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Abstract. A seamless integration of model analysis and simulations into the design process is a key 

for supporting the different decisions, including deciding upon the position, dimensions, and 

materiality of building elements. Such design options are explored from the early design phases, 

where a decision is taken based on their performance. A crucial analysis that is necessary for the 

different types of buildings, especially transportation hubs, is pedestrian flow dynamics, as it 

evaluates the occupants’ comfort and ability to evacuating the building in case of emergency. 

Currently, analysing pedestrians’ flow is decoupled from the BIM-authoring tools, requires multiple 

manual steps, and is time consuming. Hence, this paper proposes a framework that leverages the 

latest advancements of Deep Learning (DL) for replacing pedestrian dynamics simulations by an 

DL model providing intermediate feedback. In more detail, a representation of the building model, 

including simulation parameters, is proposed as input and a Convolutional Neural Network (CNN) 

architecture is developed and trained to predict pedestrians’ flow density heatmaps and tracing maps. 

1. Introduction 

The Architecture, Engineering and Construction (AEC) industry is a multidisciplinary sector 

comprising of various interconnected domain experts. During the design process of a building, 

each discipline makes multiple design decisions, influencing the resultant design and its 

performance. Over the last decade, the Building Information Modeling (BIM) methodology has 

gained popularity in fostering collaboration among the project participants and informing the 

design process from the early phases (Borrmann et al., 2018).  

Through the design phases, building models are gradually refined from a rough conceptual 

design (where many uncertainties are present) to highly complex individual components. In the 

early design phases (conceptual and preliminary phases), BIM models are subject to multiple 

changes in the detailed design phases (Knotten et al., 2015). However, changes in the design 

require a relatively lower cost and efforts (Abualdenien et al., 2019). Typically, architects and 

engineers explore and evaluate the performance of multiple design options through the 

comparison of their simulation results. Evaluating a design’s performance involves numerous 

simulations and analysis. Most popularly, analysing the structural system, embodied and 

operational energy during the life-cycle (Abualdenien et al., 2020), as well as the comfort and 

evacuation of occupants, a.k.a. pedestrians.  Using BIM, the different objects (such as walls, 

stairs, and zones) can be identified, where each instance has a geometric representation and 

carries a set of properties (Abualdenien et al., 2019). Such capabilities provide the necessary 

means for establishing a smooth workflow between BIM-authoring tools and simulators, where 

customized simulation information can be included in the model. To work independently of a 

particular software vendor, a variety of the existing authoring tools and simulators support the 

exchange of models using the open standard Industry Foundation Classes (IFC)1. Multiple 

researchers have investigated and proved the capabilities of using IFC BIM models as basis for 

simulations (Mirahadi et al., 2019). 

                                                 
1 https://web.archive.org/web/20111024102519/http://buildingsmart-

tech.org/implementation/implementations/plominoview.allapplications/?widget=BASIC (visited: 15.03.2021) 



2 

 

In general, integrating simulations into an early design phases can support the decision-making 

process, which assists in achieving the intended project goals (Abualdenien et al., 2019). Since 

pedestrians’ behavior is essential in normal and panic situations, and highly dependent on the 

environment (Low, 2000), circulation routes require a special attention during the design 

process of a building. Therefore, this paper aims for improving the existing workflows for 

integrated pedestrian simulations into the design process, especially for public buildings, such 

as train stations.  

Typically, the results of pedestrian simulations provide visibility regarding the pedestrians’ 

comfort, circulation, and evacuation in case of emergency. However, the current state of 

practice involves multiple steps, including exporting building models from the BIM-authoring 

tool, importing them into the simulator, performing the simulation, and finally, generating a 

summary of the simulation results. As in addition, agent-based pedestrian simulations require 

high computational effort and thus long computation times, the entire process is time consuming 

and error-prone (Andriamamonjy et al., 2018), hindering the interactive exploration of the 

design space. To overcome this limitation, this paper proposes a framework that leverages Deep 

Learning (DL) methods to facilitate a real-time prediction of pedestrians’ comfort and 

circulation. More specifically, Machine Learning (ML) approaches can be used to avoid time-

consuming simulations by supporting or even replacing them with predictive tools (Kim et al., 

2019). We make use of the rich information provided by BIM models as input for the ML 

model, thus allowing a direct interaction between creating design options and evaluating them 

for pedestrian dynamics performance.  

This paper is organized into several parts: section 2 introduces background knowledge and 

related work. In section 3, the concept of our approach is described stepwise, while section 4 

presents the outcome. In section 5, a conclusion sums up our results and gives an outlook to 

future steps. 

