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Abstract

Floods are a very serious and frequent disaster occurring in many
parts of the world. Mapping of inundated regions is crucial for deter-
mining the flood extent, deployment of emergency response teams, and
assessment of damages and casualties. This thesis investigates flood
mapping using Sentinel-1 time-series data in arid areas. The presented
method aims to improve the flood classification results from Sentinel-1
Flood Service which are based on a single SAR image analysis. Water
detection performed in arid regions derived from one SAR dataset is
challenging because the backscatter of water is similar to sandy regions,
leading to overestimations of flood extent. The main objective of the the-
sis is an assessment of the influence of time series on flood classification
accuracy. This goal is accomplished by executing experimental tests on
different statistical parameters, frequency classes and durations of time-
series data in the chosen areas of interest, which are in Somalia and Iraq.
The results obtained from confusion matrices indicate enhancement in
Overall Accuracy of ~5% and User’s Accuracy of more than 24%. Such
an effort aims to advance the use of Sentinel-1 time-series data for arid
areas and pave the way towards rapid flood mapping to support emer-

gency management authorities.

Keywords: Flood, Flood Mapping, Sentinel-1, Time Series,
Arid Areas
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1. Introduction

1.1. Problem Statement

Floods are one of the most common natural hazards worldwide. As can be seen
in Fig. 1, the frequency of occurrence of floods is much higher than other disasters.
In years 1995-2015, floods were estimated to represent 43% of all weather-related
catastrophes, reaching more than 3,000 documented events. Their widespread ex-
istence and destruction drives scientists to investigate this phenomenon thoroughly
(Berz et al., 2001, Schumann, 2015).

Flood

Storm

Earthquake

Extreme temperature
Landslide

Drought

Wildfire

Volcanic activity

il N SR

] »
562 o — — M
sl o Ao s N -

Fig. 1: Percentage of occurrences of natural disasters by disaster type in years
1995-2015 (UNISDR, CRED, 2016).

The first integration of remote sensing with flood monitoring mentioned in
literature dates back to the 1970s, where data from Landsat 1 helped to analyze the
Mississippi flood of 1973 (Deutsch and Ruggles, 1974). Since then, scientists have
continued to use satellite data as auxiliary sources for multiple reasons, e.g., change
detection, or observation of flood boundaries (Green et al., 2007, Moore and North,
1974). Remote sensing is widely used in all stages of disaster management (Fig.
2), from the mapping of flood-prone areas, through flood detection, early warning,
evacuation planning, damage assessment and spatial planning (National Governor’s
Association, 1979). A variety of research techniques are being used, some based on
passive remote sensing systems (Deutsch and Ruggles, 1974), some on active (Gius-
tarini et al., 2015), and some combine both of them (Salvia et al., 2011, Tholey
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et al., 1997).
In recent years Synthetic Aperture Radar (SAR), which is an active satellite

system, gained importance mainly because of the all-weather, day-night acquisition

Fig. 2: The stages of disaster management (Marrion Consulting, 2016).

capability of its sensors (Mason et al., 2009), as well as due to the possibility of the
detection of flooded vegetation (Horritt, 2003) and an ability to retrieve hydrological
parameters, such as soil moisture (Tralli et al., 2005).

Sentinel-1 is a satellite mission of the European Space Agency (ESA) launched
in April 2014. It regularly provides SAR data which are extensively used for various
applications, e.g., observation of marine environments, sea-ice and oil spill detec-
tion, monitoring of urban areas, land surface motion risks and climate change, and
mapping in support of humanitarian aid in crisis situations (Attema, 2005, ESA,
2012). The high quality data provided on an open and free basis are an attractive

source of information for researchers.
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1.2. Research Significance

Development of flood classification accuracy in arid areas is a significant issue
that needs to be addressed. The aim of the technique described in this thesis is an
enhancement of the results of the Sentinel-1 Flood Service. Sentinel-1 Flood Service
is a web service that, based on a single SAR image, facilitates the generation of a
flood mask (a map layer showing the extent of flooding) ready to be distributed to
disaster management authorities. The limitation of SAR data in arid regions is an
inability to differentiate between water and water-lookalikes (term from Martinis
(2017)), which share similar low backscatter. This drawback negatively influences
the classification results from Flood Service, resulting in overestimations of the water
extent. The time-series method investigated in this thesis might help with overcom-
ing those issues. Application of an exclusion layer (into the classification computed
by Flood Service) derived from time-series based statistics can decrease overestima-
tions in the water mask. This exclusion layer consists of areas with permanent low
backscatter, which is related to regions continuously covered by sand. Implemen-
tation of this time-series based exclusion layer in the Sentinel-1 Flood Service can
help to improve the classification accuracy. Improvements of this type also address
initiatives related to rapid flood mapping, such as the International Charter "Space

and Major Disasters'.

1.3. Research Objectives

This thesis suggests a technique that could improve flood mapping in arid
areas using Sentinel-1 time-series data. Until recently, arid regions were scarcely
investigated due to difficulties with the interpretation of results (Martinis, 2017).
This research will be guided by the following questions:

Research question 1:

Does the use of the Sentinel-1 time-series data improve flood mapping in arid areas

in comparison to existing approach from Sentinel-1 Flood Service?

To answer the first question, floods that occurred in arid areas are studied. Informa-
tion to help determine the timing and impact of these events comes from multiple,
reliable sources. Second, visual confirmation is conducted by using optical data from
Sentinel-2 and Landsat 8 data. Afterwards, time series of images from Sentinel-1

will be processed and merged into unique images representing different statistical
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parameters. This will be performed using an algorithm which is currently being de-
veloped by the Geo-Risks and Civil Security Department at the German Aerospace
Center (DLR). Merging of an exclusion layer derived from time-series statistics and
SAR-based flood classification from Sentinel-1 Flood Service is then carried out. The
results from this process will be compared with ground-truth flood masks extracted

from optical data by computation of confusion matrices.

Research question 2:

What is the influence of time-series parameters on classification accuracy?

High classification accuracy is often a goal for researchers. One of the objectives of
this research is an improvement of the classification accuracy of flood mapping by us-
ing statistical parameters derived from time-series data. They are based on backscat-
ter values categorized in ten frequency classes distributed from 0-100% (Martinis,
2017). Each class will be compared with the flood mask from Sentinel-1 Flood Ser-
vice through calculation of confusion matrices. Performing confusion matrices on
these multiple time-series parameters will help to determine their influence on the

classification accuracy.

Research question 3:

What are the uncertainties and limitations of this approach?

Every technique of image processing carries some uncertainties and limitations. The
approach described in this thesis will encounter them as well. Each step in the
methodology will address this third research question. Aspects which might be

expected to lead to uncertainties are as follows:
e long processing time,
e memory deficiency,
e lack of specific available data (e.g., validation), and

e influence of environment.

1.4. Thesis Outline

To investigate the objectives of the study, this thesis has the following struc-

ture. In Chapter II, background information such as the definition of flood and cli-
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mate classification are discussed. Also, an outline of the state of the art is presented.
Chapter III introduces the datasets used and chosen areas of interest. Chapter IV
is devoted to the methodology adopted to perform the research. Experimental re-
sults are shown in Chapter V. The conclusions and recommendations are reported

in Chapter VI.
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2. Background and State of the Art

The previous chapter introduces the problem of flood classification accuracy
in arid areas, which is tackled in this thesis. Significance to the field is underlined
and research objectives are presented to show the aim of the study. This chapter
introduces types of floods and climate classifications that are used. The second part
of the chapter is dedicated to discussing the state of the art of lood mapping meth-
ods based on remote sensing techniques.

A flood, according to AMS (2017b), is "an accumulation of water over areas
that normally are not submerged." It is a natural phenomenon which can cause fa-
talities and damage to the environment as well as to the economic development of
a community. The increase (or decrease) in destruction caused by the inundation
highly depends on the actions taken by local and global authorities (European Par-
liament, 2007). Flood management plays a crucial role here, especially with a focus
on flood mapping, monitoring, forecasting, warning, and floodplain management
(Hong et al., 2013).

Floods can be categorized according to the speed of the water, geography
or cause of flooding. Below are descriptions of the most common types of floods
(FLOODsite, 2009, NSSL, 2017, Wright, 2007):

e River flood - Takes place when water levels rise over the banks of the river.
Generally, it is caused by high precipitation over extended periods of time;

snow-melt and debris can worsen the overflow.

e Urban flood - Inundation of urban areas, when heavy rainfall exceeds the
capacity of a sewer system and drainage canals. It can cause severe damage to
infrastructure: roads can be blocked, water can get inside buildings through

walls and floors or cause backup through toilets and sinks.

e Coastal flood - Inundation of regions along the coast, caused by the combina-
tion of high tides, increased precipitation and strong winds. The extent of this
type of flood depends on topography, erosion conditions and the barriers on
the coast (natural or man-made). Storm surges, generated by tropical and
mid-latitude cyclones, are included in this group. Their severity depends on
meteorological conditions, such as strong spiraling winds and low barometric
pressure which cause an increase in the water level much higher than normal
tide level. Damage can be very serious, especially given that coastal regions

are usually major touristic and economic centers.
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e Flash flood - A special type of flood because it can happen anywhere (e.g.,
on a river, in cities). It is caused by extremely intense precipitation within a
short period and usually lasts only a few hours. The rapidity, ferocity, and

intensity of the high water make this type of flood very dangerous.

2.1. Climate Classification

In this subchapter, climate classification and the definition of arid areas are
presented. Many other classifications of the climate exist (Thornthwaite, Meigs),
but for the purpose of this thesis, the classification of Koppen-Geiger is used. It was
one of the first classifications of climates, introduced in 1900 by Wladimir Képpen,
and later mapped by Rudolf Geiger in 1954 and 1961 (Koppen, 1900, 1918, Kottek
et al., 2006). The climate categorization is based on the vegetation groups in a letter

code designation (1 to 3 letters). The main division as follows :

A - the equatorial zone,

B - the arid zone,

e C - the warm temperature zone,
e D - the snow zone, and
e E - the polar zone.

Additionally, the following factors help with the specification of climates: the second
letter refers to the precipitation amount and the third - to air temperature. In the
case of areas described in this thesis, the focus is on BWh (Hot desert climate) and
BWE (Cold desert climate), where B refers to arid climates, W to the desert, h to
hot and £ to cold (Fig. 3).
The criterion in Eq. 1 needs to be fulfilled to establish type B and Eq. 2 to
establish type BW':
P <10 Py, (1)

Pann<5pth <2)

P, stands for accumulated annual precipitation [mm/year|, and Py, denotes dry-

ness threshold [mm].
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Fig. 3: Koppen-Geiger climate classification with focus on arid areas (Peel et al., 2011).

The following expression demonstrates how P, is calculated:

if at least 2/3 of the annual

precipitation occurs in winter,
if at least 2/3 of the annual (3)

2{Tann}

Pin =\ 20T} + 28

precipitation occurs in summer,
| 2{Tunn} + 14  otherwise.

P, depends on the annual cycle of precipitation. {7,,,} represents the absolute
measure of the annual mean temperature [°C|. To specify climate as BWh, the

criterion in expression needs to be fulfilled:

Tonn = +18 °C (4)
To determine climate as BWE, the principle in Eq. 5 has to be followed:

Tonn < +18 °C (5)

Due to specific atmospheric conditions, arid areas are characterized by a severe
lack of water which prevents the development of vegetation (Oliver and Fairbridge,
1987). Those zones can be present in both hot and cold environments: at the

equator, along coasts, on mountains and plateaus, at the poles, and below sea level.
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2.2. Flood Mapping Using Remote Sensing Techniques

With the development of media and technology, information about floods has
increased through the years. Many databases and initiatives have been created
to provide knowledge to people about the dangers associated with floods: Emer-
gency Disasters Data Base (EM-DAT), ReliefWeb, The Disaster Center, Associated
Programme on Flood Management, WaterWatch, Global Flood Monitoring System
(GFMS), International Flood Initiative, International Charter on Space and Major
Disasters, PreventionWeb, Center for Satellite Based Crisis Information (ZKI), and
many others (Hong et al., 2013). Similarly, many more studies involving mapping of
floods and water surfaces were developed using remote sensing. They differ in their
applied methods (index-based, thresholding, change detection), spatial resolution,
the analysis approach (pixel-based, object-based), sensors used and, most impor-
tantly, by main data type - optical, SAR, Digital Elevation Model (DEM), Light
Detection and Ranging (LiDAR).

