
1

Graph-based version control for asynchronous BIM level 3 collaboration

Sebastian Esser, Simon Vilgertshofer, and André Borrmann

Technical University of Munich, Germany

sebastian.esser@tum.de , simon.vilgertshofer@tum.de , andre.borrmann@tum.de

Abstract. Collaboration and communication are two essential aspects of Building Information

Modeling (BIM). Current standards such as ISO 19650 take this into account by propagating the

concept of federated domain models based on file-based information containers (BIM level 2). In

consequence, complete models are transmitted every time a new version is shared with the

collaborators. As changes in domain models cannot be tracked for individual objects, but for whole

files only, high effort for the subsequent coordination across the domains is created. These

limitations can be overcome by implementing modern approaches of digital collaboration based on

object-level synchronization, as denoted as BIM level 3. To provide a methodological basis, this

paper proposes to represent the object-networks of BIM models as formal graphs and describing

changes in the model as graph transformations. Consequently, modifications can be transmitted as

patches using the graph formalisms, which are to be integrated and interpreted on the receiving side,

thus achieving object-level synchronization. The paper discusses in detail the graph-based

representation and the implementation of the necessary graph comparison algorithms.

1. Introduction

Collaboration in projects of any size gain increasing importance in the AEC industry. Data

exchange across experts of different domains and roles is one of the key aspects of Building

Information Modeling (BIM). The degree of support for vendor-neutral data exchange formats

by BIM-based software applications has increased during the past years and eases data

handover between stakeholders.

Current practice for model-based collaboration, reflected by international standards such as

ISO 19650, relies on the concept of federating disciplinary models in a common data

environment (CDE) based on so-called information containers. As these information containers

are basically a collection of files, the currently implemented mechanisms for model-based

collaboration rely on mere file management, where files are the smallest manageable

information unit (Preidel et al., 2018).

In consequence, the complete domain model is transferred as monolithic file, each time a new

version is made available. While these updates are very frequent during the collaborative design

phase, it requires the manual identification of design changes by all other stakeholders. At the

same time, the ratio between modified objects and the total number of objects in an updated

model is often rather small. Therefore, providing the entire modified model is inefficient if

other project participants have already received, understood, and integrated the foreign but

outdated model version in their respective software environments.

To overcome the described limitations, improved techniques are required to enable the

versioning of BIM models. This versioning includes identifying updates in models and

transmitting solely the update information instead of the entire models. The communication

between project participants is consequently realized by update patches that represent the

mailto:sebastian.esser@tum.de
mailto:simon.vilgertshofer@tum.de
mailto:andre.borrmann@tum.de

2

update procedure. To this end, a specific focus is put on possible mechanisms to detect changes

and integrate update patches in the receiving application.

1.1 Outline

The paper introduces a novel approach that extends file-based collaboration to object-based

collaboration using patch-based update mechanisms based on graph formalisms. The entire

communication process can be split into three major parts: (i) the update identification, (ii) the

patch formulation and distribution, and (iii) the patch integration on the receiver side. The

information provided by (disciplinary) BIM models is represented by graph structures, which

provide a well-established formalism in data science.

1.2 Preliminary Remarks

The term “model” is broadly used with widely diverging semantics in research and practice and

can refer to various structures. The Meta Object Facility (MOF) specifications standardized by

the Object Management Group (OMG) distinguish between instance data (M0), data model

(M1), meta model (M2) and meta meta model (M3) (Object Management Group, 2019).

By contrast, in the BIM domain the term model often refers to the population of instance data.

In the context of this paper, we accordingly use the term BIM model or domain model in the

sense of MOF level M0. In addition, the underlying structure, which abstracts the given real-

world problem from a certain perspective, is defined as data model or schema specification.

The abstraction of a data model in its generic items like datatypes and relationships is defined

in a meta model.

2. Background and related work

The increasing growth of digital technologies in the AEC sector has provided industry with

opportunities to improve its productivity and operations. A central aspect is the improved

communication and collaboration among contractors, coordinators, architects, and engineers.

This is accompanied by the need to provide various structures for the transmission of

information.

