
 

 

  Master thesis 

 

 

Heuristic Reasoning about 

Geospatial Data under  

Uncertainty 
 
 

Lorenzo Libertini 

 

 

 
 
 

 
 
 

 
 

 
 

 

2020  



 

Heuristic Reasoning about Geospatial 

Data under Uncertainty 
 
 

 

 

 

 

 

 

 

 

submitted for the academic degree of Master of Science (M.Sc.) 

conducted at the Department of Aerospace and Geodesy 

Technical University of Munich 

 

 

 

Author:  Lorenzo Libertini 

Study course: Cartography M.Sc. 

Supervisor: Ekaterina Chuprikova, Dr.-Ing. (TU München) 

Reviewer:  Madalina Gugulica, M.Sc. (TU Dresden) 

 

 

Chair of the Thesis 

Assessment Board: Prof. Dr. Liqiu Meng 

 

Date of submission:  08.09.2020 

 

 

 

 

 



 

Statement of Authorship  

Herewith I declare that I am the sole author of the submitted Master’s thesis entitled:  
 
“Heuristic Reasoning about Geospatial Data under Uncertainty” 
  
I have fully referenced the ideas and work of others, whether published or un-
published. Literal or analogous citations are clearly marked as such.  
 
 
 
Munich, 08-09-2010         Lorenzo Libertini 



 

I 
 

Abstract 

Research on data uncertainty has witnessed remarkable growth in recent years. 

Findings across a wide spectrum of knowledge domains demonstrate how hu-

mans commonly adopt cognitive biases to navigate through unknown circum-

stances. In this context, a set of reasoning strategies known as “heuristics” – 

i.e., logical shortcuts that help individuals to make decisions upon uncertain sit-

uations – has been the focus of considerable interest. At the same time, incor-

porating uncertainty into visualizations has become a crucial issue for GISci-

ence and Cartography. However, there is a notable lack of studies dealing with 

the process of reasoning under uncertainty, particularly in geospatial data. The 

present thesis aims at filling such a gap by investigating how map-readers make 

use of heuristics to reason upon geospatial uncertainty, with a specific focus on 

the visualization of borders, or “borderization”. 

In order to accomplish this goal, a set of cartographic techniques to represent 

the boundaries of two types of natural hazards was tested utilizing a survey with 

61 participants. The survey respondents were asked to assess levels of safety 

and desirability of several housing locations potentially affected by air pollution 

or avalanches. Maps in the survey varied by boundary type for natural hazard 

levels (abrupt vs. gradual border), background colour (e.g., red vs. green) and 

information about areas of uncertain data (extrinsic vs. intrinsic uncertainty). 

Results were analysed using a mixed quantitative-qualitative approach.  

The findings showed the presence of a number of simple heuristics driving us-

ers’ behaviours. Abrupt borders triggered distance and containment heuristics, 

whereas gradual boundaries produced more nuanced judgements. Extrinsic un-

certainty appeared to increase the overall perception of risk and complicate the 

use of heuristics by making map choices less straightforward. On the other 

hand, variations in colour had a more modest impact. Overall, the thesis results 

can serve to design heuristics-aware visualizations of uncertain boundaries. 

Keywords: uncertainty visualization, heuristics, boundaries, cognitive science, 

user study  
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Kurzfassung 

In den letzten Jahren hat die Forschung über Datenunsicherheit bemerkenswert 

zugenommen. Erkenntnisse aus verschiedenen Wissensdomänen zeigen, dass 

Menschen häufig kognitive Verzerrungen nutzen, um sich durch unbekannte 

Umgebungen zu bewegen. Besonderes wissenschaftliches Interesse haben die 

sogenannten “Heuristiken“ geweckt, das heißt Denkabkürzungen, die für den 

Einzelnen eine logische Stütze darstellen, um in unsicheren Situationen Ent-

scheidungen treffen zu können. Gleichzeitig wurde die Visualisierung der Unsi-

cherheit zu einer der entscheidendsten Forschungsthemen in der Kartographie 

und GIScience. Dennoch gibt es erstaunlich wenige Studien über die Denkpro-

zesse der Unsicherheit, vor allem im Bereich der Geodaten. Um diese Lücke zu 

füllen, wird in dieser Arbeit die Kartennutzung durch Heuristiken um über räum-

liche Unsicherheit nach-zu-denken erforscht. 

Um dieses Ziel zu erreichen, wurden eine Reihe von kartographischen Methoden 

für die Visualisierung der Grenzen zweier Arten von Naturgefahren getestet. 61 

Teilnehmer einer Umfrage wurden gebeten, die Sicherheit, sowie die Attraktivität 

einiger Wohnstandorte mit potentieller Luftverschmutzungs- oder Lawinen-Ge-

fahr zu beurteilen. Die Karten unterschieden sich durch verschiedene Naturge-

fahren-Grenzen (abrupt vs. graduell), Hintergrundsfarben (z.B. Rot vs. Grün) und 

Informationen über Regionen mit unsicheren Daten (extrinsisch vs. intrinsisch). 

Die Auswertung der Daten erfolgte mittels einem quantitativ-qualitativen An-

satz. Mit den erlangten Ergebnissen konnte man zeigen, dass sich hinter dem 

Nutzerverhalten einige einfache Heuristiken verbergen. Abrupte Grenzen riefen 

Entfernungs- und Eindämmungsheuristiken hervor, während graduelle Grenzen 

nuanciertere Bewertungen bewirkten. Extrinsische Unsicherheit erhöhte die all-

gemeine Risikowahrnehmung und erschwerte die kartenbasierten Entscheidun-

gen von Nutzern, während die Farbabweichungen nur geringe Auswirkungen 

zeigten. Insgesamt können die Ergebnisse der Arbeit dazu dienen, heuristikbe-

wusste Visualisierungen unsicherer Grenzen zu entwerfen. 

Stichwörter: Visualisierung der Unsicherheit, Heuristiken, Grenzen, Kognitive 

Wissenschaft, Nutzerstudie 
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1. Introduction 

 

1.1 Motivation and problem statement 

 

Dealing with uncertainty in information has been an extensively explored 

research issue over the last decades. Several unrelated fields, from medicine to 

archeology or statistics, have dealt with the question of how to incorporate 

uncertainty in data (Bonneau et al., 2012). The sentence “visualization of 

uncertainty” alone returns almost a million results on Google Scholar, not 

including its other possible variations and declinations. 

 

The studies from Tversky & Kahneman have introduced a new line of research 

on human reasoning and decision-making. The same authors have introduced 

the concept of prospect theory (see e.g., Tversky & Kahneman, 1979) to explain 

how cognitive biases drive human choices under uncertain circumstances. 

These theories have been recognized as landmarks in the history of psychology 

(see e.g., Morvan & Jenkins, 2017) and this line of cognitive-behavioural studies 

on decision weighing has acted as a basis for empirical research in fields such 

as computing (see e.g., Lorkosky & Kreinovich, 2016), risk management in the 

context of natural hazards (Landry & al., 2019), and even international policy 

(Herzog, 2019). 

 

Uncertainty is also an especially fundamental issue in the context of 

cartography, as geospatial data can rarely be assumed to be free from any kind 

of uncertainty (Yu, 2018) and several types of uncertainty can arise from each 

stage of the so-called analysis pipeline (Pang et al., 1997). The incorporation of 

spatial data quality into the final visualization product is crucial in order to 

deliver the best possible information to the user, as well as supporting the 

decision-making process (MacEachren et al., 2005). Visualization of uncertainty 

in a geospatial context has therefore long been a subject of extensive research; 

both uncertainty itself and corresponding possible visualization techniques 
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have been typified and taxonomized (MacEachren, 1992; Thomson et al., 2005; 

Brennen et al., 2017) and have been identified as relevant for visual analytics 

and human-computer reasoning (MacEachren, 2015; Chuprikova & Meng, 2019).  

 

However, less attention has been dedicated to the concept of reasoning under 

uncertainty, as in the process of reasoning and making assumptions, choices 

and decisions in a context where data and spatial information are uncertain, or 

when even the problem itself, as well as its potential outcomes, may be unclear 

(Chuprikova & Meng, 2019). When making decisions under uncertain conditions, 

humans tend to base their assumptions on quick and straightforward logical 

approaches called heuristics, which have been categorized (Tversky & 

Kahneman, 1974) and are supported by underlying cognitive biases that drive 

the final decisions (Dimara et al., 2014). The lack of research about heuristics 

related to reasoning under uncertainty, especially within the context of 

geospatial data, has been identified as a critical gap in research by several 

authors (e.g., Zuk & Carpendale, 2007; MacEachren, 2015; Kinkeldey et al., 2017). 

 

The present work, sitting at the crossroads between cognitive science and 

cartography, seeks to contribute to bridge this gap and further explore the issue 

of heuristics-driven reasoning under uncertainty in a geospatial context, first by 

designing suitable visualization techniques that take these heuristics into 

account and then by empirically studying how such techniques impact map 

readers’ decisions. 

 

1.2 Objectives and research questions 

 

The main objective of this thesis is to investigate how different techniques and 

visual variables can play a role in driving users’ decisions under uncertain 

conditions, taking into account the heuristics that underlie these decisions. 
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Several sub-objectives make up this main objective: 

 

1. To explore how visual variables influence users’ heuristics-driven 

reasoning under uncertainty in the context of geospatial data, with a 

specific focus on the issue of geospatial “borderization”; 

2. To adapt existing visualization techniques to represent “borderization” on 

selected case studies and investigate users’ cognitive biases when 

reasoning under uncertainty about geospatial data; 

3. To build and conduct a user test to interpret how choices of visual 

variables for uncertainty visualization can affect users’ reasoning and 

map experience. 

 

Each one of these objectives addresses the following research questions: 

 

1. How can the choice of visual variables influence users’ heuristics-driven 

reasoning and decision-making under uncertain conditions in the context 

of the geospatial “borderization” issue? 

2. How can existing visualization techniques be improved and adapted to 

interpret users’ cognitive biases when reasoning under uncertainty in 

geospatial data? 

3. How can a user test, aimed at investigating such techniques in a 

geospatial context, help evaluate the influence of visual variables on 

reasoning? How can it be built and administered? 

 

1.3 Research scope 

 

Each sub-objective will require its method. 

 

The first sub-objective will involve an extensive literature review in order to 

provide a theoretical framework for the following stages. 
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For the second sub-objective, literature analysis will be the basis to identify 

suitable case studies to investigate heuristic-driven decision-making processes 

under uncertain conditions in geospatial contexts. Subsequently, potential 

visualization techniques aimed at highlighting and controlling heuristic use will 

be applied to these case studies by analyzing, improving and adapting existing 

guidelines through the software ArcMap. 

 

The final sub-objective will lead to the design of a user survey aimed at 

investigating heuristic use in such contexts. This survey will then be 

administered to a set of relevant respondents after an exploratory pilot test. This 

survey and its quantitative and qualitative results will then serve to draw 

conclusions and suggestions on how to evaluate heuristic use under geospatial 

uncertainty through different visualization techniques, as well as on how to best 

structure the survey itself. 

 

The issue of “borderization” will be the special focus of the present thesis. Both 

heuristics and visualization of uncertainty are extremely broad research topics 

and an exhaustive analysis of these subjects would need to extend far beyond 

the scope of a single thesis. Even within the specific domain of cartography and 

geospatial data, these matters can be analyzed through a wide variety of 

research lenses. Therefore, “borderization” will be the main undercurrent of the 

present work and will serve to highlight relevant literature, as well as to direct 

and narrow down the whole study. 

 

1.4 Thesis outline 

 

 Foundations and state-of-the-art: this chapter will outline of the 

theoretical background and development regarding heuristics and 

uncertainty visualization, with a special focus on geospatial data. This 

section will first provide an overview of past and current theories of 

mental models, cognitive biases and heuristics in human reasoning. 

Subsequent paragraphs will explain how these theories interlink with 
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uncertainty visualization and geospatial uncertainty specifically. The 

final subchapter will include an introduction and motivation for the choice 

of case studies. 

 Methodology: this chapter will present the methodology for the second 

and third research objectives. The section will explain all the steps 

implemented to design the maps and the final user test, including the 

exploratory pilot test. 

 Results and discussion: this chapter will list all the findings that resulted 

from the user test, linking them to each one of the original research 

objectives. This section will include relevant results on heuristic use in 

the maps, as well as findings on map design and on the architecture of 

the user test itself. A final subchapter will provide an essential wrap-up 

of the most significant findings for each research sub-objective. 

 Conclusions and outlook: this chapter will provide a short summary of the 

previous sections and draw conclusions about the whole thesis, as well 

as suggesting directions for future work.  
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2. Foundations and state-of-the-art 

 

2.1 Heuristics and reasoning 

In order to navigate through the world, our cognition collects, analyses and fil-

ters information coming from the external environment in a continuous stream. 

The human brain evolved to provide us with a vast number of strategies to make 

judgements and decisions, as well as reason efficiently and effectively upon any 

context we might find ourselves called to deal with. 

Daniel Kahneman, in his 2011 book “Thinking fast and slow”, has summarized 

previous research findings on the concept of dual reasoning (see e.g. Tversky & 

Kahneman, 1974). According to Kahneman, when faced with problem-solving 

and decision-making tasks, humans tend to adopt different sets of behaviours 

that can be classified under two broad categories. The so-called “System 1” is 

the immediate and quick sequence of suggestions, feelings and thoughtless in-

tuitions that first arise when we face a problem: we can instinctively answer that 

two plus two equals four without any need for further reasoning. It allows us to 

filter out unnecessary information and come up with snap judgements that 

prove effective in most situations. “System 2” introduces doubt, uncertainty and 

ambiguity; in other words, “System 1” is a synonym for automated thinking, 

whereas “System 2” is conscious and analytic reasoning that works best for 

drawing connections and generating calculated conclusions (Ehrlinger et al., 

2016). Despite this, “System 2” is time- and energy-consuming and is therefore 

defined as “lazy” by Kahneman; the unconscious suggestions created under 

“System 1” are thus turned and further cemented into beliefs in “System 2” and, 

consequently, used to motivate our deliberate actions (Sanders & Wood, 2019). 

Cognitive theory has often favoured a frequentist approach to human reasoning 

(Griffin et al., 2001), believing that humans behaved as perfectly rational beings 

who would evaluate uncertain situations through the mathematical laws of 

probability. This view has been challenged by several opposing currents such 

as the Bayesian theory, which argues that humans approach probabilities 
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through subjective judgements; their conclusions do not follow standard rules, 

but are rather derived from personal experiences and ideas about the likelihood 

of a certain event (Cosmides & Tooby, 1996). 

Drawing upon these premises, cognitive psychology has introduced the so-

called model theory (Johnson-Laird, 2010). Rather than postulating that mental 

processes are akin to mathematical calculus, human brains are assumed to 

make use of pre-existent mental images, called models, to draw and infer con-

clusions from the available evidence. These models are to be thought of as 

iconic representations of the problems we are dealing with; therefore, they allow 

us to retrieve relevant knowledge from our memory about the possible out-

comes of such problems and consequently draw timesaving conclusions 

(Khemlani et al., 2015). 

The theories of mental models and subjective probability deeply intertwine with 

the pre-existing research about inductive and deductive logic. In fact, mental 

models act as a framework and a starting point for both types of reasoning. De-

ductive reasoning uses mental models to lead to certain syllogistic conclusions 

from premises that it assumes as fully valid; inductive reasoning employs men-

tal models to increase semantic information by inferring new possible outcomes 

from a partially known set of premises (Bara & Bucciarelli, 2000). Therefore, de-

ductive reasoning draws particular conclusions from general statements that 

necessarily imply them from the start, whereas inductive reasoning leads to the 

recognition of new connections, rules and properties (Dantlgraber et al., 2019).  

Under this view, inductive logic can act as a crucial support when reasoning un-

der uncertain conditions with partially or fully unknown evidence and conse-

quences (Mastropasqua et al., 2010). In fact, humans use mental models to en-

visage salient possibilities and consequently elicit judgements within probabil-

istic systems (Johnson-Laird, 2010). 