2.2.1. Optical Data for Flood Mapping

Optical systems have been used for flood mapping since the 1970s (Deutsch
and Ruggles, 1974). In 1996 McFeeters developed the Normalized Difference Water
Index (NDWTI). It is based on a comparison of the reflectances (p) of two spectral
bands of the electromagnetic spectrum: green (G) and Near Infrared (NIR) (Eq. 6):

NDW] = PG~ PNIR
PG + PNIR (6)

NDWI e —1,1

where NDW'I > 0 is a water class and NDW I < 0 - non-water. The electromagnetic
spectrum is a sequence of all known frequencies of electromagnetic radiation. As can
be seen in Fig. 4, the spectrum is described by wavelength [m] and frequency [s™!]
referring to one cycle per second, also called Hertz (Hz). If wavelength increases,
then frequency decreases, e.g., gamma rays have a short wavelength but very high
frequency (AMS, 2017a). Use of Eq. 6 leads to the delineation of open water
features and their enhancement in the images, a desirable effect when analyzing
flood mapping. The NDWI method has been used and modified by many scientists
for their research, e.g., Rogers and Kearney (2004) used red and Shortwave Infrared
Band (SWIR), Gao (1996) NIR and SWIR. Xu (2006) designed the Modified NDWI
(MNDWI) index using the green spectral band and SWIR instead of NIR (Eq. 7),
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Fig. 4: Electromagnetic spectrum (Sapling Learning, 2017).

for improvement of the accuracy of water detection and omission of vegetation and
soil noise.

MNDWI — PG — PSWIR (7)
PG+ PSwir

MNDWI, similar to NDWI, has a threshold between classes equal to 0, but the
method’s author concluded that automation of the threshold value will lead to
more accurate results. Ouma and Tateishi (2006) conducted tests with five dif-
ferent combinations of bands (including McFeeters’ NDWI and Xu’s MNDWI) and
established that the best performance for detection of water bodies is when using
(SWIR — NIR)/(SWIR + NIR). Logically combining it with the Tasseled Cap
Wetness index (compression of spectral data into a few bands) resulted in the cre-
ation of the Water Index.

The second method applied for optical data is single-band thresholding. Thresh-
olding can be defined a method of image segmentation, which separates foreground
from background using a pre-defined constant (Sezgin and Sankur, 2004). Baumann
(1999) carried out tests to determine the spectral bands from Landsat TM that give
the best results for identifying flooded areas. To find the desired band a density slic-
ing approach was used, allowing separation of dry land surfaces, permanent water,
and flooded areas. By analyzing the brightness histogram of the image, thresholds
between classes were applied. Baumann concluded that NIR is the most suitable
band for this approach. Frazier and Page (2000) used density slicing to determine
classification accuracies of water boundary detection. The results were compared
with maximum likelihood classification. This multiband supervised classification
proved to be as efficient as density slicing method for detecting water bodies. Simi-

lar work was done by Jain et al. (2005). Nine spectral bands were examined, and the
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conclusion was made that bands from the visible range with a uni-modal histogram
show no distinct classes, whereas NIR has a clear bi-modal histogram. Although
using the density slicing approach confirmed NIR as a suitable band for flood extent
detection, better results were achieved with the NDWI method.

Another method used with optical data is linear unmixing, where the goal is
segregation and clear class categorization of particular signals in a spectral compo-
sition. For example, Sethre et al. (2005) used a type of spectral unmixing called
the Applied Analysis Spectral Analytical Process. This process differs from others
because it does not require variety of spectral signatures, just from the class of in-
terest.

The last group of methods can be categorized as thematic classification. Lira
(2006) presented a methodology for segmentation of water bodies based on variation
of principal component analysis, where training samples of water and land cover are
collected and clustering of classes is performed. Another approach is presented by
Hung and Wu (2005). By using a hierarchical unsupervised classification scheme,
major land cover classes are distinguished: soil, wetland, water, developed and un-
developed land. This method is later used for change detection. The next example
of thematic classification is presented in Li and Narayanan (2003), where a region
growing algorithm was developed to collect training samples from different classes
depending on particular spatial constraints.

It is very common practice to combine multiple methods of water extraction
using optical imagery. Very often water indices are combined with thresholding and
thematic classification with linear unmixing. Feyisa et al. (2014) merged the Au-
tomated Water Extraction Index (AWEI) with thresholding. To develop AWEI, a
combination of 5 bands from Landsat 5 was used: blue, green, NIR and two bands
from SWIR. This method offers improvement over other techniques because it cor-
rectly classifies regions that are covered by shadows. Sethre et al. (2005) joined
linear unmixing with density slicing to achieve better results in delineation of wa-
ter bodies. Furthermore, Sun et al. (2012) proposed two methods for extraction of
water features. The first technique determines spectral reflectance curves for differ-
ent water classes: clear, turbid and green. Results have shown that for clear water
MNDWTI is the most appropriate, for turbid water SWIR band and green water
NIR. The second method is a combination of the first one and object-based image
segmentation. The accuracy of the first method was higher, and one of the author’s
conclusions was to suggest future study about merging the first method with linear
unmixing or other advanced classification algorithms. Jiang et al. (2012) integrated
three spectral water indices: NDVI, MNDVI, NDBI (Normalized Difference Built-up

Index) with HIS (Hue-Intensity-Saturation) transformation. This method is advan-



30 2. Background and State of the Art

tageous for extraction of water bodies and exclusion of hill shadows, especially in

complex terrain.

2.2.2. Data from Microwave Systems for Flood Mapping

Flood mapping can be based on passive and active microwave remote sensing

(Fig. 5). The literature contains many examples of studies based on active or
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Passive remote sensor Active remote sensor

Fig. 5: Active and passive sensors (Physics and Radio Electronics, 2017).

passive sensors (sometimes also a combination of both), and some of them will be
mentioned in this subchapter. Regardless of the source light for a specific satellite,
each of them carries instruments which operate in different frequency bands. Radar
frequency bands are defined as specified ranges of wavelengths in the microwave

radiation portion of the electromagnetic spectrum (Table 1).

Table 1: Radar frequency bands (AMS, 2017c¢)

Frequency range Wavelength range

Frequency band (GHz) (cm)

L band 1-2 15-3

S band 2—4 7.5-15
C band 4-8 3.75-7.5
X band 8—12 2.5-3.75
Ku band 12-18 1.67-2.5
K band 18-27 1.11-1.67
Ka band 27-40 0.75—-1.11
V band 40-75 0.4-0.75
W band 75-110 0.27-0.4

According to IEEE-AESS (2003), letter designation serves several purposes:

e it is a convenient method for describing the band, without the need for specifics

indicating numerical ranges,
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e in the military, the exact frequencies of some operations cannot be revealed,

but a general band description can be disclosed, and

e categorizing frequencies in bands helps with distinguishing their common char-

acteristics, applications, and environmental constraints.

Passive Microwave Remote Sensing

The literature on flood mapping using passive microwave systems shows a va-
riety of approaches. Passive sensors record electromagnetic radiation emitted from
the surface of the Earth as well as reflected light from the sun (Fig. 5).

De Groeve (2010) presented a method based on passive microwave systems
which can be used for the daily detection, mapping, and monitoring of floods. Quick
identification of hazards is essential for decision makers and humanitarian organi-
zations. Effective processing systems and the daily availability of data allow for
the detection of floods in as little as 2 hours after their occurrence and for issuing
early warnings based on monitoring of upstream areas. Although flood maps using
passive microwave systems are low resolution, their accessibility supported a better
understanding of dynamic processes occurring during flooding. Galantowicz (2002)
proposed a prototype method of flood mapping based on low-resolution (20-70 km)
passive sensors. A "flood-potential" database is built from historic flood images and
used for development of high-resolution flood-extent maps. Future improvement and
testing of this method is needed due to detected mapping errors.

Due to the low spatial resolution of the data from passive microwave remote

sensing, greater focus is directed towards active systems.

Active Microwave Remote Sensing

Flood mapping using active microwave systems has been widely investigated.
Active sensors possess their own source of electromagnetic energy, which is trans-
mitted from the sensor towards Earth’s surface. The signal reflected back to the
satellite is called backscatter. Fach material has a different reflectance, e.g., standing
water has low backscatter, as it reflects most of the energy because of its smooth
surface, where as vegetation, due to its rough surface, has high backscatter (ESA,
2013). There are some challenges involved when analyzing the received signal from
flooded regions, such as double-bounce scattering, vegetation or atmospheric condi-

tions. Double bounce most commonly occurs in flooded cities when a signal hits
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Fig. 6: Scattering of electromagnetic energy (ESA, 2014a).

water and is rerouted by nearby buildings’ walls back to the satellite (Fig. 6). If
the signal was not interrupted, the specular reflection of the smooth water sur-
face would result in low values of backscatter in the image. Double bounce can take
place in different areas, usually where vertical structures are present, such as forests.
Trees can also cause a different type of scattering called volumetric scattering (Fig.
6), where the radiation is transmitted and refracted between many branches and
leaves, causing interpretation of flooded vegetation to be very challenging. Atmo-
spheric conditions such as wind can cause a smooth water surface to become uneven.
In that situation if the sensors register the signal, it will lead to misinterpretations
in analyzing the extent of water overflow. Scientists investigate those processes for
better understanding and preparedness against floods.

Literature shows that sensors with particular spectral bands are used depend-
ing on the research focus. For example, L- and P-bands, as bands with longer wave-
lengths (Table 1), are more appropriate for detection of flooded vegetation, where
C- and X-bands are more likely to be used for mapping open water and flooded
areas with scarce vegetation (Brisco et al., 2008, Jensen, 2007).

A common technique for flood extent detection is the use of multi-temporal
satellite images of the particular area and observing changes occurring during the
chosen period. Often a combination of two images is used: one before the event and
one during or shortly after the flood has occurred. When choosing the second image,
it is important to be aware of which flood type is analyzed. If it is a flash flood, the
image should be from the same day (flash floods can occur and be gone in 5-6 hours),
but with longer standing water the time constraint is more flexible (can be a couple
of days). An example of this method is presented in Brivio et al. (2010). In this
work, images were analyzed one month before and three days after the event, when
a flood was no longer at its peak. Confirmation of that could be seen in the results
where only 20% of the actual flood extent was detected. To improve performance,
an additional Geographic Information Systems (GIS) method was implemented. It

is referred to as the least accumulative cost-distance matrix. It determined which
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parts of the terrain (taking into account topography, vegetation cover, land flow and
roughness) were least costly (least resistive to flow) for the river to flow over. The
approach of integrating SAR and GIS greatly improved accuracy results to 96% and
solved the problem of time constraints for data acquisition.

Recent research is focused on flood detection in challenging regions such as
among vegetation. As an example Townsend (2010) tested the relationship between
forest structure and detection of flood extent using C-band SAR data. Although L-
band is recognized as superior for flood mapping of forests, this study tested C-band
due to its sensitivity to inundation below tree canopies. Analyses were performed on
images with different polarization from two satellites: RADARSAT and ERS-1. The
results showed that flooded forest could be precisely mapped using RADARSAT.
The second source did not perform well. It was concluded that the results depended
largely on the basal areas and the height of tree trunks from the ground to the
bottom of the canopy. Another study with a focus on vegetation was performed
by Pulvirenti et al. (2013). This was based on image segmentation and fuzzy logic.
Fuzzy logic allows an element to have a degree of membership for different classes,
whereas in traditional logic an element can belong to only one class, or the other
(Pulvirenti et al., 2011). This study reached the conclusion that knowledge about
land cover is crucial for the accurate interpretation of backscatter signals. Typ-
ically, flooded regions are represented by low values, while inundated vegetation
might result in high backscatter. Those enhancement values due to vegetation can
be explained by the double-bounce scattering of a signal between tree trunks and
the water surface.