2. Background and Related Work 

2.1 Performance-based Building Design 

Designing a building requires many different steps and, hence, considers multiple dependencies 

on decisions. Therefore, performance-based building design is a crucial method to reduce 

critical changes to be done in the final phase and maximize a building’s performance (Mehrbod 

et al., 2020). Furthermore, to create reliable results, sufficient data and information must be 

provided. Especially in early design phases, decisions can influence later performance and cost 

(Østergård et al., 2016). To improve decisions in the design phase, BIM-based approaches were 

developed to use the BIM models in the process. In this manner, the authors of Röck et al., 

2018 integrate parts of the Life Cycle Assessment (LCA) into BIM by considering the 

building’s materials. In this way, the designer is informed about the chosen materials’ potential 

effects for their embodied energy. Furthermore, Hamidavi et al., 2020 proposes a BIM-based 

optimization evaluation of a building’s structural design. This approach helps to enhance the 

coordination between architects and structural engineers during the design phase. 

2.2 Pedestrian Dynamics Analysis and Simulation Models 

The functionality especially of public buildings such as train stations or shopping centres is 

essential in an emergency evacuation (Løvås, 1994). Moreover, pedestrian dynamics analysis 

is an essential aspect for efficient crowd routing concerning safety and comfort. That is strongly 
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dependent on the shape of the building (Hanisch et al., 2003). Observations show that individual 

pedestrians tend to choose polygon-shaped routes, following straight paths to walk on as long 

as possible in association with visibility. Even though some areas may be crowded, longer 

travelling times and unknown detours are accepted deliberately or unknowingly (Helbing et al., 

2001). Without being externally planned, the crowds’ resulting self-organisation is somewhat 

based on subconscious than communication or expressed strategy, especially with 

unidirectional pedestrian flows (Helbing et al., 2005). Besides, single persons appear to adjust 

their walking speed when meeting moving crowd groups within a generally crowded area. 

Simultaneously, individuals interpret stationary groups as clear obstacles leading to a change 

in their walking routes (Yi et al., 2015). 

Concerning simulation models, three general approaches are distinguished to model pedestrian 

behaviour, depending on the number of virtual pedestrians (agents). Microscopic methods 

define the reaction of individual agents, while macroscopic approaches model group behaviour. 

Furthermore, between these two approaches mesoscopic models provide information about 

individual agents while staying capable of handling more extensive groups (Ijaz et al., 2015). 

Because only rule-based approaches appeared to be insufficient (Yang et al., 2020), a more 

generalized force model was developed in Helbing et al., 2000, known as the social force 

model. In principle, individual agents’ repulsive interaction forces take into account other 

agents and obstacles while moving with a certain velocity. 

In contrast to individual behaviour, crowds’ demeanour is rather understood as a flow 

mechanism, ignoring the environment and individual interactions of agents. More specifically, 

the underlying idea follows the principle of continuum theory proposed by Hughes, 2002. 

Again, in Yang et al., 2020, other approaches are introduced, like the aggregate dynamics model 

based on fluid dynamics. Furthermore, to simulate pedestrian crowds’ multiple intentions, the 

potential field model works with navigation- or guidance fields. Due to strict cellular automata 

structuring, higher pedestrian densities or not completely cell-filling obstacles can lead to a 

lower representation of reality (Biedermann et al., 2016). To overcome issues like these, hybrid 

models consider different modelling approaches for particular areas or regions evoking unique 

behaviour (Biedermann et al., 2021). Another well-known approach is the optimal steps 

model (OSM). Instead of restricting the model to dense crowds or rigid spatial grid only, the 

authors of Seitz et al., 2012 provide continuous space and free the agents from a strict cell-

representation while keeping the stepwise movement in a discretized manner.  

2.3 Train Stations and Crowd Dynamics 

Concerning waiting areas in train stations, pedestrians tend to uniformly distribute over the 

respective spaces (Helbing et al., 2001). Furthermore, observations have shown that waiting 

pedestrians can have a considerable influence on crowd dynamics in train stations. As a result, 

the walking time of arriving train passengers may increase up to 20%, leaving the platform 

being influenced by waiting pedestrians as well as by awkwardly positioned attraction points 

(Davidich et al., 2013). Looking closer at different building elements, Ma et al., 2013 

investigated the influence of fences and pillars as separation modules in crowded areas, notably 

train stations. They point out the increase of pedestrians’ flow rate for non-unidirectional 

movements when using pillars instead of other modules or none at all. Likewise, similar 

behaviour could be examined by Frank et al., 2011, who showed an improvement in evacuation 

time for exit areas with pillars placed close to them.  
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2.4 Deep Learning Methods 

