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Why Mixed-Precision?

Speedup may result from:
• higher effective vectorization
• reduced bandwidth
• holding data in lower caches

Name Common name Significand bits Exponents bits Maximal exponent

bfloat 16 bf16 7 8 127
IEEE binary 16 half precision 10 5 15
IEEE binary 32 single precision 23 8 127
IEEE binary 64 double precision 52 11 1023

IEEE binary 128 quadruple precision 112 15 16383

The respective distribution of bits in different signed floating-point formats
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Why Mixed-Precision?

D. Demidov et. al:
• Simulation of Stokes problem using linear

solver
• Speedup factor of 4
• Memory footprint reduced by 50%

Stokes velocity field of the unit
cube problem as depicted in 1

1D. Demidov et. al. Accelerating linear solvers for Stokes problems with C++
metaprogramming. J. Comput. Sc. 49 (2021)



Why Mixed-Precision?

Prims, Acosta et. al:
• Simulation of ocean models

using a reduced-precision
emulator

• "an improper reduction can lead
to accuracy losses that may
make the results unreliable"

Monthly mean difference in sea surface
temperature (single precision minus refer-
ence) as depicted in 2

2Prims et. al. How to use mixed precision in ocean models: exploring a potential reduction of
numerical precision in NEMO 4.0 and ROMS 3.6. Geosci. Model Dev., 12, 3135–3148, 2019.
https://doi.org/10.5194/gmd-12-3135-2019



“Mixed and Variable Precision for an Exascale
Hyperbolic PDE Engine”

Project funded by the German Research Foundation (project No. 462423388).

Agenda for this talk:
• Main focus will on stability and convergence, not speedup
• Overall impact of precision
• Effect of mixed-precision approaches
• Variable-precision
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ExaHyPE – an “Exascale PDE Engine”
Goal: a PDE “engine” (as in “game engine”)⇝ Reinarz et al.3

• Fixed numerics and mesh infrastructure, but stay flexible w.r.t. PDE
(focus on hyperbolic conservation laws and high-order DG)

• Load balancing and adaptive mesh refinement via Peano4

atmospheric flows relativistic astrophysics earthquake dynamic rupture
(Durham University)

3Reinarz et. al., ExaHyPE: An engine for parallel dynamically adaptive simulations of wave
problems. Comp. Phys. Comm. 254, 2020. https://doi.org/10.1016/j.cpc.2020.107251



ADER-DG

• High-order hyperbolic PDE solver
• Discontinuous Galerkin with ADER

time stepping
• Piecewise polynomials within cells
• One data exchange per timestep
• Predictor-Corrector scheme

∫
∂t U ∗φ dx =

∫
F ∗∇ ·φ dx −

∮
(F ∗φ) ·−→n ds (1)

Marot-Lassauzaie, Bader | PASC 24 | Mixed-precision in High-order Methods | June 5th, 2024 7



Predictor

• Expansion of cell-local polynomial
in time

• Projection of the expansion to cell
faces

• Integration of expansion for local
update

This corresponds to a volume integral
of the problem over the cell

tim
e extrapolation ->

∫
∂t U ∗φ dx =

∫
F ∗∇ ·φ dx︸ ︷︷ ︸
Predictor

−
∮
(F ∗φ) ·−→n ds (2)
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Corrector

• Solving of Riemann problem at the
cell faces

• Integration of Riemann fluxes over
all faces

This corresponds to a surface integral
of the problem over the cell boundary

∫
∂t U ∗φ dx =

∫
F ∗∇ ·φ dx −

∮
(F ∗φ) ·−→n ds︸ ︷︷ ︸

Corrector

(3)
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Implementation

• Templating of all utilized kernels
• Persistent storage
• Precomputed matrices for DG
• User-defined functions in various

precisions
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Research questions

1. How does numerical precision affect the underlying polynomial
representation?
• Initial conditions
• Static scenarios

2. How does numerical precision affect the convergence of the method?
3. Can we make effective use of mixed-precision?
4. How about variable precision?
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Elastic Planar Waves

• Linear elastic wave equation
• Sinusoidal starting conditions

propagate through the domain
without deformation

• We simulate two traversals of the
entire domain

• Orders 2 through 9, cell sizes
0.074 or 0.22
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The planar-wave initial condition used for
verification of both the acoustic and elastic
equations. cos(−π ∗ (x +y))
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Elastic Planar Waves
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• Errors stay roughly the same independently of cell size or order
• 16-bit error larger than 32-bit error
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Euler Gaussian Bell

• Euler equations: fluid dynamics
neglecting viscosity and heat

• Initial Gaussian in the density
propagates without deformation

• We simulate two full grid traversals
• Orders 2 through 9, cell sizes

0.074 or 0.22
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The gaussian bell initial condition used for
verification of the Euler equations.
0.02∗ (1+e−50∗(x2+y2))
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Euler Gaussian Bell
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• Errors still roughly constant
• All errors about 1 magnitude lower than planar-waves
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SWE Resting Lake

• Shallow water equations simulate
movement of a shallow fluid

• Constant water height over
sinusoidal bathymetry

• evaluate whether numerical
treatment is "well balanced"
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The sinusoidal initial condition used for
verification of the shallow water equations.
sin(2∗π ∗ (x +y))
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SWE Resting Lake

fp64 fp32

fp16 bf16
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Euler Isentropic Vortex

• Euler equations
• Rotation around center of the

domain
• Each point in the vortex transmits

as much fluid as it receives
• High-order methods should not

contribute numerical dissipation
−4 −2 0 2 4 −5
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1.98
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The density vortex used for verification of the
Euler equations.

3Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J.
Comput. Phys. 150, 97-127 (1999)



Euler Isentropic Vortex

fp64 fp32

fp16 bf16
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Lagrange Polynomials and Discontinuities
Runge-phenomenon: discontinuities cause oscillations

Interpolation of a non-polynomial function using Gauss-Legendre nodes. This exhibits
Runge-oscillation.
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Lagrange Polynomials and Numerical Precision

Detail of the Lagrange polynomial representation of a Gaussian function at
Gauss-Legendre nodes with the values at the nodes computed in different precisions
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Lagrange Polynomials and Numerical Precision

Detail of the Lagrange polynomial representation of a sinus function at
Gauss-Legendre nodes with the values at the nodes computed in different precisions
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How does Numerical Precision affect
Convergence?

• Constant precision over entire algorithm
• Numerical error as a function of cell size and polynomial order

Marot-Lassauzaie, Bader | PASC 24 | Mixed-precision in High-order Methods | June 5th, 2024 23



Elastic Planar Waves

• fp64 and fp32 converge
• fp16 breaks, but

mixed-precision can
restore stability

• Neither bf16 nor fp16
converge, both
produce large errors
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Euler Gaussian Bell

• fp64 still converges
• fp32 stays nearly

constant
• fp16 remains stable but

does not converge
• bf16 cannot resolve the

equation
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Mixed-Precision

• Order 5, 27x27 cells
• Default fp64 precision
• One of storage, predictor, corrector or picard iterations in lower precision
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Mixed-Precision

Elastic Euler
prec predictor corrector storage predictor corrector storage Picard
bf16 4.50e−1 1.84e−1 7.58e−1 1.42e−1 NAN NAN 9.34e−2

fp16 NAN 1.35e−2 2.12e−1 3.20e−2 2.08e−2 2.12e−2 2.22e−2

fp32 1.58e−5 1.61e−6 1.54e−5 2.65e−6 1.62e−6 2.48e−6 2.50e−5

fp64 1.66e−14 6.56e−7

• bf16 least accurate, followed by fp16, then fp32
• However in the linear equations, bf16 is more stable than fp16
• Predictor and storage have largest overall impact
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Mixed-Precision

SWE resting lake Euler isentropic vortex
prec predictor corrector storage Picard predictor corrector storage Picard
bf16 2.37e−01 NAN 4.49e−01 NAN NAN NAN NAN 1.55e−01

fp16 NAN NAN 5.53e−02 NAN NAN 1.84e−01 4.55e−01 2.92e−02

fp32 1.23e−04 5.78e−05 3.56e−06 3.55e−05 4.30e−05 2.46e−05 8.19e−05 1.03e−05

fp64 7.44e−12 6.86e−06

• Both bf16 and fp16 are broadly unstable
• Picard iterations have lowest impact
• Mixed-precision results are better than low-precision, but worse than

high-precision
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Variable Precision and the HHS1 Benchmark

• Elastic-wave propagation
• Singular point source in an infinite

domain
• Free surface at the top
• Here order 5, cell size 0.11

Geometry of the HHS1 problem as defined in
the SISMOWINE collection
(http://www.sismowine.org/)
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In fp64
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In bf16

0 0.5 1 1.5 2
−40

0

40

vx

reference
fp64

0 0.5 1 1.5 2
−40

0

40

vx

reference
bf16

Marot-Lassauzaie, Bader | PASC 24 | Mixed-precision in High-order Methods | June 5th, 2024 31



HHS1

• 4 layers of fp64 cells on top
• 23 layers of bf16 cells below
• about 15% of domain in fp64
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In Variable Precision
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Profiling

• Running code in fp32 reduces runtime by about 25% as compared to fp64
• Main improvement from fewer memory-bound pipelines, about 50%

reduction
• Required memory for cell-data for HHS1 shrinks from about 408MB to

204MB
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In Conclusion

• Numerical precision matters
• Unstable scenarios require higher precisions, but benefit less from

increases to precision
• In stable scenarios, particularly for lower polynomial orders, lower

precisions are sufficient
• Mixed precision approaches can’t always replace high-precision, but help

with stability and improve results as compared to purely low-precision

Thank you for your attention
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