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Abstract

Particle problems and fluid-particle coupled problems exist in nature as well as in many indus-
trial applications. Usually, the complexity in pure particle problems lies in the huge number of
particles involved when e.g. considering transport processes of gravel or grain. The interaction
of particles with fluid is of particular interest in the chemical industry in mixing processes. Many
biological applications feature particulate flows as well, e.g. when it comes to drug delivery in
the human body. In this thesis, particles are considered as small physical objects which are of
spherical shape. Each object is modeled as a single particle which interacts with other particles,
with walls and also with fluid flow.

In this thesis, a general framework is developed which enables the investigation of pure par-
ticle problems as well as fluid-particle coupled problems. For pure particle problems, the focus
is on the parallel performance of the proposed approach. On this basis, a flexible multipur-
pose Euler-Lagrange framework has been developed in this work. Therein, the particles are ac-
counted for in a Lagrangian frame whereas the fluid is treated in an Eulerian frame. The fluid is
modeled via the volume averaged Navier-Stokes equations, which are derived for the first time
within a variational multiscale finite element method in which the dispersed phase fraction is
accounted for in the continuity equation. Proper modeling of the interaction between both fields
is of paramount importance. In order to properly account for the volume displaced by the par-
ticles in the fluid, special attention is given to the computation of the dispersed phase fraction.
Due to the point-like modeled particles, polynomial filtering functions are applied at the particle
positions in order to compute the displaced volume in the fluid. The emerging volume integrals
are transformed to line integrals by applying the divergence theorem twice. This enables an ef-
ficient analytical integration of the resulting line integrals. The coupling between particles and
fluid is improved by a strong coupling scheme based on Aitken’s A% method, which is the first
time applied in an Euler-Lagrange framework. Convergence can be accelerated, or achieved at
all, which is of particular importance when a variable radius evolution of the particles is con-
sidered. The Rayleigh-Plesset equation is included in the developed framework to evolve the
particle radius dependent on the ambient conditions. Due to the highly nonlinear character of
this ordinary differential equation, a subcycling procedure is applied which allows for time step
size adaptations leading to an efficient time integration of the radius evolution. The time step
size of the fluid can be chosen larger because the implicit time integration poses less restrictions
on the admissible time step size.

Finally, the developed multipurpose framework is applied to several test cases featuring in-
creasing complexity. The pure particle algorithm is validated with a simple outflow problem and
parallel performance is assessed using a mixing problem. The fluid-particle coupled test cases in-
clude particle numbers between 2500 and a Taylor-Green vortex example with approximately 0.5
million particles. In a fluidized bed application, different flow patterns can be identified including
regions with dense particle packing. Next, the strong coupling scheme is applied to flow around
a NACA 0015 hydrofoil featuring particles with a variable radius governed by the Rayleigh-
Plesset equation. Finally, it is shown that the developed framework can cope with complex fluid
domains as they occur e.g. in biological applications when particulate flow into a human lung
is investigated. A comparison of the drug delivery during a breathing cycle in a healthy and a
pathological lung is performed.



Zusammenfassung

Partikelprobleme und fluid-partikel-gekoppelte Anwendungen treten in der Natur, wie auch in
industriellen Fragestellungen auf. Ublicherweise liegt die Schwierigkeit von reinen Partikelpro-
blemen in der groen Zahl an beteiligten Partikeln, wie beispielsweise bei Schiittvorgédngen von
Kies oder Getreide. Die Interaktion von Partikeln mit Fluiden ist fiir die chemische Industrie
bei Mischvorgingen von besonderem Interesse. Auflerdem finden sich in vielen biologischen
Anwendungen partikelbehaftete Stromungen, wie beispielsweise bei der Verteilung von Medika-
menten im meschlichen Korper. In dieser Arbeit werden Partikel als kleine physikalische Objek-
te gesehen, die in erster Ndherung kugelformig sind. Jedes Objekt wird als einzelnes Partikel
modelliert, das mit anderen Partikeln, mit Wéanden oder auch mit Stromungen interagieren kann.

