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Abstract— We present a novel approach to compute non-
convex inner-approximations of reachable sets for nonlinear
continuous systems. The concept of our approach is to extract
inner-approximations of reachable sets from pre-computed
outer-approximations, which makes our method computation-
ally very efficient as we demonstrate with several numerical
examples. Since our approach has polynomial complexity with
respect to the system dimension, it is well-suited for high-
dimensional systems.

I. INTRODUCTION

Formal verification in control theory often involves reach-
avoid problems, where the controlled system has to reach a
goal set while avoiding a set of unsafe states. One common
method to verify that a given controller satisfies the specifi-
cations of the reach-avoid problem is reachability analysis.
To prove that the system does not enter the set of unsafe
states requires an outer-approximation of the reachable set.
On the other hand, proving that the system reaches the goal
set requires an inner-approximation of the reachable set. In
this paper we introduce a novel approach to efficiently extract
inner-approximations of reachable sets from pre-computed
outer-approximations.

A. State of the Art

The computation of outer-approximations of reachable
sets is a well-studied problem for which many approaches
for various system classes exist, such as linear continuous
systems [4], [6], [12], [22], nonlinear continuous systems
[1], [9], [21], [24] and hybrid systems [3], [5], [11].

The problem of computing inner-approximations of reach-
able sets has been studied far less. Efficient techniques
for computing inner-approximations for linear continuous
systems exist for quite some time: The approach in [12]
uses zonotopes to compute inner-approximations for linear
time-invariant systems with piecewise constant inputs. For
time-varying linear systems the method in [22] computes
inner-approximations represented by ellipsoids. The authors
in [16] compute inner-approximations for piecewise-affine
systems using linear matrix inequalities.

Only recently, methods for computing inner-
approximations for nonlinear continuous systems have
been developed: In [13] a criterion on when a box is part
of the inner-approximation is provided. Based on this an
inner-approximation of the reachable set represented by a
union of boxes can be computed. However, this method
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is computationally expensive for high-dimensional systems
due to the curse of dimensionality.

Several approaches compute inner-approximations repre-
sented by sub-zero level-sets based on the Hamilton-Jacobi
framework [24]: The approach in [23] computes inner-
approximations by under-approximating the evolution func-
tion of the system. In [29] and [30] inner-approximations
for polynomial systems are obtained by solving semi-definite
programs. Since the size of the semi-definite program grows
rapidly with the system dimension the approaches in [29],
[30] are computational expensive for high-dimensional sys-
tems.

Other approaches use the time-inverted dynamics to com-
pute inner-approximations: The method in [31] computes
inner-approximations represented by polytopes using linear
programming. First, a set which encloses the boundary is
computed. Afterward, a polytope outer-approximation of the
reachable set is contracted until it is inclosed by the set
enclosing the boundary. In [28], this approach is extended
to handle delay differential equations. Since reachable sets
of nonlinear systems are in general non-convex, inner-
approximations represented by convex polytopes as com-
puted in [28], [31] are often not very accurate. The approach
in [10] first computes a backward-flowpipe based on Picard
iteration. This flowpipe is then used to propagate the in-
equality constraints that define the initial set forward in time,
which yields a non-convex inner-approximation represented
by the intersection of polynomial inequality constraints.
However, the intersection of polynomial inequality constrains
can result in sets that are not connected. To determine
a valid inner-approximation, the method in [10] therefore
requires to prove that the resulting set is connected, which
is computationally expensive.

The approach in [14] demonstrated that inner-
approximations for the projection of the reachable set
onto the coordinate axes can be computed very efficiently
for autonomous nonlinear systems. In [15], the authors
extended this approach to systems with uncertain inputs.
While inner-approximations of the projection are often
useful for simple verification tasks, they are in general not
sufficient to answer more complex verification queries.

B. Contribution

We present a novel approach to compute inner-
approximations of reachable sets for nonlinear systems. Our
approach has only polynomial complexity with respect to the
system dimension and is therefore well-suited for the for-
mal analysis of high-dimensional systems. Since we extract



inner-approximations of reachable sets from pre-computed
outer-approximations our approach is computationally very
efficient compared to previous methods as we demonstrate
with numerical examples in Sec. V.

