A Formally Verified Motion Planner for
Autonomous Vehicles

Albert Rizaldi'*, Fabian Immler?**, Bastian Schiirmann'*, and
Matthias Althoff!

! Institut fiir Informatik, Technische Universitit Miinchen, Munich, Germany
{rizaldi, bastian.schuermann, althoff}@in.tum.de
2 Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
immler@cmu.edu

Abstract. Autonomous vehicles are safety-critical cyber-physical sys-
tems. To ensure their correctness, we use a proof assistant to prove
safety properties deductively. This paper presents a formally verified
motion planner based on manoeuvre automata in Isabelle/HOL. Two
general properties which we ensure are numerical soundness (the ab-
sence of floating-point errors) and logical correctness (satisfying a plan
specified in linear temporal logic). From these two properties, we obtain
a motion planner whose correctness only depends on the validity of the
models of the ego vehicle and its environment.
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1 Introduction

Autonomous vehicles’ planning and control are hard. Not only are they required
to consider complex vehicle dynamics, but they must also deal with possibly
unknown and dynamically changing environments. To tackle these complexities,
most symbolic motion planners abstract continuous systems by discrete repre-
sentations in either an environment-driven [6,12] or a controller-driven man-
ner [16,14]. The former partitions the environment into cells, such as triangles
or squares, while the latter partitions the controller into several primitives, such
as turn-left or turn-right. Which discretisation is preferred for autonomous
vehicles?

* This work is partially supported by the DFG Graduiertenkolleg 1840 (PUMA) and
the European Comission project UnCoVerCPS under grant number 643921.

** Supported by DFG Koselleck grant NI 491/16-1. Moreover, this material is based
upon work supported by the Air Force Office of Scientific Research under grant
number FA9550-18-1-0120. Any opinions, finding, and conclusion or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Air Force.



Environment-driven discretisation is preferred when 1) we have static, a
priori known, and geometrically complex environments; or 2) one has to han-
dle expressive specifications, such as those expressed in Linear Temporal Logic
(LTL). However, environment-driven discretisation usually works only for sys-
tems with simple dynamics [5]. On the contrary, controller-driven discretisation
is preferred when we have dynamic, possibly unknown, and geometrically simple
environments. Controllers designed with this discretisation can handle complex
dynamics and navigate the environment by chaining a series of well-tested mo-
tion primitives [14]. However, specification languages for this discretisation in
the literature, such as in [10], are very close to the implementation level; often,
we want to specify what to achieve rather than how to achieve it.

Most vehicle models for autonomous vehicles are complex, making controller-
driven discretisation a natural choice. In this work, we shall use manoeuvre
automata-based motion planners [35], where each motion primitive is encoded
as a state in our manoeuvre automaton. However, autonomous vehicles operate
in dynamic and possibly unknown environments, where they could benefit from
specification languages such as LTL — usually associated with environment-
driven discretisation. This work aims to combine the advantages of both dis-
cretisation strategies by interpreting LTL over manoeuvre automata. To the
best of our knowledge, this paper is the first work to tackle this challenge.

To prove correctness of our motion planner, we use the generic theorem prover
Isabelle [28], as opposed to the specialised theorem prover KeYmaera X [15],
which is tailored for proving the correctness of hybrid systems. This choice is
motivated by eliminating numerical errors in computations with real numbers,
which is largely ignored in motion planning [30]. Isabelle’s libraries of approx-
imation and affine arithmetic allow us to eliminate these errors [19,20]. Our
contributions are as follows?:

— We provide a formally verified construction of manoeuvre automata (Sect. 3).
More precisely, we interface Isabelle with MATLAB for solving optimisa-
tion problems and use the formalised algorithm for continuous reachability
analysis [22]; both optimisation and reachability analysis are needed for con-
structing manoeuvre automata formally.

— We show how to eliminate numerical errors for functions involving real num-
bers (Sect. 4). To this end, we provide a verified translation between the
representation of floating-points used by Isabelle and that of IEEE-754 used
by MATLAB. Additionally, we extend the work in [22] to handle the trigono-
metric functions sine and cosine required in this work.

