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Why Mixed-Precision?

Speedup may result from:
¢ higher effective vectorization
¢ reduced bandwidth
¢ holding data in lower caches

H Name ‘ Common name ‘ Significand bits  Exponents bits Maximal exponent H
bfloat 16 bf16 7 8 127
IEEE binary 16 half precision 10 5 15
IEEE binary 32 single precision 23 8 127
IEEE binary 64 double precision 52 11 1023
IEEE binary 128 | quadruple precision 112 15 16383

The respective distribution of bits in different signed floating-point formats
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Why Mixed-Precision?

D. Demidov et. al:

Velocity Magn (um/s)

¢ Simulation of Stokes problem using linear
solver

® Speedup factor of 4

* Memory footprint reduced by 50%

Stokes velocity field of the unit
cube problem as depicted in !

D. Demidov et. al. Accelerating linear solvers for Stokes problems with C++
metaprogramming. J. Comput. Sc. 49 (2021)



Why Mixed-Precision?

Prims, Acosta et. al:

e Simulation of ocean models
using a reduced-precision
emulator

® "an improper reduction can lead
to accuracy losses that may
make the results unreliable"

- 15
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Monthly mean difference in sea surface
temperature (single precision minus refer-
ence) as depicted in 2

2Prims et. al. How to use mixed precision in ocean models: exploring a potential reduction of
numerical precision in NEMO 4.0 and ROMS 3.6. Geosci. Model Dev., 12, 3135-3148, 2019.

https://doi.org/10.5194/gmd-12-3135-2019
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“Mixed and Variable Precision for an Exascale
Hyperbolic PDE Engine”

Project funded by the German Research Foundation (project No. 462423388).

Agenda for this talk:
e Main focus will on stability and convergence, not speedup
¢ Qverall impact of precision
e Effect of mixed-precision approaches
e Variable-precision
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ExaHyPE — an “Exascale PDE Engine”

Goal: a PDE “engine” (as in “game engine”) ~» Reinarz et al.®

¢ Fixed numerics and mesh infrastructure, but stay flexible w.r.t. PDE
(focus on hyperbolic conservation laws and high-order DG)

¢ [ oad balancing and adaptive mesh refinement via Peano4

atmospheric flows relativistic astrophysics earthquake dynamic rupture
(Durham University)

3Reinarz et. al., ExaHyPE: An engine for parallel dynamically adaptive simulations of wave
problems. Comp. Phys. Comm. 254, 2020. https://doi.org/10.1016/j.cpc.2020.107251



ADER-DG

[ [ [
® High-order hyperbolic PDE solver
* Discontinuous Galerkin with ADER ® ® e

time stepping

® Piecewise polynomials within cells
* One data exchange per timestep ® ® °
* Predictor-Corrector scheme

[ [ [

/Q,U*q)dx:/F*Vvq)dxf}{ F$)-Hds
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Predictor
S
. 1)
* Expansion of cell-local polynomial . * N
in time . , . *
® Projection of the expansion to cell * N * .
faces * ) .
[} N ]
® Integration of expansion for local . . {
°
update . . ’
This corresponds to a volume integral . \ { N
of the problem over the cell . . \
N : xuapolaﬂg
\ ime
/a,u*¢dx=/F*v.¢dx—f(F*¢)-ﬁds @)
—_—
Predictor
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Corrector
[ [ [ [
® Solving of Riemann problem at the
cell faces C e e ®
® Integration of Riemann fluxes over
all faces
This corresponds to a surface integral ® ® ® ®
of the problem over the cell boundary
[ J [ J [ J [ J
/a,umdx:/F*v.qadx—yf(F*(p)-ﬁds 3)
Corrector
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Implementation

Template_kernelgenerator_linear_no_ps = """

//linear, ne peintSources

generated: :kernels: :AderDG: : spaceTimePredictor<
{{SOLUTION_STORAGE_PRECISION}},
{{PREDICTOR_COMPUTATION_PRECISIONS}},

* Templating of all utilized kernels {{CORRECTOR_COMPUTATION PRECISION}}>(

® Persistent storage
9 repositories: :{{SOLVER_INSTANCE}},

® Precomputed matrices for DG lduh, 1ghbnd, 1Fhbnd,
. . . ) i, Fi, 1si,
e User-defined functions in various W0hi, 1Fhi, 1Shi,
precisions %rﬁdu, nullptr, nullptr,
un,
marker.x(), marker.h(), t, dt,
nullptr
)
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Research questions

1. How does numerical precision affect the underlying polynomial
representation?

® |nitial conditions
e Static scenarios

2. How does numerical precision affect the convergence of the method?
Can we make effective use of mixed-precision?
4. How about variable precision?

g
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Elastic Planar Waves

® Linear elastic wave equation

® Sinusoidal starting conditions
propagate through the domain
without deformation