C. Notation

Sets are denoted by calligraphic letters, matrices by upper-
case letters, vectors by lowercase letters, and set operations
by typewriter font (e.g., center). Given a vector b ∈ Rn,
b(i) refers to the i-th entry. Given a matrix A ∈ Rn×m,
A(i,·) represents the i-th matrix row, A(·,j) the j-th column,
and A(i,j) the j-th entry of matrix row i. The concatenation
of two matrices C and D is denoted by [C D], and the
symbols 0 and 1 denote vectors of zeros and ones with
proper dimension. Given a set S ⊂ Rn, ∂S denotes the
boundary of S. The set difference for two sets S1,S2 ⊂ Rn
is defined as S1 \ S2 := {s | s ∈ S1 ∧ s 6∈ S2}, and the
Cartesian product of two sets S1 ⊂ Rn and S2 ⊂ Rm is
defined as S1 × S2 :=

{
[s1 s2]

T
∣∣ s1 ∈ S1, s2 ∈ S2}.

Given a set S ⊂ Rn, the operation project(S, d) :=
{[s(d(1)) . . . s(d(m))]

T | s ∈ S} projects the set S onto the
dimensions given by the vector d ∈ Nm≤n. We introduce an
n-dimensional box as I := [l, u], ∀i l(i) ≤ u(i), l, u ∈ Rn,
and ∅ denotes the empty set.

II. PROBLEM STATEMENT

In this paper we consider autonomous nonlinear systems

ẋ(t) = f(x(t)), x(t) ∈ Rn, (1)

where x(t) is the state vector and f : Rn → Rn is
a Lipschitz continuous function. The reachable set of the
system is defined as follows:

Definition 1: (Reachable Set) Let ξ(t, x0) denote the solu-
tion to (1) at time t for the initial state x(0) = x0. The
reachable set for an initial set X0 ⊂ Rn is

RX0
(t) :=

{
ξ(t, x0)

∣∣ x0 ∈ X0

}
.

The exact reachable set as defined in Def. 1 cannot
be computed for general nonlinear systems. Therefore, the
goal of reachability analysis is to compute tight outer-
approximations RoX0

(t) ⊇ RX0(t) and inner-approximations
RiX0

(t) ⊆ RX0
(t).

Since the exact reachable set of a nonlinear system is in
general non-convex, tight inner-approximations and outer-
approximations can only be computed with a non-convex
set representation. We use the sparse representation of poly-
nomial zonotopes introduced in [19] to represent RiX0

(t) and
RoX0

(t):

Definition 2: (Polynomial Zonotope) Given a generator ma-
trix G ∈ Rn×h and an exponent matrix E ∈ Np×h0 , a
polynomial zonotope is defined as

PZ :=

{ h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i)

∣∣∣∣ α ∈ [−1,1]
}
.
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Fig. 1: Polynomial zonotope from Example 1.

The entries α(k) of the vector α ∈ Rp are called factors
of the polynomial zonotope. We use the shorthand PZ =
〈G,E〉PZ . The following example demonstrates the concept
of polynomial zonotopes:

Example 1: The polynomial zonotope

PZ =

〈[
2 1 2
0 1 1

]
,

[
1 0 3
0 1 1

]〉
PZ

defines the set

PZ =

{[
2
0

]
α1 +

[
1
1

]
α2 +

[
2
1

]
α3
1α2

∣∣∣∣ α1, α2 ∈ [−1, 1]
}
,

which is visualized in Fig. 1.

III. NON-CONVEX INNER-APPROXIMATIONS

Our method for computing an inner-approximation of the
reachable set is based on the following theorem:

Theorem 1: [10, Sec. 3] Given a set B ⊇ ∂RX0(t) that
encloses the boundary of the exact reachable set, every
connected set C that does not intersect B and contains
some state of the exact reachable set RX0

(t), is an inner-
approximation of the reachable set:

∀C ⊂ Rn :
(
C∩B = ∅

)
∧
(
C∩RX0

(t) 6= ∅
)
⇒ C ⊆ RX0

(t).

Next, we present the basic steps of the procedure that we
apply to compute a set C that satisfies Theorem 1.

A. Basic Procedure

To compute an inner-approximation RiX0
(t) of the reach-

able set at time t, we follow the steps visualized in Fig. 2:

1 We first compute an outer-approximation RoX0
(t) of

the reachable set with the reachability algorithm from
[1] using polynomial zonotopes to represent the outer-
approximation of the reachable set.