In recent years several publications have appeared documenting a TerraSAR-
X-based Flood Service based on fuzzy logic, which was later adapted to Sentinel-1
data (Martinis, 2017, Martinis et al., 2015, Twele et al., 2016). This technique is a
fully automated processing chain created for near-real-time flood detection and mon-
itoring. It is used in operational crisis mapping by the Center for Satellite based
Crisis Information in DLR. TerraSAR-X is acquiring data non-systematically, and
therefore the Flood Service has to be activated on-demand. In the case of Sentinel-1,
data are routinely collected by satellite, and there is no need for manual tasking of
data. Omitting this time-consuming step leads to a reduction in distribution time
to less than 45 minutes of the data to disaster management authorities. Despite its
successes, further tests have revealed that this classification method overestimates
flooded areas due to water-lookalikes related to sand surfaces (Martinis, 2017).

Giustarini et al. (2013) continued the methodology described in Martinis et al.
(2015) with a focus on urban areas. The risk that floods represent cannot be treated

lightly, especially in urban areas. Man-made structures negatively influence accu-
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rate flood mapping, thus for several years great effort has been devoted to the study
of flood mapping in urban regions. This study introduced a fully automated SAR-
based flood extraction method that merged region growing, change detection and
backscatter thresholding. Giustarini et al. (2013) concluded that although the tech-
nique has potential, there is also a need for further improvement, with focus on

shadows in-between buildings and rooftops.
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ab c

Fig. 7: Radar layover (Wolff, 2017).

An interesting approach for detection of urban flooding using double scattering
was presented by Mason et al. (2014). Usually, double scattering (double bounce)
positioned in radar layover (see Fig. 7) is considered a disadvantage of SAR as it dis-
torts the length of electromagnetic waves, but this method tried to use its strengths.
Test were made based on change detection cases and single-image analysis. The re-
sults demonstrated that detection of urban flooding is more effective with the use
of double-bounce scattering.

The publication of Kiage et al. (2005) is an example of research performed
for mapping of floods caused by other hazards. Hurricane Lili (2002) caused severe
damage in the Caribbeans and in the south-east part of the United States, killing
15 people and causing damage worth about $925 million. Floods accompanying this
hurricane occurred in Haiti, Jamaica, and in two states of the US: Mississippi and
Louisiana (NHC, 2003). Kiage et al. (2005) performed tests to determine the useful-
ness of Radarsat-1 SAR imagery for flood detection by using arithmetic differencing
and multi-temporal enhancement techniques. Vegetation and variations in eleva-
tion created certain obstacles in analyzing radar signatures from particular regions,
but in general their method was successful in specifying the extent of flooded areas
within coastal marshes.

The study in Chung et al. (2015) showed an example of a flood generated by
a typhoon. It reached the northern part of Taiwan in July 2013, but the strength
of this hazard affected Japan and China as well. Fatalities were estimated to be
as many as 11 killed, damage assessed at $557 million. A flash flood caused by

extensive rainfall inundated areas of I-Lan County in Taiwan. Thanks to a good
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forecast, the COSMO-SkyMed satellite was directed at the affected area in time to
collect data. As a result, a SAR-derived flood map was published within 24 hours
of the event to support decision making authorities. This event later became the
basis for developing standard operating procedures around the production of flood

maps for future events.

2.2.3. Data Fusion for Flood Mapping

Many case studies are based on more than one data source. Mason et al.
(2014) combined SAR data with LiDAR resulting in higher accuracy in the bound-
ary between flooded and not flooded areas. The height information from LiDAR
was used to generate a map of layovers and shadows and determine which of them
were inundated. Mallinis et al. (2011) used radar and optical remote sensing for an
approach that was aimed at accelerating the information dissemination process be-
tween neighboring countries, where weak bilateral cooperation reduces the efficiency
of emergency management. Three object-based classification approaches were de-
veloped on multitemporal Landsat and Advanced SAR data, resulting in accurate
flood maps that can be used for flood crisis management. Salvia et al. (2011) demon-
strated a method of combining active microwaves (C-, X-, Ku- and Ka-bands) by
utilizing an algorithm based on passive data, which assessed the fraction of the
flooded area.

Digital Elevation Model is a good source of auxiliary information, and it is
often used to support flood mapping techniques. An example of this can be found
in Brisco et al. (2008) and Pulvirenti et al. (2011), where DEM was implemented for
better results. Schumann et al. (2011) used aerial photographic images with C-band
SAR data. These methods focused on designing a model to represent the dynamics

of floods in an urban environment.

2.3. Rapid Mapping of Floods

According to EMS (2015), rapid mapping is "fast, on-demand service delivery
(within hours) of geospatial information in support of emergency management ac-
tivities immediately following a catastrophic event. The service provision is based
on rapid acquisition, processing, and analysis of satellite imagery and other geospa-
tial raster and vector data." Irimescu et al. (2009) underlined the importance of

information derived from Remote Sensing and GIS techniques for disaster manage-
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ment authorities, decision makers, and relief personnel taking appropriate action
at flooded sites. Maps of flood extent and risk zones are among the products that
can be derived. Authors used a methodology based on Moderate Resolution Imaging
Spectroradiometer (MODIS) data to estimate flood extent over particular land cover
categories. MODIS data are available free of charge in near-real time but with 250
m spatial resolution and susceptibility to cloud coverage. The method was based
on computing a Normalised Difference Vegetation Index (NDVI), which calculates
the ratio between the NIR and red bands. NDVI is mostly used for vegetation
monitoring, but Irimescu et al. (2009) demonstrated that water bodies can also be
detected. Many publications have appeared in recent years demonstrating SAR to
be a superior tool for flood mapping (Dumitru et al., 2015, Giustarini et al., 2015,
Herrera-Cruz and Koudogbo, 2009, Martinis, 2017, Martinis et al., 2015, Martinis
and Twele, 2010, Mason et al., 2014, Matgen et al., 2011, Pulvirenti et al., 2011,
Twele et al., 2016).

Kwak et al. (2015) presented a method for rapid mapping of flooded rice fields.
Risk maps are vital for near-real-time damage assessments, which influence the de-
cisions made by disaster management personnel. Using multi-temporal data from
MODIS and integration of a modified land surface water index (MLSWI), (Eq. 8)
helped to assure information-rich assessment of flooded areas, including detection of
the flooding start, peak, and extent. Additionally, a map of rice fields was created
using MODIS land cover classification. The result of this method is to success-
fully provide instantaneous flood risk maps, which can be quickly distributed to

emergency response teams in case of flooding.

1 — _
MLSWI — PNIR — PSWIR (8)
1 —pNirR + pswir

Summary

This chapter provided definitions and overviews related to floods and the rapid
mapping and description of flood types, as well as for relevant climate classification.
A substantial part of the chapter covered the State of the Art of current flood
mapping techniques based on remote sensing. First, methods based on optical data
were described. Following that was an overview of studies which use active and
passive microwave remote sensing, with a concluding review of literature related
to rapid mapping. The next chapter introduces the datasets used for testing the
flood mapping method discussed in this thesis, and also presents chosen areas of

interest.
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3. Data and Study Area

The previous chapter introduced basic terminology related to arid areas and
generation of floods, and presented previous initiatives and efforts in lood mapping
and monitoring. It also presented the state of the art of lood mapping according to
literature. This chapter will provide information about the datasets used to answer
the research questions outlined in Chapter 1 of this thesis, and also describes the
chosen Areas of Interest (AOI).

3.1. Datasets

Data products from Sentinel-1 and Sentinel-2 are freely available on the Coper-
nicus Open Access Hub (https://scihub.copernicus.eu/). Registered users can
choose the place, date and other required parameters and download the data. How-
ever, download speeds are limited to two datasets at a time per user.

Images from Landsat 8 are accessible from the United States Geological Survey
(USGS) Earth Explorer (https://earthexplorer.usgs.gov/). Besides Landsat 8,

other datasets are available on this server.

3.1.1. Sentinel-1

Sentinel-1 is a satellite mission developed by ESA under the Copernicus ini-

tiative (Fig. 8). It is a constellation of two satellites: Sentinel-1A launched on

Fig. 8: Sentinel-1 radar vision (ESA, 2014b).
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April 3™, 2014 and Sentinel-1B launched on April 25", 2016 (in the future two
more units will be launched: Sentinel-1C and Sentinel-1D). Both satellites fly in
the same sun-synchronous, near-polar, circular orbit at a height of 693 km, with a
12-day repeat cycle for one satellite, and 6-day for the pair (ESA, 2012, 2013). The
SAR instrument operates in C-band, which is within the 4-8 GHz frequency range

(7.5-3.75 cm wavelength), in the microwave portion of the electromagnetic spectrum
(IEEE-AESS, 2003).

Flight Direction

Sub-Satellite Track

Orbit Height
~700 km

~ Extra Wide Swath

i Mode
Strip Map
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Wave Mode
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Fig. 9: Sentinel-1 acquisition modes (ESA, 2013).

Sentinel is used in a broad range of applications because of convenient access
to its data and because it is free of charge. As can be seen in Fig. 9, data can be

collected in four modes:

e Stripmap mode (SM) - collects data at 5 x 5 m spatial resolution with an
80 km swath width (the strip of surface captured by the satellite from which
data are collected and later analyzed). SM is effectively a direct continuation
of ERS and Envisat missions. The European Remote Sensing Satellite (ERS),
launched in 1991, and Envisat in 2002 were two of the first Earth-observing
satellite programs funded by ESA. Stripmap mode is used mainly to support

disaster management activities.
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e Interferometric Wide Swath mode (IW) - has a broader swath, reaching
up to 250 km with 5 x 20 m spatial resolution. This mode uses Terrain
Observation with Progressive Scans SAR (TOPSAR) to create higher quality

data. This is the default acquisition mode over land.

o Extra Wide Swath mode (EW) - is mainly used for ice and oil spill mon-
itoring, as well as for maritime and polar areas. It is suitable for those ap-
plications because of its wide swath coverage of over 400 km with 20 x 40 m

spatial resolution.

e Wave mode (WYV) - its acquisition path varies from the others. Instead
of a continuous path, images called vignettes are collected in a "leapfrog'
pattern. 20 x 20 m vignettes are acquired every 100 km at 5 x 5 m spatial
resolution. This is the default acquisition mode over open ocean, often used

for determining the wavelength, height, and direction of waves in the sea.

Wave mode is available in single polarization (VV or HH), SM, IW, and EW
modes in single and dual polarization (VV+VH or HH+HV). For the purposes of

this research, only the data products from IW mode are used.

TRANSMIT RECEIVE

LIKE-POLARIZED IMAGE (HH or VV)

TRANSMIT  RECIEVE

CROSS-POLARIZED IMAGE (HV or VH)

Fig. 10: Radar polarization modes (Campbell and Wynne, 2011).
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As stated in Campbell and Wynne (2011) "the polarization of a radar signal
denotes the orientation of the field of electromagnetic energy emitted and received by
the antenna" (Fig. 10). The configuration of radar systems allows transmission and
reception of horizontally (H) or vertically (V) polarized energy. If both transmission
and reception are in the same direction, they are referred to as like-polarized. If they
are perpendicular to each other, they are called cross-polarized.

Brisco et al. (2008) and Henry et al. (2006) analyzed the differences between
HH, HV and VV polarization and they indicate that the best classification accuracies
are obtained with HH. HV is shown to be worse than VV. Twele et al. (2016)
investigated the classification accuracies for a test site using VV and VH, and the
results suggest that VV is better. Although he admits that HH is superior for flood
mapping purposes, he also underlines that this polarization has a low availability
in Sentinel-1 data, and therefore the method focuses on VV polarization. Since
this research is based on the technique described in Twele et al. (2016), the VV

polarization is used.

3.1.2. Sentinel-2

Sentinel-2, similar to Sentinel-1, is a satellite mission developed under ESA’s

Copernicus initiative. It involves two satellites (Sentinel-2A and Sentinel-2B) on

Fig. 11: Sentinel-2 satellite (ESA, 2015a).

opposite sides of sun-synchronous orbit at an altitude of 786 km (Fig. 11). Sentinel-
2A was launched on June 23", 2015 and Sentinel-2B on March 7**, 2017. Each of
them carries a Multispectral Instrument (MSI) collecting in 13 spectral bands at 10
m (4 bands), 20 m (6 bands) and 60 m spatial resolution (3 bands) (ESA, 2015b).
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Sentinel-2 covers land and coastal areas from 56°S to 84°/N with an orbital swath
width equal to 290 km and a revisiting time of 10 days, or 5 for the pair. Sentinel-2
data can be used for such applications as water monitoring, forest and vegetation
observation, as well as management of natural disasters and infrastructure, border,

and maritime surveillance.