Mental models, however, while assumed to represent reality by those holding 

them, do not necessarily yield true and rational conclusions (Johnson-Laird, 

2010). In this context a set of strategies called heuristics, which have received 
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increasing attention across several knowledge domains over the last decades, 

plays an essential role. 

The idea that humans might not necessarily behave rationally when confronted 

with uncertainty has been circulating in philosophy since as early as the nine-

teenth century (Miller & Gelman, 2018). However, it is only in the last decades 

that biases in reasoning have solidly become a subject of research.  

The landmark work of Amos Tversky and Daniel Kahneman (1974) has intro-

duced and widely popularized the concept of heuristics, defined as mental prin-

ciples that “reduce the complex tasks of assessing probabilities and predicting 

values to simpler judgemental operations” (Tversky & Kahneman, 1974, p. 

1124). In other words, heuristics are mental shortcuts that allow us to analyse a 

limited amount of relevant information when making decisions and judgements 

under instances of uncertainty. Therefore, they help us to save time and mental 

effort but this may happen, in turn, at the expense of accuracy by producing sys-

tematic errors (Dale, 2015). The paper from Tversky & Kahneman (1974) pre-

sented three broad categories of heuristics: 

 Representativeness: the intuitive belief that an event might be more likely 

to happen if it is akin to the mental stereotype that people have of that 

event. A typical example of the representativeness heuristic is the so-

called gambler’s fallacy, where e.g., people expect a tail to be highly likely 

in a coin flip after a series of heads because it would be more representa-

tive of the expected probability distribution, despite the two events being 

independent of each other (Benjamin, 2018); 

 Availability: the propensity to gauge the likelihood of a phenomenon 

based on how easy it is to retrieve mental images of instances of that 

phenomenon. For example, we might feel unsafe on a plane due to a re-

cent much-publicized plane crash (Dimara et al., 2016); 

 Adjustment to an anchor: the tendency to make final estimations by over-

relying on the starting point, as in, the first piece of information that has 

been received. For example, car salesmen are more likely to negotiate a 

higher final price for a sale if their first offer is a high starting point and 
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then they move down, as the consumer might perceive the final price to 

be more valid (Dale, 2015). 

While the study from Tversky & Kahneman (1974) belonged to the field of be-

havioural economics, heuristics and related cognitive biases have since entered 

the research discourse in several other knowledge domains. Heuristics have 

since then been described as rough intuitive equivalents to statistical probabil-

ities that are crucial for everyday reasoning (Nisbett et al., 1983). For example, 

computer scientists have used the concept of heuristics to explain how human 

reasoning is fundamentally driven by “fuzzy” and imprecise assumptions that 

might be difficult to compute (Lorkowski & Kreinovich, 2018). In contrast, med-

icine has recognized that doctors commonly employ heuristics to take judge-

ment on their patients’ health, especially under heavy time constraints (Itri & 

Patel, 2018).  

Tversky and Kahneman have themselves kept expanding their original scope of 

research. In a later study they introduced the so-called prospect theory, believ-

ing that the way individuals are theoretically expected to behave under uncertain 

conditions and reason upon probabilistic data is different from how they actu-

ally behave (Tversky & Kahneman, 1979). They argued that when making 

choices and assumptions people tend to apply biases that sometimes contrast 

with those that the literature assumed as standard at the time. Within the paper, 

they defined loss aversion as the tendency to focus on minimizing losses rather 

than avoiding risk per se. They also described overweighing disjunction as a 

bias that implies paying more attention to the differences between two alterna-

tives over the elements they share. Furthermore, they introduced the concept of 

prospect weighing – the idea that each “prospect” (as in, each expected out-

come) is attached to a weighed perceived probability, which may or may not be 

the same as the officially stated one. 

Later on, several other reviews (e.g. Arnott, 2006; Battersby, 2016; Padilla et al., 

2018) further broadened the issue of heuristics by examining several other bi-
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ases that had not been researched by Tversky and Kahneman, as well as exten-

sively dealing with the underlying cognitive biases that support them. Some of 

those that have been recurrent in the literature are listed here as examples: 

 Base-rate fallacy: a mental bias that leads to judging the probability of an 

event by disregarding general pieces of information in favour of more 

event-specific ones; this leads to overestimating the likelihood of the 

event by ignoring its base rate in the general population (Dale, 2015); 

 Affect heuristic: the overreliance on feelings over objective probability 

judgements (Raue & Scholl, 2018); 

 Habit and familiarity heuristic: the tendency to solve known problems 

with already known and pre-experimented solutions (Arnott, 2006; Dale, 

2015). 

Many of these biases have become ever-growing subjects of research in infor-

mation visualization and especially in geospatial visualization. Indeed, research 

on heuristics and cognitive biases has been recognized in both fields as crucial 

to developing further understanding of how humans perceive information visu-

ally and, therefore, how and why we should choose certain visualizations (e.g. 

Zuk & Carpendale, 2007; MacEachren, 2015). In the context of visualization per-

ception there is also substantial literature available on the concept of visual se-

miotics, which is the study of how visual variables tend to convey information 

and, subsequently, how the final users interpret them (MacEachren et al., 2012).   

2.2 Visualization of uncertainty in geospatial data: an overview 

We can rarely assume data to be completely free from any kind of uncertainty 

(Yu, 2018) and the inclusion of uncertainty into the visualization has long been 

the subject of an ever-growing field of research (Chuprikova et al., 2018). There-

fore, the incorporation of uncertainty is, as stated, a fundamental issue when it 

comes to the visualization of any kind of data, be it geospatial or non-geospatial. 

Substantial attention has been dedicated to both visualization of uncertainty, 

which means visually representing uncertainty that is already present in the 

original data, and uncertainty of visualization, which is a common by-product of 
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errors and inaccuracies that might happen all along the process of data collec-

tion, transformation and analysis (Gotz et al., 2019). Factors such as accuracy 

and reliability are defining elements of data quality (Beard & Buttenfield, 1999) 

and their inclusion into the final visualization product is crucial to support users 

in a decision-making context (MacEachren, 2005). Uncertainty in data has been 

taxonomized in its key major categories (Thomson et al., 2005) as well as its 

visualization and evaluation methods (Zuk & Carpendale, 2007; Bonneau et al., 

2014). 

Uncertainty is an inherent component of data (Padilla et al., 2020) and the 

stages of data acquisition, transformation and visualization itself can also gen-

erate uncertainty, which Pang et al. (1997; see Fig. 2.1) divide into three main 

types:  

 statistical (expressed as a confidence interval of a certain value); 

 error (the difference between a known value and an estimate); 

 range (an interval that necessarily includes the value, but without any in-

formation on the value itself).  

Adding uncertainty information is, therefore, crucial to delivering a clearer pic-

ture of the data represented.  

The issue of how to visualize uncertainty in geospatial data has been the subject 

of a vast body of research over the last decades (MacEachren et al., 2005) and 

the diverse wealth of approaches available has been analysed in several exten-

sive reviews (e.g. Bostrom et al., 2008; Zuk, 2008; Brodlie et al., 2012). 
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Figure 2.1: Visualization pipeline (Pang et al., 1997). The pipeline describes how all the stages of data col-
lection, analysis and visualization can produce uncertainty.  

 

The work of Bertin (1983) determined seven visual variables (see Fig. 2.2) that 

make up the main components of any map symbolization. Later on, MacEachren 

(1992) analysed these findings from the perspective of uncertainty visualization 

and introduced two new variables that had been ignored by Bertin, namely col-

our saturation (where an unsaturated hue would signify higher uncertainty) and 

symbol focus. MacEachren (1992) further divided the symbol focus into four 

main typologies: contour crispness (or fuzziness of edges), fill clarity, fog (in 

other words, the possibility to create a “foggy” layer between the observer and 

the map) and resolution. He then also explained how each one of these variables 

could be best used to visualize uncertainty, e.g. by increasing contour fuzziness 

to display higher uncertainty. 
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       Figure 2.2: Bertin's visual variables. Image redrawn from an adaptation included in Roth, 2017. 

 

MacEachren et al. (2005) expanded these studies by extending the research and 

taxonomy from Thomson et al. (2005; see Table 2.1), thus categorizing data 

quality, and subsequent uncertainty, into the five components of lineage (a de-

scription of the source material), positional accuracy, attribute accuracy, logical 

consistency and completeness.  

Accuracy/error Difference between observation and reality 

Precision Exactness of measurement 

Completeness Extent to which info is comprehensive 

Consistency Extent to which info components agree 

Lineage Conduit through which info is passed 

Currency/timing Temporal gaps between occurrence, info collection and use 
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Credibility Reliability of info source 

Subjectivity Amount of interpretation or judgement included 

Interrelatedness Source independence from other information 

 

Table 2.1: Typologies of uncertainty in data. Adapted from the original table in Thomson et al., 2005. 

 

MacEachren et al. (2005) also drew upon original research from Buttenfield 

(1991) to design a guideline on how to choose the best visual variables to rep-

resent uncertainty depending on the data type (e.g. points or continuous fields) 

and the data quality issue (e.g. positional accuracy or attribute accuracy). 

MacEachren et al. later (2012) reviewed these ideas by empirically testing and 

subsequently ranking several techniques according to their perceived intuitive-

ness for uncertainty visualization. Fig. 2.9 in subchapter 2.4 provides a sum-

mary of their conclusive findings. 

Griethe & Schumann (2006) propose a classification of uncertainty visualization 

techniques based on the graphic characteristics of the uncertainty variate. They 

present four main types of visualization: 

 Free graphical variables such as colour, size or focus, manipulated to 

show higher or lower uncertainty; 

 Additional geometrical objects such as glyphs or grids superimposed on 

the main visualization; 

 Animated and/or interactive representations, which are especially suita-

ble for movement-like phenomena; 

 Changes in rhythm, vibration and other non-visual approaches. 

Senaratne & Geharz (2007) also produced an extensive classification of uncer-

tainty visualization methods taking into account the data type and format, as 

well as the specific type of uncertainty and interaction between the user and the 

visualization (see Table 2.2). This was followed by the review of Kinkeldey et al. 

(2014), which elaborated the aforementioned previous findings into a new cate-

gorization that the authors summarized through the so-called uncertainty cube 
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(see Fig. 2.2). Their proposed classification divides techniques into four com-

mon dichotomies: 

 Explicit vs. implicit, where data uncertainty is either represented directly 

through custom variables or signified indirectly, e.g. by showing multiple 

visualizations with several possible outcomes; 

 Intrinsic vs. extrinsic, where an intrinsic approach manipulates existing 

symbologies (e.g. by altering colour or size) and an extrinsic approach 

adds new variables such as glyphs to the visualization; 

 Coincident vs. adjacent, where uncertainty is either integrated into the 

original visualization along with the rest of the data or shown in a sepa-

rate view; 

 Static vs. dynamic, where a dynamic visualization uses interactive tech-

niques to represent uncertainty. 

Senaratne & Geharz (2007) also presented a fifth dichotomy, visually integral vs. 

separable, which, however, is seen as mostly overlapping with the intrinsic vs. 

extrinsic one. 

Supported 

data type 

Supported 

data format 

Uncertainty 

type 

Interaction 

type 

Name of the 

method 

    

Exceedance 

probability 

mapping 

   
Static 

RGB colour 

scheme 

  Attribute Interactive 

Statistical di-

mension 

   Dynamic 

Animated 

isolines 

 

Raster, vector 

data 

Attribute, po-

sitional Static Contouring 
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Continuous Vector data 

Attribute, po-

sitional Static Glyphs 

 Raster data 

Attribute, po-

sitional 

Dynamic, in-

teractive 

Blinking pix-

els 

  

Attribute, po-

sitional Dynamic Animation 

   

Dynamic, in-

teractive 

Blinking re-

gions 

    Whitening 

    

Adjacent 

maps 

    Symbol focus 

 

Raster, vector 

data Attribute Static Opacity 

Continuous, 

categorical Vector data Attribute Static 

Hierarchical 

spatial data 

structures 

 

Table 2.2: Classification of uncertainty visualization techniques. Redrawn and adapted from the original 
figure in Senaratne & Geharz, 2007. 

 

 

Figure 2.2: Uncertainty visualization cube (Kinkeldey et al., 2014). 
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When it comes to free graphical variables, Leitner & Buttenfield (2000) used tex-

ture, colour value and saturation to represent uncertainty. Unlike MacEachren 

(1992), they concluded that a lighter colour is more intuitively associated with 

uncertainty; the authors acknowledge, however, that this unexpected result may 

be due to the map being online-based instead of on paper. Kubíček & Šašinka 

(2011) later tested and contradicted Leitner’s findings, thus confirming expected 

results. Pang (2001; see Fig. 2.3) showed how uncertainty can be intrinsically 

encoded in contour line gaps. Rhodes et al. (2003) experimented with both in-

trinsic and extrinsic visualizations, showing uncertainty through variations in 

hue, opacity and texture. Kunz et al. (2011) provided a summary of techniques 

used to visualize uncertainty in natural hazard maps, mostly focusing on graph-

ical variables such as hue, value, saturation and transparency.  

Additional objects to signify uncertainty were the focus of Beard and Butten-

field’s (1999) review on how to visualize errors by including extrinsic glyphs in 

the map. The authors, citing research from Mitasova et al. (1995), argued that 

glyphs could be effectively used in uncertainty visualization through the altera-

tion of parameters such as colour or height. Authors such as Wittenbrink et al. 

(1996) and Pang (2001; see Fig. 2.3) also showed examples of extrinsic uncer-

tainty visualizations through additional glyphs, with the uncertainty itself 

mapped through variations in glyphs’ width, length or orientation. Korporaal & 

Fabrikant (2019) opted instead to show uncertainty by overlaying a textured 

layer on the map (see Fig. 2.4).  
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Figure 2.3: An example of intrinsic uncertainty visualization from Pang (2001). Gaps in contour lines signify 
high uncertainty. 

 

 

Figure 2.4: Terrain uncertainty map from Korporaal & Fabrikant (2019). The authors depict slopes with as-
sociated uncertainty visualized through a dotted texture layer. 

 

Finally, Evans (1997), Lodha et al. (2002) and Grigoryan & Rheingans (2004) ex-

perimented with complex techniques and interactive animations to visualize un-

certainty in variables such as movement or surface geometry. 

This vast body of research provides the theoretical foundation for the uncer-

tainty visualization techniques that will be used in the present thesis. However, 



 

22 
 

the aforementioned studies do not always take into account the complex inter-

play of uncertainty visualizations, heuristics and reasoning, which is the subject 

of further research. 

2.3 Heuristics, biases and visualization 

MacEachren (2015) and Kinkeldey et al. (2017) argue that the concept of rea-

soning under uncertainty is an under-researched issue in all spatial sciences.  

The topic of reasoning under uncertainty is especially relevant in the broader 

context of visual biases, as people commonly employ heuristics when pondering 

outcomes and different visualizations play a significant role in affecting users’ 

decisions (Deitrick, 2012; Reani et al., 2019). Visualizations may trigger both 

correct and incorrect associations between events and variables, therefore call-

ing the availability heuristic into play. If they are poorly constructed, visualiza-

tions can also generate faulty interpretations of the depicted statistics, therefore 

leading to the aforementioned representativeness heuristic, e.g. by not correctly 

showing the randomness of a single event (Zuk et al., 2006). At the same time, 

visualization techniques have a high potential to mitigate these errors and pro-

duce better judgements (Zuk et al., 2006). Zuk & Carpendale (2007) argue that 

uncertainty visualizations should be consistently linked through continuous 

feedbacks with correspondent stages of reasoning, in order to allow cartogra-

phers to support decision-making by strategically improving and evolving these 

visualizations. The same authors also extended the uncertainty taxonomy from 

Thomson et al. (2005) to the process of reasoning under uncertainty (see Table 

2.3). 
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Uncertainty category Reasoning definition 

Currency/timing Temporal gap between assumptions and reasoning 

steps 

Credibility Heuristic accuracy and bias of analyst 

Lineage Conduit of assumptions, reasoning, revision and 

presentation 

Subjectivity Amount of private knowledge or heuristic utilized 

Accuracy/error Difference between heuristic and algorithm 

Precision Variability of heuristics and strategies 

Consistency Extent to which heuristic assessments agree 

Interrelatedness Heuristic and analyst independence 

Completedness Extent to which knowledge is complete 

 

Table 2.3: Typologies of uncertainty in reasoning. Adapted after Zuk & Carpendale (2007) 

 

It is therefore paramount to study how individuals perceive visualizations in 

general as well as, on a smaller scale, how they interpret the symbols used. 