In dieser Arbeit ist ein allgemeines Framework entwickelt worden, das die Untersuchung
reiner Partikelprobleme, wie auch von fluid-partikel-gekoppelten Problemen erméglicht. Der
Fokus der reinen Partikelprobleme liegt bei der parallelen Leistungsfdhigkeit des vorgeschla-
genen Ansatzes. Darauf aufbauend wurde im Rahmen dieser Arbeit ein flexibles vielzweck
Euler-Lagrange Framework entwickelt. Darin werden die Partikel in einer Lagrangen Betrach-
tung und das Fluid in einer Eulerschen Betrachtung beriicksichtigt. Das Fluid wird mittels der
volumengemittelten Navier-Stokes Gleichungen modelliert, welche erstmalig in einer varia-
tionellen Mehrskalen Finite Element Methode hergeleitet werden, in der der Anteil disperser
Phase in der Kontinuitédtsgleichung beriicksichtigt wird. Eine gute Modellierung der Interaktion
zwischen den Feldern ist von grofer Bedeutung. Um das von den Partikeln verdriangte Volu-
men im Fluid korrekt zu beriicksichtigen, wird besonderes Augenmerk auf die Berechnung des
Partikelanteils gelegt. Aufgrund der punktférmigen Modellierung der Partikel werden polynomi-
ale Filterfunktionen an den Partikelpositionen angebracht, um das verdringte Volumen im Fluid
ermitteln zu konnen. Die auftretenden Volumenintegrale werden dabei durch zweimalige An-
wendung des Divergenztheorems zu Linienintegralen heruntergebrochen, was schlieB3lich eine
effiziente analytische Integration der resultierenden Linienintegrale ermoglicht. Die Kopplung
zwischen Partikeln und Fluid wird durch ein starkes Kopplungsschema verbessert, das erst-
malig auf Aitkens A? Verfahren innerhalb eines Euler-Lagrangeansatzes basiert. Die Konver-
genz kann beschleunigt werden, was von besonderer Bedeutung ist, wenn ein zeitlich variabler
Radius der Partikel beriicksichtigt wird. Es wird die Rayleigh-Plessetgleichung verwendet um
den Radiusverlauf, abhiingig von den Umgebungsbedingungen, voranzuschreiten. Aufgrund des
hochgradig nichtlinearen Charakters dieser gewohnlichen Differentialgleichung wird ein Ver-
fahren mit Unteriterationen angewendet, welches Zeitschrittweitenanpassungen erméglicht, was
eine effiziente Zeitintegration der Radiusinderungen erméglicht. Die Zeitschrittweite des Fluids
kann groBer gewdhlt werden, da das implizite Zeitintegrationsschema geringere Einschriankun-
gen an die zuldssige Zeitschrittweite hat.

SchlieBlich wird das vielseitig einsetzbare Framework angewendet auf Testfille mit ansteigen-
dem Schwierigkeitsgrad. Der reine Partikelalgorithmus wird mittels eines einfachen Ausfluss-
problems validiert und die parallele Leistungsfihigkeit wird anhand eines Mischvorgangs un-
tersucht. Die fluid-partikel-gekoppelten Testfélle enthalten ein Taylor-Green Wirbelbeispiel mit
etwa einer halben Million Partikeln. Desweiteren konnen in einer Wirbelschichtanwendung ver-
schiedene Stromungsmuster identifiziert werden, einschlie8lich von Gebieten mit dichten Par-
tikelpackungen. Als néachstes wird das starke Kopplungsschema auf die Umstromung eines NACA
0015 Profils angewendet, bei dem Partikel mit einem variablen Radius basierend auf der Rayleigh-

il



Plessetgleichung beriicksichtigt werden. Schlussendlich wird gezeigt, dass das entwickelte Frame-
work in der Lage ist, komplexe Fluidgebiete, wie sie beispielsweise in biologischen Anwendun-
gen bei partikelbehafteter Stromung in die menschliche Lunge auftreten, zu beriicksichtigen. Ein
Vergleich der Medikamentenverteilung wihrend eines Atemzyklus in einer gesunden und einer
pathologischen Lunge wird durchgefiihrt.
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1 Introduction