— We show how to plan autonomous vehicles’ motions with temporal logic
and manoeuvre automata (Sect. 5). More precisely, we interpret LTL over
manoeuvre automata and formally perform satisfiability checking — as op-
posed to model checking — in order to find a sequence of manoeuvres which
is guaranteed to satisfy a plan formalised in LTL.

3 The formalisation is in https://gitlab.lrz.de/ga96tej/manoeuvre-automata.



2 Preliminaries

Notations used in this paper closely resemble Isabelle/HOL’s syntax. Function
application is always written in an uncurried form: instead of writing f = y as
in the A-calculus, we always write f(x,y). We write ¢ :: 7 to indicate that term
t has type 7. Types used in this paper could either be a base type such as R
for real numbers, or constructed via type constructors such as « list and « set
for list of type a and set of type «, respectively. Another type constructor is
the function type; a function from type « to § is written as (has the type of)
a = . We use ‘=" and ‘—’ to denote deduction (inference) and implication,
respectively. The set of all objects of type a is UNIV :: «. Isabelle also supports
the case construct as in functional programming:

case t of paty = t1 | ... | pat, = t, .

One of the most frequently used data structures in this work are affine forms. An
affine form A is defined by a sequence (A;);en with only finitely many nonzero
elements. We write A; to refer to the i-th element of the affine form A. An affine
form is interpreted for a valuation e : N — [—1,1] as:

[[A]]a = Ao-f—ZEi-Ai .

We could also think of ¢ as a vector taken from an interval vector [—1; 1], where
1 is a vector of ones. One calls the terms ¢; noise symbols, Ag the centre, and
the remaining A; generators. The idea is that noise symbols are shared between
affine forms and that they are treated symbolically: the sum of two affine forms
is given by the pointwise sum of their generators, and multiplication with a
constant factor is also done componentwise:

[(A+B)J. := (Ao+Bo)+ Y ei-(Ai+Bi)
(k- Ao == k-Ao+ ) ei-(k-A) .

For Ag, A; :: R™, the affine form A is a data structure to represent a specific type
of set Z :: R™ set (see the notation of type constructor for sets) called zonotope
— a special class of polytopes. By defining a function range which represents all
possible valuations of an affine form, the relationship between an affine form A
and a zonotope Z is formalised as range(A) = Z. Figure 1 provides the graphical
illustration of the set of all points belonging to a zonotope.

If we represent an affine form concretely by a pair of its centre ¢ and a list

of its generators gs, then the Minkowski sum of two affine forms A = (c, gs) and
A" = (cd, gd) is defined as:

msum (A, A") = (c+ ¢, msum-gens(A, A")) ,
msum-gens(A, A') = gs@Q gs |

4 From now on, ‘Isabelle’ refers to ‘Isabelle/HOL’ for simplicity.
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Fig. 1. Three zonotopes with Ag = (0,0), A1 = (1,1), A2 = (1,—1), and Az = (1,0).
Black circles represent the extreme points of each zonotope.

where function @ denotes list concatenation. Figure 1 provides graphical illus-
trations of the Minkowski sum: Zy = msum (Z1, Z3), Zs = msum (Zy, Z4) where
Zy =0+ A and Z5 = 0 + As.

3 Constructing Manoeuvre Automata

A manoeuvre automaton (MA) [14] is an automaton whose states represent
manoeuvres (motion primitives) which an autonomous system could execute.
For helicopters, these could be standard manoeuvres such as hover and land,
or more aggressive movements such as hammerhead and loop. For autonomous
vehicles, these could be basic manoeuvres such as turn-left and turn-right, or
more ambitious manoeuvres such as hard-left and hard-right. A transition
between two states in an MA means that the system can execute those two
manoeuvres successively.

Definition 1. We define a manoeuvre automaton as a tuple MA = (M, jump, ode)
where

— M is a predefined type for manoeuvre labels;

— jump :: (M x M) set is the transition relation between manoeuvre labels; and

— ode(m) :: R x R™ = R" is the corresponding ordinary differential equation
(ODE) for manoeuvre m.

