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Ome of the things that just blows me away about universities is that
no one ever tells students why they should write something.

"Write this assignment.” But why are you writing?

Well, you need the grade. No! You need to learn to think.

Because thinking makes you act effectively in the world.

Thinking makes you win the battles you undertake. [. .. ]

It is the most powerful weapon you could possibly provide someone with.

— Jordan B. Peterson®

1 During Lecture 6: Story and MetaStory (Part 2) of 2017 class Maps of Meaning: The
Architecture of Belief.






ABSTRACT

The ever-rising complexity of product requirements raises chal-
lenges in the development process: complex technical problems
must be solved in the concept phases with an often incomplete or
uncertain set of information. For instance, the recent introduction
of a new legform impactor for pedestrian protection, called aPLI,
represents an additional challenge in the design of the vehicle
front-end. Not designing a robust concept may generate major
issues in the subsequent development phases. I propose a method
to support the concept designers of the vehicle front-end with
guidelines that offer flexibility of design, while fulfilling the sys-
tem requirements for pedestrian leg impact. The guidelines are
based on a computationally-efficient low-fidelity model of the
front-end and represent, mathematically, multiple axis-aligned
boxes, lying in the feasible region of the design space. They em-
power the designers with know-how on the required structural
properties of the front-end sub-systems. Offering multiple compro-
mises among the required properties, this know-how can greatly
help to reduce future design iterations. Despite the significant
computational effort in high-dimensional spaces, the proposed
method was successfully applied on an industrial design problem.

ZUSAMMENFASSUNG

Die standig steigende Komplexitdat der Produktanforderungen
stellt den Entwicklungsprozess vor Herausforderungen: komplexe
technische Probleme miissen in den Konzeptphasen mit hdufig un-
vollstandigen oder unsicheren Informationen gelést werden. Bei-
spielsweise stellt der kiirzlich eingefiihrte Bein-Impaktor fiir den
Fufigdngerschutz aPLI eine zusétzliche Herausforderung bei der
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Gestaltung der Fahrzeugfront dar. Wenn kein robustes Konzept
ausgelegt wird, kann dies in den nachfolgenden Entwicklungspha-
sen zu erheblichen Problemen fiihren. Ich schlage eine Methode
vor, um die Konzeptdesigner der Fahrzeugfront mit Richtlinien zu
unterstiitzen, die Flexibilitdt bei der Auslegung bieten und gleich-
zeitig die Systemanforderungen fiir den Aufprall von Fufigdngern
erfiillen. Die Richtlinien basieren auf einem rechnerisch effizienten
Low-Fidelity-Modell der Fahrzeugfront und entsprechen mathe-
matisch mehreren achsenorientierten Boxen, die im zuldssigen
Bereich des Entwurfsraums liegen. Sie vermitteln den Designern
Know-how {iber die erforderlichen strukturellen Eigenschaften
der Fahrzeugfront-Subsysteme. Dieses Know-how bietet mehre-
re Kompromisse bei den erforderlichen Eigenschaften und kann
erheblich dazu beitragen, zukiinftige Iterationen im Auslegungs-
prozess zu reduzieren. Trotz des relativ hohen Rechenaufwands in
hochdimensionalen Rdumen wurde das vorgeschlagene Verfahren
erfolgreich auf ein industrielles Auslegungsproblem angewendet.
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THE MOTIVATION.






=

INTRODUCTION

[... ] self-propelled vehicles on public roads
must be preceded by a man on foot
waving a red flag and blowing a horn.

— The Locomotive Act, 1865"

Vehicle development is a complex process lasting several years.
Broadly speaking, it can be divided in five phases: product def-
inition, concept development, series development, industrializa-
tion/testing and production [133], as schematized in Figure 1.1.
This thesis addresses issues that span across concept and series
development —with a stronger focus on the former one- and aims
to reduce some of the complexity that arises here.

The sources of complexity in vehicle development are various.
Certainly, one is the technical complexity: for instance, minimizing
the aerodynamic drag coefficient to reduce the power needed for
propulsion raises some technical challenges [14]. In order to solve
them, some design iterations are unavoidable: a virtual model
is built, simulated and analyzed and measures for improvement
are identified, leading, thus, to the construction of a new model.
Therefore, some trial-and-error can be considered inherent in the
design process.

To the technical complexity of a functional requirement —e. g.,
aerodynamic drag- a system complexity adds up. The system, in-
tended as the vehicle, must satisfy several functional requirements

Enacted by the Parliament of the United Kingdom, it was arguably the very first
"pedestrian protection” regulation.

The "man on foot", known as the stalker, had to walk 60 yards (55 m) ahead of the
vehicle to ensure the safety of pedestrians and animals. In total, three people were
required for each vehicle: one to steer, one to stoke the engine and one to stalk.
The law was not repealed until 1896; nevertheless, the use of the red flag was made
optional from 1878. The Act also limited the vehicle speed to 4mph (6 km/h).
Vehicles at that time were mainly steam carriages, as the first motorcar was Benz
Patent-Motorwagen, patented in Mannheim (Germany) in 1886.
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Product
Definition

Concept
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Development

Industrialization/
Testing

o

Production

Figure 1.1: Schematic overview of the vehicle development process.

