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Abstract: We present fully compressible simulations of spherical vapor bubble collapses in viscoelastic 
fluids. A density based finite volume solver with explicit time integration and different viscoelastic 
constitutive models is employed to show the influence of elasticity and the distinct collapse behavior 
obtained with different viscoelastic models.  
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1. Introduction 

Already in 1970 [1] revealed that viscoelasticity can have crucial influence on the bubble collapse and 
ascertained that it can be retarded and oscillatory motion initiated by the viscoelastic contribution of the 
Maxwell fluid surrounding a void. Especially in biomedical processes such as histotripsy and lithotripsy, 
where bubble dynamics often occur in viscoelastic media, one has to include its influence. Several studies 
revealed an noticeable effect of viscoelasticity on the bubble collapse behavior[2]–[6]. Furthermore [7], [8] 
examined bubble dynamics in viscoelastic media and found out that compressibility affects the dynamics 
as well. All of the aforementioned studies are conducted on the basis of  1D formulations of the governing 
equations and the assumption of incompressibility at least of the liquid in the vicinity of the bubble (see 
[7], [8]) by describing the dynamics with a formulation similar to the Rayleigh-Plesset or Keller-Miksis 
equation [9], [10]. Comparisons of our fully compressible 3D simulations show significant deviations from 
those obtained with such 1D approaches what led us to conduct various simulations of the spherical bubble 
collapse for different viscoelastic models and material parameters.  

2. Model and numerical method 

We apply the conservation equations for 3D compressible barotropic flow, namely the mass and 
momentum conservation equation together with an Oldroyd-like viscoelastic constitutive model. The 
governing differential equations read  

∂ρ
∂t + div

(ρ𝐮) = 0 

∂(ρ𝐮)
∂t + 	div(ρ𝐮⨂𝐮) = 	div/−p𝐈 + 2µ!𝐃" + 𝛕#7	

𝛕# + λ𝛕9# + f/𝛕#, 𝐃"7𝛕# = 2µ#𝐃", 

(1) 

where ρ, p and 𝐮 represent the density, the pressure and the velocity, respectively. 𝐃" is the deviatoric 
part of the strain rate tensor. µ! describes the solvent viscosity. The viscosity of the polymeric liquid µ# is 
denoted as Maxwell viscosity and is responsible for the viscoelastic contribution. 𝛕# represents the stress 
tensor of the Maxwell part of the constitutive model. Via the additional term f/𝛕#, 𝐃"7, the simplified 
linear Phan-Thien Tanner model (LPTT) [11] and the simplified exponential Phan-Thien Tanner model 
(EPTT) [12] are implemented. Both originate from the network theory and incorporate shear-thinning 
effects and a bounded extensional viscosity. For the LPTT the additional term reads f = ϵλ𝑡𝑟(𝛕!)/µ! 



CAV2021 
11th International Symposium on Cavitation 

May 10-13, 2021, Daejon, Korea 
 

and for the EPTT it is defined as f = exp(ϵλ𝑡𝑟(𝛕!)/µ!) − 1, where ϵ represents the extensibility 
parameter. If the additional term f is neglected the Oldroyd-B (OLD-B) model [13] is regained. 
Furthermore, when we omit the solvent viscosity (µ! = 0), we retrieve the upper convected Maxwell 
model (UCM). 𝛕9# represents an objective time derivative of the additional Maxwell stress. The 
appropriate objective rate in the context of compressible flow is the Truesdell rate 

𝛕9# =
D𝛕#
Dt − ∇𝐮 ⋅ 𝛕# − 𝛕# ⋅ ∇𝐮

$ + (∇ ⋅ 𝐮)𝛕#. (2) 

All mentioned quantities within the conservative equations can be understood as volume averaged 
homogenous water-vapor mixture quantities since we make use of a single-fluid where both phases are in 
mechanical and thermodynamic equilibrium and do not exhibit time delay in evaporation and 
condensation. The mixture density is composed of vapor and liquid density as follows 

ρ = αρ% + (1 − α)α&. (3) 

The pressure is calculated dependent on the current phase composition. For pure liquid a modified Tait 
equation is employed. If two phases are present, we exploit the barotropic definition of speed of sound to 
obtain the pressure by integration as performed in [14]. 

The spatial discretization follows a finite volume framework where the convective and diffusive (viscous) 
fluxes at the cell faces are treated separately. For the convective fluxes an upwind-biased approximate 
Riemann solver is applied [15], [16]. The diffusive fluxes are calculated by a central-difference scheme. 
Explicit time integration is performed by a four step Runge-Kutta method as explained in [17] in order to 
resolve compressible wave dynamics and corresponding effects. The time step calculation is adapted due 
to the wave speeds modified by viscoelasticity.    