Smallman & St. John (2005) have shown for instance that viewers tend to prefer 

more realistic visualizations as they intuitively perceive these visualizations to 

be more accurate, in a bias that the authors called naïve realism (see Fig. 2.6).  
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Biases can also be ambiguous and oppose each other: some viewers prefer fa-

miliar visualizations (viewpoint inertia), while others might choose to seek nov-

elty (Bailey et al., 2007). Users also often prefer high-quality imaging to other 

lower-quality visualizations, which are consequently perceived as less accurate 

and trustworthy regardless of their actual content (McCabe & Castel, 2008). The 

issue of high-quality imaging is of special importance in the context of medicine, 

where professionals rely heavily on imaging to take decisions and make judge-

ments often within a short timeframe (Itri & Patel, 2018; Hughes & Dossett, 

2020). Several studies (e.g. Mayr et al., 2019; or Xiong, 2019) have also found 

out that users generally perceive visualization as more accurate and, therefore, 

more trustworthy the more information it includes. 

Figure 2.5: A comparison between bar charts and brain imaging. Users perceived the latter 
as significantly more accurate. (McCabe & Castel, 2008) 
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In the context of visualization perception and visual semiotics, it is important to 

note that the mere presence of a visualization can inherently produce biases 

(Padilla et al., 2018). Visualizations perceived to be more compelling to the eye 

can positively affect map usability and judgement accuracy (Fabrikant et al., 

2010; Hegarty et al., 2010). However, the same visualizations could also cause 

users to overlook other information that might be more relevant to map reading 

or to the specific task they are being asked to solve (Stone et al., 1997; see Fig. 

2.7).  

                

Figure 2.6: An example of base rate fallacy applied to visualization. The difference between the two sce-
narios is statistically insignificant, but viewers are led to believe otherwise because they tend to focus on 
the visualization while ignoring the accompanying text. (Stone et al., 1997) 

  

Symbols are also deeply interlinked with cognitive biases. Tversky (2011) de-

scribes symbols as “ pictorial depictions of thought ” that we use to organize 

and synthesize reality mentally; glyphs such as lines or bars are highly context-

dependent and are associated with intuitive meanings; therefore, they may 

cause poor judgements when used counterintuitively in a visualization. For ex-

ample, larger size is associated with higher relevance, lines are associated with 

a connection between two events and arrows are associated with causality 

(Tversky, 2011). Viewers best understand continuous metrics such as frequency 

when represented with congruent visual variables such as thickness, whereas 

the use of non-continuous metrics may lead to misinterpretations of the visual-

ization (Tversky et al., 2011; see Fig. 2.8). Furthermore, abstract glyphs are often 
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derived from iconic symbols, which increases their visual significance 

(MacEachren et al., 2012).  

 

 

Figure 2.7: “Diagrammatic prompts”. Tversky et al. (2011) introduced them to visualize relation frequency 
between nodes. The use of thickness and distance led to a significant improvement in user performances. 
(Figure redrawn and adapted after Tversky et al., 2011) 

 

Therefore, each visual variable has a preferable use and a conventional inter-

pretation that must be taken into account in the final visualization output. In the 

context of reasoning under uncertainty, MacEachren et al. (2012) have for ex-

ample built an extensive guideline to best support users and map-makers alike 

by ranking visual variables according to their intuitiveness for uncertainty visu-

alization (see Fig. 2.9). 
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Over time, cartographic science has absorbed these findings and has made use 

of them to improve map usability and experience and support viewer’s perfor-

mances. 

                                              

 

Figure 2.8: Visual variables ranked by their intuitiveness for uncertainty visualization. MacEachren et al., 
2012 

             

2.4 Geospatial visualization, reasoning and biases 

Since at least the 1990s, research on how to visualize uncertain geospatial data 

has been aplenty (see e.g. MacEachren, 1992). However, as previously stated, 

studies about reasoning under geospatial uncertainty and related biases are un-

common. Several authors (e.g., Harrower, 2003; Kinkeldey et al., 2014; 

MacEachren, 2015; Chuprikova et al., 2018) have made calls for a deeper re-

search focus in that direction.  

With that said, there is a growing field of studies dealing with the effects of dif-

ferent uncertainty visualizations on decision-making, i.e. both on the outcome 

of the decision and on the process leading to it, regardless of what the actual 

outcome is (e.g., Harrower, 2003; or Kübler et al., 2019). 

Research has focused on metrics such as correctness and timing to explore the 

relationship between uncertainty visualizations and geospatial decision-mak-

ing; its results have been somewhat ambiguous at times. A study by Leitner & 

Buttenfield (2000) showed that the inclusion of uncertainty information in maps 

can aid users’ decision-making, and this effect can be controlled through the 
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choice of certain visual variables such as colour value, hue or saturation; how-

ever, the conclusions concerning the variables themselves were not fully con-

sistent with the available literature. Later work by Hope & Hunter (2007) further 

expanded these findings, highlighting that the effect of uncertainty visualization 

on users’ response to maps can be linked to biases and heuristics known from 

the existing literature. More specifically, users were shown a map of land zones 

with different levels of suitability for a hypothetical airport; the suitability value 

was associated with a degree of uncertainty (see Fig. 2.10). When asked which 

zones they would personally prefer to build the airport, they would display a 

choice pattern consistent with known biases such as loss aversion (Tversky & 

Kahneman, 1979) and ambiguity aversion (Ellsberg, 2001).  

 

Figure 2.9: Study from Hope & Hunter (2007) on the effect of visualization of uncertainty on decision mak-
ing. The two maps show several adjacent zones with different suitability levels for airport siting, along with 
information about data uncertainty. 

 

However, Hope & Hunter (2007) acknowledged that these biases might lead to 

irrational decisions. Indeed, it has been noted that the choice of certain visuali-
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zation through different salient (i.e. attention-inducing) map elements can trig-

ger visuo-spatial biases (Padilla et al., 2018) that in turn only affect viewers’ 

performance positively when they are conductive to a correct map interpretation 

(Padilla et al., 2018). Kübler et al. (2017) have found that, in the presence of nat-

ural hazard maps, the inclusion of uncertainty visualization could lead to riskier 

decisions than a map without any uncertainty visualization, thus contradicting 

previous research (e.g., Leitner & Buttenfield, 2000). The authors confirmed ear-

lier findings (e.g., Hegarty et al., 2010) by underlining that the effects of uncer-

tainty visualization might depend on several situational factors, as well as the 

users’ background and personal knowledge and skills; therefore, no single result 

can be expected. Other works (e.g., Fabrikant & Skupin, 2005; Hegarty, 2011) 

have also stressed the need for the development of a “cognitively plausible” set 

of visual symbols for the uncertainty that best matches users’ intuitions. 

A study from Wilkening & Fabrikant (2011), where the authors asked map view-

ers to identify the best spots to land a helicopter on rugged terrain with poten-

tially uncertain slopes, has focused on the complex relation between uncertainty 

visualization and reasoning under time constraints. While, as expected, more 

uncertainty information led to improved users’ confidence and accuracy, the 

study found users performed best under moderate time constraints. The au-

thors recognized this as a speed-accuracy trade-off bias; in other words, in-

creased time pressure negatively affected the accuracy of users’ choices. Fur-

ther work from Korporaal & Fabrikant (2019) has shed new light on the issue, 

concluding that uncertainty visualization under time constraints may not nec-

essarily affect outcomes (i.e. the final decisions). However, it does play a sub-

stantial role in the processes that lead to the final decision. Their findings further 

showed once again how uncertainty visualization, as well as its relation with 

known cognitive biases, has varied and sometimes unpredictable effects on us-

ers. While the outcomes in the study were consistent with a loss aversion bias 

(see Tversky & Kahneman, 1979), uncertainty visualization apparently increased 

the time it took for users to make decisions. 
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A relevant issue within the broader topic of reasoning under uncertainty is the 

containment heuristic, i.e. the tendency to intuitively consider what lies inside a 

border as thematically distinct from what lies outside (Padilla et al., 2018). Dis-

crete boundaries are generally associated with a change in information and se-

mantic meaning (Fabrikant & Skupin, 2005). The inclusion of discrete bounda-

ries into the visualization can generate deterministic construal errors, as they 

can lead users to disregard the probabilistic meaning of the boundary by inter-

preting it as a deterministic border (Joslyn & LeClerc, 2013). McKenzie et al. 

(2016), in a study about users’ interpretation of positional uncertainty, indeed 

found out that map users are more likely to adopt a containment heuristic when 

the probability distribution (uncertainty) of the location position is visualized 

with a hard border rather than with a fuzzy border (see Fig. 2.11). 

 

    

 

Figure 2.10: Four representations adopted for positional uncertainty (McKenzie et al., 2016). Uniform 
opacity was more likely to trigger a containment heuristic in map viewers. (Figure redrawn after McKenzie 
et al., 2016) 

 

Drawing upon these findings, there have been several studies aiming to explore 

how to test, evaluate and mitigate the containment bias. A particularly useful 

resource has been the hurricane tracks, also known as the cone of uncertainty. 

The National Hurricane Center of the NOAA (National Oceanic and Atmospheric 

Administration of the United States) uses the cone of uncertainty as a tool to 

visually communicate the forecast for hurricane tracks, along with associated 
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probability levels. In this visualization, a series of points often connected 

through a centerline shows the predicted hurricane track, whilst a surrounding 

white-coloured cone defines the area where two-thirds of the storm paths have 

fallen into within the last five years (see Fig. 2.12). In other words, the cone only 

visualizes a probability distribution, without any information on the storm inten-

sity or size as well as the likelihood of any specific path. Nor does it rule out the 

chances of a storm hitting areas outside the cone; in fact, one-third of hurri-

canes does exactly that. 

 

Figure 2.11: Cone of uncertainty for Hurricane Joaquin. National Hurricane Center, NOAA, 2015 

 

Cox et al. (2013), among others, have found that the cone of uncertainty is com-

monly misinterpreted. They report how viewers inside the predicted cone over-

estimate the likelihood of being hit by the storm, whereas those living outside 

mistakenly believe themselves to be safe. This indicates that map readers 

equate the cone boundaries with the predicted storm limits, thus hinting to a 
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deterministic construal error (Joslyn & Le Clerc, 2013). The authors also pro-

posed an ensemble view to mitigating these biases, with several hurricane 

tracks shown together to create regions with different path density instead of a 

single probabilistic cone.  

Ruginski et al. (2016) have empirically tested their displays, along with a few 

others, and concluded that users are less likely to adopt heuristics such as con-

tainment or distance in the presence of ensemble views (see image C in Fig. 

2.13).  Therefore, they also tend to judge storm-associated risks more accu-

rately. Padilla et al. (2017) later reviewed and confirmed such findings, suggest-

ing that ensemble views are indeed helpful to control for biases related to size 

and containment which seem highly difficult to avoid under the standard sum-

mary display. 

 

Figure 2.12: The five views tested by Ruginski et al. (2016). 

 

The findings from Cox et al. (2013), Ruginski et al. (2016) and Padilla et al. (2017) 

are especially relevant, as they will serve as fundamental ground for this present 

research. 
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2.5 Summary 

This literature review has outlined the state-of-the-art concerning heuristics 

and biases in visualization, with a special focus on the visualization of geospa-

tial data. 

Subchapters 2.1 and 2.2 have provided a theoretical framework on the role of 

biases and heuristics in reasoning and logical thinking. Findings across a di-

verse spectrum of knowledge domains have highlighted that the human brain 

makes heavy use of subjective mental depictions and thought patterns to make 

sense of reality. These images and patterns, while time-efficient and generally 

convenient, do not necessarily produce accurate outcomes in terms of judge-

ments; nonetheless, they do form the basis of our decision-making process, es-

pecially under uncertain circumstances. Starting from the landmark works of 

Tversky and Kahneman in the 1970s, the so-called heuristics – logical shortcuts 

that help us filter out unneeded information and make quicker judgements – 

have become a central issue in cognitive science. The subchapters further listed 

a few commonly researched types of heuristics and made examples of their rel-

evance in other fields as well, such as medicine. 

Subchapter 2.3 has categorized general visualization techniques for uncertain 

data, following its most commonly accepted classifications and presenting an 

essential outline for each broad method type. Early research on visual variables 

from Bertin and, later on, academics such has MacEachren has initiated an ex-

tremely prolific body of research on the issue of uncertainty visualization. Au-

thors have experimented with a vast number of techniques and variables, show-

ing that no single suitable techniques exist. On the contrary, it is crucial to take 

into account the data type and format, as well as the uncertainty type and the 

desired visualization outcome, in order to produce a meaningful cartographic 

result.  

Finally, subchapters 2.4 and 2.5 have dealt more specifically with biases and 

heuristics in visualization and reasoning under geospatial uncertainty. It has 

been highlighted that users tend to have a heuristic-driven approach to different 

uncertainty visualizations, which all have intuitive meanings associated to 
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them. As a result, the choice of a visualization technique can considerably affect 

map perception and map-related judgements and decisions. As research has 

shown (e.g., Leitner & Buttenfield, 2000; Hegarty, 2011; or Korporaal & Fabrikant, 

2019), uncertainty visualization can help us to shed further light on the topic of 

visual semiotics and visuo-spatial biases – i.e., how users perceive and inter-

pret map symbols and how they reason through them.  

The heuristics of containment and distance were the subject of additional focus. 

Research has shown that boundaries in maps act as a powerful semantic divide: 

in other words, users perceive what lies inside a bounded region as different 

from what lies outside. Furthermore, this perceived difference may increase the 

further away an object lies from the said boundary. Map makers can therefore 

manipulate border visualizations to affect users’ perception and data interpre-

tation, up to the point of conveying misleading or even outright false infor-

mation. Thus, the problem becomes all the more relevant in the presence of un-

certain data, such as unknown spatial locations. The present work aims to pro-

vide new findings on this issue by testing several boundary-related visualization 

techniques for uncertain data and their effects on users’ reasoning, choices and 

map perception. 
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3. Methodology and case studies 

 

3.1 Heuristics: what and how 

Due to their somewhat subjective nature, heuristics are challenging to study us-

ing statistical analyses. In fact, while there are several definitions available for 

heuristics, there are no established methodological principles to investigate 

their use and formal models to explain heuristics may not be developed enough 

to provide a solid scientific framework for empirical studies (Gigerenzer & Gaiss-

maier, 2011). The issue of how to detect heuristics in user studies remains chal-

lenging; one common attempt to do so was to first identify errors in users’ 

judgements and then use heuristics as potential explanations for such errors 

(Gigerenzer & Gaissmaier, 2011). However, authors have used a diverse set of 

approaches to this research subdomain, from regression analyses (e.g., Kübler 

et al., 2019) to fully qualitative methods based on users’ explicit statements 

about their logical processes (McKenzie et al., 2016).  