Versioning of structured data representations raises awareness in many industry branches for a

long time now. Specifically, in the field of software development, various methods, protocols,

and systems exist that enable distributed version control of text files. Prominent examples are

Subversion, Mercurial and Git among others. In most approaches, a central database stores the

global history of change events, integrates incoming modifications (“commit and push”) and

allows a user to clone the entire history with all incremental changes to his local machine.

Therefore, each user can read and understand the entire history, create, and test modifications

locally. If changes are ready to share with others, the user synchronizes his local state with the

central database again. The chain of update messages forms the entire history of the project.

Incoming updates can be integrated automatically if they do not create any conflicts with

existing or concurrent local changes. Only in case of conflicts, the user needs to resolve them

and choose the desired content manually (Blischak, Davenport and Wilson, 2016). In the

context of this paper, we take inspiration from these version control systems but do not apply

their principles on text files, but on graphs.

Existing versioning services use a line-based data comparison and track text lines that have

been added, deleted, or modified. Data models used in the AEC-Sector, however, describe

complex and highly interconnected information structures that cannot be versioned by a pure

3

text-based approach. For example, the order of entities might be completely different in two

versions of a STEP physical file (SPF), regardless that the exact same information content is

provided in both versions. Despite these limitations, text-based serialisations of data models are

highly used to transfer BIM data in file-based handover scenarios. Looking into current practice

in AEC projects, collaboration is mainly realized by means of file-based data exchange (BIM

Level 2 according to ISO°19650). Actors from various domains work together using a central

database, which is denoted as Common Data Environment (CDE) (DIN, 2019). CDEs help to

share and coordinate domain models among involved actors. However, these platforms do not

yet offer tools to realize object-level collaboration (BIM level 3).

To overcome the lack of applying object-level versioning in AEC projects, a clear

understanding of common principles is necessary, which are used to define data exchange

structures. Data models help to describe knowledge of a specific domain and can target various

use cases (Turk, 2001). The data model itself is formulated in a schema definition, which

defines a skeleton for the piece of information that needs to be exchanged. These skeletons

follow mainly the principles of object-oriented programming paradigms. A class defines the

frame (i.e., blueprint) on how an information gets stored using attributes and associations.

Attributes have a name and a datatype. Associations point to other classes. Furthermore, a class

can have one or many relationships to other classes. An instance of a class (an object) fills the

given structure with specific values to describe the actual information the user wants to store

and exchange. The associations between the instances result in an in-memory graph-like

structure, also denoted as object network.

To exchange data stored in such in-memory class instances, an export module serializes the

structured information into a file-based representation. These files are often in the ANSI-format

and can span several thousands of text lines even for a relatively small scenario. As the term

serialization implies, a sequential ordering of information is introduced even if the object

network does not provide any kind of order. Therefore, text-based versioning systems will fail

to correctly identify the modification in the underlying object graph, leading for example to the

erroneous detection of massive changes for identical models when the serialization order is

changed. Therefore, there is a need to improve the modification detection, which can reflect

class instances and their relationships better than in a pure text-based versioning. Principles of

graphs and graph transformation appear to be a promising approach to overcome the presented

limitations. Graphs are a well-established concept to describe sets of nodes and their

relationships among each other.

The application of graph-based systems for information management is not a novel approach

in software applications. Many approaches in this field use the term Graph Data Models

(GDM), which got introduced by Hidders (2001). The essential idea is that each class instance

is represented as a node in a graph. Attributes are attached to a node whereas references or

associations are represented by edges. Furthermore, graph structures and graph synthesis were

successfully applied for information synthesis in other industries (Helms and Shea, 2012).

In the context of model analysis, several publications have investigated the application of graph

analysis in recent years. Both, Tauscher, Bargstädt and Smarsly, (2016) and Ismail et al., (2018)

have explored graph-based representations of BIM models to navigate and query the object

structure. Even though applying graph systems has been applied for various use cases, none of

them tackle the problem of versioning model contents in a generic manner. Several established

BIM applications expose methods to compare two IFC models (BIM Vision, 2021). These

implementations, however, often base on suitable assumptions such as remaining GUIDs

through the model versions, but do not capture any possible modification type applied to a

model revision.

