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ABSTRACT
Reachability analysis fails to produce tight reachable sets if certain

algorithm parameters are poorly tuned, such as the time step size or

the accuracy of the set representation. The tuning is especially diffi-

cult in the context of nonlinear systems where over-approximation

errors accumulate over time due to the so-called wrapping effect,

often requiring expert knowledge. In order to widen the applicabil-

ity of reachability analysis for practitioners, we propose the first

adaptive parameter tuning approach for reachability analysis of

nonlinear continuous systems tuning all algorithm parameters. Our

modular approach can be applied to different reachability algo-

rithms as well as various set representations. Finally, an evaluation

on numerous benchmark systems shows that the adaptive parame-

ter tuning approach efficiently computes very tight enclosures of

reachable sets.
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1 INTRODUCTION
Reachability analysis provably guarantees avoiding unsafe states

of mixed discrete/continuous systems for a set of uncertain initial

states and uncertain inputs. Since exact reachable sets can only be

computed for a limited number of system classes [36], reachability

algorithms compute over-approximations to establish soundness.

The performance of these algorithms heavily relies on the cor-

rect setting of algorithm parameters—a safety property may not
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be verified although it is satisfied by the exact reachable set. We

consider the automated tuning of algorithm parameters to be a

crucial next step in the development of reachability analysis. A

full automation would enable non-experts and practitioners to use

reachability analysis supporting the development of safer products.

This paper advances in this direction by automatically tuning all al-

gorithm parameters for state-space abstracted reachability analysis

of nonlinear systems.

Related Work. The computation of reachable sets for nonlinear

systems can be divided into four groups: First, there are approaches

for invariant generation; any invariant set containing the initial set

is also a reachable set [34, 40, 43]. Second, there exist optimization-

based approaches which treat reachability analysis by solving an

optimization problem [19, 44]. Third, other approaches abstract the

solution space: The work in [24] uses validated simulations for the

construction of bounded flowpipes. Taylor models computed by

using the Picard iteration were initially proposed in [29, 42] and

later extended to include uncertain inputs [15]. Finally, there are

approaches abstracting the state space by differential inclusions,

such as the abstraction of nonlinear systems by a hybrid automaton

with linear dynamics [7, 8, 28, 39]. Other methods linearize the

nonlinear dynamics on-the-fly [6, 20, 21]—a concept that has been

extended to polynomial abstractions of nonlinear dynamics [3]

resulting in a tighter enclosure of the exact reachable set. In this

paper, we present an automatic parameter tuning approach for state-

space abstracted reachability algorithms. Many aforementioned

methods have been realized by tools: For nonlinear systems, there

is Ariadne [11], C2E2 [23], CORA [4], DynIBEX [22], Flow* [16],

Isabelle/HOL [30], and JuliaReach [13].

While there is almost no work on finding a suitable time step size

for reachability analysis of nonlinear systems, this problem is well

studied for numerical integration of ordinary differential equations

(ODEs): A common method applied in numerical ODE solvers is

to compute solutions with different precision in parallel and adapt

the time step size according to the difference between the solutions

[9, 37]. In order to enclose a single trajectory, guaranteed integration

methods provide several automated time step size control strategies

[31, 45, 48]. Since reachability analysis considers a set of uncertain

initial states as well as uncertain inputs, automatic parameter tuning

is much more difficult than for classical and validated integration.

Concerning reachability analysis, there are approaches automat-

ically tuning algorithm parameters for linear systems: In [25], the

time step size is adapted in each step in order to satisfy a linearly

increasing user-defined error bound. The approach in [46] adap-

tively determines the time step size by approximating the actual

https://doi.org/10.1145/3447928.3456643
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flow within a user-defined error bound. Recently, an approach to

adapt all algorithm parameters in reachability analysis of linear

systems has been developped [51], using over-approximation mea-

sures related to the Hausdorff distance to enable users to tune the

desired accuracy. For nonlinear systems, the work in [14] adaptively

tunes the time step size within a user-defined range, according to

a numeric threshold condition, which in turn has to be defined by

the user for each system analysis.

Contributions. We introduce the first approach that automati-

cally tunes all algorithm parameters for reachability analysis of

nonlinear systems. After introducing some preliminaries in Sec. 2,

we present our novel automated parameter tuning approach in

Sec. 3. Each parameter is tuned individually due to the modular

structure of our method, thus providing a very flexible integration

in the reachability algorithm. Furthermore, our proposed tuning

during runtime without backtracking improves the computational

efficiency. Finally, the evaluation on numerical examples in Sec. 4

demonstrates the practical usability of our tuning methods, fol-

lowed by concluding remarks in Sec. 5.

2 PRELIMINARIES
In this section, we give an overview of reachability analysis for

nonlinear systems based on state-space abstraction. This will serve

as a basis for our adaptive tuning methods.

2.1 Notation
Vectors are denoted by lower-case letters, matrices by upper-case

letters, and sets by upper-case calligraphic letters. An all-zero vec-

tor of proper dimension is denoted by 0. Given a vector 𝑣 ∈ R𝑛 ,
𝑣𝑖 refers to the 𝑖-th entry and the absolute value |𝑣 | ∈ R𝑛 is com-

puted element-wise. For a matrix 𝑀 ∈ R𝑛×𝑝 , 𝑚𝑖 𝑗 refers to the

entry in the 𝑖-th row and 𝑗-th column. The concatenation of two

matrices is denoted by [𝑀1 𝑀2]. An 𝑛-dimensional axis-aligned

box is denoted by B = [𝑎, 𝑏] ⊂ R𝑛 , where 𝑎𝑖 ≤ 𝑏𝑖 , ∀𝑖 ∈ {1, ..., 𝑛}.
The diameter and the absolute value of a box are respectively de-

fined by 𝑑
(
B
)
:= 𝑏 − 𝑎 ∈ R𝑛 and abs

(
B
)
:= [−𝑐, 𝑐] ⊂ R𝑛 , where

𝑐 = max{|𝑎 |, |𝑏 |} is evaluated element-wise [1, eq. (10)]. As an ab-

breviation, we denote the Cartesian product of identical lower and

upper limits for 𝑛 dimensions by [𝑎, 𝑏]𝑛 . Interval matrices are de-

noted by upper-case boldface letters: I = [𝑃,𝑄] ∈ R𝑚×𝑛 , where
𝑝𝑖 𝑗 ≤ 𝑞𝑖 𝑗 ,∀𝑖 ∈ {1, ...,𝑚},∀𝑗 ∈ {1, ..., 𝑛}. The Minkowski addition

is denoted by ⊕. The operations center
(
S
)
, box

(
S
)
, and vol

(
S
)

return the geometric center, the smallest box over-approximation,

and the volume of a set S ⊂ R𝑛 , respectively. Furthermore, the

projection onto the 𝑖-th axis is denoted by S𝑖 = 𝑒⊤𝑖 S, where 𝑒𝑖 is
the 𝑖-th basis vector, and the convex hull of two sets S1,S2 ⊂ R𝑛 is

written as conv
(
S1,S2

)
. The floor operator ⌊𝑘⌋ rounds 𝑘 down to

the next smaller integer number, sgn(·) denotes the sign function,

and ∥·∥𝐹 the Frobenius norm.

2.2 Reachability Analysis of Nonlinear Systems
The presented techniques for automated parameter adaptation are

applied to nonlinear systems

¤𝑥 (𝑡) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡)) , 𝑥 (𝑡) ∈ R𝑛, 𝑢 (𝑡) ∈ R𝑚 , (1)

where 𝑓 : R𝑛 → R𝑛 is a sufficiently smooth nonlinear function,

𝑥 (𝑡) ∈ R𝑛 is the state vector, and 𝑢 (𝑡) ∈ R𝑚 is the input vector.