If we assume that the ode(m) has the general form of

&= f(z,um) , (1)
then the ode(m) represents a fixed system model f — such as a point-mass or
as a kinematic single-track model for autonomous vehicles [3] — with a fixed

input trajectory u,, for manoeuvre m. For an initial state i,z and a final state
Zfinal, @ controller must choose a trajectory wu.,, € U,, which steers xinit t0 Tanal-
We refrain from discussing the design of such controllers, as this work focusses
more on the verification aspect; interested readers can consult the work in [35].
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Fig. 2. Ensuring the safety of a path from an MA.

For safety verification purposes, it is paramount to compute the reachable
set of a manoeuvre m — denoted by reach (m). This set represents the set of
all states x which could be reached by the system f in (1) from an initial set
denoted by init(m) with trajectory u,. A manoeuvre m is safe with respect to
a given unsafe set D if and only if reach (m) does not intersect with the unsafe
set: reach (m)N'D = ) (see Fig. 2). A formally verified computation of reachable
sets of continuous systems with the theorem prover Isabelle has been previously
researched by one of the authors in [22] and we shall use it here.

How can we incorporate the reachable set of each manoeuvre to ensure the
safety of a path? A safe path from an MA is a series of manoeuvres m =
™Mo, M1, ..., My, which: a) respects the transition relation jump in Def. 1, i.e.,
(mg, miq1) € jump for 0 < i < n; b) ensures that the reachable set of each ma-
noeuvre does not intersect with an unsafe set; and ¢) for every chain (m;, m;y1)
in the series, the final set of m; — denoted by final(m;) — must be contained by
the initial set of m;1, i.e., final(m;) C init (m;41) (see [35]). Figure 2 illustrates
these requirements of ensuring the safety of a path from an MA.

The first technical challenge for formally constructing manoeuvre automata,
as proposed in this work, is how to interface the controller design in [35] imple-
mented in MATLAB and the reachability analysis in [22] formalised in Isabelle.
Figure 3 illustrates how we interface Isabelle and MATLAB by using the C pro-
gramming language as a lingua franca. Functions programmed in MATLAB are
callable from C by using the MATLAB API. Isabelle, on the other hand, can
call functions in Standard ML (SML) directly but not those in C. Fortunately,
there is a Foreign Function Interface (FFI) between SML and C which enables
us to call functions in C and, hence, MATLAB indirectly. Therefore, we need
to provide the corresponding wrapper for each MATLAB function required by
Isabelle at the SML and C levels.

The second technical challenge is to bridge the different types of floating-point
representation between Isabelle and MATLAB. Isabelle uses arbitrary precision
floating-point numbers (m - 2¢ for potentially unbounded m,e € Z) and MAT-
LAB uses IEEE-754 floating point-numbers (with fixed precision). How to obtain
a formally correct conversion between arbitrary precision floating-point numbers
(as used in Isabelle/HOL) and IEEE floating-point numbers (as used in MAT-
LAB) is discussed in the next section.



arbitrary precision Isabelle

Code generation setup

finite precision M

PolyML/C FF Interface

finite precision

MATLAB API for C

«— «— |2 | «—
Q
— — || —

finite precision MATLAB

Fig. 3. Block diagram for interfacing Isabelle and MATLAB.

4 Affine Arithmetic and Floating-Point Numbers

This section considers rounding errors when using finite precision floating-point
numbers to ensure soundness of our proofs. To achieve this, we use rigorous
numerics, which encloses real numbers by sets. This means, for example, the
function x :: real = real = real is “lifted” to a new function ® :: realset =
realset = realset with the correctness theorem Vz,y. z € X Ay € ¥ —
x Xy € X ®Y. The first problem entailed by this decision is how to choose
the proper data structure to represent the abstract type realset. Following the
decision made in our previous work [20], we use affine arithmetic [13] for this
purpose. There are other approaches such as intervals [27] and Taylor models [7]
whose discussion is out of the scope of this paper. The second problem is how
to approximate functions operating on reals with functions operating on sets
correctly. Previous work in [20] has covered affine approximation of arithmetic
functions such as addition, multiplication, subtraction, and division, but not
trigonometric functions. For this particular work, we need affine approximations
of trigonometric functions such as sine and cosine occuring in model f in (1)
(the specific model can be found in (5), Sect. 5).

