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Abstract
Particle problems and fluid-particle coupled problems exist in nature as well as in many indus-
trial applications. Usually, the complexity in pure particle problems lies in the huge number of
particles involved when e.g. considering transport processes of gravel or grain. The interaction
of particles with fluid is of particular interest in the chemical industry in mixing processes. Many
biological applications feature particulate flows as well, e.g. when it comes to drug delivery in
the human body. In this thesis, particles are considered as small physical objects which are of
spherical shape. Each object is modeled as a single particle which interacts with other particles,
with walls and also with fluid flow.

In this thesis, a general framework is developed which enables the investigation of pure par-
ticle problems as well as fluid-particle coupled problems. For pure particle problems, the focus
is on the parallel performance of the proposed approach. On this basis, a flexible multipur-
pose Euler-Lagrange framework has been developed in this work. Therein, the particles are ac-
counted for in a Lagrangian frame whereas the fluid is treated in an Eulerian frame. The fluid is
modeled via the volume averaged Navier-Stokes equations, which are derived for the first time
within a variational multiscale finite element method in which the dispersed phase fraction is
accounted for in the continuity equation. Proper modeling of the interaction between both fields
is of paramount importance. In order to properly account for the volume displaced by the par-
ticles in the fluid, special attention is given to the computation of the dispersed phase fraction.
Due to the point-like modeled particles, polynomial filtering functions are applied at the particle
positions in order to compute the displaced volume in the fluid. The emerging volume integrals
are transformed to line integrals by applying the divergence theorem twice. This enables an ef-
ficient analytical integration of the resulting line integrals. The coupling between particles and
fluid is improved by a strong coupling scheme based on Aitken’s ∆2 method, which is the first
time applied in an Euler-Lagrange framework. Convergence can be accelerated, or achieved at
all, which is of particular importance when a variable radius evolution of the particles is con-
sidered. The Rayleigh-Plesset equation is included in the developed framework to evolve the
particle radius dependent on the ambient conditions. Due to the highly nonlinear character of
this ordinary differential equation, a subcycling procedure is applied which allows for time step
size adaptations leading to an efficient time integration of the radius evolution. The time step
size of the fluid can be chosen larger because the implicit time integration poses less restrictions
on the admissible time step size.

Finally, the developed multipurpose framework is applied to several test cases featuring in-
creasing complexity. The pure particle algorithm is validated with a simple outflow problem and
parallel performance is assessed using a mixing problem. The fluid-particle coupled test cases in-
clude particle numbers between 2500 and a Taylor-Green vortex example with approximately 0.5
million particles. In a fluidized bed application, different flow patterns can be identified including
regions with dense particle packing. Next, the strong coupling scheme is applied to flow around
a NACA 0015 hydrofoil featuring particles with a variable radius governed by the Rayleigh-
Plesset equation. Finally, it is shown that the developed framework can cope with complex fluid
domains as they occur e.g. in biological applications when particulate flow into a human lung
is investigated. A comparison of the drug delivery during a breathing cycle in a healthy and a
pathological lung is performed.
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Zusammenfassung

Partikelprobleme und fluid-partikel-gekoppelte Anwendungen treten in der Natur, wie auch in
industriellen Fragestellungen auf. Üblicherweise liegt die Schwierigkeit von reinen Partikelpro-
blemen in der großen Zahl an beteiligten Partikeln, wie beispielsweise bei Schüttvorgängen von
Kies oder Getreide. Die Interaktion von Partikeln mit Fluiden ist für die chemische Industrie
bei Mischvorgängen von besonderem Interesse. Außerdem finden sich in vielen biologischen
Anwendungen partikelbehaftete Strömungen, wie beispielsweise bei der Verteilung von Medika-
menten im meschlichen Körper. In dieser Arbeit werden Partikel als kleine physikalische Objek-
te gesehen, die in erster Näherung kugelförmig sind. Jedes Objekt wird als einzelnes Partikel
modelliert, das mit anderen Partikeln, mit Wänden oder auch mit Strömungen interagieren kann.

In dieser Arbeit ist ein allgemeines Framework entwickelt worden, das die Untersuchung
reiner Partikelprobleme, wie auch von fluid-partikel-gekoppelten Problemen ermöglicht. Der
Fokus der reinen Partikelprobleme liegt bei der parallelen Leistungsfähigkeit des vorgeschla-
genen Ansatzes. Darauf aufbauend wurde im Rahmen dieser Arbeit ein flexibles vielzweck
Euler-Lagrange Framework entwickelt. Darin werden die Partikel in einer Lagrangen Betrach-
tung und das Fluid in einer Eulerschen Betrachtung berücksichtigt. Das Fluid wird mittels der
volumengemittelten Navier-Stokes Gleichungen modelliert, welche erstmalig in einer varia-
tionellen Mehrskalen Finite Element Methode hergeleitet werden, in der der Anteil disperser
Phase in der Kontinuitätsgleichung berücksichtigt wird. Eine gute Modellierung der Interaktion
zwischen den Feldern ist von großer Bedeutung. Um das von den Partikeln verdrängte Volu-
men im Fluid korrekt zu berücksichtigen, wird besonderes Augenmerk auf die Berechnung des
Partikelanteils gelegt. Aufgrund der punktförmigen Modellierung der Partikel werden polynomi-
ale Filterfunktionen an den Partikelpositionen angebracht, um das verdrängte Volumen im Fluid
ermitteln zu können. Die auftretenden Volumenintegrale werden dabei durch zweimalige An-
wendung des Divergenztheorems zu Linienintegralen heruntergebrochen, was schließlich eine
effiziente analytische Integration der resultierenden Linienintegrale ermöglicht. Die Kopplung
zwischen Partikeln und Fluid wird durch ein starkes Kopplungsschema verbessert, das erst-
malig auf Aitkens ∆2 Verfahren innerhalb eines Euler-Lagrangeansatzes basiert. Die Konver-
genz kann beschleunigt werden, was von besonderer Bedeutung ist, wenn ein zeitlich variabler
Radius der Partikel berücksichtigt wird. Es wird die Rayleigh-Plessetgleichung verwendet um
den Radiusverlauf, abhängig von den Umgebungsbedingungen, voranzuschreiten. Aufgrund des
hochgradig nichtlinearen Charakters dieser gewöhnlichen Differentialgleichung wird ein Ver-
fahren mit Unteriterationen angewendet, welches Zeitschrittweitenanpassungen ermöglicht, was
eine effiziente Zeitintegration der Radiusänderungen ermöglicht. Die Zeitschrittweite des Fluids
kann größer gewählt werden, da das implizite Zeitintegrationsschema geringere Einschränkun-
gen an die zulässige Zeitschrittweite hat.

Schließlich wird das vielseitig einsetzbare Framework angewendet auf Testfälle mit ansteigen-
dem Schwierigkeitsgrad. Der reine Partikelalgorithmus wird mittels eines einfachen Ausfluss-
problems validiert und die parallele Leistungsfähigkeit wird anhand eines Mischvorgangs un-
tersucht. Die fluid-partikel-gekoppelten Testfälle enthalten ein Taylor-Green Wirbelbeispiel mit
etwa einer halben Million Partikeln. Desweiteren können in einer Wirbelschichtanwendung ver-
schiedene Strömungsmuster identifiziert werden, einschließlich von Gebieten mit dichten Par-
tikelpackungen. Als nächstes wird das starke Kopplungsschema auf die Umströmung eines NACA
0015 Profils angewendet, bei dem Partikel mit einem variablen Radius basierend auf der Rayleigh-
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Plessetgleichung berücksichtigt werden. Schlussendlich wird gezeigt, dass das entwickelte Frame-
work in der Lage ist, komplexe Fluidgebiete, wie sie beispielsweise in biologischen Anwendun-
gen bei partikelbehafteter Strömung in die menschliche Lunge auftreten, zu berücksichtigen. Ein
Vergleich der Medikamentenverteilung während eines Atemzyklus in einer gesunden und einer
pathologischen Lunge wird durchgeführt.
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Besonderer Dank gilt meinem Bürokollegen und Freund Dr. Karl-Robert Wichmann. Mit ihm
habe ich bereits das Maschinenbaustudium gemeinsam von Tag eins weg absolviert, so dass bis
Ende meiner Lehrstuhlzeit über zehn Jahre gemeinsame Freuden- und Leidenszeit hinter uns
liegen. Von ihm habe ich sehr viel lernen können und die fachlichen, wie auch nicht-fachlichen,
Diskussionen mit ihm haben mich stets vorangebracht. Ein großer Dank gilt den Fluidleuten
am Lehrstuhl, insbesondere Dr. Ursula Rasthofer, Dr. Volker Gravemeier, Dr. Magnus Winter,
Dr. Benjamin Krank und Dr. Benedikt Schott, die mir regelmäßig bei meinem Verständnis und
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1 Introduction

1.1 Motivation

Multiphase (or multicomponent, as preferred by Crowe et al. [33]) flows are ubiquitous in our
lives. A few examples are given to show the vast variety of applications:

• Bubbly flows can be observed in daily life in any glass of sparkling water with bubbles
rising in the liquid. A large scale application is the transport of oil in pipelines. Another
example is cavitation in pumps and at ship propellers which can lead to power loss, noise,
vibration, and material damage. At the same time, cavitation at a purposeful level is desired
in high-pressure fuel injection systems to enhance mixing processes of fuel and air. There
is also a medical application of cavitation in which kidney stones are broken into smaller
pieces by using impulsively collapsing bubbles close to the surface of the kidney stones.

• Droplet flows are e.g. small spittle droplets released by a coughing person which follow
the air flow and spread in the environment. A rain storm can be an impressive example for
droplets driven by fluid flow. An important medical problem is the application of aerosols
into the lung of patients in such a way that the agent reaches optimally the infected region.

• Particulate flows are common in chemical industry processes when solid particles need to
be transported, dried, or coated. Also the propagation of sand dunes or abrasive water-jet
cutting are applications of particulate flows.

All aforementioned examples belong to the class of dispersed flows in which a large number of
rather small dispersed objects interacts with a continuous phase. This will be the focus of this
thesis.

For the sake of completeness, further flow categories are distinguished, see e.g. [33], [116],
or [207]. The opposite category of dispersed flows are separated flows. They consist of a small
number of bulk fluids. Stratified flow in a pipe or the Rayleigh-Taylor instability induced by
heavier fluid placed on top of lighter one belong to this category. A liquid jet entering a domain
filled with gas or liquid is another example. This list can further be extended by a droplet hitting
a free surface forming a splash or oil in water released by a damaged oil-tanker. There is also a
wide transition between separated flow and dispersed flow. Dependent on the flow velocity and
fill level of the phases in a pipe, stratified flow may turn into plug or slug flow. The break-up of
a liquid jet into gas leads to cascades of smaller structures. Hence, regions with dispersed flow
and separated flow regimes coexist.

This small summary of applications illustrates the relevance of multiphase and especially dis-
persed flows. In the aforementioned examples, it is desirable to predict the behavior of dispersed
flows in order to improve processes with respect to certain requirements. Often, experiments
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are limited due to the involved time or spatial scales. Furthermore, the effort might be large for
proper experimental setups.

Computer simulations can help to gain insight into multiphase flow and to improve design
processes. However, even with the help of super computers, a full resolution of real world dis-
persed flow applications is still not feasible. Hence, simplified models are necessary to cope with
the complex phenomenons included in dispersed flows.

1.2 Numerical models for dispersed flows

Many different approaches can be applied to the numerical simulation of dispersed multiphase
flows. The choice is usually driven by the desired resolution of the dispersed phase, the flow
around the dispersed phase and the size of the problem of interest. Inspired by the review paper of
van der Hoef et al. [216], a distinction into methods with resolved, underresolved and unresolved
interface between the involved phases in dispersed flow is possible.

The most simplified models are known as homogenized or mixture models. They are also de-
noted as one-fluid model because only one set of governing equations is solved. Hence, these
models do not resolve the interface between the phases. Pioneering work goes back to Ishii [106]
and different variants have been developed later on. Manninen and Taivassalo [143] reviews the
mixture model with a slip-velocity between the involved phases. Dependent on the model to
compute the velocity differences, drift-flux model (see Zuber and Findlay [243] or Ishii [107]),
diffusion model (see Ishii [106] or Ungarish [211]) and further variants by e.g. Pericleous and
Drake [165], Chao et al. [25] or Johansen et al. [110] have been developed. A common appli-
cation for these models is gas-liquid mixtures in pipes. Assuming thermodynamic equilibrium
between the phases, i.e. identical velocity, pressure, and temperature of the involved phases, the
cavitation phenomenon has been modeled by e.g. Kubota et al. [122], Schmidt et al. [181], or
Schnerr et al. [183].

The aforementioned homogenized models suffer from the difficulty of a strong link between
the different phases which is not necessarily fulfilled by the problem of interest. Hence, more de-
tailed approaches have been developed which resolve the involved phases such that an interface
between the dispersions and the carrier fluid in the dispersed flow comes into play. Dependent
on the detail of the resolution of the dispersed phase, several approaches can be distinguished.
To the class of fictitious domain methods belongs the approach presented by Glowinski et al.
[73], Glowinski et al. [74], and Patankar et al. [163]. Therein, the fluid is described in an Eu-
lerian frame with fixed grid covering the full domain. The dispersions are driven by the fluid
forces using Newton’s second law. The fluid mesh resolution is finer than the size of a parti-
cle and the fluid forces are computed at the interface of the dispersions. Hence, fluid traction is
integrated over the surface of each particle leading to a force resultant. In order to couple the
motion of the dispersed phase with the fluid, Lagrange multipliers are applied where particles
reside in such a way that the fluid velocity is identical to the particle velocity. Particle-particle
and particle-wall collisions are accounted for with short-range repulsive forces which are also
added in Newton’s second law. Instead of using Lagrange multipliers, the particle velocity can
be imposed as Dirichlet boundary condition in the fluid such that a no-slip condition between
the dispersion’s surface velocity and the fluid is enforced. This approach is known as fictitious
boundary method and is used e.g. by Duchanoy and Jongen [51], Wan and Turek [225], or Avci
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and Wriggers [9]. Also, the immersed boundary method invented by Peskin [166] belongs to the
class of fictitious domain methods. A source term on the right-hand side of the fluid momentum
equation is used to account for the influence of the dispersed phase. The force at points on the
dispersion’s surface is applied to the fluid volume using a regularized Dirac delta function. Pes-
kin’s approach belongs to the group of continuous forcing approaches, cf. Mittal and Iaccarino
[151]. To overcome the possible numerical stiffness of the approach, an alternative forcing model
has been applied by Goldstein et al. [76] or Saiki and Biringen [179]. Continuous forcing has
been further developed by Fadlun et al. [58] to impose a consistent force term which enforces
the fluid to match the interface velocity of each dispersion. This is known as discrete forcing
approach. As the interior of the dispersions is still occupied with fluid, it is either possible to im-
pose velocity coupling conditions inside the dispersion or to leave the velocity free to develop a
flow without imposing anything. According to Fadlun et al. [58], the solution of the fluid around
the dispersions is nearly identical for both cases. The force coupling method by Maxey and Patel
[146] and Lomholt and Maxey [138] is similar to Peskin’s approach as the force exerted from the
dispersion onto the continuous fluid is regularized with a Gaussian curve. All aforementioned
approaches of the fictitious domain method have an overlapping fluid and dispersion domain.
The difference is in the coupling conditions.

Instead of using overlapping domains, the interior of the dispersed phase can be resolved sepa-
rately from the outside fluid phase. Such an approach is introduced for bubbly flows by Unverdi
and Tryggvason [212]. At this high level of detailedness in which both sides of the interface are
fully resolved with their own set of equations, two main methods can be distinguished based on
how the interface is treated. The approach of Unverdi and Tryggvason [212] belongs to the class
of methods which track the interface. Also, the marker and cell method invented by Harlow and
Welch [89] belongs to this category. The alternative of tracking is to capture the interface with
the level set technique, see e.g. Osher and Sethian [161], Sethian and Smereka [186], or Hu et al.
[99]. Another interface capturing approach is the volume-of-fluid (VOF) method introduced by
Hirt and Nichols [93] and review by Fuster et al. [67]. All aforementioned approaches have in
common, that the fluid equations (independently of overlapping domains or separated domains
for fluid and dispersions) are solved on a fixed grid. In contrast, the arbitrary Lagrangian-Eulerian
(ALE) method relies on a moving mesh in which the fluid mesh is deformed to follow the dis-
persions’ motion. In order to resolve the problem of distorted fluid grids, continuous remeshing
and data mapping is applied, cf. Hu et al. [97] or Hu et al. [98].

All approaches which rely on a resolved interface between the carrier fluid flow and the dis-
persed phase require the fluid mesh to be finer resolved than the smallest dispersion is in size. At
least a few fluid cells in each spatial direction are necessary to enable the force computation of
the fluid forces acting on the dispersions. The computation of 15, 000 resolved cavitation bub-
bles in a fluid mesh with 13 · 1012 cells on a super computer (see Rossinelli et al. [176]) was
awarded with the Gordon Bell Prize in 2013. Hence, this is far beyond the scope of industrial
applications.

An intermediate level of detailedness (and also of computational effort) can be achieved using
so-called two-fluid models in which the equations for the carrier as well as for the dispersed
phase are averaged over the whole computational domain leading to interpenetrating continua.
The foundations have been lied by Anderson and Jackson [5] and Ishii [106]. Further details on
the derivation can be found in Zhang and Prosperetti [238]. Source terms emerge while deriving
the averaged set of equations. These source terms in the continuity and momentum equation
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act as coupling terms between the phases. The two-fluid model is successfully applied in gas-
fluidization problems, cf. Gidaspow [71], Sokolichin and Eigenberger [191], or van Wachem
et al. [219]. The difficulty in the solid phase is to find an appropriate constitutive law which
models the interaction of particles correctly, cf. Ishii and Mishima [108]. In order to circumvent
the difficulties in modeling the solid constitutive law, it is valid to track each particle individu-
ally, cf. Kleinstreuer [116], van der Hoef et al. [216], or Yu and Xu [235]. It is also trivial to
include poly-sized dispersions which is non-trivial in two-fluid models, see Rizk [175]. Conse-
quently, this approach combines a continuous description of the carrier phase in Eulerian frame
and a particle description of the dispersed phase in Lagrangian frame. The interface between the
phases is not resolved explicitly. The dispersions are treated point-like and they are tracked indi-
vidually. Hence, this approach belongs to underresolved interface models. The effort is increased
compared to two-fluid models because of the potentially large number of dispersions which are
tracked individually. The approach is known under many different names: particle trajectory
model by Kleinstreuer [116], discrete particle model in the review paper by Deen et al. [41] or
van Wachem et al. [219], combined continuum and discrete model by Yu and Xu [235] or Zei-
dan et al. [237], computational fluid dynamics-discrete element method (CFD-DEM) by Kloss
et al. [117] or Gupta et al. [83]. The probably most commonly used notation is Euler-Lagrange
model (not to be confused with the ALE method in the context of moving mesh approaches
such as in fluid-structure interaction). The focus of this thesis is on the Euler-Lagrange model
which will be denoted with this name in the reminder. A detailed overview over the literature of
Euler-Lagrange models will be given at the end of this section.

To further clarify, in the present thesis, each particle in the Euler-Lagrange model represents
a physical object (solid particle, gaseous bubble or liquid droplet) which is tracked through-
out the simulation. In contrast, there are many approaches available which use a particle based
discretization for the Navier-Stokes equations to model fluid flow. An overview is given in the
review paper by Koumoutsakos [121]. The continuous flow field is approximated by a set of
discrete particles. Each particle holds information such as position, velocity, volume, and e.g.
vorticity strength in vortex methods (see Cottet and Koumoutsakos [31] or Selle et al. [185]) or
densities in smoothed particle hydrodynamics (SPH) (see Gingold and Monaghan [72] or Mon-
aghan [152]). Derived from SPH is the moving-particle semi-implicit method (see Koshizuka
and Oka [119] or Koshizuka et al. [120]). These examples are just a few among many others.
They have in common that a kernel function is placed at the particle position which spreads the
influence in the neighborhood of the particle. Particle interaction is used to evolve the fluid field.
The methods differ in the way how to compute spatial derivatives, how flow quantities are inter-
polated, whether explicit or implicit time integration schemes are applied, etc. Nevertheless their
mesh free character unifies these methods. Meshfree particle methods have also been applied to
solve structural dynamics problems, see e.g. the element-free Galerkin method by Belytschko
et al. [13], the diffuse element method by Nayroles et al. [156], or the reproducing kernel par-
ticle method by Liu et al. [135]. The Lattice Boltzmann method (LBM), see Chen and Doolen
[26] or He and Luo [90], is also used to model fluid flows. The underlying idea is that fictive
particles residing on a discrete lattice resemble macroscopic flow behavior by repeated collision
and streaming operations.

Besides pure particle discretization approaches, also combined approaches which rely on non-
fixed particles and a fixed grid in the background are applied to solve partial differential equa-
tions. Parts of the computation are performed on the grid while the information is stored in the
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particles. Data mapping from the particles to the grid and vice versa is necessary. To this group of
methods belong e.g. the particle-in-cell method invented by Harlow [88] which has been further
developed to the material point method by Sulsky et al. [200]. Instead of using a fixed grid, in
the particle finite element method (PFEM) a mesh is generated in each time step via Delaunay
tessellation, cf. Idelsohn et al. [104] and Oñate et al. [159]. The mesh in PFEM is used to com-
pute the forces acting on the particles which are tracked in a Lagrangian frame. Furthermore, the
governing equations are solved on this generated grid. In PFEM, the particles can represent fluid
phase or solid phase and thus the Navier-Stokes equations or the solid dynamics balance of linear
momentum is solved in each domain, respectively. The nontrivial task is to find the respective
boundaries and keep the generated meshes well-shaped demanding for adaptive mesh refinement
strategies. The distinction between fluid and solid material points enables the solution of flexible
bodies submerged in fluid flow which can be used to model dispersed particulate flows, see Oñate
et al. [160]. Those complex scenarios might also be tackled with fluid-structure interaction me-
thods which are capable of handling collisions between solid sub domains, cf. e.g. Astorino et al.
[7]. The latter method is currently not applied to dispersed flows due to the computational com-
plexity. Nevertheless, it would be possible. Similar complex is the approach chosen by Leonardi
et al. [133] which combines a fluid modeled with the LBM approach interacting with Lagrangian
particles accounted for in a DEM framework and additionally flexible structures modeled with
the classical finite element method (see e.g. the textbooks of Zienkiewicz et al. [241] or Hughes
[101]) which interact with the fluid as well as with the particles.

A very interesting field, which will not be covered in this thesis, is dispersed turbulent flow.
The particles are known to influence turbulence (both attenuation as well as enhancement are
reported, cf. Elghobashi [55]) and proper modeling is investigated e.g. by Elghobashi [55], Som-
merfeld [193], Laı́n et al. [128], Mazzitelli et al. [148], Kuerten [123], Uhlmann [210], Vreman
et al. [222], Schwarzkopf et al. [184], Gobert and Manhart [75], Schneiderbauer and Pirker [182],
or Corsini et al. [30], see also the review article by Dhotre et al. [44].

After having reviewed models for dispersed flows which will not be covered in this thesis,
an overview of the literature concerning Euler-Lagrange models with underresolved interface
between the phases will be given. The focus of this thesis will be on this method. The continuous
phase is modeled using a fixed grid in Eulerian frame whereas the (point-) particles are tracked
in a Lagrangian frame. The dispersed phase and continuous phase interpenetrate, i.e. cover the
same domain, thus that the fluid covers the whole computational domain.

A distinction can be made based on the coupling between the Euler and the Lagrange phase.
According to Elghobashi [55], the dilute and the dense suspension regime can be distinguished
at a threshold of 0.1 % volume fraction of the dispersed phase in the mixture volume. Above
this limit, it is necessary to account for collisions between dispersions in order to obtain reason-
able results. The dilute regime can be further distinguished. Below 10−4 % volume fraction of
dispersion, the effect of the dispersed phase onto the continuous phase can be neglected. Hence,
only effects from the continuous phase on the dispersed phase are accounted for, which is also
referred to as one-way coupling.

The first approach of combining an Eulerian description for the continuous phase and a La-
grangian description for the dispersed phase dates back to Migdal and Agosta [150]. They ac-
count for the dispersed phase with source terms in the mass, momentum and energy balance of
the continuous phase. Particles are driven by the drag force exerted by the continuous phase.
The reaction force of the particle drag force is included in the fluid momentum source term. The
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occupied volume of the dispersions is accounted for as a source term in the continuity equation.
Collisions between the dispersions are neglected. Hence, this approach belongs to the class of
two-way coupled approaches including the effect of displaced volume by the dispersed phase
while ignoring inter-dispersion collisions. The case of two-way coupling with including colli-
sions between the dispersions is sometimes denoted as four-way coupling, due to the mutual
interaction of continuous phase with dispersions and dispersions with each other.

One-way coupling can be found in literature especially when the focus is on turbulence mod-
eling, e.g. Breuer et al. [21], Squires and Simonin [195], Kuerten [123], Lambert et al. [129], or
Corsini et al. [30]. The assumption of a large number of small enough dispersions justifies this
assumption. The same argumentation is applied in bio-medical applications when a large number
of aerosol droplets enters the human lung, see e.g. Zhang et al. [240] or Feng and Kleinstreuer
[60]. The latter compare results for one- and two-way coupled simulations. Further comparisons
of one- and two-way coupled simulations in non-biological applications can be found in e.g.
Druzhinin and Elghobashi [50], Derksen [43], or Shams et al. [187]. A one-way coupled simula-
tion of bubbles undergoing radius changes based on the Rayleigh-Plesset equation can be found
in Mattson and Mahesh [144].

In case the dispersions are very small, they can be grouped to so-called parcels. Within a
parcel, one particle is analyzed in detail and the results are applied to the remaining dispersions
in the parcel, cf. Subramaniam [197] or Löhner et al. [137].

A, by far not complete, overview of the two-way coupled approaches in the literature is given
in Table 1.1. The approaches are distinguished whether the dispersed phase fraction is accounted
for in the continuous phase, whether collisions between the dispersions are included, and whether
a variable radius of the particles governed by the Rayleigh-Plesset equation is incorporated in
the respective approach.

author dispersed collision RP phases:
phase fraction? model? equation? continuous - dispersed

Durst et al. [54] no – no gas/liquid - solid
Laı́n et al. [127] no – no liquid - gas

Mazzitelli et al. [148] no – no liquid - gas
Sommerfeld et al. [194] no stochastic no liquid - gas

Decker [39] no stochastic no liquid - solid
Zohdi [242] no mixed no gas - solid

Vreman et al. [222] no MD no gas - solid
Sungkorn et al. [201] no stochastic no liquid - gas

Vallier et al. [215] no – no liquid - gas
Laı́n and Sommerfeld [126] no stochastic no gas - solid

Vallier [214] no MD yes liquid -gas
Löhner et al. [137] no DEM no gas - solid

Dukowicz [52] yes – no gas - liquid
Tomiyama et al. [205] yes – no liquid - gas
Sokolichin et al. [192] yes – no liquid - gas
Kitagawa et al. [115] yes – no liquid - gas/solid

6



1.2 Numerical models for dispersed flows

author dispersed collision RP phases:
phase fraction? model? equation? continuous - dispersed

Ferrante and Elghobashi [61] yes – no liquid - gas
Giannadakis et al. [69] yes – yes liquid - gas
Yakubov et al. [233] yes – yes liquid - gas

Ma et al. [141] yes – yes liquid - gas
Fuster and Colonius [66] yes – yes liquid - gas

Tsuji et al. [208] yes DEM no gas - solid
Hoomans et al. [94] yes MD no gas - solid
Delnoij et al. [42] yes MD no liquid - gas

Kawaguchi et al. [113] yes DEM no gas - solid
van Wachem et al. [220] yes DEM no gas - solid

Kafui et al. [111] yes MD no gas - solid
Shan and Mostaghimi [188] yes stochastic no gas - liquid

Yu and Xu [235] yes DEM no gas - solid
Deen et al. [40] yes MD no gas - liquid

Darmana et al. [35] yes MD no liquid - gas
Zhang and Ahmadi [239] yes MD no liquid - gas&solid

Link et al. [134] yes MD no gas - solid
Di Renzo and Di Maio [47] yes DEM no liquid/gas - solid

Shams et al. [187] yes DEM yes liquid - gas
Kloss et al. [117] yes DEM no gas - solid

Feng and Kleinstreuer [60] yes DEM no gas - solid
Gupta et al. [83] yes DEM no gas - solid

Table 1.1: Two-way coupled Euler-Lagrange approaches with underresolved interface in lit-
erature. The approaches are distinguished whether dispersed phase fraction, inter-
dispersion collisions and variable radius governed by RP equation are included.

For the contact between the particles, two approaches are mainly used: the hard sphere and
the soft sphere contact model. The former is preferred in molecular dynamics applications, see
Alder and Wainwright [2] and the latter is also known as Discrete (or Distinct) Element Method
(DEM) invented by Cundall and Strack [34]. In the soft sphere approach, particles are allowed
to overlap and the size of the overlap is used to compute a repulsive force. In contrast, in the
hard sphere approach, the particles are moved up to the point of a binary collision which is then
solved for using linear and angular momentum equilibrium while neglecting all other force con-
tributions during the collision evaluation. In the latter, an event queue is used and collision events
are processed one by one. A detailed overview of both methods is given, e.g. by Sigurgeirsson
et al. [189] or Luding [140]. A comparison of both contact approaches in the application of dis-
persed flows can be found in Di Renzo and Di Maio [46], Deen et al. [41], and Crowe et al. [33].
In Euler-Lagrange models both collision approaches can be found as obvious in Table 1.1. The
advantage of the soft sphere contact model is in densely packed particle regimes with potentially
persisting contact. However, a small time step size is necessary for stable time integration. The
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hard sphere approach cannot handle persisting contact. However, it is superior when collisions
occur less frequently because a larger time step size can be chosen. For particle applications
without fluid, Luding [140], Valentini and Schwartzentruber [213], and Buist et al. [24] pro-
pose a combination of both collision methods in order to avoid the respective drawbacks. Both
presented collision models belong to the class of deterministic collision models. In contrast, a
stochastic collision model is developed by Sommerfeld [193] in which a fictive collision partner
is created based on the particles in the neighborhood and collision probability is evaluated based
on kinetic theory.

Figure 1.1: Comparison of models: Resolved (left), under resolved (center), and unresolved in-
terface (right) (from Lau et al. [130]).

In order to summarize the vast variety of approaches for dispersed multi-phase flows, see Fig-
ure 1.1. There is a trade-off between detailedness of the results and the size of the scales which
can be resolved with reasonable computational effort. The compromise is an Euler-Lagrange
approach which represents each dispersion as an individual particle which is tracked over time.
An advantage over mixture models is that there is no strong coupling between the phases in-
corporated in the model. At the same time, the interface is not resolved in detail allowing for
a much coarser modeling of the continuous phase. Therefore, an Euler-Lagrange approach is
suitable to solve dispersed flows with a large number of dispersions of potentially different size
in a reasonable time.
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1.3 Research objective and achievements

The aim of the present thesis is to develop a multipurpose simulation tool for dispersed flows
based on an Euler-Lagrange approach including inner- and inter-phase interactions. The achieve-
ments of this thesis may be summarized as follows:

• To the best of the author’s knowledge, a variational multiscale formulation of the vol-
ume averaged Navier-Stokes (NS) equations is derived for the first time which includes
dispersed phase fraction, i.e. the effect of fluid volume displaced by the dispersions. The
present formulation for dispersed flow is closely related to the variational multiscale ap-
proach of variable-density flow at low Mach number presented by Gravemeier and Wall
[77]. This is extended towards the volume averaged NS equations to represent the contin-
uous phase in the Euler-Lagrange framework.

