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ABSTRACT

We present a MATLAB toolbox for Automated Reachset Optimal

Control (AROC) that automatically synthesizes verified controllers

for solving reach-avoid problems using reachability analysis. The

toolbox implements two different types of control approaches:

When using our verified model predictive controller, a feasible con-

trol law is constructed and verified on-the-fly during online appli-

cation of the system. For motion-primitive-based control, on the

other hand, controllers for many motion primitives are synthe-

sized offline and then used for online motion planning with a ma-

neuver automaton. Since our toolbox considers general nonlinear

systems with input constraints, state constraints, and bounded dis-

turbances, it is applicable to a very broad class of systems, as we

demonstrate with several numerical examples. AROC is available

at https://aroc.in.tum.de.
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1 INTRODUCTION

Most control tasks for cyber-physical systems can be modeled as

reach-avoid problems, where the goal is to steer all states inside an

initial set R0 as close as possible to a desired final state G5 while

avoiding static and/or dynamic obstacles (see Fig. 1). Especially for

safety-critical applications, such as autonomous driving or robotic

surgery, it is crucial that reach-avoid problems are solved provably
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correct. In this work, we present our toolbox AROC, which auto-

matically synthesizes verified controllers for solving reach-avoid

problems using reachability analysis.

R0

G 5

Figure 1: Schematic visualization of a reach-avoid problem,

where obstacles are depicted in red, the reachable set of the

controlled system is depicted in gray, and the final reachable

set is depicted in blue.

1.1 State of the Art

Approaches for solving reach-avoid problems can mainly be di-

vided into three categories: abstraction-based control, model pre-

dictive control (MPC), and motion-primitive-based control.

Abstraction-based control approaches [16, 20, 43] usually abstract

the system by finite-state automata, where reachability analysis

is often used to determine valid transitions between the discrete

states of the automaton. Based on this abstraction, controllers that

are guaranteed to satisfy complex temporal logic specifications can

be synthesized. However, since the abstraction by a finite-state

automaton relies on a subdivision of the state space, the compu-

tational complexity for abstraction-based approaches often grows

exponentially with the system dimension.

For model predictive control, there exist two different types of

approaches: in implicit MPC [4, 6], optimal control inputs are com-

puted on-the-fly during online application by solving an optimiza-

tion problem. However, this is in general computationally demand-

ing, so that implicit MPC is often only applicable for "slow" sys-

tems. To avoid this shortcoming, explicit MPC [9, 27, 29] computes

optimal control inputs offline, and then uses a mapping function

to assign an optimal control input to the current state during on-

line application. Since this technique, however, usually requires to

partition the state space, it suffers from the curse of dimension-

ality. For tube-based MPC [22, 30, 31, 42], which can be implicit

or explicit, an additional tracking controller is applied to keep the

system in a tube around the optimized trajectory, making the ap-

proach robust against disturbances.

The last group considered are motion-primitive-based control

algorithms: The approach in [39] uses LQR-trees consisting of LQR-

stabilized trajectories, where the regions of attractions for the sin-

gle LQR controllers are computed with sum-of-squares techniques.

Regions of attraction are also used in [21] and [40], where [21]
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constructs a maneuver automaton from LQR stabilized trajecto-

ries, and [40] combines rapidly-exploring random trees (RRT) with

stabilizing feedback controllers. Reachability-based trajectory de-

sign [17] uses parameterized reachable sets to determine collision-

free motion plans with polynomial optimization. Moreover, the

approach in [33] applies satisfiability modulo theory techniques

to plan motions that satisfy temporal logic specifications, and the

method in [34] proposes a hybrid controller for robust control based

on motion primitives. Two drawbacks of motion-primitive-based

planners are that usually a very large number of motion primi-

tives is required, and that planning trajectories through narrow

passages is often problematic since the available action space is

restricted to discrete motions.

There already exist several tools for controller synthesis: Tools

for abstraction-based control are CoSyMA [24], PESSOA [23], ROCS

[19], SCOTS [32], and TuLiP [41], where CoSyMA, PESSOA, ROCS,

and SCOTS consider nonlinear systems, and TuLip considers piece-

wise affine systems. Many toolboxes for designing and simulating

implicit and explicit MPC controllers have been developed, e.g.,

the ACADO toolkit [14], the Control Toolbox [12], MATMPC [7],

OptCon [25], OPTIPLAN [15], ParNMPC [10], and SolACE [3], but

only few tools are able to verify correctness, like e.g., MUP [26]

and CODEV [5]. For motion-primitive-based planning, many tools

apply RRTs, e.g., DryVR 2.0 [28] and the Open Motion Planning Li-

brary [8]. Unlikemost existing tools forMPCandmotion-primitive-

based control, AROC is able to guarantee robust safety for the syn-

thesized controllers despite disturbances. Furthermore, most of the

algorithms implemented in AROC scale better with the system di-

mension than abstraction-based control approaches, and are there-

fore well-suited for high-dimensional systems.