2 Next, we compute a set B that encloses the boundary
∂RX0(t) of the exact reachable set.

3 Afterwards, we scale the size of the setRoX0
(t) to obtain

a set C that does not intersect the set B.
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Fig. 2: Visualization of the procedure applied to calculate an inner-
approximation of the reachable set.

4 Finally, we simulate the backward flow of the system
using the center of C as a starting point to verify that
C satisfies the conditions from Theorem 1, which then
proves that C is an inner-approximation RiX0

(t) of the
reachable set at time t.

This procedure for computing inner-approximations is
inspired by [31]. Next, we describe the steps 2 3, and 4
in detail.

B. Enclosure of the Boundary

To compute a set which encloses the boundary of the exact
reachable set, we require the following well-known theorem:

Theorem 2: [27, Corollary 1] Given a non-empty compact
initial set X0 ⊂ Rn, it holds that

R∂X0(t) ≡ ∂RX0(t)

In Step 1 of the procedure described in Sec. III-A, we
apply the approach from [1] to compute a polynomial
zonotopeRoX0

(t) = 〈G,E〉PZ that is an outer-approximation
of the exact reachable set. It is shown in [20] that for
all reachable sets computed with the algorithm in [1], an
outer-approximation of the reachable set Ro

X̂0
(t) for a subset

X̂0 ⊆ X0 of the initial set can be extracted directly from
the reachable set RoX0

(t), which we denote by the operator
reachSubset:

RoX̂0
(t) = reachSubset

(
X̂0,RoX0

(t)
)
, (2)

where Ro
X̂0

(t) is represented by a polynomial zonotope.
We demonstrate the extraction of reachable subsets by an
example:

Example 2: Let us consider the nonlinear system

ẋ1 =
x2
2

+ 5

ẋ2 =
x1
200

(
100− x1(10 + x2)

)
+ 5

(3)
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Fig. 3: Visualization of the results from Example 2.

and the initial set

X0 =
{
[α1 α2]

T
∣∣ α1, α2 ∈ [−1, 1]

}
. (4)

Computation of an outer-approximation for the reachable set
at t = 1s with the approach from [1] yields

RoX0
(t) =

{[
6.39
5.6

]
+

[
1.06
0.08

]
α1 +

[
0.50
0.92

]
α2 −

[
0.02
0.07

]
α2
1

−
[
0.01
0.06

]
α1α2 +

[
0.05
0

]
α3 +

[
0

0.04

]
α4∣∣∣∣ α1, α2, α3, α4 ∈ [−1, 1]

}
.

Let us now consider the set

X̂0 =
{
[α1 α2]

T
∣∣ α1 ∈ [−1, 1], α2 = 1

}
, (5)

which is a subset of the initial set X̂0 ⊂ X0 (see (4)). We
apply the approach in [20] by replacing α2 ∈ [−1, 1] in (??)
by α2 = 1 (see (5)) to obtain

RoX̂0
(t) = reachSubset

(
X̂0,RoX0

(t)
) [21]
=

{[
6.39
5.6

]
+

[
1.06
0.08

]
α1 +

[
0.50
0.92

]
α2 −

[
0.02
0.07

]
α2
1 −

[
0.01
0.06

]
α1α2

+

[
0.05
0

]
α3 +

[
0

0.04

]
α4

∣∣∣∣ α1, α3, α4 ∈ [−1, 1], α2 = 1

}
=

{[
6.89
6.52

]
+

[
1.05
0.02

]
α1 −

[
0.02
0.07

]
α2
1 +

[
0.05
0

]
α3

+

[
0

0.04

]
α4

∣∣∣∣ α1, α3, α4 ∈ [−1, 1]
}
.

The extracted subset Ro
X̂0

(t) is shown in Fig. 3.

The operator reachSubset as defined in (2) can be used
to compute a set B that encloses the boundary of the exact
reachable set:

Proposition 1: Given a polynomial zonotope RoX0
(t) that

represents an outer-approximation of the reachable set, the
set

B = reachSubset
(
∂X0,RoX0

(t)
)



enclsoses the boundary of the exact reachable set ∂RX0
(t) ⊆

B.