In the previous paragraphs, the complexity of pedestrian behaviour and the resulting simulation 

models could be emphasized. Consequently, pedestrian simulations for complex building 

structures lead to a considerable increase in computation time. To reduce computation time, AI 

methods are increasingly considered by the research community. Machine learning (ML) 

approaches as one specific category of AI methods allow to replace time-consuming 

simulations by predictive methods. The concept is also known as finding and applying a 

surrogate function. DL methods became popular to deal with complex problems and different 

types of data. Various architectures of Artificial Neural Networks (ANNs or simply NNs) 

accomplished different success rates in tackling different kind of tasks, such as detection and 

segmentation of objects in images or natural language processing. 

As a fundamental feedforward NN, commonly, the Multilayer Perceptron (MLP) is used for 

various problems. Here, single values are stored within connected computational nodes 

organized in (hidden) layers and processed in one direction. The choice of the number of layers 

is one crucial part of establishing an individual NN suitable for solving a given task. The 

network’s principle is mapping a given input to the desired output, that is to say, a classified 

label. During the network training, a backpropagation algorithm optimizes the network 

parameters and, thus, the networks output’s accuracy (Nielsen, 2015).  

To better deal with images in the form of matrices, Convolutional Neural Networks (CNNs) 

achieved a remarkable success. This kind of feedforward NN consists of several layers, each 

performing a set of computations. First, a kernel applies a convolution operation to the input 

matrix that results in a so-called feature map. Here, the kernel can be compared to a filter, while 

different kernels can compute multiple feature maps in parallel within one layer yielding a 

feature set. Next, a nonlinear activation function like the rectified linear unit (ReLU) function 

is applied to each feature map element. In a final step, the matrix dimensions can be reduced 

by a pooling operation, known as down-sampling, for instance, maximum pooling. This 

modification lowers the computational effort of the following layer. Moreover, CNNs can pick 

out and also detect patterns (features) within a given dataset (Goodfellow et al., 2016). 

To train a neural network, a sufficient amount of data is needed. Furthermore, optimization 

techniques can improve the training process of the network. Providing fewer data can lead to 

underfitting, while overfitting may occur by using the same training data too often and, thus, 

the network focuses intensively on these specific examples. Overfitting is why regularization 

methods like the dropout can enhance the network’s computations by simply varying the 

activated nodes almost randomly. This way, a forced uncertainty is brought into the model, and 

co-adaptions can be prevented and, thus, overfitting can be reduced (Srivastava et al., 2014). 

Batch normalization was discovered being useful for strengthening a network’s training process 

(Santurkar et al., 2018). Each layer's inputs are normalized before being passed on to the 

corresponding activation function in the following computational nodes. Consequently, the 

downside known as covariate shift is decreased and deep dependencies between multiple layers 

are relaxed. Besides, the need of regularization methods like dropout in a network may be 

reduced by integrating batch normalization (Ioffe et al., 2015). 

CNNs are a specific ML method particularly tailored for applications in image analysis. For 

instance, CNNs are able to detect and distinguish cell particles from non-cell particles (Nishida 

et al., 2018). In Brunton et al., 2020, an ML approach is presented that improves optimization 

and performance and flow control of calculations in fluid dynamics. Another example is an ML 

component-based approach supporting estimating a building’s heating- and cooling energy 

(Geyer et al., 2018). Moreover, the authors state an additional benefit of improving the 

understanding of complex energy calculations for specific parameters. 
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3. Methodology 

The hypothesis of this paper is that deep learning methods can understand the relationship 

between building information and simulation results, making it possible to replace simulations 

by real-time predictions. To achieve this, there are two main aspects that need to be identified: 

(1) how can the geometric and semantic information of the design be represented? (2) What 

type of simulation results are we trying to predict? The answers of these questions have a high 

influence on which neural network architecture is suitable, including which operations must be 

applied on the different layers. 

As this paper aims for replacing simulation results, it proposes a framework for an automatic 

generation of a training dataset as well as predicting the simulation results directly from the 

BIM representation and simulation parameters. Being part of the workflow shown in Figure 1, 

a parametric model was developed that is capable of generating a variety of train station models. 

The train station models include additional parameters that are necessary for performing the 

pedestrian simulation. Then, each BIM model is exported into IFC, where the geometry and 

semantics are processed to generate a simulation project file. In this paper, we generate project 

files that are of the same structure as of the crowd simulator Crowd:it2. Crowd:it uses the 

optimal steps model (OSM) (Seitz et al., 2012) for simulating the pedestrian’s behaviour. 

