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Abstract— Rotation invariance is a crucial property for 3D
object classification, which is still a challenging task. State-of-
the-art deep learning-based works require a massive amount
of data augmentation to tackle this problem. This is however
inefficient and classification accuracy suffers a sharp drop
in experiments with arbitrary rotations. We introduce a new
descriptor that can globally and locally capture the surface
geometry properties and is based on a combination of spher-
ical harmonics energy and point feature representation. The
proposed descriptor is proven to fulfill the rotation-invariant
property. A limited bandwidth spherical harmonics energy
descriptor globally describes a 3D shape and its rotation-
invariant property is proven by utilizing the properties of
a Wigner D-matrix, while the point feature representation
captures the local features with a KNN to build the con-
nection to its neighborhood. We propose a new network
structure by extending PointNet++ with several adaptations
that can hierarchically and efficiently exploit local rotation-
invariant features. Extensive experimental results show that
our proposed method dramatically outperforms most state-of-
the-art approaches on standard rotation-augmented 3D object
classification benchmarks as well as in robustness experiments
on point perturbation, point density, and partial point clouds.

I. INTRODUCTION

Convolutional neural networks (CNN) [1] have shown
tremendous success in image processing due to their
translation-invariant capability of detecting local patterns
regardless of their position in the image and their ability
to process regular data, such as image grids or 3D voxels.
However, the more challenging rotation-invariant property is
still missing in the designed structure [2]. Data augmentation
is a common approach to address this issue. The infinite
property of the rotation group howver makes this approach
less efficient and comes with a high computational cost.
A big neural network with rotation-augmented data is re-
quired to generalize the data set. In 3D, geometric irregular
data formats such as point clouds increase the difficulty
of handling the rotation transformation, while irregular data
formats suffer from a permutation problem N!. To address
this issue and to inherit the benefits of convolutional net-
works, which can process regular data formats, previous
work such as [3], [4] voxelized geometric shapes. [5], [3], [6]
proposed a rotation-equivariant network with newly designed
spherical convolutional operators. However, the voxelization
of 3D geometry induces a trade-off between resolution and
computational cost. The pioneering work PointNet used a
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spatial transformation network to learn an affine transforma-
tion, which still did not fulfill the requirement. Inspired by
CNNs, which use different receptive fields to aggregate the
local features, DGCNN used a dynamic k-nearest neighbors
algorithm (KNN) to exploit local information. However, its
classification results still suffer a sharp drop in rotation
experiments.

For alleviating the issue, we introduce two different
rotation-invariant features (RIF). The first one is spherical
harmonics [7], which transform the Cartesian pose to the
spectral domain by using a non-commutative Fourier analysis
methods and are related to the power spectrum in the
perspective of signal processing. The second feature can
locally describe the geometry relationship by creating a
Darboux frame at each object point with a KNN-graph. This
geometry point feature is also utilized in the point feature
histogram [8] and fast point feature histogram [9]. The
rotation-invariant feature aims at separating the rotated point
cloud and the network so that the input space is invariant
to arbitrary rotation perturbation. Furthermore, we design a
new network structure that can hierarchically extract the local
features by applying the farthest point sampling strategy.
The proposed network structure is composed of RIMapping,
PF Abstraction, and Classification blocks. In the RIMapping
block, rotation-invariant features are fed to a feature transfor-
mation network, which maps the lower level feature to a high
level embedding space. Two consequent abstraction layers
work on these high-level embedding features. For further
exploiting the local geometry information, a fully connected
point feature graph is built on each cluster and the resultant
features are fed to a point feature transformation. Afterward,
a global abstraction layer can aggregate all previous em-
bedding features together to obtain a global feature. The
Classification block is a standard fully connected network to
classify the objects. We evaluated our proposed network on
ModelNet40 with different experimental settings and achieve
or exceed most state-of-the-art approaches.

Our primary contributions are two-fold: a) we introduce
a novel geometry rotation-invariant feature descriptor, which
can globally and locally represent a 3D shape. b) a new
rotation-invariant classification network structure is designed,
which can efficiently exploit local geometric features.