The present thesis adopted a mixed approach. In order to measure and interpret 

the potential use of the heuristics identified through the literature review as de-

scribed in Chapter 2, users’ responses to maps were first coded numerically to 

detect any significant differences. If a pattern consistent with a relevant heuris-

tic arose from the analysis, it was tentatively regarded as evidence of heuristic 

use when no other explanation was immediately available. Furthermore, the in-

vestigation also included open-ended statements that served as additional 

tools to support the overall reliability of the conclusions by either confirming or 

casting doubt on numerical findings. For instance, as border visualizations were 

the main subject of this study, numerical differences between users’ responses 

from different maps were considered evidence of a containment heuristic if 

these changes could only be explained by changes in the visualization driving 

the heuristic itself. In other words, statistical changes in map perception could 

arguably be sufficient evidence of a containment heuristic if the only (or main) 
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difference between the maps was the visualization of the border, and subse-

quently the potential semantic meaning of the area inside it.  

Similarly, different perceptions for different locations could be evidence of a dis-

tance heuristic if the distance from a border was the only piece of information 

available to tell the locations apart. Open-ended statements could later confirm 

these findings if users had explicitly referred to one of the relevant heuristics as 

a driver for their reasoning process. The same mixed approach could serve to 

suggest the use of other heuristics cited in the literature, if numerical patterns 

were consistent across at least two maps and, once again, no other immediate 

explanation for such patterns was available.  

As previously mentioned, it is challenging to detect heuristics by using objective 

measures exclusively. Some subjective measures, both through users’ personal 

claims and through the qualitative interpretation of the results, were necessary 

to extend initial findings and come up with meaningful conclusions. However, 

the numerical analysis provided a reliable and reproducible framework. The fol-

lowing subchapters describe the methodological approach in greater detail. 

3.2 Map design and case studies 

Identification and general workflow 

The main goal of the present thesis is to investigate the links between heuristics 

and visualization of geospatial uncertainty and, consequently, discover how 

heuristics affect users’ perceptions of certain visualization methods. To do so, 

the premises mentioned in Chapter 2 have acted as an inspiration to lay out the 

following methodological workflow: 

 Identification of study cases, 

 Conceptualization and design of the relevant maps, and 

 Design and administration of a user survey in the form of an online ques-

tionnaire, including a pre-test. 

The first stage has brought about the selection of two case studies of natural 

hazards deemed as potentially relevant for the scope of the project. The choice 
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of two case studies reflects the dichotomy between the visualization of uncer-

tainty – which refers to the uncertainty already present in the original data – and 

uncertainty of visualization, that takes into account all the inaccuracies poten-

tially arising from the data analysis process (Brodlie et al., 2012). Additionally, 

while the issues of containment and distances were the subject of several stud-

ies from different perspectives (see e.g., Newman & Scholl, 2012; or Grounds et 

al., 2017), the most relevant findings for geospatial data have come from case 

studies with natural hazards, as seen in the aforementioned studies of Ruginski 

et al. (2016) and Padilla et al. (2017). Natural hazards and general terrain-related 

risks have also been the subjects of studies by Leitner and Buttenfield (2000) or 

Korporaal & Fabrikant (2019). Therefore, they were also selected as the main 

background for the present work, as they have clearly emerged as powerful case 

studies to evaluate the effects of uncertainty visualizations and more specifi-

cally visualizations of boundaries.  

The first case study is air pollution and, more specifically, the diverse territorial 

distribution of the air pollutant PM10, whereas the second case is an avalanche 

risk map. In the former, uncertainty arose from the analysis of point data, while 

in the latter some uncertainty was inherently present in the original dataset.  

Both cases share a similar conceptualization. The core cartographic product of 

this work was the creation of several maps, using the ESRI software ArcMap 

10.8, to visualize the distribution of these two natural hazards across an area of 

interest. In these maps, boundaries between different risk classes were visual-

ized using different methods, e.g., a gradient or a hard border, in a process that 

will be here called “Borderization”.  

To better evaluate users’ perceptions about such methods, the following step 

was to superimpose several potential housing locations across different risk 

classes on each map and then ask users to rate them accordingly to their per-

ceived level of desirability and safety. Kübler et al. (2019) had already experi-

mented with the use of potential housing locations to evaluate uncertainty vis-

ualizations; in the present work, the locations and their assigned ratings acted 

as primary tools to detect possible patterns in heuristics’ use. Table 3.1 shows 
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general initial assumptions on how the different heuristics were expected to 

manifest themselves through users’ behaviours and choices in the survey. The 

next subchapters will present the two case studies and the associated ques-

tionnaire in greater detail.  

Heuristic Assumption(s) 

Distance 
Containment 

 Significant difference in perception between two locations in the 
same thematical category but differing in their distance from a the-
matical border 

 Significant impact of borderization change on differences in percep-
tions between two map locations 

 Significant perceptive alterations after the introduction of extrinsic 
uncertainty 

Availability  Reported difference in perception between maps depicting different 
case studies due to lived experience 

Adjustment to anchor  Repeated perception patterns and user behaviours across succes-
sive maps 

Representativeness  Significant preference for certain colours to indicate high-risk levels 

 Significant preference for certain borderizations to represent a spe-
cific natural hazard 

 

Table 3.1: General initial assumptions on the relation between heuristics and users' behaviour in the survey. 

Case study I: Data collection and pre-processing 

The WHO (World Health Organization) defines PM, or particulate matter, as a 

“widespread air pollutant, consisting of a mixture and solid and liquid particles 

suspended in the air” (WHO Europe, 2013, p. 3). The name PM10 refers to parti-

cles with a diameter of less than 10 μm; common sources for these pollutants 

are anthropogenic activities such as combustion engines, industry and road 

traffic (WHO Europe, 2013, p. 3). Owing to their extremely small size, pollutant 

particles can penetrate inside the human respiratory system and potentially 

cause a number of severe ailments, including asthma, lung cancer, and stroke 

(WHO Europe, 2013, p. 6). Dense concentrations of PM10 are a known cause of 

excess mortality in the affected regions (EEA, 2019).  

PM10 was a relevant metric for the scope of this study as it is a widespread 

natural hazard that most people experience daily, yet it is rarely visible and it 

does not necessarily have precise spatial boundaries. Therefore, the choice of a 

specific visualization to show PM10 “borders” is not trivial. 

PM10 concentration data are publicly available in the EEA (European Environ-

ment Agency) website under various data formats. The agency also provides a 
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dataset made of three distinct shapefiles with georeferenced point data about 

PM10 concentrations in the year 2017, from 2491 different measurement sta-

tions across Europe. Each shapefile contains a specific subset of stations: urban 

background (1384 stations), rural background (361 stations) and traffic (746 

stations). The shapefiles include data about the average yearly PM10 concen-

tration and the 90th percentile of the daily value distribution. For this study, urban 

background stations were numerous enough to guarantee sufficient data accu-

racy across the whole continent, unlike the rural background stations; they also 

did not show the extreme peak values that the traffic stations sometimes 

showed. At the same time, the varying geographical distribution of urban back-

ground stations over Europe also guaranteed a degree of uncertainty that was 

relevant for the study. Therefore, the subsequent analysis focused only on the 

urban background stations. 

                           

Figure 3.1: A sample of stations from the EEA dataset. Green dots indicate rural background stations and 
blue dots are traffic stations. Urban background stations, here represented as red dots, formed the basis 
of this study’s analysis. 
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To turn point data into a continuous field, the software ArcMap offers several 

options for Kriging interpolation. Kriging is an interpolation technique that 

makes use of a semivariogram to predict and plot values across space from a 

set of known points by estimating their spatial codependence (Krivoruchko, 

2012). Among different types of Kriging, ArcMap has an in-built function for Em-

pirical Bayesian Kriging, which is a Kriging method that estimates several suc-

cessive semivariogram models to account for the potential error of a single 

semivariogram (Krivoruchko, 2012). This technique proved especially useful for 

this present thesis as it provided spatial error estimates, which could act as 

proxies for data uncertainty. In fact, Kriging error measures how likely Kriging 

estimates are to be valid on a certain location (i.e., how likely the interpolation 

is to be accurate) and it depends on the amount of input data used for the inter-

polation as well as on local geographical factors (e.g., whether there are large 

class variations within a narrow space). Therefore, Kriging and the associated 

error were the basis for the successive map creation (See Fig. 3.2a, b). 

 

                                          a                                                                                            b 

Figure 3.2: Initial results of Empirical Bayesian Kriging on PM10 average concentration (a) with associated 
standard error (b). Blue and lighter areas indicate lower PM10 values and lower errors respectively. 
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Case study I: Map design 

After performing the interpolation, the next step is selecting the area of study. 

Northwestern Italy is especially relevant, as a map of this area allows users to 

detect significant variations in PM10 concentration within a small space – from 

the high values around Milan and Turin to the low values of the Alps and South-

ern Switzerland. As the original data points have an uneven distribution, with 

much higher density in the Po plains compared to the Alps, Kriging interpolation 

in this area also provides several spots of relatively high error that were useful 

for visualizing data uncertainty. 

Kriging results were then “borderized” in four different ways by manipulating 

different visual variables. The first visualization shows a region with high PM10 

concentration, coloured in red and delimited by a single line as a hard border; 

values outside the area have no assigned class, therefore the space in the map 

is dichotomic (Fig. 3.3a). The high PM10 concentration region is the area with 

yearly averages of PM10 daily concentrations exceeding 20 μg/m³, the thresh-

old that WHO defines in its air quality guidelines as overall safe for human health 

(WHO, 2005). The second visualization shows the same space and data with 

three different classes instead of a dichotomy; this classification divides the 

area into high, moderate and low concentration, each having a hard border, with 

class colours from red for high to light pink for low concentration (Fig. 3.3b).  

The last two maps visualize the same data as the first two, but with a gradient 

border instead of a hard one. In the third map, the high concentration area has 

a gradient border smoothly transitioning from red to white (Fig. 3.4a), while the 

fourth map shows a red-to-orange gradient across the entire space from high 

to low concentrations (Fig. 3.4b). Echoing the classification of visual variables 

described by MacEachren et al. (2012), different colour values represent differ-

ent data classes in the first two maps, whereas the manipulation of the contour 

fuzziness in the last two maps serves to simulate the transition from high to low 

PM10 values.  
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                                          a                                                                                    b 

Figure 3.3: Details of the first two borderizations. a: Single Hard Border. b: Layered Hard Border. 

       

                                          a                                                                                    b 

Figure 3.4: Details of the last two borderizations. a: Limited Fuzzy Border. b: Total Fuzzy Border. 
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Each map has a copy that includes an area of uncertain data, defined as the 

upper half of Kriging error values. The area is visualized as a polygon over the 

rest of the map, with a thin dashed line as a border. This visualization choice is 

meant to potentially introduce further reasoning linked to borders and change 

perceptions among users looking at the maps. 

All the maps also include four potential housing locations, two of which are lo-

cated in the high concentration area. Two locations lie within the uncertain data 

area, with one of them also lying in the high concentration area (Fig. 3.5-3.8). 

Subchapter 3.4 describes how the final questionnaire makes use of these hous-

ing locations. 

     

                                           a                                                                                     b 

Figure 3.5: Single Hard Border maps. Map in Figure b (right) includes extrinsic uncertainty. 
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                                          a                                                                                     b 

Figure 3.6: Limited Fuzzy Border maps. Map in Figure b (right) includes extrinsic uncertainty. Housing lo-
cations are randomized for reasons explained in Subchapter 3.4. 

    

                                          a                                                                                    b 

Figure 3.7: Layered Hard Border maps. Map in Figure b (right) includes extrinsic uncertainty. Housing lo-
cations are randomized for reasons explained in Subchapter 3.4. 
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                                          a                                                                                    b 

Figure 3.8: Total Fuzzy Border maps. Map in Figure b (right) includes extrinsic uncertainty. Housing loca-
tions are randomized for reasons explained in Subchapter 3.4. 

 

Case study II: Data collection and pre-processing 

The second case study is a visualization of avalanche risk; this type of hazard 

is relevant for this thesis, as avalanches are a “moving” hazard where factors 

like distance and boundaries play a significant role in influencing users’ percep-

tions and decisions. 

The goal was to obtain spatial data with some potential positional inaccuracy 

included, in order to be able to visualize uncertainty information in the final 

maps. A solution to do so was to make use of the Naturgefahren-Hinweiskarten 

(eng. “Indicative maps for natural hazards”), which are a particular type of nat-

ural hazard maps commonly produced by several geological and geoinfor-

mation offices across Germany, Austria and Switzerland. In contrast to the usual 

Naturgefahrenkarten (“Natural hazard maps”), Hinweiskarten have a relatively 

low degree of detail and spatial accuracy and only provide a general overview of 

the areas where extreme natural events are more likely to happen.  They do not 
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usually include information about the potential intensity of such events (BAFU-

Swiss Environmental Agency, 2020).  

Many Swiss cantons provide large open datasets of natural hazard maps for 

public use. Among these, the geospatial databank of the canton of Valais-Wallis 

is one of the most extensive and detailed. It is possible to download a shapefile 

containing a Hinweiskarte with areas at risk of water- and avalanche-related 

natural events. The latter ones were the main subject of the second study case 

(Fig. 3.9). 

However, the metadata did not provide additional information on the exact po-

sitional uncertainty of the boundaries of these areas. As many areas also show 

large differences in slope and surface typology, it may be that there is no single 

positional uncertainty value across the whole map and some boundaries might 

be more precise than others. For this study, these boundaries received an arbi-

trary positional uncertainty value of 100 meters in both directions.  

Case Study II: Map design 

After data collection, the following step is to select the study area. The valley of 

Saas Grund, in the southeastern part of the canton, seemed appropriate as the 

high risk area is particularly close to roads and human settlements, thus poten-

tially increasing the visual perception of a threat. 

The logical workflow to map the high risk area is the same as in the previous 

case study, although visual variables are altered differently to achieve the “bor-

derization” results. The first “borderization” is a gradient border on a red-to-

white scale, with a 100-meter width to show positional uncertainty as discussed 

before (Fig. 3.10). Unlike the PM10 case study, however, only the 100-m buffer 

has this gradient, whereas the high-risk area is completely coloured in red. 

A layered border with several different risk classes was not viable for these data, 

as the classes would have ended up potentially overlapping each other and the 

introduction of positional uncertainty would have caused confusion and visual 

clutter in the map.  
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Figure 3.9: A subset of the Naturgefahren-Hinweiskarte of the canton of Valais-Wallis. Red areas are at a 
high risk for avalanches. 
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As in the PM10 case study, the addition of two extrinsic variables proved effec-

tive to visualize positional uncertainty while maintaining information clarity. The 

first experiment is a black hatching texture layer superimposed on the 100-m 

positional uncertainty buffer (Fig. 3.11). Retchless & Brewer (2016) had already 

tested several types of textured layers to visualize prediction uncertainty in cli-

mate change maps, while Johannsen & Fabrikant (2018) used dots and hatches 

with varying density for uncertainty in precipitation maps. Korporaal & Fabrikant 

(2019) applied a similar technique to display terrain uncertainty. Unlike the 

aforementioned gradient, this texture layer covers both sides of the 100-m 

buffer.  

The second experiment is a grey “foggy” layer (Fig. 3.12). MacEachren (1992), 

who first introduced it among the most significant visual variables to represent 

uncertainty, described as a layer that “in effect, looks like a fog passing between 

the analyst and the map” (MacEachren, 1992, p. 14). This layer also covers both 

sides of the 100-m positional uncertainty buffer, and it is relatively transparent 

in order not to fully hide the high-risk area visually located behind it and create 

excessive visual contrasts. 

Finally, each one of the three maps also has a version where the high-risk area 

has a green colour instead of red (Fig. 3.13-3.15). Unlike red, green is not a char-

acteristic colour to represent danger. Additionally, people with color-blindness 

typically have trouble distinguishing between the two hues (Jenny & Kelso, 

2007). Therefore, representing natural hazards with a green colour and con-

fronting these maps with the red ones can provide additional findings on risk 

perception and heuristic use. 
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                                          a                                                                                     b 

Figure 3.10: Gradient borders in the avalanche maps in red and green. 

    

                                          a                                                                                     b 

Figure 3.11: “Foggy” layer borders in the avalanche maps in red and green. 
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                                          a                                                                                     b 

Figure 3.12: “Texture” layer borders in the avalanche maps in red and green. 