• Furthermore, a novel second order polynomial filtering function for the dispersed phase
fraction computation is proposed. The dispersed phase fraction is used to account for the
displaced volume of the evolution of the dispersed phase by projecting the volume of each
dispersion onto the fluid using a filtering function. Dispersed phase fraction calculation
involves solving volume integrals over the fluid elements of the Eulerian grid with the
filtering function in the integrand. These volume integrals are transformed to line integrals
via applying divergence theorem twice and due to the polynomial filtering function, the
line integrals can be integrated analytically.

• It is the first time that a strong coupling scheme using relaxation based on Aitken’s ∆2

method is applied in an Euler-Lagrange approach. In particular, dispersed bubbly flows
whose radius is governed by the Rayleigh-Plesset equation are prone to convergence prob-
lems. Here, convergence is achieved with a strong coupling scheme and it is massively
accelerated using Aitken’s ∆2-method.

• The suggested framework allows for investigating a vast variety of applications. The weak
and strong coupling schemes enable a convenient simulation of fluid-particle coupled
problems covering the entire spectrum of dispersed flow problems from gaseous to solid
particles. Due to the versatile framework, in the limit of a vanishing influence of the con-
tinuous phase, the developed framework reduces to a pure particle solver which includes
freely moving and colliding particles with and without walls.

• A specifically-devised parallelization strategy accounts for the trend towards large scale
simulations. Memory limitations are avoided by circumventing a fully redundant data lay-
out. An essential feature is that coupling information between the phases is exchanged
locally without the need for inter-processor communication during evaluation. This comes
at cost of appropriate ghosting which needs to be provided at the processor boundaries. The
number of dispersions and fluid elements covered in the examples of this thesis reaches
sizes O(106).

The proposed multipurpose simulation tool for dispersed flow problems as well as pure particle
problems is implemented in BACI, a parallel finite-element-based multiphysics solver which is
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developed jointly at the Institute for Computational Mechanics and the Mechanics & High Per-
formance Computing Group at the Technische Universität München. It utilizes powerful libraries
provided by the open-source Trilinos project conducted by Heroux et al. [91].

The starting point for the present work is the variable-density variational multiscale formu-
lation for the fluid flow at low Mach number developed by Gravemeier and Wall [77]. The
extension of the formulation for volume averaged NS equations as well as all particle related
issues including the coupling of flow and particle solver are developed in the scope of this thesis.

Parts of the numerical methods shown in this thesis have already been published in Hammerl
and Wall [87] and Menner* et al. [149].

1.4 Outline
The outline of this thesis is as follows. In Chapter 2, the volume averaged Navier-Stokes equa-
tions are summarized to account for the continuous phase in an Eulerian frame. The dispersed
phase is introduced as an ensemble of particles which are tracked in a Lagrangian way. Each
particle is equipped with six degrees of freedom to account for translational and rotational de-
grees of freedom. As an extension, it is possible to account for radius changes governed by the
Rayleigh-Plesset equation in case bubbly flow is investigated. Lastly, the coupling between the
carrier phase and the dispersions is described. Afterwards, in Chapter 3, the proposed computa-
tional approach is presented. Herein, the residual-based variational multiscale method is derived
to represent the spatial and temporal discretization of the continuous phase. Furthermore, the
weakly and strongly coupled partitioned fluid-particle framework is described. The discrete cou-
pling of continuous and dispersed phase is highlighted with special attention on the dispersed
phase fraction computation which accounts for the displaced volume of the particles in the fluid
domain. Next, the temporal discretization of the Rayleigh-Plesset equation is given including its
adaptive time stepping scheme. Several numerical examples are provided in Chapter 4 to show
the versatility of the developed framework. Two pure particle test cases are followed by dispersed
flow problems which include a Taylor-Green vortex, fluidized bed from chemical industry, bub-
bly flow at a NACA 0015 hydrofoil, and droplet flow into the complex geometry of a human
lung. The thesis is concluded in Chapter 5 with a short summary and an outlook.
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This thesis aims at developing a simulation tool for a variety of dispersed flows. As aforemen-
tioned, the dispersed phase can be solid, liquid, or gaseous and its constitutes are thus denoted
particle, droplet, or bubble, respectively, in a physical correct description. In order to unify this
notation issue, the following convention is used throughout this thesis: The dispersions are al-
ways denoted as particles when their size is constant. Hence, particles feature translational and
rotational degrees of freedom. They can contact with each other and with walls and they can
also interact with surrounding fluid flow. This means, that a bubble (in physical meaning) will
be denoted as a particle in case it does not change its size during the simulation. The notation of
a bubble will solely be used when the particle additionally features a variable radius besides all
the other aforementioned properties.

Some more assumptions are made throughout this thesis. The dispersed phase consists of
particles of spherical shape which can neither break up nor coalescence. The interested reader
is referred to Wachs [224] and references therein for an overview on non-spherical dispersed
flow analysis. Furthermore, the content of each particle is assumed to be homogeneous. An
important assumption concerns the surface of the dispersions. A no-slip condition exists between
the surface of solid particles and the liquid carrier flow. In contrast, gaseous bubbles in liquid
feature a slip condition between the bubble and the liquid, see Magnaudet and Eames [142].
This would lead to a different behavior especially in the drag force exerted from the carrier
phase onto the dispersions. Fortunately, the slip condition of gaseous bubbles only applies to
purified liquids which can exclusively be found on test rigs. Hence, any liquid found in daily life
or industrial application contains so many tiny contaminants, that the dispersions’ surface gets
immobilized leading to a behavior identical to solid particles, see Clift et al. [28], Magnaudet
and Eames [142], and Dijkhuizen et al. [48] for further explanation. Consequently, there is no
difference in the coupling conditions between carrier phase and particles, drops or bubbles for
all applications except those with purified liquid. The present thesis does not adapt the surface
treatment of gaseous bubbles and hence, the developed formulation is capable of handling the
vast majority of dispersed flows with non-purified liquids. This needs to be kept in mind when
further reading this thesis. Besides the assumption of an immobilized surface, no mass and no
heat transfer across the surface is considered.

In the reminder of this chapter, the volume averaged equations for the carrier phase are pre-
sented followed by the governing equations of the dispersed phase. Finally, the coupling between
the phases is discussed.
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2 Mathematical model

2.1 Volume-averaged Navier-Stokes equations for the
continuous phase

In this section, the governing equations for a single-phase continuous liquid are summarized.
The volume-averaged NS equations are derived by applying volume averaging theory. The con-
tinuous fluid is described in an Eulerian frame whereas the dispersed phase is handled as discrete
particles which are tracked individually in a Lagrangian frame using Newton’s second law. The
averaging procedure enables to evaluate the fluid also inside regions which are occupied by
particles. As the interface is not resolved in this approach, it is not possible to enforce a no-slip
condition between the phases. Hence, a relative velocity and relative acceleration between carrier
phase and particles is allowed.

2.1.1 Strong form of the Navier-Stokes equations

The Eulerian fluid is in its phase treated as a continuous medium and conservation of mass
and momentum are fundamental principles of the fluid motion which can be found in detail for
example in the textbook by Batchelor [11]. The fluid is assumed incompressible. Hence, the
strong form of the NS equations comprises the continuity and momentum equation, viz

∂ρl
∂t

+∇ · (ρlu) = 0 in Ω , (2.1)

∂ (ρlu)

∂t
+∇ · ((ρlu)⊗ u) = −∇p+∇ · τ + ρlg + s in Ω (2.2)

where ρl denotes the constant fluid density, u the velocity, p the pressure, τ the viscous stress
tensor and g the gravity force vector. In addition to the standard momentum equation, an extra
source term s accounts for the interface forces from the disperse phase which will be detailed
later. There is no mass transfer between the continuous and the disperse phase leading to a
vanishing right-hand side in the continuity equation (2.1). The stress tensor reads

τ = 2µ

(
ϵ (u)− 1

3
(∇ · u) I

)
= 2µϵ′ (u) (2.3)

using the dynamic viscosity µ. The rate of deformation tensor reads

ϵ (u) =
1

2

(
(∇u) + (∇u)T

)
, (2.4)

the identity tensor I and the abbreviation

ϵ′ (u) = ϵ (u)− 1

3
(∇ · u) I . (2.5)

Equations (2.1) and (2.2) are valid in the domain Ω which is occupied by the continuous phase.
To complete the set of equations, initial and boundary conditions need to be given. The initial

velocity reads
u(x, t = 0) = u0(x) . (2.6)
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2.1 Volume-averaged Navier-Stokes equations for the continuous phase

The boundary of the domain ∂Ω can be divided into non-overlapping parts ΓD ∪ ΓN = ∂Ω with
Dirichlet boundary conditions and Neumann boundary conditions prescribed at ΓD and at ΓN,
respectively, reading

u = uD on ΓD , (2.7)
τ · nl = h on ΓN (2.8)

where nl denotes the outward pointing unit normal on the boundary and h the prescribed Neu-
mann boundary momentum flux.

2.1.2 Volume averaging procedure

2.1.2.1 Basics

Following the argumentation of Crowe et al. [33], it is essential not to use single phase fluid
equations which are enhanced solely by source terms to account for a second phase. The short-
coming is that the quantities of the fluid are not defined in regions occupied by the dispersion and
therefore an evaluation using single phase equations is invalid at points inside the disperse phase.
To overcome this problem, volume averaging based on the ideas of Anderson and Jackson [5] is
applied to the fluid equations. Hence, the fluid properties of an averaged fluid can be evaluated at
each point. It is important to note that the averaged NS equations do not describe the mixture of
continuous and disperse phase, only the continuous phase is treated as an averaged continuum.
The following derivations are taken from Crowe et al. [33], which the reader is referred to for
more details. An essential requirement for proper volume averaging is the choice of the size of
the averaging volume. Assuming a distribution of dispersion as shown in Figure 2.1 with l being

l

L

V

Γ

Vc

Figure 2.1: Length scales and averaging volume.

the average distance between disperse objects and L being the characteristic length of changes
in the mixture properties, a proper averaging volume V is constrained by

l3 ≪ V ≪ L3 . (2.9)

13



2 Mathematical model

The averaging volume comprises continuous phase and disperse phase. As only the continuous
phase is volume averaged in the present thesis, the volume average of a quantity such as the
velocity then reads

u =
1

V

∫
Vc

u dV (2.10)

in which Vc is the volume of the continuous phase in the averaging volume V . An overbar
denotes volume averaged quantities. The requirement in (2.9) leads to an average that does not
vary significantly when the size of the averaging volume is modified. More relevant than the
volume average is the phase average

⟨u⟩ = 1

Vc

∫
Vc

u dV (2.11)

which relates to Vc instead of the averaging volume V . It is denoted with angle brackets. Phase
averaged quantities are of physical relevance as they are an average of the fluctuating flow around
the submerged disperse phase. The interpretation of the volume averaged values is similar, but
the crucial difference is in the division by a volume that is larger (or equal in case of pure liquid)
than the volume occupied by the continuous phase. This means that the normalization volume is
too large. So, the physically relevant average is the phase average for describing the flow. Also,
the coupling forces to the disperse phase are based on phase averaged quantities. The naming
should not be confused with Whitaker [228] who denotes the phase average as “intrinsic phase
average” and the volume average as “phase average”. Due to the relation

Vc = ϵlV (2.12)

the volume and phase average of exemplarily the velocity is linked by the fluid fraction ϵl via

u = ϵl ⟨u⟩ . (2.13)

The fluid fraction represents the fill level of the averaging volume with continuous phase and it
is restricted to ϵl ∈ ]0, 1]. Due to (2.9), it cannot vanish completely leading to ϵl > 0.

2.1.2.2 Application to the continuity equation

The theory of volume averaging with its treatment of spatial and temporal derivatives can be
found in Anderson and Jackson [5] and Whitaker [229]. The following derivations of the volume
averaged NS equations are taken from Crowe et al. [33] and modified at certain places which are
marked explicitly.

The volume average of the continuity equation (2.1) reads

∂ρl
∂t

+∇ · (ρlu) = 0 . (2.14)

Applying the theory of volume averaging, see Whitaker [229] for further details, the averages of
the temporal and spatial derivative in (2.14) are shifted to the quantities themselves reading

∂ρl
∂t����������

+
1

V

∫
Γ

ρlvi · nidV +∇ · (ρlu)
����������
− 1

V

∫
Γ

ρlvi · nidV = 0 (2.15)
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2.1 Volume-averaged Navier-Stokes equations for the continuous phase

which introduces integrals over all boundaries

Γ =
∑
i

(Γi ∈ V ) (2.16)

of the included dispersions i in the averaging volume V , compare Figure 2.1. The velocity of the
included dispersion i is denoted with vi, and its outward pointing normal is ni. The integrals have
been simplified using the assumption of a homogeneous and rigid content in the dispersions and
that there is no mass transfer between the phases. Finally, due to the different signs, the integrals
cancel out each other. In the theory of volume averaging, it is possible to decompose any quantity
into a phase averaged portion and a deviation thereof, see Whitaker [229], reading exemplarily
for the velocity

u = ⟨u⟩+ δu (2.17)

in which the deviation is denoted with δ(·). The averaged mass flux in (2.15) reads with (2.13)
and (2.17)

ρlu = ρl (⟨u⟩+ δu) = ϵl ⟨ρl ⟨u⟩+ ρlδu⟩ = ϵl ⟨ρl ⟨u⟩⟩+ ϵl ⟨ρlδu⟩ . (2.18)

The approximation ⟨⟨u⟩⟩ = ⟨u⟩ holds when the averaging volume is sufficiently smaller than
the characteristic length scale of the fluid flow which is already contained in (2.9), for the deriva-
tion, see Whitaker [229] or Wood et al. [231]. However, the important point is the last term in
(2.18) which is zero because the average over the deviation of a quantity vanishes by hypothesis,
see Whitaker [229]. Hence, this term is no longer tracked in Crowe et al. [33] and elsewhere.
As this thesis aims on casting the volume averaged NS equations into a variational multiscale
framework, this term is kept and further explanations follow in Section 3.1.1.1. To continue with
the derivation of the volume averaged continuity equation, the volume averaged fluid density in
the time derivative in (2.15) is replaced with a phase averaged quantity using (2.13). Hence, the
continuity equation expressed in phase averaged quantities and deviations thereof follows as

∂ (ϵl ⟨ρl⟩)
∂t

+∇ · (ϵl ⟨ρlu⟩) +∇ · (ϵl ⟨ρlδu⟩) = 0 . (2.19)

At this point, it has to be noted that the volume averaged density ρl is not constant as it is
dependent on the time- and space-varying fluid fraction. In contrast, the temporal and spatial
phase averaged fluid density ⟨ρl⟩ is constant as it is solely the property of the fluid as already
assumed in Section 2.1.1. This leads to

ρl = ⟨ρl⟩ , (2.20)
∂ρl
∂t

= 0 , (2.21)

∇ρl = 0 (2.22)

which can be inserted into (2.19) leading to

ϵl
�
�
�∂ρl

∂t
+ ρl

∂ϵl
∂t

+���∇ρl · (ϵl ⟨u⟩) + ρl∇ · (ϵl ⟨u⟩) +���∇ρl · (ϵl ⟨δu⟩) + ρl∇ · (ϵl ⟨δu⟩) = 0 . (2.23)
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Finally, after division by the non-zero fluid density and the non-zero fluid fraction, (2.23) can be
reordered as

∇ · ⟨u⟩+∇ · ⟨δu⟩ = − 1

ϵl

(
∂ϵl
∂t

+ ⟨u⟩ · ∇ϵl + ⟨δu⟩ · ∇ϵl
)
. (2.24)

This can be interpreted as a continuity equation of a non-divergency free fluid field with a source
term that is driven by the temporal and spatial derivatives of the fluid fraction. In the limit case
of a vanishing disperse phase such that ϵl = 1 everywhere in the domain for all times and a
sufficiently small averaging volume, the continuity equation of the incompressible NS equations
∇ · ⟨u⟩ = 0 is recovered.

2.1.2.3 Application to the momentum equation

After having derived the continuity equation, the volume averaged momentum equation is de-
duced in the following. Again, the basic concepts are taken from Crowe et al. [33].

First, the left-hand side of the momentum equation (2.2) is volume averaged, viz

∂ (ρlu)

∂t
+∇ · ((ρlu)⊗ u) . (2.25)

Analogue to the procedure for the continuity equation from (2.14) to (2.15), the momentum
equation reads

∂ (ρlu)

∂t ������������

+
1

V

∫
Γ

ρlu (vi · ni) dV +∇ ·
(
(ρlu)⊗ u

)
������������

− 1

V

∫
Γ

ρlu (vi · ni) dV . (2.26)

Again, the integrals have been simplified using the assumption of a homogeneous and rigid
content in the dispersions and that there is no mass transfer between the phases. The integrals
cancel out each other due to the different signs. Next, (2.13) and (2.20) are applied to (2.26),
reading

∂ (ϵlρl ⟨u⟩)
∂t

+∇ · (ϵl ⟨ρlu⊗ u⟩) . (2.27)

The decomposition of the velocities (2.17) and assuming constant fluid density leads to

∂ (ϵlρl ⟨u⟩)
∂t

+∇ · (ϵlρl ⟨u⟩ ⊗ ⟨u⟩+ ϵlρl ⟨δu⟩ ⊗ ⟨u⟩+ ϵlρl ⟨u⟩ ⊗ ⟨δu⟩+ ϵlρl ⟨δu⊗ δu⟩)
(2.28)

in which the variations of volume averaged quantities are neglected, compare Whitaker [229].
The second and third summand in the divergence operator in (2.28) are neglected in Crowe et al.
[33] and elsewhere because the average of deviations vanish by hypothesis, see also Whitaker
[229]. Here, they are kept for further derivations to obtain the variational multiscale method, see
Section 3.1.1.1. The last term in the divergence operator in (2.28) is designated by Crowe et al.
[33] as “volume-averaged Reynolds stress” and it is comparable to the Reynolds stress as known
from single-phase flow after having applied temporal averaging, cf. Launder et al. [131]. Again,
it is neglected by Crowe et al. [33] and will be kept here for further derivations.
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2.2 Particle tracking in a Lagrangian frame

The next step is to apply volume averaging to the standard NS terms on the right-hand side of
the momentum equation (2.2), reading

−∇p+∇ · τ + ρlg . (2.29)

The averages of the spatial derivatives are shifted to the quantities themselves in a next step

−∇ (ϵl ⟨p⟩) +
1

V

∫
Γ

pni dS +∇ · (ϵl ⟨τ ⟩)−
1

V

∫
Γ

τ · ni dS + ϵlρlg (2.30)

while using (2.20). A decomposition of pressure and stress tensor into the phase average and its
deviation

p = ⟨p⟩+ δp , (2.31)
τ = ⟨τ ⟩+ δτ (2.32)

is used to replace the pressure and the stress tensor in the integrals over the entire interface Γ
between the phases in the averaging volume. The following transformations are given in full
detail in Crowe et al. [33] in Appendix C thus that only the result is given here for the volume
averaged right-hand side of the momentum equation:

−∇⟨p⟩+ 1

V

∫
Γ

δpni dS+∇· ⟨τ ⟩− 1

V

∫
Γ

δτ ·ni dS+ ϵlρlg = −∇⟨p⟩+∇· ⟨τ ⟩+ ϵlρlg+ s′ .

(2.33)
The surface integrals are summed into s′. They represent the volume averaged equivalent to the
interface forces s from the disperse phase in (2.2) in the strong form of the NS equations. As
neither the exact interface Γ nor the fluctuations of the pressure δp or the viscous stress tensor
δτ is available, closure models are required. Details on the closure and the coupling procedure
to the disperse phase will be given in Section 2.3.2.

2.2 Particle tracking in a Lagrangian frame
In this thesis, each particle represents a single physical object. It can be described by its position,
velocity, acceleration, radius and homogenized density. Each particle is tracked on its individual
path in a Lagrangian frame. The particles are assumed to be of spherical shape. This section
contains the considered forces acting on each individual particle.

2.2.1 Rigid body kinematics
Assuming a rigid and homogeneous spherical particle, Newton’s second law

mi
Dvi

Dt
=
(∑

F
)
i

(2.34)

allows for computing the acceleration Dvi/Dt of particle i with mass mi. The total time derivative
is denoted with D/Dt. Moreover, (

∑
F )i denotes the sum over all forces acting on the particle. In

general, one can distinguish body and surface forces. The forces will be specified in the following
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sections. The balance of angular momentum with respect to the particle center, which coincides
with the center of gravity for a homogeneous particle, reads

Iiαi = Mi . (2.35)

The angular acceleration αi can be computed based on the acting moments Mi and the moment
of inertia

Ii =
2

5
mir

2
i (2.36)

for a homogeneous sphere with radius ri around an arbitrary axis through its center.

2.2.2 Fluid forces acting on particles
The forces acting on a single particle i submerged in a fluid can be written as

Fi = Fvol,i +

∫
Γi

−pni + τ · ni dS . (2.37)

They can be divided into volume forces Fvol,i, such as the gravity force, and surface forces acting
on the particle surface Γi. The integral over the pressure and the viscous stress contributions of
the fluid considering the unit outward normal ni enables an exact computation of the fluid forces.
This integral can only be solved in case the interface is fully resolved which is not the case for the
approach proposed in this work. The available fluid velocities and pressure are volume averaged
and do not resolve the detailed flow around each single particle. Due to (2.9), the volume (and
phase) averaged fluid properties are assumed to be constant over the volume occupied by the
particle. Therewith, the interface forces in (2.37) can be modeled using (2.31) and (2.32) as∫

Γi

−pni + τ · ni dS =

∫
Γi

−⟨p⟩ ni + ⟨τ ⟩ · ni dS +

∫
Γi

−δpni + δτ · ni dS . (2.38)

Early works on the forces exerted from fluid to a rigid sphere go back to Stokes [196]. A sum-
mary of relevant forces acting on a sphere submerged to nonuniform flow is given by Maxey
and Riley [147] and by Magnaudet and Eames [142]. Reviewing the literature of several decades
leads to the conclusion that only for creeping flows valid models can be found and for all other
cases a good modeling approach is still an open issue. An exhaustive discussion on each of the
forces to be considered can be found in Crowe et al. [33], on which the following summary is
based. A necessary assumption is that the resulting sum over all forces consists of a linear com-
bination of distinct forces which do not interact, see Kleinstreuer [116]. This assumption applied
to (2.34) reads

mi
Dvi

Dt
= Fg,i + Fp,i + Fτ,i + Fd,i + Fl,i + Fam,i = Fg,i +

∑
FΓ,i , (2.39)

Dxi

Dt
= vi . (2.40)

The gravity force acting on a particle is

Fg,i
!
= ρb,iVp,ig (2.41)
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2.2 Particle tracking in a Lagrangian frame

with the mass of a particle being simply its density ρb,i times its volume Vp,i = 4/3πr3i due to the
assumption of a homogeneous and spherical particle with radius ri. The coupling forces across
the surface in (2.38)

∑
FΓ,i =

∫
Γi

−⟨p⟩ ni + ⟨τ ⟩ · ni dS︸ ︷︷ ︸
always present

+

∫
Γi

−δpni + δτ · ni dS︸ ︷︷ ︸
accounts for relative velocity/acceleration

(2.42)

can be distinguished into contributions which already occur when the particle follows the fluid
flow and those that account for relative velocity and relative acceleration between particle and
the conveying fluid. According to the derivations by Crowe et al. [33], the surface integral with
the averaged pressure in (2.38) can be transformed to a volume integral by applying divergence
theorem ∫

Γi

−⟨p⟩ ni dS = −
∫
Vp,i

∇⟨p⟩ dV . (2.43)

Assuming that the pressure gradient is constant over the volume of the particle due to (2.9) gives
the so-called pressure force

Fp,i
!
= −Vp,i∇⟨p⟩ . (2.44)

The same argumentation is used for reformulating the viscous forces:

Fτ,i
!
=

∫
Γi

⟨τ ⟩ · ni dS =

∫
Vp,i

∇ · ⟨τ ⟩ dV = Vp,i∇ · ⟨τ ⟩ . (2.45)

The divergence of the stress tensor can be computed using (2.3). An estimation for the relation
of the norms of the latter two forces is given by Crowe et al. [33]:

|∇ · ⟨τ ⟩ |
|∇ ⟨p⟩ | ∼

1

Re
(2.46)

with Re = urefLref
ρl/µ being the Reynolds number of the fluid flow with some characteristic

velocity uref and reference length Lref . In the majority of applications in industry and daily life,
Re≫ 1 leading to a negligible contribution of the viscous force term. However, in this thesis,
the viscous force is included as it aims on a vast number of applications which might include
low-Reynolds number flows.

Having reviewed the pressure and viscous force that already act when a particle perfectly
follows the carrier fluid flow, the following forces contribute to the coupling due to a relative
velocity or acceleration between the particle and the volume averaged fluid flow. The relative
motion between the phases is a key aspect in the developed Euler-Lagrange framework. This
allows for more flexibility regarding the applications because of a potentially looser coupling of
the phases, compare Section 1.2.

The drag force due to the relative velocity reads

Fd,i
!
=

1

2
cdρlπr

2
i ∥⟨u⟩i − vi∥2 (⟨u⟩i − vi) (2.47)
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Rep
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Stokes law

Figure 2.2: Standard drag curve for a spherical particle in steady motion (from Clift et al. [28]).

with ∥ · ∥2 being the L2-norm and the drag coefficient

cd =


24

Rep
, if Rep ≤ 0.1

24
Rep

(
1.0 + 0.15Re0.687p

)
, if 0.1 < Rep ≤ 1000

0.44 , if 1000 < Rep

(2.48)

according to Schiller and Naumann [180] or Rowe [178]. Therein, the particle Reynolds number

Rep,i = 2ri∥⟨u⟩i − vi∥2
ρl
µ

(2.49)

can be identified. This composed drag correlation is an approximation of the standard drag curve
for a rigid sphere (see Figure 2.2) up to a particle Reynolds number of approximately 3 · 105. It
has to be noted that the surface of a gaseous bubble is non-rigid leading to a different drag corre-
lation. However, gaseous bubbles in clean water behave different compared to gaseous bubbles in
contaminated water. Clean water can usually only be found in laboratories on test rigs, whereas
applications of relevance always include contaminations which immobilize the bubble surface
leading to a behavior similar to a solid surface, see e.g. Magnaudet and Eames [142]. Hence, a
drag coefficient valid for solid spheroids is applied for all applications.

The shear induced lift force (or Saffman lift force) reads

Fl,i
!
= clρlVp,i (⟨u⟩i − vi)× (∇× ⟨u⟩i) (2.50)

with a constant lift coefficient cl = 0.5, cf. Auton [8].
In the wake of an instationary moving particle, fluid flow is accelerated leading to the added

mass force

Fam,i
!
= camρlVp,i

(
D ⟨u⟩i
Dt

− Dvi

Dt

)
(2.51)
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using a constant added mass coefficient cam = 0.5 and the substantial derivative

D

Dt
(·) = ∂

∂t
(·) + ⟨u⟩i · ∇(·) (2.52)

of a quantity (·) for the fluid flow, for details see Magnaudet and Eames [142] or Brennen [20].
The drag, lift and added mass force are driven by relative velocity and relative acceleration of

the particle with respect to the underlying fluid. They are summed up to∑
F

′

Γ,i = Fd,i + Fl,i + Fam,i (2.53)

in order to later be used for deriving the coupling term to the continuous phase in Section 2.3.
Further forces could be accounted for, which are all neglected in this thesis. The Magnus

force is a lift force developed due to the rotation of a particle, for details see Crowe et al. [33].
Furthermore, also Basset history force is neglected. It accounts for the temporal delay of the
boundary layer in order to adapt to a change in relative velocity, cf. Magnaudet and Eames
[142]. This additional resistance force is dependent on the accumulated acceleration from the
initial to the current time which makes its computation very involved. For further details and
and an attempt to improve efficiency in computing Basset history, see Nijssen et al. [158] Also,
a force due to volume change of the bubble is neglected here. For an interesting discussion on
this force see Vallier [214]. In case, gradients in the surface tension are considered on a single
gaseous bubble, the Marangoni effect leads to a force in the direction of decreasing surface
tension, cf. Brennen [20].

Important to note is that all forces given so far build on the assumption of undisturbed flow
around a single rigid spheroid. However, the scenario of interest includes many particles that
might form a dense suspension. In order to account for multiple particle systems, correction
terms can be added. E.g. Tryggvason et al. [207] or Lau et al. [130] performed simulations of dis-
persed flow with a fully resolved interface in order to derive dispersed phase fraction-dependent
correlations for the drag force. Hence, instead of using the drag coefficient as given in (2.48),
a correlation of the form cd (ϵl) is derived to account for dense dispersed flows. Alternatively,
e.g. Tomiyama et al. [206], van Nierop Ernst et al. [217], Dijkhuizen et al. [48], or Rastello
et al. [172] used experiments to derive correction terms based on dimensionless characteristic
numbers such as the Morton number or the Eötvös number. Usually, these approaches have in
common that they are only valid in a limited range of particle diameters and flow conditions.
Hence, these corrections are neglected in this work as no general model is available.

2.2.3 Particle-particle interaction
In Section 2.2.2, the forces acting on a particle are summarized, namely gravity force and fluid
forces. The sum over the distinct contributions is given in (2.40) which allows for solving for
the equation of motion. In pure particle problems or in an Euler-Lagrange problem with a void
fraction larger than 10−3, particle-particle collisions must be taken into account for proper mod-
eling of the system behavior, cf. Elghobashi [55]. As this work targets towards possibly dense
particle systems as it might locally occur at the stagnation point of an obstacle in a flow field,
DEM particle contact is employed here. Coalescence and break up of particles are neglected as
well as the effect of surrounding fluid which might influence the collision event. There is made
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no distinction between collisions of gaseous, liquid and solid particles because of the assump-
tion of an immobilized surface of gaseous and liquid dispersions, cf. remarks at the beginning of
Chapter 2.

2.2.3.1 Normal contact

Normal contact conditions can be stated as

gn,ij ≥ 0 , (2.54)
Fcn,i ≤ 0 , (2.55)

gn,ijFcn,i = 0 (2.56)

which are known as Kuhn-Tucker conditions, cf. Laursen [132]. The first inequality represents
the non-penetration of contact partners using the gap function gn,ij in normal direction between
collision partner i and j. The second inequality excludes cohesive forces and limits the normal
contact force Fcn,i to be negative. The third equation is a complementary condition which en-
forces the gap to be zero when contact forces act and the forces to be zero when the gap is open.
For further information on contact mechanics, the reader is exemplarily referred to Simo and
Hughes [190] or Popp [170] from which the following derivations are taken. As usual for DEM,
the Kuhn-Tucker conditions are weakened and a (small) overlap between the collision partners
is allowed. Hence, the Kuhn-Tucker conditions are no longer fulfilled exactly and it is possible
to compute the contact forces dependent on the overlap, i.e. the gap, using an artificial stiffness
kn. Usually, in solid mechanics, this artificial stiffness parameter is denoted as penalty parame-
ter which penalizes the overlap of collision partners. An infinitely large penalty parameter leads
to an exact fulfillment of the contact condition without overlap. However, in particle contact
scenarios, this non-physical parameter can be used to adjust the properties of the contact event
to model a physical behavior. This advantage comes at the drawback of the necessity of small
time steps because a contact event needs to be discretized with several time steps which will
be introduced in Section 3.1.2.1. Usually, the resulting differential equation has a stiff character
demanding for careful stability considerations.