3.1.3. Landsat 8

Landsat 8, a result of a partnership between NASA (National Aeronautics
and Space Administration) and USGS, is the most recent satellite from the Landsat

1" February, 2013. Landsat instruments

program (Fig. 12). It was launched on 1
operate in X-band, within 8-12 GHz band (3.75-2.5 cm wavelength) of the electro-
magnetic spectrum (IEEE-AESS, 2003), on sun-synchronous orbit at a height of 705
km. It has a 16-day repetition, but together with its predecessor, Landsat 7, the

combined Landsat repeat cycle is just 8 days (USGS, 2016).

Fig. 12: Landsat 8 satellite (NASA, 2014).

The Landsat 8 mission carries two instruments on board: an Operational Land
Imager (OLI) and a Thermal Infrared Sensor (TIRS). OLI acquires data in 9 short-
wave bands at spatial resolutions of both 30 m (8 bands) and 15 m (1 band). TIRS

has two longwave thermal bands, both with 100 m resolution.
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3.2. Data Availability

Satellite coverage is influenced by several factors, one of which is geographical
coordinates. Close to the poles, the revisit frequency of a satellite is much higher
than at the equator, e.g., Africa. To choose a potential area for this research, the
images of a flood from Sentinel-1 have to be coordinated with Sentinel-2 or Landsat
8. The sensing period in both datasets should be, ideally, on the same day. That
is problematic because floods often occur as a result of increased precipitation, and
cloud coverage makes it difficult to use optical data such as Sentinel-2, and Landsat
8. Fig. 13 shows a Peru flood from March 2017 with low and high cloud coverage.
The clouds in the right image prevent visual validation of the flood. This example
shows why many potential AOI’s have to be rejected, which causes testing of the

transferability of the method described in this thesis to be very challenging.

Fig. 13: Peru flood in March 2017 with low and high cloud coverage (Scihub, 2017).
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3.3. Areas of Interest

The next subchapters describe the AOI’'s which are used to test Sentinel-1
time-series data for flood mapping in arid areas. A Time Series is a "sequence of
data points evenly sampled through time" (Campbell and Wynne, 2011). The AOI's
are chosen based on Képpen-Geiger’s climate classification. Arid climates, both hot
and cold, are taken into consideration. Regions that fulfill this requirement, as well
as where a flood can be detected in the Sentinel-1 data, but which do not have visual

validation from optical data are excluded.

3.3.1. Somalia

The first AOI is situated in Somalia, 11 km south of the city of Beledweyne
(Fig. 14). It covers an area of 105 km?, with the upper left corner at 4°41'43.58”"N,

Fig. 14: Satellite view of AOI in Somalia (Google Earth, 2017).
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45°17'17.31"E and the lower right at 4°35'36.39”N, 45°12'16.47"E.

Beledweyne is the fourth largest city (24 km?) in Somalia with a population
of 67,200, located 30 km south-east from the border with Ethiopia. In the last five
years, temperature varied from 21 °C to 40 °C, with an average temperature of 33 °C
(World Weather Online, 2017). During dry seasons the mean monthly precipitation
is smaller than 10 mm of rainfall, and throughout wet seasons it does not exceed
70 mm (Climate-Data, 2017). The annual rainfall of this area is equal to 204 mm
(Deutscher Wetterdienst, 2016). From its origin in Ethiopia, the Shabelle river flows
south towards Mogadishu - the capital of Somalia. It runs through Beledweyne and
the chosen AOI.

Mar - Jun
75% of
annual

Gu rainfall Hagaa

Dec - Mar Jul - Sep
Warm, Cool,
sunny & cloudy &
dry dry

Jilaal

Fig. 15: Seasons of Somalia (FAO-SWALIM, 2017).

As can be seen in Fig. 15, the climate of Somalia can be divided into four
distinct seasons with the main rainy season (Gu) spanning from late March to early
June. As known from centuries of history, people living in areas with high temper-
atures and low precipitation would gather around rivers and water basins, due to
fertile land and transportation possibilities. Similarly, in Somalia a high occurrence
of droughts forced people to do the same; that is why farming regions are concen-
trated next to the rivers. According to the Central Bank of Somalia (2009), 80%
of the population are pastoralists - breeders of livestock, especially camels, goats,
sheep, and cattle, which also accumulate nearby reservoirs and rivers. Usually, the
Shabelle River is perceived as a location of economic importance for agricultural rea-
sons, but it is threatened by sudden floods that destroy crops, livestock, and homes,
as well as contaminate fresh water, cause deaths, and generally affect thousands

of people. In recent years the frequency and severity of this hazard has increased.
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Historic events in the Deyr season (September-November) such as in 1961, 1977,
1997, 2006, 2012, 2014, and 2015 are examples of this, as well as crises which have
occurred in the Gu season in 1981, 2005, 2013, 2016 (FloodList, 2017, Reliefweb,
2017, SWALIM, 2017).

Fig. 16: Destruction from the Somalia flood in May 2016 (FloodList, 2017, Red Cross,
2016, Shabelle Foundation, 2017).

Fig. 16 shows destruction caused by the flood of Shabelle in May 2016. This
event started on May 15" and continued until the beginning of June. It affected
more than 30,000 people, destroying crops and fields, and forcing tens of thousands
of people to flee for higher grounds, leaving most of their belongings behind them. In
such cases, the lack of safe drinking water and food, as well as spreading diseases, are
very dangerous threats for a vulnerable population (FloodList, 2017). Prevention
of such severe risks is a very import field of research. Planning emergency routes
and assessing which areas are flood-prone are crucial. That is why flood mapping is

essential information for decision makers and disaster management authorities.
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3.3.2. Iraq

The second AOI is a region in Iraq. It covers an area of 3,974 km?, with co-
ordinates 33°1'38.35”N, 45°20'12.86"E (upper left) and 32°32'24.04”N, 46°7'23.03”E
(lower right). The flood occurred 130 km south-east from Baghdad, 50 km from the

western border of Iran (Fig. 17). This regions climate is classified as a Hot Desert
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Fig. 18: Monthly average temperatures in Iraq (Remund et al., 2017).

climate with annual precipitation of about 120 mm and two weather seasons (FAO,
2011). The hot season spans from May to October with temperatures between 30—
43° C and with heat waves to 48° C and higher. Winter season, from November to
April, is colder, with temperatures ranging from 7-20° C (Fig. 18).

Heavy precipitation in late October 2015 caused severe flooding throughout
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November. This led to the deaths of 58 people (mostly by electrocution) and dis-
placement of more than 84,000 during an especially difficult crisis involving cholera
outbreak. Another very serious effect of this flood was the displacement of land-
mines and other explosive remnants of war, which were transported by water to new
unknown areas (FloodList, 2017, Reliefweb, 2015).

Fig. 19: Destructions of Iraq flood in November 2015 (AFP, 2015, Iraqi Red Crescent
Society, 2015, OCHA /Linden, 2015).

Summary

This chapter presented the datasets necessary for performing time-series-based
flood mapping. The products from Sentinel-1 used for creation of the time series
are VV polarized in Interferometric Wide Swath mode. Optical data, such as from
Sentinel-2 and Landsat 8 serve as reference data for the confusion matrices. Fur-
thermore, study areas in Somalia and Iraq were described in detail. Information
about the AOI climate, social aspects such as living conditions, and especially infor-
mation about the studied floods such as the inundation levels and damage caused

were provided.
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4. Methodology

The previous chapter describes data sources which were used in this study and
presents chosen test areas. The focus of this chapter is on the methods used. The
methods workflow can be divided into two stages: choosing a potential flood (Fig.

20) and processing of the chosen Area of Interest (Fig. 21). The first stage is focused

Research of
5-1 image
during flood

Research of Visual
floods in: comparison Acceptance of
floodlist, with arid chosen AOI

disastercharter regions T

confirmation
on optical data
(L8 & S-2)

Fig. 20: Workflow of the first stage of research - choosing of possible flood.

on finding information about historical floods with a focus on arid areas, visual
detection of inundated terrain in Sentinel-2 and Landsat 8 data, as well as acquisition
of a Sentinel-1 image during the event. This image is used in Sentinel-1 Flood Service
to create a flood mask. This mask, depicting the extent of inundated areas, is often
an overestimate of the true flooded area due to similar backscatter signal of water
and water-lookalikes, such as sand. In order to decrease those overestimations, a
Flood

S-1 data detection

during event using S-1
Flood Service

Postclassifi-
cation
refinement

Improved
flood mask

Com putation Exclusion
of statistic layer of sand
layers areas

S-1 time
series data

Fig. 21: Workflow of the second stage of research - processing of chosen AOI.

time-series-based exclusion layer designed to include areas with permanently low
backscatter needs to be applied to the Sentinel-1 Flood Service flood mask. The
exclusion layer is created from statistical parameters generated with a Python-based
tool. To determine the best results from the different combination of parameters,

several tests are performed.
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4.1. Detecting a Potential Flood

The first step of the process is finding in available databases (floodlist.com,
disastercharter.org, emdat.be, etc.) information about floods which occurred
in the past. Since the Sentinel-1 satellite started collecting data in April 2014, the
possible range of research starts from that time until the present.

The first factor to consider is the location. To qualify some event as a potential
for further research, it has to be in an arid area (Fig. 3 from subchapter 2.1). That
can be problematic because, to some extent, those databases rely on the media
or word of mouth and information might not be precise. Also, the earlier a flood

occurred, the fewer details can be found about the exact location. Fig. 22 shows

Flooding in Niger Leaves 12 Dead

IMoroccan media are reporting that 12 people have been killed and nearly 30,000 affected by floods in Niger.
The information comes from a statement made on Thursday 14 August by the country’s Humanitarian
Coordination Unit of the Prime Minister. The statement also said that over 4,000 houses have been damaged
in the recent flooding. Over 2,000 hectares of crops have also been damaged. Food and other relief supplies
have only reached around half of the flood victims so far.

Heavy rain has affected areas of Niger for the last few days. Currently the worst affected areas are central

and western regions, although the heavy rain is now spreading across other parts of the country. Mainé-Soroa
in the south east saw 60 mm of rain fall in the last 24 hours.

Fig. 22: Example of a insufficient flood description (FloodList, 2017).

information that appeared on FloodList about an event in Niger on August 15,
2014. The only indication of the flood extent is its description as occurring in
"central and western regions [of Niger]". That information is insufficient to proceed
with the research. This process is time consuming due to the need to confirm each
of the articles separately for different countries and regions.

The next step consists of two simultaneous searches for:
e a single Sentinel-1 image,
e Sentinel-2 or Landsat 8 images.

Both searches should result in images that are very close in time, so that the extent

of the flood has not changed over time.


floodlist.com
disastercharter.org
emdat.be
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4.1.1. Sentinel-1 Data

After precisely locating the flood, the overview of Sentinel-1 scenes can be
started. To qualify an image as sufficient for the next steps, it has to be downloaded,
calibrated and visualized. This is done in software called Erdas Imagine. After visual
confirmation of the flood extent (and finding suitable optical data), the original

image is processed in Sentinel-1 Flood Service (see subchapter 4.2).

4.1.2. Sentinel-2 / Landsat 8 Data

The optical data have to be coordinated spatially and temporary with the
Sentinel-1 image. Here, atmospheric conditions play a critical role for visual confir-
mation of a flood (see Fig. 13 in subchapter 3.2). Afterwards, one or more images
are downloaded and processed in Erdas (for classification) and ArcGIS software (for
confusion matrices).

If those steps are achieved, the coordinates of the AOI have to be specified.
They will be required for the time-series statistics. Later, the AOI can be accepted

for testing with the method described in next subchapters.