   

                                          a                                                                                     b 

Figure 3.13: Gradient border maps in red and green. The point order is randomized to ensure unbiased 

ranking. 
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                                          a                                                                                     b 

Figure 3.14: “Foggy layer” maps in red and green. The point order is randomized to ensure unbiased rank-

ing. 

    

                                          a                                                                                     b 

Figure 3.15: “Texture layer” maps in red and green. The point order is randomized to ensure unbiased rank-

ing. 
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3.3 User test 

Background: research methods for user tests 

User testing is widely believed to be an essential part of cartographic research; 

in fact, listening to users’ needs and perceptions is crucial for visualization eval-

uation (Roth et al., 2017). The idea of user-centered design has played an in-

creasingly important role in the field, especially since the advent of interactive 

cartography (Roth et al., 2015). Van Elzakker (2004) argued that, as map com-

munication is an inherently cognitive process, cartographers should always be 

able to adjust their visualizations according to users’ needs. Van Elzakker (2004) 

also pointed out the difference between functional map research, where a sam-

ple of potential final users test the maps through specific tasks to provide direct 

insights on how to improve the product, and perceptual/cognitive map use re-

search, where cartographers analyse how users reason upon maps and reach 

conclusions through visualizations. MacEachren (1994) introduced the idea of 

a map use cube to visualize the different goals for the use of a map (Fig. 3.16); 

each goal requires its own evaluation method. 

                      

 Figure 3.16: The map use cube as proposed by MacEachren. Adapted from Van Elzakker (2004, p. 10). 
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Both functional and perceptual map research are closely intertwined with the 

concept of usability, described by the ISO 9241 as the effectiveness (ability to 

perform tasks accurately as intended), efficiency (ability to perform tasks 

quickly and easily) and satisfaction that users can achieve from a product. Us-

ability testing therefore has the goal of improving the usability of a product (Du-

mas & Redish, 1999); a variety of methodological options is available for this 

purpose (Paz & Pow-Sang, 2016).  

Evaluation through user tests is especially relevant in the context of uncertainty 

visualization. Aerts et al. (2003) argued that surveys are the only viable solutions 

to effectively understand which techniques to use in order to visualize different 

kinds of uncertainty variables for different purposes. Hullman et al. (2019) out-

lined a methodology for the evaluation of uncertainty visualization techniques 

that takes into account the different end goals of each study. The authors cite 

two primary research aims that an uncertainty visualization evaluation can 

have: 

 Behavioural targets, where the study evaluates metrics commonly asso-

ciated with usability aspects such as effectiveness, efficiency and satis-

faction; 

 Expected effects, where the research evaluates whether the visualiza-

tions elicit a specific response from the user (e.g., presence of biases, or 

decision accuracy). 

Therefore, these studies can have the goal either to evaluate map usability itself 

or to understand how and why specific maps tend to produce certain emotions 

and perceptions. Finally, the authors also list several metrics that can be used 

to actually perform the evaluation, e.g., numerical measures (such as error or 

variance) or semantic ones (such as risk aversion or affective association).  

Van Elzakker (2004), Paz & Pow-Sang (2016) and Dumas & Redish (1999) pro-

vided a list of common evaluation tools that apply both to research and usability 

in general and to the cartography realm, among which: 
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 Strictly defined user testing, where users perform a set of tasks to eval-

uate how the product conforms to expectations; this can also happen as 

a think-aloud session, where users verbalize their thoughts on the prod-

uct during the test; 

 Surveys, questionnaires and interviews, where users directly answer to 

specific key questions on the product or research object; interviews can 

be structured or unstructured, that is, with pre-determined or spontane-

ous questions (see also Kumar, 1999); 

 Focus group, where a subset of representative users discusses the prod-

uct in a moderated meeting; 

 Heuristic evaluation, where researchers measure how the product per-

forms in respect to a standard series of usability principles, such as con-

sistency and flexibility of use; 

 Eye tracking, where researchers analyse users’ eye movements during 

the experiment to detect potential patterns in map use and focus. 

Keeping in mind the distinction proposed by Dumas & Redish (1999), the present 

thesis is a user research rather than an actual usability study, as it does not 

evaluate the usability of a product but instead looks for the existence of certain 

cognitive phenomena. From this perspective, it also belongs to the cognitive and 

perceptual map use research as defined by Van Elzakker (2004), as it aims at 

investigating “why” and “how” users form their knowledge through map visual-

izations. However, it does share some goals with usability studies, as it also 

aims at evaluating which visualization techniques for uncertainty perform best 

in communicating their information effectively. 

The tool of choice for the final evaluation of the maps described in the previous 

subchapters was an anonymous online questionnaire, which is one of several 

web-based methods that have been becoming increasingly popular for evalua-

tion studies in cartography in recent years (Kinkeldey et al., 2014). Question-

naires present several advantages and limitations: Martin (2007) argues that 

surveys and especially online surveys are highly cost-effective and easy to ad-

minister to a broad audience in a short time, but it may be difficult to control for 
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sampling biases. In this context, an online questionnaire presented additional 

advantages in light of COVID-19-related research constraints, such as labora-

tory shutdowns and the inability to meet test participants in person. 

Questionnaire setup and administration 

The concept and structure for the questionnaire follow methodological advice 

and guidelines proposed by Bryman (2001), Martin (2007) and Luz et al. (2017). 

Participants and apparatus 

Sixty-one users (of which thirty-three females), recruited through academic and 

personal networks, took part in the test. Users’ age, gender, education title and 

level of expertise with maps and natural hazard datasets were all controlled for, 

as they could potentially highlight different patterns in answers (e.g., older re-

spondents being more conservative in their ratings). Users showed relatively 

high age diversity, with eleven being younger than 25, twenty-five between 25 

and 30, fifteen between 31 and 35 and ten older than 35. 85% (n=52) of users 

had a university degree, with four others having a tertiary non-university degree 

(e.g. Fachhochschule) and five having a secondary school title or less. Users 

reported having a relatively average level of expertise with maps, with a self-

assigned mean rating of 3.71 in a scale from 1 (very low level of expertise) to 5 

(very high). Their self-assigned average level of expertise with the natural haz-

ard dataset was only 2.41 on the same scale.  

The platform of choice to build and host the questionnaire was SoSciSurvey, an 

online tool for social research that the Technical University of Munich offers free 

of charge to its students and employees. The platform itself as well as the ques-

tionnaire’s characteristics allowed users to keep full anonymity and complete 

the questionnaire at any time; this helped reduce the likelihood of any self-se-

lection and non-response bias.  

Variables, tasks and analysis of results 

As previously stated, the questionnaire was chiefly aimed at evaluating users’ 

perceptions and responses to maps depicting uncertainty and risk areas with 

several different “borderization” choices. Therefore, the primary independent 
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variable – the variable whose effects are the subject of the investigation – was 

the “borderization” itself, while the dependent variable – the variable that serves 

to measure the effects of the independent variable – was the users’ perception 

of the maps. As previously discussed, maps depicting natural hazards are often 

used in cartography to evaluate heuristic use and cognitive perception; there-

fore, rating natural risk levels seemed an appropriate task for the survey. 

In more detail, the questionnaire consists of 25 core questions, further divided 

into several sub-questions. Each user viewed a total of seven maps, four from 

the first case study (the PM10 dataset), and three from the second case study 

(the avalanche dataset). The questions were randomized to assign users to two 

different groups, each one visualizing two pairs of “borderizations” from the 

PM10 case study (with and without uncertainty information) and three visuali-

zations from the avalanche dataset – one in red without extrinsic uncertainty 

and two in green with extrinsic uncertainty and vice versa. As such, each visu-

alization could be included with the same frequency in the final set of working 

questionnaires without making the questionnaire overly long. Additionally, this 

solution was useful to prevent users from seeing too many maps, which could 

have caused a “task order effect”, i.e., the observed improvement and/or in-

creased awareness in survey results that sometimes happens after a few re-

peated tasks (Tullis & Albert, 2008). To further prevent the occurrence of such 

an effect, users did not have any information about the real subject of the study 

and were only told that the survey dealt with the perception of natural risk haz-

ards. 

Each map included a series of potential housing locations across several cate-

gories of natural hazard risk as explained in subchapters 3.2.2 and 3.3.2. Users 

were asked to pretend to be looking for new homes in locations as safe from 

pollution hazards or avalanche risk as possible. They would subsequently rate 

the perceived levels of desirability or safety, respectively, using a standard Lik-

ert-type scale with ten options from “not desirable at all” (or “completely un-

safe”) to “highly desirable” (or “completely safe”). On the same page, they were 
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also asked, in an open-ended question, to describe the main reasons behind 

their ratings in two or three brief sentences. (Fig. 3.17)  

 

Figure 3.17: Standard point rating and open-ended questions in the questionnaire. 

 

Finally, users provided their levels of confidence in such ratings using the afore-

mentioned Likert-type scale. Their ratings were subsequently counted as num-

bers from 1 to 10. Housing locations had a randomized letter order, so as to 

avoid triggering the “adjustment to an anchor” heuristic and prevent users from 

simply applying the same ratings to each map regardless of the specific visual-

ization. At the same time, all the questions had the same structure and included 

the same rating scale, so as to provide high comparability. (Fig. 3.18) 
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Figure 3.18: Example of questionnaire page including map with randomized locations. 

 

After these questions, a new page would include four dichotomic questions 

where users have to select one map from a pair according to how intuitive, ef-

fective and/or satisfactory they felt it to be. The goal behind the inclusion of this 

page was to gather insights about the usability of each visualization technique, 

i.e. its suitability for conveying the information displayed. 

On the last page, users simply had to rank several colour shades according to 

their intuitive association with an idea of “risk”, from lowest to highest. This was 

meant to control for the potential presence of colour-blind users, whose altered 
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colour perception could provide additional unexpected findings for the scope of 

the survey. 

The nature of the study is, therefore, both quantitative and qualitative. Ratings 

and confidence levels are treated as numbers from 1 to 10 and their distribution 

is the subject of descriptive statistical analysis (e.g., mean and standard devia-

tion) and statistical significance testing. As the ratings do not present a normal 

distribution, therefore making T-test or Z-scores impractical, the non-paramet-

ric alternative Wilcoxon-Mann-Whitney is an effective tool to test for signifi-

cance between different point rating averages.  

On the other hand, open-ended answers are the subject of qualitative analysis, 

in order to highlight potentially relevant statements that would support conclu-

sions from the significance testing. The goal was to investigate whether (and, if 

so, how) different “borderizations” would significantly alter users’ ratings and 

confidence levels and whether relevant heuristics such as containment or dis-

tance could be the driving forces behind these differences. However, this quali-

tative search proved somewhat difficult to perform as keyword use was often 

ambiguous, especially concerning containment-related biases. To reduce po-

tential over- or under-counting issues and come up with as an objective analy-

sis as possible, statements were considered relevant only when keywords were 

part of a larger and more meaningful sentence structure. For instance, the use 

of “in” from the statement “I feel really uncomfortable in an air pollution area” 

appeared too generic to be referred to a containment bias with any degree of 

confidence. On the other hand, the statement “C and D are located within the 

high concentration zone” seemed to suggest that its author did indeed use a 

containment heuristic to rate the two points specifically. Subsequently, the 

statements were counted and cross-referenced with point ratings to try and 

evaluate whether they would further support previous conclusions or not. 

Pilot study 

After the questionnaire setup, the following step was to perform an exploratory 

pre-test on a small sample of relevant users, in order to gather real feedback 

about the test’s overall functionality and possible flaws to be improved. This is 
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an established practice in cartographic research (see e.g., Leitner and Butten-

field, 2000). Eight individuals with high levels of cartographic expertise partici-

pated in the pre-test, which took the form of a semi-structured one-on-one in-

terview on the online video service Zoom. These eight individuals first performed 

the survey while commenting freely and without any guidance on the visualiza-

tions and questions they were seeing; having finished, they then answered sev-

eral more direct questions about the maps and the survey structure. They pro-

vided useful feedback to improve and finalize the questionnaire: 

 Map legend was too small and barely readable, especially on smartphone 

screens; 

 The hillshade basemap, initially chosen as background in the PM10 vis-

ualizations, was confusing and added unnecessary biases; therefore, the 

final maps have a more neutral light grey basemap with minimal labels 

(Fig. 3.19); 

 The questionnaire lacked a clear definition of “uncertain data”, as some 

users could not understand whether the label referred only to the dashed 

line or to the area inside it and in which terms; questions were subse-

quently rephrased to explain how points within the uncertain area may 

belong to the closest higher or lower risk category; 

 It was better to randomize the order of housing location labels, in order 

to avoid triggering the “adjusting to an anchor” heuristic as previously 

explained. 

Users’ answers also suggested that the expected biases were indeed pre-

sent. Namely, the containment and distance biases seemed to be stronger in 

the “hard border” maps and in the maps with extrinsic uncertainty. “Fuzzy” 

borders increased the amount of information but also confusion and per-

ceived uncertainty; in other words, they did not necessarily cause a change 

in ratings, but they did seem to decrease confidence levels. “Fuzzy” borders 

also seemed to provide a better idea of the geographical distribution of nat-

ural hazards, especially in the avalanche risk maps. Chapter 4 analyses in 

detail the actual results of the finalized questionnaire. 
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                                          a                                                                                             b 

Figure 3.19: Example of a PM10 before (a) and after pre-test (b). The basemap was changed to a more 
neutral background. 

 

3.4 Summary of methods 

This chapter has presented the methodology adopted to build the whole study 

and fulfil its objectives. 

Subchapter 3.1 has introduced the main challenges related to detecting the use 

of heuristics in cartography, and subsequently the strategies used in the present 

thesis to try and tackle these pitfalls by producing objective analysis criteria. 

Subchapter 3.2 has dealt with the design of the maps included in the study, 

firstly by explaining their logic and conceptualization and secondly by showing 

the techniques adopted to come up with the final cartographic products. 

Finally, Subchapter 3.3 explained the different stages of building the online user 

survey, from choosing the platform and the participants to shaping the ques-

tions and performing the exploratory pilot-test. 
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4. Results and discussion 

 

4.1 Structure of results 

This chapter will show the results of the user test, in light of previous literature 

findings on heuristics and uncertainty visualization related to the issue of bor-

derization. 

Subchapter 4.2 will list in detail the point rating results from the main section of 

the survey in both case studies, and will draw tentative conclusions about their 

significance for the scope of the study. Findings on confidence levels will be the 

subject of Subchapter 4.3. 

Subchapters 4.4 and 4.5 will present further results from the survey sections on 

one-to-one comparisons and colour shades ranking. These results will also be 

interpreted as support for the conclusions previously made. 

Subchapter 4.6 will then show the most relevant statements from the open-

ended questions. These statements will be listed in reference to the findings 

from all the previous subchapters, in order to further provide solidity and 

strength to their conclusion. 

Finally, Subchapter 4.7 will summarize all the findings theme by theme, cross-

linking them to the original study objectives in order to provide a final answer to 

the research questions. 

Table 4.1 echoes Table 3.1 in Subchapter 3.1.1 by showing initial specific as-

sumptions on the expected relation between heuristics and survey results in 

terms of users’ behaviours, perceptions and response patterns. 

Heuristic Assumption(s) 

Distance  Significant difference in average ratings between two points in the 
same thematical category (e.g., colour class) but differing in their 
distance from a thematical border 

 Lower differences among point ratings with fuzzy borders than with 
hard borders 

 Significant rating alteration for extreme points (reduction for “safe” 
ones, increase for “unsafe” ones) after the introduction of extrinsic 
uncertainty 
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Containment  Higher ratings for safe points and lower ratings for unsafe points 
with hard borders 

 Lower difference between safe and unsafe points with fuzzy borders 
than with hard borders 

 Lower difference between points within uncertain area after its addi-
tion to the map (PM10 maps)  

Availability  Reported difference in perception between PM10 maps and ava-
lanche maps due to lived experience 

Adjustment to anchor  Repeated rating patterns across successive maps 

 Repeated rating patterns across successive maps from one user de-
spite significant changes in ratings from other users 

Representativeness  Lower ratings for unsafe points when risk areas are coloured in red 

 Preference for maps depicting PM10 risk with a fuzzy border 

 

Table 4.1: Specific initial assumptions on the relation between heuristics and users' behaviours and per-
ceptions. 