Let us introduce 𝜉 (𝑡 ;𝑥0, 𝑢 (·)) as the solution of (1) at time 𝑡 for the

initial point 𝑥0 = 𝑥 (0). Then, the exact reachable set Rex
(
[0, 𝑡𝐾 ]

)
of (1) over the time horizon 𝑡 ∈ [0, 𝑡𝐾 ] is defined as

Rex
(
[0, 𝑡𝐾 ]

)
=

{
𝜉 (𝑡 ;𝑥0, 𝑢 (·))

���𝑥0 ∈ X0, 𝑡 ∈ [0, 𝑡𝐾 ],

∀𝜏 ∈ [0, 𝑡] : 𝑢 (𝜏) ∈ U
}
,

with the initial setX0 ⊂ R𝑛 and the input setU ⊂ R𝑚 . In this work,

we use state-space abstraction, where the nonlinear dynamics in (1)

are abstracted by a Taylor series of order 𝜅 at an expansion point

𝑧∗ [3, eq. (2)] so that

¤𝑥𝑖 ∈
𝜅∑︁
𝜈=0

(
(𝑧 (𝑡) − 𝑧∗)𝑇∇

)𝜈
𝑓𝑖 (𝑧)

𝜈!

����
𝑧=𝑧∗
⊕ L𝑖 (𝑡) , (2)

using the extended vector 𝑧 = [𝑥𝑇𝑢𝑇 ]𝑇 ∈ R𝑛+𝑚 and the Nabla

operator ∇ =
∑𝑛+𝑚
𝑖=1 𝑒𝑖

𝜕
𝜕𝑧𝑖

, where 𝑒𝑖 are orthogonal unit vectors.

The Lagrange remainder L𝑖 is defined by [3, eq. (2)]

L𝑖 =
{ ((𝑧 (𝑡) − 𝑧∗)𝑇∇)𝜅+1 𝑓𝑖 (𝑧)

(𝜅 + 1)!

����
𝑧 = 𝑧∗ + 𝛼 (𝑧 (𝑡) − 𝑧∗), 𝛼 ∈ [0, 1]

}
,

(3)

which is evaluated using range-bounding techniques such as in-

terval arithmetic [12]. The time horizon [0, 𝑡𝐾 ] is divided into 𝐾

time intervals 𝜏𝑠 = [𝑡𝑠 , 𝑡𝑠+1], with the individual time step sizes

Δ𝑡𝑠 = 𝑡𝑠+1 − 𝑡𝑠 > 0 summing up to 𝑡𝐾 . The complete reachable set

is obtained by the union R([0, 𝑡𝐾 ]) =
⋃𝐾−1
𝑠=0 R(𝜏𝑠 ). For notational

simplicity, we introduce an equivalent notation for the first terms

in (2),

𝑤𝑖 = 𝑓𝑖 (𝑧∗), 𝐶𝑖 𝑗 =
𝜕𝑓𝑖 (𝑧)
𝜕𝑧 𝑗

����
𝑧=𝑧∗

, 𝐷𝑖 𝑗𝑘 =
𝜕2 𝑓𝑖 (𝑧)
𝜕𝑧 𝑗 𝜕𝑧𝑘

����
𝑧=𝑧∗

, ... (4)

where we split the first-order approximation𝐶 = [𝐴 𝐵] into a state

matrix𝐴 ∈ R𝑛×𝑛 and an input matrix 𝐵 ∈ R𝑛×𝑚 for subsequent use.

Let us summarize the reachability analysis in Alg. 1 encompassing

the core reachable set computation featured in hybridization and

on-the-fly methods, such as the ones in [3, 6, 8, 20, 39].

At the start of each step 𝑠 (Line 4), the operation taylor evaluates
the Taylor terms of the nonlinear dynamics (4) at the linearization

point 𝑧∗. Next, we abstract the nonlinear system by a differential

inclusion

¤𝑥 (𝑡) ∈ 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) +𝑤︸                 ︷︷                 ︸
𝑓lin (𝑡 )

⊕ Ψ , (5)

using the linearized vector field 𝑓
lin

and an uncertainty set Ψ enclos-

ing all higher-order terms including the Lagrange remainder. This

allows us to apply the superposition principle for linear systems

and separate the computation of the next reachable set R(𝑡𝑠+1) into
two parts: First, the reachable set R

lin
of the linearized dynamics

(Lines 4-5). Second, the set of abstraction errors R
abs

based on the

abstraction error Ψ (Lines 6-11).

The reachable set R
lin

based on the linearized dynamics 𝐴𝑥 (𝑡) +
𝐵𝑢 (𝑡) +𝑤 is computed by the operation linReach (Line 5) using

a reachability algorithm for linear systems, e.g., [2, Sec. 3.2]. For

the computation of the abstraction error Ψ, we first resolve the
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Algorithm 1 Reachability analysis of nonlinear systems using

state-space abstraction.

Input: nonlinear function 𝑓 (𝑧), initial set R(𝑡0) = X0
,

input setU, time horizon 𝑡𝐾
Output: R([0, 𝑡𝐾 ])
1: 𝑠 = 0, 𝑡𝑠 = 0

2: while 𝑡𝑠 < 𝑡𝐾 do
3: 𝑧∗ (𝑡𝑠 ) ← center

(
R(𝑡𝑠 )

)
4: 𝑤,𝐴, 𝐵, 𝐷, ...← taylor

(
𝑓 (𝑧), 𝑧∗ (𝑡𝑠 )

)
5: R

lin
(𝑡𝑠+1),Rlin (𝜏𝑠+1) ← linReach(R(𝑡𝑠 ),𝑤,𝐴, 𝐵)

6: Ψ = 0
7: do
8: Ψ← enlarge(Ψ)
9: Ψ← abstrErr(R

lin
(𝜏𝑠+1),Ψ)

10: while Ψ ⊈ Ψ
11: R

abs
← abstrSol(Ψ)

12: R(𝑡𝑠+1) = Rlin (𝑡𝑠+1) ⊞ Rabs
13: R(𝜏𝑠+1) = Rlin (𝜏𝑠+1) ⊞ Rabs
14: R(𝑡𝑠+1) ← red

(
R(𝑡𝑠+1)

)
,R(𝜏𝑠+1) ← red

(
R(𝜏𝑠+1)

)
15: 𝑡𝑠+1 := 𝑡𝑠 + Δ𝑡𝑠 , 𝑠 := 𝑠 + 1
16: end while
17: R([0, 𝑡𝐾 ]) =

⋃𝐾−1
𝑗=0 R(𝜏 𝑗 )

mutual dependency between Ψ and R
lin

by an initial estimation Ψ
of Ψ (Line 6). We now require Ψ ⊆ Ψ (Line 7) which is attained by

iteratively enlarging Ψ by a constant factor greater than 1 using the

operation enlarge (Line 8) and computing Ψ using the operation

abstrErr (Line 9). For a linearization approach (see, e.g., [6]), the

entire setΨ is the abstraction error uncorrelatedwith the state 𝑥 . For

a polynomialization approach (see, e.g., [3]), all time-constant terms

at 𝑡𝑠 within Ψ represent a higher-order evaluation of the nonlinear

dynamics that is correlated with the state 𝑥 . After containment is

ensured, we evaluate the effect of Ψ by the operation abstrSol
(Line 11), yielding the set of abstraction errors [6, Sec. VI.]

R
abs

=

𝜂abs⊕
𝑘=0

Δ𝑡𝑘+1

(𝑘 + 1)!𝐴
𝑘Ψ ⊕ E(Δ𝑡, 𝜂

abs
) Δ𝑡 Ψ , (6)

where E = O(Δ𝑡𝜂abs+1) tends to 0 as Δ𝑡 → 0, see [5, Prop. 2].

Due to the aforementioned superposition, we yield the next

reachable set R(𝑡𝑠+1) by the addition of R
lin

and R
abs

(Lines 12-13).