Proof. According to [20, Theorem 1] it holds for every
subset X̂0 ⊆ X0 that

RX̂0
(t) ⊆ reachSubset

(
X̂0,RoX0

(t)
)
. (6)

Since ∂X0 ⊆ X0, we therefore have

∂RX0
(t)

Thm. 2
= R∂X0

(t)
(6)
⊆ reachSubset

(
∂X0,RoX0

(t)
)
= B

For simplicity, we consider for the remainder of this paper
that the initial set is given by a box X0 = [l, u] ⊂ Rn. Then
the boundary of the initial set is given as

∂X0 = ∂[l, u] =

n⋃
i=1

2⋃
j=1

Ii,j

with Ii,j =

{
{x ∈ [l, u] | x(i) = u(i)}, for j = 1

{x ∈ [l, u] | x(i) = l(i)}, otherwise

(7)

If we apply Prop. 1 to (7), we obtain

B = reachSubset
(
∂X0,RoX0

(t)
)
=

n⋃
i=1

2⋃
j=1

reachSubset
(
Ii,j ,RoX0

(t)
)︸ ︷︷ ︸

PZ2(i−1)+j

=

2n⋃
k=1

PZk. (8)

The boundary of the exact reachable set can therefore be
enclosed by the union of 2n polynomial zonotopes PZk. We
demonstrate the computation of the set B by an example:

Example 3: For our running example in (3) with the initial
set X0 = [−1, 1]×[−1, 1] (see (4)) the boundary of the initial
set is

∂X0 =
{
[α1 α2]

T
∣∣ α1 = 1, α2 ∈ [−1, 1]

}
∪{

[α1 α2]
T
∣∣ α1 = −1, α2 ∈ [−1, 1]

}
∪{

[α1 α2]
T
∣∣ α1 ∈ [−1, 1], α2 = 1

}
∪{

[α1 α2]
T
∣∣ α1 ∈ [−1, 1], α2 = −1

}
.

(9)

The reachable set for each of the partial sets in (9) can be
computed efficiently with the operator reachSubset as we
demonstrated in Example 2. The resulting set B that encloses
the boundary of the exact reachable set is shown in Fig. 4.

C. Computation of the Inner-Approximation

To find a suitable set C that satisfies Theorem 1, we scale
the previously computed outer-approximation RoX0

(t) =
〈G,E〉PZ by optimizing the lower bound α ∈ Rp and upper
bound α ∈ Rp for the factors α ∈ Rp of the polynomial
zonotope:

C(α, α) =
{ h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i)

∣∣∣∣ α ∈ [α, α]

}
,
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Fig. 4: Visualization of the results from Example 3.

where the bounds α and α are determined by solving the
optimization problem

max
α,α

volume(C(α, α))

s.t. C(α, α) ∩ B = ∅,
[α, α] ⊆ [−1,1],

(10)

with the operator volume returning the volume of a set.

Solving the optimization problem in (10) exactly is com-
putationally expensive. We therefore compute a feasible and
close to optimal solution using Alg. 1 as demonstrated with
numerical experiments in Sec. V.

Algorithm 1 Compute feasible solution for (10)

Require: Set B =
⋃2n
k=1 PZk enclosing the boundary,

outer-approximation of the reachable set RoX0
(t).

Ensure: Optimized lower and upper bounds α, α ∈ Rp

1: α = −1, α = 1
2: for k ← 1 to 2n do
3: c(α) = 0← constraint from C(α, α) ∩ PZk

(see Prop. 2)
4: I = contract(c(α), [α, α]× [−1,1]) (see Def. 3)
5: I = project(I, [1 . . . p])
6: [α, α] = [α, α] \ I (see Prop. 3)
7: end for

Alg. 1 iterates over the 2n polynomial zonotopes PZk
of B (see (8)), and adapts in each iteration α, α so that the
intersection between C(α, α) and PZk is empty as required
by (10).

We first introduce a new approach to compute the inter-
section of two polynomial zonotopes:

Proposition 2: Given two polynomial zonotopes PZ1 =
〈G1, E1〉PZ and PZ2 = 〈G2, E2〉PZ , their intersection is



computed as

PZ1 ∩ PZ2 ={ h1∑
i=1

( p1∏
k=1

α
E1(k,i)

(k)

)
G1(·,i)

∣∣∣∣ α ∈ [−1,1],

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

(k)

)
G1(·,i) −

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

(p1+k)

)
G2(·,i)︸ ︷︷ ︸

c(α)

= 0

}
.

Proof. We compute the intersection by restricting the factors
α of PZ1 to values that belong to points that are located in-
side PZ2, which is identical to adding the equality constraint

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

(k)

)
G1(·,i) =

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

(p1+k)

)
G2(·,i)

to PZ1.