4

Shi et al. (2018) have proposed an approach that allows detecting differences between two IFC

models based on a similarity metric. Their system runs a normalization on all instances stored

in the model first and calculates a similarity score afterwards using a recursive depth-first

search. A downside, however, is that the resulting similarity rate is presented a mere scalar

value. Such score does not expose any kind of understanding of the actual change applied to

the model.

3. Proposed framework and approach

The conducted literature has proven the need for versioning systems, explicitly targeting highly

structured object-oriented data described according to schema specifications. As largely data

models (formats) are currently used for vendor-neutral data exchange in AEC projects, the

proposed concept is schema-independent, i.e., it supports diverse schemas if they follow a given

set of boundary conditions. Simultaneously, it is not intended to create an entirely new data

model that suits any possible use case but rather to keep the structures of existing and well-

established standards. This approach acknowledges the development of exchange standards like

the Industry Foundation Classes (IFC), RailML, and many others. We address the issue of

version control in a generic manner by defining a generic graph meta model. Figure 1 denotes

the overall data flow.

Figure 1: Basic concept of graph-based version control for distributed collaborative BIM development

The use of graph structures appears to be a promising approach. As graph-based representations

reflect relationships among objects, we can apply graph theory as profound formalism to

analyse a given object network's topological structure. Furthermore, modern graph database

systems offer a large range of methods, which help to search, compare, and analyse subsets of

the stored information. This is of special interest for the proposed approach as it introduces a

large flexibility to handle various data representations and implement generic functionality that

can be applied to any kind of versioned data.

3.1 Proposed framework

Due to the wide range of data specifications used in AEC projects, a central aspect of the

proposed system is the definition of a meta-structure that is capable of both, reflecting the

specific information stored in an instance model and mapping class definitions and relationships

onto a generic graph structure. The identification of differences between two versions of a

domain model is subsequently based on this graph representation populated with data by the

user. The calculation results in a schema independent DiffResult, which defines the base for an

update patch. The following paragraphs discuss the chosen graph model and present an

algorithmic approach to compare two graph-based representations of a domain model.

5

3.2 Graph characteristics and generation

To ensure applicability for a wide range of schema specifications, a generic graph meta model

is introduced. In general, a graph consists of nodes and edges. Nodes and edge can carry

additional weights (i.e., attributes in the form of key-value pairs). Furthermore, each node gets

one or many labels attached, which help to identify and query a specific set of nodes. Edges can

be undirected or directed (Robinson, Webber and Eifrem, 2015). A graph where vertices are

associated with attributes is denoted as node attributed graph or property graph. In addition,

nodes can be typed leading to a typed attributed graph (Ehrig, Prange and Taentzer, 2004).

The ability to assign attributes as key value pairs to a node matches with the object-oriented

paradigm of information modelling (ISO, 1999). Accordingly, we define that each node in the

graph represents one class instance. All attributes of a class are attached to the node whereas

associations to another class instance are modelled with an edge to represent the relationship

among both class instances.

To suit the need of a schema-independent approach, a graph meta model defines a set of rules

on how a given object network of an instance model is transferred in the corresponding graph.

In the scope of the current paper, we define specific kinds of node labels and formalisms on

how aspects of the corresponding schema specification are considered. We use the term

instance graph to refer to specific type of graph whose specifications are provided in this

section.

Node definition

Our graph meta model defines three types of nodes: primary nodes, secondary nodes, and

connection nodes. Most schema definitions have an abstract root class that defines a Globally

unique identifier (GUID) attribute. Due to the inheritance mechanism, all subclasses of such a

root class inherit the GUID attribute as well. All other class instances, i.e. instances of classes

that does not have a GUID attribute, are represented by secondary nodes in the graph. In the

IFC data model for example, classes of the resource layer representing geometry, topology,

material etc. do not carry a GUID. They cannot exist independently but can only exist if

referenced (directly or indirectly) by one or more entities deriving from IfcRoot. The third type

of nodes are denoted as connection nodes. These nodes represent the concept of objectified

relationships, which is intensively used by the IFC schema specification. They provide the

ability to model one-to-many relationships between class instances and assign attributes to the

relationship. Similar to primary nodes, connection nodes carry a unique identifier specified by

the schema specification.