Classification of optical data

The optical data from Sentinel-2 or Landsat 8 have to be prepared before they
can be used for accuracy validation. The software Erdas Imagine is used for this
purpose. First, stacking of spectral bands is performed with a tool called layer stack.
Next, a water mask is made using a build-in NDVI unsupervised classification tool
(Fig. 23). To determine which band combination could achieve the best classification
results, tests were performed in comparison with visual interpretation. These tests
lead to the conclusion that Xu’s NDWI should be used (Eq. 7):

MNDW] = P& —Pswit (7 revisited)
PG+ PSWIR

The the output of this algorithm is a raster with binary values, where 1 is water
and background is 0. Manual correction is applied in order to delete standing water
(river, lakes) from the classification. This reference mask is later utilized in the

confusion matrix (subchapter 4.4).
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Fig. 23: Model of NDWI index.

4.2. Flood Classification / Sentinel-1 Flood Service

This subchapter presents a method of extracting flood classification results
from Sentinel-1 Flood Service (S-1FS). A Sentinel-1 image with confirmed flood
extent is processed in S-1F'S. The processing chain is composed of following elements
(Twele et al., 2016):

e automatic data ingestion - data in IW mode are consistently acquired and

downloaded when matching the user request,

e geometric correction and radiometric calibration - implementation of
auxiliary tools and datasets: graph processing tool from Sentinel Application
Platform (SNAP) and DEM from Shuttle Radar Topography Mission (SRTM),

e automatic thresholding - tile-based thresholding based on (Martinis et al.,

2009) procedure for generation of land/water classification,

e fuzzy logic-based refinement - improving the accuracy by eliminating prob-

able water-lookalikes from initial classification using fuzzy logic,

e final classification - additional accuracy enhancements by using: Height
Above Nearest Drainage (HAND) Index to establish flood-prone areas, SRTM
Water Body Data and MODIS to distinguish and separate permanent water
bodies,

e data dissemination - three layers are distributed through geoserver: flood

water, standing water, and non-water.

A flood water mask produced from S-1FS is used for the next steps. Overestimations

are reduced by applying an exclusion layer generated from Sentinel-1 time series
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(described in section 4.4).

4.3. Creation of Time Series Statistics

This subchapter describes the usage of an existing Python-based tool, created
to perform calibration and merging of the Sentinel-1 datasets, as well as computation
of time-series statistics.

Firstly, a duration period for the time series is established with consideration of
the balance between computation time and desired accuracy of classification results.
The Python-based tool downloads all available data for the period and within the
geographical coordinates chosen by the user. Afterwards, the geometric correction
and radiometric calibration are executed. Later, frequency maps are created (with
dB as a unit) that count how many times (throughout the whole time series) each
pixel is detected with backscatter value below threshold T. If a pixel is detected
with high frequency, it means that most (or even all) of the time the area has low
backscatter. That is related to standing water and water-lookalikes such as sandy
regions, and should be excluded from classification. The frequency of pixels is scaled
to a range 0-100% for interpretation purposes (10 classes with 10% interval). Pixels
with high frequencies are used to create an exclusion layer, which is used to improve
the water mask from S-1FS.

An original image from Sentinel-1 is presented in Fig. 24a. The dark pixels
represent areas with low backscatter, such as water or sand. When this image is
processed in S-1FS, the resulting flood mask includes overestimations (Fig. 24b).
Fig. 24c shows the exclusion layer, generated from the Sentinel-1 time series, which
is chosen based on experimental results described in chapter 5. Applying this layer

to the S-1FS flood mask leads to improved accuracy of the Flood Service.
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Fig. 24: Results from the process of improving accuracy: a) original Sentinel-1 image, b)
overestimated flood mask from S-1FS, c¢) exclusion layer derived from time series,
d) improved flood mask. See Fig. 14 for the location of the test site.
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4.4. Postclassification Refinement

This step is designed for accuracy assessment. It is a comparison made between
two sources of information: the map (analysis of remotely sensed data) and the ref-
erence data. If the research is time-sensitive, it is crucial to have time-correlated
sources. To perform valid observations, the data have to be in the same geographical
coordinate system with the same spatial extent, share the same minimum mapping
unit, as well as number and meaning of categories (Campbell and Wynne, 2011).

The exclusion layer is created from a range of frequency classes chosen based
on the experimental results from a confusion matrix.

The confusion (error) matrix shows a number of correct and incorrect predic-
tions by comparing two data sources, which in this case are a reference mask from
optical data (Sentinel-2 and Landsat 8) and an S-1FS flood mask improved using
the exclusion layer. Compilation of this matrix is a necessity for most studies with a

focus on accuracy improvement (Campbell and Wynne, 2011). For this research, the

Table 2: Confusion matrix

Result Reference Data
Row total
(x - 100%) Flood Non Flood
Classification Flood f/f nf/f UA1 =f/f + nf/f
Data Non Flood f/nf nf/nf UA2 = f/nf + nf/nf
Column total PA1 = f/f + f/nf | PA2 = nf/f + nf/nf | SUM = PA1 + PA2

matrix consists of a 2x2 array, where the left side (y-axis) lists two map categories
as determined from classification results (Flood/Non-Flood), and the upper labels
(x-axis) show the same categories as determined from reference data (Table 2).
The first step to creating a confusion matrix is to perform raster calculation
between the (overestimated) water mask from S-1FS and the frequency class from
time series. Extraction of areas with permanently low backscatter improves the
water mask, but the testing of different frequency classes has to be conducted to
establish which classes give the best accuracy. By calculating the Overall Accuracy,
User’s Accuracy and Producer’s Accuracy of different scenarios, determination of
the best result can be achieved (Campbell and Wynne, 2011).
Overall Accuracy (OA) - total number of correctly classified pixels (diagonal

elements) divided by the total number of all pixels (Eq. 9):

f/f+nf/nf

OA = S (9)
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Producer’s Accuracy (PA) - an accuracy computed by analyzing the number of
correctly classified pixels of a class and comparing it with all pixels of that ground
truth class (Eq. 10):

[l

User’s Accuracy (UA) - an accuracy calculated by investigating the number of
correctly identified pixels in a given map class and comparing it with all pixels in
this class in the classified image (Eq. 11):

i

Summary

This chapter has outlined the methodology used in this masters thesis. It
introduced the steps taken for detecting a flood, creation of a flood mask from
reference data and also an exclusion layer based on time series statistics. It also
provided an example of improvement in classification accuracy. Next, Chapter 5

will present the results obtained through the previously described methods.
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5. Results

In flood mapping, the balance between accuracy and computing time is crucial,
especially when the results have to be distributed in near-real time for disaster
management authorities. This challenge motivated several experiments using the
time-series approach outlined in Chapter 4. The usefulness of the proposed method
for improving classification results from the Sentinel-1 Flood Service is assessed.
The influence of different time-series parameters and the duration of the time series
on classification accuracy is determined. This chapter describe the results from test
sites in Somalia (5.1) and Iraq (5.2).

5.1. Somalia

This subchapter is divided into parts: 5.1.1 presents results from the time
series spanning 2014-2017, 5.1.2 from the time series in 2015 and 5.1.3 from 2016.
Each of them are analyzed to determine which period and parameter of time series
are the most advantageous for future research. The last part of this subchapter
(5.1.4) is devoted to a comparison of time-series period accuracies with results de-
rived from MODIS data.

5.1.1. Time Series 2014-2017

The period of the first time series is from April 1%, 2014 to June 7', 2017.
In this time Sentinel-1 flew and captured images over the test site in Somalia 200
times: 13 images in 2014, 55 in 2015, 64 in 2016 and 68 in 2017. Fig. 25 shows
the area of interest with multiple frequency class layers generated from the Python-
based tool for calculating time series statistics. Each frequency class range is used
in image calculation with an initial, uncorrected flood mask (with overestimates
of flooding) from S-1FS. The resulting layer is analyzed using a confusion matrix
with a reference flood mask derived from optical data. Based on Producer’s and
User’s Accuracies, the frequency class with the best performance is used to create a
sand exclusion layer. In Fig. 25 the image on the left depicts pixels with threshold
frequency T = —10 dB (with colors used to indicate different frequency classes).
The middle and right image, images have thresholds equaling —15 dB and 20 dB,

respectively.
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Fig. 25: Frequency classes in the study area in Somalia with T equal —10 dB, —15 dB and
—20 dB (left to right), with the Sentinel-1 image as background (2014-2017).

Frequency —10 dB

Table 3 displays both the matrix from the original image before application
of the time series correction layer (Result 1), as well as the confusion matrices for
the tested classes (Results 2-7) for a backscatter frequency of —10 dB. The numbers
in the cells represent the number of pixels in the AOI which were identified for
the respective classification. They are derived from image calculations in ArcGIS

software.

Table 3: Confusion matrices for T = —10 dB (2014-2017)

Classification| Flood 142521 59806 202727 Classification| Flood 142310 39801 202711
Data Non Flonl:ll 3568 833255 838823 Data Non Flood 5579 833260 838839
Column total | 148489 893061] 1041550 Column total 148489 893061] 1041550

Classification| Flood 142521 59806 202727
Data Non Flood 5568| 833255 838823
Column total 148489 893061] 1041550

Classification| Flood
Data  |Non Flood|
Column total [

137383 59313
11106 833748
148489 893061

Classification| Flood 141418 59605| 201023 Classification| Flood 142321 39806 202727
Data Non Flonl:ll 7071] 833456 840527 Data Non Flood 5568' 833255 838823
Column total | 143489 893061 1041550 Column total 148489' 893061] 1041550

Classification| Flood 142743 59765 202513

Data  |NonFlood| 5741 s33296) 839027
columntotal | 143485]  893051] 10415850
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Table 4: Comparison of all accuracy results for T = —10 dB (2014-2017)

Result 1| Result2 | Result3 | Result4 | Result5 | Result6 | Result?
(S-1FS) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
OA 93.7 93.2 93.6 93.7 93.7 93.7 93.7
- Flood 96.3 92.5 95.2 96.1 96.2 96.3 96.3
non Flood 93.3 93.4 93.3 93.3 93.3 93.3 93.3
UA Flood 70.5 69.8 70.3 70.5 70.5 70.5 70.5
non Flood 99.3 98.7 99,2 99.3 99.3 99.3 99.3

The results are used to calculate the Overall, Producer and User’s Accuracy (Table
4). It can be seen that a threshold of 10 dB is not suitable for this data. Result
1 (the original image from S1-FS) obtains the highest accuracy - only the 80% and

90% classes (Result 6 and 7) reach the same values, proving that this parameter is

not adequate for an improvement to the S-1FS flood mask. Visual representation of

those results can be seen in Fig. 26.
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Fig. 26: Plot with accuracies of frequency classes with T = —10 dB (2014-2017).
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Frequency —-15 dB

The method used for analyzing threshold T = —10 dB is repeated for images
with other backscatter thresholds. The detailed table with all of the confusion matrix
results (as Table 3 for parameter T = —10 dB) can be found in Appendix B (Table
19). From Table 5 it can be seen that the best flood mask is achieved by the using

Table 5: Comparison of all accuracy results for T = —15 dB (2014-2017)

Result 1| Result2 | Result3 | Result4 | Result5 | Result6 | Result?
(S-1FS) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
OA 93.7 97.3 98.0 98.4 98.3 97.9 96.4
- Flood 96.3 84.8 90.3 93.7 95.0 95.5 96.0
non Flood 93.3 99.4 99.3 99.1 98.8 98.3 96.5
o Flood 70.5 95.8 95.5 94.7 93.1 90.4 81.9
non Flood 99.3 97.5 98.4 99.0 99,2 99.3 99.3

frequency range 60-100% (Result 4) as the exclusion layer. Producer’s Accuracy
decreases from 96.3% by 2.5%, which means that slightly less of the actual flood
(93.7%) was correctly classified as "flood" by the algorithm. The User’s Accuracy,
however, improves from 70.5% to 94.7%. This enhancement of 24.2% suggests that
the flood classifications in the final result can be more reliably trusted, since 94.7%
of flood classifications reflect ground truth. The general improvement from using
this threshold is reflected by an Overall Accuracy value of 98.4%, up 4.7% from

the original S-1FS. These are very promising results, particularly the significantly
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Fig. 27: Plot with accuracies of frequency classes with T = —15 dB (2014-2017).
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increased reliability of classified flood pixels for end users. Fig. 27 represents the

exclusion layers effects on accuracy results.