4.1 Affine approximation of trigonometric functions

To simplify formal proofs, modularity and abstraction are important. As a basis
for all operations that follow, we use a generic linear operation that involves
round-off operations and also adds a noise symbol for further uncertainties (this
is also discussed by Stolfi and de Figueredo [13]). The idea is to define a generic
linear operation affine-unop(c, 3,0, X) that encloses the linear function z —
a -z + B with an uncertainty of § for every valuation e € N — [—1,1]:

|a- [X]e 4+ B — [affine-unop(c, 8,8, X)]c| < 9§ .

The motivation behind affine-unop(c, 8,9, X ) is that « - x + 8 approximates
some (possibly nonlinear) function f up to an error 4, i.e.,

|f(@) = (-z+B) <0, (2)



Fig.5. Min-range approximations
Fig.4. Min-range approximation of (nine subdivisions) of cos [0, 7]
cos [1,2].

up to a certain interval x € [l,u]. There are various degrees of freedom for
linearising a non-linear function f such that (2) holds. In this work, we use
the min-range approximation [13,34] for the sake of ease of implementation and
verification; other techniques such as interval approximation [13,34] and first-
order Tchebychev approximation [13,34] exist.

The idea behind the min-range approximation is to maximize the slope of
the enclosure while fixing the range of the approximation. Consider Fig. 4, which
illustrates a min-range approximation of cosine on the interval [1,2]; it does not
exceed the interval [cos(2), cos(1)]. Any smaller slope would be just as safe, but
the slope could not be chosen to be larger. The following theorem guides us to
find suitable values of «, 3, and §.

Proposition 1 (Min-range approximation).
Ve € [lul. |f(z) — (a-z+p) <8
if the following conditions are satisfied:

1. Vy € [lu]. a < f'(y);
2. 6> MO0l () 1 flu) — a1+ w))/2 - Bl

Parameter o needs to be a lower bound on the derivative while parameters
B and § need to be chosen such that they account for the error of the linear
function centred between f(u) and f(I) as well as for the error that S makes
with respect to the centre (the second summand on the right of the inequality
bounding §). This is a slight generalisation of what is demanded in the literature
[13,34], where one assumes a convex function f. This ensures that the derivative
f! attains its maximum at one of the endpoints of the interval. Something that
is not mentioned in the statement of the lemma should be noted: the approxi-
mation using «, 3 is close to the optimal approximation only if the function f
is increasing on [I,u] (otherwise the theorem still holds, but ¢ is unnecessarily
large). However, a similar approximation lemma can be easily obtained for the
case when f is decreasing.



Trigonometric Functions. The trigonometric functions sine and cosine pose
the problem that they are not monotonic. This can be alleviated in two steps
(similar to the treatment of periodic functions in [2]). The first step, range re-
duction, exploits periodicity to reduce the argument to the range [0, 27]. Range
reduction (shifting the argument = by —27 - |3=|) is computed using interval
arithmetic. The second step is a case distinction if the argument is contained in
the decreasing part [0, 7] or the monotone part [, 27] (for cosine). It is possible
that this distinction cannot be decided (if e.g., the argument interval straddles
), but then the only valid min-range approximation is the interval approxima-
tion (with 1 as upper bound). A series of such computed min-range approxima-
tions is shown in Fig. 5.

4.2 From Isabelle’s to IEEE-754’s floating-point representation

Affine arithmetic in Isabelle is implemented with arbitrary-precision floating-
point numbers, hereafter denoted by float,,. Software floating point numbers
(the formalisation in Isabelle originates from Obua’s work [29]) are the subset
of real numbers that can be represented by two arbitrary-precision integers:
mantissa (or significand) m and exponent e. Mantissa and exponent together
represent the real number m - 2°:

floats :== {m -2° | m,e € Z} .