—applying frequently to the same package— as well as cost re-
quirements, manufacturing requirements, etc., constituting all-
together the system requirements. Considering, for instance, the
vehicle front-end, various functional requirements can be named:
aerodynamics, thermal management, passive safety, active safety,
reparability, propulsion, lighting and so on. Hence, not only one
technical aspect must be solved: the combination of all technical
and non-technical ones multiplies the complexity. The design of
high-complex systems is target of systems engineering [43, 127].
The fundamental approach of systems engineering is not to de-
sign parts fitting together into a system, but to design functioning
systems composed of parts. Here, the system is conceived as a
set of parts acting together to achieve the system goals. Systems
engineering focuses, hence, on the system as a whole, in all its in-
terdisciplinary facets: it guides the development process through
a clear identification of system goals, an efficient coordination
of the multiple disciplines and a careful tracking of the goals
fulfillment. A model often employed in systems engineering is the
V-model [125], or Vee model, originated in software development.
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It takes its name from its recognizable schematic arrangement,
depicted as a "V". In the V-model, the requirements on the system
are decomposed into requirements on the sub-systems and, then,
on the components, in a hierarchical approach. Design occurs
on the components-level; then, validation and integration fol-
lows bottom-up. Technical complexity is reduced, because larger
problems are broken down into smaller sub-problems, ultimately
easier to be solved. For each system requirement, decoupling of
the requirements on sub-systems and components is essential to
ensure independent design and testing. Still, due to the multiple
system requirements, some components may be relevant for many
of them.”? Hence, teams from different disciplines must collaborate
together to co-design and analyze these sub-systems/components.

Related to the above two complexities, there is, then, the process
complexity. The fact that:

* design iterations are unavoidable,

¢ multiple design teams must collaborate on the same sub-
systems and may have contrasting requirements,

* many decisions on sub-systems and components must be
still finalized in the concept phase,

implies that the initial design will evolve during the development
process. This is certain. Uncertain is how it will evolve. Therefore,
the product development process itself raises uncertainty in the
early stages, fundamentally associated with a lack of knowledge
[140]3

To tackle the above mentioned complexities, working on the
concept phase is crucial. Here, concept engineers must take major,
conceptual decisions on the package arrangement and properties.
The decision-process should be supported with guidelines that:

Think of the chassis: relevant, e. g., for passive safety, but also Noise, Vibration
and Harshness (NVH)[23].

N.B.: Uncertainty is also present in later stages, not only in the concept ones: e. g.,
caused by manufacturing tolerances. Yet, this can be modeled with a probabilistic
approach.
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® prescribe the technical properties that the designs must
have in order to fulfill the system requirements —technical
complexity,

* decouple, as much as possible, the system requirements on
the various sub-systems/components —system complexity,

¢ quantify how much flexibility the designs have to tolerate
future changes* —process complexity.

Such guidelines are the object of this work. I will focus on the
system requirements concerning pedestrian leg impact.

1.1 PEDESTRIAN LEG IMPACT

According to the World Health Organization [137], about 311
thousand pedestrians worldwide lost their lives in 2016 as a result
of road traffic accidents. This represents about 23% of all fatalities
on the roads. In the European region, the percentage rises to 27%,
meaning 23 thousand pedestrian fatalities or 2.5 per 100 thousand
inhabitants. In Germany, in 2019, 417 pedestrians died on the
roads and about 30 thousand ones got injured [116]. In the last
two decades, from 2000 to 2019, pedestrian fatalities decreased in
Germany of 58%, while injuries of 23%. Hence, an encouraging
trend can be seen, at least in Germany, about pedestrian fatalities.
The last two decades have, indeed, seen a lot of advancements
in the field of passive pedestrian protection. In 2003, the first
regulation regarding pedestrian protection was enacted by the
European Commission [28]. It specified four subsystem tests:
lower legform to bumper, upper legform to bonnet leading edge,
child headform to bonnet top and adult headform to bonnet top.
The respective impactors are illustrated in Figure 1.2. I will focus
in the following on the lower leg impact, abbreviated simply as
leg impact. For further information on pedestrian protection see
[31, 75], and on pedestrian impact bio-mechanics see [138, 139].
Studies on the interaction between the human leg and the ve-
hicle front-end during pedestrian impact started already in the

In other words, how much the designs can change and still satisfy the system
requirements.
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Adult Headform

Child Headform\

Upper Legform —__ %

Legform

Figure 1.2: Sub-system impactors for pedestrian protection, as prescribed
by [28]. From [73].

8os: for instance, Cesari et al. [15] used 20 cadavers to analyze
pedestrian leg injuries, the effect of bumper height and the forces
exchanged during impact. However, it was only with the devel-
opment of sub-system impactors and the definition of repeatable
and reproducible tests that vehicle design for the pedestrian leg
impact gained momentum. The first legform impactor, the TRL
impactor, takes its name from UK’s Transport Research Laboratory
that developed it. This impactor, shown in Figure 1.2, is the one
adopted in 2003 regulation. It constitutes of two rigid, steel rods
representing tibia and femur connected by a joint representing
the knee. The entire legform is wrapped with foam, represent
the flesh, and neoprene, representing the skin. The injury criteria
measured by the impactor are bending and shearing of the knee
and the acceleration of the upper tibia [26].