1.2 Overview

In this paper we present the toolbox AROC, which implements a)

the reachset MPC approach in [38], b) the three motion-primitive-

based control approaches optimization-based control [37], convex

interpolation control [35], and generator space control [36], and c) a

maneuver automaton for efficient online motion planning accord-

ing to [13]. The paper is structured as follows: We first formally

define reach-avoid problems in Sec. 2, before we explain the reach-

set MPC approach in Sec. 3. Next, in Sec. 4, we describe online

motion planning with maneuver automata, and show how feed-

back controllers for motion primitives can be synthesized using

the motion-primitive-based control algorithms. In Sec. 5 we pro-

vide a short description of the most important aspects of AROC as

well as a code example, and finally demonstrate the performance

of our novel toolbox on several benchmark systems in Sec 6.

2 PROBLEM FORMULATION

The AROC toolbox considers general nonlinear disturbed systems

with input and state constraints defined by the differential equa-

tion

¤G (C) = 5 (G (C), D (C),F (C)), (1)

where G (C) ∈ R= is the vector of system states, D (C) ∈ R< is the

vector of control inputs, F (C) ∈ R@ is the vector of disturbances,

5 : R= × R< × R@ → R= is a Lipschitz continuous function, and

C ∈ R+ is the time. The disturbances are bounded by a compact

set F (C) ∈ W ⊂ R@ , and the system has to satisfy the input con-

straints defined by the convex set D (C) ∈ U ⊆ R< as well as the

state constraints defined by the convex set G (C) ∈ X ⊆ R= .

Given a nonlinear system defined as in (1), the goal is to solve

a reach-avoid problem, where all states inside an initial set G (0) ∈

R0 ⊂ R= should be steered as close as possible to a desired fi-

nal state G5 ∈ R= while avoiding collisions with unsafe sets (see

Fig. 1). TheAROC toolboxautomatically synthesizes a suitable con-

trol law D2 (G (C), C). Let us denote the solution to the closed-loop

system at time C for an initial state G0 = G (0) by b (C, G0, D2 (·),F (·)).

In order to verify the controller, we use reachability analysis:

Definition 1. (Reachable Set) The reachable set of the controlled

system at time C is

RD2 ( ·) (C) =
{

b
(

C, G0, D2 (·),F (·)
)

�

�

� G0 ∈ R0,

∀g ∈ [0, C] : F (g) ∈ W
}

,

where R0 ⊂ R
= is the inital set andW ⊂ R@ the set of disturbances.

Let us first present the verified synthesis of model predictive

controllers.

3 MODEL PREDICTIVE CONTROL

AROC implements the model predictive controller in [38], which

is visualized in Fig. 2. To ensure safety for an infinite time hori-

zon, [38] considers a terminal region T ⊂ R= around a desired

final state G5 ∈ R= for which a stabilizing controller is known.

The synthesized control law guarantees that the terminal region

is reached in finite time and combines a feed-forward part with a

tracking controller:

D2 (G (C), C) = D5 5 (C) +  (G (C) − G5 5 (C)),

where the piecewise constant control inputs D5 5 (C) for the feed-

forward trajectory G5 5 (C) are determined by solving an optimal

control problem, and  ∈ R<×= is the feedback matrix of a linear-

quadratic regulator (LQR) [18, Chapter 3.3] of the linearized sys-

tem.

R0

G 5
C2><? T

Figure 2: Schematic visualization of the reachset model pre-

dictive control algorithm,where the reachable set for the ini-

tial control law is depicted in light gray and the reachable set

for the updated control law in dark gray. The predicted set

of system states at the allocated computation time is shown

in orange.

As common inMPC, the approach in [38] tries to construct a bet-

ter control law with lower costs each time a new measurement of

the system state is obtained. This, however, poses a problem, since

the optimization based construction of the new control law as well

as its verification with reachability analysis requires a certain com-

putation time C2><? . Once the computation is finished, the system
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will therefore already be in a different state, impairing safety guar-

antees. To solve this problem, [38] applies reachability analysis to

predict all possible system states at the time when the computa-

tion of the new control law is finished, and then uses the set of

predicted states for verifying the new control law. If the actual com-

putation time exceeds the allocated time C2><? , the computation of

the new control law is terminated and the previous control law is

used. Since the computation time is therefore explicitly considered,

safety can be guaranteed for all times.