Arbitrary-precision floating-point numbers are convenient for formal reasoning
because arithmetic operations can be carried out without round-off errors. For
efficiency, however, we do use explicit round-off operations overapproximately
to reduce the size of the mantissa. The explicit separation of operation and
rounding helps keeping the formalisation modular.

The representation used by MATLAB is IEEE-754 floating-point numbers.
A specification of floating-point numbers (with a fixed precision of 52 bits for the
mantissa and 11 bits for the exponent of double-precision floating point numbers)
according to the IEEE-754 standard was formalized in Isabelle by Yu [37].> We
denote IEEE-754 floating-point numbers with floatie.. They are represented by
triples (s,e, f) € N x N x N to represent sign s, exponent e, and fraction f.
There are special representations for special values like infinity or NaN (Not-a-
Number); everything else represents finite numbers. A predicate is-finite encodes
whether a triple represents a finite number. Finite IEEE floating point numbers
can be normal (e # 0) or denormal (e = 0) and are interpreted as a real number
differently using to-real:

s . 9—1022 —52 e,
to-real(s, e, f) = (=1)°-2 B (/-2 )7 ?fe_ 0,
(—1)5 - 2671028 (1 4+ f.2752) ife#£0 .
® Yu’s formalisation was inspired by Harrison’s [18] extensive formalisation in HOL
Light. More work on floating-point numbers in theorem provers has been done in the
comprehensive formalisation of floating-point numbers by Boldo and Melquiond [9]
in Coq as well as early efforts in ACL2 [26].



We provide functions of-ieee and to-ieee which convert between a subset of
arbitrary-precision floating-point numbers and IEEE floating-point numbers.
The bijection is guarded by is-valid (to ensure that the arbitrary precision floating-
point number is actually of suitable finite precision) and is-finite (to exclude
special values).

is-finite(s, e, f) = of-ieee(s, e, f) = to-real(s,e, f) ,

is-valid(m - 2¢) = to-real(to-ieee(m,e)) = m - 2° .

We implemented this (based on work by Fabian Hellauer, which we gratefully
acknowledge here) using the IEEE-754 formalisation in the archive of formal
proofs [38]. Note that since Isabelle’s floating-point representation can have ar-
bitrary precision, we have to ensure that the floating-point numbers used in
Isabelle’s theories are guaranteed to have at most 53-bit precision (i.e., is-valid
holds) to be able to pass them down to SML, C, and MATLAB.

5 Motion Planning with Manoeuvre Automata

5.1 Interpreting LTL over manoeuvre automata

Definition 2 (Linear Temporal Logic for MA). If AP is the type for all
atomic propositions, then we can create a new compound data type

datatype atom = AP | AP,

where we label an atomic proposition with either a positive or negative sign. The
syntazx of LTL for manoeuvre automata is defined by the following grammar:

¢ u= true|m | g1 NG| ¢ | XP [P Uy , (3)

where w :: atom. Constant false, logical operators disjunction and implication,
and temporal operators F and G are defined as usual [11].

Atomic propositions in path planning with LTL are used to represent objects
of interest. For example, atomic propositions in our work could be defined as
follows:

datatype AP = left-boundary | right-boundary | obstacle | goal

Definition 3 (Semantics of LTL for MA over finite-length traces). Sup-
pose that the state space for the model ode (m) in Def. 1 is of type R™, and there is
an interpretation function [_] :: AP = R"™ set. Additionally, for a finite sequence
of sets 0 = Ao, A, ..., A, we denote the j-th suffix of o by o[j..] := Aj,..., An
for 0 < j <n. We can define a semantics of LTL for MA over a finite sequence



of sets o = Ag, A1, ..., Apn, where A; :: R set for 0 < i < n, as follows:

o k= true

okt — Ay C[n]

o= — A N[r] =0

ol ¢ = ol

CEM NG = oE¢ ando ¢

ok X¢ < if o[l..]is defined then o[l..] E ¢

o= Ups <= Fjolj]Ed AViO<i<j—oli.] o1 .