There are many different contact laws available of which a linear spring-damper model is
chosen due to its simplicity. The normal force component for particle i reads

Fcn,i = kngn,ijnij︸ ︷︷ ︸
elastic

−d vrel,n,ijnij︸ ︷︷ ︸
viscous

= Fcn,i nij (2.57)

with the unit normal vector nij from particle i to particle j, the damping parameter d and the
relative velocity in normal direction

vrel,n,ij = (vi − vj) · nij . (2.58)

See also Figure 2.3 for an overview of relevant quantities and directions. An elastic part and a
viscous part of the normal contact force can be distinguished in (2.57). The stiffness parameter
kn will be determined in Section 3.1.2. It is important to keep kn constant during one collision
because otherwise the energy contained in the system changes artificially. The gap

gn,ij = ∥xj − xi∥2 − (rj + ri) (2.59)
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2.2 Particle tracking in a Lagrangian frame

ri

rj

nij

Fcn,i

gn,ij

particle i, xi, vi

particle j, xj , vj

Figure 2.3: Normal contact of two particles.

and the unit normal
nij =

xj − xi

∥xj − xi∥2
(2.60)

are purely geometrical quantities. The damping parameter of the viscous part of the force is
computed as

d = 2 |ln (e) |
√

knmeff,ij

ln2 (e) + π2
(2.61)

with the limit case

d (e = 0) = lim
e→0

2 |ln (e) |
√

knmeff,ij

ln2 (e) + π2
= 2

√
knmeff,ij , (2.62)

cf. Deen et al. [41] and the appendix of Tsuji et al. [208] for the derivation. The damping param-
eter is based on the effective mass

meff,ij =
mimj

mi +mj

(2.63)

and the coefficient of restitution which is defined as

e = −vrel,n,ij(t
f )

vrel,n,ij(ti)
. (2.64)

Therein, the normal part of the relative velocity vrel,n(ti) before and after the collision vrel,n(tf )
is contained. The damping parameter d is chosen such that (2.64) is fulfilled. Applying Newton’s
third law, the normal contact force on particle j is given by

Fcn,j = −Fcn,i . (2.65)
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2.2.3.2 Tangential contact

When friction is considered, additional tangential forces emerge. Frictional contact leads to a
rotation of the particles in case of an eccentric collision of two particles. Therefore, the angular
velocity ω of the particles is tracked in addition to the translational degrees of freedom. The
assumption of a rigid particle allows to determine the velocity of the contact point via

vc,i = vi + ωi × (r′inij) , (2.66)

vc,j = vj + ωj ×
(
−r′jnij

)
(2.67)

with

r′i = ri +
gn,ij
2

, (2.68)

r′j = rj +
gn,ij
2

. (2.69)

The relative velocity in the contact point then reads

vrel,ij = vc,i − vc,j (2.70)

and the relative tangential velocity follows as

vrel,t,ij = vrel,ij − vrel,n,ij =: ġt,ij (2.71)

which is the relative gap velocity in tangential direction ġt,ij between the two particles in the
contact point. Two contact states can be distinguished based on ġt,ij . Stick is defined as

ġt,ij = 0 (2.72)

whereas slip occurs when
ġt,ij ̸= 0 . (2.73)

In this work, Coulomb friction is considered which limits the contact force in tangential direction
to µs|Fcn| using the friction coefficient µs and the norm of the normal contact force in (2.57).
This relation can also be written using Kuhn-Tucker conditions

ϕ := ∥Fct,i∥2 − µs|Fcn,i| ≤ 0 , (2.74)

ġt,ij − β
Fct,i

∥Fct,i∥2
= 0 , (2.75)

β ≥ 0 , (2.76)
ϕβ = 0 (2.77)

which includes Coulomb’s friction law in the first inequality, cf. Laursen [132]. The scalar pa-
rameter β is zero in the stick case leading to a zero tangential relative velocity in the contact
point. In the slip case, a relative movement parallel to the tangential contact force Fct,i occurs
as obvious from the second equation of the Kuhn-Tucker conditions. In order to satisfy the last
equation, ϕ must be zero, leading to a tangential contact force at maximal amplitude.
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ri
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particle j, xj , vj , ωj
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nij

Fcn,i

tij

Fct,i

Figure 2.4: Tangential contact of two particles.

In accordance with the normal force model, also a linear spring-damper model is used for the
tangential force, reading

Fct,i = −kt gt,ij − dvrel,t,ij (2.78)

for the stick case which is shown in Figure 2.4. Analogue to Di Renzo and Di Maio [46], the
relation of the tangential stiffness κt to the normal stiffness κn

kt
kn

=

1−νi
Gi

+
1−νj
Gj

1−0.5 νi
Gi

+
1−0.5 νj

Gj

(2.79)

depends on the Poisson’s ratio ν and the shear modulusG of the involved materials from particles
i and j. The damping coefficient d is assumed to be identical for normal and tangential contact
as done in Di Maio and Di Renzo [45] such that (2.61) can be reused. The tangential gap

gt,ij =

∫ t

t′
vrel,t,ij dt . (2.80)

needs to be integrated over the duration of the contact process of two collision partners starting at
time t′ with gt,ij = 0 in the stick state. In order to cope with the problem of a varying tangential
plane as it occurs e.g. when one particle rolls over another one, a projection into the current
tangential plane as proposed in Luding [140] is applied in each time step. In the following, the
procedure is presented for the progress from time step n to n+ 1. The expression

gn
t,proj = gn

t,ij −
(
gn
t,ij · nn+1

ij

)
nn+1

ij (2.81)

delivers a tangential gap gn
t,ij,proj which lies in the tangential plane at tn+1. Care must be taken in

order to not change the size of the gap due to the projection and therefore, the size is recovered
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via

ĝn
t,ij,proj =

∥gn
t,ij∥2

∥gn
t,ij,proj∥2

gn
t,ij,proj . (2.82)

Depending on the current state, either the tangential gap

gn+1
t,ij = ĝn

t,ij,proj + v
n+ 1

2
rel,t,ij ∆tb (2.83)

is incremented in the stick case similar to (3.57) according to the employed time integration
scheme for the particles, which will be described in Section 3.1.2, or the tangential gap is kept
constant in size in case of slip such that

gn+1
t,ij = ĝn

t,ij,proj . (2.84)

After having determined the gap, a tangential trial force

F n+1
trial,i = −kt gn+1

t,ij − dv
n+ 1

2
rel,t,ij (2.85)

is computed and compared to its upper limit given by Coulomb’s friction law, reading

∥F n+1
trial,i∥2 ≤ µs|Fcn,i| . (2.86)

If the inequality is fulfilled, the tangential contact force reads

F n+1
ct,i = F n+1

trial,i (2.87)

and the contact state is declared as stick. If the inequality is not fulfilled, the tangential contact
force is computed according to

F n+1
ct,i = µs|Fcn,i|tn+1

ij (2.88)

for the slip case. The direction tij is prescribed by the tangential trial force

tn+1
ij =

F n+1
trial,i

∥F n+1
trial,i∥2

(2.89)

while the magnitude of the force is given by the product of friction coefficient and the normal
contact force. Therefore, the tangential gap needs to be corrected via

gn+1
t,ij = − 1

kt

(
µs|Fcn,i| tn+1

ij + dv
n+ 1

2
rel,t,ij

)
. (2.90)

In order to compute the tangential contact force on particle j, again Newton’s third law is used

Fct,j = −Fct,i . (2.91)

Finally, the angular momentum around the center of particle i reads

Mi = (r′inij)× Fct,i (2.92)

and accordingly for particle j, the angular momentum reads

Mj =
(
−r′jnij

)
× Fct,j =

r′j
r′i
Mi (2.93)
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2.3 Discussion on the fluid-particle coupling

2.2.3.3 Contact force and application to the equation of motion

After having derived the normal and tangential contact force, they can be summed to obtain the
total contact force

Fc,i = Fcn,i + Fct,i (2.94)

for particle i which then can be added to the right-hand side of the equation of motion (2.39):

mi
Dvi

Dt
= Fg,i +

∑
FΓ,i + Fc,i . (2.95)

2.2.4 Particle-wall interaction

In order to account for walls with which the particles can collide, the same normal force model
(2.57) and tangential contact force model (2.78) as for particle-particle interaction can be used
after applying minor modifications. The mass of wall elements is assumed to be infinitely large
such that (2.63) simplifies to

meff,ij = lim
mj→∞

mimj

mi +mj

= mi . (2.96)

Furthermore, the radius rj is set to zero in all relevant equations. The position xj of the collision
partner is the closest point projection of particle i onto the wall. The velocity of this projection
point is inserted for vj . Care has to be taken while searching for the closest point projection of
a particle on a wall as this might also be an edge or a corner point. A hierarchical procedure is
applied which first checks whether the closest point projection along the surface normal lies on
the surface element. If so, the projection point is accepted and otherwise, the edges are checked
using a closest point projection of the particle position onto the edges. Again, a distinction be-
tween a projection point lying on one of the edges and projection points outside the edge are
made. In the latter case, the distances between particle and the corner points of the wall element
are computed. After this search on the surface, the edges and the corners, the closest point on
the wall element is found. As the contact normal is the difference between the closest point on
the wall and particle i, it does not necessarily coincide with the wall normal. The computational
effort in finding the closest point on wall elements is large compared to particle-particle inter-
action evaluation due to the hierarchical procedure which includes the solution of several small
nonlinear systems of equations in case of general curvilinear grid.

2.3 Discussion on the fluid-particle coupling

The literature on multiphase flows using an Euler-Lagrange framework has been dealing with
two crucial questions for several decades now. The first intense discussion is on the appropriate
model for computing the forces exerted by fluid on submerged particles, see Section 2.3.1. The
second uncertainty is on the details of the volume averaged NS equations which will be discussed
in Section 2.3.2.
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2.3.1 Fluid to particle coupling
A widely used interpretation of the pressure force (2.44) and viscous force (2.45) can be found
in literature. They are replaced by the so-called inertia force and the buoyancy force. The re-
spective assumptions/simplifications are given in the following. The particle is assumed so small
that its influence vanishes far away from its body and thus undisturbed fluid flow equations are
used far away of the body, see e.g. Maxey and Riley [147], Druzhinin and Elghobashi [50], or
Magnaudet and Eames [142]. Subsequently, this assumption is used to simplify the computation
of the pressure force (2.44) and viscous force (2.45). The difficulty to circumvent is the com-
putation of the viscous force which contains second spatial derivatives of the fluid velocity. The
momentum equation of the NS equations (2.2) is reordered as follows

−∇p0 +∇ · τ 0 = ρl
Du0

Dt
− ρlg . (2.97)

with the material derivative in the first term on the right-hand side. The superscript (·)0 denotes
undisturbed flow quantities (·), as denoted by Maxey and Riley [147], Druzhinin and Elghobashi
[50] and Magnaudet and Eames [142], far way from the particle under consideration. During
force computation of particle i with its volume Vp,i, the reordered momentum equation (2.97) is
multiplied with Vp,i reading

−Vp,i∇p0 + Vp,i∇ · τ 0 = ρlVp,i
Du0

Dt
− ρlVp,ig . (2.98)

Therein, the pressure force (2.44) and viscous force (2.45) can be identified on the left hand side.
So, the terms on the left hand side are approximated with the terms on the right hand side. The
arising forces are denoted as particle inertia force

FI,i = ρlVp,i
Du0

i

Dt
(2.99)

and buoyancy force
Fb,i = −ρlVp,i g . (2.100)

The evaluation of the particle forces is usually performed with fluid quantities (velocity, acceler-
ation and pressure) at the particle center or in the close neighborhood of the particle. However,
the validity of the basic assumption (2.97) lies in a far distance from the particle. Hence, the eval-
uation conflicts with the assumptions made. Nevertheless, the use of inertia force and buoyancy
force can be found very often in literature.

Besides the afore presented questionable replacement of pressure and viscous forces, many
different combinations of accounting one force and neglecting another one can be found in
literature. Most of the arguments are physically motivated, e.g. on the density ratio between
the phases. The gravity force can be neglected if ρb/ρl≪ 1 or the buoyancy force if ρb/ρl≫ 1.
The added mass force (2.51) is of minor importance when ρb/ρl≫ 1 and the drag force likely
dominates all other forces. In case of ρb/ρl ≪ 1, the equation of motion (2.34) is simplified to
(
∑

F )i = 0 by, e.g. Giannadakis et al. [70] and Druzhinin and Elghobashi [50]. Applying the
latter, the particle acceleration is dropped at a first glance but it is still included in the added
mass force such that the equation of motion can be evaluated. An alternative of computing the
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pressure force can be found in Shams et al. [187], which includes the buoyancy force Fb to ac-
count for the static fluid pressure and a pressure force Vp∇p′ which only includes the dynamic
fluid pressure p′. This list can be extended arbitrarily which points out that the task of finding an
appropriate model for the forces exerted from a carrier flow on a submerged particle needs to be
considered carefully.

2.3.2 Particle to fluid coupling
After having commented on the forces which are used to model the influence of the carrier phase
onto the disperse phase, the reaction forces from the dispersions onto the carrier phase will be
discussed in the following. Parts of this section have already been published by Hammerl and
Wall [87].

From mechanical principles, it is obvious that all interface forces in (2.37) which act on a sub-
merged body need to be applied to the fluid with an inverse sign. This corresponds to Newton’s
third law. Thus the closure that has been left open at the end of Section 2.1.2 in (2.33) reads

s′ = − 1

V

∫
Γ

−δpni + δτ · ni dS
!
= − 1

V

∑
i

FΓ,i (2.101)

and it includes all interface forces acting on the particle with an inverse sign, see also Crowe
et al. [33] or Di Renzo and Di Maio [47].

In literature, different approaches can be found. For example, Darmana et al. [36] incorporate
in addition to the interface forces the gravity force of the particles into the coupling force. In
the respective application, only a minor difference is introduced because ρb/ρl ≪ 1 and it can
be interpreted as an approximation not to subtract the gravity force from the coupling forces. A
probably larger error is introduced by Shams et al. [187] who incorporate the collision forces into
the coupling force from the disperse phase to the continuous phase. Apart from a few exceptions,
the literature is consistent with respect to the reaction forces from the disperse phase onto the
continuous phase.

The discussion in literature becomes controversial when the question arises which is the cor-
rect formulation of the carrier phase equations in an Euler-Lagrange framework. Kafui et al.
[111], van Wachem et al. [219] and Di Renzo and Di Maio [47] have addressed this point while
showing inconsistencies of the equations used by many research groups. The crux is in the pres-
sure gradient and the divergence of the viscous stress term in the momentum equation (2.2) of the
NS equations. The right-hand side of the NS equations after volume averaging (2.33) is repeated

−∇⟨p⟩+∇ · ⟨τ ⟩+ ϵlρlg + s′

to have the starting point at hand.
The pressure term can be reformulated as done by e.g. Di Renzo and Di Maio [47], van der

Hoef et al. [216], or Shams et al. [187] which is shown in the following. The sum over all
forces acting on the particle in the equation of motion (2.39) contains the pressure force (2.44).
The reaction force thereof enters the momentum coupling s′ in (2.33). The contribution of the
pressure force to s′ reads

− 1

V

∑
i

−Vp,i∇⟨p⟩ = ∇⟨p⟩
∑

i Vp,i
V

(2.102)
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with the sum over all particles in the averaging volume and the division by the respective avera-
ging volume V . The averaged pressure gradient∇⟨p⟩ is assumed to be constant in the averaging
volume due to (2.9) and thus it can be put in front of the sum over all particles. The definition of
the fluid fraction (2.12) allows to rewrite (2.102) as

(1− ϵl)∇⟨p⟩ = ϵb∇⟨p⟩ (2.103)

with the dispersed phase fraction ϵb defined as ϵb = 1− ϵl. Therefore, two valid options emerge
how to include consistently the pressure term. One option is to compute it explicitly and include
it in s′ in (2.33) as shown in the preceding equations. The second valid option is to write (2.33)
as

−∇⟨p⟩+∇ · ⟨τ ⟩+ ϵlρlg + s̃′ + (1− ϵl)∇⟨p⟩ (2.104)

with a source term s̃′ that excludes the reaction of the pressure force (2.103). Then, it is possible
to combine terms in (2.104) reading

−ϵl∇⟨p⟩+∇ · ⟨τ ⟩+ ϵlρlg + s̃′ (2.105)

as the correct right-hand side of the momentum equation of the volume averaged NS equations.
The treatment of reaction to the particle viscous force follows. The ambiguity in literature is

in the starting point which is used for the derivation. For example Ishii [106] and Gidaspow [71]
start from (2.30) which is repeated here

−∇ (ϵl ⟨p⟩) +
1

V

∫
Γ

pni dS +∇ · (ϵl ⟨τ ⟩)−
1

V

∫
Γ

τ · ni dS + ϵlρlg

which is one step ahead of (2.33) during volume averaging procedure. Therein, they drop the
integral over the stress over the interface Γ between the phases and motivate it with the inclusion
of this term in the drag force (2.47) leading to a modified drag law. This argumentation is valid,
however the problem arises when one uses this formulation although a drag law such as Stokes
drag law or the standard drag law is applied which does not account for the modification, see for
example Deen et al. [40], Ferrante and Elghobashi [61], Zhang and Ahmadi [239], or Finn et al.
[63].

The second possible starting point is identical to the derivations for the pressure term at the be-
ginning of this section in using (2.33). A similar transformation for the viscous force is possible
as for the pressure force, viz

− 1

V

∑
i

Vp,i∇ · ⟨τ ⟩ = −∇ · ⟨τ ⟩
∑

i Vp,i
V

(2.106)

which is a contribution to the momentum coupling s′ in (2.33). The averaged divergence of the
stress tensor∇·⟨τ ⟩ is again assumed to be constant in the averaging volume due to (2.9) and thus
it can be put in front of the sum over all particles. Again, using (2.12), (2.106) is reformulated as

(1− ϵl)∇ · ⟨τ ⟩ = ϵb∇ · ⟨τ ⟩ (2.107)

which can be inserted into (2.105) leading to

−ϵl∇⟨p⟩+ ϵl∇ · ⟨τ ⟩+ ϵlρlg + ˜̃s′ . (2.108)
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Therein, the source term ˜̃s′ does neither include the reaction to the pressure force nor the reac-
tion to the viscous force. Hence, both reaction forces, which emerge already when a dispersion
perfectly follows the carrier flow, are eliminated by directly including them into the carrier flow
equation, compare Section 2.2.2. The remaining terms which rely on a relative velocity or rela-
tive acceleration between the phases have already been summed in (2.53) and it can be concluded

˜̃s′ = − 1

V

∑
i

F
′

Γ,i . (2.109)

To summarize, the two valid options which do not require a modified drag law are shown:

−∇⟨p⟩+∇ · ⟨τ ⟩+ ϵlρlg + s′ = −ϵl∇⟨p⟩+ ϵl∇ · ⟨τ ⟩+ ϵlρlg + ˜̃s′ . (2.110)

This equality is valid when the Lagrangian quantities can be transformed into Eulerian quan-
tities such that no error is introduced in the mapping. As this is difficult to achieve, the carrier
phase flow equations in the developed framework rely on the latter coupling approach in (2.110)
because the fluid incorporates already the particle pressure force and viscous force. The coupling
terms in ˜̃s′ solely rely on relative velocities and accelerations between the phases.

After having derived the missing closure terms in (2.33), the final volume averaged NS equa-
tions are given which are used for further derivations in the remainder of this thesis:

ρl
∂ ⟨u⟩
∂t

+ ρl ⟨u⟩ · ∇ ⟨u⟩+ ρl ⟨δu⟩ · ∇ ⟨u⟩+ ρl ⟨u⟩ · ∇ ⟨δu⟩

+ρl ⟨δu⟩ · ∇ ⟨δu⟩ = −∇⟨p⟩+∇ · ⟨τ ⟩+ ρlg +
1

ϵl
˜̃s′ ,

(2.111)

∇ · ⟨u⟩+∇ · ⟨δu⟩ = − 1

ϵl

(
∂ϵl
∂t

+ ⟨u⟩ · ∇ϵl
)

(2.112)

which comprises the left-hand side (2.28) and right-hand side (2.110) of the momentum equation
in convective form and the continuity equation (2.24) in which the last term is ignored. The
momentum equation has been divided by the non-zero fluid fraction ϵl.

2.4 Particle radius variations governed by the
Rayleigh-Plesset (RP) equation

So far, only particles with a constant radius have been considered. For the modeling of gas/vapor
bubbles in liquid, the RP equation governs the bubble radius based on the ambient fluid pressure.
The RP equation was derived by Lord Rayleigh [139] and applied to cavitating bubbles by Plesset
[167]. A summary of modeling aspects regarding the RP equation and a detailed derivation can
be found in Brennen [19] on which the following summary is based on and to which the reader
is referred to for more details. The following assumptions are used:

• The bubble is spherical with time-dependent radius r = r(t).

• The bubble interior pressure pb(t) and temperature Tb(t) are uniformly distributed.
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• No mass and no heat transfer between bubble and surrounding fluid.

• The density ρl, dynamic viscosity µ, and temperature T∞ of the surrounding fluid is ho-
mogeneous and constant over time.

• Surface tension σ and vapor pressure pv are constant over time.

• The domain of the surrounding fluid is infinitely large with time-dependent pressure p∞(t)
at a large distance from the bubble.

Inserting the aforementioned assumptions in the momentum equation of the NS equations in
radial coordinates leads to the RP equation

ρl

[
r(t) r̈(t) +

3

2
(ṙ(t))2

]
= pb(t)− p∞(t)− 2σ

r(t)
− 4µ

r(t)
ṙ(t) (2.113)

with pressure inside the bubble being defined as

pb(t) = pv + pg(t) = pv + pg0

(
r0
r(t)

)3η

. (2.114)

The pressure inside the bubble consists of the vapor pressure pv and the partial pressure pg(t) of
contaminant gas. The partial gas pressure is based on the partial pressure pg0 at initial state, the
initial bubble radius r0 and the exponent η. According to Moss et al. [154], either an isothermal
process is assumed leading to η = 1 when the dynamics are slow (r(t) ≥ r0) or an adiabatic
process is assumed, with η = cp

cv
= 1.4 being the specific heat ratio of the gas, when the dynamics

are high (r(t) < r0).
Furthermore, it is assumed that the bubble is initially at equilibrium

r0 = r(t = 0) (2.115)
ṙ(t = 0) = r̈(t = 0) = 0 (2.116)

which can be inserted in (2.113) in order to solve for the initial gas partial pressure

pg0 = p∞(t)− pv +
2σ

r0
. (2.117)
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3 Computational approach

3.1 Single fields

3.1.1 Discretized Navier-Stokes equations

The method of lines is used to discretize the governing equations as given in (2.111) and (2.112),
meaning that first the spatial discretization is applied in Section 3.1.1.1 followed by the time
discretization in Section 3.1.1.2.

The Eulerian domain Ω is discretized with ne non-overlapping elements of the domain Ωe.
Hence,

Ω = ∪ne
e=1Ω

e and Ωe ∩ Ωf = ∅ ∀ e ̸= f . (3.1)

This discretization in space introduces a spatial filtering into resolved scales and those which
are below the size of the elements considered. The volume averaged NS equations also filter
the governing equations and lead to a lower limit of the element size. Hence, a possible choice
is to link the spatial discretization with the filtering size introduced in the volume averaging
procedure. This is inspired by the approach of implicit turbulence modeling, see e.g. Hickel
et al. [92], where the element size is linked to the introduced dissipation in the turbulent flow. In
order to show the close link between the size of the volume average and the size of elements, the
volume averaged velocity ⟨u⟩ and its deviations ⟨δu⟩ are replaced by uh and û, respectively,
exclusively in the following section. The same replacement is applied for the fluid pressure p.
This also eases reading for someone who is used to the notation common in the derivations of
variational multiscale methods.

3.1.1.1 Residual-based variational multiscale finite element method

A finite element method (FEM) is applied for spatial discretization throughout this thesis. Here, a
brief summary of the basic ideas is given and the interested reader is referred to the corresponding
literature, e.g. to Hughes [101] and Zienkiewicz et al. [241] for the general FEM and to textbooks
exclusively dealing with FEM for flow problems, e.g. Gresho and Sani [80, 81] and Donea and
Huerta [49]. For details on the variational multiscale method, the reader is referred to Hughes
et al. [103], Bazilevs et al. [12], and Gravemeier et al. [78].

In the work of Guerra et al. [82], the governing equations for particle-laden flow are derived us-
ing the residual-based variational multiscale method. However, they neglect the influence of the
dispersed phase in the continuity equation due to the assumption of negligible volume fraction
of the dispersions. Hence, an incompressible fluid is modeled and the influence of the dispersed
phase is only included in the momentum equation as an additional source term. In contrast, the
formulation used in this thesis includes effects of the dispersed phase in the continuity equation.
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The weak formulation of the governing equations is is obtained via multiplying (2.111) and
(2.112) with appropriate weighting functions. The admissible solution and test function space
for the velocity u is

Su =
{
u ∈

[
H1(Ω)

]3 | u = uD on ΓD

}
,Vu =

{
w ∈

[
H1(Ω)

]3 | w = 0 on ΓD

}
. (3.2)

The corresponding solution and test function space for the pressure is identical

Sp =
{
p ∈ L2(Ω)

}
,Vp =

{
q ∈ L2(Ω)

}
. (3.3)

Therein, the Hilbert space of square-integrable functions on the domain Ω is denoted as L2(Ω)
and the Sobolev space is denoted as H1(Ω) which additionally includes the functions with
square-integrable first derivatives, see Donea and Huerta [49] for more details. As already ex-
plained in Section 3.1.1, a separation into resolved and unresolved scales is applied which can
either be seen as introduced by the volume averaging or by the discretization. The resolved scales
span a finite-dimensional subspace whereas the unresolved scales cover an infinite-dimensional
subspace and a sum decomposition is applied which reads as follows

Su = Sh
u + Ŝu ,Vu = Vh

u + V̂u , (3.4)

Sp = Sh
p + Ŝp ,Vp = Vh

p + V̂p . (3.5)

Analogue to splitting the solution functions (compare (2.17) and (2.31))

u = uh + û , (3.6)

p = ph + p̂ , (3.7)

the weighting functions q and w can be separated into a resolved and an unresolved part reading

w = wh + ŵ , (3.8)

q = qh + q̂ . (3.9)

The momentum equation (2.111) and the continuity equation (2.112) are multiplied with the
resolved-scale part wh ∈ Vh

u and qh ∈ Vh
p of the test functions in order to achieve the afore-

mentioned scale separation property. Integration over the domain Ω is performed. Integration by
parts is applied to the viscous and pressure term while accounting for the boundary conditions
(2.7) and (2.8) in the emerging boundary integrals. For details on the derivation, see Hughes
et al. [103] and Bazilevs et al. [12]. Finally, the weak formulation tested with the resolved part
of the testing function follows: find ph ∈ Sh

p and uh ∈ Sh
u such that

(
qh,∇ · uh

)
Ω
+
(
qh,∇ · û

)
Ω
=

(
qh,− 1

ϵl

(
∂ϵl
∂t

+ uh · ∇ϵl
))

Ω

∀qh ∈ Vh
p (3.10)(

wh, ρl
∂uh

∂t

)
Ω

+
(
wh, ρlu

h · ∇uh
)
Ω
+
(
wh, ρlû · ∇uh

)
Ω
+
(
wh, ρlu

h · ∇û
)
Ω

+
(
wh, ρlû · ∇û

)
Ω
−
(
∇ ·wh, ph

)
Ω
+
(
ϵ
(
wh
)
, 2µϵ′

(
uh
))

Ω

=

(
wh,

1

ϵl
˜̃s′ + ρlg

)
Ω

+
(
wh,h

)
ΓN

∀wh ∈ Vh
u .

(3.11)

34



3.1 Single fields

with (· , · )Ω and (· , · )ΓN
being the inner L2 product in the domain Ω and on the Neumann boun-

dary ΓN, respectively.
Instead of using the resolved part of the test functions in (3.10) and (3.11), a multiplication

with the unresolved counterparts can be used to obtain a model for the unresolved scales, see,
e.g. Hughes et al. [103], Bazilevs et al. [12], and the review paper by Rasthofer and Gravemeier
[173]. Therewith, the element-wise unresolved scales read as

û=− τMrh
M (3.12)

with the stabilization parameter τM and the discrete residual of the momentum equation

rh
M = ρl

∂uh

∂t
+ ρlu

h · ∇uh +∇ph −∇ · 2µϵ
(
uh
)
− ρlg −

1

ϵl
˜̃s′ (3.13)

which only contains resolved quantities. The stabilization parameter proposed in Taylor et al.
[203] and Whiting and Jansen [230], and adapted to variable-density flow by Gravemeier and
Wall [77], read as follows

τM =
1√(

2ρl
∆tl

)2
+ (ρluh) ·G (ρluh) + C1µ2G : G

(3.14)

where

Gij =
3∑

k=1

∂ξk
∂xi

∂ξk
∂xj

(3.15)

is the covariant metric tensor describing the mapping between global coordinates x and the local
element coordinates ξ. The time step size is denoted as ∆tl and C1 is a constant independent of
the characteristic element length which is 36.0 for tri-linearly-interpolated hexahedral elements
and linear tetrahedral elements. Introducing (3.12) in (3.10) and (3.11) leads to finding ph ∈ Sh

p

and uh ∈ Sh
u such that(

qh,∇ · uh
)
Ω
+
(
∇qh, τMrh

M

)
Ω⋆

=

(
qh,− 1

ϵl

(
∂ϵl
∂t

+ uh · ∇ϵl
))

Ω

∀qh ∈ Vh
p

(3.16)

(
wh, ρl

∂uh

∂t

)
Ω

+
(
wh, ρlu

h · ∇uh
)
Ω
+
(
wh,−ρlτMrh

M · ∇uh
)
Ω⋆

+
(
ρlu

h · ∇wh, τMr
h
M

)
Ω⋆ +

(
−ρlτMrh

M · ∇wh, τMr
h
M

)
Ω⋆ −

(
∇ ·wh, ph

)
Ω

+
(
ϵ
(
wh
)
, 2µϵ′

(
uh
))

Ω
+
(
∇ ·wh, τCr

h
C

)
Ω⋆

=

(
wh,− 1

ϵl
˜̃s′ + ρlg

)
Ω

+
(
wh,h

)
ΓN

∀wh ∈ Vh
u

(3.17)

in which integration by parts of some terms is performed. To simplify the derivation, the unre-
solved quantities are assumed to vanish on the boundary of each element as discussed in Hughes
[100]. Moreover, Ω⋆ is the union of all element interiors excluding the element boundaries, i.e.