Before the next step, the operator red(·) reduces the set representa-
tion size (Line 14), which is necessary for reasons of computational

efficiency. This provides us with the next time-point solution

R(𝑡𝑠+1) = red
(
𝑒𝐴Δ𝑡𝑠R(𝑡𝑠 ) ⊕ P(𝜏𝑠 )︸                   ︷︷                   ︸

Rlin (𝑡𝑠+1)

⊞R
abs
(𝜏𝑠 )

)
, (7)

where R
lin
(𝑡𝑠+1) is obtained by linReach with 𝑒𝐴Δ𝑡𝑠R(𝑡𝑠 ) as the

homogeneous solution and P(𝜏𝑠 ) as the particular solution. The
operator ⊞ corresponds to the Minkowski sum for a linearization

approach and to the exact addition as defined in [33, Prop. 10] for a

polynomialization approach. The time-interval solution is

R(𝜏𝑠+1) = conv
(
R(𝑡𝑠 ), 𝑒𝐴Δ𝑡𝑠R(𝑡𝑠 ) ⊕ P(𝜏𝑠 )

)
⊕ F𝑥R(𝑡𝑠 )︸                                                      ︷︷                                                      ︸

Rlin (𝜏𝑠+1)

⊞R
abs
(𝜏𝑠 ) ,

(8)

assuming 0 ∈ U, with an extension to arbitrary inputs in [2,

Sec. 3.2.2]. The time-interval solution of the linearized dynamics

R
lin
(𝜏𝑠 ) is composed of the convex hull of the reachable sets at the

beginning and end of the time interval, which is then enlarged by

an error F𝑥R(𝑡𝑠 ). Please note that this solution is not re-used in

the next step as shown in Alg. 1.

Alg. 1 has two sources for the wrapping effect: the set R
abs

,

which decreases in size as the time step size decreases, and the

effect of the reduction operation, which is diminished when used

less often due to larger time step sizes. We will refer to these sources

as the abstraction-induced and reduction-induced wrapping effects,

respectively. Only time-point solutions are reused in subsequent

steps, therefore (7) constitutes the main formula for which both

effects need to be balanced. We attempt to find an optimal compro-

mise as shown in Fig. 1 by tuning the algorithm parameters using

the methods introduced in the next section.

Excessive

abstraction-induced

wrapping effect

Excessive reduction-induced

wrapping effect

Δ𝑡

vol
(
R([0, 𝑡𝐾 ])

)

Figure 1: If the time step size Δ𝑡 is too large or too small, the
abstraction-induced or reduction-induced wrapping effect,
respectively, are dominating.

3 SELF-PARAMETRIZATION
In this section, we introduce methods to adaptively tune the algo-

rithm parameters used in Alg. 1 as indicated in Fig. 2. Since the

described tuning methods are modular, the effect of adapting cer-

tain algorithm parameters is encapsulated within the respective

modules. Hence, the presented adaptation approach constitutes a

general framework, as each tuningmodule can simply be exchanged,

e.g., if different reachable set computations or set representations

are chosen. An additional advantage of the modular structure is that

we do not have to consider the interplay between certain algorithm

parameters, which prevents unforeseen behavior.

Within the tuning modules, a fixed set of parameters 𝜁 is used

allowing the automated tuning methods to adapt to each system.

This set 𝜁 will be discussed at the end of this section after all tuning

methods have been introduced. Furthermore, we will omit the in-

dex 𝑠 for the current step, as all algorithm parameters are adapted

each step.

3.1 Propagation Parameters
First, we consider the tuning of the order 𝜂 of the finite Taylor

series of the exponential matrix, affecting the computation of the
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(Linearized system) (Abstraction error)

R(𝑡𝑠 )

R
lin
(𝑡𝑠+1)

R
lin
(𝜏𝑠 ) Ψ

R
abs

Δ𝑡

𝜂
lin

𝜅

𝜌Ψ

𝜌
abs

𝜂
abs

𝜌(Next step)

Figure 2: Main workflow for one time step in Alg. 1 and the
influence of algorithm parameters (red) on different sets:
The time step size Δ𝑡 affects both the linearized system and
the abstraction error, while the abstraction order 𝜅 only in-
fluences the abstraction error. The propagation parameters
𝜂 affect the precision of the exponential matrix and the set
representation parameters 𝜌 represent the reduction opera-
tion, which is applied to various sets within one step.

sets R
abs

in (6) and R
lin

in (7)-(8) as shown graphically in Fig. 2.

Since the effect of higher-order terms eventually vanishes, we con-

servatively determine the specific orders 𝜂
lin

and 𝜂
abs

by truncating

the respective sums once the change is negligibly small.

Since the error in R
lin
(𝜏𝑠 ) is dominated by the term F𝑥R(𝑡𝑠 ),

which can be computed according to [2, Prop. 3.1] as

F𝑥 =

𝜂lin⊕
ℓ=1

[
(ℓ
−ℓ
ℓ−1 − ℓ

−1
ℓ−1 )Δ𝑡 ℓ , 0

]𝐴ℓ
ℓ!︸                         ︷︷                         ︸

:=𝑇 (ℓ )

⊕ E , (9)

with E as referenced above, we obtain 𝜂
lin

by setting a threshold

0 < 𝜁𝑇,lin ≪ 1 for the change over successive terms 𝑇 (ℓ) :

𝜂
lin

= min ℓ such that 1 − ∥𝑇
(ℓ−1) ∥𝐹
∥𝑇 (ℓ) ∥𝐹

≤ 𝜁𝑇,lin . (10)

Similarly, we obtain 𝜂
abs

by truncating the sum in (6) once the

relative change in size between two successive truncated sums is

sufficiently small. This is achieved by the following criterion, where

0 < 𝜁𝑇,abs ≪ 1:

𝜂
abs

= min ℓ such that max

𝑖∈{1,...,𝑛}

𝑑𝑖
(
box

(
R (ℓ+1)
abs

) )
𝑑𝑖
(
box

(
R (ℓ)
abs

) ) ≤ 𝜁𝑇,abs ,
(11)

where R (𝑘)
abs

denotes the sum in (6) truncated at order 𝑘 . The split

into two different 𝜂 for R
lin

and R
abs

is justified by the different

values towhich𝜂
lin

and𝜂
abs

are tuned, as discussed in the numerical

examples in Sec. 4. Furthermore, the evaluation of both criteria (10)

and (11) can be seamlessly integrated into the computation of the

respective terms yielding negligible computational overhead.

3.2 Set Representation
In this work, we restrict the error due to reducing the set represen-

tation. For a linearization approach, it suffices to use convex set

representations, such as support functions, polytopes, or zonotopes.

In this work, we will use zonotopes as they have proven to be a

good choice for the linearization approach due to the efficient and

exact computation of the two mainly used operations—linear map

and Minkowski sum.

Definition 1. (Zonotopes) [27, Def. 1] Given a center 𝑐 ∈ R𝑛 and
𝛾 ∈ N generator vectors 𝐺 = [𝑔 (1) , ..., 𝑔 (𝛾 ) ], we define a zonotope

Z :=

{
𝑥 ∈ R𝑛

��� 𝑥 = 𝑐 +
𝛾∑︁
𝑖=1

𝛼𝑖 𝑔
(𝑖) ,−1 ≤ 𝛼𝑖 ≤ 1

}
(12)

as well as its order 𝜌 :=
𝛾
𝑛 and the shorthand ⟨𝑐,𝐺⟩𝑍 . □

We now measure the enlargement caused by the reduction of

the representation size. Let us first consider the following lemma:

Lemma 3.1. Let 𝑓 : C1 × C2 → I, 𝑔 : C1 → I be continuous
functions, where C1, C2 ⊂ R𝑛 are two compact sets and I ⊂ R𝑛 is a
compact interval. If for each 𝑥 ∈ C1, it holds that min𝑦∈C2 𝑓 (𝑥,𝑦) ≤
𝑔(𝑥), then

max

𝑥 ∈C1
min

𝑦∈C2
𝑓 (𝑥,𝑦) ≤ max

𝑥 ∈C1
𝑔(𝑥) .