4 MOTION-PRIMITIVE-BASED CONTROL

Maneuver automata are a computationally efficient method to solve

reach-avoid problems with non-convex and dynamic obstacles on-

line [13]. In AROC, a maneuver automaton can be constructed

from a list of motion primitives [11] for which a feasible feed-

back controller has been synthesized with one of the algorithms

described in this section. The automaton then stores information

about which motion primitives can be connected to each other.

Two motion primitives can be connected if the final reachable set

of the first motion primitive is a subset of the initial set of the sec-

ond motion primitive [13, Eq. (3)], since only then it is guaranteed

that the controlled system stays in the reach-tube defined by the

concatenated motion primitives. With a maneuver automaton, on-

line motion planning then reduces to the task of solving a standard

discrete search problem, as it is visualized in Fig. 3 for the example

of an autonomous car.

Figure 3: Motion planning with a maneuver automaton,

where the reachable set of the car center is shown in light

gray, and the space occupied by the whole car in dark gray.

After introducing maneuver automata, we now describe the dif-

ferent algorithms AROC provides for synthesizing control laws for

single motion primitives. Our goal is to determine a control law

that steers all states inside the initial set R0 as close as possible to

the desired final state G5 ∈ R= at the final time C5 :

min
D2 (G (C),C)

d
(

RD2 ( ·) (C5 ), G5
)

s.t. input and state constraints are met,
(2)

where d (RD2 ( ·) (C5 ), G5 ) → R
+ is a cost functionmeasuring the dis-

tance between the states inRD2 ( ·) (C5 ) and the desired final stateG5 .

Since in general the optimization problem in (2) cannot be solved

exactly, the algorithms presented in this section compute a feasible

and close to optimal solution instead. All algorithms first solve an

optimal control problem to determine the control inputs DA4 5 (C)

for a reference trajectory GA4 5 (C) leading from the center of R0

to G5 , and then synthesize a feedback controller that tracks this

reference trajectory. Furthermore, the time horizon C ∈ [0, C5 ] is

divided into # ∈ N+ time steps. To obtain a maneuver automaton

with many connections, it is crucial that the control algorithms are

able to contract the reachable set.

4.1 Optimization-Based Control

Let us first present the optimization-based approach in [37], which

optimizes the following control law:

D2 (G (C), C) = DA4 5 (C) +  (C)(G (C) − GA4 5 (C)),

where the time-varying feedback matrix  (C) ∈ R<×= is constant

for each time step. The approach in [37] then determines suitable

feedback matrices  1, . . . ,  # ∈ R<×= by solving the optimiza-

tion problem in (2) directly using nonlinear programming. One

major advantage of the optimization-based controller is that con-

tinuous feedback is used, which makes the approach very robust

against disturbances. However, one downside is that solving (2)

with nonlinear programming is often computationally expensive.

A schematic visualization of the approach is shown in Fig. 4.

R0

G 5

 1  2
 3

Figure 4: Schemantic visualization of a the optimization-

based control algorithm with # = 3 time steps.

4.2 Convex Interpolation Control

Another algorithm implemented in AROC is the convex interpola-

tion control approach in [35], where in each time step the following

procedure is applied in order to synthesize a suitable control law:

(1) The reachable set at the beginning of the time step is en-

closed by a parallelotope.

(2) Optimal control inputs for all vertices of the parallelotope

are determined by solving optimal control problems, with

the goal of steering the trajectories starting at these vertices

as close as possible to the reference trajectory.

(3) Interpolation between the optimal control inputs for the par-

allelotope vertices as described in [35, Sec. 4] yields the con-

trol law D2 (G (C), C).

The resulting nonlinear interpolation control law automatically

adapts to nonlinearities in themodel, so that the approach in [35] is

well-suited for the control of strongly nonlinear systems. However,

one disadvantage is that the computational complexity grows ex-

ponentially with respect to the system dimension = since a

=-dimensional parallelotope has 2= vertices. A schematic visual-

ization of the convex interpolation control approach is shown in

Fig. 5.