Ω⋆ = Ω \ ∪ne
e=1∂Ω

e . (3.18)
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Finally, this formulation of the residual-based variational multiscale approach represents the
volume averaged NS equations and it only includes resolved scales. The following comments on
the terms in the final formulation are taken from Gresho and Sani [80, 81] and Donea and Huerta
[49] which the reader is referred to for more details:

•
(
∇qh, τMrh

M

)
Ω⋆ constitutes a Pressure Stabilizing Petrov-Galerkin (PSPG) term which

suppresses spurious pressure oscillations in case equal order discretization for the velocity
and the pressure is chosen; for details see Brezzi and Fortin [22].

•
(
ρlu

h · ∇wh, τMr
h
M

)
Ω⋆ constitutes a Streamline/Upwind Petrov-Galerkin (SUPG) term

which is necessary to overcome numerical instabilities in convection-dominated flows
when using the FEM, see Brooks and Hughes [23].

•
(
wh,−ρlτMrh

M · ∇uh
)
Ω⋆ constitutes a cross-stress (CS) term enhancing global momen-

tum conservation for the convective formulation, for details see Hughes and Wells [102].

•
(
−ρlτMrh

M · ∇wh, τMr
h
M

)
Ω⋆ constitutes a subgrid-scale Reynolds-stress (RS) term which

can be seen as a stabilization term for the aforementioned cross-stress term, see also
Hughes and Wells [102].

• The only term that is missing compared to the variational multiscale framework by Gresho
and Sani [80, 81] and Donea and Huerta [49] is a grad-div (GD) term. It penalizes de-
viations of the discrete mass conservation which is assumed to be important as a non-
divergency free continuity equation (2.112) is used. Therefore, a GD term(

∇ ·wh, τCr
h
C

)
Ω⋆ (3.19)

is added to (3.17) which includes the discrete residual of the continuity equation

rh
C = ∇ · uh +

1

ϵl

(
∂ϵl
∂t

+ uh · ∇ϵl
)

(3.20)

and the stabilization parameter

τC =
1

τMtr (G)
, (3.21)

with being tr (·) the trace of a matrix, for details see De Mulder [38] and Bazilevs et al.
[12]. As this term vanishes when the mass conservation is fulfilled exactly, consistency is
ensured.

During the derivation of the volume averaged NS equations in Section 2.1.2, four terms were
not removed as usual, one on the left-hand side of (2.24) and three in (2.28). Each of this terms
included the variation of the velocity δu ≡ û. After deriving the variational multiscale method,
these four terms can be identified as the PSPG, SUPG, CS and RS term. It is the first time that
these terms which are usually neglected in the derivation of the volume averaged NS equations
are matched with terms in a variational multiscale method.

The derivations in this section have been performed in a very similar way by Gravemeier and
Wall [77] for variable-density low-Mach number flows. Their starting point are the compressible
NS equations consisting of conservation of mass, momentum, and energy. In contrast, the volume
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3.1 Single fields

averaged incompressible NS equations are used in the present framework to start the derivation
of the residual-based the variational multiscale method. Strong similarities can be found in the
continuity equation which reads

∇ · u =
1

T

(
∂T

∂t
+ u · ∇T

)
− 1

pthe

dpthe
dt

(3.22)

in their case. Ignoring the latter part with the thermodynamic pressure pthe and replacing the
temperature T with the fluid fraction ϵl leads to the formulation used in this thesis. However,
there is no need to solve the energy equation in the present thesis due to the Lagrangian particles
which are used to compute the fluid fraction based on their position and volume.

As a FEM is applied in this thesis, the discrete solution is approximated using shape functions
Nα(x) and solution vectors uα(t) and pα(t) each corresponding to a node αwhich are multiplied
and summed over all nodes of the discretization as follows

uh(x, t) =
∑
α

Nα(x)uα(t) (3.23)

ph(x, t) =
∑
α

Nα(x)pα(t) . (3.24)

Lagrangian polynomials are chosen for the shape functions which are also used for the test func-
tions wh and qh. Inserting this approximation of the discrete solution and test functions in (3.16)
and (3.17) leads to a time-continuous Galerkin formulation which reads without stabilization
parameters in the following matrix system[

M 0
0 0

] [
U̇

h

0

]
+

[
C
(
Uh
)
+ V −G

GT 0

] [
Uh

Ph

]
=

[
f
g

]
(3.25)

where M, C
(
Uh
)
, V, and G are the matrices containing the transient, nonlinear convective,

viscous, and pressure term of the left-hand side of (3.17). The first term of (3.16) is contained
in the transpose of G. The right hand side terms of (3.17) and (3.16) are contained in f and g,
respectively. The vectors Uh, U̇

h
, and Ph hold the nodal degrees of freedom for the velocity, the

acceleration, and the pressure.

3.1.1.2 Time discretization

The generalized-α time integration scheme, as originally proposed by Chung and Hulbert [27]
for structural dynamics, is used for the fluid. The application to first-order systems such as the
NS equations can be found in Jansen et al. [109] which the following brief summary is based
on. The time of interest [0, tend] is divided into discrete time steps of size ∆tl and time stepping
from step n to step n+ 1 is performed such that tn+1 = tn +∆tl holds. The generalized-α time
integration relies on two additional intermediate time levels defined as

tn+αf = (1− αf)t
n + αft

n+1 (3.26)
tn+αm = (1− αm)t

n + αmt
n+1 (3.27)
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in which αf and αm are two parameters to control the properties of the method. A stable method
can only be obtained if

αm ≥ αf ≥
1

2
(3.28)

holds, cf. Jansen et al. [109]. Applied to a generic model problem

da(t)

dt
= f(a(t), t) (3.29)

with the scalar valued function a(t), the time stepping procedure from tn to tn+1 using the
generalized-α method reads

an+αf = (1− αf)a
n + αfa

n+1 (3.30)

ȧn+αm = f
(
an+αf , tn+αf

)
(3.31)

ȧn+αm = (1− αm)ȧ
n + αmȧ

n+1 (3.32)

an+1 = an +∆tlȧ
n +∆tlγ

(
ȧn+1 − ȧn

)
(3.33)

which iteratively leads to the solution of the problem as this is an implicit time integration
scheme. According to Jansen et al. [109], the third free parameter γ can be chosen as

γ =
1

2
+ αm − αf (3.34)

in order to reach second-order accuracy in time. The generalized-α time integration scheme
allows to control the high-frequency dissipation by the spectral radius ρ∞. It is used to define the
remaining parameters as

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
, (3.35)

αf =
1

1 + ρ∞
. (3.36)

Analogue to Jansen et al. [109] and Gravemeier and Wall [77], the spectral radius is chosen as
ρ∞ = 1/2 resulting in the coefficients as displayed in Table 3.1 leading to a second-order accurate
time integration scheme.

αm αf γ
5
6

2
3

2
3

Table 3.1: Coefficients for generalized-α time integration scheme.

Analogue to Gravemeier et al. [79], the afore presented generalized-α time integration scheme
is applied to the variational multiscale method presented in Section 3.1.1.1. This results for the
Galerkin formulation without stabilization parameters in the following matrix system[

M 0
0 0

][
˙⟨U⟩n+αm

0

]
+

[
C
(
⟨U⟩n+αf

)
+ V −G

GT 0

] [
⟨U⟩n+αf

⟨P⟩n+αf

]
=

[
fn+αf

gn+αf

]
(3.37)
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where the nodal degrees of freedom of the state vectors and of the right-hand sides are hold at
the respective points in time, in contrast to (3.25). The state vectors are subject to

⟨U⟩n+1 = ⟨U⟩n + γ∆tl ˙⟨U⟩n+1
+ (1− γ)∆tl ˙⟨U⟩n , (3.38)

˙⟨U⟩n+αm

= αm
˙⟨U⟩n+1

+ (1− αm) ˙⟨U⟩n , (3.39)

⟨U⟩n+αf = αf ⟨U⟩n+1 + (1− αf) ⟨U⟩n , (3.40)

⟨P⟩n+αf = αf ⟨P⟩n+1 + (1− αf) ⟨P⟩n . (3.41)

As proposed by Gravemeier et al. [79], a Picard (or fixed-point-like) iteration scheme is ap-
plied to account for the non-linearity in the matrix system (3.37). An incremental formulation of
the matrix system is used to solve for the velocity increment

∆ ⟨U⟩n+1,i+1 = ⟨U⟩n+1,i+1 − ⟨U⟩n+1,i (3.42)

and the pressure increment

∆ ⟨P⟩n+1,i+1 = ⟨P⟩n+1,i+1 − ⟨P⟩n+1,i (3.43)

in each iteration step. A steady-state predictor

⟨U⟩n+1,0 = ⟨U⟩n and ⟨P⟩n+1,0 = ⟨P⟩n (3.44)

starts the iteration procedure. The iteration procedure requires the residual of the momentum
equation in (3.37), reading

Ri
M = M ˙⟨U⟩n+αm,i

+Kn+αf ,i
wu ⟨U⟩n+αf ,i +Kn+αf ,i

wp ⟨P⟩n+αf ,i − fn+αf − an+αf ,i
u (3.45)

and the residual of the continuity equation in (3.37), reading

Ri
C = Kn+αf ,i

pu ⟨U⟩n+αf ,i + An+αf ,i
p−PSPG ⟨P⟩n+αf ,i − gn+αf − an+αf ,i

PSPG . (3.46)

in which the matrices from modeling the unresolved scales are introduced. The matrices are
defined as

Kn+αf ,i
wu = C

(
⟨U⟩n+αf ,i

)
+ V + An+αf ,i

u−SUPG + An+αf ,i
u−CS + An+αf ,i

u−RS + An+αf ,i
GD , (3.47)

Kn+αf ,i
wp = −G+ An+αf ,i

p−SUPG + An+αf ,i
p−CS + An+αf ,i

p−RS , (3.48)

Kn+αf ,i
pu = GT + An+αf ,i

u−PSPG (3.49)

and they contain the matrices An+αf ,i
u−SUPG, An+αf ,i

p−SUPG, An+αf ,i
u−PSPG, An+αf ,i

p−PSPG, An+αf ,i
GD An+αf ,i

u−CS , An+αf ,i
p−CS ,

An+αf ,i
u−RS , and An+αf ,i

p−RS which contain the stabilization terms from SUPG, PSPG, GD, CS, and RS
of which all except the GD term are split with respect to their velocity and pressure degrees of
freedom. The vectors

an+αf ,i
u = an+αf ,i

SUPG + an+αf ,i
CS + an+αf ,i

RS (3.50)

and an+αf ,i
PSPG contain the right-hand side contributions of the SUPG, CS, RS, and PSPG stabiliza-

tion term. The superscript (·)n+αf ,i denotes a dependency on the velocity ⟨U⟩n+αf ,i.
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The linearization of the residuals with respect to the variables to obtain the increments reads ∂Ri
M

∂⟨U⟩n+1

∂Ri
M

∂⟨P⟩n+1

∂Ri
C

∂⟨U⟩n+1

∂Ri
C

∂⟨P⟩n+1

[∆ ⟨U⟩n+1,i+1

∆ ⟨P⟩n+1,i+1

]
= −

[
Ri

M

Ri
C

]
(3.51)

which contains approximations to the consistent tangent matrix using

∂ ˙⟨U⟩n+αm

∂ ⟨U⟩n+1 =
∂ ˙⟨U⟩n+αm

∂ ˙⟨U⟩n+1

∂ ˙⟨U⟩n+1

∂ ⟨U⟩n+1 =
αm

γ∆tl
, (3.52)

∂ ⟨U⟩n+αf

∂ ⟨U⟩n+1 =
∂ ⟨P⟩n+αf

∂ ⟨P⟩n+1 = αf . (3.53)

Inserting (3.52) and (3.53) into (3.51) leads to the final linear system of equations[
M+ αf

αm
γ∆tlK

n+αf ,i
wu

αf

αm
γ∆tlK

n+αf ,i
wp

αf

αm
γ∆tlK

n+αf ,i
pu

αf

αm
γ∆tlA

n+αf ,i
p−PSPG

] [
∆ ⟨U⟩n+1,i+1

∆ ⟨P⟩n+1,i+1

]
= −γ∆tl

αm

[
Ri

M

Ri
C

]
(3.54)

within the iterative procedure to obtain the increments for the velocity and the pressure.

3.1.2 Time discretization of the Lagrangian particles
3.1.2.1 Central difference time integration

The particles are tracked in a Lagrangian frame and for each particle the equations of motion
(2.40) and (2.95) are solved individually. The particles are discretized in time with an explicit
time integration scheme opposed to the fluid with its implicit time integrator as presented in
Section 3.1.1.2. The literature dealing with the discrete element method (DEM), as invented in
Cundall and Strack [34], favors explicit time integration schemes due to their simplicity and the
need to solve for a possibly very large number of particles in the system, cf. Tuley et al. [209].
Moreover, contact between small particles may pose the necessity for a small time step size in
order to resolve the discontinuity properly, such that a small time step size is already imposed by
the physics. In Tuley et al. [209], a comparison of different time integrators is performed which
reveals that higher order methods such as 4th-order Runge-Kutta methods loose their expected
order of accuracy when it comes to contact at a point in time which does not coincide with one
of the stage times. It is concluded that lower order time integration schemes are superior in DEM
applications. Therefore, the central difference time integration scheme, also known as velocity
Verlet algorithm, is applied exclusively in this thesis. It has already been applied in Cundall
and Strack [34]. Its advantage is second order accuracy in time in case undamped contact is
considered, and, in addition, it demands for only one evaluation of the forces within one time
step. In contrast to the fluid, the time of interest [0, tend] is divided into discrete time steps of size
∆tb which does not necessarily coincide with ∆tl. Then, time stepping from tm to tm+1 with
tm+1 = tm +∆tb comprises four steps for each particle i:

1. Advance velocity and angular velocity to tm+1/2 :

v
m+1/2
i = vm

i +
∆tb
2

am
i (3.55)

ω
m+1/2
i = ωm

i +
∆tb
2

αm
i (3.56)
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2. Advance position to tm+1 :
xm+1
i = xm

i +∆tbv
m+1/2
i (3.57)

3. Compute forces

Fm+1
i = Fg,i+

∑
FΓ,i

(
xm
i ,v

m
i ,a

m
i , r

m+1
)
+Fc,i

(
xm+1,vm+1/2,ωm+1/2, rm+1

)
(3.58)

and moments
Mm+1

i = Mi

(
xm+1,vm+1/2,ωm+1/2, rm+1

)
, (3.59)

to obtain acceleration
am+1
i =

1

mi

Fm+1
i , (3.60)

and angular acceleration

αm+1
i =

1

Ii
Mm+1

i (3.61)

at tm+1 using (2.95) and (2.35).

4. Advance velocity and angular velocity to tm+1 :

vm+1
i = v

m+1/2
i +

∆tb
2

am+1
i (3.62)

ωm+1
i = ω

m+1/2
i +

∆tb
2

αm+1
i (3.63)

It should be noted that the orientation in space is irrelevant for the computation of the mo-
ments and the angular acceleration. Hence, regarding the rotational degrees of freedom, only
the angular velocity and angular acceleration are tracked throughout the simulation whereas the
orientation is omitted.

3.1.2.2 Critical time step size

The central difference algorithm is only conditionally stable leading to a restriction on the ad-
missible time step size in order to preserve stability. Before coming to assess the critical time
step size, the penalty parameter introduced in (2.57) needs to be defined. Theoretically, an arbi-
trary positive value could be chosen for this artificial stiffness parameter, i.e. kn ∈ R+. However,
a reasonable choice limits the stiffness such that neither a too large penetration occurs nor that
the time step size restriction gets too severe which leads to unaffordable computational cost. The
approach chosen to determine kn is based on energy conservation during the contact process
while neglecting viscous and numerical damping. The larger the kinetic energy of the system the
larger the penetration during contact while keeping kn constant. It is assumed that the overall
kinetic energy of the particles right before collision is transformed into potential energy in the
point of maximal penetration in which vi = 0 for both collision partners. This reads for two
particles approaching centrically with velocity magnitude vmax

2
1

2
mmaxv

2
max

!
=

1

2
kn|gn|2max . (3.64)
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This represents the contact scenario with maximal penetration of two particles, because a cen-
tral collision of two particles with maximal mass mmax and maximal velocity, of all particles
involved, is considered. In order to obtain a realistic collision behavior, the maximal allowed
penetration is restricted to

|gn|max

!

≤ c 2 rmax (3.65)

with a positive constant c≪1 and the maximal involved radius rmax. Inserting

mmax =
4

3
r3maxπρb (3.66)

and (3.65) into (3.64) allows for computing a lower bound for the stiffness, viz

kn ≥
2

3
πρb

rmax v
2
max

c2
. (3.67)

In summary, having a good estimate for the maximal radius and the maximal velocity in advance
allows for choosing kn such that the prescribed maximal penetration is not exceeded. Tuley et al.
[209] propose c in the range of 0.1−1.0 % of the particle diameter which is denoted as “realistic”
or “ideal”. Nevertheless, there is no numerical reason for such a small value of c. Consequently,
several contributions can be found in the literature that allow for much larger relative penetra-
tions. In the examples of this thesis, 0.02 rmax ≤ c ≤ 0.08 rmax is chosen to weaken the time step
size restriction while still having “physical” collision results.

After having determined the required stiffness to account for contact, the critical time step size
can be assessed. For simple linear and undamped systems, such as a single particle, the critical
time step size for the central difference time integrator reads

∆tcrit = 2

√
mi

kn
. (3.68)

The corresponding derivation can be found in O’Sullivan and Bray [162] and references therein.
Essential in (3.68) is the proportionality ∆tcrit ∼

√
1/kn revealing that a higher stiffness leads to

a more severe restriction on the time step size. Therefore, always the lower bound in (3.67) is
chosen for kn. Usually, particle problems are 3D, and random packings occur. This is accounted
for by O’Sullivan and Bray [162] who investigate in detail the central difference time integration
scheme combined with a linear spring model. They found a critical time step size

∆tcrit = S fcr

√
mmin

kn
(3.69)

for 3D analysis of colliding particles with a safety factor S = 0.75 andmmin the minimal particle
mass. A distinction is made by O’Sullivan and Bray [162] whether only normal contact forces
are considered, leading to fcr = 0.348, or also accounting for tangential contact forces leading
to a more severe restriction of the time step size with fcr = 0.221. The time step size in (3.69) is
a worst case scenario which may not necessarily arise during a simulation but keeping this limit
for ∆tb leads to a stable time integration scheme.
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3.2 Partitioned fluid-particle framework

3.1.2.3 Implicit treatment of added mass force

As summarized in Section 2.2, different forces contribute to the sum of forces acting on each
particle which is necessary for computing the acceleration during time integration, cf. (3.58).
Special attention has to be given to the added mass force Fam introduced in (2.51). A small
example with an initially resting air bubble which is released in an initially quiescent fluid that
starts ascending due to buoyancy is used to reveal the instability. Contact forces are neglected
for a moment. Right after releasing the particle, only Fb = ρlVpg is relevant because particle
and fluid are still at rest and due to ρl/ρb ≈ 1000 ≫ 1 gravity force can be neglected in the
explicit treatment. During time integration, the particle acceleration is computed according to
(3.60) leading to an acceleration of O (g ρl/ρb) ≈ O (104 m/s2) at the end of the first time step.
This acceleration is far too high leading to an added mass force

Fam,i = camρlVp,i

(
D ⟨u⟩i
Dt

− Dvi

Dt

)
= camρlVp,i

(
O (0)−O

(
g
ρl
ρb

))
(3.70)

via (2.51) in the second step. This added mass force dominates all forces acting on the particle
in the second step such that it counteracts the particle motion and it even reverses the motion
direction. Hence, an instability is introduced and the orders involved clearly show that after a
few steps the system goes out of bounds. A remedy is an implicit treatment of the added mass
force while all other forces are still treated explicitly. As the particle acceleration is only included
linearly in the added mass force, (2.39) can be reordered as

(mi + camρlVp,i)
Dvm+1

i

Dt
= Fg,i + Fp,i + Fτ,i + Fd,i + Fl,i + camρlVp,i

D ⟨u⟩i
Dt

(3.71)

with all terms on the right-hand side evaluated at time step m. Hence, the new acceleration
for particle i in (3.60) can be updated independently of all other particles without the need
of iteration steps. This procedure enables to resolve the stability issue in the aforementioned
example while the computational cost is almost unchanged. Due to conceptual constraints, the
contact force is not included in (3.71). Either an error is accepted here or an implicit treatment
of all particles is necessary which can be obtained using the strong coupling scheme including
an outer loop which will be presented in Section 3.2.2.

3.2 Partitioned fluid-particle framework
The relevant time scales included in a particulate flow simulation may be different for the physics
involved. Considering dispersed flow with particles of constant radius, two different relevant time
scales can be identified as depicted in the first two scales of Figure 3.1.

1. In the carrier fluid, the speed of sound in air and water is in the range of 1500 m/s and
330 m/s, respectively. The velocities considered are smaller than 100 m/s such that the flow
can be assumed incompressible. Usually, a time step size ∆tl is of O(10−4s · · · 10−2s) to
appropriately resolve the larger flow characteristics.

2. When taking into account the contact of submerged very small particles, a finer temporal
resolution ∆tb is necessary which might be of O(10−8s · · · 10−5s).
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∆tl

∆tb

∆tb

∆tRP

Figure 3.1: Different time scales in a fluid-particle problem.

In case, a variable radius is considered which is governed by the RP equation, a third time scale
becomes relevant, see Figure 3.1. An appropriate time step size ∆tRP of O(10−12 s · · · 10−7 s)
resolves the collapse of cavitation bubbles, compare Alehossein and Qin [3].

To account efficiently for these broad range of relevant time scales, a natural choice is to
apply subcycling between fluid and particles in order to reduce the computational effort. Fields
are only solved when noticeable changes are expected, and coupling states are interpolated to
the intermediate levels for the finer resolved field, i.e. for the particles.

3.2.1 Weakly coupled

A summary of the sequence of steps for the loosely coupled Euler-Lagrange approach includ-
ing subcycling is given in Algorithm 1. After initializing all fields and setting up the connectivity,
the time loop starts. In each time step, first, the fluid is solved at t+∆tl using the generalized-α
time integration scheme as presented in Section 3.1.1.2. The coupling variables, namely the fluid
fraction and the momentum source term, are evaluated from the latest available particle position
and radius which nevertheless lag behind ∆tl. Next, the particles are advanced in time applying
a subcycling procedure. The position, velocity, and acceleration of the particles are updated as
described in Section 3.1.2. The relevant coupling data from the fluid, i.e., velocity, acceleration,
and pressure, are linearly interpolated in time to the current evaluation time. Then, the fluid and
the particles have reached the same time t. To conclude the fluid time step, the velocity and pres-
sure are updated. In case inflow of particles into the domain is considered, this is linked to the
update at the end of each fluid time step. This whole procedure is repeated until the final time
tend is reached.

For the special case of a variable radius governed by the RP equation, the afore presented
procedure is supplemented by the evolution of the particle radius. Before the translational and
rotational motion of the particles is integrated in the fluid-particle subcycling procedure (see line
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3.2 Partitioned fluid-particle framework

Algorithm 1 Loosely coupled fluid-particle coupling algorithm.
1: initialize fluid and particle solver and setup connectivity: t = n = m = k = 0
2: while time loop not finished: t ≤ tend do
3: calculate fluid fraction ϵnl with xm, rk

4: // integrate fluid
5: solve fluid for time tn+1 with particle forces from time tn and ϵnl
6: // start subcycling for bubbles
7: t

′
= 0

8: while t′ < ∆tl do
9: // advance bubble radius with adaptive time stepping

10: t
′′
= 0

11: while t′′ < ∆tb do
12: normalized local truncation error ϵk+1

R = +∞
13: // repeat steps while not converged
14: while ϵk+1

R > tolRP do
15: Runge-Kutta time stepping: rk → rk+1 with linearly interpolated pressure p in

time at each stage to position xm

16: compute ϵk+1
R

17: adapt time step size ∆tk+1
RP

18: end while
19: update

{
rk ← rk+1

}
, t′′ += ∆tk+1

RP and {k ← k + 1}
20: end while
21:

22: // advance particle position
23: compute forces on particle with xm,vm,am, rk+1 and fluid states u and p linearly

interpolated in time to t+ t
′
+∆tb

24: central difference time stepping: xm,vm,am → xm+1,vm+1,am+1

25: update {xm,vm,am ← xm+1,vm+1,am+1}, t′ += ∆tb and {m← m+ 1}
26: update connectivity for neighborhood search of particles
27: end while
28: insert inflowing particles into the domain
29: update {un, pn ← un+1, pn+1}, t += ∆tl and {n← n+ 1}
30: end while
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22 to 26 in Algorithm 1), another subcycling procedure is included, see line 9 to 20 in Algo-
rithm 1, using the adaptive time stepping scheme as will be presented in Section 3.5.1. While the
particle radius is evolved up to the time period ∆tb, using the variable time step size ∆tRP, the
particle position is kept constant and a linear interpolation in time is performed for the ambient
pressure of the surrounding fluid. Afterwards, the latest available particle radius is kept constant
while the translational motion of the particle is integrated in time. The alternating evolution of ra-
dius and position/velocity/acceleration is repeated until subcycling is finished for this fluid time
step. A special treatment of the radius evolution is included. Due to the adaptive time stepping
procedure, particle radius evolution time steps are only accepted if the normalized estimated lo-
cal truncation error ϵk+1

R does not exceed some given tolerance tolRP, otherwise they are repeated
with a smaller time step size ∆tkRP.

The rotational degrees of freedom are linked to the integration of the translational degrees
of freedom and they are skipped in the previously described algorithm in order not to increase
complexity further. As there is neither a coupling between the rotation of the particles and the
fluid, nor the rotation and the radius evolution, this step of integrating the rotational degrees of
freedom can easily be added.

3.2.2 Strongly coupled with Aitken relaxation

The loosely coupled algorithm as presented in the previous section may lack of stability and lead
to a diverging solution. Preliminary tests revealed this issue especially when a variable radius
based on the RP equation is considered. A possible remedy is a strong coupling scheme which
iterates between the fluid and particle field within one time step until convergence is achieved.
The most sensitive quantities are the pressure of the fluid field and the radii of the bubbles.
Hence, the increment from iteration i to i+ 1 of these two quantities define the residual vectors

Rp = ⟨P⟩n+1
i+1 − ⟨P⟩

n+1
i and Rr = Rn+1

i+1 − Rn+1
i . (3.72)

For simplicity, the index n is also used for the radius in order to show that radius and pressure
are evaluated at tn and tn+1, although many subcycling steps are necessary for advancing the
radius while one fluid time step is performed. To simplify the definition of a good tolerance for
the residual, a relative error is defined using the pressure and the radius from the last converged
solution, viz

rp,rel =
∥Rp∥2
∥⟨P⟩n∥2

, rr,rel =
∥Rr∥2
∥Rn∥2

. (3.73)

The abort criterion for the outer iteration then reads

rp,rel < tolp and rr,rel < tolr (3.74)

with tolp = tolr = 10−5 if not stated otherwise.
It turned out that applying strong coupling leads to a very slow convergence and iteration

numbers of 100 and more occurred regularly. Zohdi [242] proposes a strong coupling scheme
in which the time step size is adapted in order to meet a target number of iterations. For steady
state simulations, Laı́n and Sommerfeld [126] propose under-relaxation with a fixed relaxation
parameter between 0.5 and 0.1 leading to typically 25 to 35 iterations between the fluid and the
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3.2 Partitioned fluid-particle framework

particle field. In Ansys CFX (see [1]), under-relaxation with a default value of 0.75 is recom-
mended for steady state fluid-particle problems. In the latter two cases, the relaxed quantities
are the source terms in the (volume averaged) Navier-Stokes equations. In order to accelerate
convergence, a dynamic relaxation strategy, namely Aitken’s ∆2 method as originally proposed
by Irons and Tuck [105] and later applied to fluid-structure-interaction by Küttler and Wall [125]
is applied in this thesis. Here, the bubble radius is the preferred variable to be relaxed because it
is advanced with the RP equation and it enters the fluid fraction in the right-hand side of (2.24),
directly influencing the fluid pressure. Instead of using the latest radius to compute the fluid
fraction, the following relaxation

Rn+1
i+1 = ωiR̃

n+1

i+1 + (1− ωi)R
n+1
i (3.75)

is used, in which ωi is the relaxation parameter. Starting with Rn+1
i , the solution for the radius

after iterating the fluid and the bubbles once is denoted with R̃
n+1

i+1 . The relaxed solution Rn+1
i+1 is

then inserted in the fluid fraction computation in order to start the next outer iteration step i+ 1.
The relaxation parameter is specified according to Aitken’s ∆2 method. Therein, two differences
of the radius: Rr,i+1 = R̃

n+1

i+1 −Rn+1
i and Rr,i+2 = R̃

n+1

i+2 −Rn+1
i+1 are used to compute the Aitken

factor

µi+1 = µi + (µi − 1)
− (Rr,i+1)

T (Rr,i+2 − Rr,i+1)

∥Rr,i+2 − Rr,i+1∥22
(3.76)

which is then used to evaluate the relaxation parameter

ωi+1 = 1− µi+1 . (3.77)

For starting the relaxation, an initial guess µ0 = 0.67 is chosen and a startup procedure is applied
in order to obtain two residuals. In the first relaxation step in which only one residual is available,
ω is taken from the last converged time step, viz ωn

imax
, and it is limited via

ω0 = min
(
ωn
imax
, ωmax

)
(3.78)

with a maximal allowed relaxation parameter ωmax. According to Küttler and Wall [125], this
limitation improves stability for the application of fluid-structure interaction as ωn

imax
might be

too large.
In case the strong coupling scheme should be applied to fluid-particle coupled problems fea-

turing constant-size particles, it is not possible to use the radius vector for relaxation. Instead, a
residual vector

Rd = xn+1
i+1 − xn+1

i (3.79)

based on the position x of the particles at iteration i and i + 1 can be used. The corresponding
relative residual reads

rd,rel =
∥Rd∥2
∥xn∥2

(3.80)

with the positions from the last converged step xn in the denominator. The abort criterion for the
outer iteration is

rd,rel < told (3.81)
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with the tolerance told. The relaxation with its start-up procedure to compute the first residual
does not have to be altered, see (3.78). Also, the computation of the relaxation parameter ω
according to (3.76) can be reused. Eventually, the relaxed particle positions are applied in the
particle force calculation.