1.1 Motivation

Multiphase (or multicomponent, as preferred by Crowe et al. [33]) flows are ubiquitous in our
lives. A few examples are given to show the vast variety of applications:

* Bubbly flows can be observed in daily life in any glass of sparkling water with bubbles
rising in the liquid. A large scale application is the transport of oil in pipelines. Another
example is cavitation in pumps and at ship propellers which can lead to power loss, noise,
vibration, and material damage. At the same time, cavitation at a purposeful level is desired
in high-pressure fuel injection systems to enhance mixing processes of fuel and air. There
is also a medical application of cavitation in which kidney stones are broken into smaller
pieces by using impulsively collapsing bubbles close to the surface of the kidney stones.

* Droplet flows are e.g. small spittle droplets released by a coughing person which follow
the air flow and spread in the environment. A rain storm can be an impressive example for
droplets driven by fluid flow. An important medical problem is the application of aerosols
into the lung of patients in such a way that the agent reaches optimally the infected region.

¢ Particulate flows are common in chemical industry processes when solid particles need to
be transported, dried, or coated. Also the propagation of sand dunes or abrasive water-jet
cutting are applications of particulate flows.

All aforementioned examples belong to the class of dispersed flows in which a large number of
rather small dispersed objects interacts with a continuous phase. This will be the focus of this
thesis.

For the sake of completeness, further flow categories are distinguished, see e.g. [33], [116],
or [207]. The opposite category of dispersed flows are separated flows. They consist of a small
number of bulk fluids. Stratified flow in a pipe or the Rayleigh-Taylor instability induced by
heavier fluid placed on top of lighter one belong to this category. A liquid jet entering a domain
filled with gas or liquid is another example. This list can further be extended by a droplet hitting
a free surface forming a splash or oil in water released by a damaged oil-tanker. There is also a
wide transition between separated flow and dispersed flow. Dependent on the flow velocity and
fill level of the phases in a pipe, stratified flow may turn into plug or slug flow. The break-up of
a liquid jet into gas leads to cascades of smaller structures. Hence, regions with dispersed flow
and separated flow regimes coexist.

This small summary of applications illustrates the relevance of multiphase and especially dis-
persed flows. In the aforementioned examples, it is desirable to predict the behavior of dispersed
flows in order to improve processes with respect to certain requirements. Often, experiments
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are limited due to the involved time or spatial scales. Furthermore, the effort might be large for
proper experimental setups.

Computer simulations can help to gain insight into multiphase flow and to improve design
processes. However, even with the help of super computers, a full resolution of real world dis-
persed flow applications is still not feasible. Hence, simplified models are necessary to cope with
the complex phenomenons included in dispersed flows.

1.2 Numerical models for dispersed flows

Many different approaches can be applied to the numerical simulation of dispersed multiphase
flows. The choice is usually driven by the desired resolution of the dispersed phase, the flow
around the dispersed phase and the size of the problem of interest. Inspired by the review paper of
van der Hoef et al. [216], a distinction into methods with resolved, underresolved and unresolved
interface between the involved phases in dispersed flow is possible.

The most simplified models are known as homogenized or mixture models. They are also de-
noted as one-fluid model because only one set of governing equations is solved. Hence, these
models do not resolve the interface between the phases. Pioneering work goes back to Ishii [106]
and different variants have been developed later on. Manninen and Taivassalo [143] reviews the
mixture model with a slip-velocity between the involved phases. Dependent on the model to
compute the velocity differences, drift-flux model (see Zuber and Findlay [243] or Ishii [107]),
diffusion model (see Ishii [106] or Ungarish [211]) and further variants by e.g. Pericleous and
Drake [165], Chao et al. [25] or Johansen et al. [110] have been developed. A common appli-
cation for these models is gas-liquid mixtures in pipes. Assuming thermodynamic equilibrium
between the phases, i.e. identical velocity, pressure, and temperature of the involved phases, the
cavitation phenomenon has been modeled by e.g. Kubota et al. [122], Schmidt et al. [181], or
Schnerr et al. [183].