II. RELATED WORK

With recent good results from deep learning in image-
based recognition, 3D visual recognition has also received
more attention and rapid development. It benefits from deep
learning in extracting and learning geometric features more



efficiently, but the recognition of 3D geometry differs from
image-based recognition in many factors. One main aspect
are the representation formats, where 3D geometry uses
various methods such as point cloud-based representation,
implicit surfaces based representation, or volumetric-based
representations. These different formats lead to different
learning methods. In contrast, the imaged-based representa-
tion is interpreted in regular data, where the conventional
CNN is designed to handle such regular data. The per-
mutation N! is a common problem in the irregular data
format. Based on these observations, previous work seeks to
utilize benefits from conventional CNNs by voxelizing the
3D geometric shape [4], [10], [11], [12] or by using multi-
view images [11], [13], [14]. However, the trade-off between
the resolution and computational cost makes generalization
impossible. Most 3D convolutional neural networks sacrifice
high resolution to obtain fast calculations to build upon a
shallow network. To alleviate the negative impact of accuracy
due to resolution, an Octet [15] is proposed by hierarchically
partitioning the space using a set of unbalanced octrees to
exploit sparse input data.

In contrast to a volumetric representation, PointNet [16]
is the first work that directly feeds the point cloud into
a set of shared MLP networks and uses the max pool
operator to extract global features. It shows a significant
improvement in the perspective of 3D shape reasoning and
computational cost. PointNet, however, does not extract local
information. Follow-up work such as PointNet++ [17] pro-
gressively aggregated local features using the farthest point
sampling strategy. Moreover, DGCNN [18] introduced a
dynamic KNN to build a local graph and aggregated the edge
features to obtain a better feature representation. A point-
based neural network satisfies many properties, e.g., permu-
tation invariance with a shared MLP and max pool operator
and translation equivariance with a relu operator [5]. This
network is shown to solve many classical problems such as
classification, part segmentation, and instance segmentation.
The rotation-invariant property is however still missing in the
designed structures. PointNet applies a spatial transformer
network [19] to predict an affine transformation matrix. Other
work attempts to augment the data set by generating a lot
of SO(3) combinations. However, SO(3) is infinite, and data
augmentation wastes computational resources and cannot
guarantee effectiveness. To alleviate this issue, previous work
proposed a rotation-equivalence network structure. [20], [5],
[3] designed a spherical-based convolutional operator uti-
lizing the properties of spherical harmonics. [21] proposed
tensor field networks, which map point clouds to point clouds
under the constraint of SE(3) equivariance by utilizing a
spherical harmonics filter. Spherical representations for 3D
data are not novel and have been used for retrieval tasks
before the deep learning era [7], [22].

Spherical-based CNNs were initially designed for vox-
elized shapes and suffered a loss of geometric information, as
there is no bijection between R3 and 2-dimensional sphere
S? [23] as mentioned above. Instead of proposing a new
convolutional operator, [23] introduced rigorously rotation-

invariant (RRI) features by transforming the point from
Cartesian space into an embedding space and showed a good
improvement in experiments. However, the RRI features
focus only on the local feature using the same dynamic KNN
as DGCNN.

III. GEOMETRIC RIF DESCRIPTOR

Given a set of transformations T, : V — V for g; €
SO(3), a rotation-invariant function ¢(-) has the property

O(T, @) = $(T, ). (1

where ¢ € R3 is a point in the Cartesian coordinate
system. Pioneering works in processing point clouds are
PointNet and DGCNN, where EdgeConv from DGCNN
and mini-PointNet from PointNet++ utilize the edge feature
represented as an implicit geometry feature by considering
geometric constraints between points. The edge features x; —
x; and pose point x; do not satisfy the property described
in (1). Furthermore, edge features under a dynamic KNN
can only represent the local geometric context for point
clouds in the embedding space. For alleviating this issue,
two rotation-invariant descriptors will be introduced, that
globally (spherical harmonics descriptor) and locally (point
feature descriptor) represent the geometry shape.