Proof. Let 𝑥∗ be a point in C1 for which the maximum of

min𝑦∈C2 𝑓 (𝑥,𝑦) is attained. By assumption, it follows that

min𝑦∈C2 𝑓 (𝑥∗, 𝑦) ≤ 𝑔(𝑥∗) and thus

max

𝑥 ∈C1
min

𝑦∈C2
𝑓 (𝑥,𝑦) = min

𝑦∈C2
𝑓 (𝑥∗, 𝑦) ≤ 𝑔(𝑥∗) ≤ max

𝑥 ∈C1
𝑔(𝑥) . □

The following theorem over-approximates the Hausdorff distance

𝑑𝐻 between the original and reduced zonotope based on the com-

monly used box over-approximation of generators:

Theorem 3.2. Let Z = ⟨𝑐,𝐺⟩𝑍 ⊂ R𝑛 be a zonotope and
Z𝐵 := box

(
Z
)
= ⟨𝑐,𝐺𝐵⟩𝑍 ⊇ Z its box over-approximation. Due to

the containmentZ ⊆ Z𝐵 , the Hausdorff distance 𝑑𝐻 is given by

𝑑𝐻 (Z,Z𝐵) = max

𝑥𝐵 ∈Z𝐵

min

𝑥 ∈Z
∥𝑥𝐵 − 𝑥 ∥2 . (13)

This distance is over-approximated by

𝑑𝐻 (Z,Z𝐵) ≤ 𝜔 (Z) := 2

 𝛾∑︁
𝑘=1

𝑔 (𝑘)

2

(14)

with 𝑔
(𝑘)
𝑖

=

{
|𝑔 (𝑘)
𝑖
|, if 𝑘 ≠ 𝑖∗

0, otherwise,
(15)

where 𝑖∗ is the (first) index for which 𝑔 (𝑘)
𝑖∗ =

𝑔 (𝑘)
∞
.

Proof. Let us express each point 𝑥𝐵 ∈ Z𝐵 as

𝑥𝐵 = 𝑀1 |𝑔 (1) | + ... +𝑀𝛾 |𝑔 (𝛾 ) | ,
where each𝑀 is a diagonal matrix with entries𝑚𝑖𝑖 ∈ [−1, 1]. We

can write the difference between any 𝑥𝐵 ∈ Z𝐵 and 𝑥 ∈ Z as

𝑥𝐵 − 𝑥 =
(
𝑀1 |𝑔 (1) | − 𝛼1𝑔 (1)

)
+ ... +

(
𝑀𝛾 |𝑔 (𝛾 ) | − 𝛼𝛾𝑔 (𝛾 )

)
with 𝛼𝑘 ∈ [−1, 1]. We now obtain a bound on 𝑥𝐵 − 𝑥 by choosing a

specific 𝛼𝑘 for each 𝑔 (𝑘) , namely,

𝛼𝑘 =𝑚𝑖∗𝑖∗ sgn
(
𝑔
(𝑘)
𝑖∗

)
(16)

with an individual 𝑖∗ as in Theorem 3.2 for each 𝑘 . This choice

of 𝛼𝑘 allows us to eliminate the largest possible entry in 𝑣 (𝑘) =
𝑀𝑘 |𝑔 (𝑘) | − 𝛼𝑘𝑔 (𝑘) , for which we obtain the bound

𝑣
(𝑘)
𝑖
∈
{[
− 2|𝑔 (𝑘)

𝑖
|, 2|𝑔 (𝑘)

𝑖
|
]
, if 𝑖 ≠ 𝑖∗

0, otherwise,
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which we can rewrite using (15) to 𝑣
(𝑘)
𝑖
∈ [−2𝑔 (𝑘)

𝑖
, 2𝑔
(𝑘)
𝑖
]. Applying

(16) to each generator, we obtain the bound

𝑥𝐵 − 𝑥 = 𝑣 (1) + ... + 𝑣 (𝛾 ) ∈ [−2�̂�, 2�̂�] ,

where �̂� := 𝑔 (1) + ... + 𝑔 (𝛾 ) and consequently,

∥𝑥𝐵 − 𝑥 ∥2 ≤ ∥2�̂�∥2 = 2∥�̂�∥2 .

The above bound holds for any 𝑥𝐵 ∈ Z𝐵 and therefore, the assump-

tion of Lemma 3.1 is fulfilled. Thus, we obtain (14). □

Using this over-approximation, we now deduce a heuristic which

attempts to reduce as many generators as possible while respecting

a given threshold for the Hausdorff distance between the origi-

nal and reduced set: Given a zonotope Z = ⟨𝑐,𝐺⟩𝑍 , we sort the
generators in 𝐺 ∈ R𝑛×𝛾 by the metrics

∥𝑔 (1) ∥1 − ∥𝑔 (1) ∥∞ ≤ ... ≤ ∥𝑔 (𝛾 ) ∥1 − ∥𝑔 (𝛾 ) ∥∞ (17)

originally proposed in [27]. Following this ordering, we pick the

first 𝑁 ≤ 𝛾 generators in (14) until we reach the upper bound

𝜔max (Z) = 𝜁𝑍
𝑑 (box(Z) )

2
(18)

where we use a fixed fraction 0 < 𝜁𝑍 ≪ 1 of the diagonal of

the box over-approximation of Z. The exact Hausdorff distance

between the original and the reduced set is smaller than 𝜔max (Z)
by Theorem 3.2.

For a polynomialization approach, a non-convex set representa-

tion is required since convex sets would almost nullify the benefits

of the polynomial abstraction. To obtain tighter results, non-convex

set representations also have to be closed under higher-order maps

as is the case for Taylor models [15, Sec. II.] or polynomial zono-

topes [33, Def. 1]. We choose the latter to exploit their similarities

with zonotopes. For polynomial zonotopes we apply the reduction

method in [33, Prop. 10], which is based on order reduction for

zonotopes so that the bound in (18) can be enforced.

3.3 Abstraction Order
The abstraction order 𝜅 in (2) only influences the size of the ab-

straction error Ψ according to Fig. 2. A larger 𝜅 is computationally

more demanding as we require to evaluate higher-order maps, but

also yields a smaller abstraction error Ψ. This does not necessarily
hold for convex set representations since they are not closed under

higher-order maps.

Since the linearization approach uses convex set representations,

we restrict the admissible values of the abstraction order to 𝜅 =

{1, 2} because the highly over-approximative evaluation of cubic

or higher-order maps does not justify the additionally required

computational effort. The abstraction error is evaluated on the

time-interval solution R
lin
(𝜏𝑠 ), see line 9 in Alg. 1. In each step,

the abstraction error Ψ for both 𝜅 = {1, 2} is computed for the

time-interval solution R
lin
(𝜏𝑠 ) using the optimal time step size

Δ𝑡∗, which will be introduced in Sec. 3.4. The following selection

criterion is applied in each step to compute the abstraction order 𝜅

for the next step:

𝜅 ←
{
1, if ∀𝑖 ∈ {1, ..., 𝑛}withΨ𝑖 > 0 :

𝑑 (box(Ψ𝑖 (𝜅=2)))
𝑑 (box(Ψ𝑖 (𝜅=1))) ≥ 𝜁𝐾 ∈ (0, 1)

2, otherwise,

(19)

so that we use the more efficient approach for 𝜅 = 1 whenever

the loss in accuracy is manageable. The closer 𝜁𝐾 is to 1, the more

conservative the selection becomes, i.e., the more often 𝜅 = 2

will be chosen resulting in both a tighter result as well as longer

computation times. For the first step, we use the initial set R(𝑡0) =
X0

to compute Ψ and immediately evaluate (19) to compute the

first abstraction order 𝜅.

In the polynomialization approach, the non-convex set represen-

tation is closed under all higher-order maps [33]. Capturing these

nonlinear mappings results in a strong increase in the set represen-

tation size. Hence, we restrict the abstraction order in this case to

its lowest setting 𝜅 = 2 as higher orders require more reduction

increasing the size of the reachable set.

3.4 Time Step Size
The tuning of the time step size Δ𝑡 is the crucial factor for the

success of reachability analysis since it dominates the computation

of the two main sets R
lin

and R
abs

as indicated in Fig. 2. In order

to obtain a tight reachable set, we require to tune Δ𝑡 so that the

trade-off between the abstraction-induced and reduction-induced

wrapping effects is resolved in a near-optimal way, see Fig. 1. An

important prerequisite for tuning Δ𝑡 is the estimation of the influ-

ence of the reduction-induced wrapping by an upper bound in each

step as established in Sec. 3.2.