R0

G 5

Figure 5: Schemantic visualization of a the convex interpo-

lation control algorithm with # = 3 time steps.
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4.3 Generator Space Control

The last control algorithm for motion primitives is the generator

space controller in [36]. This control algorithm applies the same

procedure as the convex interpolation approach in Sec. 4.2, but

solves an optimal control problem for each generator vector of the

parallelotope, instead of for each vertex. Since a parallelotope has

only = generator vectors, this is computationally much more effi-

cient. The control law D2 (G (C), C) is then constructed through su-

perposition of the control inputs for the different generators [36,

Eq. (15)]. Since the computation complexity is only polynomial

with respect to the system dimension, the approach in [36] is well-

suited for high-dimensional systems. One drawback is that the re-

sulting control law is linear, which can be problematic for strongly

nonlinear systems. A schematic visualization of the generator space

control approach is shown in Fig. 6.

R0

G 5

Figure 6: Schematic visualization of a the generator space

control algorithm with # = 3 time steps.

5 TOOLBOX DESCRIPTION

AROC is implemented in MATLAB, uses the CORA toolbox [1] to

compute reachable sets, and the ACADO toolkit [14] to solve opti-

mal control problems. For autonomous driving applications, AROC

provides an interface toCommonRoad [2], a framework containing

thousands of traffic scenarios, which makes it easy to test motion

planning with maneuver automata created in AROC. The syntax

for executing controller synthesis is identical for all algorithms, so

that different control algorithms can be compared effortlessly. In

addition, offline controller synthesis and online execution of the

controller are strictly separated in AROC, which makes it simple

to implement the online control law on a micro-controller for real-

world applications.

Let us now demonstrate the AROC toolbox with a code exam-

ple. We consider the deliberately simple example of a cart that is

coupled to the environment via a damping element and a spring

with nonlinear stiffness:

¤G1 = G2 +F1

¤G2 = (−3 · G22 − : · G31 + D)/< +F2,
(3)

where the system states are the position G1 and the velocity G2
of the cart, and the system input is a force D acting on the cart.

The parameters are the weight of the cart < = 1kg, the damp-

ing constant 3 = 1kgm−1, and the spring stiffness constant : =

1Nm−3. The input constraint is D ∈ [−14, 14]N, and the set of

disturbances is F1 ∈ [−0.1, 0.1]ms−1 and F2 ∈ [−0.1, 0.1]ms−2.

Furthermore, we consider the initial set G1 (0) ∈ [−0.2, 0.2]m and

G2 (0) ∈ [−0.2, 0.2]ms−1. The goal is to synthesize a controller that

steers all states inside the initial set as close as possible to the de-

sired final state G5 = [2m, 0m s−1]) at the final time C5 = 1s.

To solve this problemwithAROCwe first create a function cart

that implements the differential equation in (3):

function f = cart(x,u,w)

m = 1; k = 1; d = 1;

f(1,1) = x(2)+w(1);

f(2,1) = (-d*x(2)^2-k*x(1)^3+u)/m+w(2);

end

Next, we synthesize a feasible controller using the optimization-

based control approach in Sec. 4.1 as follows:

1 % system parameter

2 Param.R0 = interval([-0.2;-0.2],[0.2;0.2]);

3 Param.xf = [2;0];

4 Param.tFinal = 1;

5 Param.U = interval(-14,14);

6 Param.W = interval([-0.1;-0.1],[0.1;0.1]);

7

8 % algorithm settings

9 Opts.N = 10;

10 Opts.refTraj.Q = diag([5,5]);

11 Opts.refTraj.R = 1e-3;

12

13 % controller synthesis

14 optimizationBasedControl('cart',Param,Opts);

In lines 1-6 in the code example above the system parameter,

such as the initial set R0, the set of disturbances W, etc., are de-

fined first. Next, in lines 8-11 algorithm settings for the optimization-

based control algorithmare specified. These are the number of time

steps # , as well as the state weighing matrix& ∈ R=×= and the in-

put weighting matrix ' ∈ R<×< for the optimal control problem

that is solved to obtain the reference trajectory GA4 5 (C). Finally, a

suitable controller is synthesized in Line 14. The resulting reach-

able set of the controlled system is visualized in Fig. 7.

-0.5 0 0.5 1 1.5 2 2.5
-1

0

1

2

3

4

G1

G
2

Figure 7: Visualization of the reachable set of the controlled

system (gray) for the cart benchmark in (3), where the initial

set is depicted in white with a black border, and the final

reachable set is depicted in blue.