Frequency —20 dB

Table 6 illustrates accuracy results for T = —20 dB. For this threshold, the
40-100% frequency class (Result 2) slightly enhances the results. OA increases only
0.4%, PA drops 0.1%, and UA increases from 70.5% to 71.8%. This parameter is

therefore not beneficial to accuracy improvement, as figure 28 shows visually. The

full set of tables with confusion matrices is placed in Appendix B (Table 20).

Table 6: Comparison of all accuracy results for T = —20 dB (2014-2017)

Result 1| Result2 | Result3 | Result4 | Result5 | Result® | Result7
(S-1FS) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
OA 93.7 24.1 93.8 93.7 93.7 93.7 93.7
PA Flood 96.3 96.2 96.3 96.3 96.3 96.3 96.3
non Flood 93.3 93.7 93.4 93.3 93.3 93.3 93.3
UA Flood 70.5 71.8 70.9 70.5 70.5 70.5 70.5
non Flood 99.3 99.3 99.3 99.3 99.3 99.3 99.3
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Fig. 28: Plot with accuracies of frequency classes with T = —20 dB (2014-2017).



5. Results 61

5.1.2. Time Series 2015

The results below refer to a Sentinel-1 dataset from January 1%, 2015 to Jan-
uary 1%, 2016. During this period 55 images were captured over the AOI. Fig. 29
presents the chosen test site with coloration for frequency classes based on backscat-
ter thresholds equaling 10 dB, 15 dB and -20 dB.

Fig. 29: Frequency classes in the study area in Somalia with T equal to —10 dB, —15 dB
and —20 dB (left to right) with the Sentinel-1 image as background (2015).

Frequency —10 dB

Table 7 summarizes results for the T = —10 dB threshold, which shows the
parameter to be ineffective for the Somalia test site. The original image cannot be
improved by any class, with only 90-100% (Result 7) able to match the accuracy
values (Fig. 30). Detailed data are shown in Table 21 in Appendix B.

Table 7: Comparison of all accuracy results for T = —10 dB (2015)

OA 93.7 90.9 92.3 93.5 93.6 93.7 93.7
o Flood 96.3 75.6 85.7 94.3 95.5 96.0 96.2
non Flood 93.3 93.5 93.4 93.3 93.3 93.3 93.3
UA Flood 70.5 65.8 68.3 70.1 70.4 70.5 70.5
non Flood 99.3 95.8 97.5 99.0 99.2 99.3 99.3
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Fig. 30: Plot with accuracies of frequency classes with T = —10 dB (2015).

Frequency —-15 dB

Similar to the years 2014-2017, the results displayed in Table 8 indicate that
the threshold —15 dB, especially in the class range 60-100%, can improve S-1FS

accuracy. To illustrate the results Fig. 31 is attached. PA in the original image is

equal to 96.3%, and it insignificantly decreases to 95% (Result 4), but UA increases
over 20.6% to 91.1%. OA accuracy is equal to 98.0%. Although OA has the same
value in Result 3 (50-100%), the Producer’s and User’s Accuracy from Result 4 are
slightly better. Detailed pixels statistics are given in Table 22 in Appendix B.

Table 8: Comparison of all accuracy results for T = —15 dB (2015)

Result 1| Result2 | Result3 | Result4 | Result5 | Result6 | Result?7
(S-1FS) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
OA 93.7 97.3 98.0 98.0 97.4 96.6 95.5
= Flood 96.3 85.5 91.1 95.0 95.5 95.8 96.0
non Flood 93.3 99.3 99.1 98.5 97.8 96.8 95.5
o Flood 70.5 95.2 94.5 91.1 87.7 83.1 77.9
non Flood 99.3 97.6 98.5 99.2 99.2 99.3 99.3
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Fig. 31: Plot with accuracies of frequency classes with T = —15 dB (2015).
Frequency -20 dB

As can be seen in Table 9 and Fig. 32, parameter T = —20 dB does not
influence results from the original image. Only Result 2 (40-100%) slightly improves
the accuracy (see Table 23 in Appendix B), but it is not relevant statistically.
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Fig. 32: Plot with accuracies of frequency classes with T = —20 dB (2015).
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Table 9: Comparison of all accuracy results for T = —20 dB (2015)

0OA 93.7 94.0 93.8 93.7 93.7 93.7 93.7
PA Flood 96.3 96.2 96.2 96.2 96.3 96.3 96.3
non Flood 93.3 93.6 93.4 93.3 93.3 93.3 93.3
VA Flood 70.5 71.4 70.8 70.5 70.5 70.5 70.5
non Flood 99.3 99.3 99.3 99.3 99.3 99.3 99.3

5.1.3. Time Series 2016

For time series data from the period January 1%, 2016 to January 15, 2017, 64
images from the Sentinel-1 mission ware captured and merged by the Python-based
tool into frequency maps with different thresholds. Below, in Fig. 33, maps with T
equal to —10 dB, -15 dB and 20 dB are presented.

Fig. 33: Frequency classes in the study area in Somalia with T equal to —10 dB, —15 dB
and —20 dB (left to right) with the Sentinel-1 image as background (2016).

Frequency -10 dB

The results outlined in Table 10 show once again that T = —10 dB is not

useful for accuracy improvement. No frequency class is able to improve the results

Table 10: Comparison of all accuracy results for T = —10 dB (2016)

0A 93.7 91.2 92.7 93.5 93.5 93.7 93.7
o Flood 96.3 77.5 89.0 94.4 94.4 96.0 96.2
non Flood 93.3 93.4 93.4 93.3 93.3 93.3 93.3
UA Flood 70.5 66.2 69.0 70.1 70.1 70.5 70.5
non Flood 99.3 96.1 98.1 99.0 99.0 99.3 99.3

of S-1FS and similarly to the other years, only Result 7 (90-100% frequency class) is



5. Results

65

able to reach the accuracies of the original image (Fig. 34). In Appendix B, Table

24 shows detailed calculations for all frequency ranges.

Fig. 34: Plot with accuracies of frequency classes with T = —10 dB (2016).

100

a0

85

80

75

Accuracy [%]

—t— A —8—PA Flood —e=UA Flood

Frequency —-15 dB

The analysis of the —15 dB backscatter threshold (Table 11) indicates that the
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highest accuracy improvement is achieved with Results 4 and 5. The OA improves
by 4.2% up to 97.9%. Much like previous cases, the detection of ground truth flood

pixels (or PA) decreases 3%, but looking at the 22% increase in UA for these results,

it is clear that the percentage of pixels classified as flood which actually are flood

is significantly improved (for visual representation, see Fig. 35, and for detailed

statistics of frequency classes, refer to Table 25 in Appendix B).

Table 11: Comparison of all accuracy results for T = —15 dB (2016)

Result 1| Result2 | Result3 | Result4 | Result5 | Result6 | Result?

(S-1FS) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
OA 93.7 96.5 97.7 97.9 97.9 97.5 96.2
- Flood 96.3 79.3 89.0 93.3 93.3 95.0 95.8
non Flood 93.3 99.3 99.1 98.7 98.7 97.9 96.2
. Flood 70.5 95.1 94.3 92.4 92.4 88.3 80.8
non Flood 99.3 96.7 98.2 98.9 98.9 99,2 99.3
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Fig. 35: Plot with accuracies of frequency classes with T = —15 dB (2016).

Frequency —20 dB

Table 12 displays accuracies for T = —20 dB. Result 2 shows the highest
improvement possibilities, but they are not significant - OA increases only 0.5%, UA

increases 1.6% and PA decreases 0.1% (Fig. 36). The detailed frequency calculations
are attached to Appendix B in Table 26.
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Fig. 36: Plot with accuracies of frequency classes with T = —20 dB (2016).
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Table 12: Comparison of all accuracy results for T = —20 dB (2016)

Result 1| Result2 | Result3 | Result4 | Result5 | Result6 | Result?
(S-1FS) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
OA 93.7 94.2 93.9 93.8 93.8 93.7 93.7
- Flood 96.3 96.2 96.2 96.2 96.2 96.2 96.3
non Flood 93.3 93.8 93.5 93.3 93.3 93.3 93.3
UA Flood 70.5 72.1 71.0 70.6 70.6 70.5 70.5
non Flood 99.3 99.3 99.3 99.3 99.3 99.3 99.3
Summary

Based on the results described in previous subchapters, it can be said that

using threshold T = —15 dB for an exclusion layer in the test site in Somalia gives

the highest overall accuracy. Additionally, the best results are obtained using a

frequency range of 60-100%, referring to pixels which were detected with backscatter

value below threshold T at least 60% of the time in time series analysis. Comparing

the different time series durations used with the original S-1FS image (Fig. 37, Table

13) leads to the conclusion that each time series improves results, but 2014-2017

slightly more than others.

Table 13: Comparison of all accuracy results

Result 1| Result2 Result 3 Result 4
(S-1FS) (2015) (2016) (2014-2017)
OA 93.7 98.0 97.9 98.4
Flood 96.3 95.0 93.3 93.7
PA Flood
non Flood 93.3 98.5 98.7 29.1
Flood 70.5 91.1 92.4 94.7
UA Flood
non Flood 99.3 99.2 98.9 99.0
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Fig. 37: Plot with accuracies of time series durations.
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Fig. 38 illustrates the classification accuracy of threshold —15 dB (over the
2014-2017 time period) in which the color blue denotes areas where a flood occurred
and which were correctly classified as inundated. White areas are the ones that are
categorized as non-flood and in reality were not flooded. Green and red regions are
falsely assigned - red being assigned to flood where in reality it was not flooded, and

green as not flooded where it actually was an inundated region.

True event

B F oo

|:|Non Flood

False alarm

B F ool
-Non Flood

Fig. 38: Map with true events and false alarms.



5. Results 69

5.1.4. Sentinel-1 Time Series vs MODIS

For comparison, the MODIS backscatter data is used for generation of an
exclusion layer for improvement of S-1FS. The landcover class referred to as "Barren
or sparsely vegetated" (Class 16) is used for the creation of a flood mask (Fig. 39).

The results from original Sentinel-1 data and the highest accuracies from each time

Fig. 39: MODIS Class 16 (on left) and MODIS-based improvement of S-1FS flood mask
(on right).

series period are compared to MODIS (Table 14, Fig. 40). MODIS only slightly
increases the User’s Accuracy, by about 3%, but PA does not change. Clearly,
the time series method discussed in this thesis reaches higher values in both User

Accuracy and also Overall Accuracy.

Table 14: Comparison of time series accuracies with MODIS

OA 93.7 94.5 98.0 97.9 98.4
PA Flood Flood 96.3 96.3 95.0 93.3 93.7
non Flood 93.3 94.2 98.5 98.7 99.1
UA Flood Flood 70.5 73.4 91.1 92.4 94.7
non Flood 99.3 99.3 99.2 98.9 99.0
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Fig. 40: Plot of accuracies of time series and MODIS.

5.2. Iraq

This subchapter helps to address the third research question. The flooding
which occurred in October 2015 in Iraq was entirely in sandy regions, and, because
of difficulties involving analysis of sand in SAR data, this event is a good example
to test the limitations of this method.

Fig. 41: Frequency classes in the study area in Iraq with T equal —10 dB (top left), -15 dB
(top right) and —20 dB (bottom) with the Sentinel-1 image as background.

The Area of Interest in Iraq is examined for one year of data spanning January
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1%, 2016 to January 1%°, 2017. The decision to limit the time series to one year was
based on the Somalia tests, where the enhancement from using a three-year series
was relatively insignificant, while involving higher computational demand. 79 images

from Sentinel-1 were captured over the chosen AOI. Similar to Somalia, the tested

backscatter thresholds are: —10 dB, —15 dB and —20 dB (Fig. 41).

Frequency —10 dB

Table 15 shows the results of tests performed using threshold —10 dB. It can
be seen that there is no accuracy improvement from the tests, and that changes
in classifications of the pixels in frequency classes are insignificant (see Table 27
in Appendix B). Visual confirmation can be found in Fig. 42. Thus the —10 dB

threshold parameter does not seem to be useful for this region.