A. RI Spherical Harmonics (SH) Descriptor

Definition: Spherical harmonics define an orthonormal
basis over the sphere, with the parameterization

(x,y, z) = (sin(0) cos(g), sin(#) sin(¢p), cos(H)), 2)

where (x, y, z) is a location defined on a unit sphere with co-
latitude 6 and longitude ¢ and the orthonormal basis function
given by Rodrigues’ formula can be described as

Y/"(0, @) = K" P"(cos 0)e™?, 3)

with the normalized constant variable K;" and the associ-
ated Legendre polynomials P™. The parameters / and m
are the spherical harmonic degree and order, respectively.
Furthermore, the order should satisfy the constraint —/ <
m < I. The real spherical harmonics are sometimes known
as tesseral spherical harmonics. These functions have the
same orthonormality properties as the complex ones above.
The harmonics with m > 0 are said to be of cosine type
and those with m < 0 of sine type. The reason for this can
be seen by writing the functions in terms of the Legendre
polynomials P with Condon-Shortley phase convention as

(—1)m\/§1<|’mlpl""'(cos 0)sin(|m|p) ifm<0

Yim =1 /25 P/'(cos 0) if m=0
=™ \/gKrlnPl’"(cos 0) cos(me) if m>0
4)

Moreover, for any rotation matrix R € SO(3), the rotated

SH Yl’"(R-) can be expressed as a linear combination of other
SHs of the same degree /
l

YRy = Y [DRm ] v (5)

m'=—I|



where D(Ié)[m, m'] € CPH+DXCI+D g called the Wigner D-
matrix. Note that the Wigner matrices D' are all orthonormal
and irreducible representations of SO(3) [24], which consid-
ers them as smallest re%)resentations possible. In accordance
with the unitary of DI?, the energy within a subspace is
preserved. Therefore, for any given vector ¢ € C**!, the
Wigner D-matrix shows a norm preservation property [25],
[26] as ”D(Ii)c = ||c||. The theory of spherical harmonics
says that any spherical function f(8, ¢) is decomposed as
the sum of its harmonics:
oo m=l
[0.0)=Y Y an¥"0.9). (6)
1=0 m=—I
with the coefficient a;". Equation (6) can be seen as a kind
of Fourier series on the sphere.
1) Information loss for a limited bandwidth: Since we
cannot solve I — oo, we limit the band / to a constant
degree ng, 4oo- The information loss is defined as

Msh,deg (o]
DINTEDI
1=0 =0 ||

Furthermore, the numerical solution of coefficients a;” can be
approximated by using the Monte Carlo integration approach.

Loss =

)

Nsh,deg
4
af' = == 3 [ (O ) Y]} (Oebn)  ®)
Agh,deg j=0

2) SH energy descriptor: Polygonal-based surface rep-
resentations are typically described as Cartesian coordi-
nates (x, y, z). For spherical harmonics, the surfaces are rep-
resented by f(6, ¢), therefore the mesh must be transformed
into spherical polar coordinates (r, 8, ¢p) about the origin. In
this case we define (0, ¢) = r [27] with the energy spectrum
descriptor of spherical harmonics [7]

Xn(N) = {ll70@. ol 1116, 9)]....} )
with the frequency components

~I —I+1 !
fi= [al,—lYI 24141 " ""’al,lYI] : (10)

Utilizing the norm preservation property of Wigner D-
matrices [7], [20], [26], we can prove that || ;|| is a rotation-
invariant descriptor.