4.2 Effects of borderizations and extrinsic uncertainty on heuristics  

PM10 maps: point ratings without extrinsic uncertainty 

In the PM10 maps, users in both groups rated points from A to D with decreasing 

levels of desirability. This effect appeared across all maps, regardless of the 

borderizations used. In the “Hard Border” maps - both single and layered, with 

and without extrinsic uncertainty -, for example, point A received an average de-

sirability rating of 7.65 out of 10, whereas point B had an average rating of 5.28. 

Points C and D, both lying entirely outside the high PM10 concentration area, 

had average ratings of 2.56 and 1.57 respectively. The differences between A, B, 

C and D in the “Hard Border” maps were statistically significant (p-value < 0.01). 

The same differences are even larger in the two “Single Hard Border” maps, with 

point A and B having average ratings of 8.28 and 6.00 in the map without extrin-

sic uncertainty. These findings seem to show evidence of a distance bias. In 

fact, the “Hard Border” maps do not give any information about the distribution 

of PM10 levels both within and outside the high concentration areas, therefore 

users have no factual basis for assigning lower ratings to B compared to A or D 

compared to C. On the contrary, distance from the border alone seems to be a 

driving force in desirability evaluation. Additionally, as the “Hard Border” maps 

were the first to appear in the survey, users were not biased by other visualiza-

tions.  

In the visualizations without extrinsic uncertainty, ratings for point A signifi-

cantly decreased from “Single Hard Border” to all the other borderizations (p-
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values < 0.05). Ratings for point B decreased from “Single Hard Border” to “Lim-

ited Fuzzy Border” (p-value = 0.02) and stayed the same in the other two bor-

derizations. Conversely, ratings for point C increased from “Single Hard Border” 

to “Limited Fuzzy Border”, while ratings for point D increased from “Single Hard 

Border” to “Total Fuzzy Border”. Overall, there seemed to be a containment effect 

at play: users felt safer in “unsafe” points and less safe in “safe” points when the 

high PM10 concentration area was visualized with a “fuzzy” border instead of a 

single hard border, as well as with a layered border although the effect was less 

pronounced in that case (see Fig. 4.1).   

 

Figure 4.1: Average ratings of the points and associated confidence in the four borderizations without ex-
trinsic uncertainty. 

 

PM10 maps: point ratings without vs. with extrinsic uncertainty 

The visualization of extrinsic uncertainty affected desirability ratings across all 

borderizations, although its effects were not homogeneous.  
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Ratings for point A significantly decreased (p value = 0,019) in the “Hard Border” 

maps after the introduction of uncertainty, even though A lies outside the uncer-

tain area. This further suggests the presence of a distance bias, as A was closer 

to the uncertain area than to the border of the high concentration area in the 

map without uncertainty (Fig. 4.2). 

 

Figure 4.2: Ratings for "Hard Border" maps with and without uncertainty. 

 

Ratings for B decreased (p value < 0,01) in all four borderizations, while ratings 

for C increased (p value = 0,02) in “Layered Hard Border” after the introduction 

of uncertainty. Ratings for D did not show significant variations. Overall, the ef-

fect of uncertainty was stronger in the “Hard Border” maps than in the “Fuzzy 

Border” maps. As the ratings of A and B in the “Single Hard Border” map heavily 

affect the average total ratings in the “Hard Border” maps, it seems that the in-

troduction of uncertainty lessened the effect of the initial containment bias for 

A and B, while generating further biases. In other words, the introduction of un-

certainty shifted the focus of the containment bias from the high concentration 

area to the uncertain area. In the “Fuzzy Border” maps, this effect was less prev-

alent as users focused more on the distribution of colours instead (Fig.4.3).  
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Figure 4.3: Ratings for "Fuzzy Border" maps with and without uncertainty. 

 

Interestingly, while ratings for A decreased in all the borderizations compared to 

“Hard Border” when uncertainty was not present, the same did not happen in the 

visualizations with uncertainty. In fact, ratings for A did not show significant 

variations across the four borderizations with uncertainty. The rating in “Limited 

Fuzzy Border” (7.63) was even slightly higher than in “Single Hard Border” (7.59), 

although the difference was not statistically significant. 

This suggests that the introduction of uncertainty heavily reduced the effects of 

containment bias, possibly, as previously mentioned, by increasing the overall 

feeling of risk in the ‘safe’ areas. Furthermore, the standard deviation of the rat-

ings in “Hard Border with uncertainty” is decidedly higher (2.98) than in “Hard 

Border without uncertainty” (2.16). In other words, the introduction of uncer-

tainty not only increased risk perception for A but also caused large intra-sam-

ple variations in ratings. This also suggested that, in the map with uncertainty, 

users’ responses were less driven by the same containment bias which had 

made decisions easier and more clear-cut in the map without uncertainty.  
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Ratings for B, C and D further confirmed these findings. Ratings for B showed a 

significant decrease (p-value <0.044) from “Hard Border” (6.03) to “Fuzzy Bor-

der” (5.51), but only without extrinsic uncertainty. At the same time, as previ-

ously mentioned, ratings for B decreased in all borderizations after the introduc-

tion of uncertainty. This again shows how extrinsic uncertainty tended to nega-

tively affect the rating of “safe” points and had a larger impact overall than the 

borderization itself and the choice of colours. Unlike in A, however, standard de-

viation did not show any detectable patterns, with a few small changes being 

likely due to the different samples of respondents (Fig. 4.4). 

 

Figure 4.4: Ratings of points in all maps, with and without uncertainty. 

 

On the other hand, ratings for C increased from “Hard Border” to “Fuzzy Border” 

even when uncertainty was present, and in the case of “Layered Border” they 

also increased in the visualization with uncertainty compared to the one without 

uncertainty visualized. Ratings for D did not show increases after the introduc-

tion of uncertainty. However, they did significantly increase in “Total Fuzzy Bor-

der” compared to “Layered Border” both with and without uncertainty present 

(p-value = 0.026 and = 0.020 respectively). In short, uncertainty did not cause 
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any significant decrease in ratings for C and D, unlike A and B, and in some cases 

even produced an increase. Furthermore, ratings for C increased from “Hard 

Border” to “Fuzzy Border” even when uncertainty was present, while ratings for 

A decreased from “Hard Border” to “Fuzzy Border” only without uncertainty (Fig. 

4.5-4.6). 

 

Figure 4.5: Ratings for points in "Hard Border" and "Fuzzy Border" maps without uncertainty. 
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Figure 4.6: Ratings for points in "Hard Border" and "Fuzzy Border" maps with uncertainty. 

 

This effect suggests the presence of a loss aversion bias. As previously men-

tioned, the introduction of uncertainty seemingly caused users to feel less safe 

in the same areas that, due to the containment bias, they had previously deemed 

safer. At the same time, this pattern does not reflect a tendency towards risk 

aversion, as ratings for C increase even though C is located in the uncertain area. 

Therefore, users appeared to overweigh the potential gain produced by uncer-

tainty around C over the risk that the uncertainty itself created, while the same 

did not happen in B. This is consistent with a loss aversion pattern as mentioned 

in Tversky & Kahneman (1979).  

Finally, it is also notable that, as for point B, variations in standard deviation for 

both C and D were less significant compared to A. In the case of C, only the 

standard deviation for “Single Hard Border” without uncertainty was decidedly 

lower than the other ones, whereas standard deviation for D showed erratic pat-

terns with no clear tendencies detectable. In fact, uncertainty did seem to in-

crease standard deviation in ratings to D in “Single Hard Border”; at the same 

time, both the visualizations of “Total Fuzzy Border” showed higher standard 
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deviations in ratings compared to the other visualizations. Such an effect also 

produced a modest increase in the ratings themselves, which may be caused by 

a small sample size effect with few uncharacteristic ratings skewing the entire 

result. Fig. 4.7 shows the average ratings for all the points in each borderization, 

with and without uncertainty. 

 

 

 

Figure 4.7: Ratings for all the points in each of the four borderizations. Columns on the right refer to bor-
derizations with extrinsic uncertainty. 

 

Avalanche maps 

In stark contrast to the PM10 maps, point ratings in the avalanche maps showed 

far fewer significant patterns. Most differences happened between the two sam-

ples of respondents rather than between different maps presented to the same 

sample. 

Distance bias was undoubtedly present in all the maps, as in the previous study 

case. Even if both point A and point B were located well outside of the risk area, 
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point A had an average rating of 8.34 across the six different maps, compared 

to 7.09 for B. Similarly, point D and E had different average ratings across the 

six maps (1.89 and 1.38 respectively) despite both of them being located inside 

the risk area. Once again, the maps did not provide any additional information 

on hazard levels inside and outside the high-risk area; therefore, such changes 

in ratings could only be caused by an intuitive association between risk levels 

and distance from the border of the high-risk area. Even more tellingly, “Fuzzy” 

maps displayed the same difference in ratings between D and E as the maps 

with extrinsic uncertainty, even if the background colour in the former was ex-

actly the same for both D and E. This further shows that users intuitively felt 

safer in D because D, while still lying inside the high-risk area, was located closer 

to its border. 

Ratings for point A did not show any significant intra-group differences. Ratings 

for point B were significantly lower (p-value = 0.04) in “Green with Texture Layer” 

(6.25) compared to “Green with Foggy Layer” (6.88). Nevertheless, as this effect 

did not occur in any other map, it is hard to highlight a single motive behind the 

result. The standard deviation of ratings for B in “Green with Foggy Layer” was 

slightly higher (2.93) than in “Green with Texture Layer” (2.81), although lower 

than in “Fuzzy Green” (2.98). Once again, this pattern does not seem to suggest 

any particular heuristic being at play. 

Notably, Group 2 assigned higher ratings overall to A and B compared to Group 

1 and also displayed a lower standard deviation. Such differences were not pre-

sent in any of the maps in the first study case. 

While ratings for C did not show any significant differences across maps, D was 

the point with the largest changes in ratings. In fact, D in “Green with Texture” 

had a significantly higher rating (2.34, p-value = 0.02) than both “Green with Fog” 

(1.72) and “Fuzzy Green” (1.66). D in “Red with Layer” also had a markedly higher 

rating (2.27, p-value < 0.01) than in “Fuzzy Red” (1.34), although the difference 

was not significant between “Red with Layer” and “Red with Fog”. Interestingly, 

point E also showed a significantly higher rating in “Green with Layer” (1.66, p-

value = 0.048) compared to “Green with Fog” (1.25). As “Green with Layer” and 
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“Green with Fog” were rated by the same sample, the difference in ratings cannot 

be attributed to a difference in groups. Therefore, when the risk area is visualized 

in green, the use of a textured layer to extrinsically visualize uncertainty seem-

ingly decreases risk perception in unsafe areas. Some effect can also be seen in 

the map coloured in red, although only for point D which is located on the tex-

ture. This may suggest that, in the case of point E, the strong effect of the red 

colour in the background overwhelms a possible counter-effect from the texture 

layer nearby. Additionally, while ratings for D and E both increased in “Green with 

Layer” compared to the other borderizations, ratings for B decreased; this could 

be the result of a modest containment bias, where the texture layer has the same 

effect as the extrinsic uncertainty seen in the PM10 maps.  

At the same time, however, ratings for E in “Green with Layer” show a higher 

standard deviation (2.09) than in the other visualizations. This suggests that the 

modest effect just described could also simply be due to a few uncharacteristic 

results that skewed the ratings and caused falsely significant differences. 

Differences in gender, age, and expertise with maps 

Interestingly, female users consistently assigned lower average ratings to all 

points across all visualizations compared to males (Fig. 4.8). This result indi-

cates that female users might be more conservative in their ratings compared 

to males. However, differences between maps were the same between males 

and females; this suggests that, concerning heuristic use, females did apply the 

same reasoning patterns as males. 
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Figure 4.8: Average point ratings in "Hard Border" maps by gender. 

 

Age did not seem to affect rating distribution significantly. Younger users as-

signed lower ratings in some maps and higher ratings in others seemingly with-

out any readable pattern, often not even within all the points from one single 

map. This might be due to the skewed age distribution, where the ages between 

25 and 35 are overrepresented: only one third of total users were younger than 

25 or older than 35, which made any statistical breakdown more uncertain. 

Users with a high self-rated level of expertise with maps (above 3 in a Likert-

type scale from 1 to 5) tended to assign higher ratings to “safe” points and equal 

or lower ratings to “unsafe” points than users with a low self-rated level of ex-

pertise (3 or below in the aforementioned Likert-type scale). This again might 

suggest that users unfamiliar with maps felt less confident in their answers and 

tried to avoid extreme ratings; this is also reflected by the confidence results as 

shown in Subchapter 4.2. However, it must be noted that most users in this 

group had a self-rated “medium” level of expertise (3) and few had a very low 

level. 
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4.3 Effects of borderizations and extrinsic uncertainty on confidence 

The introduction of extrinsic uncertainty in the PM10 maps seemed to cause a 

decrease in confidence across most borderizations. Indeed, the average confi-

dence for the total of the maps without uncertainty (7.11) was significantly 

higher than for those with uncertainty (6.76, p value < 0.01). The decrease in 

confidence following the introduction of uncertainty was also significant (p 

value = 0.03) for both the “Hard Border” and the “Fuzzy Border” maps. However, 

in the detailed breakdown by borderization, the decrease was only visible in the 

“Single Hard Border” and in the “Total Fuzzy Border” pairs (p value = 0.044), 

whereas both “Layered Hard Border” and “Limited Fuzzy Border” showed slight, 

non-significant decreases. Standard deviation remained quite homogeneous 

across all borderizations.  

Interestingly, among the visualizations with uncertainty, “Single Hard Border” 

and “Total Fuzzy Border” were also the ones with the highest and lowest average 

confidence respectively (Fig. 4.9). There might be two different factors at play to 

explain the decrease in the two borderizations. As stated above, respondents 

seemingly made a heavy use of the containment and distance heuristics in “Sin-

gle Hard Border” to assign their ratings. The introduction of the uncertainty layer 

may have disrupted their perceptions and rendered these simple heuristics un-

viable, thus making rating choices much less straightforward – although still 

relatively easy on a global scale, as Fig. 4.8 shows. 
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Figure 4.9: Average confidence levels for all the eight borderizations. The two columns show confidence 
levels in the maps without (left) and with extrinsic uncertainty (right). 

 

As for the “Total Fuzzy Border” map, the slight and subtle gradient encompass-

ing the whole map space may have confused the users from the beginning; the 

addition of uncertainty could then have made it even more difficult to tell the 

different locations apart in terms of potential risk. In fact, “Total Fuzzy Border” 

was the only borderization where viewers did not have any clear boundary to 

use in order to assign the points to different risk categories; at the same time, 

the introduction of uncertainty made it hard to gauge potential risk through 

changes in background colour as well. 

A further element to support this observation is that confidence in “Total Fuzzy 

Border with uncertainty” has the lowest standard deviation among all the visu-

alizations. In other words, the introduction of uncertainty in “Total Fuzzy Border” 

did not only cause a decrease in confidence, but this decrease was also homo-

geneous among users instead of being caused by a few outliers. 
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In the avalanche maps, confidence only showed a significant decrease from 

“Fuzzy Green” (7.45) to “Red with Fog” (6.97, p-value = 0.032). This effect was 

only associated with a modest increase in standard deviation, which, however, 

remained lower than in “Red with Texture”. Notably, point ratings showed no 

significant changes between “Fuzzy Green” and “Red with Fog”: as the latter ap-

peared directly after the former in the questionnaire, such a pattern may imply a 

small availability effect among users, who simply applied similar ratings as be-

fore but simultaneously felt less confident about them. No further significant 

changes in confidence were observed in the other visualizations. 