Table 15: Comparison of all accuracy results for T = —10 dB in Iraq
Result 1| Result2 | Result3 | Result4 | Result5 | Result6 | Result7
(s-1F5) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
0A 87.0 87.0 87.0 87.0 87.0 87.0 87.0
oA Flood 67.5 67.5 67.5 67.5 67.5 67.5 67.5
nonFlood | 90.8 90.8 90.8 90.8 90.8 90.8 90.8
UA Flood 58.6 58.6 58.6 58.6 58.6 58.6 58.6
nonFlood | 935 93.5 93.5 93.5 93.5 93.5 93.5
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Fig. 42: Plot with accuracies of frequency classes with T = —10 dB in Iraq.
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Frequency —-15 dB

As can be seen in Fig. 41, the high-frequency classes for -15 dB cause most
of the flooded area to be included in the exclusion layer. This negatively affects
the Producer’s Accuracy, which represents how many pixels from the ground truth
flood were actually classified as a flood. Table 16 shows PA for the tests ranging
from as low as 5.1% to 47.6% at best. Comparing those values to a PA of 67.5%
in the original data suggests low usability of this parameter. In User’s Accuracy,
results show an increase in accuracy of between 3.9-7.2%, but Overall Accuracy has
decreased, confirming the threshold —15 dB to be ineffective (see Fig. 43). The
detailed statistical data are attached in Appendix B in Table 28.

Table 16: Comparison of all accuracy results for T = —15 dB in Iraq
Result 1| Result2 | Result3 | Result4 | Result5 | Result6 | Result7
(-1Fs) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
0A 87.0 84.2 84.6 85.1 85.7 86.4 86.9
oA Flood 67.5 5.1 9.8 16.9 24.6 36.5 47.6
nonFlood | 90.8 99.4 99.0 98.3 97.5 96.0 94.5
UA Flood 58.6 63.6 65.7 65.8 65.5 63.8 62.5
non Flood | 93.5 84.4 85.0 86.0 87.0 88.7 90.3
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Fig. 43: Plot with accuracies of frequency classes with T = —15 dB in Iraq.
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Frequency -20 dB

Table 17 displays the accuracy improvements generated by T = —20 dB. Result
6 offers a small improvement over the original S-1FS image. UA increases 0.6%, while
PA drops from 67.5% to 67.3%, with the overall effect being 0.2% better OA. Fig.

44 illustrates those results (detailed confusion matrices are in Table 29 in Appendix

B).
Table 17: Comparison of all accuracy results for T = —20 dB in Iraq
Result 1| Result2 | Result3 | Result4 | Result5 | Result6 | Result?7
(S-1Fs) | (40-100%) | (50-100%) | (60-100%) | (70-100%) | (80-100%) | (90-100%)
oA 87.0 86.2 86.7 87.1 87.2 87.2 87.1
oA Flood 67.5 52.4 59.2 64.2 66.5 67.3 67.5
nonFlood | 90.8 92.7 92.0 91.5 91.3 91.0 90.9
UA Flood 58.6 58.0 58.9 59.4 59.5 59.2 58.8
nonFlood | 935 91.0 92.1 93.0 93.4 93.5 935
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Fig. 44: Plot with accuracies of frequency classes with T = —20 dB in Iraq.
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Summary

Table 18 present a comparison between the accuracy of the S-1FS image and
the results obtained from tests using time series. Only threshold —20 dB (with the
80-100% frequency class) is able to improve accuracy, but just by 0.2% overall. Based
on these results it can be concluded that this method has considerable limitations
when the flood is occurring on areas permanently covered by sandy surfaces with

low backscatter. In such situations, inundation of the terrain is not detected.

Table 18: Accuracies of time series durations in Iraq

Result 1 Result 2 Result 3 Result 4
(S-1FS) (-10) (-15) (-20)
OA 87.0 87.0 85.1 87.2
Flood 67.5 67.5 16.9 66.5
PA Flood
non Flood 90.8 90.8 98.3 91.3
Flood 58.6 58.6 65.8 59.5
UA Flood
non Flood 93.5 93.5 86.0 93.4
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Fig. 45: Plot with accuracies of time series durations in Iraq.
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6. Conclusions

This thesis tests Sentinel-1 time-series data for flood mapping in arid areas.
The technique includes automatic Sentinel-1 data ingestion, geometric correction,
radiometric calibration, computation, and merging of statistics layers. The proposed
approach aims to improve the classification accuracy of automatic Sentinel-1 Flood
Service. The service is designed for the detection of floods from a single SAR image.
Particular attention is focused on arid regions in which one SAR dataset fails to

differentiate water and other low backscatter regions.

6.1. Key Findings

This study was guided by three research questions. To answer the main ques-

tion, the second and third questions will be addressed first.

Research question 2:

What is the influence of time-series parameters on classification accuracy?

From the outcome of experiments described in this thesis, it is possible to
conclude that time-series parameters greatly influence the classification accuracy.
An important implication of the performed tests is the significance of selecting a
proper backscatter threshold and the frequency class for accuracy improvement.
This study was also focused on the importance of time series duration. The results
confirmed that a longer period of analysis leads to higher accuracy. It is important
to have in mind the balance between accuracy improvement and computing time.
A good example of that was the test in Somalia. Although a three-year time series
had the highest accuracy, it was only 0.4% better than with a one-year period. The
computation of time series data for 2014-2017 took five days, whereas both 2015
and 2016 needed less than a day to be processed. In this case clearly a one-year
time series was viable choice, especially if the results have to be quickly distributed

to disaster management authorities.

Research question 3:

What are the uncertainties and limitations of this approach?

The main limitation of this method is related to the surface on which the
flood occurs. The time series comparison is based on an exclusion layer of regions

with continuous low backscatter when not flooded, so if inundation develops on an
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area permanently covered by sand, the algorithm is not able to detect it. This is
confirmed in the tests conducted in the Iraq area of study.

Another limitation is on the technological side of the approach. The time series
algorithm downloads and processes all of the Sentinel-1 datasets from the chosen
period. Each of the images is high quality, with correspondingly large file size. To
perform the time series analysis for Somalia in 2014-2017 (200 images) about 400
GB was used, and this test site has an area of only 105 km?. This issue deserves

particular consideration if:
e larger areas need to be analyzed,
e there is a need for a longer period of time series, and
e Sentinel-1 satellite flies over the AOI with high frequency.

Research question 1:

Does the use of the Sentinel-1 time-series data improving flood mapping in arid

areas in comparison to existing approaches not based on the time series?

From the research that has been carried out, it is possible to conclude that
Sentinel-1 time-series data can improve flood mapping in arid areas. Statistical pa-
rameters of backscatter time series were tested to establish which one will eliminate
water-lookalikes with the highest accuracy. Examination of two areas of interest took
place: a flood in Somalia in May 2016 and a flood in Niger in November 2015. In
the Somalia case, the method removed most of the unwanted, overestimated regions
through the application of the exclusion mask, ultimately showing very promising
results with an Overall Accuracy of 98.4%, as well as a Producer’s Accuracy value of
93.7% and User’s Accuracy of 94.7%, the latter indicating an improvement of more
than 24%. Those results were gained by using the 60-100% frequency classes for
generation of the exclusion layer.

The originality of method presented in this thesis lies in the fact that a long
period of time was used for analysis of interest areas. Using time series helps with
detection of water-lookalikes. Confirmation of that can be found in the test carried
out with MODIS data, which with its low coverage, led to only slight improvement

of User’s Accuracy, with a value of 3%.
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6.2. Recommendations for Future Research

Until now, generation of exclusion layers consumes a substantial amount of
time. In near-real-time flood mapping, fast response is one of the most important
factors. Future work is needed to produce world-wide exclusion layers for arid areas.
Implementation of this exclusion layer with the Sentinel-1 Flood Service would lead
to higher classification accuracy with a short amount of computation time, critical
for end users with time constraints for action. Further research is required for solving
the issue of poor detection of flooded sandy regions. Additional experiments with

the method outlined in this thesis on other test sites are recommended.
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A. List of webpages

Appendices

Appendix A List of webpages

Database of charters activations - disastercharter.org
Emergency Events Database - emdat.be

Flood database - floodlist.com

Sentinel (1&2) data server - scihub.copernicus.eu

Landsat 8 data server - earthexplorer.usgs.gov
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Table 19: Confusion matrices for T = —15 dB (2014-2017)

Appendix B Confusion matrices

Result1 Reference Data e Result 5 Reference Data e
{Original mask) Flood | Mon Flood {70-100%) Flood | Non Flood
Classification Flood 142921 59806 202727 Classification Flood 141135 10480 151615
Data Non Flood| 5568 833255 838823 Data Non Flood 7354 882581 889935
Column total 148489 §93061] 1041550 Column total 148489 893061] 1041550
Result 2 Reference Data e Result 6 Reference Data e
(a0-100%) Flood | Non Flood (80-100%) Flood | Non Flood
Classification Flood 125968 5528 131496 Classification Flood 141875 15080 156955
Data Non Flood| 22521 887533 910054 Data Non Flood 6614 877981 884595
Column total 148489 §93061] 1041550 Column total 148489 893061] 1041550
Result3 Reference Data e Its 7 Reference Data e
(50-100%) Flood | Non Flood (90-100%) Flood | Non Flood
Classification Flood 134080 6312 140392] Classification Flood 142499 31413 173912
Data Non Flood| 14409 886749 901158 Data Non Flood| 5990 861648 867638
Column total 148489 §93061] 1041550 Column total 148489 893061] 1041550
Result 4 Reference Data e
(60-100%) Flood | Non Flood|
Classification Flood 139205 7720 146925
Data Non Flood 9284 885341 894625
Column total 148489 §93061] 1041550
Table 20: Confusion matrices for T = —20 dB (2014-2017)
Result 1 Reference Data Fa— Result 5 Reference Data e
[Original mask) Flood | Non Flood {70-100%) Flood |Non Flood
Classification Flood 142921 59806 202727 Classification Flood 142921 59806 202727
Data Non Flood| 5568 833255 838823 Data Non Flood| 5568 833255 838823
Column total 148489 893061 1041550 Column total 148489 893061 1041550
Result 2 Reference Data — Result 6 Reference Data e
(80-100%) Flood | Non Flood (80-100%) Flood |Non Flood
Classification Flood 142901 56026 198927 Classification Flood 1425921 59806 202727
Data MNon Flood| 5588 837035 842623 Data Non Flood| 5568 833255 838823
Column total 148489 893061] 1041550 Column total 148489 893061] 1041550
Result 2 Reference Data Row total Result 7 Reference Data Row total
(50-100%) Flood | Non Flood (90-100%) Flood | Non Flood
Classification Flood 142921 58667 201588 Classification Flood 1425921 59806 202727
Data Non Flood 5568 834394 839962 Data Non Flood 3568 833255 838823
Column total 148489 893061 1041550 Column total 148489 893061 1041550
Result 4 Reference Data Fa—
(60-100%) Flood | Non Flood
Classification Flood 142921 59704 202625
Data Non Flood 5568 833357 838925
Column total 148489 893061] 1041550
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Table 21: Confusion matrices for T = —10 dB (2015)