Comparison with standard LTL. The differences with standard LTL’s syntax
and semantics primarily lie in the additional sign for each atomic proposition
and their denotations. To illustrate these differences more concretely, consider
the formalisation of reach-avoid plans in standard LTL. Fainekos et al. [11]
formalised these plans with —obstacle U goal; this is fine if we interpret LTL
over a single trajectory. For an interpretation over a set of trajectories, we
can lift the denotation for atomic propositions used by Fainekos et al. [11] into
ocbEm®: AP < Ay C [n] (see [33]). This denotation implies o = —obstacle
if and only if Ag Z [obstacle] and, if we assume further that Ao N [obstacle] # 0,
then there could be a trajectory which visits the obstacle before it reaches the
goal. This means the safety of o cannot be guaranteed anymore.

The syntax and semantics in Defs. 2 and 3 provide a solution to this prob-
lem. Each atomic proposition can be labelled either with a positive or negative
sign, and the root cause of the unsafety in the previous argument is due to the
additional assumption Ay N [obstacle] # (. The semantics solves this problem by
enforcing that all negatively labelled atomic propositions have the denotation
that all trajectories in Ag cannot be located at [#], i.e., Ao N [r]] = (). Positively
labelled atomic propositions, meanwhile, have the obvious denotation that all
trajectories in the initial set Ag must also be located inside [r], i.e., Ay C [x].
In case Ay € [7] and A N [x] # 0, there might be a trajectory which always
stays in [7] or lies outside of [7] completely, but this should not justify o = 7+
or o =7~ because we choose soundness over completeness.

Checking zonotope inclusion and intersection freedom. The semantics in Def. 3
does not stipulate any concrete type of sets. To demonstrate our approach, we
use zonotopes in this work to check o = 71 (using an inclusion check) and
o |= 7 (checking for intersection freedom) in R? since higher dimensions are
not required in this work. We define the function zono-contain2D (prec, Z, Z")
to check whether zonotope range(Z) is a subset of zonotope range(Z’). This is
performed® by first enumerating all extreme points of zonotope range (Z) — via
the function extreme-pts(Z) — initially (see Fig. 1) and then checking whether
each of these extreme points belongs to the zonotope range (Z2) as partially done
in [21].

6 For high-dimensional zonotopes, please consult the technique described in CORA [1].



Theorem 1. By defining zono-contain2D (prec, Z, Z') as:

zono-contain2D (prec, Z,Z') := case extreme-pts(Z) of
= ZO €zono Z/
|ps = Vp.p€set(ps) — P €zono Z'

we have the correctness condition:
zono-contain2D (prec, Z,Z') = range(Z) C range(Z') ,

for any precision prec and any two zonotopes Z, Z' of type R2.

We also define the function collision-freedom2D (prec, Z, Z') to check whether
zonotope range (Z) does not intersect with rangeZ’ based on [17] which we proved
formally in Isabelle too.

Theorem 2. Suppose that affine forms Z and Z' have the centres of Zy and
Zy, respectively, and Z — Z{ denotes the vector difference of Zy and Z1, then

Z — Zy & range(msum-gens(Z,Z')) = range(Z) Nrange(Z') =10 .

:= collision-freedom2D (prec,Z,Z")

Note that the two theorems above take the precision prec :: N into account to
ensure numerical soundness.

5.2 Satisfiability checking of LTL over manoeuvre automata

The problem of finding a path in MA which satisfies a plan formalised in LTL
can now be stated formally as satisfiability checking.

Definition 4 (Satisfiability checking). An LTL formula ¢ is satisfiable with
respect to a manoeuvre automaton MA = (M, jump, ode) if there is a path T =
mg, M1, ... My—1 such that m; == M for all 0 < i <n and

reach (mq), reach (my), ..., reach(mp_1) = ¢ .