3.3 Quantity mapping between frames

3.3.1 Eulerian to Lagrangian quantity mapping
The coupling from the fluid to the particles consists of evaluating the force contributions as given
in (2.39). Therein, it is necessary to evaluate the fluid quantities, i.e. velocities, pressure and ma-
terial fluid acceleration, at the particle (center) position. The pressure and velocities are primary
variables of the fluid which can easily be accessed whereas the material fluid acceleration is
computed via

Du

Dt
=
∂u

∂t
+ u · ∇u (3.82)

in the continuous setting. This is discretized using the latest available fluid acceleration state
for the first summand and fluid velocity state for the second summand. For the mapping of the
quantities from the Eulerian to the Lagrangian frame, several approaches can be found in lit-
erature. Volume weighted interpolation is used e.g. in Delnoij et al. [42] for a finite difference
scheme of the underlying fluid field. For a finite volume discretization, often distribution ker-
nels or template functions are used to weight the influence of nearby cells to obtain the fluid
quantities at the particle position, see e.g. Shams et al. [187] or Darmana et al. [36] which use a
Gaussian filtering function or a fourth order polynomial. In this work, the FEM is used for the
fluid and thus a natural choice is to use an interpolation using the shape functions of the underly-
ing fluid element evaluated at the particle position. Hence, the fluid velocity and acceleration can
be evaluated using (3.23) and for evaluating the pressure, (3.24) can be used. Instead of using
the pressure value at the particle center for evaluating the RP equation, Hsiao et al. [95] propose
the so-called surface averaged pressure scheme which takes the average of the fluid pressure at
the six polar points of the particle surface. This increases accuracy which might be interesting
for larger particles. As the particles are expected to be small, the additional effort is avoided for
the moment although the implementation is straight forward. Hence, the interpolation of e.g. the
fluid velocity at the center position of particle i reads

⟨u⟩i (t) = ⟨u⟩ (xi, t) =
∑
αe

Nαe (ξ (xi)) ⟨u⟩αe
(t) (3.83)

in which the task is to find the natural coordinates ξ (xi) of the particle center in the host (or
underlying) element e. Then, the summation over the αe nodes of the element can be performed.
The same interpolation is used for the pressure and the material fluid acceleration. In case of
distorted elements in an unstructured grid, the computation of the natural coordinates evolves to
the solution of a small nonlinear system of equations with the help of a Newton scheme. The
respective equation to be solved is(∑

αe

Nαe (ξ (xi))

)
− xi = 0 . (3.84)
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In order to find the underlying fluid element for a particle, the natural coordinates corresponding
to the particle position must be computed. Then, it is possible to decide whether the underlying
fluid element is found based on the natural coordinates. For example, the inside of a tri-linearly
interpolated hexahedral element cover [−1, 1] in each direction in natural coordinates. In order
to reduce the computational effort, a two step procedure is applied. First, a cheap bounding box
approach is applied to sort out the vast majority of elements. Second, those elements which are
found to be close during the first step are checked in detail using (3.84).

3.3.2 Lagrangian to Eulerian quantity mapping
The fluid forces acting on the particles have been presented in Section 2.2.2. These forces are
computed in the Lagrangian frame of the particles. However, the reaction forces (2.53) onto
the fluid need to be applied in the Eulerian frame in the fluid momentum equation (2.111) as
described by Crowe et al. [32]. This coupling from the dispersed to the continuous phase can
again be performed using the shape functions of the underlying fluid element evaluated at the
particle position as presented by Löhner et al. [137]. The shape functions fulfill partition of unity
which leads to a conservative coupling scheme. This technique has already been used in the
context of fluid-structure interaction by Farhat et al. [59]. This approach is also consistent with
(3.17) which states that the coupling forces need to be weighted with weighting functions which
finally ends up in a multiplication with the ansatz function.

A different approach is common when using a finite volume discretization for the underlying
fluid. It is possible to distribute the volume of a particle among the cells in its neighborhood
using a filtering (or interpolation kernel) function as already described in the previous section.
Consequently, the particle reaction forces are divided onto the cells according to the respective
volume fractions. This procedure is described in Darmana et al. [36], which the reader is referred
to for more details. It might be also applicable to a finite element based discretization. However,
the question arises how to distribute the forces onto the nodes of the elements. Thus, for rather
small particles, the more natural choice is to use the shape functions of the underlying fluid
element to distribute the reaction forces.

3.4 Fluid fraction computation
The content of this Section 3.4 has already been published by the author of this thesis in Menner*
et al. [149] and it is repeated here with minor changes.

The fluid fraction as introduced in (2.13) gives the ratio between the volume of continuous
phase within the averaging volume and the averaging volume itself. The particles are treated
point-like in the Euler-Lagrange framework and therefore a filtering function is applied at each
particle position to smear the volume of the corresponding dispersion onto the fluid domain.
Hence, the particles make up the dispersed phase volume which is subtracted from the fluid
domain, leaving the volume purely occupied with fluid. Finally, the fluid fraction is computed as

ϵel = 1−

kp∑
k=1

Vp,k
∫
Ωe ψi(x, y, z)dΩ∫
Ωe 1 dΩ

, (3.85)
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where kp is the number of particles whose filtering cubes lie partially or fully in the fluid element
Ωe and Vp,k is the volume of particle k. Therein, ψi(x, y, z) and i denote the filtering function
and its order, respectively.

Several options for filtering functions can be found in literature depending on the desired ac-
curacy and the computational effort to be invested. The most trivial approach, known as center of
volume or point approximate method, assumes that the particle’s volume is not distributed across
several fluid elements. The corresponding filtering function is a Dirac delta at the particle center.
Thus, the volume is assigned to the element in which the center of the particle resides. This leads
to jumps in the dispersed phase fraction when a particle passes element boundaries which leads
to artificial pressure waves and detrimental pulsatile fluid flow profiles. A common assumption
in Euler-Lagrange approaches are spherical shapes of the particles under consideration. Also,
the support of the filtering function is assumed spherical and hence, the volume integral during
dispersed phase volume computation includes spherical domains. Dependent on the discretiza-
tion of the continuous phase, Freireich et al. [65] and Peng et al. [164] present an exact method
to compute the dispersed phase volume when a Cartesian grid for the fluid is used and Wu et al.
[232] give the equations to compute the dispersed phase volume on an unstructured fluid grid.
In the latter, tetrahedral, hexahedral and wedge elements are considered. Although both methods
lead to an exact analytical solution, the former is restricted to Cartesian grids which might not
be appropriate in case of flow in complex domains and the latter contains expensive trigono-
metric calculations. Boyce et al. [18] state that the proposed look-up table introduced by Wu
et al. [232] only circumvents the expensive calculations, nevertheless finding the position of the
particle relative to the element boundaries remains very costly.

In case the assumption of spherical particles might not hold, Tomiyama et al. [205] propose
to use an approximation with cubic shape for the possibly complex particle contour in order to
ease computation. Hence, the filtering function has a cubic support. This approximation can also
be plugged in when sphericity is prevailing which then leads to a filtering function with cubic
support that circumscribes the sphere. According to Khawaja et al. [114], this can lead to errors
up to 20 % compared to a spherical support of the filtering function and therefore a correction
is proposed to reduce the error significantly. Kitagawa et al. [115] apply a cubic support for the
filtering function and they span different filtering functions, namely a (clipped and enhanced)
Gaussian function and a sine wave function, in the cube. The different filtering functions are
compared with respect to velocity fluctuations when the dispersed phase passes across elements
of the underlying fluid. A clear relationship between the choice of the filtering function and
velocity fluctuations is reported with an improvement when the filtering function is smoother,
i.e. the value and its first derivative of the filtering function are zero at the boundary of the
filtering function. Unfortunately, there is no hint given by Kitagawa et al. [115] how the arising
volume integrals are solved.

The procedure developed in this thesis is based on the ideas of Rathod and Govinda Rao [174]
and Dasgupta [37] in which the volume integral in the dispersed phase volume computation
(3.85) is transformed into a surface integral and in a second step into a parametric line integral
via applying divergence theorem twice. Rathod and Govinda Rao [174] perform symbolic in-
tegration of the integrand and Dasgupta [37] applies Gaussian quadrature to solve the resulting
line integrals. As the developed approach aims on solving a priori known filtering functions it is
possible to perform the integration and implement the resulting equation in order to circumvent
the need of repeated symbolic integration during the simulation. Three different filtering func-
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tions, namely a constant, a quadratic and a quartic polynomial will be compared. The constant
polynomial filtering function is included for validation purpose. The quartic polynomial was pro-
posed in the context of Euler-Lagrange simulations in Deen et al. [40] and it is now investigated
in detail for the first time. The quadratic polynomial has never been applied as filtering function
before.

3.4.1 Analytical integration of polynomial filtering functions
The complexity in (3.85) is in ∫

Ωe

ψi(x, y, z)dΩ , (3.86)

which will be integrated analytically using polynomial filtering functions and an appropriate de-
scription of the underlying geometry. The conceptual idea is to formulate the three-dimensional
volume integral as a collection of one-dimensional line integrals over the volume’s boundaries. A
three step procedure proposed by Sudhakar and Wall [198] and Sudhakar et al. [199] is applied:

(i) first, the volume integral (3.86) is described as surface integrals over the volume’s bound-
ing surfaces with the divergence theorem according to Morse and Feshbach [153] and
Arens et al. [6],

(ii) then, the surfaces are projected alongside the divergence directions in (i), and

(iii) solve the surface integrals with line integrals along the edges of the surfaces by applying
the divergence theorem again.

Remark to (i): The divergence theorem states that the divergence of a flux, the vector field
F (x, y, z), integrated within a volume Ω is equal to the flux through the closed surfaces Γ of the
same volume: ∫

Ω

∇ · F (x, y, z)dΩ =

∫
Γ

F (x, y, z) · n(x, y, z)dΓ, (3.87)

where

n(x, y, z) = [nx(x, y, z) ny(x, y, z) nz(x, y, z)]
T (3.88)

is the outward pointing unit normal field to the surface Γ.
Remark to (ii): In order to solve a surface integral, the surface is projected along the vector

field F (x, y, z). The projected surface and projected normal field are denoted by Γ⊥ and by
n⊥(x, y, z), respectively.

Remark to (iii): The surface integral with surface Γ⊥ is solved with line integration over its
boundary ∂Γ⊥ by applying the divergence theorem for the second time:∫

Γ⊥

∇ ·H(x, y, z)dΓ =

∫
∂Γ⊥

H(x, y, z) ·m(x, y, z)ds (3.89)

with a vector field H(x, y, z) and the outward pointing unit normal field to ∂Γ⊥:

m(x, y, z) = [mx(x, y, z) my(x, y, z) mz(x, y, z)]
T. (3.90)
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The line integral on the right-hand side of (3.89) has to be solved anti-clockwise considering the
orientation of the normal field n⊥(x, y, z).

Figure 3.2 shows the geometric interpretation of the procedure with the projection of a surface
alongside a vector field F (x, y, z) = [1 0 0]T. The projection of the surface Γ is done such that
x(Γ⊥) = 0.

Figure 3.2: Projection of a surface Γ with outward pointing unit normal field n(x, y, z) along a
vector field F (x, y, z) = [1 0 0]T. The projected surface in the y-z plane is Γ⊥ with
normal field n⊥(x, y, z) = [1 0 0]T. The outward pointing unit normal field to the
red colored edge ∂Γ⊥ is m(x, y, z).

Remark 1: As the interest lies only in flat surfaces, the projection cannot cause singularities.
The mapping is bijective.

3.4.1.1 Polynomial filtering functions

Filtering functions are used to project the influence of particles on the fluid (cf. Darmana et al.
[36]). The interest is on the distribution of the disperse volume onto the fluid which depends
on the particle center (xm, ym, zm) and the influence radius rinf . The latter does not necessarily
coincide with the particle’s physical radius. The influence of a particle is modeled via the filtering
function ψi(x, y, z) = ψ1

i (x)ψ
1
i (y)ψ

1
i (z), with the one-dimensional filtering function ψ1

i (·), in a
cubic domain. In this thesis, the influence of three different filtering functions is investigated: A
constant influence i = 0, a second order influence i = 2, and a fourth order influence i = 4. The
basic requirements for any filtering function ψi(x, y, z) are axis-symmetry at the center of the
particle (xm, ym, zm) and that the volume integral over the entire particle Ωp is equal to one:

ψi(x, y, z) = ψi(−x,−y,−z) (3.91)

∫
Ωp

ψi(x, y, z)dΩ = 1. (3.92)
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A constant influence model ψ0(x, y, z) = ψ1
0(x)ψ

1
0(y)ψ

1
0(z) with

ψ1
0(x) =


1

2rinf
, −rinf ≤ x− xm ≤ rinf

0, else
(3.93)

and ψ1
0(y), ψ

1
0(z) analogously fulfills (3.91) and (3.92). The additional degree of freedom, which

arises with a second order filtering function ψ2(x, y, z) with

ψ1
2(x) =


3
4

[
− (x−xm)2

r3inf
+ 1

rinf

]
, −rinf ≤ x− xm ≤ rinf

0, else

(3.94)

is used to let the function decay at the particle influence radius rinf to zero in order to make
ψ2(x, y, z) continuous:

ψ1
2(xm ± rinf) = 0. (3.95)

A fourth order filtering function ψ4(x, y, z) with

ψ1
4(x) =


15
16

[
(x−xm)4

r5inf
− 2(x−xm)2

r3inf
+ 1

rinf

]
, −rinf ≤ x− xm ≤ rinf

0, else

(3.96)

provides additionally the opportunity to model the influence continuously differentiable:

∂ψ1
4(x)

∂x

∣∣∣∣
x=xm±rinf

= 0. (3.97)

Figure 3.3 displays the one-dimensional filtering functions ψ1
0(x), ψ

1
2(x), and ψ1

4(x) with the
parameters xm = 0 and rinf = 1. The constant, second order, and fourth order filtering functions
are drawn in solid blue, dashed-dotted red, and dashed green curves, respectively.

Figure 3.3: Constant (blue), quadratic (red), and quartic (green) one-dimensional filtering func-
tions ψ1

i (x) with particle center xm = 0 and influence radius rinf = 1.
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3.4.1.2 Analytical calculation of the dispersed phase fraction using the
divergence theorem

The filtering functions in section 3.4.1.1 are used to derive the solution of the line integral (3.89).
The vector field is chosen as F (x, y, z) = [Fx(x, y, z) 0 0]T. With

Fx(x, y, z) =

∫
x

ψi(x, y, z)dx, (3.98)

the surface integral in (3.87) becomes∫
Γ

F (x, y, z) · n(x, y, z)dΓ =

∫
Γ

Fx(x, y, z)nx(x, y, z)dΓ. (3.99)

The projection of the surface along the flux F (x, y, z) is achieved by dividing the argument of
the integral in (3.99) by |nx(x, y, z)| as proposed by Sudhakar and Wall [198] and Sudhakar et al.
[199].

Considering a projected surface Γ⊥, the surface integration is solved by replacing the x−coor-
dinate of the surface Γ explicitly with x(y, z):∫

Γ⊥

Fx(x(y, z), y, z)
nx(x(y, z), y, z)

|nx(x(y, z), y, z)|
dy dz. (3.100)

Next, the divergence theorem is applied for the second time

Fx(x(y, z), y, z) = ∇ ·H(x(y, z), y, z) (3.101)

with H(x(y, z), y, z) = [0 Hy(x(y, z), y, z) 0]T and

Hy(x(y, z), y, z) =

∫
y

Fx(x(y, z), y, z)dy. (3.102)

Hence, (3.100) becomes the desired line integral:∫
∂Γ⊥

Hy(x(y, z), y, z)my(x(y, z), y, z)
nx(x(y, z), y, z)

|nx(x(y, z), y, z)|
dl. (3.103)

Finally, following Arens et al. [6], the line integral (3.103) is solved with a parametrization
γ(s) = [y(s) z(s)]T for every vertex of Γ⊥:

1∫
0

Hy(γ(s))my(γ(s))∥γ̇(s)∥2
nx(γ(s))

|nx(γ(s))|
ds. (3.104)

Hence, a volume integral (3.86) can be solved with line integrals (3.104), both divergence fields
(3.98) and (3.102), and the appropriate description of the geometry of the surface Γ.
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3.4 Fluid fraction computation

3.4.1.2.1 Geometry of a surface Γ and its normal field n

A general planar surface Γ can be described geometrically as[
[x y z]T − cΓ

]
· n = 0 (3.105)

with an arbitrary point cΓ = [cx cy cz]
T ∈ Γ and the normal field n. Considering a surface Γ

with kΓ ≥ 3 vertices vi with i = 1, ..., kΓ, the geometric center cΓ of the vertices is calculated
via

cΓ =

kΓ∑
i=1

vi

kΓ
. (3.106)

Furthermore, the normal vector of the surface Γ is calculated with

n = ± (v3 − v1)× (vj − v2)

∥(v3 − v1)× (vj − v2)∥2
, (3.107)

where j = 4 if kΓ ≥ 4 and j = 1 if kΓ = 3. Considering a volume Ω with kΩ vertices wi with
i = 1, ..., kΩ, the geometric center of the volume cΩ is computed as

cΩ =

kΩ∑
i=1

wi

kΩ
. (3.108)

The sign of n is determined such that

n · (cΓ − cΩ) > 0. (3.109)

In case of planar surfaces, the geometry can be represented exactly. However, for non-planar sur-
faces, this is only an approximation. Figure 3.4 illustrates the volume Ωj in green with center cΩ
and one normal vector n. The normal vector n of surface Γ is calculated with vertices v{1,2,3,4}.
The red highlighted vectors are used for the cross product as in (3.107).

An explicit expression for x(y, z) as per (3.105) is:

x(y, z) = −(y − cy)ny + (z − cz)nz

nx

+ cx. (3.110)

Note, that potential singularities due to the denominator nx are irrelevant because surfaces with
nx = 0 do not have a projection surface when projecting in x-direction.

3.4.1.2.2 Geometry of an edge ∂Γ⊥ and its normal vector m

In the following, a projected surface Γ⊥ with kΓ vertices v{1,...,kΓ} is considered. The normal
vectors of each edge i are calculated as

mi =
vi+1 − vi

∥vi+1 − vi∥2
× n⊥ (3.111)
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Figure 3.4: Calculation of a normal vector n of surface Γ with red highlighted diagonal vectors
of surface Γ, calculated with vertices v{1,2,3,4} as in (3.107).

with vkΓ+1 = v1 and

n⊥ =
nx(x(y, z), y, z)

|nx(x(y, z), y, z)|
[1 0 0]T. (3.112)

The calculation of mi with (3.111) automatically leads to a correct integration order due to the
following considerations: The normal vector is calculated such that it points to the outside of
Γ⊥ if the vertices are ordered anti-clockwise considering the orientation of n⊥, which is the
correct orientation according to (3.89). However, it points to the inside if the vertices are ordered
clockwise. The negative integration direction equalizes the negative orientation of the normal
vector mi leading to

my,i =
zi+1 − zi√

(yi+1 − yi)2 + (zi+1 − zi)2
nx(x(y, z), y, z)

|nx(x(y, z), y, z)|
(3.113)

using (3.111). Figure 3.5 illustrates the calculation of the normal vector m from the projected
surface boundary ∂Γ⊥. The normal vector n⊥ points outward the sheet and the line integration
is done anti-clockwise with outward pointing normal vector m.

3.4.1.2.3 General solution of the line integral for piecewise straight edges

Each line integral is solved with the parametrization

γi(s) =

(
yi + (yi+1 − yi)s
zi + (zi+1 − zi)s

)
,

∥γ̇i(s)∥2 =
√
(yi+1 − yi)2 + (zi+1 − zi)2.

(3.114)
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3.4 Fluid fraction computation

Figure 3.5: Calculation of a normal vector m of surface boundary ∂Γ⊥ with red highlighted edge
vectors. The normal vector m is calculated with vertices v{1,2,3,4} as in (3.111).

The solution of (3.104) for every edge i with the derived geometry (3.113) and (3.114) reads

1∫
0

Hy (γi (s)) (zi+1 − zi) (nx(γi(s)))
2

|nx(γi(s))|2 ds =
1∫
0

Hy (γi (s)) (zi+1 − zi) ds. (3.115)

3.4.1.2.4 Solution of a line integral with the constant filtering function

Exemplarily, (3.99) is solved with the filtering function ψ0(x, y, z) defined in (3.93) from which
the normalization 2rinf is neglected to shorten the notation in this section. The vector field (3.98)
becomes

F (x, y, z) = x (3.116)

and the surface integral (3.100) evaluates to∫
Γ

x(y, z)nxdy dz =

∫
Γ⊥

x(y, z)
nx

|nx|
dy dz. (3.117)

With the geometry of the surface (3.110), (3.117) becomes∫
Γx

(
−(y − cy)ny + (z − cz)nz

nx

+ cx

)
nx

|nx|
dy dz (3.118)

and (3.102) evaluates to

Hy(y, z) = −
ny

2nx

y2 +

(
cx −

−cyny + (z − cz)nz

nx

)
y. (3.119)
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With the parametrization in (3.114), (3.118) becomes

1∫
0

(
− ny

2nx

y(s)2 +

(
cx −

−cyny + (z − cz)nz

nx

)
y(s)

)
(zi+1 − zi)ds (3.120)

with y(s) = yi + (yi+1 − yi)s and z(s) = zi + (zi+1 − zi)s. Solving (3.120) leads to

∆z

[
−ny(y2i +yi∆y+∆y2/3)

2nx
− nz(zi(yi+∆y/2)+∆z(yi/2+∆y/3))

nx

+
(
yi +

∆y
2

) (
cx + cy

ny

nx
+ cz

nz

nx

)] (3.121)

with

∆y = yi+1 − yi,∆z = zi+1 − zi. (3.122)

The solution of one line integral in (3.121) takes around 30 operations. Note that the normal
vector m is never calculated explicitly.

The solution of a line integral with with higher order filtering function is computationally
more expensive. The same procedure as presented in this section can be applied for the filtering
function of second and fourth order. For the second and fourth order, it takes around 5, 000 and
64, 000 operations, respectively.

3.4.1.3 Geometrical operations to obtain integration lines

In this section, the procedure is outlined to obtain the lines on which the integration (3.115) is
performed. This involves geometrical operations such as intersections of the fluid volume with
the cubic support of the filtering function and necessary simplifications. As there is no closed
analytical expression for the filtering functions ψi(x, y, z) in (3.93), (3.94), and (3.96), an integral
over the intersection volume Ω̊ = Ωp∩Ωe of a particle volume Ωp and a fluid element volume Ωe

is calculated. This allows to evaluate the dispersed phase fraction with only the nonzero part of
the filtering functions at the expense of explicitly calculating the boundaries of the intersection
area Ω̊.

Theorem 1: Consider two convex geometries Ωp,Ωe. Then the intersection Ωp ∩Ωe is convex.
Proof: Let x1, x2 ∈ Ωp∩Ωe. Then x1, x2 ∈ Ωp and x1, x2 ∈ Ωe. Since Ωp and Ωe are convex

sets, it follows that x ∈ Ωp and x ∈ Ωe, where

x = λx1 + (1− λ)x2 and λ ∈ [0, 1]. (3.123)

Hence x ∈ Ωp ∩ Ωe. Since this is true for any x1,x2 ∈ Ωp ∩ Ωe and any λ ∈ [0, 1],Ωp ∩ Ωe is
convex (cf. Zadeh [236]). □

Consider an intersection volume Ω̊ = Ωp ∩ Ωe of one particle Ωp with one fluid element
Ωe. The volume Ω̊ is bounded by parts of the particle surfaces Γp = ∂Ωp and fluid surfaces
Γe = ∂Ωe. With (3.87), the volume integral of the domain Ω̊ can be computed with surface in-
tegrals Γ̊ = ∂Ω̊. In the following, the developed approach to determine the geometry of these
surfaces Γ̊ is presented. Note that only surfaces, whose normal vector satisfies |nx| > 0, con-
tribute to the calculation of the dispersed phase fraction, since surfaces with |nx| = 0 vanish
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3.4 Fluid fraction computation

through projection. This fact is particularly interesting for the particle surfaces because only two
of the six surfaces have to be evaluated.

If a fluid element is detected to be in proximity of the particle, an iteration over the surfaces of
the element is started. The center of surface cΓ and the normal vector n as in (3.106) and (3.107)
are calculated for each surface Γe

j with j = 1, ..., nsurf and nsurf being the number of surfaces
of this fluid element. For unstructured grids, the constant cΓ and n approximate the geometry.
For a Cartesian domain, cΓ and n mirror the exact geometry. As first step, the vertices w{1,...kΩ}
of the fluid element described by cΓ and n are calculated. In a Cartesian domain, these vertices
w{1,...kΩ} are exact, too.

Four categories of points are of interest for the geometric description, where cm = (xm, ym, zm)
and rinf mark the center of the particle and influence radius, respectively:

(i) penetration points vp, which are located at the edges of the fluid surface Γe
j and penetrate

the particle surface Γp, vp ∈ Γe
j ∩ Γp, where Γp = {(x, y, z) : ∥vp − cm∥1 = rinf)} (cf.

v{1,3,4,5} in Figure 3.6),

(ii) edge points ve, which are situated alongside the particle edges ∂Γp and penetrate the fluid
surface Γe

j , ve ∈ Γe
j ∩ ∂Γp (cf. v2 in Figure 3.6),

(iii) fluid vertices vf , which are located inside the particle Ωp, vf ∈ Vk ∩ Ωp = {vk : ∥vk −
cm∥1 < rinf}, where Vk = {vk} denotes the set of all fluid vertices vk, and

(iv) particle corner points vc, which mark a corner of the particle ∂Γp
c and are located inside

the fluid element Ωe, vc ∈ Ωe∩∂Γp
c , where ∂Γp

c = {(x, y, z) : (x±xm, y± ym, z± zm) =
(0, 0, 0)}.

It has to be noted that these distinct points are calculated with the potentially approximated
geometry of the fluid described by the nsurf flat surfaces cΓ and n.

While iterating over the nsurf surfaces of one fluid element, these distinct points are gathered.
If penetration points vp in (i) penetrate the +x or −x surface of the particle, they are stored for
evaluation of the particle surface integrals (x(vp)+xm = ±rinf). If the particle edge points ve in
(ii) are situated alongside the particle edges, which bound the +x or −x surface of the particle,
they are stored, too (x(ve) + xm = ±rinf).

Once all relevant vertices vp, ve, vf , and vc are determined, they are ordered using a convex
hull algorithm to ensure an integration along the correct edges. Theorem 1 ensures that the convex
hull exists. Figure 3.6 displays an intersection of a fluid surface with a particle. The convex hull
is highlighted in red and ensures that the vertices v{1,2,3,4,5} are in order. This approach is done
for every fluid surface of Γ̊, which bounds the intersection volume Ω̊.

Algorithm 2 summarizes the integration routine for the calculation of the dispersed phase
fraction for one fluid element Ωe and Algorithm 3 outlines the evaluation of the contribution
ϵel,j of one fluid surface to the dispersed phase fraction. In the same fashion as for fluid surfaces,
the particle +x or−x surface integrals are evaluated with the stored penetration and edge points,
in addition to particle corner points vc.

The evaluation of +x and −x particle surfaces proceeds in a similar manner. Instead of line
1 in Algorithm 3, particle corner points vc are determined and stored together with the predeter-
mined relevant penetration points vp and edge points ve of the +x and −x particle surface. The
normal vector is n = [±1 0 0]T. Finally, lines 3− 8 are applied for both +x and −x surfaces.
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Figure 3.6: Intersection of a fluid surface with a particle. The resulting convex hull is colored in
red as connection of the vertices v{1,2,3,4,5} and is equivalent to one surface of ∂Γ̊.

Algorithm 2 Calculate dispersed phase fraction for one fluid element Ωe

Input: Vertices of the potentially unstructured fluid element Ωe, particle center cm, particle
influence radius rinf

Output: ϵel
1: Determine cΓ, n ∀ Γe

j ∈ ∂Ωe and calculate w{1,...kΩ}
2: for each fluid surface Γe

j do
3: Evaluate surface Γe

j using Algorithm 3 to obtain contribution ϵej
4: Store vp,ve of particle +x, −x surfaces
5: end for
6: Evaluate +x and −x particle surfaces to obtain contributions ϵp+x and ϵp−x, respectively
7: ϵel = ϵp+x + ϵp−x +

∑
nsurf

ϵej

Algorithm 3 Evaluate surface Γe
j

Input: Vertices v{1,...,kΓ} of the fluid surface, element center cΩ (3.108), and particle center cm,
particle influence rinf

Output: ϵej , {vp : ∥x(vp) + xm = ±rinf}, {ve : ∥x(ve) + xm = ±rinf}
1: Determine penetration points vp (i), edge points ve (ii), and fluid vertices vf (iii)
2: if nx > 10−08 then
3: Build convex hull to obtain one surface of Γ̊
4: Calculate cΓ (3.106)
5: for each edge ∂Γ̊k of ∂Γ̊ do
6: Calculate line integral analytically with e.g. (3.121) to obtain ϵej,k
7: end for
8: ϵej =

∑
k ϵ

e
j,k

9: else
10: ϵej = 0
11: end if

60



3.4 Fluid fraction computation

3.4.2 Validation
3.4.2.1 Dispersed phase fraction computation on structured fluid grids

The validation of the developed method is started for the case of a Cartesian fluid grid. Kita-
gawa et al. [115] proposed a test case in which a single particle is moved through a Cartesian
domain, see Figure 3.7. In the following, important details are briefly summarized and the reader

Figure 3.7: Setup of Cartesian grid test case (taken from Kitagawa et al. [115]).

is referred to Kitagawa et al. [115] for more details on the setup. The cubic template domain has
always the same size as a fluid element. The polynomial filtering functions (3.93) (const polyn.),
(3.94) (quad polyn.) and (3.96) (quartic polyn.) are compared against the filtering functions pro-
posed by Kitagawa et al. [115]. They propose a clipped Gaussian function (TD-G) and a sine
wave function (TD-S) and compare them to a template-distribution method (TD) with a constant
filtering function. The latter is identical to the constant polynomial of zeroth order introduced
in (3.93) which allows for direct comparison. The quantities of interest are the dispersed phase
fraction, i.e. the volume fraction of the dispersion divided by the element volume, and a measure
which is related to the discretized form of the mass conservation equation reading

u =
−ϵn+1

l + ϵnl
∆t

· 1(
2ϵnl

(
1
∆x

+ 1
∆y

+ 1
∆z

)) (3.124)

where ∆t = tn+1 − tn is the time step size and ∆x = ∆y = ∆z is the grid spacing of the fluid
in the respective direction. The velocity u in (3.124) is denoted as “outward liquid velocity com-
ponent” by Kitagawa et al. [115] and here, it is evaluated for each element in a post processing
step in order to enable a comparison.

Figure 3.8 displays the dispersed phase fraction over time for a single element when a disper-
sion with radius 0.3 ·∆x passes with a constant velocity. The time axis is normalized by the time
the particle needs to pass one element. The graph using the simplest method (SMP), cf. Kita-
gawa et al. [115], which assigns the dispersion volume to the element in which the dispersion
center is located, is included in the figure because it allows to easily identify the time when the
particle reaches the element. Furthermore, the maximal dispersed phase fraction can be directly
seen because no distribution across neighboring elements is performed.