3. Results 

We exploit the spherical symmetry and conduct our simulations on one eighth of the bubble. The 
bubble is discretized with a resolution of 50 cells per radius. We define the following dimensionless 
numbers to describe viscoelastic bubble collapse 

Re =
R'DρΔp	

µ'
, De =

λ	
R'
F
Δp
ρ , 

β =
µ!
µ'
, (4) 

where the Reynolds number 𝑅𝑒 is calculated with the combined viscosity of solvent (Newtonian) and 
Maxwell viscosity 𝜇' = 𝜇( + 𝜇). The Deborah number 𝐷𝑒 characterizes the elastic influence, i.e. high 
Deborah numbers are related with a long relaxation time and a strong elastic contribution. 𝛽 puts the 
solvent in relation to the total viscosity. For all the simulations with solvent viscosity, a value of 𝛽 = 0.1 is 
used like commonly done in existing studies. By using the UCM model, solvent viscosity is not existent 
and 𝛽 is obsolete. 

Firstly, we show the evolution of the bubble size for the UCM viscoelastic model and Newtonian fluid 
with Re = De = 1 . In Fig. 1 the nondimensionalized radius r∗ = r/R'  of the bubble is plotted against 
dimensionless time t∗ = t/T'  with T' = R'Dρ/Δp . For the UCM model it is possible to solve the 1D 
Rayleigh-Plesset and the Keller-Miksis equation with the help of an ODE-based solver, too. Thus, we show 
the results of 1D simulations performed with the ODE solver and the 3D results of our solver for this 
particular case. The evolution of the bubble size shows clear differences when comparing the Newtonian 
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and the viscoelastic case. Besides, it is observable that the results of the 3D simulations clearly deviate from 
those obtained with the 1D approach. The differences could possibly be traced back to the neglection of 
compressible effects within the 1D equations. By using the Rayleigh-Plesset equation compressible effects 
are completely neglected whereas in the Keller-Miksis equation, compressibility is considered in the far-
field of the bubble and the near-field is treated as incompressible.  

 
Figure 1. Influence of viscoelasticity on the bubble collapse. Evolution of nondimensional bubble radius for 

Newtonian (Re = 1) against UCM viscoelastic fluid (Re = 1, De = 1). Fully compressible 3D simulations are compared 
with results obtained by 1D simulations obtained with the Rayleigh-Plesset and the Keller-Miksis formulation, 
respectively.   

Subsequently, we examine the influence of viscoelasticity on the bubble collapse for the UCM and the 
OLD-B fluid. In Fig. 2 the evolution of the bubble size is presented for different Deborah numbers, i.e. for 
different elasticities. As already stated in [6], we can also observe that a rebound is only occurring for a 
narrow band of the product of ReDe. Hence, we exclusively show the results for ReDe~1, too.  
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Figure 2. The influence of elasticity (relaxation time) on the bubble collapse. Evolution of the bubble radius 
for UCM (black) and OLD-B (blue) model at fixed Re = 1 for three different Deborah numbers.  

We can ascertain that increasing the elasticity (De ↑) leads to an acceleration of the first collapse. This 
is reasonable since the buildup of the polymeric stress is retarded and therefore less viscous dissipation 
takes place. At the same time, an increased relaxation time leads to larger maximum values of the radius 
after the first rebound since less energy is dissipated and the fluid is able to store more elastic energy. 
Besides that, the OLD-B fluid exhibits a slower collapse in the initial stages. This can be traced back to the 
nature of the model where a viscous force is already initially present in contrast to the UCM fluid. For all 
parameters the collapse of the OLD-B fluid shows smaller rebound radii for the rebounds. For a small 
relaxation time (De = 0.5) there is even no rebound observable at all for OLD-B while the UCM still exposes 
rebounds and a much slower compression of the vapor bubble. For the UCM fluid we examine the influence 
of elasticity on the intensity of the collapse in more detail in terms of the magnitude of velocity right after 
the first rebound (t = 4 ⋅ 10+,	s) in Fig. 3. We can clearly see that the velocities during the first rebound are 
much higher with increasing elasticity.  

 
(a) 

 
(b) 

 
(c) 

Figure 3. Contour of the magnitude of velocity ‖𝐮‖ right after the first collapse (t = 4 ⋅ 10!"	s) for three 
different elasticities at Re = 1 (slices through the center of the bubble). (a) De = 1,	(b) De = 0.5, (c) De = 2. 

 
Figure 4. Bubble collapse behavior for the different implemented viscoelastic models at Re = 1, De = 1. 
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Finally, a comparison of the collapse behavior for the different implemented viscoelastic models at 
Re = 1, De = 1 is shown in Fig. 4. The behavior of the LPTT/EPTT models is of particular interest since 
these models predict shear-thinning of the viscosity and the first normal stress difference. Both models are 
based on the network theory. The reason for the shear-thinning property is the destruction of junctions 
within the polymer network. For the PTT models, an extensibility parameter of ϵ = 0.25 was chosen. The 
shear-thinning behavior involves decreased damping, especially at the later stages of the collapse, since the 
viscosity is decreased with increasing shear rate. Due to the decreased viscosity the collapse mimics the 
behavior of an inertia dominated Rayleigh collapse at the end of the first collapse. The shear-thinning is 
even more emphasized in the case of the EPTT since an exponential term is used to modify the Maxwell 
stress transport equation. 
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