Rigid rods cannot represent the characteristic bending of human
bones [68]. The lack of bio-fidelity of the Transport Research Lab-
oratory (TRL) impactor induced, hence, researchers of the Japan
Automobile Research Institute to develop a more bio-fidelic pedes-
trian legform impactor, then called Flexible Pedestrian Legform
Impactor (FlexPLI) [69, 70]. This impactor is shown in Figure 1.3a.
As the name suggests, it presents flexible bones, made of fiberglass
reinforced plastic, which show a human-like bending character-
istics under impact loading. A mechanical knee replicates, with
springs and cables, the human knee ligaments. Finally, flesh and

7
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MCL

Tibia Up/1
Tibia Mid-Up/2
Tibia Mid-Low/3

Tibia Low/4

(a) FlexPLI

Figure 1.3: Legform impactors currently in use for the sub-system test of
the pedestrian leg impact. From [117].
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skin are represented by multiple layers of rubber and neoprene.
FlexPLI's weight amounts to about 13kg. Three strain gauges
are positioned on the femur to measure the bending moment at
different sections and four on the tibia. Potentiometers measure
the elongations of Medial Collateral Ligament (MCL), Anterior
Cruciate Ligament (ACL) and Posterior Cruciate Ligament (PCL).
Hence, the FlexPLlI allows to measure all relevant human-like leg
injuries. It was adopted, first, in 2014 by the European New Car
Assessment Programme (Euro NCAP) consumer test [27] and in
2015 by the UN Regulation No 127 [124], valid also in Europe.

The FlexPLlI is very bio-fidelic in representing, mechanically,
the human leg. Yet, it misses completely what is on top of the leg,
namely the upper human body. However, the upper body plays
a significant role during impact with passenger cars. In fact, its
mass induces, by inertia, a large bending of the femur before it
reaches contact with the vehicle bonnet or windshield. Therefore,
the FlexPLI may give rise to very unrealistic kinematics with low-
or with high-bumper vehicles [54]. The same researchers of the
Japan Automobile Research Institute, who worked on the FlexPLlI,
developed an improved pedestrian legform impactor, so-called
advanced Pedestrian Legform Impactor (aPLI) [55]. This is largely
based on the FlexPLI, but adds a 12kg simplified upper-body part,
which is connected to the femur via a hip-joint. Furthermore, it
presents an improved mass distribution, ligaments positioning
and routing and rounded knee impact area [53]. A major change
with respect to the FlexPLI in the loading condition is the height
from ground: 25 mm instead of 75. The aPLI will be adopted in
2022 by the Chinese New Car Assessment Programme (C-NCAP)
[18].

The introduction of the aPLI raises some challenges in vehicle
design: first of all, it is new and exhibits a new legform kinematics
that must be analyzed; then, at least for the Chinese market, both
FlexPLI —for regulation— and aPLI requirements must be fulfilled.
Supporting the concept engineers with quantitative guidelines
on the sub-systems/components requirements for both aPLI and
FlexPLI would lead to a smoother and more robust concept phase.

A detailed, high-fidelity model of the vehicle front-end is very
complex and takes a long time to simulate. Furthermore, most of
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the parameters that can be conveniently defined have little effect
on the legform injury criteria [16]. Therefore, such a model is
not suitable to conceptual investigations: rather, a reduced, low-
fidelity model of the vehicle front-end for pedestrian leg impact
should be used in order to derive the desired guidelines.

1.2

STRUCTURE OF THE THESIS

The thesis will be structured as follows:

in Chapter 2, I will report which studies addressed the topic
of this work and highlight which points remain unclear or
unsolved;

in Chapter 3, I will state the high-level research question
that this work aims to answer, as well as the low-level ones
that define the single objectives;

in Chapter 4, I will propose a low-fidelity modeling tech-
nique of the vehicle front-end for pedestrian leg impact and
a possible parametrization approach;

in Chapter 5, I will propose a work-flow to compute flexibility-
oriented design guidelines with computationally-expensive
black-box functions;

in Chapter 6, I will present a validation approach for all
proposed methods;

in Chapter 7, I will apply all proposed methods on a real-
world industrial design problem;

in Chapter 8, I will reflect on the achievement of the thesis’
objectives and discuss advantages and disadvantages of the
proposed methods;

in Chapter o, finally, I will summarize the work done, con-
dense the key take-away messages of this work and share
my outlook for possible further research.
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There is no conversation more boring
than the one where everybody agrees.

— Attributed to Michel de Montaigne’

As introduced in Chapter 1, the focus in this thesis lies in the
identification of a method to develop design guidelines for the
pedestrian leg impact, on the basis of a Low-Fidelity Model of
the vehicle front-end. In this chapter, I investigate to what extent
previous methods address the topic and which questions remain
unanswered that this work considers relevant to undertake. In the
first part, I concentrate on computationally-efficient approaches
for the modeling of the vehicle front-end for pedestrian leg impact.
In the second part, I focus on methods to establish flexibility-
oriented design guidelines for black-box functions.

2.1 VEHICLE FRONT-END MODELING FOR PEDESTRIAN LEG
IMPACT

Computer models of car-pedestrian impact go back approximately
three decades [52]. Since then, pedestrian protection has under-
gone several changes, from the introduction of regulations to
the development of new subsystem impactors. Therefore, several
studies have addressed the design of front-ends for pedestrian
protection. Here, I will focus on those concerning the leg impact.

Depending on the scope of the investigation and the impactor
used, different categories of simulation models are used to repre-
sent the vehicle front-end:

DETAILED, HIGH-FIDELITY FINITE ELEMENT MODEL: it consists
of a Finite Element (FE) discretization of all the components
present in the vehicle front-end.

1 In: Michel de Montaigne. Essais. 1595.
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REDUCED, HIGH-FIDELITY FINITE ELEMENT MODEL: it consists
of a FE discretization of a subset of the components present
in the vehicle front-end, which are considered the most
relevant ones for the analysis.

REDUCED, LOW-FIDELITY FINITE ELEMENT MODEL: it consists
of finite, virtual elements —not faithful to the real-word-
representing the stiffness characteristics of a subset of the
vehicle front-end components in specific loading conditions.