A validation of the analytical integration scheme is possible. The constant polynomial filter-
ing function is identical to the TD method of Kitagawa et al. [115] regarding the shape of the
filtering function. A linear increase in the dispersed phase fraction up to the center of the fluid
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Figure 3.8: Dispersed phase fraction over time of an element for structured grids.

element with a subsequent linear decrease can be seen in Figure 3.8. This result coincides with
results given for TD by Kitagawa et al. [115] and hence, it can be concluded that the devel-
oped analytical integration of the constant polynomial is correct for Cartesian grids. This does
of course not allow for assessing the validity of the integration of the proposed higher order
polynomial filtering functions but the general framework with the derivation of the line integrals
and the geometrical operations can be assumed to work correctly. The TD-S method is chosen as
optimal filtering function by Kitagawa et al. [115] due to its compact support without the need
for truncation as necessary for TD-G and a better approximation of a potential flow velocity
solution which will be discussed later in this section. The dispersed phase fraction distribution
of the present analytical integration with the quartic polynomial filtering function lies almost
on top of the graph from the TD-S solution. Hence, a very similar distribution property can be
achieved while the present approach does not require the expensive evaluation of a trigonometric
function such that the developed approach using the quartic polynomial might serve as a cheap
surrogate. The quadratic polynomial filtering function is between the constant and quartic one
and it spreads the dispersed phase fraction slightly wider than the fourth order polynomial. It is
important that the maximal value in dispersed phase fraction is identical for all methods when
the particle center coincides with the fluid element center. At this position, the support of the fil-
tering function is fully lying within one fluid element and the dispersion volume is fully assigned
to this single element. Hence, there is no distribution of volume across neighboring elements and
the conservation of volume demands to recover an identical maximal value for all methods.

Figure 3.9 displays the velocity as defined in (3.124) normalized by the velocity of the par-
ticle over time. Therein, an additional reference curve (P-Flow) is given that is obtained when
three dimensional potential flow around a rigid sphere is solved for; see Kitagawa et al. [115] for
details. The aim is to approximate the solution of the potential flow by choosing an appropriate
filtering function. This can be seen as a trick to obtain a realistic flow field solution although an
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Figure 3.9: Normalized velocity over time.

unresolved framework is used in which the interface between the phases is not computed explic-
itly. Both, TD-G and TD-S, overestimate the maximal velocity while ramping smoothly from
zero in the beginning. The curve when using the fourth order polynomial is as smooth as TD-G
and TD-S and it approximates the target solution with a maximal velocity that is closer to the
P-Flow solution. In comparison, the present quadratic polynomial recovers the maximal velocity
very well. Furthermore, the run of the velocity curve between 1.7 < t < 3.2 is approximated
better than with all other filtering functions. Only the ramp up is not as smooth as with TD-S,
TD-G and the fourth order polynomial. All velocity graphs discussed have in common, that a
continuous profile is obtained. Solely, the constant polynomial filtering function reveals the un-
desired jump behavior at t = 1.5, t = 2.5, and t = 3.5 as already presented in Kitagawa et al.
[115]. Hence, the use of the constant polynomial filtering function leads to undesired pulsatile
flow profiles although an analytical integration is performed.

Analogue to Kitagawa et al. [115], a grid dependency study is performed. Therefore, the ratio
of particle size and grid length is varied, and the corresponding maximal normalized velocity is
shown in Figure 3.10. It is desirable that the maximal velocity can be reproduced over a wide
range of particle size to fluid element size ratios. TD-S is closer to the target curve P-Flow than
TD-G. Hence, TD-S is selected as more suitable by Kitagawa et al. [115]. Comparing these
filtering functions with the present filtering functions reveals that the maximal velocities with
the fourth order polynomial influence function is closer to the potential theory solution over
the whole range of considered dispersed phase fractions. However, the curves of maximal ve-
locities lay almost on top of the P-Flow curve when using the quadratic polynomial filtering
function. The results obtained with the constant polynomial are identical to the results with TD
by Kitagawa et al. [115] and they underestimate the maximal velocity. In summary, the quar-
tic polynomial filtering function in the developed analytically integrated dispersed phase frac-
tion framework delivers similar results as the TD-S solution by Kitagawa et al. [115] regarding
smoothness and slightly closer results to the reference solution of a potential flow field than
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Figure 3.10: Maximal normalized velocity over dispersed phase fraction.

the TD-S approach. Furthermore, the evaluation of the polynomial filtering function does not
require the expensive evaluation of trigonometric functions. The quadratic filtering function de-
livers better results in approximating the maximal velocity of a potential flow solution than all
other approaches. However, the run of the curve is not as smooth as with higher order filtering
functions which might lead to undesired pulsatile flow behavior.

3.4.2.2 Dispersed phase fraction computation on distorted fluid grids

Figure 3.11: Distorted grid.

The test cases considered by Kitagawa et al. [115] only include Cartesian fluid grids. As the
developed method also works for unstructured grids, the test case from the previous section is
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modified such that each element has the same volume but non-planar surfaces in ±x−direction,
see Figure 3.11.

Figure 3.12: Dispersed phase fraction over time of an element for distorted grids.

Again, a single bubble with a cubic influence volume of edge length 1.0 is moved with con-
stant velocity through the domain. The resulting dispersed phase fraction using the polynomial
filtering functions is presented in Figure 3.12. Care has to be taken because the reference solu-
tion by Kitagawa et al. [115] is computed using a Cartesian grid whereas the present solutions
are computed with the unstructured grid. Essentially, the curves are as smooth as for a Cartesian
grid which shows that the developed method is able to deal with unstructured grids. Due to the
warped surfaces of the fluid elements, the bubble touches an element earlier as can be seen nicely
for the constant polynomial influence. Also due to the chosen size of the influence volume and
the warped surfaces, the maximal value of dispersed phase fraction is reduced compared to the
Cartesian grid test case because the dispersion volume is always spread over more than one fluid
element. The maximal values for the dispersed phase fraction occur when the bubble center coin-
cides with the element center and they are 0.1046, 0.1117 and 0.1128 for the constant, quadratic
and quartic polynomial template function, respectively.

In Figure 3.13, the velocity as defined in (3.124) normalized by the velocity of the particle is
displayed over time. Although, the unstructured grid is used, the curves for the quadratic and
quartic polynomial template function are smooth, and they are very similar to the results with
Cartesian fluid grid. This shows the capability of the developed method to cope with unstructured
grids.

A final remark when using unstructured grids shall be given. The proposed approach relies
on many geometrical operations which are necessary to find the integration points for the line
integrals as described in Section 3.4.1.3. Usually, geometrical operations demand for tolerances,
e.g. to decide when a projection is parallel, see line 2 of Algorithm 3, or when a penetration is
accounted for. Otherwise, it might be possible that results are not reproducable due to round-off
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Figure 3.13: Normalized velocity over time for distorted grids.

errors as we are limited in numeric precision. These situations can lead to a single remaining
integration point for which a line integral cannot be evaluated. To circumvent such problematic
geometrical configurations, the computation for the respective particle is repeated with a slightly
reduced size (99.9 %) of the filtering function support. This remedy can be tolerated in an Euler-
Lagrange approach as the size of the support only determines how far the influence of a single
particle is spread within the continuous phase. There is no rule available how to choose the
influence radius and the proposed remedy showed to be a reliable solution for geometrical round-
off problems.

3.4.3 Computational cost of the dispersed phase computation
approach

In this section, several issues are discussed related to the computational cost of the proposed
analytical dispersed phase computation approach. The test cases from section 3.4.2.1 with the
structured fluid grids and from section 3.4.2.2 with the distorted fluid grids are evaluated re-
garding the wall time spent in the dispersed phase fraction computation. To enable a comparison
against existing approaches, the sine wave filtering function TD-S from [115] with cubic support
is applied together with Gauss integration. 2 . . . 10 Gauss points in each direction of the fluid
element are considered, leading to 8 . . . 1000 integration points within a single fluid element.
Due to the choice of the size of the filtering function, at most two fluid elements are touched by
the dispersion at one time instance.

The wall time for the structured fluid grids is displayed in Figure 3.14. All timings are nor-
malized with the time spent for the analytical integration of the constant polynomial filtering
function (3.93). The timings for the constant and quadratic polynomial filtering function, (3.93)
and (3.94) respectively, are slightly above the cost of 64 Gauss points in each fluid element.
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Figure 3.14: Timings comparison for structured fluid grids.

The evaluation of the quartic polynomial filtering function is almost as expensive as 256 Gauss
points. Interesting to observe is that the evaluation of the quadratic polynomial filtering function
is only 15 % more expensive than the evaluation of the constant polynomial filtering function.
In fact, the evaluation of (3.121) for the constant polynomial filtering function is almost negligi-
ble. Hence, the cost of finding the integration points using the geometrical operations dominates
the computational expenses of the proposed dispersed phase fraction computation approach.
However, the cost of the mathematical operations for the quartic polynomial (3.96) becomes
noticeable and is higher than for the constant polynomial filtering function by a factor of 3.7.
This leads to the conclusion that deriving the integration points for the line integrals with the
proposed geometrical evaluations is comparable to roughly 15, 000 mathematical operations.

The same analysis as for structured fluid grids is displayed in Figure 3.15 for distorted fluid
grids. The absolute computational cost for the Gauss integration of the TD-S sine wave filtering
function is increased by a factor of 20 % because more evaluations are necessary due to the
distorted fluid element faces which lead to a larger spread in x-direction. However, this applies
to all runs with TD-S and Gaussian integration such there are no differences in relative cost
compared to the case with structured fluid grids. In contrast, the evaluation of the proposed
polynomial filtering functions is more expensive. The constant filtering function is close to 125
Gauss points in evaluation cost and the quartic polynomial filtering function is between 256 and
512 Gauss points. The search for the integration points of the line integrals is more complex for
distorted fluid grids leading to an increased effort.

In a brute force approach, all particles are considered to participate to the dispersed phase
volume of a fluid element. In order to reduce the computational effort, only particles in a close
neighborhood to a fluid element are considered in this work. Therefore, the bin framework and
the use of axis aligned bounding boxes (aabb) as will be presented in Section 3.6 are employed.
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Figure 3.15: Timings comparison for distorted fluid grids.

Using these aabb, non-overlap with the support of the filtering function can be evaluated at
little computational cost and in case, the respective fluid element can be skipped for detailed
intersection analysis.

Applying these tricks reduces computational effort massively. The cost of finding close fluid
elements for each particle in the examples is less than 5 % of the cost for evaluating the re-
maining close fluid elements with the proposed dispersed phase computation approach. There
are further tricks, such as tree-like structures to perform a fast search for close neighbors or any
combinations of the aforementioned possibilities.

To summarize, a novel approach for efficient dispersed phase fraction calculations also capa-
ble of handling unstructured grids in an Euler-Lagrange model has been developed in the scope
of this thesis. The presented theoretical part and numerical validation examples for fluid fraction
computation have already been published by the author of this thesis in Menner* et al. [149].

The quadratic polynomial filtering function is used exclusively in the test cases considered in
the remainder of this thesis.

3.5 Time integration of the Rayleigh-Plesset equation

3.5.1 Runge-Kutta time integration with adaptive time stepping

The RP equation in (2.113) is considered a stiff 2nd-order ordinary differential equation (ODE)
which demands for a time step size < 10−12 s during the collapse process of a bubble, cf.
Alehossein and Qin [3]. In case this small time step size is kept constant during computation,
the overall cost lead to undesired long computation times. Hence, an adaptive time stepping
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approach is applied to increase the time step size whenever possible while still having a stable
time integration scheme.

In general, all approaches known for time step adaptivity are applicable to the RP equation.
In Shams et al. [187], the 2nd-order ODE is cast to two 1st-order ODEs which are advanced in
time with the 1st-order explicit Euler time integration scheme. An amplification matrix based
on the Jacobi matrix is computed and the eigenvalues are used to adapt the time step size. An-
other approach is proposed by Alehossein and Qin [3], in which the change of the radius from
consecutive time steps is used for triggering the adaption. The time step size is kept constant up
to two percent change in radius and adaptation is applied when this limit is exceeded. Richard-
son extrapolation is applied to the RP equation by Babu Salapakkam [10], which estimates the
truncation error by comparing the solution of one step with size ∆t and two steps each with
∆t/2. The most appealing approach is to use Runge-Kutta (RK) time integration with an embed-
ded solution of lower order which can be computed efficiently. This is also the finding in Babu
Salapakkam [10], in which a 5th-order RK scheme is used and the embedded 4th-order solution
is used to estimate the local truncation error. In order to reduce the computational cost, a three
stage 3rd-order RK scheme with an embedded solution of 2nd-order as proposed by Bogacki and
Shampine [17] is used in this work. The corresponding Butcher-Tableau is given in Table 3.2. In

0
1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/3 4/9 0
7/24 1/4 1/3 1/8

Table 3.2: Butcher-Tableau of RK3(2) scheme.

order to apply the RK3(2) scheme, the RP equation is reformulated as two 1st-order ODEs, viz

ṙ(t) =
dr(t)

dt
, (3.125)

r̈(t) =
1.0

ρlr(t)

[
−3

2
(ṙ(t))2 + pb(t)− p∞(t)− 2σ

r(t)
− 4µ

r(t)
ṙ(t)

]
(3.126)

which then can be integrated via the following three step procedure:

r̈j+1 =
1.0

ρlr(tj)

[
−3

2

(
ṙ(tj)

)2
+ pb(t

j)− p∞(tj+1)− 2σ

r(tj)
− 4µ

r(tj)
ṙ(tj)

]
, (3.127)

ṙj+1 = ṙ(tj) + ∆tj r̈j+1 , (3.128)

rj+1 = r(tj) + ∆tj ṙj+1 . (3.129)

The index j specifies the current RK step with its time step size ∆tj . For details on RK methods
and the Butcher tableau, the interested reader is referred to Hairer et al. [85]. For more details
on this specific application of RK methods, the reader is referred to Mattson [145], in which a
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RK4(3) scheme is used for integrating the RP equation and time adaptivity based on the esti-
mated local truncation error (lte) is applied. The same procedure is performed for the RK3(2)
method here such that the adaption reads

∆tk+2
RP = min

(
max

(
fk+1 ·∆tk+1

RP ,∆tmin

)
,∆tmax

)
, (3.130)

in which the factor fk+1 contains the estimated lte. An upper and lower bound ∆tmax and ∆tmin,
respectively, for the time step size is introduced to keep the step size in a reasonable range.
Motivated by the physics of interest, namely the collapse of cavitation bubbles, the minimal time
step size is chosen as ∆tmin = 10−12 s and the maximal step size ∆tmax = 0.3 ·∆tb with ∆tb as
introduced in Section 3.2. The normalized estimated lte reads

ϵk+1
r =

∥rk+1
emb − rk+1∥2
∥rk+1∥2

, (3.131)

in which the solution at time tk+1 is denoted as rk+1 and the respective solution of lower order is
denoted as rk+1

emb . The idea is to specify a target value tolRP for the lte allowed in each time step
and the step size is adapted such that tolRP is met. Based on Hairer et al. [85], the factor to adapt
the step size reads

fk+1 = min

(
max

(
sf · tolRP

ϵk+1
r

, fdec

) 1
p+1

, finc

)
(3.132)

with a safety factor sf , a limit for the maximal increase finc and a limit for the maximal decrease
fdec of the adaption factor. The exponent contains the order of the embedded solution which
yields for the chosen RK3(2): p = 2. This gives a hint that actually the lte of the lower order
solution is estimated and not the other way round. Nevertheless, the higher order solution is
chosen to advance the solution in time. The safety factor is included to reduce the number of
time steps to be repeated because the tolerance tolRP is exceeded. The constants are summarized
in Table 3.3 which have been found in Hammerl [86] to yield reasonable results.

parameter value
sf 0.9
finc 1.3
fdec 1/1.3

Table 3.3: Constants for time adaption scheme.

Several technical details need to be taken into account in order to synchronize the adaptive
time stepping with the larger time step size ∆tb. Firstly, the step size of the adaptive scheme
∆tRP must not exceed the bubble time step size ∆tb. Secondly, adaption is suspended when the
remaining time during subcycling is less than twice the current time step size ∆tRP. Instead, the
remaining time is divided in two equally sized pieces such that the end of the bubble time step is
met exactly. This means that in line 17 of Algorithm 1, the step size is not computed based on the
lte but instead by dividing the remaining time in two equally sized pieces. As the lte should not
exceed the limit tolRP, the remaining time is divided by three in case the step size was decreasing
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3.5 Time integration of the Rayleigh-Plesset equation

during the previous steps. In the rare case of exceeding tolRP during this last step size adaption,
an endless loop would be generated in line 14 of Algorithm 1. To circumvent this issue, time
steps are further halved at the end of the subcycling to reduce the lte and reach exactly the end
of the bubble time step.

3.5.2 Validation
A test case proposed by Popinet and Zaleski [169] is used to validate the present implementation
of the Rayleigh-Plesset equation with variable time stepping based on local truncation error esti-
mation. Therein, a spherical bubble in quiescent fluid is investigated using the RP equation and a
fully resolved direct numerical simulation (DNS) approach. The bubble undergoes size changes
due to the choice of non-equilibrium starting conditions. The fluid properties are given by a dy-
namic viscosity µ = 0.001 Pa s, a density ρl = 1000 kg/m3, a surface tension σ = 0.07 N/m,
and a vapor pressure pv = 0. These quantities resemble roughly water at 20◦C. The fluid pres-
sure is kept constant at 105 Pa which is close to standard conditions. The initial bubble radius
is r(t = 0) = 10 µm. In summary, realistic conditions for the collapse of a cavitation bubble in
water are chosen. In order to initiate the highly transient radius evolution, the equilibrium radius
is artificially set to r0(t = 0) = 5 µm which is subsequently used to compute the initial bubble
pressure pg0 using (2.117). Hence, the bubble starts collapsing because the initial radius is larger
than the equilibrium radius. The initial velocity ṙ(t = 0) and acceleration r̈(t = 0) in radial
direction are set to zero as usual. Furthermore, it is necessary to choose the exponent η = 1.4 in
(2.114) in order to comply with the setup in Popinet and Zaleski [169]. The latter corresponds to
an adiabatic compression and expansion of the bubble content. The tolerance for the local trun-
cation error is tolRP = 1.0 · 10−3 and the fluid time step is assumed to be ∆tl = 2.0 µs. Hence,
the simulation time t ∈ [0, tend] with tend = 10.0 µs is passed with five fluid time steps and the
time step size for solving the RP equation is adapted based on (3.130). For this test case, the
fluid subproblem is of minor importance. Hence, the fluid pressure is prescribed via a Dirichlet
boundary condition and the fluid velocity is fixed at rest. The bubble resides centrically in the
single element used for the fluid domain.

Figure 3.16 contains the radius evolution over time obtained by Popinet and Zaleski [169] and
from the present implementation. A very good agreement can be observed with an error < 0.5 %
at tend. The first collapse takes 0.93 µs and further rebounds follow. The maximal radius of
the bubble decreases from rebound to rebound due to the dissipative nature of the last term in
(2.113). The figure also includes the time step size ∆tRP which is used for the time integration of
the RP equation. It is beneficial that a small time step size is chosen when the rebounds take place
and a large time step size is chosen at times of smooth radius evolution. Hence, the estimated
temporal truncation error is bounded using the given tolerance while the simulation advances
as fast as possible. The smallest time step size during the first rebound is ∆tb,min = 0.0059 µs,
whereas the largest time step is ∆tb,max = 0.3 µs in portions of smooth radius evolution. Hence,
the time step size increases up to a factor of 51 compared to the smallest time step size. In
total, 152 successful time steps of the RK time integration scheme are necessary to perform time
integration. In addition, 73 steps are repeated because the prescribed tolerance is violated. In
sum, 225 time steps are computed compared to 1695 time steps which would be necessary in
case the smallest time step size ∆tb,min is used throughout the simulation. Hence, the correctness
of the present implementation of the RP equation is shown while the computation time could
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Figure 3.16: Validation of the adaptive time stepping for RP equation.

be reduced by a factor of 7.7 in this test case due to the adaptive time stepping scheme without
loosing relevant accuracy.

3.6 Parallelization and efficiency aspects

The aim of this work is to simulate large systems including vast numbers of particles. In order to
reduce the time to solution, a parallel framework is crucial. Several aspects need to be considered
in order to end up with an efficient parallel Euler-Lagrange framework. The developed frame-
work is based on Message Passing Interface (MPI). One essential feature is a distributed memory
layout, meaning that a processor cannot access all data from the fluid or the particle field. The
fields are distributed among the processors and each processor can only access a certain part of
it. This needs to be considered for example when inter-particle interaction is encountered. The
particles need information about their neighborhood for proper contact evaluation. Also neigh-
boring wall elements must be known to each particle in order to correctly detect collisions with
those. Furthermore, the particles interact with fluid elements in their close neighborhood. In the
developed framework, the fluid domain is assumed to be fixed in space whereas the particles are
free to move through the fluid field.

Several approaches to track neighbor information for each particle can be found in literature.
For pure particle problems, mainly a Verlet-list method or a linked cell approach are used. In the
former, a list of neighboring particles is stored and updated frequently in order to always provide
the current neighborhood for proper contact evaluation. The latter is based on a geometrical de-
composition of the domain in box-like shaped cells. Alternatively, the cells can also be arranged
in tree-like structures, cf. Warren and Salmon [226] or Fleissner and Eberhard [64]. Each particle
is assigned to exactly one of those cells whose size is chosen in a way that all possible interac-
tion partners are found within one layer of cells. The cells are denoted as bins in the following.
Hence, contact evaluation for a single particle involves gathering the particles residing in its own
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bin and in the 26 neighboring bins. Details on these approaches can be found e.g. in Allen and
Tildesley [4], Plimpton [168], Pöschel and Schwager [171], Muth et al. [155], or Kamath et al.
[112]. Combinations of the Verlet-list method and the linked cell approach are frequently used,
too and details can also be found in the aforementioned literature. A further improvement to
reduce the list of possible collision partners is to remove those particles from the neighbor list
which are blocked by closer neighbors as proposed by Löhner and Perazzo [136].

As the developed framework includes a fluid domain which is geometrically overlapping with
the particles, the most appealing approach is a spatial decomposition strategy for the particle
as well as the fluid field. Therefore, a binning approach with Cartesian boxes is chosen in the
present work. Particles as well as fluid elements are assigned to the bin they are residing in. Each
bin is addressed using three indices i, j and k each ranging from zero to the maximal number
of bins in the respective spatial direction. Each particle is assigned to the bin in which its center
is located, see Figure 3.17. As the bins are equally sized in one spatial direction, it is trivial to

0

2

0

1

i

j

1 2 3

∆lbin
y

∆lbin
x

(3,1)

(1,0)

xbin,min
y

xbin,min
x

(2,1)

(2,2)

Figure 3.17: Particles and the bins they are assigned to in brackets (2D example).

determine the host bin for a particle at current position x according to

ijkd = (int)


(
xd − xbin,min

d

)
∆lbind

 (3.133)

in which the minimal extent of the Cartesian grid is denoted with xbin,min and the bin size in
direction d ∈ {x, y, z} is denoted with ∆lbin. The result of the division needs to be truncated to
an integer in order to obtain the indices of the bin. As a division is costly for the processing unit,
it is possible to replace it with a multiplication by 1.0/∆lbind which can be precomputed once in the
beginning. This improves performance at little effort.
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The assigning procedure of particle to bin needs to be updated frequently to always provide
the correct neighborhood when contact is evaluated or when fluid-particle coupling takes place.
Depending on the chosen time step size and bin size, it might be possible to reuse the neighbor-
hood information for several particle time steps until the next update is performed. This is again
a question of efficiency.

The task of assigning fluid elements to bins is more difficult as the fluid elements might be of
arbitrary shape, i.e. hexahedral or tetrahedral, and additionally distorted. In contrast to the parti-
cles which can be assigned uniquely to a bin, a fluid element resides only rarely in a single bin.
A partly overlapping scenario covering multiple bins is the standard case for a fluid element. The
option chosen in the developed framework realizes a cheap assigning procedure while accepting
that a fluid element might possibly be assigned to too many bins. This does not pose further
problems because a detailed analysis of the particle-fluid element interaction is performed any-
way when the close neighborhood of the particles is evaluated. The procedure of assigning a
fluid element to a bin reads as follows:

1. An aabb is computed for each fluid element.

2. The fluid element is assigned to each bin which is touched by the aabb.

Both steps are straightforward and can be efficiently performed. In the second step, (3.133) is
used to compute the i, j, and k values for the left lower and right top corner of the aabb which are
subsequently used to determine the range of the corresponding bins. The procedure is illustrated
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Figure 3.18: A distorted quadrilateral fluid element with its aabb represented with dashed lines.
The fluid element is assigned to the hatched bins (2D example).

in Figure 3.18. An advantage of this approach is that there is no restriction on the size ratio

74



3.6 Parallelization and efficiency aspects

between fluid element and bin. A fluid element can be smaller than a bin and possibly residing
within a single bin or it may cover a large number of bins. For large fluid elements, there is a
clear trade-off whether to assign it only to those bins they are residing in at higher cost or to a
possibly too large number of bins at little effort. So far, the fluid domain remains fixed during
the simulation and the initial assigning persists throughout the whole computation.

After properly assigning particles and fluid elements to their corresponding bins, two aspects
remain to be clarified. The first aspect is about the parallel distribution including the ghosting
(or halo) information which needs to be provided to a neighboring processor in order to enable
proper particle, fluid and coupling evaluation. This is necessary because a distributed memory
layout is applied in the developed framework which is based on MPI, as already mentioned ear-
lier. In contrast, the approach presented by Wachs [223] relies on particle information which is
available on each processor, meaning that a fully overlapping layout for the particles is chosen.
Evaluation of particles is distributed among the processors but the bottleneck may become the
necessary memory consumption as all particle information can be addressed on all processors.
The so-called mirror domain approach described by Darmana et al. [36] reduces the fully over-
lapping layout to the main particle variables such as radius and velocity whereas a distributed
memory layout regarding the nearest neighbor lists is employed to save memory resources. Both
mentioned approaches have in common that at least some particle data is stored in a fully over-
lapping manner which can be detrimental for large computations as the available memory limits
the problem size.

The present approach does not rely on fully redundant particle information because only the
particles and fluid elements in one additional layer of bins are ghosted around the owned par-
ticles. The data within the ghost or halo layer is updated in each time step with data from the
processor that owns the data, leading to communication effort. A crucial assumption in this ap-
proach is the restriction of the interaction range to one layer of bins. This constraint ensures that
no event is missed when one layer of ghost bins (with ghost particles and ghost fluid elements
inside) is provided at processor boundaries in parallel computations. Therefore, it is necessary
to estimate the bin size a priori or to recompute it based on the current particle information. The
estimation might be difficult because the maximal travel distance per time step and the maximal
radius of the particles need to be known in advance. In contrast, the recomputation of the bin
size during run time enables a dynamic adaption of the bin size which removes the necessity
for a priori estimations. However, this comes at higher computational cost as both fields need to
be reassigned to the modified bin configuration. Therefore, the developed framework relies on a
sophisticated a priori guess and the dynamic reassigning is not performed.

In summary, no information is stored in a fully redundant manner that would limit the problem
size in the developed framework. However, this comes with an increased communication effort
due to the repeated update of the information in the ghost layer.

The remaining aspect concerns again a parallel distribution issue. It is a very difficult task to
ensure load balancing throughout the simulation for a parallel Euler-Lagrange framework. The
continuous part, i.e. the underlying fluid, does not pose a problem since connectivity does not
change, and an initial distribution based on graph partitioning gives a reasonable load balanced
setup. In contrast, the particles can freely move within the domain such that clustering on a single
processor might occur. Hence, particles also require a geometrical distribution which possibly
does not fit to the fluid partitioning. It is crucial to store a particle and its underlying fluid element
on the same processor such that the coupling can be evaluated locally without the need for inter-
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processor communication. Furthermore, the chosen coupling approach is of sequential nature,
see Section 3.2, and both fields should be ideally balanced while enforcing that each particle and
its underlying fluid element reside on the same processor. Herein, the difficulty is hidden and the
solution is a non-trivial (re-)partitioning with respect to two different objective functions, i.e. the
cost of the fluid evaluation and the cost of the particle evaluation, whilst demanding for coupling
partners (fluid element and particle) to reside on the same processor. A remedy is proposed by
Yakubov et al. [233] with a hybrid parallelization strategy that uses OpenMP threads whose
number is related to the number of particles, i.e. the work load. This might be seen as a first
step towards load balancing for both fields simultaneously but it does not achieve an optimal
distribution for both fields over all processors.

To avoid the difficulties of the aforementioned approach, the procedure followed in this works
reads as follows: The fluid is optimally distributed to the processors using graph partitioning
based on Zoltan provided by the Trilinos package by Heroux et al. [91]. Next, the bins, i.e. the
Cartesian grid, is created and the fluid elements are assigned to the bins. As mentioned above,
a fluid element can be assigned to several bins. The processor which has most owned fluid
elements in a bin becomes owner of this bin. Doing so, a Cartesian grid of bins is distributed
over the processors while roughly approximating the distribution of the fluid mesh. Particles are
also assigned to the bin in which their center is located. The owner of the bin and particle is
always identical, and thus a unique distribution of particles is generated. While floating around,
the particles are reassigned to bins and transferred between processors when necessary. The
additional ghost layer always needs to be added before the evaluation of the involved fields takes
place.

In summary, the developed framework includes a load balanced fluid problem, an on-processor
coupling between the continuous and the disperse phase and additionally, it is memory dis-
tributed with a single layer of bins (particles and fluid elements therein) at processor boundaries.
The latter means that no data need to be provided fully redundant on all processors which would
limit the overall problem size. This comes at the drawback of additional communication effort.
As no rebalancing is performed so far, an unbalanced load while evaluating the particles is likely
to occur.
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After having introduced the governing equations and the computational approach to solve dis-
persed flow problems, some examples will be presented in this chapter to show the versatility of
the proposed method. Initially, pure particle problems will be presented with a focus on particle-
particle and particle-wall interaction as well as the scaling of the proposed approach. Next, fluid-
particle interaction is considered with two well-known test cases, namely a Taylor–Green vortex
and a fluidized bed example. In the former test case, contact forces are neglected such that only
fluid-particle forces drive the problem while the latter shows the ability of the framework to cope
with a very large particle-fluid density ratio and fluid fractions down to 35 %.

4.1 Particle flow through an orifice

Due to its modularity, the proposed framework is able to run pure particle problems as well. A
benchmark test available in literature is the outflow of grains from a cylindrical container through
an orifice in its bottom under gravity load. Its advantages are on the one hand the existence of
experimental results which can be used for validation and on the other hand the simple setup.
An empirical correlation was derived by Beverloo et al. [15] after performing experiments using
many different grains. Among others, the review paper by Nedderman et al. [157] confirms the
validity of the findings. Numerical results for this setup are reported by Bertrand et al. [14],
which are used as comparison for the developed framework.