The main idea is to tune the time step size Δ𝑡 by solving a

convex optimization problem which models both wrapping effects.

Since the influence of both effects always increases the size of

the reachable set, we estimate this size at the end of a finite time

horizon Δ computed by different Δ𝑡𝑘 = Δ
𝑘
, 𝑘 ≥ 1 and choose the

optimal Δ𝑡∗ which yields the minimal size.

The reachable set after time Δ is computed by repeatedly apply-

ing (7), where we only take the terms contributing to the wrapping

effects into account. Furthermore, we explicitly consider 𝑘 ∈ R,
which requires to consider a last incomplete step of length 𝑞Δ𝑡𝑘 =

(𝑘 − ⌊𝑘⌋)Δ𝑡𝑘 . Correspondingly, 𝑒𝐴Δ𝑡𝑘 and R
abs

are scaled to 𝑒𝐴𝑞Δ𝑡𝑘

and 𝑞R
abs

. This yields

˜R(𝑡 + Δ) = red
(
𝑒𝐴𝑞Δ𝑡𝑘 red

(
𝑒𝐴Δ𝑡𝑘 ...

red
(
𝑒𝐴Δ𝑡𝑘R(𝑡) ⊕ R

abs

)
... ⊕ R

abs

)
⊕ 𝑞R

abs

)
.

(20)

Estimating ˜R(𝑡 + Δ). In order to estimate the size of
˜R(𝑡 + Δ)

efficiently, we introduce the following simplifications which allow

us to derive a scalar optimization function for Δ𝑡∗:

(1) The size of a set S is measured by its radius

𝑟
(
S
)
=

1

2

∥𝑑
(
box

(
S
) )
∥2 .

This allows us to replace the respective sets by the scalar

variables 𝑟0 = 𝑟
(
R(𝑡)

)
and 𝑟

abs,𝑘 = 𝑟
(
R
abs
(Δ𝑡𝑘 )

)
.

(2) The effect of the exponential matrix is captured by its de-

terminant. The scaling over the entire finite horizon can be

estimated by det(𝑒𝐴Δ) = 𝑒tr(𝐴Δ) assuming that the matrix

𝐴 does not change over time. The average scaling factor for

each step of length Δ𝑡𝑘 is

𝜁
1

𝑘

𝑃
=

(
𝑒tr(𝐴Δ)

) 1

𝑘
(21)
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and consequently, the scaling of the last incomplete step

is 𝜁
𝑞

𝑘

𝑃
.

(3) The enlargement caused by the reduction is measured by

multiplying the radius by (1+2𝜁𝑍 ) following (18). The factor
for the last step of length 𝑞Δ𝑡𝑘 is scaled to (1 + 2𝜁𝑍 )𝑞 .

Using these simplifications, we can rewrite (20) in a recursive

formula to estimate the set size of
˜R(𝑡 + 𝑗Δ𝑡𝑘 ), 1 ≤ 𝑗 ≤ ⌊𝑘⌋ starting

with the set size estimate 𝑟R (𝑡) = 𝑟0 at time 𝑡 :

𝑟R (𝑡 + 𝑗Δ𝑡𝑘 ) = (1 + 2𝜁𝑍 )
(
𝜁

1

𝑘

𝑃
𝑟R (𝑡 + ( 𝑗 − 1)Δ𝑡𝑘 ) + 𝑟abs,𝑘

)
. (22)

Applying this recursion ⌊𝑘⌋ times and including the last step of

length 𝑞Δ𝑡𝑘 , we obtain an estimate 𝑟R (𝑡 + Δ) for the size of the

reachable set after time Δ:

𝑟R (𝑡 + Δ) = (1 + 2𝜁𝑍 )𝑞 ·(
𝜁

𝑞

𝑘

𝑃
(1 + 2𝜁𝑍 )

[
𝜁

1

𝑘

𝑃
...(1 + 2𝜁𝑍 ) (𝜁

1

𝑘

𝑃
𝑟0 + 𝑟abs,𝑘 ) ... + 𝑟abs,𝑘

]︸                                                              ︷︷                                                              ︸
(22)

= 𝑟R (𝑡+⌊𝑘 ⌋Δ𝑡𝑘 )

+𝑞 𝑟
abs,𝑘

)
.

We first simplify the first ⌊𝑘⌋ steps to

𝑟R (𝑡 + Δ) = (1 + 2𝜁𝑍 )𝑞
(
𝜁

𝑞

𝑘

𝑃

[
𝑟0 (1 + 2𝜁𝑍 ) ⌊𝑘 ⌋𝜁

⌊𝑘⌋
𝑘

𝑃

+ 𝑟
abs,𝑘

⌊𝑘 ⌋∑︁
𝑖=1

(1 + 2𝜁𝑍 )𝑖𝜁
𝑖−1
𝑘

𝑃

]
+ 𝑞 𝑟

abs,𝑘

)
,

leaving only the last step of length 𝑞Δ𝑡𝑘 , which we now include

and rearrange to

𝑟R (𝑡 + Δ) = 𝑟0 (1 + 2𝜁𝑍 )𝑘𝜁𝑃 + 𝑟abs,𝑘 𝜁P,Z (𝑘) (23)

with 𝜁P,Z (𝑘) =
⌊𝑘 ⌋∑︁
𝑖=1

(1 + 2𝜁𝑍 )𝑞+𝑖 𝜁
𝑞+𝑖−1

𝑘

𝑃
+ 𝑞 (1 + 2𝜁𝑍 )𝑞

containing all factors affecting 𝑟
abs,𝑘 .

Estimating 𝑟abs,𝑘 . The evaluation of (23) would require us to

compute 𝑟
abs,𝑘 for each 𝑘 . To save computational costs, we approxi-

mate 𝑟
abs,𝑘 by multiplying 𝑟

abs,1 obtained by Δ𝑡 = Δ with a scaling

factor which models the behavior of R
abs

over Δ𝑡 .

Proposition 1. Scaling Δ𝑡 by a factor 𝜁𝛿 ∈ (0, 1) shrinks the 𝑖-th
entry of the diameter of Rabs, i.e., 𝑑𝑖

(
box

(
Rabs

) )
, by 𝜁𝜆𝑖

𝛿
with 𝜆𝑖 ∈ N

when Δ𝑡 goes to 0:

∀𝑖 ∈ {1, ..., 𝑛} : lim

Δ𝑡→0

𝑑𝑖
(
box

(
Rabs (𝜁𝛿Δ𝑡)

) )
𝑑𝑖
(
box

(
Rabs (Δ𝑡)

) ) = 𝜁
𝜆𝑖
𝛿
. (24)

Proof. We insert (6) for the computation of R
abs

in (24) and

remove 𝑑 (·) and box(·) since these are linear operators up to a

constant factor, which cancels out. We factor out Δ𝑡 to obtain

lim

Δ𝑡→0

Δ𝑡
(⊕𝜂abs

𝑘=0

𝜁𝑘+1
𝛿

Δ𝑡𝑘

(𝑘+1)! 𝐴
𝑘Ψ ⊕ E(𝜁𝛿Δ𝑡, 𝜂abs) 𝜁𝛿 Ψ

)
𝑖

Δ𝑡
(⊕𝜂abs

𝑘=0
Δ𝑡𝑘
(𝑘+1)!𝐴

𝑘Ψ ⊕ E(Δ𝑡, 𝜂
abs
) Ψ

)
𝑖

=
𝜁
𝜆𝑖
𝛿
Ψ𝑖

Ψ𝑖

where 𝜆𝑖 = 𝑗 + 1, with 𝑗 being the first non-negative integer such
that (𝐴 𝑗Ψ)𝑖 ≠ {0}. □

Two properties follow immediately from (24): First, the maxi-

mum possible scaling factor over Δ𝑡 is given by 𝜁𝛿 due to the lower

bound 𝜆𝑖 = 1 attained for Δ𝑡 → 0. Second, the factors 𝜁𝑘
𝛿
in the sum

and the remainder term yield a superlinear decrease of the ratio in

(24) over Δ𝑡 , i.e., 𝑑𝑖
(
box

(
R
abs
(𝜁𝛿Δ)