Among personal characteristics, only gender and level of expertise with maps 

seemed to affect confidence. Females and users with average or low self-rated 

expertise with maps reported lower confidence across all maps. These patterns 

resemble those explained in Subchapter 4.2.4. 

4.4 Image pair comparisons  

In the first of the four comparisons, more than 90% of users selected “Fuzzy Red” 

as better than “Fuzzy Green” to convey an intuitive idea of risk. This seems to 

confirm that the colour red is indeed more associated with the visual perception 

of a threat. 

In the second comparison, a majority (57.4%) of respondents agreed that “Fuzzy 

Red” was more appropriate than “Red with Texture” to visualize risk. This result 

suggests that a borderization using a gradual colour transition rather than a 

hard border, be it intrinsic or extrinsically superimposed, may communicate in-

formation about spatial risks more effectively. The third comparison seems to 

further confirm these findings: according to 83.6% of users, “Limited Fuzzy Bor-

der” is more appropriate than “Single Hard Border” for risk visualization. As the 

“fuzzy” borderization was deemed more appropriate in both case studies, it can 

be argued that this type of visualization can be effective in mapping various 

kinds of spatial hazards.  

Somewhat surprisingly, 68.9% of respondents in the last comparison selected 

“Layered Border” as more useful than “Total Fuzzy Border” to understand the air 
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pollution distribution across the mapped area. This result, however, does not 

necessarily disprove the aforementioned findings. In fact, it may simply suggest 

that users still need some sort of “border” in the map to be able to gauge risk 

levels effectively and, while a fuzzy border with a “limit” seems to work better 

than a single hard border, a gradient extending all throughout the map surface 

may only increase confusion. This result reflects the effects on confidence 

shown in Subchapter 4.2. (Fig. 4.10) 

 

Figure 4.10: Results of image pair comparisons. 

 

4.5 Ranking of colour shades 

In a colour scale from red to yellow to green, an overwhelming majority of users 

indicated red as the shade associated with the highest level of risk. There was 

less agreement on the other end of the scale, even though most users still as-

sociated one of the two shades of green with the lowest risk. At least 50 users 

ranked colour shades from red (high risk) to yellow (medium risk) to green (low 

risk). 
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In the colour scale from red to orange to light yellow, red was again associated 

with the highest level of risk and 53 respondents provided the same colour scale 

from red (highest risk) to orange (medium risk) to light yellow (low risk). Answers 

to the third colour scale showed a similar pattern, with most users ranking 

shades from red (highest risk) to violet (medium risk) to light pink (low risk).  

These findings provide evidence that users tend to intuitively associate certain 

colour shades with the visual perception of a threat. Namely, respondents over-

whelmingly associate bright red with risk and lighter hues, or opposite values 

like green, with lower risk. (Table 4.1) 

 

  5 (high risk)    1 (low risk) 

      

 55 / / / 6 

 / 50 3 8 / 

 / 3 54 1 3 

 1 5 2 40 13 

 5 3 2 12 39 

      

 55 / / / 6 

 / 55 1 6 / 

 / / 60 1 / 

 / 6 / 53 2 

 6 / / 1 53 

      

 53 2 / / 6 

 2 52 1 6 / 

 1 1 57 / 2 

 / 6 / 54 1 
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 5 / 3 1 52 

 

Table 4.2: Associations between colour shades and risk levels. Each value refers to the number of users 
who assigned a risk category (columns) to a colour shade (rows). 

 

However, some users displayed atypical ranking patterns. Five to six users in 

each scale ranked colours in the exact opposite order compared to the average. 

This may genuinely indicate different perceptions and associations between risk 

and colour shades, but it could also suggest that these users simply misunder-

stood the question and mistook “1” for “highest risk” and “5” for “lowest risk”.  

Additionally, a minimal number of other users ranked colour shades very differ-

ently from the rest, with seemingly inexplicable patterns. These users might suf-

fer from colour-blindness and their altered colour perception could explain such 

uncharacteristic ranking choices. Indeed, these answers were more prevalent in 

the first colour scale (red to green) than in the other two; this seems to corrob-

orate the colour-blindness hypothesis, as the red-to-green scale is typically 

troublesome for colour-blind individuals. Nevertheless, their answers did not 

seem to affect ratings in the red and green avalanche maps significantly; in fact, 

such ratings remained mostly unchanged even after filtering out the answers 

from these users, as they were only a tiny minority. This suggests that, while 

users do associate different colours with different risk levels, a wise use of the 

legend may help offset potential related biases. Additionally, the order of the 

questions within the survey, with avalanche maps coming after the PM10 maps, 

may have made users more aware of the study subject and less intuitive in their 

answers. This, in turn, suggests that randomizing the maps within a study case 

and between study cases may yield different results. 
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4.6 Open-ended questions 

PM10 maps 

Answers to the open-ended questions seemed to confirm further a significant 

use of containment- and distance-related heuristics by the users in order to as-

sign point ratings. Bearing in mind the pitfalls and challenges associated with 

this kind of analysis as described in Subchapter 3.1, it was possible to identify 

several common keywords, locutions or expressions that served to uncover the 

usage of relevant heuristics. 

However, this usage was not homogeneous across all borderizations. Unsur-

prisingly, relevant phrases and keywords were most common in “Single Hard 

Border”: twenty-one (out of thirty-one) and thirteen users, in the maps without 

and with uncertainty, respectively, reported having used some kind of distance- 

and/or containment-related heuristic to assign their ratings. Conversely, only 

three (out of twenty-nine) and four users made such claims in the two “Total 

Fuzzy Border” maps without and with uncertainty respectively. These findings 

reflect similar results mentioned in previous subchapters. In fact, point ratings 

did suggest a frequent use of biases related to containment and distance in 

“Single Hard Border”; the introduction of extrinsic uncertainty and the subse-

quent decrease in ratings and confidence also mirrors the decrease in keyword 

frequency in the open-ended questions for the corresponding map. Similarly, 

open-ended questions seemed to confirm that respondents did not make heavy 

use of containment and/or distance biases in “Total Fuzzy Border” and relied 

more on colours instead. (Fig. 4.11) 
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Figure 4.11: Frequency of usage of keywords and/or other relevant expressions in the open-ended ques-
tions. 

 

Interestingly, the addition of extrinsic uncertainty caused a decrease in keyword 

usage in the “Hard Border” maps (single or layered), but it actually caused a 

small increase in the “Fuzzy Border” maps. This further suggests that the intro-

duction of extrinsic uncertainty can cause users to shift their focus away from 

the original boundaries in the “Hard Border” maps. In contrast, it may provide 

them with a clear and straightforward border reference in the “Fuzzy Border” 

maps. However, even with extrinsic uncertainty, keyword usage in the “Fuzzy 

Border” maps and especially in “Total Fuzzy Border” remained low overall; this 

reflects aforementioned findings, which suggested that respondents mostly es-

timated risk levels in “Total Fuzzy Border” using changes in the background col-

our. A more in-depth analysis of the answers further supports this conclusion; 

several users reported that “Limited Fuzzy Border” helped them to assess risk 

levels effectively, whilst “Total Fuzzy Border” seemed only to increase confu-

sion. (Tables 4.2 & 4.3) 
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Single Hard Border 

without uncertainty 

“I’ve rate [sic] higher the points further away from high concentration 

of pollution.” 

“I expect also that places outside the red zone will be less polluted 

going further away from the border.” 

“B appears to be close to the enge [sic] but outside.” 

“The closer the location gets to the high concentration areas, the less 

attractive it is” 

“Maybe they [C and D] are in the same condition, but I imagine the D 

one will be surrounded by more pollution” 

“Location A is very well within the low/no concentration zone” 

“Location A is the farthest from the red zone” 

Single Hard Border 

with uncertainty 

“C is the only location that falls into the non-risk zone and is not af-

fected by uncertain data” 

“A and D are perceived similarly since they are both within this [un-

certain data] area.” 

“Location A – it is in the closer proximity to polluted area […] plus it is 

also under the uncertain area.” 

Layered Hard Border 

without uncertainty 

“If it is closer to a border, I weighted [sic] it more towards whatever is 

across the boarder [sic]” 

“Location A is very close to the edge between low and moderate.” 

“A is closest to the area of low PM10 concentration but is still within 

a moderate concentration area” 

“D slightly better than B because it lies closer to the limit of the high 

pollution zone” 

“The far [sic] from high pollution area, the cleaner the air” 

Layered Hard Border 

with uncertainty 

“C is too close to the uncertain area to be desirable” 

“The locations inside this uncertain data polygon are regarded as de-

sireable [sic] at the same level as location B” 

“The location B is not desiderable [sic] at all because it is surely in a 

[sic] area with maximum pollution risk” 

 

Table 4.3: Excerpts of answers to open-ended questions from the “Hard Border maps”. These statements 
show the usage of containment- and distance-related biases. 

 

Limited Fuzzy Border 

without uncertainty 

“B and C are both in the diffuse region, but C seems rather outside, 

while B seems rather inside of it.” 

“I find the location [A] too close to the polluted area” 
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“The places get rates according to their distance from the <<hottest>> 

red area” 

“Best visualization for this topic, it shows the uncertainty” 

“A more graduated scale give [sic] more accurate informations [sic] 

and ratings naturally aligns [sic] with it” 

“Here I have more continuous data and I can be more confident in my 

choise [sic]” 

Limited Fuzzy Border 

with uncertainty 

“The areas in the box are quite Dangerous” 

“I feel more confident than with the previous map thanks to the black 

square” 

“B is very close to the uncertainty area, meaning that I am questioning 

how certain the data actually is for that area” 

“The locations within this [uncertain data] area are rated less desira-

ble due to these uncertainties.” 

“The places get ratings in accordance to their distance from the red-

dest area” 

Total Fuzzy Border 

without uncertainty 

“I tried to use the legend to gauge how polluted the area is” 

“I felt like all the locations were in bad areas due to the subtle gradi-

ent” 

“The further away from the dark red area, the better” 

“The whole visualization indicates an uncomfortable impression of all 

locations” 

“I see risks in all the choices” 

“Hard to distinct [sic] them quickly but still possible to see the gradi-

ent” 

Total Fuzzy Border 

without uncertainty 

“C is still too close to the uncertain area” 

“Again, the subtle gradient makes it difficult to work out the differ-

ences” 

“The uncertainty of the data makes the ranking of these four places 

more complex” 

“The uncertain data polygon does not affect the overall impression of 

not detecting differences in PM concentrations.” 

 

Table 4.4: Excerpts of answers to open-ended questions from the “Fuzzy Border” maps. The answers show 
the usage of relevant heuristics as well as the impact of different borderizations on users’ experience. 

 

Furthermore, some users reported that they found a gradient border to be more 

intuitive simply due to the nature of the hazard represented. One user answering 
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to the open-ended question under “Single Hard Border without uncertainty” 

wrote, “I do not know a lot about air pollution, but I suspect that there is no such 

a clear delineation between areas of high air pollution and areas of low air pol-

lution”. Another user within the same question wrote, “Location B is located 

close to the high concentration zone, which might make it a bit less desirable, 

since a sharp boundary between high and low concentration seems unlikely”. 

Other users commented that points outside the high-risk area might also be af-

fected by pollution as winds could blow from that direction. In fact, as seen in 

Table 4.3, users found a limited gradient not only to be more informative, but 

also more representative than a single hard border. As previously mentioned, 

the same was not true for “Total Fuzzy Border”, where some users also seemed 

to have trouble understanding what the uncertain area truly meant as they had 

no clear reference to place the locations inside any risk category. Additionally, 

they sometimes seemed to understand the gradient in the map as a represen-

tation of uncertainty itself; therefore, the addition of extrinsic uncertainty caused 

additional confusion for them. Finally, several users reported that the “Total 

Fuzzy Border” map somewhat increased across the whole map space the visual 

perception of a threat and subsequent feelings of risk avoidance. This finding 

may suggest the presence of the affect heuristic, as map readers might rely on 

immediate feelings to formulate their judgements. 

Avalanche maps 

Answers to the open-ended questions showed that survey respondents did use 

containment and distance to drive their rating choices in the avalanche maps as 

well. However, usage frequency did not seem to display significant variations 

across different borderizations; this result reflects the distribution of point rat-

ings as seen in Subchapter 4.1.3, with few clearly detectable patterns. Simulta-

neously, distance from the border appeared to be an extremely relevant factor in 

assigning ratings. As one user wrote under “Fuzzy Red” referring to a location 

outside the risk area but close to its border, “since there may come an avalanche 

that is bigger than everything before, I would probably not buy either”. Interest-

ingly, one user under “Fuzzy Green” reported the exact opposite feeling writing, 
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“as avalanches are limited by typology or terrain it is unlikely that the safety [of 

a location] will decrease, or that being slightly closer is of a higher danger if it 

has never been affected before”. 

As in the PM10 maps, answers to the open-ended questions under the ava-

lanche maps also provided insights about the representativeness of the border-

izations. Firstly, the use of green to represent danger appeared somewhat ques-

tionable. Many users reported that it felt confusing and inappropriate, although 

they also seemed able to make use of the legend to offset such perceptions and 

come up with map judgements more confidently. As one user wrote under 

“Fuzzy Green”, “the colour scheme associates with a positive event not a disas-

ter thus it creates biases in my mind. But I was attentive to the legend.”  

Extrinsic visualization of uncertainty also seemed to produce conflicting results. 

Some viewers reported that, as in the PM10 maps, a hard border was unrepre-

sentative of an avalanche; as one user wrote under “Green with Fog”, “the border 

is clearer. But not realistic because I’m reality [sic] you wouldn’t have this sharp 

defined border”. However, the same user reported that it “helps in terms of de-

cision making”. Another user under “Red with Fog” wrote that “all choices were 

made sorted hierarchically based on a distance from clear boundaries of a high 

risk zone”. Two users under the following map, “Red with Layer”, also wrote that 

“this time the uncertain area is more understandable” and “this visualization of 

uncertainty is much clearer and feels easier to access”, while claiming that their 

overall logic behind the ratings was the same as in “Red with Fog”. These find-

ings might suggest that, while a hard border was deemed as less accurate than 

a gradient, it also helped decision making by triggering the containment and dis-

tance heuristics; among the two hard borders used, a texture layer seemed more 

readable than a foggy layer. 

In fact, several users also reported that their perception of the points inside and 

outside the high-risk area changed after the introduction of extrinsic uncer-

tainty. Interestingly, one user under “Red with Texture” wrote “A looks almost 

less safe than D as it has both red and pattern markings”. Location A as por-

trayed in the original map lay on the uncertain area within the high-risk area, 
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while D lay completely inside the high risk area. In other words, the use of a tex-

ture layer seemed to offset the distance heuristic and increase the feeling of 

threat associated with A. Another user under “Red with Fog” wrote, “the uncer-

tainty doesn’t improve the eevaluation [sic] of safety [for point A] as there is still 

a high likelihood of avalanches” and then added “the uncertainty drastically de-

creases the assessment of safety [for point B] as there is an increased risk as-

sociated with it”. A user under “Green with Fog” wrote, “only E seems to be a safe 

place”, while another user reported that “I feel safer in E now than before”; point 

E in this map was the furthest one from the high-risk area.  

In contrast to the PM10 maps, these observations suggested a pattern of risk 

aversion. In fact, the addition of extrinsic visualization to the map seemed not 

only to “dichotomize” the space between safe and unsafe, but also to increase 

risk perception both in the high-risk areas and in the uncertain ones lying im-

mediately outside. Therefore, users felt compelled to avoid points they had pre-

viously viewed more positively and they only felt fully safe in the safest point. 

However, point ratings did not seem to support such hypotheses; as previously 

seen, these ratings showed few significant variations across different borderi-

zations. 

The aforementioned answers, along with a few others from all borderizations, 

are listed in Table 4.4 below. 

Fuzzy Red “A has still some risk, while D is just outside the risk area. Since 

there may come an avalanche that is bigger than everything before, 

I would probably not buy either.” 