REDUCED, LOW-FIDELITY MULTI-BODY MODEL: it consists of
idealized inter-connected rigid and flexible bodies, repre-
senting a subset of the vehicle front-end components. It is
generally employed with pedestrian dummy models for full
pedestrian kinematics. Not being suitable to legform im-
pactor and analysis of its injury criteria, I will not discuss it
further in the following. For information, see [1, 62, 79].

DETAILED, HIGH-FIDELITY FE MODEL It is the standard model
used for assessment of the vehicle performance in pedestrian
leg impact throughout the development process, as exemplarily
shown in Figure 2.1a. In literature, it is used mostly for targeted
optimization of geometrical and stiffness characteristics of the
lower stiffener and bumper energy absorber, such as thickness,
deformation space and relative position between the two. Han
and Lee [45], Svoboda and Kuklik [119] and Karimullah et al. [61]
focus on the TRL legform impactor’s injury criteria, Lv et al. [81]
consider both TRL and FlexPLI while Scattina et al. [107] use a
full pedestrian model, consisting of a combination of the Hybrid
III dummy and the Lower Limb Model for Safety [2].

All studies agree on the importance of lower stiffener and bumper
energy absorber design for the pedestrian leg impact. Yet, those
studies are quite limited —in other words, very targeted- in scope.
Due to the complexity of the models, few parameters could be
defined. Furthermore, these parameters could not implement
broad conceptual changes, while the long computational time does
not allow to run a large sampling in a reasonable amount of time.
Thanks to its accuracy, a detailed, High-Fidelity Model (HFM) is
suitable to fine shape optimization of some relevant front-end
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components for final design adjustments at rather late stages of
the development process, as done for instance by Wetzstein et al.

[135].

REDUCED, HIGH-FIDELITY FE MODEL It decreases the num-
ber of degrees of freedom of the model and, therefore, increases
its computational efficiency. This is done by simply neglecting
components non-significant to the pedestrian leg impact, as de-
picted, e.g., in Figure 2.1b. Typical components included in the
model are the lower stiffener, bumper energy absorber and bonnet.
Investigations generally involve the optimization of the relative
positions among these three load regions and of the deformation
space in front of the bumper beam. Nanda et al. [91] —whose
model is shown in Figure 2.2a— optimize TRL impactor’s injury
criteria, Nakane et al. [go] —in Figure 2.2b— compare the influence
of the design parameters on a pedestrian dummy and the Total
Human Model for Safety (THUMS), Lee et al. [77] —in Figure 2.2¢c-
— optimize FlexPLI’s injury criteria adding the bonnet angle of
attack as design variable. The work of Fu et al. [32] is the first opti-
mization attempt with the aPLI. Their Sport Utility Vehicle (SUV)
model, shown in Figure 2.1b, comprises also a mid-up stiffener,
between the bumper beam and the bonnet, and consists of about
310 thousand elements. They optimize the longitudinal and verti-
cal positions of lower stiffener, bumper beam and mid-up stiffener
with independent, rigid shifts and find that the longitudinal posi-
tions of lower stiffener and bumper beam are the most significant
parameters for aPLI’s injury criteria.

The models above gain in computational efficiency with respect
to detailed HFMs, yet they lose some accuracy. The comparison
of tibia bending moment and ligament elongation curves between
the two models in [32] shows a non-negligible loss of accuracy. Fur-
thermore, reduced HFMs retain the parametrization limitations of
detailed ones: the stiffness characteristics can hardly undergo sub-
stantial changes and, in order to implement geometrical changes,
either morphing needs to be used or the load regions must be split
so as to be able to move independently. In both cases, accuracy
may be further compromised. Lastly, the computational effort is
still significant so that only few parameters may be defined.

13
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(a) Detailed HEM, from [32]

(b) Reduced HFM, from [32]

Figure 2.1: Detailed and reduced FE High-Fidelity Models (HFMs) of a

vehicle front-end for pedestrian leg impact simulation, from
Fu et al. [32].

(a) from [91]

S S
(b) from [90] (c) from [77]
Figure 2.2: Reduced FE High-Fidelity Models (HFMs) of vehicle front-

ends for pedestrian leg impact simulation, from literature.
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REDUCED, LOW-FIDELITY FE MODEL It further decreases the
computational effort of pedestrian leg impact simulations and
facilitates the definition of parameters. Early work with lumped
mass-spring models was carried out for front crash by Kamal [60]
with a linear spring force-deformation characteristics and by Hol-
lowell [49] with a non-linear one. For pedestrian leg impact, Neal
[92] develops a vehicle front-end model consisting of three rigid
plates supported by non-linear translational springs, as shown
in Figure 2.3a, to run investigations with the TRL impactor. The
combination of rigid plate and deformable spring represents a
front-end load level: in this case, they correspond to lower stiff-
ener, bumper energy absorber and grille. The force-deformation
characteristics of each spring is calibrated to the one of the related
detailed HFM during impact with the impactor. He optimizes
both geometrical and structural parameters: longitudinal and ver-
tical position of each load level, deformation space and crush
force of the middle one and Young’s modulus of the lower one.
The abstractness of the model allows to easily implement changes.
Neal et al. [93] update the model with an inclined grille and in-
troduce a Graphical User Interface (GUI) to provide guidelines to
concept engineers: based on multiple Kriging response surfaces,
it graphically shows the effect of any change in design parameter
values on the TRL impactor’s injury criteria. Huang et al. [51]
identify the impactor’s knee as delicate spot and split the middle
load region in two at the TRL impactor’s knee height, as shown in
Figure 2.3b, to better reproduce the forces acting above and below
it.