) )
< 𝜁𝛿 𝑑𝑖

(
box

(
R
abs
(Δ)

) )
. For

later derivations, we define the gain

𝜑 (Δ𝑡) = max

𝑖∈{1,...,𝑛}

𝑑𝑖
(
box

(
R
abs
(𝜁𝛿Δ𝑡)

) )
𝑑𝑖
(
box

(
R
abs
(Δ𝑡)

) ) . (25)

Let us discuss the values of 𝜑 (Δ𝑡) for limΔ𝑡→0 𝜑 (Δ𝑡):
• Linearization approach: For the limit gain, we have limΔ𝑡→0

𝜑 (Δ𝑡) = 𝜁𝛿 . This follows from the proof of Prop. 1, where we

have 𝜆𝑖 = 1 for all nonlinear equations ¤𝑥𝑖 (𝑡) since (𝐴0Ψ)𝑖 =
Ψ𝑖 ≠ {0}.
• Polynomialization approach: The limit gain limΔ𝑡→0 𝜑 (Δ𝑡)
depends on the specifics of 𝐴 and Ψ, however, it is bounded
by limΔ𝑡→0 𝜑 (Δ𝑡) ≥ 𝜁𝜅

𝛿
, as all terms higher than the ab-

straction order 𝜅 are considered as an error and thus the

minimum decrease is given by 𝜁𝜅
𝛿
.

Since the superlinearity of (24) extends to (25), the worst-case ap-

proximation of the gain 𝜑 over Δ𝑡 is given by linearly interpolating

between 𝜑 (Δ𝑡 = Δ) = 𝜑1 and limΔ𝑡→0 𝜑 (Δ𝑡) = 𝜁𝛿 :

𝜑 (Δ𝑡) ≈ 𝜁𝛿 +
𝜑1 − 𝜁𝛿

Δ
Δ𝑡 , (26)

which will be justified in Sec. 4, see Fig. 3. This linear interpolation

for 𝜑 constitutes the worst-case gain causing us to never underesti-

mate the optimal value of Δ𝑡 . As a consequence of the interpolation,
we only need to compute 𝜑1 to estimate any 𝑟

abs,𝑘 based on 𝑟
abs,1

and the dependence on 𝜑 given by (26). We define 𝑘 ′ ∈ N as the

number of times Δ has been scaled by a fixed 𝜁𝛿 ∈ (0, 1). Hence,
𝑘 = 𝜁−𝑘

′

𝛿
∈ R is the number of times Δ𝑡𝑘 divides into Δ and using

𝜑 𝑗 = 𝜑 (𝜁 𝑗−1𝛿
Δ) = 𝜁𝛿 + (𝜑1 − 𝜁𝛿 )𝜁

𝑗−1
𝛿

(27)

we obtain an estimate for 𝑟
abs,𝑘 :

𝑘 𝑟
abs,𝑘 = 𝜑1 · ... · 𝜑𝑘′ 𝑟abs,1 =⇒ 𝑟

abs,𝑘 :=
𝑟
abs,1

𝑘

𝑘′∏
𝑗=1

𝜑 𝑗 . (28)

In the tuning algorithm for Δ𝑡 , we compute 𝜑1 given 𝑟
abs,1 and

𝑟
abs,𝑘 by solving the following implicit equation for 𝜑1:

𝜑1 ·
(
𝜁𝛿 + (𝜑1 − 𝜁𝛿 )𝜁𝛿

)
· ...

(
𝜁𝛿 + (𝜑1 − 𝜁𝛿 )𝜁𝑘

′−1
𝛿

)
= 𝑘

𝑟
abs,𝑘

𝑟
abs,1

. (29)

Optimization function. Inserting (28) in (23) yields

𝑟R (𝑡 + Δ) = 𝑟0 (1 + 2𝜁𝑍 )𝑘𝜁𝑃 +
𝑟
abs,1

𝑘
𝜁P,Z (𝑘)

𝑘′∏
𝑗=1

𝜑 𝑗 , (30)

which we minimize to obtain the optimal time step size

Δ𝑡∗ = Δ 𝜁
𝑘′∗
𝛿

(31)

where 𝑘 ′∗ = argmin

𝑘′∈N
𝑟R (𝑡 + Δ) .

Since we know that this function has one optimum by construction,

we simply increase 𝑘 ′ until that optimum is surpassed as the compu-

tation time to evaluate (30) is so low that sophisticated algorithms

are not required. The obtained value for Δ𝑡 constitutes an upper

bound as it is assumed that the entire margin for the reduction is
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used each step which is an over-approximation of its true influence.

We will show an example evaluation of (30) in Sec. 4.

Finite optimization horizon. Lastly, we require to set the finite

horizon Δ over which we evaluate the cost function (30). Since

the behavior of 𝑟
abs,𝑘 over shrinking Δ𝑡 constitutes a key part in

the computation of Δ𝑡∗, we want it to be captured as precisely as

possible. Naturally, the proposed linear interpolation reflects the

true behavior more closely if the computed gain 𝜑1 is sufficiently

close to the limit gain at Δ𝑡 → 0. Therefore, we determine Δ by

Δ = min𝜏 such that 𝜑1 (𝜏) ≥ 𝜁Δ . (32)

Tuning algorithm for Δ𝑡 . The tuning of the time step size is

summarized in Alg. 2. In the initial step 𝑠 = 1, we first decrease

an arbitrarily initialized Δ𝑡 (Line 2) until the condition in (32) is

met, yielding Δ with the associated error R
abs
(Δ) and its scalar

correspondence 𝑟
abs,1 as well as 𝜑1 in the process (Lines 3-7). This

allows us to compute the optimal time step size Δ𝑡∗ for the first
step (Line 8).

From the second step onward, the computation of Δ𝑡∗ is simpli-

fied in order to minimize the computational effort: First, we update

the finite time horizon Δ (Line 10) to approximate the value in (32).

Next, the set R
abs
(Δ) as well as its scalar correspondence 𝑟

abs,1 are

computed (Line 11), which are then used to compute the optimal

time step size Δ𝑡∗ (Line 12). At the end, we update the value of 𝜑1
for the next step (Line 13). Note that within the propagation using

Δ𝑡∗, the prediction of the abstraction order 𝜅 for the next step as

explained in Sec. 3.3, is also made.

Algorithm 2 Tuning of the time step size Δ𝑡 .

Input: 𝜑1 and Δ of previous step (only if 𝑠 > 1), 𝑟0, 𝜁𝑍 , 𝜁𝑃 , 𝜁𝛿 , 𝑠

Output: Optimal time step size Δ𝑡∗, 𝜑1
1: if 𝑠 = 1 then
2: Initialize Δ𝑡 ⊲ Arbitrary initialization

3: while 𝜑1 < 𝜁Δ do
4: Δ← 𝜁𝛿Δ ⊲ Decrease Δ𝑡
5: Compute R

abs
(Δ),R

abs
(𝜁𝛿Δ) ⊲ Note: R

abs
reusable

6: Compute 𝜑1 by (25) ⊲ Behavior of R
abs

over Δ𝑡
7: end while
8: Compute Δ𝑡∗ by (31) ⊲ Optimal time step size

9: else
10: Δ← Δ

𝜁𝛿−𝜁Δ
𝜁𝛿−𝜑1

⊲ Approximation of (32)

11: Compute R
abs
(Δ) and 𝑟

abs,1 ⊲ Error using finite horizon

12: Compute Δ𝑡∗ by (31) ⊲ Optimal time step size

13: Compute 𝜑1 by (29) ⊲ Update for next step

14: end if

Fixing the global parameters 𝜁 . The global parameters 𝜁 used

in the adaptation of all algorithm parameters have been fixed to

suitable values in Table 1, thereby allowing the respective tuning

methods to adapt the algorithm parameters according to the de-

mands of the current system behavior. These fixed values for each

𝜁 are well-suited to produce tight results for a wide variety of differ-

ent nonlinear systems as shown in the next section. Thus, there is

no more manual tuning effort required for all considered problems.

With the further development of the tuning methods, the value of

a specific 𝜁 might change, but the general applicability remains.