The aforementioned homogenized models suffer from the difficulty of a strong link between
the different phases which is not necessarily fulfilled by the problem of interest. Hence, more de-
tailed approaches have been developed which resolve the involved phases such that an interface
between the dispersions and the carrier fluid in the dispersed flow comes into play. Dependent
on the detail of the resolution of the dispersed phase, several approaches can be distinguished.
To the class of fictitious domain methods belongs the approach presented by Glowinski et al.
[73], Glowinski et al. [74], and Patankar et al. [163]. Therein, the fluid is described in an Eu-
lerian frame with fixed grid covering the full domain. The dispersions are driven by the fluid
forces using Newton’s second law. The fluid mesh resolution is finer than the size of a parti-
cle and the fluid forces are computed at the interface of the dispersions. Hence, fluid traction is
integrated over the surface of each particle leading to a force resultant. In order to couple the
motion of the dispersed phase with the fluid, Lagrange multipliers are applied where particles
reside in such a way that the fluid velocity is identical to the particle velocity. Particle-particle
and particle-wall collisions are accounted for with short-range repulsive forces which are also
added in Newton’s second law. Instead of using Lagrange multipliers, the particle velocity can
be imposed as Dirichlet boundary condition in the fluid such that a no-slip condition between
the dispersion’s surface velocity and the fluid is enforced. This approach is known as fictitious
boundary method and is used e.g. by Duchanoy and Jongen [51], Wan and Turek [225], or Avci
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and Wriggers [9]. Also, the immersed boundary method invented by Peskin [166] belongs to the
class of fictitious domain methods. A source term on the right-hand side of the fluid momentum
equation is used to account for the influence of the dispersed phase. The force at points on the
dispersion’s surface is applied to the fluid volume using a regularized Dirac delta function. Pes-
kin’s approach belongs to the group of continuous forcing approaches, cf. Mittal and Iaccarino
[151]. To overcome the possible numerical stiffness of the approach, an alternative forcing model
has been applied by Goldstein et al. [76] or Saiki and Biringen [179]. Continuous forcing has
been further developed by Fadlun et al. [58] to impose a consistent force term which enforces
the fluid to match the interface velocity of each dispersion. This is known as discrete forcing
approach. As the interior of the dispersions is still occupied with fluid, it is either possible to im-
pose velocity coupling conditions inside the dispersion or to leave the velocity free to develop a
flow without imposing anything. According to Fadlun et al. [58], the solution of the fluid around
the dispersions is nearly identical for both cases. The force coupling method by Maxey and Patel
[146] and Lomholt and Maxey [138] is similar to Peskin’s approach as the force exerted from the
dispersion onto the continuous fluid is regularized with a Gaussian curve. All aforementioned
approaches of the fictitious domain method have an overlapping fluid and dispersion domain.
The difference is in the coupling conditions.

Instead of using overlapping domains, the interior of the dispersed phase can be resolved sepa-
rately from the outside fluid phase. Such an approach is introduced for bubbly flows by Unverdi
and Tryggvason [212]. At this high level of detailedness in which both sides of the interface are
fully resolved with their own set of equations, two main methods can be distinguished based on
how the interface is treated. The approach of Unverdi and Tryggvason [212] belongs to the class
of methods which track the interface. Also, the marker and cell method invented by Harlow and
Welch [89] belongs to this category. The alternative of tracking is to capture the interface with
the level set technique, see e.g. Osher and Sethian [161], Sethian and Smereka [186], or Hu et al.
[99]. Another interface capturing approach is the volume-of-fluid (VOF) method introduced by
Hirt and Nichols [93] and review by Fuster et al. [67]. All aforementioned approaches have in
common, that the fluid equations (independently of overlapping domains or separated domains
for fluid and dispersions) are solved on a fixed grid. In contrast, the arbitrary Lagrangian-Eulerian
(ALE) method relies on a moving mesh in which the fluid mesh is deformed to follow the dis-
persions’ motion. In order to resolve the problem of distorted fluid grids, continuous remeshing
and data mapping is applied, cf. Hu et al. [97] or Hu et al. [98].