B. RI Point Feature (PF) Descriptors

We employ point feature representations to encode the
neighborhood’s geometrical properties, which provides an
overall point density and pose invariant multi-value feature.
The surface normal [28] is estimated by using PCA on the
k-neighborhood. Furthermore, for each pair p; and g, with
q; € N(p,), Darboux frame at (p,,n,) is defined as

(pt_ps)
= 11
V= Tonlh (i

The point features descriptor [29] is described as a quadru-
plet (a, ¢, 0, d) with

dy = ”Pt _Ps”2 ’
(b:u.(p’;—ps)’

st

u=n

Xu, w=uxy.

a=v-n,,

0 = atan2 (w-n,u-n) . (12)

oo R
||r’rl’c||2

w=uxXv d6

(a) (b) (c)

Fig. 1: (a) illustrates the Darboux frame between a point pair.
(b) calculates the simplified point features of a source point g
with a KNN graph for each point pair. A fully connect point
feature (PF) graph (c) is built on a given source point g;.

Furthermore, we augment the distance r; = ||p;]|, to the
point feature, therefore, we get a quintuple feature descriptor.

1) Proof of rotation-invariant property: Given a point
set S = {p;|Ip € IR”}I,[Z(;]. It is obvious that the L?
norm is a rotation-invariant operator R” to R due to norm
preservation: ||Rx||§ = ||x||§. It can be easily extended
that the inner product (-,-) between two arbitrary points
preserves the rotation-invariant property. In addition, the
cross product has the property Ra X Rb = R(a X b) under
proper rotations R. We define the Darboux frame at g; as a
triple tuple: O; = (u;,v;, w;). By applying a rotation matrix
to the point set, we can get g; = Rq; with the corresponding
Darboux frame (9j = <uj,vj,wj>. As a result, we can
conclude that O; = RO; = (Ru;, Rv;, Rw;). The PF
descriptor is proven to be rotation-invariant:

dyj= ”pt,j —Ds,j )2 = ”Rpt,i - RPs,i”z =dy; =dy (13)
a;=(v;.n,;)=(Rv,Rn;)=(v.n,)=q (14)

o, = <uj’ Py _ps,j)> _ <Rui’R(pt,i _ps,i)> "

dst dst
(15)
6; = atan2 ((wj,nt,j> ) <uj’nt,j>)
= atan2 ((Rwi’ Rnl,i> , <Ru,-, Rn,’i>) = 9,‘ (16)

C. Geometry RIF-Descriptor

The SH-energy and PF descriptors are shown to be
rotation-invariant descriptors. The SH-energy descriptor fo-
cuses on capturing the global features of the 3D shape and
the PF descriptor aims at describing the local features. It
is straightforward to concatenate both descriptors and this
results in the rotation-invariant feature (RIF)-descriptor at g;

T
Xyipi = [(Xsh,i’ Xprio) o (Ko pr,i,k)] , A7)
where &, -, € R™"s*st) with point feature descriptor
(18)

— ot
Xprij = dijs @ bijs 0; 5571 € RO,

with n,; =5 and the spherical harmonics energy descriptor

Xoni = (1ol |

fnsh,degvi”] € R"sh’ nSh = nsh,deg + 1 .
(19)
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Fig. 2: The model architecture (a) consists of the RIMapping, PF Abstraction, and Classification blocks. In the RIMapping
block, a spherical harmonics energy descriptor and simplified point features (SPF) at each point are computed to form a
Geometry RIF descriptor, which is fed to a RIF Transformation to extract a high-level feature. In the PF Abstraction Block,
we have two PF Set Abstraction layers (b) together with a PF Global Abstraction layer (c) to obtain a final global feature,

which is used in a fully-connected Classification network.

IV. NETWORK ARCHITECTURE

The proposed rotation-invariant network consists of three
blocks: RIMapping, PF Abstraction, and Classification,
where the latter is a feed-forward network. Our main con-
tributions are on the design of the RIMapping and PF
Abstraction blocks.

A. Pre-Alignment with PCA

In an experiment on rotation invariance, we transfer a
point cloud set q with an arbitrary rotation matrix R,
resulting in a rotated clone q' = Rgq. According to [22],
we pre-align each input g based on the PCA to its principle
axes, which are indicated as orthonormal coordinates R,
with the formula of q; = qu. It can be shown that the
PCA alignment for a rotated clone q' with corresponding
orthonormal coordinates R; = RR,, leads to g, = Rqu1
RgRTRq = qu = q;. Therefore, pre-alignment can reduce
the impact of the rotation matrix on the network.