The lack of bio-fidelity of the TRL legform impactor induced
many researchers to evaluate the pedestrian-friendliness of vehicle
front-end designs directly with FE Human Body Models (HBMs).
Accordingly, the LEMs have been enhanced with additional load
levels. Takahashi et al. [121] adopt a fourth load level representing
the bonnet, modeled as a longitudinal translational spring, free to
move in the vertical direction. Nie et al. [94] add a fifth load level
to represent a mid-low one between lower stiffener and bumper
energy absorber, as shown in Figure 2.3c. To account for local
deformation, they model lower and middle load levels with shell
elements —instead of a rigid plate— supported by distributed beam

15
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Figure 2.3: Reduced FE Low-Fidelity Models (LFMs) of vehicle front-ends
for pedestrian leg impact simulation, from literature.
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elements. The bending behavior of the beam elements is, though,
not discussed. The force-deformation characteristics is recorded
by impact of small, rigid cylindrical impactors against each level
separately. However, the prescribed impactor motion may not be
representative of the actual one of the HBM. Nie et al. [95] use
this model to compute Sobol’s sensitivity indices [115] for both
geometrical and stiffness parameters: longitudinal and vertical po-
sition of lower and upper load levels and height of the middle one,
yield force and deformation space for lower and middle levels and
a scaling factor for the remaining ones. Furthermore, they extend
the GUI tool in [93] with the new vehicle LFM and the HBM,
in place of the TRL impactor. Finally, they perform a stochastic
analysis of the uncertainty propagation between input and output
variables, so that, given a Probability Density Function (PDF) of
the design parameters, they compute both the average resulting
injury criteria values and their confidence intervals. Asanuma et
al. [3], whose model is shown in Figure 2.3d, represent both bon-
net and windshield with multiple translational springs and rigid
plates that contact specific parts of the human body to account for
the local stiffness in these areas.

The introduction of the Flexible Pedestrian Legform Impactor
(FlexPLI) brought to an enhancement of the modeling of the vehi-
cle front-end local deformation to cope with the flexible behavior
of the legform. Mofiner et al. [89] show that an LFM consisting of
only five load levels moving in the longitudinal direction is not
accurate enough for FlexPLIL. They use, therefore, 34 load levels
—in Figure 2.3e— oriented according to their direction of deforma-
tion, as recorded during HFM impact with FlexPLI. Mofsner [88]
uses such model to investigate the ideal loading and unloading
stiffness distribution for a particular front-end styling. He finds
that a large intrusion in the upper region and a low intrusion
in the lower one help keeping the leg straight and that the un-
loading phase in most regions is crucial for FlexPLI. He does not
investigate the influence of geometrical parameters.

The models above, constituting of only few elements, provide a
significant boost of computational efficiency. Most of the effort
is due to the impactor or HBM. Accuracy is, clearly, affected by
the simplification, yet the comparison of injury criteria with LFM

17
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and HFM in [89] is very promising. The simplification tailors the
accuracy on a specific pedestrian leg impact’s dynamics and is
not suitable to different front-end investigations. For instance, in
[89], the model is validated for small variations of the impactor’s
kinematics: e.g., —30 to 50mm of impactor’s height variation.
Nevertheless, no LFM has been validated with aPLI yet.
Additionally, a clear trend can be seen in literature to constantly
raise the number of load levels used to represent the front-end.
Nonetheless, no investigation prescribes yet how many levels are
necessary to reach satisfactory accuracy results.

Furthermore, a reduced LFM allows an easy, quick and under-
standable definition of parameters. However, most studies have
either focused on specific load levels or used ideal stiffness distri-
butions. Therefore, a parametrization with realistic geometrical
and stiffness variations distributed over the whole front-end has
not been investigated yet.

Finally, the GUI tool to provide guidelines in [93, 95] is very useful
to understand how much influence each design parameter has on
the injury criteria —as well as their uncertainty— or whether a single
design satisfies the requirements; however, they do not provide
information on which set of designs satisfies the requirements and
which the limit values for the parameters are.

2.2 FLEXIBILITY-ORIENTED DESIGN GUIDELINES FOR BLACK-
BOX FUNCTIONS

One, single design candidate that fulfills the requirements —as
it can be obtained by a classical optimization run or by simple
trial-and-error- is certainly an interesting information, yet not
very useful in the early phases of the development process. Here,
in fact, the design still undergoes many changes until the final
design is achieved.? This makes it difficult to foresee how the
final design will look like. Hence, uncertainty emerges in the
initial development phases due to the lack of knowledge about
the evolution of the design during the subsequent ones. This un-
certainty can be mitigated, more than by the information that one

2 Even more so if the design candidate is a reduced Low-Fidelity Model.
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design candidate satisfies the requirements, by the information in
which interval a set of design candidates satisfies the requirements.
Furthermore, in order to guide the designers through the devel-
opment process, the interval should provide enough flexibility
to account for possible variations. Therefore, I am interested in
flexibility-oriented design quidelines.

A renowned approach that considers sets of designs, instead of
single ones, is named set-based concurrent engineering, described
by Sobek II et al. [114]. Here, a broad set of feasible3 designs
is chosen in the early stages of the development process and
gradually refined over time as new information arises. If, on the
one hand, a set of designs provides more than just one solution to
the feasibility problem, on the other hand, it does not span any
interval. It contains finite, discrete design candidates that allow no
or little deviation, hence no flexibility.

