highD, inD, INTERACTION

where

rcloser = ccloser_long [dlong(k − 1)− dlong(k)]

+ ccloser_lat [dlat(k − 1)− dlat(k)],

rsafe_dist = − exp(csafe
dlead

dsafe
)1safe_dist,

rroad_center = ccenter|dlat_offset|,

where dlong(k) and dlat(k) denote the longitudinal and
lateral distance between the ego vehicle and the goal region
at time k ∈ N, respectively. Furthermore, dlead and dsafe

denote the current distance and safe distance [27] between
the ego vehicle and its leading vehicle, respectively, and
dlat_offset denotes the lateral offset of the ego vehicle to the
center line of its current lane. Note that we use an exponential
function in rsafe_dist to severely penalize agents driving too
close to the leading vehicle.

IV. EXPERIMENTS

We demonstrate the usefulness of CommonRoad-RL by
comparing four agents trained with different settings4. The
relevant configuration parameters are listed in the appendix.
We use the deep RL algorithm proximal policy approxima-
tion (PPO) [28]. All experiments are conducted on the real-
world highway drone (highD) dataset [22], which contains
16.5 h of vehicle trajectories with a time step size of ∆t
= 0.04 s. We convert the dataset into 3000 scenarios with a
duration of 40 s. For each scenario, we randomly choose a
vehicle as the ego vehicle, create a planning problem using
its initial and final states, and remove this vehicle from the
scenario.

Note that we omit an experimental comparison between
our tool and other tools because none of the existing tools
supports the same settings we used in our experiments. For
interested readers, we list the necessary adaptions of existing
tools after each experiment. We limit ourselves to tools that
support real-world scenarios and provide an RL training
environment, namely, BARK [13] and CARLA Real Traffic
Scenarios [17]. The supported datasets are listed in Tab. III.

A. Reward Comparison

The learning curves of agents trained with the sparse
reward (1) (named sparse agent) and the dense reward (2)
(named dense agent) are shown in Fig. 3a. Note that both
agents are trained using a continuous action space and a
point-mass vehicle model. We omit the learning curves of

4All configurations used in our experiments are provided in
gitlab.lrz.de/tum-cps/commonroad-rl to reproduce our results.

https://gitlab.lrz.de/tum-cps/commonroad-rl

250 500 750
Training Steps * 1000

0.00

0.25

0.50

0.75

G
oa

l-R
ea

ch
in

g
R

at
e

dense reward sparse reward

250 500 750
Training Steps * 1000

0.00

0.05

0.10

0.15

C
ol

lis
io

n
R

at
e

250 500 750
Training Steps * 1000

0.0

0.2

0.4

0.6

O
ff-

R
oa

d
R

at
e

250 500 750
Training Steps * 1000

0.00

0.02

0.04

0.06

M
ax

T
im

e
R

ea
ch

ed

(a) Learning curves of agents trained with sparse and dense
rewards.

500 100010001000
Training Steps * 1000

0

20

40

To
ta

lR
ew

ar
d

continuous action discrete action

500 100010001000
Training Steps * 1000

0.00

0.25

0.50

0.75

G
oa

l-R
ea

ch
in

g
R

at
e

500 100010001000
Training Steps * 1000

0.0

0.1

0.2

C
ol

lis
io

n
R

at
e

500 100010001000
Training Steps * 1000

0.0

0.2

0.4

0.6

O
ff-

R
oa

d
R

at
e

(b) Learning curves of agents trained with discrete and con-
tinuous actions.

250 500 750
Training Steps * 1000

−20

0

20

40

To
ta

lR
ew

ar
d

point-mass model
kinematic single-track model

250 500 750
Training Steps * 1000

0.00

0.25

0.50

0.75

G
oa

l-R
ea

ch
in

g
R

at
e

250 500 750
Training Steps * 1000

0.0

0.1

0.2

C
ol

lis
io

n
R

at
e

250 500 750
Training Steps * 1000

0.00

0.25

0.50

0.75

O
ff-

R
oa

d
R

at
e

(c) Learning curves of agents trained with point-mass model
and kinematic single-track model.