All approaches which rely on a resolved interface between the carrier fluid flow and the dis-
persed phase require the fluid mesh to be finer resolved than the smallest dispersion is in size. At
least a few fluid cells in each spatial direction are necessary to enable the force computation of
the fluid forces acting on the dispersions. The computation of 15, 000 resolved cavitation bub-
bles in a fluid mesh with 13 - 102 cells on a super computer (see Rossinelli et al. [176]) was
awarded with the Gordon Bell Prize in 2013. Hence, this is far beyond the scope of industrial
applications.

An intermediate level of detailedness (and also of computational effort) can be achieved using
so-called two-fluid models in which the equations for the carrier as well as for the dispersed
phase are averaged over the whole computational domain leading to interpenetrating continua.
The foundations have been lied by Anderson and Jackson [5] and Ishii [106]. Further details on
the derivation can be found in Zhang and Prosperetti [238]. Source terms emerge while deriving
the averaged set of equations. These source terms in the continuity and momentum equation
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act as coupling terms between the phases. The two-fluid model is successfully applied in gas-
fluidization problems, cf. Gidaspow [71], Sokolichin and Eigenberger [191], or van Wachem
et al. [219]. The difficulty in the solid phase is to find an appropriate constitutive law which
models the interaction of particles correctly, cf. Ishii and Mishima [108]. In order to circumvent
the difficulties in modeling the solid constitutive law, it is valid to track each particle individu-
ally, cf. Kleinstreuer [116], van der Hoef et al. [216], or Yu and Xu [235]. It is also trivial to
include poly-sized dispersions which is non-trivial in two-fluid models, see Rizk [175]. Conse-
quently, this approach combines a continuous description of the carrier phase in Eulerian frame
and a particle description of the dispersed phase in Lagrangian frame. The interface between the
phases is not resolved explicitly. The dispersions are treated point-like and they are tracked indi-
vidually. Hence, this approach belongs to underresolved interface models. The effort is increased
compared to two-fluid models because of the potentially large number of dispersions which are
tracked individually. The approach is known under many different names: particle trajectory
model by Kleinstreuer [116], discrete particle model in the review paper by Deen et al. [41] or
van Wachem et al. [219], combined continuum and discrete model by Yu and Xu [235] or Zei-
dan et al. [237], computational fluid dynamics-discrete element method (CFD-DEM) by Kloss
et al. [117] or Gupta et al. [83]. The probably most commonly used notation is Euler-Lagrange
model (not to be confused with the ALE method in the context of moving mesh approaches
such as in fluid-structure interaction). The focus of this thesis is on the Euler-Lagrange model
which will be denoted with this name in the reminder. A detailed overview over the literature of
Euler-Lagrange models will be given at the end of this section.

To further clarify, in the present thesis, each particle in the Euler-Lagrange model represents
a physical object (solid particle, gaseous bubble or liquid droplet) which is tracked through-
out the simulation. In contrast, there are many approaches available which use a particle based
discretization for the Navier-Stokes equations to model fluid flow. An overview is given in the
review paper by Koumoutsakos [121]. The continuous flow field is approximated by a set of
discrete particles. Each particle holds information such as position, velocity, volume, and e.g.
vorticity strength in vortex methods (see Cottet and Koumoutsakos [31] or Selle et al. [185]) or
densities in smoothed particle hydrodynamics (SPH) (see Gingold and Monaghan [72] or Mon-
aghan [152]). Derived from SPH is the moving-particle semi-implicit method (see Koshizuka
and Oka [119] or Koshizuka et al. [120]). These examples are just a few among many others.
They have in common that a kernel function is placed at the particle position which spreads the
influence in the neighborhood of the particle. Particle interaction is used to evolve the fluid field.
The methods differ in the way how to compute spatial derivatives, how flow quantities are inter-
polated, whether explicit or implicit time integration schemes are applied, etc. Nevertheless their
mesh free character unifies these methods. Meshfree particle methods have also been applied to
solve structural dynamics problems, see e.g. the element-free Galerkin method by Belytschko
et al. [13], the diffuse element method by Nayroles et al. [156], or the reproducing kernel par-
ticle method by Liu et al. [135]. The Lattice Boltzmann method (LBM), see Chen and Doolen
[26] or He and Luo [90], is also used to model fluid flows. The underlying idea is that fictive
particles residing on a discrete lattice resemble macroscopic flow behavior by repeated collision
and streaming operations.