B. RIMapping Block

The RIMapping block consists of the Geometry RIF de-
scriptor and RIF Transformation. For acquiring the rotation-
invariant features, we leverage the spherical harmonics and
point feature representation with a KNN to enrich geometric
features for the point cloud, which is represented as a
rotation-invariant descriptor with a size of R™¥1X(tn*pe)
and k;-neighborhood that can globally and locally manifest
a 3D shape. This descriptor provides low-level geometric
clues for high-level geometric feature learning, realized with
a RIF Transformation. The RIF Transformation layer utilizes
a mini PointNet (without input and feature transformation),
consisting of a set of shared Conv2d layers with kernel

size equal to 1, to extract a global feature employing a
max-pooling operator. The output of RIF Transformation
is indicated as embedding feature with a size of R™“,
The PF Transformation has the same structure as the RIF
Transformation, apart from the different input sizes. Both
Transformations intend to aggregate the local details by cal-
culating a weighted average of neighboring features through
a shared local fully-connected layer.

C. PF Abstraction Block

1) PF Set Abstraction: The extracted information from
the RIMapping block is still insufficient for the precise classi-
fication task, as max-pooling can only describe an outline and
some local details could be omitted. To address the problem,
we propose the PF Set Abstraction Layer to hierarchically ex-
ploit the local features, which consists of the sampling layer,
grouping layer, and PointNet layer. PointNet++ inspires
PF Set Abstraction. However, there are several significant
adaptations inside the grouping layer. In the sampling layer,
we use iterative farthest point sampling (FPS) to obtain n,
points, indicated as P,,i € [0, -+, n,]. Each point P; is the
center of a local region C;. In the sequence, a KNN graph
is built at point P; to obtain k-neighborhood, indicated
as [Py, Pyj, -, Py ;] with i € [0, .-+, n,]. In contrast to
PointNet++, which combines the point with the feature from
the last layer and works as input for the PointNet layer, we
utilize a PF graph to convert a point to a rotation-invariant
feature, where PF graph is a fully connected graph (Fig. 1c)
and built at each local region C;. Then, we can get a feature
with a size of R¥171X"f for each point P, ; in the region C;.
In the end, a new rotation-invariant point feature for all local
regions is obtained, indicated as fpp € R™XKiXki=1xmyr



Sequentially, we apply the PF Transformation to extract a
feature for each local region. We concatenate the previous
feature at each center point P, with the newly extracted
feature to form a new feature representation and feed it to
the PointNet layer.

2) PF Global Abstraction: The global abstraction is
the successor layer to the PF Set Abstraction layer, which
reduces the original input cloud to X, € R"*3. We build a
PF graph at the reduced point set and concatenate it with its
spherical energy descriptor, which leads to a new represen-
tation with a size of RM>*=DXUpr+m0) Ty the sequence, we
apply the RIF Transformation for extracting a new feature
representation. This new feature will concatenate with the
feature from the PF Set Abstraction layer. In the end, a mini
PointNet is applied to obtain a global feature.

V. EXPERIMENTS

We evaluate our approach regarding rotation robustness
and compare it with other state-of-the-art methods. We use
ModelNet40 [30] as data set for validating the effectiveness
of the proposed network structure. ModelNet40 consists of
40 categories in the form of CAD models (mostly human-
made). We use the official split with 9843 shapes for training
and 2468 for testing. We apply the farthest point sampling
algorithm to obtain 1024 points on mesh faces according to
the face area and then shift and normalize the point into
a unit sphere with centroid on the origin. During training,
we use Adam [31] for 200 epochs with an initial learning
rate of 103, The algorithm is implemented with PyTorch on
Linux with one GeForce RTX 2080Ti GPU.