Fig. 3: Learning curves of agents trained with different
reward functions, action spaces, and vehicle models.

reward values as these two reward definitions have different
scales. The goal-reaching rate of the sparse agent is sig-
nificantly higher than the dense agent, and the collision and
off-road rates of the sparse agent are significantly lower than
for the dense agent. Although the time-out rate of the sparse
agent is slightly higher than that of the dense agent, it can
be concluded that the sparse agent significantly outperformed
the dense agent. A possible reason is that the dense reward
is more sensitive to the coefficients of each term in (2).
Therefore, using the default coefficients was insufficient for
the agent to converge to good behavior. To improve the
performance of the dense agent, an automatic parameter
search can be performed for the reward coefficients using
CommonRoad-RL.

BARK supports a similar sparse and dense reward, which
can be selected by changing the source code of the config-
urable environment. In addition, the coefficients of the reward
terms are easily adaptable through a configuration file. On
the other hand, CARLA Real Traffic Scenarios also support
both reward types even though their coefficients cannot be
configured directly.

B. Action Comparison

To compare different action spaces, we used the contin-
uous action space of the point-mass model and the discrete
action space described in Sec. III-C, where ni = nlong =
nlat = 3 and jmax = 10 m s−3. This results in nine possible
action combinations. The agent can select a new discrete
action for every discrete time step. Fig. 3b shows learning
curves for both action spaces when training with the sparse
reward. Using a discrete action space exhibits a slower
convergence than using a continuous action space. However,
the total reward, goal-reaching rate, collision rate, and off-
road rate of both agents are similar after 1.5 million training
steps. The slower convergence is most likely due to the
discrete agent’s need to learn an optimal behavior with fewer
available actions.

In CARLA Real Traffic Scenarios, the action space is
a carla.Vehicle object, which requires an additional
interface to convert the raw action values into the required
object. Furthermore, this interface needs to be integrated
with the source code of the learning algorithms, which
reduces modularity. To compare discrete and continuous
action spaces, both action spaces need to be implemented in
this interface. Although BARK contains both types of action
spaces, the exact implementation differs and the source code
of the configurable environment needs to be adapted to
switch between the discrete and continuous action spaces.

C. Vehicle Model Comparison

The learning curves of two agents trained using a point-
mass model and a kinematic single-track model, respectively,
are shown in Fig. 3c. Note that both agents are trained using
the sparse reward and a continuous action space. The agent
trained using a point-mass model performed moderately
better in terms of reward values, goal-reaching rates, and
collision rates. The off-road rates of the two agents are almost

identical. The different performance of the two agents could
result from the fact that the point-mass model neglects the
nonholonomic behavior of vehicles, and thus, it can reach
the goal and avoid collisions more easily. However, some of
the solutions of the point-mass model might not be drivable
because nonholonomic behavior is not considered.

The point-mass model and kinematic single-track model
are generally available in BARK, yet in the RL interface of
BARK, only the kinematic single-track is used for continuous
planning. Additional models would have to be implemented,
and switching between different vehicle models would be
more difficult than in CommonRoad-RL. CARLA provides
different vehicle models, yet it still lacks the point-mass and
kinematic single-track models.

D. Discussion

One million training steps take approximately 2000 s on
32 threads on a machine with an AMD EPYC 7742 2.2 GHz
processor and 1024 GB of DDR4 3200 MHz memory. This
computation time is viable for testing different configura-
tions. Our experiments show that the agents trained on the
highD dataset achieved a 40% to 85% goal-reaching rate
using the default setting of the observation space and reward
coefficients. In addition, the results show that the reward
definition has a larger effect on performance than the action
space definition and used vehicle models.

Our modular implementation makes it easier to improve
these results as it enables automatic fine-tuning of config-
uration parameters for the learning algorithm and environ-
ment. In addition, each experiment was conducted by simply
changing one parameter in the configuration file, whereas
60 parameters can be adapted. Thus, many different settings
can be examined with CommonRoad-RL, and benchmarking
different MDPs for motion planning in autonomous driving
is straightforward. On the contrary, in BARK and CARLA
Real Traffic Scenarios, the observation spaces are much less
expressive, and implementing additional missing features is
required.