Besides pure particle discretization approaches, also combined approaches which rely on non-
fixed particles and a fixed grid in the background are applied to solve partial differential equa-
tions. Parts of the computation are performed on the grid while the information is stored in the
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particles. Data mapping from the particles to the grid and vice versa is necessary. To this group of
methods belong e.g. the particle-in-cell method invented by Harlow [88] which has been further
developed to the material point method by Sulsky et al. [200]. Instead of using a fixed grid, in
the particle finite element method (PFEM) a mesh is generated in each time step via Delaunay
tessellation, cf. Idelsohn et al. [104] and Onate et al. [159]. The mesh in PFEM is used to com-
pute the forces acting on the particles which are tracked in a Lagrangian frame. Furthermore, the
governing equations are solved on this generated grid. In PFEM, the particles can represent fluid
phase or solid phase and thus the Navier-Stokes equations or the solid dynamics balance of linear
momentum is solved in each domain, respectively. The nontrivial task is to find the respective
boundaries and keep the generated meshes well-shaped demanding for adaptive mesh refinement
strategies. The distinction between fluid and solid material points enables the solution of flexible
bodies submerged in fluid flow which can be used to model dispersed particulate flows, see Onate
et al. [160]. Those complex scenarios might also be tackled with fluid-structure interaction me-
thods which are capable of handling collisions between solid sub domains, cf. e.g. Astorino et al.
[7]. The latter method is currently not applied to dispersed flows due to the computational com-
plexity. Nevertheless, it would be possible. Similar complex is the approach chosen by Leonardi
et al. [133] which combines a fluid modeled with the LBM approach interacting with Lagrangian
particles accounted for in a DEM framework and additionally flexible structures modeled with
the classical finite element method (see e.g. the textbooks of Zienkiewicz et al. [241] or Hughes
[101]) which interact with the fluid as well as with the particles.

A very interesting field, which will not be covered in this thesis, is dispersed turbulent flow.
The particles are known to influence turbulence (both attenuation as well as enhancement are
reported, cf. Elghobashi [55]) and proper modeling is investigated e.g. by Elghobashi [55], Som-
merfeld [193], Lain et al. [128], Mazzitelli et al. [148], Kuerten [123], Uhlmann [210], Vreman
et al. [222], Schwarzkopf et al. [184], Gobert and Manhart [75], Schneiderbauer and Pirker [182],
or Corsini et al. [30], see also the review article by Dhotre et al. [44].

After having reviewed models for dispersed flows which will not be covered in this thesis,
an overview of the literature concerning Euler-Lagrange models with underresolved interface
between the phases will be given. The focus of this thesis will be on this method. The continuous
phase is modeled using a fixed grid in Eulerian frame whereas the (point-) particles are tracked
in a Lagrangian frame. The dispersed phase and continuous phase interpenetrate, i.e. cover the
same domain, thus that the fluid covers the whole computational domain.

A distinction can be made based on the coupling between the Euler and the Lagrange phase.
According to Elghobashi [55], the dilute and the dense suspension regime can be distinguished
at a threshold of 0.1 % volume fraction of the dispersed phase in the mixture volume. Above
this limit, it is necessary to account for collisions between dispersions in order to obtain reason-
able results. The dilute regime can be further distinguished. Below 10~* % volume fraction of
dispersion, the effect of the dispersed phase onto the continuous phase can be neglected. Hence,
only effects from the continuous phase on the dispersed phase are accounted for, which is also
referred to as one-way coupling.