The term flexibility is first introduced by Grossmann and Morari
[42] in the field of design of chemical processes under uncertain
conditions. Halemane and Grossmann [44] formulate the flexibil-
ity test problem that consists in evaluating whether the system is
feasible in a specific parameter interval. An interval of values for
each parameter generates an axis-aligned hyper-rectangle in the
parameter space —as for, e. g., the design space. Instead of evalu-
ating whether a specific hyper-rectangle is contained in the feasi-
ble region —as done in the flexibility test problem— Swaney and
Grossmann [120] evaluate the size of the largest hyper-rectangle
inscribed in the feasible region and centered around a specific design,
as shown in Figure 2.4. The hyper-rectangle is proportional to
the original parameter ranges —in other words, it keeps the same
aspect ratio of the design space. The measure of the size of the
hyper-rectangle is named flexibility index. This index is very useful
to assess the flexibility of a specific design. It can be used, for
instance, to quantify the robustness of a design at late stages of
the development process. However, it does not assess the overall
flexibility inside the design space. In the early stages, instead, it
is relevant to identify the interval where the flexibility is largest,
independent on any specific design.

3 That is, fulfilling the requirements.
4 For sake of simplicity, I will imply axis-aligned in the following.
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Figure 2.4: Flexibility index problem in 2D, based on [120]. §; and 6,
are two uncertain parameters. The resulting hyper-rectangle
(solid line) is inscribed in the feasible region (in gray), centered
around the nominal design Oy (dot) and with the same aspect
ratio of the design space (dotted line).

Goyal and lerapetritou [36] build an approximation of the entire
feasible region, by inscribing a convex hull in it and circumscrib-
ing a convex polytope around it, and using the two as lower
and upper bounds. Finding a mathematical formulation for the
feasible region offers, clearly, the greatest available flexibility. Nev-
ertheless, it is not practical to serve as a design guideline: it does
not provide an indication on how to design one single parameter,
as all parameters are coupled together. Concurrent engineering is,
thereby, inconvenient. Decoupling among parameters is achieved
with the shape of an axis-aligned hyper-rectangle: each parameter
is associated with an interval that is completely defined by its
lower and upper bound and, thus, independent on the specific
value of the other parameters. This empowers designers with a
simple guideline: to design each parameter inside a prescribed
range. Although it is easier said than done, a prescribed range of
values is certainly more valuable than a prescribed single design.

Robust design optimization [9] and reliability-based design
optimization [98] —besides looking for single designs— assume,
in general, a mathematical description of the variability of the
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parameters, e. g., through a probability distribution. However, a
model of the design parameter uncertainty is not available in
the early stages. Hyper-rectangles, instead, do not express the
variability in terms of the values a parameter is likely to assume,
rather of the values it is allowed to assume. The limits of variation
are the focus here.

To sum up, effective design guidelines for the early development
phases require flexibility, in the form of a hyper-rectangle.

Zimmermann and von Hoessle [141] optimize the flexibility —to
start with, say size— of a hyper-rectangle inscribed in the feasible
region and call it box-shaped solution space or solution box.> In a
sense, this problem relates to an inverse flexibility test problem:
instead of evaluating whether a certain hyper-rectangle is feasible,
it aims to find the largest feasible hyper-rectangle. It relates also
to the flexibility index problem, though it drops the consideration
of a nominal design: the resulting hyper-rectangle is the largest
feasible one, overall. Due to its foundation, I refer to this problem
as design flexibility optimization and to the solution box as flexibility
box.

In [141], a stochastic algorithm is introduced to perform design
flexibility optimization for black-box, high-dimensional functions.
Starting from a random feasible design —obtained for instance
by classical optimization techniques— a candidate box is, first,
initialized and, then, iteratively updated by increasing its size,
sampling the new space and relocating its boundaries so as to
remove the infeasible designs. The iterations continue until the
box does not significantly move anymore. Graff et al. [39] analyze
the performance of such algorithm and find very good results in
low-dimensions, while both accuracy and convergence deteriorate
as dimension increases.

The algorithm is computationally expensive, as the number of
necessary function evaluations is, in general, greater than 10,000.
For applications where each function evaluation is in the order of
a dozen minutes, the computational effort becomes disproportion-
ate and the use of a surrogate model, thus, necessary. Furthermore,
the iterative approach zooms into a specific area of the feasible

5 The solution space is the set of all feasible designs —i. e., solutions to the feasibility
problem— namely, it corresponds to the feasible region.
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region and focuses here most of the samples. In case the feasible
region is non-convex or there are multiple disconnected ones, this
may lead to a local optimum.

Fender [29] introduces a mathematical formulation for prob-
lems that can be analytically described by linear constraints and,
at most, quadratic objective function: finding the flexibility box
becomes a linear, convex optimization problem. He applies it to
the design of vehicle front crash structure. This approach is sig-
nificantly more accurate and computationally efficient than the
stochastic one, yet applicable to a limited number of problems.
The problem addressed in this thesis does not belong to those,
due to the lack of an analytical model. Hence, this approach will
not be further discussed.

Graf et al. [37] compute the flexibility box without an itera-
tive procedure, rather with a global approach. They compute the
minimum axis-aligned bounding box around the feasible region,
then sample it uniformly and split each dimension in intervals. In
this way, the bounding box is divided into sub-hyper-rectangles.
Each of them is, then, classified as feasible or infeasible, depend-
ing on whether it contains only feasible designs. By considering
all possible combinations of sub-hyper-rectangles, they can find
the combination that constitutes the largest box. The accuracy of
this approach lies in both the number of intervals in which each
dimension is divided and the number of samples —for both, the
larger the number, the more precise the box. However, the number
of intervals greatly impacts the computational effort, since, as
dimension increases, the number of possible combinations rapidly
grows to unreasonable values. Precise information about accuracy
and computational efficiency are not reported, yet this approach
does not seem practical in high-dimensions with tens of thou-
sands of samples. Therefore, if the consideration of the entire
feasible region in [37] —instead of an iterative zooming in a spe-
cific area— may benefit the convergence towards a global optimum,
the shrinking —or trimming- algorithm in [39, 141] seems more
computational efficient to find the largest feasible box from a
given set of samples.