4.1.1 Setup

As illustrated in Figure 4.1, a cylindrical container of heightH = 0.5 m and diameterD = 0.3 m
with a circular orifice of diameter D0 in the bottom is filled with spherical particles of diameter
d0 = 16 mm. Due to gravity load with gravitational acceleration g = (0.0, 0.0,−9.81)T m/s2

in negative z-direction, the grains leave the container through the orifice. The particle density
is ρb = 2500 kg/m3, the Young’s modulus is E = 2.16 MPa and the Poisson ratio is ν = 0.3.
As a glass bead is modeled by Bertrand et al. [14], the coefficient of restitution e is experi-
mentally found to be around 0.8 depending on the impact velocity and impact angle, cf. Güttler
et al. [84]. The latter value is only relevant for damping effects and thus assumed to be con-
stant. A distinction between static and dynamic friction coefficient for the Coulomb friction
law is made by Bertrand et al. [14]. Unfortunately, the threshold velocity is not specified be-
low which the static friction coefficient is used. Although, the static friction coefficient is varied
over a wide range, the resulting mass flow only deviates up to 5 %. In Beverloo et al. [15],
the experimentally derived correlation is applied and deviations of 5 % in average and 12.5 % at
maximum are reported. Therefore, the distinction between static and dynamic friction coefficient
is omitted in the remainder of this section. In the developed framework, there is no analytical
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Figure 4.1: Setup of particle through an orifice test case (from Bertrand et al. [14]).

description of the circular orifice available and therefore, a polygon with 64 elements along the
circumference of the orifice is chosen for discretization. Another discretization with 256 ele-
ments along the circumference revealed almost identical results. The time step size is chosen to
be ∆tb = 2.5 · 10−5 s. For each simulation, a preliminary run is performed in which the orifice
in the bottom is occluded in order to obtain a random initial packing of the 9360 particles in
the container. After the particles came to rest, the occlusion is removed and the particles start
leaving the container through the orifice. The first 0.2 s of the dropping process are omitted until
a steady state develops. During the following 0.8 s, particles leaving the container are counted in
order to compute the mass flow rate through the orifice as the quantity of interest.

4.1.2 Analysis and comparison against literature
In Bertrand et al. [14], numerous simulations are performed with different sized grains, different
friction coefficients and different orifice sizes. Therein, good agreement was achieved with the
empirical correlation by Beverloo et al. [15]. Finally, the following correlation was obtained to
estimate the mass flow rate

W = 0.6ρb
√
∥g∥2 (D0 − 1.4 d0)

5
2 (4.1)

through a circular orifice which is almost identical to the empirical correlation. In Figure 4.2, the
outflow through an orifice with D0 = 100 mm is illustrated. The particles are colored according
to their velocity magnitude. In Figure 4.2(a), a scale spanning the full range of velocities is
displayed and in Figure 4.2(b), the distribution of small velocities is highlighted. As expected,
close to the rim of the orifice, the particles start moving while the bulk of particles has a very
small velocity. A remark on the small oscillations visible in the top part of the container is
necessary. As the interaction of the particles is realized with a penalty approach as described
in Section 2.2.3, artificial springs connect the particles and oscillations propagate through the
domain. In case these oscillations are small enough, the overall system behavior is not disturbed
and a physically realistic simulation result is obtained. This stability related issue is directly
linked to the time step size which must be chosen carefully obeying (3.69).
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(a) Color scale with large magnitude. (b) Color scale with small magnitude.

Figure 4.2: Particle outflow through D0 = 100 mm orifice.

The discharge rates for different orifice sizes and friction coefficients are summarized in Ta-
ble 4.1. The mass flow rates obtained with the developed approach (denoted as “DEM”) range
between 70− 80 % of the mass flow rates obtained by Bertrand et al. [14]. As the reference does
not provide results for an equal static and dynamic friction coefficient, the result in which the
static and dynamic friction coefficient are closest is always chosen in order to be as comparable
as possible with the assumption that the static and the dynamic friction coefficient are equal.
Using the empirical correlation given in (4.1), the discharge rates even range slightly above the
values from Bertrand et al. [14]. Although the absolute mass flow rates are smaller than the ref-
erence solution, the trend of a decreasing mass flow rate for an increasing friction coefficient can
be observed. This can be explained with an increased resistance in the particle flow due to the
additional friction.

There are several possible explanations for the deviations. In Bertrand et al. [14], there is no
information available on the allowed penetration of the soft particle approach which might influ-
ence the results. In order to test whether this parameter has an effect, the case withD0 = 100 mm
and a friction coefficient µs,dyn = 0.05 is chosen and the maximal allowed relative penetration
c as defined in (3.65) is varied. This directly enters the computation of the stiffness used in the
particle contact according to (3.67). The discharge rates displayed in Table 4.2 reveal that there
is almost no influence by the stiffness parameter. This result shows that the artificial spring stiff-
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D0 [mm] µs,dyn DEM [kg/s] Bertrand et al. Bertrand et al. [14] [kg/s] Eq. (4.1) [kg/s]

0.05 5.73 7.545

100 0.10 5.57 6.906 7.88

0.15 4.54 6.357

0.05 9.77 13.41

120 0.10 8.89 12.32 13.98

0.15 8.09 11.49

0.05 15.38 21.35

140 0.10 14.32 19.88 22.28

0.15 13.06 18.49

Table 4.1: Discharge rates for different orifice and friction coefficient combinations.

c 0.02 0.04 0.06 0.08

DEM [kg/s] 5.70 5.73 5.64 5.65

Table 4.2: Discharge rates for different relative penetration values.

ness, which is necessary to model the soft particles with their overlap, does not influence the
outcome within the chosen range of c ∈ [0.02, 0.08]. This is very beneficial as it does not pose
restrictions on the choice of the relative allowed penetration.

Another unclear aspect is the way the container, i.e. the walls which bound the particles, is
introduced in the computational framework of Bertrand et al. [14]. As the walls are a critical
element in particle simulations, this might be a source for the deviations. It can be concluded
that the results obtained with the developed framework are 20 − 30 % lower than the reference
values while the reason for this deviation could not be identified.

4.2 Particle mixing

4.2.1 Setup

In order to investigate the parallel performance of the developed framework, the mixing of
571,787 particles driven by two paddles is used. Initially, the particles with a diameter of 2 mm
are settled due to gravity acceleration g = (0.0, 0.0,−9.81)T m/s2 in a cubic box of size 200 ×
200 × 200 mm up to time t = 0.25 s. Next, at 0.25 s < t < 0.45 s, two planar paddles of
thickness 2 mm dive into the bulk of particles until a gap of 20 mm remains to the bottom of the
box. The paddles are placed symmetrically in the box and their geometry is given in Figure 4.3.
The rigid paddles rotate with prescribed angular velocity
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Figure 4.3: Setup of particle mixer with paddles.

ω =


0 , if 0 < t < 0.45 s

60 1
s2
· (t− 0.45 s) , if 0.45 s < t < 0.60 s

9.0 1
s
, if 0.60 s < t < 1.40 s

9.0 1
s
− 60 1

s2
· (t− 1.4 s) , if 1.40 s < t < 1.55 s

(4.2)

around the z-axis. Additionally, the angular velocity over time is illustrated in Figure 4.4. The
time step size is ∆tb = 4.0 · 10−6 s leading to 387,500 time steps for the full simulation.

The temporal evolution of the mixing process is displayed in Figure 4.5. The paddles intrud-
ing the particles are shown in Figure 4.5(a), Figure 4.5(b), and Figure 4.5(c). The particles are
colored with four different colors for better visualization of the mixing process driven by the
paddles. The paddles are at their maximal angular velocity in Figure 4.5(d) to Figure 4.5(h).
The top layers of the particles are already well stirred at t = 1.5 s which is displayed in Fig-
ure 4.5(i). These results show the ability of the developed framework to cope with a large number
of particles in a pure particle setup including moving walls.

4.2.2 Scaling study

The Discrete Element Method is known to be computational expensive due to two reasons.
Firstly, a vast amount of time steps is necessary in order to obtain a stable simulation because
each contact event must be resolved with several time steps. Secondly, relevant systems usually
include a large number of particles which can easily reach 105 − 107. Therefore, it is important
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Figure 4.4: Paddles’ angular velocity.

to test whether the developed framework scales in parallel in order to shorten the time to solu-
tion and not to waste computational resources. As described in Section 3.6, a binning strategy
is used for the neighborhood search. The bin size must be chosen large enough to include all
close particles in order to evaluate the contact events correctly. Thus, it is enough to provide one
layer of ghost bins around the domain each processor owns. This coincides with Sigurgeirsson
et al. [189] who state that the bin size must be greater than the diameter of the largest particle
involved, i.e.

∆lbin > 2 · rmax . (4.3)

According to Kloss et al. [117], there is no closed solution available on how to choose the bin
size such that the run time is minimal due to the complex influence of particle size distribution,
particle shape and interaction force implementation. Hence, three different bin sizes are chosen
to evaluate the parallel performance. Furthermore, each run is repeated three times in order
to obtain its minimal run time. By doing so, the disturbance of the time monitorings of other
simulations are minimized which run at the same time on the cluster.

The wall times of the simulation for five different number of processors ranging from 24 to
120 and three different bin sizes are displayed in Figure 4.6. The timings are gathered over 4000
time steps in t ∈ [0.448 s, 0.464 s] in which the paddles have already been fully intruded into
the bulk of particles. The rotation starts at t = 0.45 s. Hence, contact between the paddles and
the particles as well as massive inter-particle penetration occurs. Two main contributions of the
overall run time and their sum are included in the figure. The first dominant part is the contact
evaluation and the second part is the transfer of particles in order to update the information in the
bins on the respective processors. The latter comprises the transfer of particles across processors,
setting up the new ghosting and updating all the state vectors to the latest parallel layout. The
timings can only be seen as a rough estimation of the parallel performance as other simulations
were run on the cluster while this performance study was performed. The smallest bin size is
∆lbinx = ∆lbiny = ∆lbinz = 2.08 mm which is slightly larger than two times the particle radius
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(a) t = 0.24 s (b) t = 0.364 s (c) t = 0.45 s

(d) t = 0.60 s (e) t = 0.70 s (f) t = 0.88 s

(g) t = 0.96 s (h) t = 1.25 s (i) t = 1.50 s

Figure 4.5: Particle mixing.
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Figure 4.6: Timings for different bin sizes.

which yields the shortest timings for evaluating the contact as obvious in Figure 4.6. The least
effort is necessary to check contact between particles and their neighborhood due to its small
size. At the same time, an enormous overhead is generated by the large number of bins because
more transfer operations and more information for the ghosting is needed. Hence, the overall run
time is larger than for a simulation with a bin size of 3.03 mm and 4.0 mm. The larger the bin
size, the more expensive becomes the contact evaluation but at the same time, the overhead can
be reduced. This is a clear trade-off and the shortest overall wall time can be obtained using a
bin size of 3.03 mm which is approximately 1.5 times the size of the minimal possible bin size.
Hence, it can be concluded that the bin size should be chosen rather small to shorten time to
solution.

For the case with a bin size of 3.03 mm, a detailed overview of the scaling of the contribu-
tions to the simulation is given in Figure 4.7. A strong scaling study is performed in which the
number of particles in the system is kept constant. The reference timings are obtained from a
simulation using 24 processors and the parallel efficiency is displayed which can be achieved
using 48, 72, 96 and 120 processors. As one node of the cluster is equipped with 24 processors,
only simulations with full nodes are performed. The parallel efficiency for the contact evaluation
gradually decreases and goes down to 69 % and 72 % for the run using 96 and 120 processors,
respectively. As in average only approximately 5000 owned particles reside on a single proces-
sor for the case using 120 processors, the overhead is growing rapidly because more and more
contact events between owned and ghost particles occur. This indeed explains the decrease in ef-
ficiency. The transfer across processors scales with a similar trend as the contact evaluation. The
portion of wall time caused by the inter-processor transfer is in a range of 10− 15 % and thus it
cannot counterbalance the badly scaling part of setting up the ghosting. Setting up the ghosting
information in the discretization is quite expensive and it takes more than 50 % of the run time.
Unfortunately, it includes parts that scale very badly which need further investigation. Hence,

84



4.2 Particle mixing

24 48 72 96 120
number of procs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pa
ra

lle
le

ffi
ci

en
cy

[-
]

contact
inter-proc transfer

ghosting
total

Figure 4.7: Parallel efficiency of respective contributions of the simulation for a bin size of
3.03 mm.

due to the dominant work load necessary for setting up the ghosting, the overall performance
goes down to 56 % when using 120 processors.

An advantage that has not been exploited in the previous considerations is that particles reside
longer within one bin in case of an increased bin size. This allows to reduce the number of calls
to the expensive transfer procedure. The previous investigations included a transfer in each time
step leading to the overall bad scaling as shown in Figure 4.7. The smallest bin size of 2.08 mm
is determined from the sum of the largest particle diameter (2.0 mm) and twice the maximal
travel distance of a particle (2 ·0.04 mm = 0.08 mm) within one time step. This covers the worst
case scenario of two particles approaching each other at maximal velocity. A test is included in
the developed framework to ensure that the bin size is chosen large enough according to these
considerations. Hence, for the test case with a bin size of 3.03 mm, it is possible to skip the
transfer at least for

3.03 mm− 2.08 mm

0.08 mm
= 11.875 ≈ 11

time steps without missing a single contact event. This rough calculation includes the worst case
assumption of two particles approaching each other with the maximal velocity over several time
steps in one of the axis’ directions. The timings which can be achieved when the expensive
transfer operation is only performed every 11th time step is displayed in Figure 4.8. Compared
to the results in Figure 4.6, the effort for the contact evaluation dominates. An overall parallel
efficiency of 66 % is achieved for this test case with 96 and 120 processors.

These results can be compared with the work of Kloss et al. [117] using their open-source
DEM code LIGGGHTS. They placed 100, 000 particles in a rotating drum such that the drum
volume is partly filled with particles (≈ 30 %). They ran the simulation on 32 processors and
a parallel efficiency of 32 % and 85 % compared to a run with a single processor was achieved
without and with load balancing, respectively.
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Figure 4.8: Timings and parallel efficiency for a bin size of 3.03 mm with a transfer every 11th

time step.

4.3 Taylor-Green vortex

The Taylor-Green vortex (TGV) flow is a fluid flow of counter rotating vortices which can be
used to investigate vorticity dynamics. It was proposed by Taylor [204] for single-phase flow
and used by Ferrante and Elghobashi [62] to investigate the influence of particles on the decay
rate of the vortices. In the latter, a two-fluid model is used for the main investigations but in the
appendix, also results obtained with a Lagrangian particle tracking approach are given. Details
on the numerical approach can be found in an earlier work by Ferrante and Elghobashi [61].
This test case is used to validate the developed Euler-Lagrange approach for setups with O(105)
particles.

4.3.1 Setup

The setup can be found in Ferrante and Elghobashi [62] from which case A is chosen. The initial
conditions for the fluid field are

⟨u⟩ (x, t = 0) = −ω0 ·
ky
k2

cos(kxx) · sin(kzz) (4.4)

⟨u⟩ (y, t = 0) = ω0 ·
kx
k2

sin(kxx) · cos(kzz) (4.5)

⟨u⟩ (z, t = 0) = 0 (4.6)
⟨p⟩ (t = 0) = −ω0 5π (cos(kx · 2x) + cos(ky · 2y)) (4.7)

with the wave number kx = ky = 2π/B in x- and y-direction and k2 = k2x + k2y . The fully
periodic domain covers [−B/2, B/2]× [−B/2, B/2]× [−∆x,∆x] with lengthB = 0.1 m. The initial
vorticity is ω0 = 1000/s. The material properties are taken from water, i.e. density ρl = 1000 kg/m3
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and dynamic viscosity µ = 10−3 Pa s. Identical to Ferrante and Elghobashi [62], a uniform
mesh with 96 × 96 × 2 elements is chosen for the fluid leading to ∆x = B/96. A time step
size ∆tl = 10−5 s is applied for the fluid leading to a Courant-Friedrichs-Levy (CFL) number
of approximately 0.1. A short remark has to be given owing to the purely Dirichlet bounded
fluid problem leading to an undefined pressure level. To solve the resulting singular system, a
discrete projection as presented by Bochev and Lehoucq [16] is used to keep the right-hand side
orthogonal to the constant mode introduced in the pressure degrees of freedom. The pressure
level is kept constant in an integral sense throughout the simulation. The stopping tolerance for
the nonlinear iterations is set to 10−7 in the L2-norm of the residual of the velocity/pressure as
well as for the increment of the velocity/pressure. The cross-stress term and the Reynolds-stress
term as given in (3.17) needed to be switched off in order to achieve a converging fluid solution.
The particles have a diameter of 95 µm and a density of ρl = 1 kg/m3 leading to a density ratio of
ρb/ρl = 1/1000. The initial placement of the 480×480×2 particles is uniform on a Cartesian grid in
[−B/2+B/K, B/2−B/K]×[−B/2+B/K, B/2−B/K]×[−∆x/2,∆x/2] withK = 480·2. Periodicity for
the particles is triggered by the outer surfaces of the fluid domain. The initial size and distribution
of the particles leads to an initial uniform dispersed phase fraction of 1 % throughout the fluid
domain. The initial particle velocity is determined from the underlying fluid at their respective
position. The time step size for the particles is ∆tb = 10−7 s which coincides with a subcycling
of 1 : 100 between fluid and particles. Contact between particles is not considered in this test
case in accordance to Ferrante and Elghobashi [62], as such an overlap of particles is possible.
The final simulation time is tend = 0.02 s which correlates to 20/(8·π2) ≈ 0.25 turnovers of the
vortex assuming the initial rotational speed is constant.

4.3.2 Analysis and comparison against literature
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Figure 4.9: TGV: One-way coupling comparison literature.

In Figure 4.9, the dispersed phase fraction over time normalized by its initial value at the vor-
tex center is given for a one-way coupled solution. Thus, the fluid is unaffected by the particles
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which are solely driven by the fluid forces. The dispersed phase fraction is only computed in a
postprocessing step for analyzing purpose. As contact between particles is not included, the ref-
erence solution by Ferrante and Elghobashi [62] reveals an unbounded increase in the dispersed
phase fraction because particle overlap occurs. The one-way coupled solution of the developed
framework also shows an increasing dispersed phase fraction in the center but the maximal value
increases only by a factor of 4.6 instead of a factor greater than 100. Several reasons might be
responsible for the deviations. The reference simulation by Ferrante and Elghobashi [62] is per-
formed dimensionless and thus it is possible that during transformation of the units an error is
introduced. In the reference, it is stated that it takes a non-dimensional time of 0.2 to perform
20 turnovers of the vortex at the initial vorticity. This is impossible with the stated initial con-
ditions, and thus, it is assumed here that the initial conditions are specified correctly and only
20/(8·π2) ≈ 0.25 turnovers are performed during the mentioned time interval. The denominator
8 · π2 can also be found in the equations specifying the initial velocity field. Trying to reproduce
initial conditions for the velocity that corresponds to 20 turnovers in the respective time leads
to a dispersed phase fraction in the vortex center that increases way faster than the reference
solution does. Further reasons for the deviations could be the assumption of mass-less particles
in the reference solution whereas here, a density ratio of ρb/ρl = 1/1000 is chosen. Furthermore,
as already described in Section 2.2.2, there is no consensus in the community on which model
to use for the fluid forces acting on the particles. As described in Ferrante and Elghobashi [61],
a drag force according to Stokes law (valid for low particle Reynolds numbers), a Saffman lift
force, and most important an inertial force due to fluid acceleration (2.99) are applied in the refer-
ence simulation. The latter incorporates the pressure gradient force which is the main fluid force
contribution in this example when using the set of fluid forces as presented in Section 2.2.2. In
summary, it remains unclear where the difference comes from and in the following, the emphasis
is on analyzing trends instead of comparing numbers.

In the following, the full coupling between fluid and particles is investigated, which also ac-
counts for the particle forces and the dispersed phase fraction in the fluid. In the figures, it is
denoted as two-way coupling to emphasize the difference to the previous investigations in which
only the forces on the particles were considered during one-way coupling. The rotational speed
of the vortex is reduced due to the presence of the particles and a slower accumulation of the par-
ticles in the vortex core can be expected. Analogue to the one-way coupled setup, the dispersed
phase fraction normalized by its initial value at the vortex center is displayed in Figure 4.10(a).
The results with two-way coupling give a 3 % at t = 0.01 s and 6.5 % at t = 0.015 s reduced
dispersed phase fraction compared to the one-way coupled solutions. The same trend can also
be observed in the reference solutions. The drop of the dispersed phase fraction for the two-way
coupling is reduced by 19 % at t = 0.01 s and by 45 % at t = 0.015 s compared to the one-
way coupled reference solution. Although, the absolute numbers of the dispersed phase fraction
increase do not match, the increasing factor from time t = 0.01 s to t = 0.015 s of the present
result 6.5 %/3 % = 2.2 is similar to the increasing factor of the reference solution 45 %/19 % = 2.4.
Hence, this trend is reproduced.

In Ferrante and Elghobashi [62], a nearly linear relationship is reported between the decreasing
vorticity in the vortex center and the increasing particle concentration. The vorticity normalized
by its initial value at the vortex center is shown in Figure 4.10(b). The present results reveal a
slower vorticity decay, viz 85 % at t = 0.01 s and 89 % at t = 0.015 s, than the reference. Hav-
ing a brief look at the deviations in the dispersed phase fraction between the present two-way
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Figure 4.10: TGV: two-way coupling comparison literature.
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coupled solution and the reference solution gives a reduced dispersed phase fraction by 78 % at
t = 0.01 s and by 86 % at t = 0.015 s. These numbers coincide very well with the proposed
linear relationship between dispersed phase fraction and vorticity in the vortex center as found
by Ferrante and Elghobashi [62]. The latter observation might lead to the conclusion that only
a mismatch in the initial conditions is responsible for the deviating results. This can likely be
caused by an erroneous unit transformation from dimensionless to dimensional simulation. The
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Figure 4.11: TGV: two-way coupling with adapted initial velocity compared to literature.

results using the developed framework with an initial velocity for the TGV which is increased by
a factor of 2.5, is displayed in Figure 4.11. Again, the reference solution is by Ferrante and El-
ghobashi [62]. In Figure 4.11(a), the resulting graphs for the dispersed phase fraction normalized
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by its initial value at the vortex center over time lie quite close. A slight reduction of the scaling
factor for the initial velocity will further reduce the difference between the results. An identical
behavior can be seen for the vorticity normalized by its initial value at the vortex over time in
Figure 4.11(b). Again, a slight reduction of the scaling factor would reduce the differences.

These results may lead to the conclusion that the developed framework is able to reproduce
the results presented by Ferrante and Elghobashi [62] for the TGV and just an error in the initial
velocity profile is responsible for the deviating results presented in the first part of this section.
Unfortunately, the results in Figure 4.11 start oscillating at t = 0.013 s which is caused by a loss
of symmetry. The vortex core is no longer located at the center of the domain and a diverging
result can be observed. Trying to reduce the time step size did not cure the loss of symmetry, and
thus, it remains an open issue to be investigated.

4.4 Fluidized bed
Fluidized bed applications are common in process and chemical industry and contain systems
of particles which are streamed with gas from the bottom of the enclosing container. Dependent
on the fluid inflow velocity and the involved particles, different regimes develop which can be
used to improve the desired process such as e.g. drying, coating, gasification, or combustion.
The reader is referred to e.g. Kunii and Levenspiel [124], Gidaspow [71], or Epstein and Grace
[56] for an overview of industrial applications and details thereon. Also, the physics of fluidized
beds with different regimes can be found in the given references.

4.4.1 Setup

Figure 4.12: Setup of fluidized bed (geometry in [mm], from Kloss et al. [117]).

A 2D fluidized bed is considered as shown in Figure 4.12 which is investigated with the de-
veloped framework using 96 processors. A thorough investigation of this test case is performed
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in Link et al. [134] and it was used by e.g. Kloss et al. [117] for validation of their numerical
approach. The fluid dynamic viscosity µ = 1.8 · 10−5Pa s and density ρl = 1.0 kg/m3 are taken
from air. The prescribed inflow velocity at the bottom is usp = 30 m/s and ubg = 1.5 m/s in
the spout region and in both regions next to the spout, respectively. The inflow is directed in
positive z-direction. The nodes located at the border between both regions are assigned to the
spout region regarding the boundary condition. Slip conditions are applied at the walls whereas
a zero-traction Neumann boundary is assumed at the lid in order to allow outflow of air. The
fluid domain is discretized with 30× 1× 250 tri-linearly interpolated hexahedral fluid elements
in space and a time step size of ∆tl = 1.0 · 10−4 s is chosen such that the resulting CFL-number
is around one. The particles have a density of ρb = 2505 kg/m3 and radius of r = 1.5 mm. The
coefficient of restitution is e = 0.97, the friction coefficient is µs = 0.1 and the relative pen-
etration is set to c = 0.04. Subcycling of 1 : 500 between fluid and particles is used such that
the particle time step size is ∆tb = 2.0 · 10−7 s. Due to the density ratio ρb/ρl≫ 1, the added
mass force in (2.51) is neglected. The dominating force is the gravity force due to gravitational
acceleration g = (0.0, 0.0,−9.81)T m/s2 which is counteracted mainly by the drag and pressure
force. The cross-stress term and the Reynolds-stress term as given in (3.17) are switched off in
the fluidized bed example.

Several steps are necessary to start-up the actual simulation. Initially, the 24,500 particles are
placed on a 35× 4× 175 lattice located within the fluid domain from where they sediment due
to gravity while the fluid inflow is turned off. To break symmetry, a small offset is added to each
initial particle position. In a second step, the fluid inflow profile at the bottom is accelerated from
zero to its final magnitude.

4.4.2 Fixed bed regime

(a) Fluid velocity magnitude (b) Particle velocity (c) Fluid fraction

Figure 4.13: Fixed bed regime.

As the particles keep resting after the setup procedure as described in the previous section, a
fixed bed regime is obtained. In Figure 4.13(b), the fluid domain is clipped half in y-direction to
open the fluid domain. This half-clipping of the fluid domain is applied in all figures displaying
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fluidized bed results in the remainder of this section without further remark. In Figure 4.13(a), the
fluid velocity is illustrated showing that the fluid flows through the particles. The fluid jet rapidly
expands and the velocity profile along the x-direction flattens with increasing z-direction. The
jump in the fluid velocity can be seen at the upper border of the particle bed at z = 0.18 m. The
fluid velocity is approximately 2.47 times faster in the particle bed than above the bed because the
particles displace volume such that the fluid needs to flow around the obstacles. The distribution
of the fluid fraction is displayed in Figure 4.13(c) and the average fluid fraction in the particle
bed is ϵl = 0.384. The inverse of the average fluid fraction is 2.6 which agrees well with the
factor in the velocity jump. Hence, the developed framework using the volume averaged Navier-
Stokes equations can represent very accurately the effect of volume displaced by the particles
using the concept of a fluid fraction.

4.4.3 Internal spout regime
An essential aspect to obtain good results is the choice of the fluid-particle coupling. Therein,
the focus is on the choice of the drag law which is still an open research topic, see Link et al.
[134]. Often, the drag correlation proposed by Wen and Yu [227] for a fluid fraction ϵl > 0.8 and
the correlation of Ergun [57] for ϵl < 0.8 are combined to obtain reasonable results, compare
Gidaspow [71]. Another approach is to use the minimum of both drag laws as presented by Link
et al. [134]. More recently, a drag correlation was proposed by Koch and Hill [118] to overcome
shortcomings in certain regimes as reported by Link et al. [134]. As it is neither the aim of this
work to assess the existing drag correlations nor to provide a new drag law, the particle forces as
introduced in Section 2.2 are applied. The used drag correlation in (2.47) is not well suited for
fluidized bed applications because the assumption of an isolated sphere surrounded by fluid is
violated. Hence, the drag force on the particles is underestimated and the particles keep resting
although fluidization is expected. In order to overcome this problem and to develop a transient
fluidized bed, the density of the particles is reduced. Hence, it is possible to show the versa-
tility of the proposed framework dealing with such a complex phenomenon while suppressing
the need for a sophisticated drag correlation. Initially, the packed bed needs to be disturbed in
order to enable the jet to develop. Therefore, the gravity is reduced to 1 % of the initial value
following a sine curve for a time period of 0.05 s. Afterwards, the particle density is reduced
to ρb = 1503 kg/m3, which is 60 % of the original particle density, leading to an internal spout
regime as depicted in Figure 4.14. Only one screenshot is depicted for this regime as the shape
of the cavity does not change significantly over time. A small internal cavity forms above the
spout within the bulk of particles because the air jet is not strong enough to break through the
compacted zone of particles above the cavity, cf. Epstein and Grace [56]. The cavity is almost
empty such that the fluid fraction therein is close to one, see Figure 4.14(c). In Figure 4.14(b),
the fluid domain is clipped half in y-direction to open the fluid such the particles become visible.
The particles are colored according to their velocity magnitude. Only the particles at the bound
of the cavity are in motion while the bulk of particles is still at rest. The shape of the cavity does
only change marginally over time. The velocity magnitude of the particles is less than 5 % of the
fluid inflow velocity. In contrast, the maximal fluid velocity above the spout is about 10 % larger
than the inflow velocity because the incoming jet is narrowed by the bulk of particles before
the velocity is dissipated in the region of resting particles. There, the velocity profile is rapidly
homogenized and a behavior similar to a fixed bed prevails, compare Figure 4.13(a).
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(a) Fluid velocity magnitude (b) Particle velocity magnitude (c) Fluid fraction

Figure 4.14: Internal spout regime.

4.4.4 Slugging bed regime

Another formation which can occur in fluidization is the slugging bed regime. Whole layers of
particles move upward which are then called slugs, cf. Link et al. [134]. The process of slug
formation and propagation repeats periodically in time. Similar to the internal spout simulation
from the previous section, the particle bed needs to be disturbed once in the beginning to initiate
the slugging process. Therefore, gravity is reduced to 1 % of the initial value for a time period of
0.05 s following a sine curve. Afterwards, the particle density is reduced to ρb = 1252.5 kg/m3,
which is 50 % of the original particle density. The reduced density is necessary to counteract the
non-appropriate drag law which underestimates the particle force due to drag.

The temporal evolution of the slugging bed is illustrated in Figure 4.15. Initially, an internal
spout is present which can be seen in the particle distribution and the fluid fraction in Fig-
ure 4.15(b) and Figure 4.15(c), respectively. A small region directly above the bottom section
with high inflow velocity is cleared from particles. The cavity reaches half the height of the parti-
cle bed in its center. In the present setup, the fluid is strong enough to break-up the internal cavity.
One cycle takes approximately 0.55 s and almost half of the time is necessary to form the slug
as obvious as in Figure 4.15(e) which displays the particle distribution at t = 0.274 s. The upper
part of the particles propagates upward in form of a five particles thick layer which is followed
by a layer which contains mostly fluid with a fluid fraction around 87 % as can be seen in the
fluid fraction in Figure 4.15(f). At time t = 0.365 s, the particles have just passed their maximal
position in z-direction and they have started falling back to top of the bed, see Figure 4.15(g) to
Figure 4.15(i). At time t = 0.365 s, remnants of the former slug are still in the falling process
while most of the particles have already reached the bed again, cf. Figure 4.15(k). The fluid flow
is still disturbed by the presence of the few particles, as can be seen in Figure 4.15(j) where
the fluid velocity is increased in the narrow band of particles in the remaining part of the slug.
The plot is colored with the fluid velocity magnitude and arrows indicate the flow direction. Af-
ter 0.55 s, the slug has fully unified with the particle bed again which delivers a frequency of
1.82 Hz. The fluid velocity in the bottom half of the particle bed is nearly constant over time
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(a) t = 0 s: Fluid vel magn. (b) t = 0 s: Particle vel magn. (c) t = 0 s: Fluid fraction

(d) t = 0.274 s: Fluid vel magn. (e) t = 0.274 s: Particle vel magn. (f) t = 0.274 s: Fluid fraction

(g) t = 0.365 s: Fluid vel magn. (h) t = 0.365 s: Particle vel magn. (i) t = 0.365 s: Fluid fraction
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(j) t = 0.456 s: Fluid vel magn. (k) t = 0.456 s: Particle vel magn. (l) t = 0.456 s: Fluid fraction

(m) t = 0.546 s: Fluid vel magn. (n) t = 0.546 s: Particle vel magn. (o) t = 0.546 s: Fluid fraction

Figure 4.15: Slugging bed regime.

and fluctuations are restricted to the top region where the slugs form, compare Figure 4.15(a),
Figure 4.15(d), Figure 4.15(g), Figure 4.15(j) and Figure 4.15(m).