The first approach of combining an Eulerian description for the continuous phase and a La-
grangian description for the dispersed phase dates back to Migdal and Agosta [150]. They ac-
count for the dispersed phase with source terms in the mass, momentum and energy balance of
the continuous phase. Particles are driven by the drag force exerted by the continuous phase.
The reaction force of the particle drag force is included in the fluid momentum source term. The
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occupied volume of the dispersions is accounted for as a source term in the continuity equation.
Collisions between the dispersions are neglected. Hence, this approach belongs to the class of
two-way coupled approaches including the effect of displaced volume by the dispersed phase
while ignoring inter-dispersion collisions. The case of two-way coupling with including colli-
sions between the dispersions is sometimes denoted as four-way coupling, due to the mutual
interaction of continuous phase with dispersions and dispersions with each other.

One-way coupling can be found in literature especially when the focus is on turbulence mod-
eling, e.g. Breuer et al. [21], Squires and Simonin [195], Kuerten [123], Lambert et al. [129], or
Corsini et al. [30]. The assumption of a large number of small enough dispersions justifies this
assumption. The same argumentation is applied in bio-medical applications when a large number
of aerosol droplets enters the human lung, see e.g. Zhang et al. [240] or Feng and Kleinstreuer
[60]. The latter compare results for one- and two-way coupled simulations. Further comparisons
of one- and two-way coupled simulations in non-biological applications can be found in e.g.
Druzhinin and Elghobashi [50], Derksen [43], or Shams et al. [187]. A one-way coupled simula-
tion of bubbles undergoing radius changes based on the Rayleigh-Plesset equation can be found
in Mattson and Mahesh [144].

In case the dispersions are very small, they can be grouped to so-called parcels. Within a
parcel, one particle is analyzed in detail and the results are applied to the remaining dispersions
in the parcel, cf. Subramaniam [197] or Lohner et al. [137].

A, by far not complete, overview of the two-way coupled approaches in the literature is given
in Table 1.1. The approaches are distinguished whether the dispersed phase fraction is accounted
for in the continuous phase, whether collisions between the dispersions are included, and whether
a variable radius of the particles governed by the Rayleigh-Plesset equation is incorporated in
the respective approach.

author dispersed collision RP phases:
phase fraction? | model? | equation? | continuous - dispersed
Durst et al. [54] no - no gas/liquid - solid
Lain et al. [127] no - no liquid - gas
Mazzitelli et al. [148] no - no liquid - gas
Sommerfeld et al. [194] no stochastic no liquid - gas
Decker [39] no stochastic no liquid - solid
Zohdi [242] no mixed no gas - solid
Vreman et al. [222] no MD no gas - solid
Sungkorn et al. [201] no stochastic no liquid - gas
Vallier et al. [215] no - no liquid - gas
Lain and Sommerfeld [126] no stochastic no gas - solid
Vallier [214] no MD yes liquid -gas
Lohner et al. [137] no DEM no gas - solid
Dukowicz [52] yes - no gas - liquid
Tomiyama et al. [205] yes - no liquid - gas
Sokolichin et al. [192] yes - no liquid - gas
Kitagawa et al. [115] yes - no liquid - gas/solid
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author dispersed collision RP phases:
phase fraction? | model? | equation? | continuous - dispersed

Ferrante and Elghobashi [61] yes - no liquid - gas
Giannadakis et al. [69] yes - yes liquid - gas
Yakubov et al. [233] yes - yes liquid - gas
Maet al. [141] yes - yes liquid - gas
Fuster and Colonius [66] yes - yes liquid - gas
Tsuji et al. [208] yes DEM no gas - solid
Hoomans et al. [94] yes MD no gas - solid
Delnoij et al. [42] yes MD no liquid - gas
Kawaguchi et al. [113] yes DEM no gas - solid
van Wachem et al. [220] yes DEM no gas - solid
Kafuietal. [111] yes MD no gas - solid
Shan and Mostaghimi [188] yes stochastic no gas - liquid
Yu and Xu [235] yes DEM no gas - solid
Deen et al. [40] yes MD no gas - liquid
Darmana et al. [35] yes MD no liquid - gas