Even provided that the optimal flexibility box is obtained, sev-
eral feasible designs may be excluded by this box, depending on
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the complexity of the feasible region shape. This problem has
been addressed in several ways in literature. Erschen et al. [24]
couple pairs of design parameters, so that a polygon —instead of a
hyper-rectangle- is identified for these two parameters. The pair is
still decoupled from the remaining pairs or single parameters. By
coupling fwo parameters at the time, visualization on a 2D surface
is still possible. Vogt et al. [126] split the design parameters into
early- and late-decision ones and initially compute the box only
with the early-decision parameters. This approach increases the
flexibility of the box in the early phases, yet it is only applicable
when the late-decision parameters can be exactly set at later stages,
as their range of flexibility may be here very low. Daub et al. [20]
couple the design parameters component-wise, yet, when there
are more than two parameters per component, visualization may
become difficult.

All above approaches have focused on finding one box —or
product of polygons. No study so far has tried to find multiple
boxes at the same time. This would, however, find good reasons:

¢ the feasible region could be better approximated and more
feasible designs included in the output,

¢ the approach would keep the simplicity of the hyper-rectangular

shape and the completeness of the design parameters,

¢ designers would be able to choose among multiple guide-
lines based on their experience or switch among them during
the development process, in case a major issue arises,

¢ designers would be able to extend their understanding of
the feasible region and the interactions among parameters
in the design space.
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Some years ago, the head of the Industrial
Engineering Department of Yale University said:
“If I had only one hour to solve a problem,

I would spend up to two-thirds of that hour
in attempting to define what the problem is.”

— William H. Markle?

In Chapter 1, I introduced the present research topic and why it
is relevant to the scientific community. In Chapter 2, I reported to
what extent previous studies addressed the topic and discussed
where I see potential for further research. In this chapter, I sum up
the intention of this thesis: I explicitly formulate the question the
current research aims to answer and the narrower sub-questions
it can be broken down into.

The research question of this thesis is:

Which method is appropriate to compute design guidelines
for pedestrian leg impact on the basis of a low-fidelity vehicle
front-end model?

I aim to propose a method that can be used by concept engineers
as a support during the early design stages. The method should
provide indications on the recommended properties of the relevant
front-end structures, so that pedestrian leg impact requirements
can be fulfilled.

The formulated research question defines the high-level, broad
scope of the thesis. To reach this scope, smaller problems must be
solved. They are more limited in extent and represent the single
objectives of the proposed method. I present them in the following
in the form of low-level sub-questions:

From: William H. Markle. “The Manufacturing Manager’s Skills.” In: The Manufac-
turing Man and His Job. Edited by Robert E. Finley and Henry R. Ziobro. 1966.
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1. Which low-fidelity modeling technique of the vehicle front-end is
appropriate for the impact with the advanced Pedestrian Legform
Impactor (aPLI)?

As reported in Chapter 2, no study has run investigations
with front-end LFMs and aPLI yet. Accordingly, no analysis
of the relevant front-end components —or load levels— to be
modeled for this impactor is available so far.

2. Which parametrization approach is recommended for the represen-
tation of design variability and handling of complexity?

As reported in Chapter 2, front-end design parameters used
in previous studies either focused on specific load levels
or assumed ideal force-deformation characteristics. In this
thesis, the attention lies in the consideration of the entire
front-end and in the definition of design modifications as
realistic as possible. Still, a large number of parameters is
strongly discouraged in order to avoid too-high dimensional
spaces. This further raises the challenge.

3. Which method for the evaluation of design feasibility is appropriate
with computationally-expensive black-box functions?

Feasibility analysis of a large number of designs is a time-
consuming task when function evaluations are computationally-
expensive. Previous studies propose efficient methods to
perform feasibility analysis with purposefully-trained sur-
rogate models. However, the performance of such methods
with the increase of dimensionality is open.

4. Which type of guideline is recommended to support the design
process?

As reported in Chapter 2, previous studies on pedestrian
leg impact aimed to find either one single feasible design or
parameters’ sensitivity indices. However, none of those offers
any design flexibility. Methods from other disciplines aim
to find, instead, one set of parameter ranges. This can serve
as effective guideline during the design process. Providing,
then, more than one set of parameter ranges —i.e., more
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boxes— would further support the designers. A formulation
for this problem is, though, not available yet.

. Which optimization procedure is appropriate to maximize the
flexibility level of the quidelines?

As reported in Chapter 2, current optimization approaches
rely on either an iterative procedure —sensitive to local
optima-— or a large-scale combinatorial problem. The first
is not suitable to find more boxes at the same time, the
second may become too computationally expensive. The
optimization algorithm is, therefore, still unclear.

. Which range of values is recommended for front-end parameters
to fulfill the pedestrian leg impact requirements?

This objective represents the final outcome of the method,
rather than a piece of it. It is obtained by combining all the
parts of the method together. As outcome, it constitutes the
piece of information to be delivered to the designers.
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LOW-FIDELITY MODEL OF VEHICLE
FRONT-END FOR PEDESTRIAN LEG IMPACT

What is simple is always wrong.
What is not is unusable.