Applying these mapping principles exemplary to the IFC schema, ISO 10303 is used to define

the mapping of all IFC classes to the node types. ISO 10303-11 defines an entity as “a class of

information defined by common properties” whereas an entity instance is classified by “a

named unit or data which represents a unit of information within the class defined by an entity”

(ISO, 2004). All IFC classes are either derived from IfcRoot (i.e., have a GUID) or are

contained in the resource layer. All classes listed in the resource layer are reflected as secondary

nodes. Subtypes of IfcRelationships are mapped to connection nodes.

The notion of primary, secondary and connection node will be used to define the equality of

two instance graphs and helps to find an efficient implementation of the difference calculation.

The detected differences in turn can be interpreted as applied modifications to the object

network.

6

Edge definition

An edge connects two nodes of a graph. Edges can carry an edge weight, which appears as a

set of key-value attributes. We use edges to model the associations between objects in an

domain model. Each edge has an attribute relType, which indicates the association attribute

between to class instances.

Graph implementation

Figure 2 depicts a simplified scenario of two classes described in the EXPRESS modelling

language (ISO, 2004). The schema definition in the upper left corner defines two entities (i.e.

classes without methods). The entity point has three attributes with an atomic datatype REAL.

The line has one atomic attribute “Name” and two complex attributes, which reference the

instances of a Point entity. A possible instantiation of the given data schema is given in the

upper right corner, where one instance of the Line entity and two instances of the Point entity

are filled with individual attribute values.

The mapping into the graph structure follows the rules explained above: Each class instance is

represented by an individual node. All attributes are directly attached to the desired node

whereas associations between two class instances are modelled as directed graph edges. Each

edge carries the attribute name from the parent class, from where the association was initialized.

The Line instance has a StartPoint and an EndPoint attribute (in UML/MOF an association to

another class), which is reflected by the edges depicted in the graph structure. The class instance

of ShapeElement is handled as a primary node as it owns a GUID attribute.

Figure 2: Correlation between schema specification, instance model, and resulting graph structure. The value

stated on each edge is the value of the relType attribute attached to each edge.

4. Graph-based difference and update calculation

To extract the applied modification between two instance model versions, the generated graph

representations of both versions are compared. Possible modifications are adding new class

instances, deleting existing instances or changing associations between two instances. Also

combinations of add/delete/modify can occur when comparing the object graphs.

7

From a mathematical point of view, the problem statement for calculating the modifications

between two model versions can be defined as the following. The definition of functions

follows the notation used by Kriege and Mutzel, (2012).

We denote two graphs 𝐺𝑉1 = (𝑁𝑉1, 𝐸𝑉1) and 𝐺𝑉2 = (𝑁𝑉2, 𝐸𝑉2) representing two instance

model versions 1 and 2. Both are directed, labelled property graphs, where 𝑁 defines the set of

nodes and 𝐸 the set of edges. Both, nodes, and edges, carry a weight that represents a set of

key-value attributes for an individual node or edge, respectively:

W(u) ∀ u ∈ N (1)

In addition, we define the node types using labels:

𝑙𝑡𝑦𝑝𝑒 ∈ {primaryNode, secondaryNode, connectionNode} (2)

Furthermore, an essential feature of property graphs is the flexibility to handle non-distinct node

and edge sets. Accordingly, a node with a specific weight (i.e., set of attributes) can occur

multiple times in the node set (Robinson, Webber and Eifrem, 2015).

The function 𝐿 attaches the suitable label to a particular node.