Result 1 Reference Data Ren Tl Result 5 Reference Data Row total
(Original mask) Flood |Non Flood (70-100%) Flood |Non Flood
Classification Flood 142921 59806 202727 Classification Flood 141799 59720 201519
Data Non Flood 5568 833255 838823 Data Non Flood 6690 833341 840031
Column total 143489 893061| 1041550 Column total 148489 893061] 1041550
Result 2 Reference Data e Result 6 Reference Data Row tatal
(a0-100%) Flood |Non Flood (80-100%) Flood |Non Flood
Classification Flood 112227 58391 170618 Classification Flood 142588 59781 202369
Data Non Flood| 36262 834670 870932] Data Non Flood 5901 833280 839181
Column total 148489 893061] 1041550 Column total 148489 893061] 1041550
Result 3 Reference Data — Result 7 Reference Data R
(50-100%) Flood |Non Flood (90-100%) Flood |Non Flood
Classification Flood 127284 58992 186276 Classification Flood 142838 59799 202637
Data Non Flood| 21205 834069 855274 Data Non Flood 5651 833262 838913
Column total 143489 893061] 1041550 Column total 1438489 893061] 1041550
Result 4 Reference Data Ren el
(60-100%) Flood |Non Flood
Classification Flood 139988 59612 159600
Data Non Flood 8501 833449 841950
Column total 143489 893061| 1041550
Table 22: Confusion matrices for T = —15 dB (2015)
Result1 Reference Data e Result 5 Reference Data a—
[Original mask) Flood | Non Flood (70-100%) Flood |Non Flood
Classification Flood 142921 59806 202727 Classification Flood 141789 19956 161745
Data Non Flood| 5568 833255 838823 Data Non Flood 6700 873105 879805
Column total 1438489 893061] 1041550 Column total 148489 893061| 1041550
Result 2 Reference Data e Result 6 Reference Data a—
(20-100%) Flood | Non Flood (80-100%) Flood |Non Flood
Classification Flood 126990 6425 133418 Classification Flood 142223 28970 171193
Data Non Flood| 21499 8866033 908132] Data Non Flood 6266 864091 870357
Column total 1438489 893061] 1041550 Column total 148489 893061| 1041550
Result 3 Reference Data e Result 7 Reference Data a—
(50-100%) Flood | Non Flood (90-1003%5) Flood |Non Flood
Classification Flood 135255 7898 143153 Classification Flood 142558 40548 183106
Data Non Flood| 13234 885163 898397 Data Non Flood| 5931 852513 858444
Column total 148489 §93061] 1041550 Column total 148489 893061] 1041550
Result 4 Reference Data e
(60-100%) Flood | Non Flood
Classification Flood 141004 13811 154815
Data Non Flood TAB5 879250 886735
Column total 148489 §93061] 1041550
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Table 23: Confusion matrices for T = —20 dB (2015)

Result1 Reference Data —— Result 5 Reference Data —
(Original mask) Flood | Non Flood (70-100%) Flood | Non Flood
Classification Flood 142921] 59806 202727 Classification Flood 1425921 59795 202716
Data Non Flood 5568 833255 838823 Data Non Flood 5568 833260 838834
Column total 148489 893061] 1041550 Column total 143489 893061] 1041550
Result 2 Reference Data —— Result 6 Reference Data —
(40-100%) Flood | Non Flood| (80-100%) Flood | Non Flood
Classification Flood 142889 57370 200259 Classification Flood 142521 59806 202727
Data Non Flood 5600 835691 841291 Data Non Flood 5568 833255 838823
Column total 148489 893061] 1041550 Column total 143489 893061] 1041550
Result 3 Reference Data E—— Result 7 Reference Data ra—
(50-100%) Flood | Non Flood| (90-100%) Flood | Non Flood
Classification Flood 142914 58960 201874 Classification Flood 142521 59806 202727
Data Non Flood 5575 834101 839676 Data Non Flood 5568 833255 838823
Column total 148489 893061] 1041550 Column total 143489 893061] 1041550
Result4 Reference Data I
(60-100%) Flood | Non Flood|
Classification Flood 142920 59748 202668
Data Non Flood 5569 833313 838882
Column total 148489 893061] 1041550
Table 24: Confusion matrices for T = —10 dB (2016)
Result1 Reference Data Result 5 Reference Data
{Original mask) Flood | Non Flood Row total (70-100%) Flood | Non Flood fRow total
Classification Flood 142921 59806 202727 Classification Flood 140122 59644 199766
Data Non Flood| 5568 833255 838823 Data Non Flood 8367 833417 841784
Column total 148489 893061] 1041550 Column total 148489 893061 1041550
Result 2 Reference Data o Result 6 Reference Data e
(a0-100%) Flood | Non Flood (80-100%) Flood | Non Flood
Classification Flood 115018 58624 173642 Classification Flood 142539 59776 202315
Data Non Flood| 33471 834437 867908 Data Non Flood 5950 833285 839235
Column total 148489 893061] 1041550 Column total 148489 893061 1041550
Result 3 Reference Data Row total Result 7 Reference Data Ren Tl
(50-100%) Flood | Non Flood (90-100%) Flood |Non Flood
Classification Flood 132147 59310 191457 Classification Flood 142920 59806 202726
Data Non Flood| 16342 833751 850093 Data Non Flood| 5369 833255 838824
Column total 148489 893061] 1041550 Column total 148489 893061] 1041550
Result4 Reference Data
(50-100%) Flood | Non Flood Row total
Classification Flood 140122 59644 199766
Data Non Flood 8367 833417 841784
Column total 148489 893061] 1041550
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Table 25: Confusion matrices for T = —15 dB (2016)

Result 1 Reference Data R Result 5 Reference Data R——
(Original mask) Flood | Non Flood (70-100%) Flood | Non Flood
Classification| Flood 142921 59806 202727 Classification| Flood 138501 11441 149542]
Data Non Flood| 5568 833255 838823 Data Non Flood 9988 881620 891608
Column total 148489 893061| 1041550 Column total 148489 893061 1041550
Result 2 Reference Data —— Result 6 Reference Data o
(40-100%) Flood | Non Flood (80-100%) Flood | Non Flood
Classification Flood 117750 6101 123851 Classification Flood 141128 18630 159758
Data Non Flood| 30739 886960 917699 Data Non Flood 7361 874431 881792
Column total 148489 893061| 1041550 Column total 148489 893061 1041550
Result 3 Reference Data o Result 7 Reference Data o
(50-100%) Flood | Non Flood (90-100%) Flood | Non Flood
Classification Flood 132202 8058 140260 Classification Flood 142273 33714 175987
Data Non Flood| 16287 885003 901290 Data Non Flood 6216| 859347 865563
Column total 148489 893061| 1041550 Column total 148489 893061 1041550
Result4 Reference Data I
(60-100%) Flood | Non Flood
Classification| Flood 138501 11441 149542
Data Non Flood 9988 881620 891608
Column total 148489 893061] 1041550
Table 26: Confusion matrices for T = —20 dB (2016)
Result 1 Reference Data — Result 5 Reference Data —
(Original mask) Flood | Non Flood (70-100%) Flood |Non Flood
Classification Flood 142921 59806 202727 Classification Flood 142914 59481 202395
Data Non Flood 5568 833255 838823 Data Non Flood 5575 833580 839155
Column total 148489 893061] 1041550 Column total 148489 893061] 1041550
Result 2 Reference Data — Result 6 Reference Data —
(30-100%) Flood | Non Flood (80-100%) Flood |Non Flood
Classification Flood 142820 55235 198055 Classification Flood 142920 59768 202688
Data Non Flood 5669 837826 843495 Data Non Flood 5569 833293 838862
Column total 148489 893061] 1041550 Column total 148489 893061] 1041550
Result 3 Reference Data — Result 7 Reference Data —
(50-100%) Flood | Non Flood (90-100%) Flood |Non Flood
Classification Flood 142889 58399 201288 Classification Flood 142921 59804 202725
Data Non Flood 5600 834662 840262 Data Non Flood 5568 833257 838825
Column total 1438489 893061] 1041550 Column total 148489 893061| 1041550
Result 4 Reference Data ——
(60-100%) Flood | Non Flood
Classification Flood 142914 59481 202395
Data Non Flood 5575 833580 839155
Column total 1438489 893061] 1041550
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Table 27: Confusion matrices for T = —10 dB in Iraq

Result1 Reference Data Row total Classification 5 Reference Data Row total
(Originalmaske) Flood | Non Flood {70-100%) Flood |Non Flood
Classification| Flood |4345106] 3066738 7411844 Classification| Flood |4345097| 3066541] 7411638
Data Non Flood| 2088185 30231752] 32319937 Data Non Flood| 2088194| 30231949| 32320143
column total 6433291] 33298490| 39731781 column total 5433291| 33298490| 39731781
Result 2 Reference Data Row total Classification 6 Reference Data Row total
(40-100%) Flood |Non Flood (80-100%) Flood |Non Flood
Classification| Flood |4340244] 3063177 7403421 Classification| Flood |4345106| 3066734] 7411840
Data Non Flood| 2093047] 30235313) 32328360 Data Non Flood| 2088185 30231756| 32319941
column total 6433291] 33298490| 39731781 column total 5433291| 33298490| 39731781
Classification 3 Reference Data Row total Classification 7 Reference Data Row Iotal
(50-100%) Flood |Non Flood (90-100%) Flood |Non Flood
Classification| Flood |4344310] 3064733] 7409043 Classification| Flood |4345106] 3066738 7411844
Data Non Flood| 2088381] 30233757] 32322738 Data Non Flood| 2088185 30231752| 32319937
column total 6433291] 33298490| 39731781 column total 5433291| 33298490| 39731781
Classification 4 Reference Data Row total
(60-100%) Flood |Non Flood
Classification| Flood |4344989] 3066094] 7411083
Data Non Flood| 2088302 30232396] 32320698]
Column total 6433291] 33298490| 39731781
Table 28: Confusion matrices for T = —15 dB in Iraq
Result 1 Reference Data Row total Classification 5 Reference Data Row total
(Originalmaske) Flood |Non Flood (70-100%) Flood |Mon Flood
Classification| Flood |4345106] 3066738 7411344 Classification| Flood |1585337] 835059| 2420396
Data Non Flood| 2088185| 30231752| 32319937 Data Non Flood| 4847954 32463431| 37311385
Column total 5433291| 33298490| 39731781 Column total 5433291| 33298490| 39731781
Result 2 Reference Data Row total Classification 6 Reference Data Row total
(40-100%) Flood |Non Flood (80-100%) Flood |Non Flood
Classification| Flood | 329543] 188672] 518215 Classification| Flood |2345555] 1331387] 3676342
Data Non Flood| 61023748| 33109818| 39213566 Data Non Flood| 4087736] 31967103| 36054829
Column total 6433291| 33298490 39731781 Column total 5433291| 33298490 39731781
Classification 3 Reference Data o Classification 7 Reference Data —
(50-100%) Flood |Non Flood (50-100%) Flood |Non Flood
Classification| Flood | 631370] 329877] 961247 Classification| Flood |3063176] 1838362] 4901538
Data Non Flood| 5801921 32968613] 38770534 Data Non Flood| 3370115| 31460128| 34830243
Column total 6433291| 33298490 39731781 Column total 5433291| 33298490 39731781
Classification 4 Reference Data R—
(60-100%) Flood |Non Flood
Classification| Flood |1089476] Ss6839| 1656315
Data Non Flood| 5343815] 32731651| 383075466
Column total 5433291| 33298490| 39731781
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Table 29: Confusion matrices for T = —20 dB in Iraq

Result 1 Reference Data v Classification 5 Reference Data v
(Originalmaske) Flood |Non Flood (70-100%) Flood |Non Flood
Classification| Flood |4345106] 3066738] 7411844 Classification| Flood |4275323] 2911742| 7187065
Data Non Flood| 2088185 30231752] 32319937 Data Non Flood| 2157968 30386748| 32544716
Column total 5433291| 33298490| 39731781 Column total 5433291| 33298490| 39731781
Result 2 Reference Data e Classification 6 Reference Data e
(40-100%) Flood |Non Flood (80-100%) Flood |Non Flood
Classification| Flood |3370066| 2437383] 5807455 Classification| Flood |4332067| 2991608 7323575
Data Non Flood| 3063225| 30861101| 33924326 Data Non Flood| 2101224| 30306882| 32408106
Column total 6433291| 33298490| 39731781 Column total 5433291| 33298490| 39731781
Classification 3 Reference Data e Classification 7 Reference Data e
(50-100%) Flood |Non Flood (90-100%) Flood |Non Flood
Classification| Flood |3811580 2663905| 6475485 Classification| Flood |4343834| 3041242 7385076
Data Non Flood| 2621711 30634585| 33256296 Data Non Flood| 2089457| 30257248| 32346705
Column total 6433291| 33298490| 39731781 Column total 6433291| 33298490| 39731781
Classification 4 Reference Data o
(60-100%) Flood |Non Flood
Classification| Flood |4129336| 2826590] 6355326
Data Non Flood| 2303955 30471900| 32775855
Column total 5433291| 33298490| 39731781
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