6 NUMERICAL EXAMPLES

In this section, we demonstrate the capabilities of the AROC tool-

box on several benchmark systems. All computations are carried

out in MATLAB on a 2.9GHz quad-core i7 processor with 32GB

memory.

6.1 Artificial System

First, we consider the 2-dimensional nonlinear disturbed artificial

system in [42, Eq. (19)], which we control with the reachset MPC
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approach described in Sec. 3. We allocate a computation time of

C2><? = 2.5 seconds, which allows us to run reachset MPC in real-

time. The results are visualized in Fig. 8, where we compare AROC

with the tube-basedMPC approach in [42]. While both approaches

calculate very similar optimal trajectories, the reachable set com-

puted with AROC is clearly much tighter than the tube computed

with the method in [42].

-4 -3 -2 -1 0 1 2 3 4

-4

-2

0

2

-4 -3 -2 -1 0 1 2 3 4

-4

-2

0

2

G1

G
2

G1

G
2

Figure 8: Visualization of the reachable set/tube (gray) for

the artificial system in Sec. 6.1 computed with AROC (top)

and the tube-based MPC approach in [42] (bottom). The ter-

minal region is shown in green, and the reachable set at the

end of each time step in blue. The results for the tube-based

approach are taken from [42, Fig. 2].

6.2 Vehicle Platoon

Next, we examine the benchmark in [37, Sec. IV], which describes

a platoon with M vehicles. The dimension of the system, which

is = = 2" , can be increased by adding more vehicles to the pla-

toon. As a motion primitive we consider the same acceleration ma-

neuver as in [37, Sec. IV], for which we synthesize a feasible con-

troller with the convex interpolation control approach described in

Sec. 4.2. The input constraints, the state constraints, and the set of

disturbances are identical to the ones in [37, Sec. IV]. Tab. 1 shows

the computation time of controller synthesis for different system

dimensions, where we compare AROC with the abstraction-based

tool SCOTS [32]. For higher dimensions SCOTS failed to synthe-

size a suitable controller in less than 20 minutes, while AROC was

still able to construct a controller in reasonable time. The resulting

reachable set for a platoon with 4 vehicles is visualized in Fig. 9.

Clearly, the controller synthesized with AROC is able to contract

the reachable set, so that the shifted final set is a subset of the initial

set.

6.3 Autonomous Car

As a final example, we demonstratemotion planning with amaneu-

ver automatonusing AROC. For this, we consider the 4-dimensional

kinematic single trackmodel of an autonomous car in [35, Eq. (19)]

Table 1: Computation time of controller synthesis for a ve-

hicle platoon with" vehicles in seconds.

Vehicles M = 1 M = 2 M = 3 M = 4 M = 5

AROC 14.93 33.12 49.25 75.97 169.88

SCOTS 5.19 - - - -

1

1

0.0.0.
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G
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Figure 9: Visualization of the reachable set of the controlled

system (top), the shifted final reachable set (bottom, blue),

and the initial set (bottom, black) for a vehicle platoon with

" = 4 vehicles computed with AROC.

with the same input constraints and the same set of disturbances as

in [35, Sec. 6]. We construct a maneuver automaton consisting of

four motion primitives with the generator space control approach

described in Sec. 4.3, and use this maneuver automaton to solve the

motion planning problem defined by the CommonRoad [2] traffic

scenario ZAM_Zip-1_19_T-1. The resulting trajectory planned with

the maneuver automaton is visualized in Fig. 10. While the offline

construction of suitable controllers for the four motion primitives

takes 231 seconds, online motion planning with an A* search algo-

rithm takes only 0.9 seconds for a planning horizon of 9 seconds.

Figure 10: Visualization of the planned trajectory (green),

the current position of the autonomous car (red), and the

occupancy sets for the other traffic participants (blue) for

times 0s, 2s, 4s, 6s and 8s (top to bottom).

7 CONCLUSION

We presented AROC, a novel toolbox for the automated synthesis

of robust controllers, which implements one model predictive con-

trol algorithm as well as the three motion-primitive-based control
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algorithms optimization-based control, convex interpolation control,

and generator space control. Since the toolbox considers the very

general case of disturbed nonlinear continuous systems with in-

put and state constraints, it is applicable to a very broad class of

systems, as we demonstrated by several numerical examples. More-

over, the controllers synthesized by AROC are guaranteed to sat-

isfy input and state constraints despite disturbances since reacha-

bility analysis is applied internally for verification. Another advan-

tage is that most of the implemented control algorithms scale well

with respect to the system dimension, so that the toolbox is also

applicable to high-dimensional systems.
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