Afterwards, since the simulation parameters are already included in the BIM model, the 

simulation can run automatically with no manual interaction. Once the simulation is completed, 

the results are post-processed to produce density heatmaps, path traces, and evacuation times. 

This process is automatically repeated for design variant that is generated from the parametric 

model. The generated dataset of BIM models and simulation results is then used to train a neural 

network.  

 

Figure 1:   Workflow - conventional way vs. DL approach 

3.1 Parametric Models 

We developed a parametric model that allows an easy access to different model parameters for 

variation in the train station models, presented in Figure 2. Now, geometric parameters like the 

station’s length, the platform’s width, or the number of escalators can be easily adjusted in the 

BIM model without tremendous effort. In general, the number of datasets available is crucial 

for the training of a neural network. In our first attempt, we established in total 432 variations 

of generic train stations. The corresponding variation parameters are listed in Table 1. 

 

                                                 
2 https://www.accu-rate.de/en/software-crowd-it-en/ 
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Table 1:   Parameter values for generic train station variation 

Abbreviation Meaning Variations 

F Number of floors 2 

T Distance between train tracks 15, 25 

W Number of tracks 2, 3, 4, 5 

L Station length 150, 200, 250, 300 

H Floor height 15, 25 

E Number of escalators 1, 2, 3 

P Number of agents (per passenger coach) 5, 20, 50 

 

In addition to the variations, specific semantic information has to be set for the different objects 

within each train station to ensure an automatic processing of the model by the pedestrian 

simulation software. In particular, special zones must be marked in the model that, for example, 

marking agents’ spawn areas and destination. Moreover, the number of agents and a mapping 

of the object types to the simulation object types has to be also specified. Figure 2 shows an 

example of a parametric platform with four track lines, three escalators at each side, an elevator 

box in the middle, and two columns in between the track lines. Such building elements are 

translated into boundaries in the pedestrian simulator. 

  

 

Figure 2:   Tool to vary parameters (l.) that create a generic train station (r.) 

The toolset used to develop this parametric model are Autodesk Revit3 and Dynamo4. In this 

regard, the Deutsche Bahn RIL5 guidelines were investigated and transformed into logical code 

that is embedded in the dynamo graph. Such parametric model provides an adaptive train station 

design, where changing a parameter automatically propagates to the other parameters and 

regenerates the station design. For the purpose of this paper, as shown in Table 1, all the models 

were prepared with only two floors. The scenarios we are experimenting with expect that 

                                                 
3 https://www.autodesk.com/products/revit/overview?term=1-YEAR 
4 https://www.autodesk.com/products/dynamo-studio/overview 
5 https://www1.deutschebahn.com/sus-infoplattform/start/regelwerk 
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pedestrians will enter the train station via the train coaches and walk to the upper floor. The 

pedestrians choose the escalators as transition areas to reach the destination zone at the next 

floor directly after the end of each escalator. In each simulation run, the paths of the pedestrians 

are chosen according to the simulator’s internal logic. Each simulation will end as soon as the 

last agent has reached the destination zone. 

3.2 Floor Representation and Neural Network 

To provide an understandable representation of the different object types for training a neural 

network, we propose the combination of a colour-labelled floorplan and a vector of meta-data 

(represented by variation parameters in Table 1). For instance, spawning zones are marked in 

pink while walkable areas are coloured with white, see Figure 3. As the corresponding output, 

the simulator crowd:it post-processes the simulation results and produces mean density 

heatmaps (i.e. average of agents per area) and tracing maps according to the selected routes by 

the agents. Figure 4 depicts an example of generated heat map is illustrated, where mean 

densities are coloured in blue, the darker the colour, the higher the mean density (brighter zone 

colour in spawn zones). The agents’ traces in orange colour can be seen in Figure 4. 

 

Figure 3:   Floorplan representation with colouring 

 

Figure 4:   Heat map (l.) and tracing map (r.) examples with 5 agents per passenger coach 

4. Neural Network Architecture  

Although many different approaches for applying ML in this context are conceivable, in this 

paper, the focus is on using an image representation as an input and predict an image with 

densities and traces as output. Hence, we build upon the architecture of U-Net (Ronneberger et 

al., 2015), a fully convolutional network, where pooling operators are replaced with upsampling 

operators, which improves training performance and the resolution of the output. Additionally, 

U-Net implements skip connections between the layers and then combines them with a 

concatenation layer.  