Table 1: Setting of the parameters 𝜁 .

Approach 𝜁𝑇,lin 𝜁𝑇,abs 𝜁𝑍 𝜁𝐾 𝜁Δ 𝜁𝛿

Linearization 0.0005 0.005 0.0005 0.90 0.85 0.90

Polynomialization 0.0005 0.005 0.0002 — 0.80 0.90

4 NUMERICAL EXAMPLES
In this section, we apply the adaptive parameter tuning presented

in the previous section to numerous benchmark examples taken

from various sources [6, 14, 17, 26]. The adaptation of the algorithm

parameters over time is shown and discussed for selected bench-

mark systems. All computations have been performed in MATLAB

on an Intel® Core™ i7-9850 CPU @2.59GHz with 32GB memory.

4.1 Evaluation of the Optimization Function
We first want to offer additional insights concerning the optimiza-

tion function (30), which balances the wrapping effects introduced

in Sec. 2.2. An important part is the approximation of the abstraction-

induced wrapping, represented by the variable 𝜑 , see (27). In Fig. 3,

the values of 𝜑 of all systems in this section have been computed

over decreasing Δ𝑡 starting at Δ for the first step at 𝑡 = 0. The

generality of the worst-case assumption made in Sec. 3.4 is justified

by the dashed lines representing the linear interpolation expressed

in (26). All systems converge towards 𝜑 = 𝜁𝛿 using the linearization

approach, whereas for the polynomialization approach, all systems

are still bounded by the worst-case assumption given by the linear

interpolation between 𝜑 (Δ) ≈ 𝜁Δ and limΔ𝑡→0 𝜑 (Δ𝑡) = 𝜁𝛿 , despite
their individually distinct behaviors over Δ𝑡 . This follows the an-
alytical derivations made in the introduction of 𝜑 in the previous

section.

Figure 3: Computation of 𝜑 by (25) for all systems in Sec. 4
and both approaches (linearization in blue and polynomial-
ization in gray) over 0 < Δ𝑡 < Δ (normalized to [0, 1]), with Δ
computed by (32).

Next, wewant to show an example evaluation of the optimization

function. Therefore, consider the following example:

Example 4.1. Jet Engine [10, (19)]

¤𝑥 =

(
−𝑥2 − 1.5𝑥2

1
− 0.5𝑥3

1
− 0.5

3𝑥1 − 𝑥2

)
, X0 =

(
[0.90, 1.10]
[0.90, 1.10]

)
with the time horizon 𝑡𝐾 = 8𝑠 . □
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Fig. 4 shows the optimization function 𝑟R (𝑡 +Δ) and its minimum

at Δ𝑡∗ evaluated at the first step of example 4.1. For the finite hori-

zon, the heuristics in (32) yield Δ = 0.0226. We clearly recognize

the two wrapping effects as Fig. 4 exhibits a qualitatively similar

behavior compared to Fig. 1, which serves as the basis for the adap-

tation of Δ𝑡 . Our approach returns an optimal value of Δ𝑡∗ = 0.0071

for the first step.

Figure 4: Evaluation of the cost function 𝑟R (𝑡 + Δ) (30) over
different values for Δ𝑡 at 𝑡 = 0 for example 4.1.

4.2 ARCH Benchmarks
We analyzed the production-destruction benchmark (PRDE20) and

the Laub-Loomis benchmark (LALO20) from the ARCH competition

[26]. This allows us to compare our results with other reachability

tools using algorithm parameters tuned by experts.We first consider

the PRDE20 benchmark.

Example 4.2. (PRDE20) This benchmark models a biogeochem-

ical reaction, describing an algal bloom transforming nutrients

(𝑥1) into detritus (𝑥3) using phytoplankton (𝑥2) [35, Sec. 3]. The

dynamics are presented in [26, Sec. 3.1.1], the initial set is X0 =

( [9.50, 10.00], 0.01, 0.01)𝑇 , and the time horizon is 𝑡𝐾 = 100𝑠 . □

Fig. 5 shows the reachable sets computed using the linearization

approach. We observe two fairly linear regions interrupted by a

sharp turn. Thus, we expect the automated parameter tuning to

adapt each algorithm parameter to the demands of the current

dynamics.

Figure 5: Reachable set R([0, 𝑡𝐾 ]) of example 4.2 in gray, ini-
tial set X0 in red, simulations in blue.

The algorithm parameters over time are shown in Fig. 6: In the

region of the sharp turn (10.6s < 𝑡 < 11.6s), the time step size

Δ𝑡 (Fig. 6a) becomes very small since the optimization function

estimates a smaller total error by reducing Δ𝑡 as the decrease in
the abstraction error outweighs the increase in the reduction error.

After the sharp turn, Δ𝑡 greatly increases as the abstraction error

becomes small. Each of the truncation orders 𝜂
lin

and 𝜂
abs

(Fig. 6b)

reaches their maximum at the sharp turn as the dynamics there

require more terms within the Taylor series of the exponential

matrix to provide satisfactory accuracy.

The zonotope order 𝜌 (Fig. 6c) increases at the turn because

we cannot reduce many generators without inducing large over-

approximations. Afterwards, it reaches its minimum where it stays

until the end of the time horizon since the set is accurately de-

scribed using a small number of generators. Over the whole time

horizon, the zonotope order does not exceed 20, enabling a very

efficient evaluation of the set operations contained within each

step. Concerning the abstraction order 𝜅, the adaptive tuning in

(19) resulted in 𝜅 = 2 for 𝑡 ∈ [0, 13.45] and 𝜅 = 1 for 𝑡 ∈ [13.45, 100],
which confirms the rather linear system behavior after the sharp

turn.

Table 2: Comparing our approach with different reachabil-
ity tools on ARCH benchmarks using the tightness mea-
surements 𝜇1 = vol

(
box

(
R(𝑡𝐾 )

) )
and 𝜇2 = 𝑙4, where 𝑙 =

𝑑
(
box

(
R(𝑡𝐾 )

) )
as in [26].

Tool (Language) PRDE20 LALO20

Time 𝜇1 Time 𝜇2

Lin. Approach (Matlab) 7.0s 8.0e−21 8.9s 0.045

Poly. Approach (Matlab) 6.5s 1.0e−19 19s 0.025

Ariadne (C++) 8.6s 1.7e−13 664s 0.058

CORA (Matlab) 16s 1.2e−21 7.6s 0.04

DynIbex (C++) 12s 3.9e−17 27s 0.40

Flow* (C++) 4.1s 8.0e−21 2.3s 0.06

Isabelle/HOL (SML) 11s 3.3e−20 13s 0.48

JuliaReach (Julia) 1.5s 3.3e−20 1.5s 0.017

Table 2 shows the computation time and the tightness measure-

ment by volume of the final set for both approaches using adaptive

parameter tuning and other reachability tools. Due to the large

ratio of the largest to the smallest time step size and consequently

the saving of many time steps, both approaches yield similar com-

putation times compared to the expert-tuned tools, many of which

are written in languages such as C++ or Julia, which are faster

than MATLAB. The tightness of the reachable sets computed for

each approach using adaptive parameter tuning is among the top

results obtained by expert tuning, thereby demonstrating the high

accuracy of the presented tuning methods. Next, we consider the

LALO20 benchmark.

Example 4.3. (LALO20) This benchmark system models changes

in enzymatic activities [38, (1-7)], whose dynamics are given in [26,

Sec. 3.3.1]. For the initial set, we enlarge the point 𝑥 (0) = (1.2, 1.05,
1.5, 2.4, 1, 0.1, 0.45)𝑇 by the uncertainty𝑊 = 0.05 to obtain X0 =

[𝑥 (0) −𝑊,𝑥 (0) +𝑊 ]. The time horizon is 𝑡𝐾 = 20𝑠 . □

Using the polynomialization approach for the analysis, the time

step size Δ𝑡 and the polynomial zonotope order 𝜌 are plotted over

time in Fig. 7: Due to the size of the first few reachable sets, Δ𝑡
is smallest in the beginning and then gradually increases. The
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(a) Time step size Δ𝑡 . (b) Truncation orders 𝜂lin, 𝜂abs. (c) Zonotope order 𝜌 .