Satisfiability checking is a search problem and since 1) time efficiency is
paramount, and 2) a path satisfying a plan usually has a finite duration, we use
a depth-limited search strategy for satisfiability checking. Since each manoeuvre
lasts for 1s and a sensible duration for a plan is supposed to be less than 10s, the
maximum depth is set to be 10. Note that the search strategy can be improved
further by using an informed search strategy. However, since our main focus is
correctness, we choose a simpler yet sufficient depth-limited search strategy for
satisfiability checking.

As an example, we construct an intentionally simple, formally verified ma-
noeuvre automaton with three motion primitives which last for 1s each:

datatype M = go-straight | turn-left | turn-right | (4)
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Fig. 6. Example of reach-avoid scenario. The vehicle is represented as the solid black
rectangle. Red-coloured rectangles are the objects the vehicle has to avoid. The blue-
coloured rectangle is the area which the vehicle has to reach eventually.

where any two manoeuvres can be composed, i.e., jump := UNIV :: M x M.
Note that the duration for each motion primitive need not to be the same; some
primitives could last for, e.g., 0.1s and others could last for 5s. We use the
following kinematic model of autonomous vehicles:

v=a; ¥=0b i=uv-cos(¥); §=uv-sin(¥) . (5)

State variables v and ¥ are speed and orientation, respectively, while z and y are
the positions in Cartesian coordinates. Inputs to the system are a and b, which
denote acceleration and normalised steering angle, respectively. The initial set
init (m) is set to be the same for all manoeuvres:

[19.8;20.2) ms ™" x [—0.02;0.02] rad x [—0.2;0.2] m x [—0.2;0.2] m .

Meanwhile, the final states are (20, 0, 20, 0) for go-straight, (20.2, 0.2, 19.87, 0.2)
for turn-left, and (20.2, —0.2, 19.87, —0.2) for turn-right. We use the controller
design in [35] to obtain a set of trajectories for each manoeuvre and use the
verified implementation in [22] to compute the reachable sets for each time.

According to the third requirement to ensure the safety of a path from an
MA in Sect. 3, we must ensure the enclosure property final(my) C init (ms) holds
for any two manoeuvres (mq,ms) € jump. However, the concrete numbers above
show that final (go-straight) € init(go-straight). This does not mean we cannot
compose two go-straight primitives. To achieve this, the initial set can be shifted
in position and orientation — due to position and orientation invariance in (5).

We consider the reach-avoid scenario for autonomous vehicles (Fig. 6) for mo-
tion planning. The road is divided into two four-meter-wide lanes and bounded
by left and right boundaries. There is also a 16 m x 4 m-rectangle located at
(50,0) which serves as an obstacle in our scenario. The autonomous vehicle has
the length and width of 5m and 1.75m, respectively. It is located initially at
(0,0) and must reach the goal represented by a 16m x 4m rectangle which is
located at (80, 0).

The reach-avoid plan is formalised with the following LTL formula:

¢ = (left-boundary™ A right-boundary~ A obstacle”) U goal® .



After performing satisfiability checking, the search returned the following plan
as shown in Fig. 6:

T = turn-left , turn-right , go-straight , turn-right , go-straight .

Regarding the search strategy for satisfiability checking, there are two prop-
erties we proved: termination and soundness. The former is proved with the
aid of the function package in Isabelle [23] by specifying a measure function
which decreases after each recursive call. Meanwhile, the latter is ensured due to
the following two facts: 1) we use the formalised LTL monitoring function from
our previous work [32] to check whether current nodes satisfy the LTL formula,
and 2) we interpret each atomic proposition over-approximatively either due to
inherent uncertainty or numerical round-offs.