Our implementation extends the U-Net architecture by an additional input layer for the meta-

data that includes the station dimensions and the pedestrian simulation parameters. In this 

regard, the placement of the meta-data input layer should be carefully done to avoid 

encountering the Vanishing Gradient problem (Hochreiter, 1998). We optimize our network 

using minibatch SGD and we apply the Adam solver (Kingma et al., 2014), with a learning rate 

of 0.002, and momentum parameters β1 = 0.5, β2 = 0.999, following the recommendations 

provided by Isola et al., 2017. At inference time, we apply dropout and batch normalization 

(Ioffe et al., 2015). Figure 5 presents the network architecture. It expects images with a 
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resolution of 1024 * 1024, and produces images with the same size. In between, there is a set 

of downsampling and upsampling operations are extracting the different features from the 

image. In the middle, right after flattening the image, the second input of the meta-data is 

provided and concatenated with the extracted features. The lines between the sampling 

operations point to the concatenated features passed from each side. 

 

Figure 5:   Neural network architecture 

5. Neural Network Results & Evaluation  

The training process started by splitting the dataset into training and testing. The dataset size is 

432 projects with their simulation results, where 20% (87 projects) were used for testing. Before 

starting the training process, we have applied data augmentation, including resizing, cropping 

and rotating to double the amount of training data to 690 projects. To the ensure the model 

performance during training, 20% of the training data was used for validation in every epoch. 

The training used a batch size of four and ran for 300 epochs. The loss function used to quantify 

the quality of the predicted heatmaps and traces in comparison to the ground truth during 

training and validation we used the mean absolute error (MAE) per pixel (Asamoah et al., 

2018). Figure 6 shows the MAE per pixel of both, training and validation datasets for the 

training on generating images with heatmaps. In this regard, the error on both sets became less 

than 0.05 relatively fast (after few epochs). From our observations during training, we noticed 

that from epoch 20 the predicted images started to generate heatmaps over the right position, 

however, the density of those heatmaps was low. At epoch 300, the density of the generated 

heatmaps became fairly comparable to the ground truth by the human eye. Which highlights 

the need for human’s perception in addition to the MAE per pixel to identify the quality of the 

predictions. 
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Figure 6:   Heatmap – MAE per pixel 

 

 

Figure 7:   Heatmap – results case 1 (t.) and case 2 (b.) 

The prediction of images from the test set are shown in Figure 7, comparing the input floorplan 

and meta-data, ground truth, and the predicted image. The predicted image in the first case has 

a similar overall distribution, however, the density at the start of the right stair is less than the 

ground truth. While in the second case, the predicted image has a slightly denser heatmap than 

the ground truth. Afterwards, the same process was repeated for training the network on tracing 

maps, with the same network parameters and loss function. As tracing maps include detailed 

lines for the different pedestrians, the MAE per pixel is higher than in the case of heatmaps (see 

Figure 8).  

The predicted tracing maps from the test set are shown in Figure 9, comparing the input 

floorplan and meta-data, ground truth, and the predicted image. In both cases, the network was 

able to predict reasonable patterns that are close to the ground truth. However, similarly to the 

heatmaps, the densities deviate. 

Overall, the network was able to understand the relation of the input (floorplan + meta-data) to 

the simulation results (heatmaps and tracing maps). This is shown by predicting different results 

for different stairs width and number of pedestrians. However, as shown in the training and 

validation loss figures, increasing the dataset has a high potential for improving the results. 

Additionally, a different loss function, other than the MAE per pixel, could provide more 

reasonable assessment for the quality of the predicted images.  
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Figure 8:   Tracing map – MAE per pixel 

 

 

Figure 9:   Tracing map – results case 1 (t.) and case 2 (b.) 

6. Conclusion & Future Work 

In this paper, we presented initial results of providing real-time results for a given train station 

geometry concerning pedestrian behaviour. Conventional pedestrian simulations can easily 

become very expensive in computation time. In our approach, training a CNN with image data 

of the BIM model, we took a first look into practical results for predicting mean densities of 

pedestrians and their tracing. The approach shows promising results and will be investigated 

further. In the first place, we clearly see the possibility of using more complex data. That is to 

say, generic train stations provide similar and rather simple geometric information. As a 

consequence, remarkable changes in the design may not be considered or understood by the 

network. Improvements within a predictive tool for pedestrian behavior as presented in this 

paper can lead to an easy access evaluation of bottlenecks caused by a building environment 

that is still in design. Thus, an optimal design solution can be developed with less computational 

effort and remarkable savings in project time. 
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