Figure 6: Algorithm parameters of example 4.2 over time.

Figure 7: Time step size Δ𝑡 and polynomial zonotope order 𝜌
of example 4.3 over time.
sudden drops in 𝜌 occur due to the restructuring of all independent

generators into the dependent generatormatrix [33, Prop. 17]. Other

than that, the order 𝜌 remains below 40 at all times, keeping the

set operations efficient without compromising the tightness of the

reachable sets. The orders 𝜂 do not change a lot over the whole

time horizon, with 𝜂
lin

= {4, 5} and 𝜂
abs

= 2 remaining constant

throughout. The abstraction order is fixed at 𝜅 = 2 as stated in

Sec. 3.3.

Comparing the results obtained by our adaptive parameter tun-

ing with other reachability tools, we see an average performance

in terms of the computation time. This is due to the high system

dimension for which the evaluation of the abstraction error Ψ and

the reduction of the set representation size are computationally de-

manding. However, both approaches return tighter results, except

for JuliaReach.

4.3 Quantitative Performance Analysis
While we discussed some benchmarks in detail in the previous

section, we now analyze the performance of our tuning approach

on many different benchmarks. For all systems, we provide the

longest edge of the box over-approximation of the final set, that is,

𝑙max = max

𝑖∈{1,...,𝑛}
𝑑𝑖
(
box

(
R(𝑡𝐾 )

) )
(33)

as well as a tightness measure proposed in [18, Sec. VI.]

𝛾min = min

𝑖∈{1,...,𝑛}

𝑑𝑖
(
box

(
Rsim (𝑡𝐾 )

) )
𝑑𝑖
(
box

(
R(𝑡𝐾 )

) ) , (34)

where Rsim (𝑡𝐾 ) denotes the set of states at 𝑡𝐾 of 1000 simulation

runs. The closer 𝛾min is to 1, the tighter is the reachable set.

Table 3 shows the results for all investigated systems ordered

by dimension and analyzed by both approaches using adaptively

tuned algorithm parameters. Due to space constraints, we cannot

go into details. Therefore, we want to discuss general tendencies

and explain unexpected results.

By construction, the linearization approach is limited to systems

with onlymild nonlinearties. Hence, it failed to produce tight results

for the van der Pol oscillator and the Roessler attractor as indicated

by the small values for 𝛾min. The insufficiency of the linearization

approach in the case of the van der Pol oscillator has already been

discussed in [33, Sec. 4]. Comparing the tightness across the two

approaches, either of the two measures 𝑙max and 𝛾min reveals that

the polynomialization approach generally yields tighter enclosures.

However, the tightness of the reachable sets computed with the

linearization approach is probably already satisfactory in cases

where 𝛾min > 0.7. Concerning the scalability of the tuning methods,

the tightness of the resulting reachable sets shows by high values

for 𝛾min and the similar computation times compared to those of

lower-dimensional systems.

On average, the ratio between the largest and smallest time step

is about 1-2 orders of magnitude. By exploiting this potential, we

drastically reduce the number of steps in the analysis and increase

the tightness of the resulting reachable sets. This is especially valu-

able for the polynomialization approach where the reduction is a

lot more over-approximative due to using non-convex sets.

With respect to the set representation, we see that the zonotope

order 𝜌 is smaller using the linearization approach as Theorem 3.2

exploits the potential of reducing many generators. The polynomial-

ization approach uses higher polynomial zonotope orders since the

generators cannot be substantially reduced without inducing large

over-approximations. It should also be noted that the values given

for 𝜌max represent the highest orders attained during the analysis

which may only last for a few steps as discussed earlier and shown

in Fig. 6c. This also explains the fairly small computation times for

the corresponding systems.
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Table 3: Evaluation of nonlinear benchmark systems: 𝑛: system dimension, 𝑡𝐾 : time horizon,X0: initial set, [Δ𝑡min,Δ𝑡max]: range
of time step sizes, 𝜌max: max. zonotope order, 𝑙max and 𝛾min: measurements by (33) and (34).

Benchmark 𝑛 𝑡𝐾 X0
Linearization Approach Polynomialization Approach

Time [Δ𝑡min,Δ𝑡max] 𝜌max 𝑙max 𝛾min Time [Δ𝑡min,Δ𝑡max] 𝜌max 𝑙max 𝛾min

Jet Engine [10, (19)] 2 8 [0.90, 1.10]𝑛 1.4s [0.007, 0.124] 16 0.062 0.5094 6.5s [0.003, 0.062] 25.5 0.0441 0.7125

van der Pol [6, Sec. VII] 2 6.74
[1.30, 1.50]
[2.35, 2.45] 3.7s [0.004, 0.034] 16 1.87 0.1915 14.1s [0.002, 0.017] 60 0.6070 0.5705

Brusselator [14, Ex. 3.4.1] 2 5

[0.90, 1.00]
[0.00, 0.10] 1.3s [0.019, 0.056] 43 0.082 0.7367 4.8s [0.005, 0.029] 121.5 0.066 0.9343

Roessler [47, (2)] 3 6

[−0.20, 0.20]
[−8.60,−8.20]
[−0.20, 0.20]

1.6s [0.006, 0.058] 10.33 4.28 0.1745 6.7s [0.0007, 0.0469] 20.33 2.65 0.5591

Lorenz [41, (25-27)] 3 2

[14.90, 15.10]
[14.90, 15.10]
[34.90, 35.10]

2.1s [0.0004, 0.004] 9 0.275 0.8095 5.9s [0.0005, 0.0079] 36.67 0.243 0.9279

Spring-Pendulum

[14, Ex. 3.3.12]

4 1

[1.1, 1.3]
[0.4, 0.6]
[0.0, 0.1]
[0.0, 0.1]

2.3s [0.006, 0.024] 12.5 0.518 0.6543 5.9s [0.003, 0.012] 25.75 0.432 0.7759

Lotka-Volterra [49, (1)] 5 5 [0.90, 1.00]𝑛 0.6s [0.010, 0.117] 10.4 0.082 0.8809 2.5s [0.005, 0.097] 106.6 0.074 0.9756

Biological Model [32] 7 2 [0.99, 1.01]𝑛 1.9s [0.004, 0.019] 45.43 0.117 0.7099 7.7s [0.002, 0.011] 182.29 0.096 0.9240

Genetic Model [50, (1)] 9 0.1 see [17, Sec. V.] 0.5s [0.0007, 0.0024] 5.78 5.55 0.7996 1.5s [0.0005, 0.0014] 28 5.32 0.9302

4.4 Discussion
The presented methods for adaptive parameter tuning allow us

to fully automatically obtain reachable sets without tuning any

algorithm parameters. The computation of the reachable sets is

executed in a single run. Thus, the computation times in Table 2

and Table 3 are truly the time required to analyze the system as

opposed to manual tuning typically requiring many runs.

For systems with only mild nonlinearities, the linearization ap-

proach quickly produces good results while for severe nonlineari-

ties, the reduction of the set representation within the polynomi-

alization approach is the limiting factor. Our adaptive parameter

tuning would greatly benefit from improvements in order reduc-

tion techniques, which can simply replace exisiting ones due to

the modularity of our framework. The optimization function used

to determine a near-optimal time step size balances the two main

causes for unsatisfactory results by minimizing their joint influence.

Thus, in case the reachability analysis fails to produce usable re-

sults, we can estimate that the cause for this is not the tuning of the

parameters, but rather the insufficiency of either the reachability

algorithm itself, or the handling of the set representation size.

5 CONCLUSION
In this paper, we presented the first adaptive tuning algorithm

for all algorithm parameters of state-space abstracted reachability

analysis of nonlinear systems. Themodular construction treats each

parameter separately and therefore maximizes the transparency

and robustness of the adaptation as well as enables the applicability

to other similar reachability algorithms or set representations. The

numerical examples show the fast and reliable computation of

tight reachable sets without the need to set any of the internally

required algorithm parameters. This greatly facilitates the usage of

reachability analysis for practitioners.
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