According to Prop. 2, computation of the intersection
C(α, α) ∩ PZk imposes a constraint c(α) = 0 on the
factors α. The values of α that satisfy the constraint c(α) =
0 correspond to points that intersect the set PZk which
encloses a part of the boundary. For computational reasons,
we first compute a box enclosure I of all values α that satisfy
c(α) = 0 in Line 4 of Alg. 1. Afterwards, we subtract the
box I from the factor domain [α, α] in Line 6 of Alg. 1,
so that the set C(α, α) corresponding to the updated factor
domain [α, α] does not intersect the set PZk anymore. Since
the set B enclosing the boundary of the exact reachable set
is the union over all sets PZk, k = 1, . . . , 2n, it holds that
C(α, α) does not intersect B if it does not intersect any of
the sets PZk:

C(α, α) ∩ B︸︷︷︸
=
⋃

k PZk

= ∅ ⇔ ∀k : C(α, α) ∩ PZk = ∅

It remains to show how we compute the box I and how
we implement the set subtraction [α, α] \ I. To compute I
we apply contractor programming [17, Chapter 4]:

Definition 3: (Contractor) Given a box I ⊂ Rn and a
nonlinear function c : Rn → R which defines the constraint
c(x) = 0, the operation contract returns a box that
satisfies

contract(I) ⊆ I

and

∀x ∈ I : c(x) = 0⇒ x ∈ contract(I).

Many different implementations of contractors exist: For
polynomial constraints the approach in [26] considers ex-
tremal functions to contract the domain. The parallel lin-
earization contractor [17, Chapter 4.3.4] first encloses the
nonlinear constraints by parallel hyperplanes, and then tight-
ens the box domain by solving multiple linear programs. This

contractor performs well for cases with multiple constraints.
The forward-backward contractor [7], which is based on the
forward-backward processing of the syntax tree, is advanta-
geous if the size of the box is large. For the implementation
of our approach we apply the parallel linearization con-
tractor since the computation of the intersection according
to Prop. 2 results in multiple constraints. To speed up the
contraction we use nonlinear programming to obtain an
initial guess for the contracted box.

Finally, we specify how we compute the set difference for
boxes:

Proposition 3: Given two boxes I1 = [l1, u1] ⊂ Rn and
I2 = [l2, u2] ⊂ Rn with I2 ⊆ I1, we compute an inner-
approximation of the set difference as

I1 \ I2 ⊇
{
x ∈ I1

∣∣ x(i∗) ∈ Î}︸ ︷︷ ︸
I3

, (11)

where

i∗ = argmax
i∈{1,...,n}

max
(
l2(i) − l1(i)︸ ︷︷ ︸

dl(i)

, u1(i) − u2(i)︸ ︷︷ ︸
du(i)

)
,

Î =

{
[l1(i∗), l2(i∗)[, for dl(i∗) ≥ du(i∗)
]u2(i∗), u1(i∗)], otherwise

.

(12)

Proof. We have to show that I3 ⊆ I1 and I3 ∩ I1 = ∅.
Satisfaction of I3 ⊆ I1 follows directly from the definition
of I3 in (11). Furthermore, we have

[l1(i∗), l2(i∗)[∩ [l2(i∗), u2(i∗)]︸ ︷︷ ︸
project(I2,i∗)

= ∅

and
]u2(i∗), u1(i∗)] ∩ [l2(i∗), u2(i∗)]︸ ︷︷ ︸

project(I2,i∗)

= ∅,

so that Î ∩ project(I2, i∗) = ∅ holds according to (12).
Consequently, it holds according to (11) that I3∩I1 = ∅.

We demonstrate the computation of the set difference for
boxes by an example:

Example 4: Given the boxes

I1 = [0, 4]× [0, 6], I2 = [2, 3]× [1, 3],

computation of the set difference according to Prop. 3 yields

I1 \ I2 ⊇ [0, 4]×]3, 6].

The sets I1,I2, and I1 \ I2 are visualized in Fig. 5.

Finally, we demonstrate the computation of the set C using
Alg. 1 by an example:

Example 5: We again consider our running example with the
nonlinear system in (3), the initial set X0 = [−1, 1]×[−1, 1],
and the set B that we calculated in Example 3. Execution of



Fig. 5: Visualization of the results from Example 4.