We define a directed edge from node 𝑢 to 𝑟 as:

(𝑢, 𝑟) ∈ E (3)

The aim of the update computation is to find subgraph isomorphisms between the two graphs

𝐺𝑉1, 𝐺𝑉2 such as a bijective function 𝜑 can be defined:

𝜑: 𝑁𝑉1 → 𝑁𝑉2 (4)

This bijective function 𝜑 preserves adjacencies between two nodes:

∀𝑢, 𝑣 ∈ 𝑁𝑉1: (𝑢, 𝑣) ∈ 𝐸𝑉1 ⇔ (𝜑(𝑢), 𝜑(𝑣)) ∈ 𝐸𝑉2 (5)

The overall computation is spitted in two major steps. First, the structure of primary nodes and

connection nodes of both graphs is compared, which results in a list of primary node tuples that

are defined as equal in both model versions. Second, we compare the subgraphs of each node

in the tuples from the first step and check if both subgraphs share the same information logic.

The criterion, on which two nodes or subgraphs are defined as equal, varies depending on the

calculation step.

4.1 Matching primary node structures

To analyse the base skeleton of both model versions, all nodes labelled as primary nodes are

retrieved from the graphs 𝐺𝑉1 and 𝐺𝑉2. This operation results in two nodes sets 𝑁𝑉1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and

𝑁𝑉2,𝑝𝑟𝑖𝑚𝑎𝑟𝑦.

Taking the weight of nodes and thereby their attributes into account, we calculate the relational

intersection of both sets and declare the result as 𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑:

𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝑁𝑉1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ∩ 𝑁𝑉2,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 (6)

All nodes in the set 𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 are present in both, 𝑁𝑉1 and 𝑁𝑉2. Thus, no modification

has been applied to the node and their attached attributes.

The relational difference between 𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 and 𝑁𝑉1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 results in a set of

primary nodes, which are included in 𝐺𝑉1, but not in 𝐺𝑉2. Thus, the result represents a DELETE

modification from version 1 to version 2:

8

𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑑𝑒𝑙𝑒𝑡𝑒𝑑 = 𝑁𝑉1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 − 𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 (7)

The same principle applies for nodes, which are contained in 𝐺𝑉2 but not in 𝐺𝑉1, which are the

result of an ADD modification from version 1 to version 2:

𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑎𝑑𝑑𝑒𝑑 = 𝑁𝑉2,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 − 𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 (8)

Connection nodes are used to implement one-to-many relationships between primary nodes.

Each connection node has directed edges, which point to primary nodes. Therefore, the aim is

the analysis of the subgraph structure defined by the sets of primary nodes, connection nodes,

and all corresponding edges connecting nodes of these two sets.

Therefore, we calculate the adjacency matrices of the node sets 𝑁𝑉1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑁𝑉2,𝑝𝑟𝑖𝑚𝑎𝑟𝑦,

𝑁𝑉1,𝑐𝑜𝑛, 𝑁𝑉2,𝑐𝑜𝑛. As we want to overcome limitations introduced by a hierarchical ordering in

serialization processes, we use either the GUIDs or a calculated hashsum of each node to sort

the adjacency matrix. If a relationship in both adjacency matrices is successfully identified, the

corresponding relType attribute is checked to ensure that the detected relationship between two

nodes still represents the same association.

4.2 Matching of component structures

The analysis defined in section 4.1 results in a set of unchanged primary nodes

𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦,𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑, which is a subset of both, 𝑁𝑉1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and 𝑁𝑉2,𝑝𝑟𝑖𝑚𝑎𝑟𝑦. As the second step,

we need to analyse the subgraph structure, which is introduced by associations between a

primary node and a set of secondary nodes. As depicted in Figure 2, a primary node has one or

many outgoing edges pointing to secondary nodes to implement associations. Furthermore, a

secondary node can have one or many outgoing edges referencing other secondary nodes. Thus,

the aim of this step is the calculation of property modifications applied to a secondary node

(i.e., adding/deleting/modifying node attributes). In addition, the network structure among

secondary nodes can be modified as well, which is captured as a structure modification.

We define a component as a subgraph of the entire graph 𝐺:

𝐺𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ⊆ 𝐺 (9)

Each component subgraph has exactly one primary node 𝑢 and a set of secondary nodes 𝑞 ∈
𝑁𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, which all have a directed path 𝑃 from 𝑢 to a particular node 𝑞. Thus, the path 𝑃 is

defined by an ordered set of edges:

𝑃 ⊆ 𝐸 = {𝑒1, … , 𝑒𝑛} connecting 𝑢 → 𝑞 |𝑢 ∈ 𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑞 ∈ 𝑁𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 (10)

To gain knowledge of structure and property modifications, the calculation is divided in several

sub-steps.