V. CONCLUSIONS

We introduced CommonRoad-RL—an open-source tool-
box to train and evaluate RL-based motion planners for
autonomous vehicles. The configurable state spaces, action
spaces, and rewards of CommonRoad-RL enable researchers
to create and identify an ideal choice of an MDP for their
autonomous driving task automatically. To illustrate this, we
compared agents trained with different reward definitions,
vehicle models, and action definitions.

To provide additional benefits, we will provide the follow-
ing functionalities in CommonRoad-RL in the near future:

• multi-agent RL for cooperative driving with an interface
to allow individual actions for each agent;

• closed-loop simulation: we will add simulation to the
existing interface with the traffic simulator SUMO [4],
an interface to CARLA, and integrate behavior models
directly into CommonRoad-RL;

• support for more scenario specifications, such as
Lanelet2 [30] and OpenSCENARIO5.

• open-source wrappers for safety layers [31] to ensure
safety during learning;

• uncertainties in observations.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial financial
support of this work by the German Research Foundation
Grant AL 1185/3-2 and the research training group CON-
VEY funded by the German Research Foundation under
grant GRK 2428.

REFERENCES

[1] S. Aradi, “Survey of deep reinforcement learning for motion planning
of autonomous vehicles,” IEEE Transactions on Intelligent Transporta-
tion Systems, pp. 1–20, 2020.

[2] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719 – 726.

[3] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using SUMO,” in Proc. of the IEEE
International Conference on Intelligent Transportation Systems, 2018,
pp. 2575–2582.

[4] M. Klischat, O. Dragoi, M. Eissa, and M. Althoff, “Coupling sumo
with a motion planning framework for automated vehicles,” in SUMO
User Conference, 2019.

[5] C. Pek, V. Rusinov, S. Manzinger, M. C. Üste, and M. Althoff,
“CommonRoad drivability checker: Simplifying the development and
validation of motion planning algorithms,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2020, pp. 1013–1020.

[6] M. Althoff, S. Urban, and M. Koschi, “Automatic conversion of
road networks from OpenDRIVE to lanelets,” in Proc. of the IEEE
International Conference on Service Operations and Logistics, and
Informatics, 2018, pp. 157–162.

[7] M. Klischat, E. Irani Liu, F. Höltke, and M. Althoff, “Scenario factory:
Creating safety-critical traffic scenarios for automated vehicles,” in
Proc. of the IEEE International Conference on Intelligent Transporta-
tion Systems, 2020.

[8] S. Maierhofer, M. Klischat, and M. Althoff, “CommonRoad Scenario
Designer: An Open-Source Toolbox for Map Conversion and Scenario
Creation for Autonomous Vehicles,” in Proc. of the IEEE International
Conference on Intelligent Transportation Systems, 2021.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. of the 1st Annual
Conference on Robot Learning.

[10] “LGSVL Simulator: An Autonomous Vehicle Simulator,” https://
github.com/lgsvl/simulator, LG Electronics America R & D Center,
2020, (visited on Mar. 11, 2021).

[11] “Automotive Simulator,” https://github.com/sisl/AutomotiveSimulator.
jl, Stanford Intelligent Systems Laboratory, 2020, (visited on Mar. 11,
2021).

[12] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom,
and A. Sumner, “TORCS, The Open Racing Car Simulator,” http:
//www.torcs.org, 2014, (visited on Mar. 11, 2021).

[13] J. Bernhard, K. Esterle, P. Hart, and T. Kessler, “BARK: Open
Behavior Benchmarking in Multi-Agent Environments,” in Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2020, pp. 6201–6208.

[14] E. Leurent, “An Environment for Autonomous Driving Decision-
Making,” https://github.com/eleurent/highway-env, 2018, (visited on
Mar. 11, 2021).

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, 2016.

[16] K. Tong, Z. Ajanovic, and G. Stettinger, “Overview of Tools Sup-
porting Planning for Automated Driving,” in Proc. of the IEEE
International Conference on Intelligent Transportation Systems, 2020.