Alg. 1 yields the following values for the four iterations of
the loop in lines 2-7:

Iteration 1:

I =

[ [
0.84
−1

]
,

[
1
1

] ]
, [α, α] =

[ [
−1
−1

]
,

[
0.84
1

] ]
Iteration 2:

I =

[ [
−1
−1

]
,

[
−0.84

1

] ]
, [α, α] =

[ [
−0.84
−1

]
,

[
0.84
1

] ]
Iteration 3:

I =

[ [
−0.84
0.85

]
,

[
0.84
1

] ]
, [α, α] =

[ [
−0.84
−1

]
,

[
0.84
0.85

] ]
Iteration 4:

I =

[ [
−0.84
−1

]
,

[
0.84
−0.84

] ]
, [α, α] =

[ [
−0.84
−0.84

]
,

[
0.84
0.85

] ]
,

resulting in the set

C =
{[

6.40
5.60

]
+

[
0.89
0.07

]
α1 +

[
0.42
0.78

]
α2 −

[
0.01
0.05

]
α2
1

−
[
0.01
0.04

]
α1α2

∣∣∣∣ α1, α2 ∈ [−1, 1]
}
,

which is shown in Fig. 6.

D. Verification of Correctness

After computing the set C using Alg. 1, it remains to verify
that C is a valid inner-approximation of the reachable set. For
this, we introduce the time-inverted dynamics

ẋ(t) = −f(x(t)). (13)

of the system in (1). Using (13), we formulate the following
theorem:

Theorem 3: Let ξ(t, x0) denote the solution to (13) at time
t for the initial point x(0) = x0. The set C computed
with Alg. 1 is an inner-approximation C ⊆ RX0

(t) of the
reachable set RX0

(t) if

ξ(t,center(C)) ∈ X0, (14)

where the operator center returns the center of a set.

Proof. According to Theorem 1, a set C is an inner-
approximation of the reachable set if C is connected, C∩B =
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Fig. 6: Visualization of the results from Example 5.

∅, and C ∩ RX0
(t) 6= ∅. Since C is a polynomial zonotope

and all polynomial zonotopes are connected, it holds that
C is connected. Furthermore, since Alg. 1 computes a set
which corresponds to a feasible solution for the optimization
problem (10), C ∩ B = ∅ holds. Finally, if condition (14) is
satisfied, center(C) ∈ RX0

(t) holds, which proves that
C ∩ RX0

(t) 6= ∅.

For formal correctness, validated integration methods [25]
have to be used for the simulation of the time-inverted
dynamics.

IV. COMPUTATIONAL COMPLEXITY

In this section we derive the computational complexity
of our approach with respect to the system dimension n.
We make the assumption that the evaluation of a nonlinear
function in p variables with interval arithmetics [17] has
complexity O(p). Furthermore, it holds for the number of
polynomial zonotope factors p that

p = c n with c ∈ R≥0. (15)

A. Outer-approximation of the Reachable Set

The computation of an outer-approximation RoX0
(t) with

the reachability algorithm from [1] has complexity O(n5).

B. Enclosure of the Boundary

The extraction of one reachable subset has according to
[20, Sec. 3.3] complexity O(n2). Since the computation of
the set B enclosing the boundary requires to extract 2n
reachable subsets (see (8)), the complexity is 2n · O(n2) =
O(n3).

C. Contractor Programming

Computation of the intersection according to Prop. 2
results in n constraints in 2p variables. We apply the parallel
linearization approach to contract the box. According to [17,
Chapter 4.3.4], parallel linearization requires to evaluate
the n × 2p entries of the Jacobian matrix with interval
arithmetics, which has complexity O(np2). In addition, the
parallel linearization contractor requires to solve 4p lin-
ear programs with 2p variables (see [17, Chapter 4.3.4]),
which has according to [18] a worst-case complexity of



Tab. 1: Benchmark description, where n is the system dimension,
and we compute an inner-approximation and outer-approximation
at time t.

Benchmark n t Reference

Brusselator 2 3 [8, Example 3.4.1]
jet engine 2 4 [8, Example 3.3.9]
Rössler 3 1.5 [8, Example 3.4.3]
Lotka-Volterra 4 1 [8, Example 5.2.3]
biological system 7 0.2 [8, Example 5.2.4]

Tab. 2: Comparison of our approach with the approach from [10].
The results for the approach in [10] are taken from [10, Tab. 1].