First, all edges 𝐾𝑉1, 𝐾𝑉2 are queried from 𝐺𝑉1 and 𝐺𝑉2:

𝐾𝑉1 = {(𝑢, 𝐶(𝑢))} | (𝑢, 𝐶(𝑢)) ∈ 𝐸𝑉1 (11)

𝐾𝑉2 = {(𝑣, 𝐶(𝑣))} | (𝑣, 𝐶(𝑣)) ∈ 𝐸𝑉2 (12)

We define two edges 𝑘𝑉1 ∈ 𝐾𝑉1 and 𝑘𝑉2 ∈ 𝐾𝑉2 as equivalent if both carry the same value in

their relType attribute, thus, implementing the same association between two class instances

(nodes):

𝑏 = {
𝑡𝑟𝑢𝑒, 𝑖𝑓 (𝑢, 𝐶(𝑢))𝑟𝑒𝑙𝑇𝑦𝑝𝑒 == (𝑣, 𝐶(𝑣))𝑟𝑒𝑙𝑇𝑦𝑝𝑒

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

9

Next, we take the nodes 𝑞 = 𝐶(𝑢) and 𝑟 = 𝐶(𝑣), which two equivalent edges 𝑘𝑉1 and 𝑘𝑉2

point towards (i.e., implement the same association), and compare the node attributes of node

𝑢 against the node attributes of 𝑣. The attribute comparison detects possible property

modifications and, thus, finds recently added, deleted, or modified attributes.

If an edge 𝑘𝑉1 ∈ 𝐾𝑉1 exists, which has no counterpart in 𝐾𝑉2, we detect a structure modification

as 𝑘𝑉1 got deleted from version 1 to version 2. If an edge 𝑘𝑉2 is only present in 𝐾𝑉2, but no

correlation in 𝐾𝑉1 can be found, we handle a structure modification of type add from version 1

to version 2.

To analyse the entire component (i.e., subgraph) structure, we recursively repeat the process

denoted in eq. 16 and 17 with the current nodes 𝐶(𝑢) and 𝐶(𝑣). The recursion limit is reached

if a node has no outgoing edges anymore (leaf node).

5. Result and discussion

The presented approach overcomes the limitations of pure file-based versioning systems by

introducing a graph-based representation of instance models and their comparison by
computing the graph difference. The proposed criteria on which two nodes are defined to be

equal enables the user to detect not only structural modifications such as added or deleted nodes

but also to find modified attribute values.

The proposed concept was tested with IFC-based instance models from various BIM authoring

tools and has shown promising results. Particularly challenging, however, are complex

scenarios where the attribute value is composed of nested lists. A critical example is the IFC

entity CartesianPointList3D (ISO, 2019):

ENTITY IfcCartesianPointList3D

 SUBTYPE OF (IfcCartesianPointList);

 CoordList : LIST [1:?] OF LIST [3:3] OF IfcLengthMeasure;

END_ENTITY;

Similar discussions have appeared in the scope of ontology representations (Pauwels et al.,

2015).

Despite these issues, the tested prototype exposes sufficient results, which provide the base for

a patch-based collaboration system.

6. Conclusion and outlook

As wide range of software applications already provide export and import interfaces to

exchange BIM models on a file basis, improved techniques are required to version models on

a component basis. The proposed system overcomes current limitations of a file-based data

exchange by abstracting the given information in a domain model into a graph-based

representation. By analyzing the topological structure and the attribute data, we can identify the

applied modification between two versions by means of graph analysis. On this basis, we will

develop a patch-based update system, which is capable to replace the file-based data exchange

and overcomes its limitations.

As a subsequent step, the formulation of update patches will the next essential development

including conflict management concepts. Furthermore, we envision not only an update transfer

within a single data specification but also hope to integrate update patches between several

schema specifications. Such scenarios must be handled to ensure the consistency of the resulting

overall project information.