A. Evaluation of Rotation Robustness

For evaluating the property of rotation robustness, we
multiply each point cloud from ModelNet40 with a randomly
sampled rotation matrix. Based on the same principle as [20],
we evaluate our model using three different settings: a) train-
ing and testing with azimuthal rotations (z/z), b) training and
testing with arbitrary rotations (SO(3)/SO(3)), c) training
with azimuth rotations while testing with arbitrary rota-
tions (z/SO(3)). The results are presented in Table I. It can be
seen that most networks exhibit a sharp drop in performance
in the settings SO(3)/SO(3) and z/SO(3), in particular in the

TABLE I: Comparison of rotation robustness on rotation-
augmented ModelNet40 benchmark. Our proposed net-
work shows the best performance in the settings z/SO(3)
and SO(3)/SO(3). Note, values are given as a percentage.

Method Input(size) z/z  z/SO@B) SO(3)/SO(3)
PointNet [16] pe (1024 x 3) 89.2 14.7 83.6
PointNet++ [17] pe (1024 x 3) 89.3 28.6 85.0
VoxNet [4] voxel (30%) 83.0 - 73.0
RotationNet 20x [14] voxel (20 x 2242) 92.4 20.0 80.0
SO-Net [32] pe+normal (5000 X 6)  92.6 21.1 80.2
DGCNN [18] pe (1024 x 3) 92.2 335 81.1
Spherical CNN [20] voxel 2 x 642 88.9 78.6 86.9
ClusterNet [23] pe (1024 x 3) 87.1 87.1 87.1
ours(n, geg=20) pc(1024 x 3) 88.4 88.6 88.5
ours(1g 4eg=30) pe(1024 x 3) 88.6 88.7 88.8

Experiments on rotation setting z/z
89.2 893 88.487.8875

€
Ooe = 0.002

Accuracy
2

50 47.5

39.2

(@ (b)

Fig. 3: (a) shows the point cloud with different noise levels
and (b) shows the comparison results against point perturba-
tions.

€=10.01

PointNet++ Ours

latter one. The network DGCNN [18] shows an outstanding
performance in the setting z/z with an accuracy of 92.2 %,
while it only achieves 21.1% in z/SO(3). DGCNN ap-
plies the point directly for classification, which changes
dramatically when applying a rotation matrix in SO(3).
As mentioned before, that point cloud is not a rotation-
invariant representation. This is also a common problem for
the PointNet-based network. The spherical CNN [20] uses
a spherical harmonics-based convolution layer by rasterizing
the point cloud, which shows a significant improvement in
the setting of z/SO(3). However, the difference between its
best performance z/z and z/SO(3) is still significant with a
value of 10.3 %. ClusterNet [23] uses the RRI representation
together with a cluster abstraction to increase classification
performance with a result of 87.1 % in each setting. Note
that the result of ClusterNet is directly cited from [23], as
the code is not available as open source. Table I demonstrates
that our approach achieves the best performance in the
settings z/SO(3) and SO(3)/SO(3) with Npdeg = 20,30.
The difference in the results between each setting is very
small, approximately 0.2 %. Based on these observations,
we can conclude that our proposed network shows the best
performance regarding rotation robustness.

B. Robustness Tests

1) Evaluation of model against point cloud perturbation:
For further evaluation of robustness against perturbation, we
conducted experiments by adding perturbation at each point.
Many studies have shown that deep learning-based networks
can be fooled by using an adversarial attack. Following the
same principle, we add a perturbation value to each point
with ||6]] < €, where € is set between 0.002 and 0.01, as
shown in Fig. 3a. The results are listed in Fig. 3b. It can
be seen that in these two different perturbation levels, our
network with ng, 4., = 20 is more robust under perturbation
when compared to PointNet and PointNet++.

2) Evaluation of model against point cloud density: The
point cloud density also plays an important role in the
classification task. In this section, we downsample Mod-
elNet40 to different point densities in the range of 1024
to 128 by using the farthest point sampling strategy (FPS) or
random input droupout (DP). The downsampled point clouds
are shown in Fig. 4a and the corresponding classification
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Fig. 4: (a) shows the downsampled point cloud and (b)
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Fig. 5: (a) shows the partial point cloud with the deletion
ratio p from 0.1 to 0.2 and (b) shows the results.

accuracy is illustrated in Fig. 4b. It is worth noting that
our proposed network is very robust against point density
changes in these three rotation setups, which decreases the
classification accuracy from 88.6 % to 82.7 % by FPS and
varies from 88.6% to 75.4% by DP. In comparison to
DGCNN [18], the results vary from the 92.2 % to 79.2 %
in z/z and from 33.5% to 26.5% in z/SO(3). Under the
same point density, our model shows no significant change,
which further verifies our model’s robustness.