“E is slightly deeper into the red area, which is why it received the 

lowest rating” 

“I would like to know the distance of point B to the high risk area 

before feel [sic] safe” 

Fuzzy Green “The further away you are from the greenzone the safe [sic] it is” 

“B and D are not affected at all. I feel more unsure about D however 

because it is closer to the risky area” 

“B and D) are unaffected by avalanches, as avalanches are limited 

by topology and terrain it is unlikely that their safety will decrease, 
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or that being slightly closer is of a higher danger if it has never been 

affected before.” 

“The farer [sic] I am from the risk zone, the safer I feel” 

“The colour scheme associates with a positive event not a disaster 

thus it creates biases in my mind. But I was attentive to the legend. 

I am afraid that another unexperienced map user might be con-

fused. Not having distinct boundaries just blurred circles also keeps 

me from making an unambiguous choice” 

Red with Fog “[for point C, outside the high risk area] the uncertainty is greater 

than first predicted. You could also be in the red” 

“A) The uncertainty doesn’t improve the eevaluation [sic] of safety 

as there is a high still a high likelihood of avalanches. B) The uncer-

tainty drastically decreases the assessment of safety as there is in-

creased risk associated with it” 

“Distance from the risk zone remains relevant” 

“All choices were made sorted hierarchically based on a distance 

from clear boundaries of a high-risk zone” 

Green with Fog “I tend to lower rating in the uncertain area” 

“B seems to lie outside both risk and uncertain area, but not very far. 

Thus A is the only safe bet” 

“Green is a weird color to express danger” 

“[referring to point C] the uncertainty makes me perceive it as risk-

ier” 

“Risk area (green) and uncertain data have the same choice for me” 

“The border is clearer. But not realistic because I’m [sic] reality you 

wouldn’t have these sharp defined borders. But it helps in terms of 

decision making” 

“Note – the green color may confuse a non-expert into thinking that 

the area might be free from danger as the green usually is associ-

ated with such idea” 

“Locations A-C are supposedly safe, but the further away from the 

risk area, the better”  

Red with Texture “Same reason as the previous map, only this time the uncertain area 

is more understandable” 

“A almost looks less safe than D as it has both red and pattern mark-

ings” 

“I consider the uncertain area as if it was risk area” 
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“A is in risk area and uncertain area at the same time, which makes 

it not safe at all” 

“Striped polygon makes the area appear unsafe” 

Green with Texture “I feel safer in e now than before” [note: point E lay in the safe area 

without uncertainty] 

“I don’t believe in the uncertain area, it might be unsafe, so I will 

avoid it” 

“My opinion about C change [sic] with this visualization…Now I can 

feel that it is quite close to the uncertain area so I feel a little bit less 

safe” 

“Only E seems to be a safe place” 

“The key makes risk very clear so easy to answer” 

 

Table 4.5: Excerpts of answers to open-ended questions from the avalanche maps. 

 

4.7 Summary of results 

Use of heuristics and reasoning on uncertain geospatial data 

 Containment: the present work confirms previous literature findings, as 

results show evidence of some use of the containment heuristic. With 

hard borders, respondents tended to treat map spaces dichotomically 

and use these boundaries as semantic divides to gauge risk levels and 

assign point ratings. Conversely, in the absence of such borders users 

mostly relied on colour shades to assess risk levels and assign ratings. 

 

 Distance: the present work confirms previous literature findings, as re-

sults show evidence of some use of the distance heuristic. Respondents 

used distance from a border as the main metric to assign point ratings in 

the absence of any other relevant information about risk levels. Distance 

was often even more of a decision-making factor than colour. However, 

the exact border used as a mental reference to calculate the distance 

could vary depending on the visualization used. 

 



 

89 
 

 Representativeness: the present work somewhat confirms previous liter-

ature findings, as results show evidence of some use of the representa-

tiveness heuristic. Respondents claimed to assign ratings differently 

when map stimuli were visualized in ways that felt representative of the 

phenomenon – e.g., a fuzzy gradient for a PM10 map or a red area to 

show elevated risk levels. The aforementioned containment bias can also 

be understood as an extension of the representativeness heuristic. How-

ever, not all representative maps elicited the same responses, and some 

non-representative maps were actually preferred to some representative 

ones which were judged less appropriate (see Subchapter 4.6.2). 

 

 Availability: the present work neither confirms nor disconfirms previous 

literature findings. The results did not show evidence of use of the avail-

ability heuristic; however, it is unclear whether the result is only due to 

this heuristic not being relevant for this particular subject. 

 

 Adjustment to an anchor: the present work somewhat confirms previous 

literature findings, as results showed evidence of some use of the adjust-

ment-to-an-anchor heuristic. A few users seemed to assign point ratings 

basing on the first map they had viewed. This pattern was much more 

widespread in the avalanche maps, where many users had likely become 

aware of the study subject, than in the PM10 maps where only a minority 

of respondents seemed to make use of the heuristic. Results also showed 

that the effects of this heuristic can be controlled through appropriate 

techniques for map legends and user testing. 

 

 Other heuristics: the present work somewhat confirms previous literature 

findings, as point ratings in PM10 maps showed some evidence of loss 

aversion patterns. However, results also suggest that these patterns 

might only be triggered by certain visualizations and topics. Indeed, open 

statements in avalanche maps seem to provide support for the presence 

of risk aversion rather than loss aversion patterns. At the same time, point 
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ratings in the same maps do not reflect this hypothesis. Additionally, re-

sults might suggest the presence of the affect heuristic. 

Relation between visual variables, uncertainty visualization techniques and 

heuristics 

 “Hard Border” vs. “Fuzzy Border”: the present work does suggest that al-

tering these borderizations can help control and reduce heuristic use. In 

the PM10, visualizing pollution levels through a “fuzzy” border helped in-

troduce more nuanced judgements and complex levels of risk perception 

across the map space. However, results from the avalanche maps were 

more ambiguous. In fact, while open-ended statements did suggest that 

a “fuzzy” border helped reduce heuristic use, the actual point ratings did 

not support this hypothesis as they showed little significant change be-

tween different borderizations. 

 “Single Hard Border” vs. “Layered Hard Border”: the present work does 

suggest that altering these borderizations can help control and reduce 

heuristic use. In fact, users appeared to be less biased by a containment 

heuristic when assigning ratings in “Layered Hard Border” 

 “Limited Fuzzy Border” vs. “Total Fuzzy Border”: the present work does 

suggest that altering these borderizations can help control and reduce 

heuristic use. However, it is notable that a reduction in heuristic use does 

not necessarily coincide with an improved map experience. In fact, re-

sults showed that, while “Total Fuzzy Border” reduced heuristic use by 

removing any border from the map, it also elicited somewhat negative 

responses by users. In the open-ended statements, respondents reported 

that “Total Fuzzy Border” did not help them in decision-making and the 

subtle gradient felt confusing and inappropriate to represent the phe-

nomenon. 

 Intrinsic vs. extrinsic uncertainty: this present work does suggest that al-

tering the visualization of uncertain data within the map can help control 

and reduce heuristic use. However, the specific effects of uncertainty vis-

ualization are ambiguous and somewhat inconsistent. In PM10 maps, the 
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introduction of extrinsic uncertainty reduced the containment and dis-

tance biases when pollution boundaries were visualized through a hard 

border, as the uncertainty added information for more complex reason-

ing. Conversely, in “fuzzy” maps and especially in “Total Fuzzy Border” 

extrinsic uncertainty mostly seemed to add confusion. In the avalanche 

maps, users reported that extrinsic uncertainty made the map more read-

able and aided decision-making, but it also seemed to trigger distance 

and containment heuristics. However, point ratings remained mostly sta-

ble as previously showed. In any case, extrinsic uncertainty consistently 

increased perceptions of risk and potential damage across all visualiza-

tions. This can be framed as a manifestation of the affect heuristic as 

outlined by Raue & Scholl (2018): users might have associated uncer-

tainty with feelings of avoidance and threat regardless of the actual in-

formation that the visualization carried. See Table 4.6 and Table 4.7 for 

an overview of statistical testing results for each pair of maps and map 

sets. 

 A B C D Conf. 

With vs. without uncertainty      

Hard vs. Fuzzy      

Hard with vs. without uncertainty      

Fuzzy with vs. without uncertainty      

Hard vs. Fuzzy (with uncertainty)      

Hard vs. Fuzzy (without uncertainty)      

 

Table 4.6: Overview of statistical testing results for average point ratings and confidence levels in PM10 
maps. Light green indicates significance for p<0.05, dark green for p<0.01. 

 A B C D E Conf. 

Fuzzy Red vs. Red with Texture       

Fuzzy Green vs. Red with Fog       

Fuzzy Green vs. Green with Texture       

Green with Texture vs. Green with Fog       

 

Table 4.7: Overview of statistical testing results for average point ratings and confidence levels in ava-
lanche maps. Light green indicates significance for p<0.05, dark green for p<0.01. The table only includes 
pairs with at least one significant result. 
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 Colours: this present work does somewhat suggest that altering colour 

choices to visualize natural hazards and the associated uncertainty can 

help control and reduce heuristic use. Respondents agreed that they in-

tuitively associated certain colours, namely red and orange, with intuitive 

ideas of ‘risk’ more than others, such as green. Therefore, visualizing this 

kind of data through uncharacteristic colours can uncover patterns of 

heuristic use (e.g., representativeness heuristic). However, point ratings 

in the avalanche maps did not seem to significantly support this hypoth-

esis, as they remained mostly stable throughout all the visualizations re-

gardless of the colour used. 

 Additional observations: females and users with average or low levels of 

expertise with maps appeared to be more conservative and less confident 

in their ratings compared to the other users. However, the relatively low 

number of users within each single category, as well as their uneven dis-

tribution, made any solid statistical analysis difficult. Furthermore, while 

absolute ratings were different, their variations between maps did reflect 

the same patterns as those from other users. Future surveys could focus 

more on these personal characteristics in order to try and determine 

whether such differences have any factual basis. 

User test for visualization evaluation 

 Investigation method and platform: an online survey proved effective in 

gathering a sufficiently large and diverse set of participants. Anonymity 

not only eliminated any ethical concerns, but it also guaranteed that us-

ers did not feel pressured to answer in any specific way. The online tool 

SoSciSurvey offered a comprehensive and flexible environment to build 

such a survey and analyse its results. 

 Randomization: randomizing the order of the points in the map was use-

ful to control for possible effects of the adjustment-to-an-anchor heuris-

tic, although some users did report that they automatically sorted loca-

tions in the same order across all visualizations. Dividing the participants 
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into two randomized groups also kept the survey from becoming exces-

sively long, while still making it possible to include all the maps in the 

questionnaire. However, results from the avalanche maps seem to sug-

gest that users had become aware of the study subject by that point and 

were less influenced by intuitive heuristics than before. Therefore, a fu-

ture similar study could also benefit from a randomization of the order of 

the study cases. 

 Question structure: keeping questions simple and repeating them 

throughout the whole survey effectively seemed to help users navigate 

through the questionnaire while maintaining results’ comparability. Lik-

ert-type scales were also useful to turn answers into numerical data and 

subsequently perform statistical testing with relative ease. Open-ended 

statements and colour shades rankings provided additional insights on 

users’ reasoning and logical processes; however, the answers that 

emerged from those sections were not necessarily consistent with other 

numerical results. A future similar survey might need to be built slightly 

differently in order to investigate the potential motives behind any dis-

crepancies in different data categories. 

 Limitations and further improvements: while this survey seemed to be 

overall effective for the study, it did suffer from some minor shortfalls that 

can be taken into consideration for a future survey. For instance, an eye-

tracking technology could potentially provide further insights on users’ 

attention and focus patterns, as well as additional information on timing 

and decisions under time pressure. Provided a large enough number of 

users is available, a one-to-one free interview or a focus group could also 

yield interesting results in a more qualitative study. 
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5. Conclusions and outlook 

 

This work had the primary goal to investigate how map-readers, be they experi-

enced or inexperienced, make use of heuristics to decode and reason upon car-

tographic information in uncertain contexts. With this aim, an extensive litera-

ture review served as a basis to identify study cases, design several maps from 

the concept of “borderization” and finally build a user test aimed at enabling 

such research. Subsequent findings were interpreted in light of the original re-

search objectives, as well as the theoretical state-of-the-art concerning heuris-

tics and cognitive biases in geospatial visualization.  

Results from the test seemed to further validate previous literature findings by 

highlighting the use of several different known heuristics in many ways and con-

texts. Namely, users appeared to consistently adopt containment and distance 

heuristics to judge risk levels of different points in space. Results also proved 

that some visualization techniques, such as a gradient instead of a single hard 

border, can help reduce these heuristics and come up with different judgements, 

which however may or may not be accurate. Additionally, the test proved that 

uncertainty visualization also plays a significant role in user choices and per-

ceptions, mainly by affecting their confidence and by changing heuristic use in 

numerous and sometimes contrasting ways. In other words, uncertainty visual-

ization acted as an added layer of complexity that made choices less straight-

forward overall, thus also complicating the use of heuristics. Finally, results sug-

gested that the choice of colours does affect users’ perception of the maps, alt-

hough an effective use of the legend can offset any such impact.  

Findings also provided evidence for the use of some of the original heuristics 

cited by Tversky & Kahneman. Arguably, containment and distance biases can 

also be framed as evidence for these heuristics. Additionally, users seemingly 

adopted other heuristics beyond the original ones introduced in 1974, such as 

affective association and loss aversion.  
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An online questionnaire proved to be an effective tool to recruit many users in a 

short time and collect as truthful and genuine answers as possible. However, 

the questionnaire presented some limitations, such as the inability to track us-

ers’ eye movements to gather insights about map focus, or the impossibility to 

interview respondents in real-time. Additionally, a similar survey might benefit 

from the randomization of study cases, since results from the test may suggest 

that users collected knowledge and awareness from the first study case and, in 

the second study case, did not employ heuristics that they might have adopted 

otherwise. 

Notably, it was not possible to identify fully quantitative criteria to detect heu-

ristic usage. Due to the very nature of the phenomenon, any numerical finding 

needed to always be supported by some degree of qualitative analysis in order 

to produce meaningful conclusions. Significantly, past literature also does not 

provide standardized quantitative results to use as pre-conditions to detect 

heuristic usage. Future cartographic research in the field of heuristics might 

need to work more closely with other cognitive science domains in order to iden-

tify unequivocal criteria and remove as much uncertainty and ambiguity as pos-

sible. 

Further work in the field can benefit from the findings of this study in several 

ways: 

 By choosing appropriate cartographic designs to draw boundaries, 

through techniques that are as consistent as possible with the subject, 

scope, and data type of the map, 

 By building heuristics-aware natural hazard maps that not only com-

municate the risk effectively, but also feel helpful and easy to read for 

final users, and 

 By increasing its collaboration with cognitive science domains to identify 

yet unknown links between heuristics, biases and common visualization 

methods. 

Overall, the present work shed further light on cognitive biases and human rea-

soning in cartographic visualization and, more specifically, on how humans use 
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logical shortcuts to analyse geospatial information in uncertain contexts. These 

findings sit in an underexplored domain that, however, remains crucial for car-

tographers to come up with better visualizations and bridge the gap between 

data, maps and users. As maps are primarily a communication tool, it is imper-

ative to take heuristics and cognitive biases into account to provide users with 

the best possible information and support decision making by avoiding unnec-

essary confusion.  
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Appendix: Borderizations 

 

Single Hard Border 
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Single Hard Border with extrinsic uncertainty
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Limited Fuzzy Border
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Limited Fuzzy Border with extrinsic uncertainty  
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Layered Border 
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Layered Border with extrinsic uncertainty 
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Total Fuzzy Border 
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Total Fuzzy Border with extrinsic uncertainty 
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Fuzzy Red  
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Red with Fog 
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Red with Texture 
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Fuzzy Green 
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Green with Fog 
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Green with Texture 

 

 