5openscenario.org

https://github.com/lgsvl/simulator
https://github.com/lgsvl/simulator
https://github.com/sisl/AutomotiveSimulator.jl
https://github.com/sisl/AutomotiveSimulator.jl
http://www.torcs.org
http://www.torcs.org
https://github.com/eleurent/highway-env
https://www.asam.net/standards/detail/openscenario/

[17] B. Osiński, P. Miłoś, A. Jakubowski, P. Zięcina, M. Martyniak,
C. Galias, A. Breuer, S. Homoceanu, and H. Michalewski, “CARLA
Real Traffic Scenarios – novel training ground and benchmark for
autonomous driving,” arXiv preprint arXiv:2012.11329, 2020.

[18] “Next Generation Simulation (NGSIM) Vehicle Trajectories and Sup-
porting Data,” data.transportation.gov, U.S. Department of Transporta-
tion Federal Highway Administration, 2016, (visited on Mar. 11,
2021).

[19] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Proc. of the IEEE Intelligent
Vehicles Symposium, 2014, pp. 420–425.

[20] M. Dupuis, M. Strobl, and H. Grezlikowski, “OpenDRIVE 2010 and
beyond – status and future of the de facto standard for the description
of road networks,” in Proc. of the Driving Simulation Conference
Europe, 2010, pp. 231–242.

[21] M. Haklay and P. Weber, “OpenStreetMap: User-generated street
maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[22] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD
dataset: A drone dataset of naturalistic vehicle trajectories on German
highways for validation of highly automated driving systems,” in Proc.
of the IEEE International Conference on Intelligent Transportation
Systems, 2018, pp. 2118–2125.

[23] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein,
“The inD dataset: A drone dataset of naturalistic road user trajectories
at German intersections,” in Proc. of the IEEE Intelligent Vehicles
Symposium, 2019, pp. 1929–1934.

[24] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “INTERACTION dataset: An international, adversarial
and cooperative motion dataset in interactive driving scenarios with
semantic maps,” arXiv:1910.03088 [cs, eess], 2019.

[25] M. P. Do Carmo, Differential geometry of curves and surfaces: revised
and updated second edition. Courier Dover Publications, 2016.

[26] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a
nonholonomic car-like robot,” in Robot Motion Planning and Control,
J. P. Laumond, Ed. Springer Berlin Heidelberg, 1998, pp. 171–253.

[27] M. Althoff and R. Lösch, “Can automated road vehicles harmonize
with traffic flow while guaranteeing a safe distance?” in Prof. of the
IEEE International Conference on Intelligent Transportation Systems,
2016, pp. 485–491.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[29] A. Breuer, J.-A. Termöhlen, S. Homoceanu, and T. Fingscheidt,
“openDD: A large-scale roundabout drone dataset,” in Proc. of the
IEEE International Conference on Intelligent Transportation Systems,
2020.

[30] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann,
F. Kuhnt, and M. Mayr, “Lanelet2: A high-definition map framework
for the future of automated driving,” in Proc. of the IEEE International
Conference on Intelligent Transportation Systems, 2018, pp. 1672–
1679.

[31] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc.
of the IEEE International Conference on Intelligent Transportation
Systems, 2020.

APPENDIX

CONFIGURATIONS USED IN THE NUMERICAL
EXPERIMENTS

vehicle model and types
vehicle_params:
#1: FORD_ESCORT; 2: BMW_320i; 3: VW_VANAGON
vehicle_type: 2
#0: PM, 1: ST, 2: KS, 3: MB, 4: YawRate
vehicle_model: 0

action configuration
action_configs:
action_type: discrete # continuous
long_steps: 3

lat_steps: 3

reward configuration
reward_type: sparse_reward
reward_configs:
reward_goal_reached: 50.
reward_collision: -50.
reward_off_road: -20.
reward_time_out: -10.
only used in dense_reward
reward_closer_to_goal_coefficient_long: 0.5
reward_closer_to_goal_coefficient_lat: 0.5
reward_safe_distance_coefficient: 5.
reward_stay_in_road_center: 1.

https://data.transportation.gov/

	Introduction
	Related Work
	Autonomous Driving Simulators
	RL Training Environments

	CommonRoad-RL
	Overview
	Scenario specification
	Configurable Markov decision process
	Core modules

	Observation Space
	Action Space
	Termination and Rewards

	Experiments
	Reward Comparison
	Action Comparison
	Vehicle Model Comparison
	Discussion

	Conclusions
	References
	Appendix