3) Evaluation of model against partial point cloud: In
reality, we can only get a partial point cloud by using a
single stationary camera. To evaluate the partial point cloud
classification model, we train our model with a complete
point cloud and test against a partial point cloud. The partial
point cloud is obtained by first deleting the completed point
cloud with a ratio p from 0.1 to 0.2 and then using iterative
FPS (Fig. 5a). The results are illustrated in Fig. 5b. We
compare our model with PointNet and DGCNN under three
rotation settings. Training and testing data set are rotated with
a PCA algorithm to reduce the impact of arbitrary rotation.
From Fig. 5b, we can conclude that our model shows the
best performance and far exceeds the other two classification
models in all three experiments.

C. Ablation Studies

1) Analysis of architecture design: To evaluate our net-
work architecture’s effectiveness, we use PointNet as the
baseline and connect our individually designed component
to it. Note that we realign all data in this section with

TABLE II: Effectiveness of designed network block.

Method z/z z/SO3) SO@B3)/SO(3) mean
PointNet [16] 89.20 14.70 83.60 62.40
PCA-+PointNet 80.90 80.90 80.80 80.84
RIMapping(ng, 4ee=20)+PointNet  82.00 83.20 84.50 83.23
ours(without SH) 85.40 85.70 86.20 85.77
ours(ngy 4oy =20) 8840  88.60 88.50 88.50
TABLE III: Effectiveness of maximum degree g deg-
Agp deg z/z z/SO(3) SO(3)/S0(3)
8 88.10 87.60 87.60
15 87.80 88.30 87.80
20 88.40 88.60 88.50
30 88.60 88.70 88.80

PCA (Section IV-A). In Table II, we can see that it shows
a significant improvement when compared to the original
PointNet in the setting of z/SO(3) and that the average
accuracy rate has increased about 18 %. Furthermore, we
analyzed the effectiveness of the RIMapping block by con-
necting it to PointNet. The results listed in Table II show
that the accuracy in z/SO(3) and SO(3)/SO(3) improved
by 2.3% and 3.7 %. Comparing our proposed network’s
worst performance shows that our PF Abstraction block helps
in improving the final accuracy in all three settings. We also
evaluated the effectiveness of the spherical harmonics energy
descriptor. The results are listed in Table II. Without the
spherical harmonics energy descriptor, the accuracy is worse
when compared against our original design. However, it still
shows better performance when compared to the PointNet-
based network.

2) Effectiveness of maximum degree of spherical harmon-
icS ngp geg- The spherical harmonics descriptor is an essential
aspect of our network. Based on the information loss, a
higher degree of spherical harmonics leads to a smaller infor-
mation loss. However, it will also increase the computational
complexity to (n*). For evaluating the effectiveness of the
gy deg» We vary the degree. The results are listed in Table III
and it can be seen that the higher n the better the final
classification accuracy.

sh,deg>

VI. CONCLUSION

We presented a rotation-invariant point cloud-based neural
network, which utilizes a global spherical harmonics feature
and a local points feature to achieve rotation-invariant proper-
ties. Furthermore, a new neural network structure is designed,
inspired by PointNet++, but with several adaptations such as
PF graph and PF Transformation. The network is applied to
3D object classification, but can be extended to part segmen-
tation and instance segmentation. Via several experiments,
we have shown that our network can deal with arbitrary input
orientations and achieve competitive performance compared
to other state-of-the-art approaches on the ModelNet40 data
set. Furthermore, our network shows robustness against point
perturbations, point density, and partial point cloud.
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