Zhang and Ahmadi [239] yes MD no liquid - gas&solid
Link et al. [134] yes MD no gas - solid

Di Renzo and Di Maio [47] yes DEM no liquid/gas - solid
Shams et al. [187] yes DEM yes liquid - gas
Kloss et al. [117] yes DEM no gas - solid
Feng and Kleinstreuer [60] yes DEM no gas - solid
Gupta et al. [83] yes DEM no gas - solid

Table 1.1: Two-way coupled Euler-Lagrange approaches with underresolved interface in lit-
erature. The approaches are distinguished whether dispersed phase fraction, inter-
dispersion collisions and variable radius governed by RP equation are included.

For the contact between the particles, two approaches are mainly used: the hard sphere and
the soft sphere contact model. The former is preferred in molecular dynamics applications, see
Alder and Wainwright [2] and the latter is also known as Discrete (or Distinct) Element Method
(DEM) invented by Cundall and Strack [34]. In the soft sphere approach, particles are allowed
to overlap and the size of the overlap is used to compute a repulsive force. In contrast, in the
hard sphere approach, the particles are moved up to the point of a binary collision which is then
solved for using linear and angular momentum equilibrium while neglecting all other force con-
tributions during the collision evaluation. In the latter, an event queue is used and collision events
are processed one by one. A detailed overview of both methods is given, e.g. by Sigurgeirsson
et al. [189] or Luding [140]. A comparison of both contact approaches in the application of dis-
persed flows can be found in Di Renzo and Di Maio [46], Deen et al. [41], and Crowe et al. [33].
In Euler-Lagrange models both collision approaches can be found as obvious in Table 1.1. The
advantage of the soft sphere contact model is in densely packed particle regimes with potentially
persisting contact. However, a small time step size is necessary for stable time integration. The
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hard sphere approach cannot handle persisting contact. However, it is superior when collisions
occur less frequently because a larger time step size can be chosen. For particle applications
without fluid, Luding [140], Valentini and Schwartzentruber [213], and Buist et al. [24] pro-
pose a combination of both collision methods in order to avoid the respective drawbacks. Both
presented collision models belong to the class of deterministic collision models. In contrast, a
stochastic collision model is developed by Sommerfeld [193] in which a fictive collision partner
is created based on the particles in the neighborhood and collision probability is evaluated based
on kinetic theory.

Larger scale \

\ More details

Figure 1.1: Comparison of models: Resolved (left), under resolved (center), and unresolved in-
terface (right) (from Lau et al. [130]).

In order to summarize the vast variety of approaches for dispersed multi-phase flows, see Fig-
ure 1.1. There is a trade-off between detailedness of the results and the size of the scales which
can be resolved with reasonable computational effort. The compromise is an Euler-Lagrange
approach which represents each dispersion as an individual particle which is tracked over time.
An advantage over mixture models is that there is no strong coupling between the phases in-
corporated in the model. At the same time, the interface is not resolved in detail allowing for
a much coarser modeling of the continuous phase. Therefore, an Euler-Lagrange approach is
suitable to solve dispersed flows with a large number of dispersions of potentially different size
in a reasonable time.



1.3 Research objective and achievements

1.3 Research objective and achievements

The aim of the present thesis is to develop a multipurpose simulation tool for dispersed flows
based on an Euler-Lagrange approach including inner- and inter-phase interactions. The achieve-
ments of this thesis may be summarized as follows:

* To the best of the author’s knowledge, a variational multiscale formulation of the vol-
ume averaged Navier-Stokes (NS) equations is derived for the first time which includes
dispersed phase fraction, i.e. the effect of fluid volume displaced by the dispersions. The
present formulation for dispersed flow is closely related to the variational multiscale ap-
proach of variable-density flow at low Mach number presented by Gravemeier and Wall
[77]. This is extended towards the volume averaged NS equations to represent the contin-
uous phase in the Euler-Lagrange framework.

* Furthermore, a novel second order polynomial filtering function for the dispersed phase
fraction computation is proposed. The dispersed phase fraction is used to account for the
displaced volume of the evolution of 