* We simulate two traversals of the
entire domain

e Orders 2 through 9, cell sizes
0.074 or 0.22

The planar-wave initial condition used for
verification of both the acoustic and elastic
equations. cos(—mx(x+Yy))
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Elastic Planar Waves
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e Errors stay roughly the same independently of cell size or order
® 16-bit error larger than 32-bit error
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Euler Gaussian Bell

e Euler equations: fluid dynamics
neglecting viscosity and heat

¢ |nitial Gaussian in the density
propagates without deformation

e We simulate two full grid traversals

e Orders 2 through 9, cell sizes
0.074 or 0.22

The gaussian bell initial condition used for
verification of the Euler equations.
0.02 % (1 + 6_50*(X2+y2))
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Euler Gaussian Bell
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e Errors still roughly constant

e All errors about 1 magnitude lower than planar-waves
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polynomial order
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SWE Resting Lake

e Shallow water equations simulate
movement of a shallow fluid

® Constant water height over
sinusoidal bathymetry

® evaluate whether numerical
treatment is "well balanced"

The sinusoidal initial condition used for
verification of the shallow water equations.
sin(2xwx (x+y))
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SWE Resting Lake

fp16 bf16
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Euler Isentropic Vortex

® Euler equations

e Rotation around center of the
domain

e Each point in the vortex transmits
as much fluid as it receives

1.98[

* High-order methods should not
contribute numerical dissipation

The density vortex used for verification of the
Euler equations.

3Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J.
Comput. Phys. 150, 97-127 (1999)



Euler Isentropic Vortex

fp32

fp16 bf16
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Lagrange Polynomials and Discontinuities

Runge-phenomenon: discontinuities cause oscillations

—— interpolation of f(x)
— f(x)

integral of f(x)
error in the integral

Interpolation of a non-polynomial function using Gauss-Legendre nodes. This exhibits
Runge-oscillation.
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Lagrange Polynomials and Numerical Precision
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Detail of the Lagrange polynomial representation of a Gaussian function at
Gauss-Legendre nodes with the values at the nodes computed in different precisions
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Lagrange Polynomials and Numerical Precision
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Detail of the Lagrange polynomial representation of a sinus function at
Gauss-Legendre nodes with the values at the nodes computed in different precisions
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How does Numerical Precision affect
Convergence?

e Constant precision over entire algorithm
* Numerical error as a function of cell size and polynomial order
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Elastic Planar Waves

¢ fp64 and fp32 converge

* fp16 breaks, but
mixed-precision can
restore stability

® Neither bf16 nor fp16
converge, both
produce large errors
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Euler Gaussian Bell
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Mixed-Precision

e Order 5, 27x27 cells
e Default fp64 precision
* One of storage, predictor, corrector or picard iterations in lower precision
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Mixed-Precision
Elastic Euler
prec || predictor | corrector | storage | predictor | corrector | storage | Picard
bf16 || 4.50e " | 1.84e " | 7.58e T | 1.42¢" NAN NAN 9.34e72
fp16 NAN 1.35e72 | 2.12¢~" | 3.20e2 | 2.08¢72 | 2.12¢72 | 2.22¢72
fp32 || 1.58e5 | 1.61e® | 1.54e 5 | 2.65¢° | 1.62¢ ¢ | 2.48¢7 6 | 2.50¢°°
fp64 1.66e 1* 6.56e~7

* bf16 least accurate, followed by fp16, then fp32
e However in the linear equations, bf16 is more stable than fp16
¢ Predictor and storage have largest overall impact
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Mixed-Precision
SWE resting lake Euler isentropic vortex
prec || predictor | corrector | storage Picard predictor | corrector | storage Picard
bf16 || 2.37¢ 01 NAN 4.49¢ 701 NAN NAN NAN NAN 1.55¢ 01
fp16 NAN NAN 5.53¢°02 NAN NAN 1.84e7 01 | 45501 | 2.92¢ 02
fp32 || 1.23e % | 5786 95 | 3.566 %6 | 3.55¢7 %5 | 4.30e % | 2.46e %5 | 8.19¢ %% | 1.03¢ %
fp64 7.44e 12 6.86e %

¢ Both bf16 and fp16 are broadly unstable
® Picard iterations have lowest impact

* Mixed-precision results are better than low-precision, but worse than
high-precision
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Variable Precision and the HHS1 Benchmark

20 000 m X 26 000 m

26 000 m )
epicenter p . ] : oo
20000m ©0.011 2 > 4

e ¥

(0,0, 693)|
® Elastic-wave propagation
e Singular point source in an infinite

domain oo

* Free surface at the top
® Here order 5, cell size 0.11 M

Geometry of the HHS1 problem as defined in
the SISMOWINE collection
(http://www.sismowine.org/)
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In fp64

—reference
—  fpb64
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In bf16

—reference ]
— fp64

1.5 2
—reference ]
—  bf16é

1.5 2
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HHS1

® 4 |ayers of fp64 cells on top
® 23 layers of bf16 cells below
® about 15% of domain in fp64
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In Variable Precision
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Profiling

® Running code in fp32 reduces runtime by about 25% as compared to fp64

e Main improvement from fewer memory-bound pipelines, about 50%
reduction

* Required memory for cell-data for HHS1 shrinks from about 408MB to
204MB
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In Conclusion

¢ Numerical precision matters

e Unstable scenarios require higher precisions, but benefit less from
increases to precision

¢ |n stable scenarios, particularly for lower polynomial orders, lower
precisions are sufficient

* Mixed precision approaches can’t always replace high-precision, but help
with stability and improve results as compared to purely low-precision

Thank you for your attention
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