Two remarks worth mentioning here. Firstly, note that the main scientific
dimension considered in this work is the correctness of a motion planner achieved
with the aid of a theorem prover. Hence, we prioritise correctness over other
dimensions such as coverage, efficiency, and scalability. The example provided in
this section should be perceived as an evidence that the formalisation in Isabelle
is implementable (code generation); this section by no means is an evaluation of
the coverage of our framework which we plan to do in future with other scenarios
in [3]. Secondly, readers might question the fidelity of the model in (5). However,
Schiirmann et al. [36] have provided a framework such that a relatively simple
model like ours with added uncertainties from a higher fidelty model or a real
vehicle could adequately ensure the safety of a plan in a real vehicle.

6 Related Work and Conclusions

Fainekos et al. [12] and Plaku et al. [30] use satisfiability checking (or falsifica-
tion) of temporal logic for finding a path which satisfies a plan formalised in (a
fragment of) LTL. Fainekos et al. [12] expanded and contracted objects which
must be avoided and reached, respectively, in order to have a robust interpre-
tation of LTL. Plaku et al. [30] ignore the issue of numerical soundness when
checking whether a path satisfies an LTL formula. Our approach, meanwhile,
uses sets (zonotopes) as the main data structure which means we can handle
robustness and numerical soundness simultaneously.

Interpreting LTL formulae over a set of trajectories has also been studied
by Roehm et al. [33]. The difference between our semantics is in the way we
treat the negation operator. In their work, the negation operator is allowed for
formulae without any temporal operators only. Our approach, however, does not
have this restriction — hence ours is more expressive — but it comes with an
additional requirement of labelling each atomic proposition with a positive or
negative sign.

Mitsch et al. [25] use the theorem prover KeYmaera X [15] to prove safety
properties of autonomous vehicles. The main difference to our work is the ap-
proach to formal reasoning. Theirs is proof-theoretic: a) they specify the physical



model of autonomous vehicles with hybrid programs and the property with dif-
ferential dynamic logic [31]; then b) they use the proof system’s inference rules
to deduce that the hybrid program indeed satisfies the specified property. As
pointed out by Anand and Knepper [4], KeYmaera X does not consider the
possibility of round-off errors in floating-point numbers. This issue has been
addressed by Bohrer et al. [8] where they introduce a framework called VeriPhy.

Our approach is model-theoretic: 1) we model autonomous vehicles with ma-
noeuvre automata in which each state (manoeuvre) is assigned with reachable
sets of the physical behaviour; 2) we specify the property in a modified LTL
which takes the reachable sets into account; and 8) we enumerate all possible
paths in the manoeuvre automaton and find a path which satisfies the prop-
erty according to the predefined semantics of the modified LTL. The role of the
Isabelle theorem prover in our work is to prove that each step is implemented
correctly. Compared to VeriPhy, we use affine arithmetic and VeriPhy uses in-
terval arithmetic — a special case of affine arithmetic. However, our approach
needs to trust the code generation setup provided by Isabelle, whereas VeriPhy
uses a sound compilation technique to generate code in CakeML [24].

Anand and Knepper [4] use the Coq theorem prover to implement a frame-
work to specify the physical model and controller of robots for the Robot Op-
erating System (ROS). Compared to our formalisation, theirs is closer to the
implementation level; ours assumes that the optimal controller can be imple-
mented correctly in the hardware. However, their implementation assumes that
the high-level plan is given, whereas we derive a high-level plan and a low-level
controller. Both works guarantee numerical soundness, but with a different tech-
nique; theirs uses constructive reals, whereas we use floating-point numbers.

Belta et al. [5] have outlined that the challenge for symbolic motion plan-
ning and control is to tie the top-down approaches, which use temporal logic on
rather abstract models, and bottom-up approaches, whose aim is to construct
manoeuvre automata effectively for formal analysis. We solve this challenge by
adapting the syntax and semantics of LTL for manoeuvre automata. The main
finding for this work is that reachability analysis is the key ingredient to solve
this problem. It allows us to compute the reachable sets of each motion prim-
itive and subsequently to define the satisfaction relation of motion primitives
with formulae in LTL. We also address the challenge of formal verification of
cyber-physical systems, where numerical soundness is largely ignored. By using
a generic theorem prover such as Isabelle, we can guarantee both mathematical
correctness and numerical soundness.
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