4.4.5 Jet in fluidized bed regime

Another regime can be identified in this fluidization setup when the particle density is reduced
down to ρb = 751 kg/m3, which is 30 % of the original particle density. The same start-up pro-
cedure is applied as in the previous sections. The gravity is reduced down to 1 % of the initial
value for a time period of 0.05 s following a sine curve to disturb the initial packing. The resulting
velocity and fluid fraction distribution are displayed in Figure 4.16. The inflowing jet is strong
enough to transport particles upwards to the top of the particle bed similar to a fountain. From
there, the particles move to the left and right and drop down along the walls, see Figure 4.16(b),
Figure 4.16(e) and Figure 4.16(h) which display the z-component of the particle velocity. Al-
most all particles are in motion except those residing in the left and right bottom corners. The
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(a) t = 0 s: Fluid vel magn. (b) t = 0 s: Particle z-vel (c) t = 0 s: Fluid fraction

(d) t = 0.3 s: Fluid vel magn. (e) t = 0.3 s: Particle z-vel (f) t = 0.3 s: Fluid fraction

(g) t = 0.6 s: Fluid vel magn. (h) t = 0.6 s: Particle z-vel (i) t = 0.6 s: Fluid fraction

Figure 4.16: Jet in fluidized bed regime.
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upward flowing fluid jet oscillates gently from right to left which can be observed in the fluid
fraction in Figure 4.16(c), Figure 4.16(f) and Figure 4.16(i) leading to a change in shape of the
upper cavity. As reported by Link et al. [134], the jet in fluidized bed regime can have different
cavity shapes of which the mushroom shaped one is similar to the present results. Also, slightly
off center jet positions may occur which can be seen in the current results.

4.4.6 Drag law dependent behavior

The results obtained with the developed framework show its ability to reproduce different flow
regimes occurring in a fluidized bed problem. However, this could only be achieved by modi-
fying the particle density because the drag force is underestimated with the current drag law. A
proper drag law is essential for this test case which does account for dense particle packings. As
it is not the aim of this thesis to investigate the numerously proposed drag laws, a simple drag
law is used. In case further effort is conducted on the used drag law, a quantitative analysis of a
fluidized bed problem is possible with the developed framework.

4.5 NACA 0015 hydrofoil

One aspect of the developed framework has not been investigated so far. Each particle can be
assigned an ODE which is used to compute the radius evolution of the particle. The size of such
a bubble is influenced by its initial conditions and the ambient pressure of the fluid field. The
Rayleigh-Plesset (RP) equation, as introduced in Section 2.4, with its numerical treatment in-
cluding adaptive time stepping, is presented in Section 3.5.1. This submodel is incorporated in
the strong fluid-particle coupling scheme, as introduced in Section 3.2.2, in which it represents
the time scale with the most strict limitations on the allowed time step size due to its highly
nonlinear behavior. A relevant application for this framework is the formation of cavitation bub-
bles starting from small nuclei. Usually, nuclei contain non-condensable gas and can be found
in abundance in any liquid. In case the ambient pressure falls below the vapor pressure of the
liquid, due to an acceleration of the fluid, each nucleus can be the starting point for a vapor bub-
ble. Therefore, the nuclei are tracked in the Lagrangian frame and the RP equation is solved to
model the radius variation according to the ambient conditions. Similar approaches have already
been reported by Hsiao et al. [95], Giannadakis et al. [70], Mattson [145], Shams et al. [187],
Yakubov et al. [233], and Vallier [214].

4.5.1 Setup

Flow with properties summarized in Table 4.3 around a NACA 0015 hydrofoil with a chord
length of 12 cm and an angle of attack of 8◦ is considered as shown in Figure 4.17. The test
case is mainly based on Hsiao et al. [96]. The fluid properties resemble water with a viscos-
ity that is a factor of 100 larger than original to reduce the Reynolds number of the problem.
The leading edge of the hydrofoil is located at the origin. The fluid domain of the pseudo-
2D problem covers [−18, 78]× [−12, 12]× [0, 0.0785] cm. The prescribed inflow velocity up-
stream of the foil is uinf = (10.0, 0, 0)T m/s and the pressure downstream at the outflow is set
to pout = 178,233.5 Pa. A slip boundary condition is applied at the y-oriented top and bottom
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x
y

uinf

pout
slip bc

nuclei seed line

Figure 4.17: NACA 0015 hydrofoil at 8◦ angle of attack (not to scale).

Property Value Unit

Dynamic viscosity µ 0.091084 Pa s

Density ρl 997.0 kg/m3

Surface tension coefficient σ 0.0728 N/m

Vapor pressure pv 2981.0 Pa

Table 4.3: Fluid properties for NACA 0015 test case.

surface as well as the z-oriented front and back wall. The fluid is not boundary resolved at the
surface of the hydrofoil in order to reduce computational effort. The Reynolds number of this
problem is

Re =
10.0 m

s
· 0.12 m · 997.0 kg

m3

0.091084 Pa s
= 13,135 .

First tests with a no-slip boundary condition at the hydrofoil revealed oscillations as the veloc-
ity gradient at the surface could not be resolved with the coarse fluid mesh. To circumvent this
problem, the boundary layer is ignored and a weakly imposed Dirichlet boundary condition in
normal direction of the hydrofoil is applied, for details see Gamnitzer [68]. This boundary condi-
tion is used to surrogate a slip boundary condition along the curved hydrofoil surface. The fluid
domain is discretized with a C-shaped mesh with one layer in z-direction and an overall number
of 4888 tri-linearly interpolated hexahedral fluid elements. The minimal fluid element extension
in normal direction to the hydrofoil is 0.144 cm. A time step size of ∆tl = 5.0 · 10−5 s is chosen
such that the resulting CFL-number is approximately 0.5. The abort tolerance for the nonlinear
iterations of the fluid is set to 10−6 in the L2-norm of the residual of the velocity/pressure as well
as for the increment of the velocity/pressure.

Each bubble starts from a nucleus which contains non-condensable gas. This implies that
nucleus and bubble can be interchanged in notation in this problem. Inflowing nuclei have a
density of 1.12 kg/m3 which resembles air. The initial radius of the nuclei is normal distributed
with a mean radius of 30 µm and a standard deviation of 5 µm. The initial radii are limited to
5− 75 µm in order to stay in a realistic range. The number of inflowing nuclei is determined
as follows. According to Brennen [19], the nuclei number density distribution function is up to
1013/m4 in sea water. As the radius of these nuclei is approximately 10 − 40 µm, they cover a
range of 30 µm and their number can be computed to

1013
1

m4
· 30 µm = 3 · 108 1

m3
= 300

1

cm3
.
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In order to arrange the inflowing nuclei homogeneously, the inflow procedure is performed in
every 4th fluid time step on a line holding 20 seed points for nuclei. The seed line is located
upstream of the leading edge at x = −2.5 cm ranging y ∈ [−2, 2] cm, see Figure 4.17. The
resulting spacing in x- and y-direction of the nuclei is similar right after the inflow. To disturb
this grid-like arrangement, a random offset of up to 50 % of the initial bubble radius is added to
the initial position. The nuclei are only allowed to be placed and to move in the middle plane of
the fluid domain in order to obtain a 2D problem. The fluid velocity and pressure at the seed-
ing points are used to initialize the bubbles’ initial velocity and the initial pressure according
to (2.117). Bubbles far from the hydrofoil do not undergo significant radius changes and there-
fore bubbles are restricted to the domain [−3, 24] × [−4, 4] cm in x- and y-direction. Bubbles
leaving this region are removed from the simulation. As the existence of bubbles is linked to the
existence of a bin at the bubble position, it is possible to shrink the domain filled with bins to
the aforementioned size which only covers a part of the fluid domain. Hence, the overall number
of bins is reduced and efficiency is improved. However, this demands for a careful treatment
in parallel computations due to the choice of the parallelization strategy, cf. Section 3.6. After
the initial filling time, a constant number of roughly 2500 bubbles resides in the computational
domain as the number of inflowing and outflowing bubbles is similar.

4.5.2 Start-up procedure of the cavitation framework

(a) Pressure (b) Velocity magnitude

Figure 4.18: Steady state for the NACA 0015 test case without bubbles.

Before adding bubbles into the simulation, a steady state solution without bubbles is created.
This is necessary because the initial ambient pressure pg0 for the nuclei is computed at their
seeding position which does not yet provide useful values during the start-up phase of the fluid
field. The steady state pressure and velocity magnitude distribution are displayed in Figure 4.18.
The minimal pressure on the suction side of the hydrofoil is 4870 Pa which is larger than the
vapor pressure. The fluid velocity is accelerated from the inflow velocity up to 19.4 m/s in the
low pressure region. Due to the weak Dirichlet boundary condition in normal direction at the
hydrofoil, no boundary layer develops and the flow does not separate.

After the steady state of the fluid flow is reached, bubbles are inserted using the seeding
points described in the previous section. It turned out that the inflow of bubbles disturbs the
pressure field of the fluid such that the solution diverged. The problem can be traced back to
the time derivative ∂ϵl/∂t in (2.112) which is a source term in the continuity equation. During
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the initial filling time in which only bubbles enter the domain, the sum over all changes in fluid
fraction over time is proportional to the number of bubbles entering the domain. Furthermore, the
incompressible character of the governing equations is still present such that a source of bubbles
in a small region is able to modify the pressure field in the whole domain. Hence, the initial filling
of the domain with bubbles modifies artificially the pressure level via the continuity equation. In
order to suppress this start-up phenomenon, a quasi-static assumption is made. The problematic
time derivative term on the right-hand side of the continuity equation is disabled until a steady
state is generated. Finally, a similar number of bubbles enters and leaves the domain such that
the overall number of bubbles stays almost constant over time. Hence, the sum over all source
contributions is mainly reduced to the volume change of the bubbles which depends on their
radii. It is important to note that this influence is minor compared to the impact of many bubbles
being inserted simultaneously at the seeding spots.

Figure 4.19: Steady state for NACA 0015 after start-up procedure (bubbles magnified 30 times).

A first analysis can already be done after the setup procedure led to the steady state solution
as depicted in Figure 4.19. The line holding the seeding points is displayed upstream of the
hydrofoil and the box to which the existence of bubbles is limited is added in the figure. Every
bubble that crosses the boundary of the box downstream the hydrofoil is removed from the
simulation. The minimal pressure in the flow field is slightly reduced to 4130 Pa due to the
presence and interaction with the bubbles. When this steady state is reached, the strong coupling
scheme needs two outer iterations to converge below tolp = tolr = 10−5. The small number of
iterations is owed to the neglected time derivative term in the right-hand side of the continuity
equation. The behavior of a single bubble which passes closest to the suction side of the hydrofoil
is depicted in Figure 4.20. The x-position of the bubble is used for the abscissa such that it is
trivial to assess its relative position to the hydrofoil which spans x ∈ [0, 12] cm. It takes the
bubble 29 ms to travel from its seeding spot to the point where it is removed. The fluid pressure
evaluated at the bubble position is included in the figure which is relevant for the evaluation of
the radius governed by the Rayleigh-Plesset equation (2.113). Therein, the ambient pressure is
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Figure 4.20: Single bubble after start-up procedure.

replaced with the fluid pressure at the bubble center. The minimal pressure that is felt by the
bubble is 29.2 kPa which is approximately 10 times the vapor pressure. At the point of minimal
fluid pressure, the radius of the bubble is largest. It almost doubles its size to a radius of 5.7 µm
compared to its initial value. The bubble follows the fluid flow accurately and the maximal
bubble velocity is 19.0 m/s which is close to the maximal fluid velocity.

Although the minimal pressure in the whole fluid domain is close to the vapor pressure, the
minimal pressure felt by the bubble is larger as the bubble does not pass the hydrofoil directly
at its surface where the minimal fluid pressure occurs. In order to make the test case more chal-
lenging for the developed framework, the fluid pressure is reduced leading to a larger variation
of the bubble radius. There are two options to obtain a lower pressure level. Either an increase
of the inflow velocity or a reduction of the pressure at the outflow leads to the desired pressure
drop. The easier approach is to reduce the pressure level of the whole fluid field via reducing the
outflow pressure pout by 25 kPa. The solution is investigated after a steady state has emerged.
Again, one of the bubbles which passes closest to the suction side of the hydrofoil is displayed
in Figure 4.21. The fluid pressure along the trajectory is shifted down by approximately 25 kPa
leading to a minimal fluid pressure of 3678 Pa felt by the bubble. This value is only 23 % above
the vapor pressure. In the low pressure region, the bubble radius increases up to 102 µm which
is more than three times its initial value. Due to the increased non-linearity of the problem, four
outer iterations of the strong coupling scheme are necessary to converge to the same tolerances
as before.

These preliminary investigations of single bubbles were performed while the time derivative
term on the right-hand side of the continuity equation is disabled. Hence, the effect of bubble
size changes on the fluid is reduced and thus the coupling of particle to fluid is weakened. In
Figure 4.22, the minimal fluid pressure in the domain over time is displayed. Only the pressure
value of the converged outer iteration is shown. The time scale covers three passes of bubbles
from the seeding to their removal. The mean value is constant at 4120 Pa with a deviation of
±105 Pa.
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Figure 4.21: Single bubble after start-up procedure with reduced fluid pressure.
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Figure 4.22: Minimal fluid pressure after start-up procedure.
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4.5.3 First step towards cavitation

The steady state with the original pressure level as described in the previous section with a similar
number of inflowing and outgoing bubbles is used as starting point for the investigation in this
section. The quasi-static assumption is dropped and the disabled source term in the continuity
equation is enabled now.

In Figure 4.23, the result for a single bubble is depicted which is on the trajectory closest to
the hydrofoil. Small wiggles can be seen in the fluid pressure and bubble radius graphs. When
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Figure 4.23: Single bubble in full cavitation framework.

ignoring the small wiggles, the evolution is almost identical to the case when the source term
is neglected, see Figure 4.21. This implies that the full coupling of the bubbles to the fluid only
disturbs the fluid while the overall behavior is similar. This may be attributed to the fact that only
few small bubbles interact with the fluid.

The simulation does not go beyond 12 ms after which divergence of the outer iteration occurs.
The relaxation parameter for the outer iterations as introduced in Section 3.2.2 tends to zero after
a few iterations leading to a stagnated solution. A remedy with a minimal relaxation parameter
ωmin = 0.1 did not improve the convergence behavior. No clear cause is available, which could
explain the convergence problems.

A further indicator for the problematic behavior of the full cavitation framework is the mini-
mal fluid pressure over time as illustrated in Figure 4.24. The mean value is slightly increased to
4350 Pa compared to Figure 4.22. However, deviations within a few time steps of ±750 Pa are
observed, which is more than seven times the amplitude compared to the case without the prob-
lematic source term in the continuity equation. The number of outer iterations ranges between 6
and 13 which is an enormous increase compared to the two iterations necessary when the source
term is neglected. This again shows the impact of the time derivative of the fluid fraction on the
right-hand side of the continuity equation which needs further investigation.
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Figure 4.24: Minimal fluid pressure in full cavitation framework.

4.6 Droplets in the human lung

4.6.1 Setup and ventilation of a healthy lung

In an earlier work at the Institute for Computational Mechanics of the Technische Universität
München, the time-dependent transport of nanoparticles ranging from 1.5 to 11 nm in a human
lung was investigated using an Euler-Euler approach, see Comerford et al. [29]. For a large
amount of small particles, the assumption of a continuum is valid. However, when considering
larger particles, such as droplets in aerosols which are used for medication, it is favorable to
monitor each single particle including its interaction with the airway walls. A possible question
might be, in which area of the lung the aerosol is absorbed and how a certain aerosol dose has to
be applied in order to achieve a certain distribution in the lung. The developed framework with
its Euler-Lagrange approach is able to investigate the flow of particles with a diameter ranging
from 8.0 to 19.0 µm in the time-dependent fluid flow. This particle size corresponds to the size
of therapeutic aerosols. The geometry of the lung is extracted from CT images of a patient in
order to obtain a realistic fluid domain with its full complexity. The modeling approach has been
derived by Yoshihara et al. [234] and details on the model are given by Verdugo et al. [221]. The
branches up to the eighth generation of the bronchial tree are considered in the following setup.
A parabolic inflow profile is applied and the inflow rate is prescribed as given in Figure 4.25.
The inhalation phase takes 1300 ms until the exhalation phase starts. This procedure is very
close to ventilation of patients in hospitals in the intensive care. The upper part, the glottis, is
included in the fluid domain in order to generate a realistic inflow profile in the lower region
when the two main branches start. As usual in literature, a zero-traction Neumann boundary
condition is applied at the 61 outlets of the fluid domain. This neglects the resistance further
downstream. However, in the next section it will be shown that this assumption needs to be
investigated carefully. In order to introduce particles in the lung, an inflow region in the upper
part of the glottis close to the fluid inflow is defined in which 72 = 12 · 6 particles are placed on
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Figure 4.25: Inflow rate into lung

a rectangular grid every 0.5 ms and initialized with the underlying fluid velocity. Particle inflow
starts at t = 100 ms when noticeable fluid velocity prevails in order to avoid initial placing of
particles in contact and it stops at t = 1280 ms right before the exhalation phase starts. Finally,
approximately 170,000 particles have entered the human lung. As inter-particle and particle-wall
contact is considered, a coefficient of restitution e = 0.8 is used and the relative penetration is set
to c = 0.05. The patient-specific lung geometry is discretized with 2,307,139 linear tetrahedral
elements and a time step size of ∆tl = 0.5 ms is applied. Subcycling of 1 : 50 between fluid and
particles is used such that the particle time step size is ∆tb = 0.01 ms. The simulation is carried
out on 48 processors. A special treatment for the binning strategy is necessary due to the large
number of bins which is not covered with fluid elements. All those bins are removed to decrease
their number as they cannot be filled with particles anyway due to the airway walls which bound
the particle motion. As the size of the particles is small, the right-hand side contributions to
the continuity equation (2.112) are neglected such that the computation of the dispersed phase
fraction can be omitted.

The temporal evolution of the particle distribution is illustrated in Figure 4.26. The particles
are colored according to their velocity magnitude. During the steep inflow velocity ramp in
150 ms ≤ t ≤ 300 ms, the flow is accelerated up to approximately 37 m/s in the narrowest cross
section such that a fluid jet emerges. Initially, the particles are entrained in the jet and pass
the constriction quickly. Later, due to the continuous inflow, a recirculation zone forms in the
glottis where the particles are mixed before they enter the constriction. After 250 ms, the first
particles reach the outflow boundaries of the fluid domain where they leave the domain using
the assumption that they are fully absorbed in the outlets. During the exhalation phase, particles
leave the lung through the glottis. Few particles are trapped in the boundary layer of the fluid
flow in regions of low velocity such that they do not leave the lung within this exhalation phase.
In reality, these particles are absorbed by the airway walls. It can be concluded that the developed
framework is able to cope with extraordinary complex fluid domains while still keeping track of
the particles and their interactions.
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Figure 4.26: Particle distribution during a full breathing cycle.
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4.6.2 Pathological lung
The lung considered so far has zero-traction Neumann boundary conditions at its outflows.
Hence, all outlets exhibit a similar resistance and the area of the outlet is decisive for the number
of particles which enter the subsequent branches of the lung. In contrast, a pathological lung be-
haves stiffer in injured parts. In Roth [177], a methodology is presented which allows to account
for stiffer regions in parts of the lung. Using this approach, a correlation is deduced for each
outlet which is used to compute the pressure value at the outlet based on the flow rate and the
fluid volume in the subsequent branches of the lung. Eventually, it is possible to model a partly
injured lung and to obtain the resulting distribution of particles in the respective parts of the lung.
In Figure 4.27, a zoom on the left main branch of the lung is displayed with the healthy lung on

(a) Healthy lung. (b) Pathological lung.

Figure 4.27: Particle flow comparison.

the left-hand side and the injured lung on the right-hand side. The particles are illustrated as ar-
rows with size and color related to their velocity magnitude. The bottom branches of the injured
lung are loaded with a higher pressure value because a model with a five times higher stiffness of
the tissue is attached to these outlets, see Roth [177]. The number of particles entering the bot-
tom branches is reduced in the pathological lung whereas the number of particles entering the
upper branch is largely increased. The remaining particles which still enter the injured branches
propagate at a reduced velocity. These results are expected as the fluid flow rate into the injured
branches is reduced due to the increased resistance for the fluid flow.
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5 Conclusion

5.1 Summary

A multipurpose Euler-Lagrange framework has been developed which aims at simulating a vast
number of different dispersed flow problems. Due to the versatile framework, also the limit case
of vanishing influence of the fluid on the dispersed phase can be investigated leading to a pure
particle solver. The fluid field is always assumed to be continuous and described in an Eulerian
frame. In contrast, the dispersed phase is an ensemble of interacting particles which are tracked
in a Lagrangian frame. The dispersions interpenetrate the continuous phase.

The theory of volume averaging is applied to the fluid flow around the dispersions leading to
the volume-averaged Navier-Stokes equations. They have been solved numerically by a residual-
based variational multiscale finite element method. The coupling from the fluid to the particles
includes the drag, lift, added mass, pressure and viscous force. Besides the interaction of particle
and fluid, inter-particle interaction is also accounted for. The particles can collide using a soft
sphere contact model used in discrete element methods. Also, particle-wall contact is included
such that bounded problem setups can be investigated. In order to circumvent the differences of
gas, liquid, and solid particles when it comes to collisions, the assumption of an immobilized
surface of liquid bubbles and gas bubbles in liquid is applied. This is justified because in ev-
ery real world application small contaminants are ubiquitous in liquids leading to this “freezed”
bubble surface. Hence, bubbles behave like solid dispersions. Of course, the special case of
clean water (without contaminants) on laboratory test rigs cannot modeled with the aforemen-
tioned assumptions. In order to account for radius changes of the dispersions in bubbly flows, the
Rayleigh-Plesset equation can additionally be solved for each particle. This ordinary differential
equation governs the radius evolution of the bubble driven by the ambient fluid pressure.

The computational framework to incorporate all the aforementioned features is equipped with
a loosely coupled and a strongly coupled solution procedure. Aitken’s ∆2 method is applied
to accelerate convergence of the strongly coupled algorithm. Subcycling is performed between
the fields to efficiently consider the relevant time scales. The largest time scale exhibits the
fluid, followed by the particle-collision dominated time scales which are usually a factor of
100 · · · 1000 smaller. The smallest time scales occur in the radius changes of the bubbles which
can be several orders of magnitude smaller than the relevant time scales for collisions. The latter
is accounted for by an adaptive time stepping procedure to obtain quickly an accurate solution.
In contrast, time stepping for the fluid and the particle evolution is performed using constant time
step sizes. Linear interpolation of coarse field quantities is applied to obtain the coupling states
for the finer time scales. In order to enable large time step sizes for the fluid, the generalized-α
time integration scheme is used which is of implicit nature. The particles are time integrated
using the explicit central difference time integration scheme.
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Special attention is given to the computation of the fluid fraction in the continuous phase.
The fluid fraction in the volume averaged Navier-Stokes equations accounts for the displaced
volume of the dispersed phase in the fluid domain although the dispersions are treated point-
like. A polynomial filtering function is applied at each particle position to project the dispersion’s
volume onto the fluid. The involved volume integrals over the fluid element comprise the filtering
function in the integrand. In order to enable an analytical integration on the unstructured fluid
grids, the volume integral is transformed into line integrals by applying divergence theorem
twice. A zeroth, a second, and a fourth order polynomial filtering function is investigated.

As the different time scales and potentially large numbers of particles and fluid elements may
lead to a high computational effort, an efficient parallelization strategy is crucial. The particles
can float around and dynamic reassigning to the processors is applied. When fluid-particle cou-
pling is considered, additionally the fluid domain is distributed among the processors. The fluid
is distributed once in the beginning using graph-partitioning leading to an optimal partitioning.
The particles are assigned to the processor which owns its underlying fluid element. Hence, the
fluid-particle interaction can be evaluated locally without the need for inter-processor commu-
nication. An additional layer of ghost or halo particles and fluid elements is necessary at the
processor boundaries. The advantage of the chosen parallelization strategy is that no data needs
to be provided fully redundant. However, clustering of particles in the fluid-particle coupled case
reduces parallel efficiency.

The developed framework is able to perform pure particle simulations, fluid-particle coupled
simulations using either the weak or the strong coupling scheme, and finally the fully coupled
framework which includes the Rayleigh-Plesset equation to account for particle size changes.
The developed framework is investigated using six different test cases which are summarized
in the following. A rather small pure particle example is the outflow of 9 k particles through
an orifice. This test case is used to verify the implementation of the normal and tangential soft
sphere contact model which delivers results that are 20 − 30 % off the findings in literature.
The second test case is used to investigate the parallel performance of the developed particle
framework. Therefore, the mixing of 571 k particles driven by two paddles is computed. A
parallel efficiency of 66 % could be achieved in a strong scaling study using up to 120 processors.
Furthermore, the parts in the framework which scale badly are identified to pave the way for
improvements.

Next, the fluid-particle framework is investigated using a Taylor-Green vortex test case. The
fluid field starts from an initial velocity which describes counter-rotating vortices. 461 k particles
are distributed homogeneously within the fluid domain and they are initialized with the under-
lying fluid velocity. The setup is fully periodic in all three space dimensions. Due to the density
ratio of 1/1000 between particles and fluid, the particles propagate to the center of the vortices. A
nearly-linear relationship between the decreasing vorticity and the increasing particle concentra-
tion in the vortex center is reported in literature which the developed framework also exhibits. In
the Taylor-Green vortex example, particle collisions are neglected in order to enable comparison
with literature.

In contrast, in the next test case, a fluidized bed is investigated which includes particle-particle
and particle-wall interaction in addition to the fluid-particle coupling. A fluid jet enters from
the bottom of the container and the particles are swirled up. The particle to fluid density ratio
covers 2505/1 to 751.5/1. Due to the density ratio≫1, the added mass force can be neglected and
the weakly coupled approach is applied. Several different regimes are reported in literature of
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which four are reproduced with the developed framework. Namely, the fixed bed regime which
subsequently is used as starting point for the internal cavity regime, the slugging bed regime,
and the jet in fluidized bed regime. Due to the fact, that the chosen drag law is inappropriate,
it was necessary to reduce the particle density to obtain the different regimes. Nevertheless, the
developed framework is able to reproduce all these regimes.

In the previous setups, the particles feature a constant radius. In contrast, the NACA 0015 test
case investigates bubbles with a variable radius. Bubbles are released upstream of the hydrofoil
and they undergo size adaption driven by the ambient fluid conditions. On the suction side of the
hydrofoil, the bubbles grow up to three times of their initial size whereas they stay almost con-
stant away from the hydrofoil. The strong coupling scheme with Aitken relaxation was necessary
to achieve convergence.

The last example is chosen to show that the developed framework can cope with large and
complex 3D fluid geometries. The human lung was segmented from patient specific data up
to the eighth generation of the bronchial tree. Particles are inserted close to the fluid inflow in
the glottis from where they flood into the lung. Due to the small size of the particles, the fluid
fraction is omitted in this test case and the weak coupling approach is sufficient. Nevertheless,
the contact was evaluated such that the particles could not cross the lung walls.

In summary, a very versatile numerical tool has been developed to investigate Euler-Lagrange
settings with a continuous phase that is interpenetrated with a disperse phase each accounted for
in its respective frame.

5.2 Outlook

Several issues need to be addressed for future work with the developed framework. A closer look
at the drag law applied for the particles is necessary in order to account for the fluid fraction.
This is of major importance for dense packings as they occur, e.g. in the fluidized bed application.
Several correlations are proposed in literature, cf. Kafui et al. [111], Deen et al. [41], or Lau et al.
[130], which may be tested and validated against experimental results. Another crucial issue to
be solved are the pressure oscillations within the whole fluid domain induced by bubble size
variations as presented with the NACA 0015 test case in Section 4.5.3. Already small changes
in bubble size lead to pressure oscillations which are detrimental for detailed analysis using the
Rayleigh-Plesset equation. A remedy might be the use of an artificial compressibility approach,
see Tamura et al. [202] or Hsiao et al. [96], which weakens the incompressible character of the
governing equations.

An Euler-Lagrange framework is limited by an upper ratio of dispersion size to fluid element
size, cf. Peng et al. [164]. Hence, an interesting approach might be the combination of the devel-
oped disperse fluid-particle framework with, e.g. a level set approach (see Hsiao et al. [96]) or
a volume-of-fluid approach (see Vallier [214]) to consider coalescence of the dispersed phase to
form larger structures. Therein, the transition will demand for a proper analysis.

Regarding the computational framework, the scaling problems identified while setting up the
ghosting need to be addressed. This problem is owed to the fact that the implementation of the
developed framework was realized within a finite element solver designed for unstructured grids.
The original software tool is optimized for problems including elements and nodes with a static
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connectivity throughout the simulation. The particle solver can be improved by exploiting the
Cartesian grid aligned bins which are used for the neighborhood search of the dispersions.

While doing so, the load balancing issue for pure particles need to be further investigated.
Load balancing based on the number of particles in each bin is implemented but it turned out
that the dynamically load balanced simulations took more wall time than without load balanc-
ing. This could be traced back to the increased ghosting which was introduced by the additional
load balancing steps. Within this work, the parameters could not be tuned such that the savings
induced by repeated load balancing dominates the extra cost induced by a disadvantageous large
ghosting. The load balancing aspect for fluid-particle coupled problems also needs further inves-
tigation. In applications with large subcycling, the cost of particle evaluation usually dominates
the overall cost such that it could be beneficial regarding overall simulation time to abandon
the optimally distributed fluid domain and focus on a good distribution of the particles while
accepting the fluid partitions to be unbalanced.

Another aspect which gives space for improvement is the particle time integration. Using small
particles at high velocities lead to a strong limitation in time step size. Implicit time integration
for the particles with the respective contact formulations might be beneficial although the risks
should not be underestimated. Convergence problems of the discontinuous phenomenon con-
tact are likely to occur and furthermore contact events should not be missed such that efficient
searching strategies are necessary to detect such events with the need to correct them appropri-
ately within the Newton iterations. In case, implicit time integration for the particles is available,
the next step can be a monolithic framework comprising both, fluid and particles. The mono-
lithic approach might be able to overcome stability issues which cannot be cured by the strong
coupling scheme.

So far, the fluid domain is assumed to be fixed in space. An interesting approach is to allow for
a moving fluid domain described in an arbitrary Lagrangian Eulerian frame, maybe in a fluid-
structure interaction environment. Hence, deformable structures which interact with particles
can be investigated. This would be very interesting for the application of cavitation in which the
damage of collapsing bubbles is investigated, see Van Terwisga et al. [218] or Dular et al. [53].
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[136] R. Löhner and F. Perazzo, Improvements in speed and scalability of a DEM code,
Mecánica Computacional 35, 455–466, 2017.
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