10

7. References

BIM Vision (2021) ‘Module: Compare’.

Blischak, J. D., Davenport, E. R. and Wilson, G. (2016) ‘A Quick Introduction to Version Control with

Git and GitHub’, PLoS Computational Biology, 12(1), pp. 1–18. doi: 10.1371/journal.pcbi.1004668.

DIN (2019) DIN SPEC 91391-2: Gemeinsame Datenumgebungen (CDE) für BIM-Projekte –

Funktionen und offener Datenaustausch zwischen Plattformen unterschiedlicher Hersteller – Teil 2:

Offener Datenaustausch mit Gemeinsamen Datenumgebungen Common. Deutschland.

Ehrig, H., Prange, U. and Taentzer, G. (2004) ‘Fundamental theory for typed attributed graph

transformation’, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 3256(April), pp. 161–177. doi: 10.1007/978-3-540-

30203-2_13.

Helms, B. and Shea, K. (2012) ‘Computational synthesis of product architectures based on object-

oriented graph grammars’, Journal of Mechanical Design, Transactions of the ASME, 134(2). doi:

10.1115/1.4005592.

Hidders, J. (2001) A Graph-based Update Language for Object-Oriented Data Models. University Press

Facilities, Eindhoven, the Netherlands. doi: 10.6100/IR551259.

Ismail, A., Strug, B. and Ślusarczyk, G. (2018) ‘Building Knowledge Extraction from BIM/IFC Data

for Analysis in Graph Databases’, in Rutkowski, L. et al. (eds) Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Cham: Springer International Publishing, pp. 652–664. doi: 10.1007/978-3-319-91262-2_57.

ISO (1999) ISO/IEC 2382-15.

ISO (2004) ISO 10303-11:2004: Industrial automation systems and integration - Product data

representation and exchange - Part 21: Implementation methods: Clear text encoding of the exchange

structure (ISO 10303-11:1994). Available at: https://www.iso.org/standard/38047.html.

ISO (2019) DIN EN ISO 16739-1: Industry Foundation Classes (IFC) für den Datenaustausch in der

Bauwirtschaft und im Anlagenmanagement – Teil 1: Datenschema (ISO 16739-1:2018).

Kriege, N. and Mutzel, P. (2012) ‘Subgraph matching kernels for attributed graphs’, Proceedings of the

29th International Conference on Machine Learning, ICML 2012, 2, pp. 1015–1022.

Object Management Group (2019) ‘OMG Meta Object Facility (MOF) Core Specification’,

Https://Www.Omg.Org/. Available at: https://www.omg.org/spec/MOF/About-MOF/.

Pauwels, P. et al. (2015) ‘Coping with lists in the ifcOWL ontology’, EG-ICE 2015 - 22nd Workshop

of the European Group of Intelligent Computing in Engineering.

Preidel, C. et al. (2018) ‘Common Data Environment’, in Building Information Modeling. Cham:

Springer International Publishing, pp. 279–291. doi: 10.1007/978-3-319-92862-3_15.

Robinson, I., Webber, J. and Eifrem, E. (2015) Graph Databases, Joe Celko’s Complete Guide to

NoSQL. Edited by M. Beaugureau. O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,

CA 95472. doi: 10.1016/b978-0-12-407192-6.00003-0.

Shi, X. et al. (2018) ‘IFCdiff: A content-based automatic comparison approach for IFC files’,

Automation in Construction, 86(June 2016), pp. 53–68. doi: 10.1016/j.autcon.2017.10.013.

Tauscher, E., Bargstädt, H.-J. and Smarsly, K. (2016) ‘Generic BIM queries based on the IFC object

model using graph theory’, in Proceedings of the 16th International Conference on Computing in Civil

and Building Engineering. Osaka.

Turk, Ž. (2001) ‘Phenomenologial foundations of conceptual product modelling in architecture,

engineering and construction’, Artificial Intelligence in Engineering, 15(2), pp. 83–92. doi:

10.1016/S0954-1810(01)00008-5.