Benchmark Our Approach Approach in [10]

time [s] γmin time [s] γmin

Brusselator 64 0.87 55 0.7
jet engine 48 0.82 56 0.8
Rössler 32 0.73 165 0.5
Lotka-Volterra 238 0.32 297 0.4
biological system 82 0.89 632 0.25

4p · O((2p)3.5) = O(p4.5). Since contractor programming
is executed 2n times in Alg. 1, the overall complexity of the
contraction is

2n
(
O(np2) +O(p4.5)

) (15)
= O(n5.5).

The warm-start initialization for the contraction using non-
linear programming is not considered for the derivation of
the computational complexity since this step is optional.

D. Overall Algorithm

Since all other operations used for our approach have
lower complexity, the overall complexity is the sum of the
complexities from Sec. IV-A, Sec. IV-B, and Sec. IV-C,
which yields

O(n5) +O(n3) +O(n5.5) = O(n5.5)

with respect to the system dimension n.

V. NUMERICAL EXAMPLES

In this section we demonstrate the performance of our
novel method on several benchmarks. The computations for
our approach are carried out in MATLAB on a 2.9GHz quad-
core i7 processor with 32GB memory. Our implementation
will be made publicly available with the next release of the
CORA toolbox [2].

A. Comparision to [10]

First, we compare our novel approach with the method in
[10] using the benchmarks from [10, Sec. VI] (see Tab. 1). To
evaluate the precision of the computed inner-approximation,
we use the minimum width ratio γmin from [10, Sec. VI]

Fig. 7: Inner-approximation and outer-approximation of the reach-
able set for the Brusselator benchmark at time t = 3.
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Fig. 8: Minimum width ratio for the Brusselator benchmark over
time. The results for the approach in [14] are taken from [14, Fig. 2].

defined as

γmin = min
v∈V

|γi(v)|
|γo(v)|

with γi(v) = max
x∈Ri

X0
(t)
vTx+ max

x∈Ri
X0

(t)
−vTx

γo(v) = max
x∈Ro

X0
(t)
vTx+ max

x∈Ro
X0

(t)
−vTx,

(16)

where we select the n axis-aligned unit-vectors as the set of
vectors V ⊂ Rn (see [10, Sec. VI]). For a ratio of γmin = 1,
the inner-approximation along the vectors v ∈ V is identical
to the outer-approximation, whereas for a ratio of γmin =
0, the inner-approximation is empty. Since γmin cannot be
computed exactly for polynomial zonotopes in general, we
compute a tight under-approximation instead. In this paper,
we focus on initial sets given as boxes, whereas in [10],
initial sets given as simplices or ellipsoids are considered. We
use box-enclosures of the simplices given in [10, Sec. VI] as
initial sets and compare our approach with the results from
the method in [10] for initial sets given as simplices (see
[10, Tab. 1]). The computations for the method in [10] are
carried out in C++ on the machine from the authors of [10].

The results in Tab. 2 demonstrate that for most bench-
marks, our novel approach is both faster and more precise
than the method from [10], even though we use larger
initial sets. Especially for high-dimensional systems our
approach exhibits superior performance. For the Brusselator
benchmark the inner-approximation and outer-approximation
computed with our approach are visualized in Fig. 7.



B. Comparision to [14]

In addition, we compare our novel approach with the
method in [14], which computes inner-approximations for
the projection of the reachable set onto the coordinate axes.
For the comparison, the Brusselator benchmark (see Tab. 1)
with the initial set X0 = [0.9, 1]× [0, 0.1] (see [14, Sec. 4.2])
is used. The resulting minimum width ratio γmin (see (16))
over time is shown in Fig. 8. It is clearly visible that the
results for our approach are much tighter, even though we
compute a full inner-approximation and not just an inner-
approximation of the projection.

VI. CONCLUSIONS

We introduced a novel approach to simultaneously com-
pute inner-approximations as well as outer-approximations
of reachable sets for nonlinear continuous systems. One
advantage of our approach is that it has only polyno-
mial complexity with respect to the system dimension so
that it is applicable to high-dimensional systems. Since
we use a non-convex set representation to represent the
inner-approximation, we obtain very accurate results. In
addition, since we extract the inner-approximations directly
from pre-computed outer-approximations of reachable sets,
our approach is computationally very efficient compared to
previous methods as we demonstrated on several numerical
examples.
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