— Paul Valéry*

In the early phase of a vehicle development process, engineers
dealing with pedestrian protection have to assess whether the
styling of the front-end is pedestrian-friendly, i. e., whether it can
satisfy pedestrian protection requirements. Clearly, any styling
could be pedestrian-friendly; it depends on the rigidity of the
structures mounted in the front-end. However, not every stiffness
is possible, as other requirements need to be taken into account
as well; among others:

material quality, e. g., reliability, durability and aesthetics,
material costs,

resistance to misuse,

reparability costs in case of low-speed impacts,

styling, e. g., short overhang,

manufacturability,

integration of components used for active safety and occu-
pant protection,

regulation of the inlet air flow.

1 In: Paul Valéry. Mauvaises pensées et autres. 1942.
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Figure 4.1: Broad overview of steps described in Chapter 4.

Therefore, concept engineers are challenged to understand,
first, which structures are necessary to satisfy the pedestrian
protection requirements and, then, if those can satisfy also the
other requirements. In this thesis, I discuss methods to accomplish
the first task; the second one is mostly related to experience and
other disciplines’ simulations and is taken into account only partly
in the Low-Fidelity Model (LFM) parametrization.

Figure 4.1 shows an overview of the steps taken in the current
chapter. In the first section, I propose a procedure to generate a
Low-Fidelity Model (LFM) of a passenger vehicle front-end for
the pedestrian leg impact. The aPLI is used as exemplary legform
impactor. Nevertheless, the procedure can be equally applied
to the FlexPLIL In Section 4.2, I define parameters of the LFM
that could be possibly relevant for design investigations. As the
fundamental reason to build an LEM of a vehicle front-end is the
simplicity in the implementation of changes, the parametrization
is of the utmost importance.

4.1 LOW-FIDELITY MODEL GENERATION

In the early phase of the development process, concept engineers
must identify the measures that needs to be taken to satisfy the
pedestrian protection requirements. In order to tackle this task, it
is essential to have an FE simulation model that allows to rapidly
perform changes and gather know-how on how the development
should evolve. In early phases, high-fidelity FE simulation models
of the vehicle front-end may not be already available. Even if
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they were, they would be quite unsuitable for the task. In fact,
they take long to simulate and long to be changed. They usu-
ally consist of a great number of elements, about 4 million for a
medium-sized sedan, as in Figure 4.3a, and take about 6 h to run
on a High-Performance Computing (HPC) cluster with 48 proces-
sors. Furthermore, to implement substantial modifications, either
geometry- or stiffness-related, that do not involve simple thickness
variations or different material model definitions, is rather trou-
blesome and time-consuming. The complexity lies in the many
components, shapes and attachment points that are present in a
front-end and require careful design to avoid geometrical conflicts.
Therefore, especially inside an automatic framework, as required,
for instance, by a Design of Experiments (DOE) or structural op-
timization techniques, High-Fidelity Models (HFMs) do not fit
well.

A simpler FE simulation model of the vehicle front-end is desir-
able. It should combine the following features:

ABSTRACTION: the material and mechanical properties of the
front-end structures should be modeled with a high degree
of abstraction, in order to minimize the number of assump-
tions and leave freedom for new structural concepts;

DEGREES OF FREEDOM: the model should retain only the DOFs
relevant to the pedestrian leg impact;

PARAMETRIZATION: parameters, affecting the geometry or the
stiffness of the front-end, should, first, be easy to implement
and link to an automatic framework and, then, cover the
desired range of change;

RUNTIME: the computational effort involved with an FE simula-
tion should be as low as possible;

ACCURACY: last, but not least, the model should be accurate
enough to perform meaningful and realistic investigations.

In this chapter, I discuss the first three requirements, while the
last two in Section 6.1.
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4.1.1  Abstraction

The highest degree of abstraction would be achieved by not mod-
eling any of the vehicle front-end components. However, proper
contact representation between impactor and vehicle is crucial for
simulation accuracy and must be, hence, ensured.

Figure 4.2 shows the kinematics of the pedestrian leg impact
for a medium-sized sedan with the aPLI. We can note that the
impactor tends to wrap around the outer surface of the vehicle
front-end. To use this surface as contact surface seems appropriate.
MoBner et al. [89] adopt this approach and define the outer surface
as a massless rigid body. This is done to decouple the contact and
the energy-absorption functions in the LFM. Nonetheless, a rigid
body allows no local deformation; instead, the contact between the
impactor and the front-end has a very local behavior. Therefore,
they split the outer surface vertically in several independent strips,
equally distributed over the surface. They do not specify, though,
how many strips are necessary. As for the stiffness representation
of the front-end structures, they record the contact force and the
deformation of each strip from a HFM FE simulation and map
them on massless, translational, non-linear springs, one per strip,
as done, e. g., also in [92, 121]. In this way, they get rid completely
of the tedious detailed modeling of components and replace it
with a basic representation of stiffness, i.e., a one-dimensional,
possibly non-linear, force-deformation characteristics. Each spring
is rigidly connected to the respective strip and is inclined as the
regression line fitting the deformation in the xz-plane. As it is a
computationally efficient modeling technique for the pedestrian
leg impact, I adopt a similar approach for the LFM proposed in
this thesis. Differences with respect to [89] will be highlighted at
the end of chapter.

4.1.2  Load Levels Definition

As the information on the deformation is at a node level, while that
on the contact force at a strip level, it is not possible to map force
and deformation directly. Out of all the nodes defined in one strip,
the most representative deformation has to be chosen. It is not a
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(d) t =30ms (e) t =40ms (f) t =50ms

Figure 4.2: Kinematics of the aPLI for a medium-sized sedan at different
time steps in central shooting position.
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simple task, as, depending on how large a strip is, deformations
among the nodes may vary greatly. The outer surface of the vehicle
front-end may, in fact, undergo significant local deformations.
Many approaches could be used, such as average, minimum or
maximum displacement. In order to keep the error at a minimum,
I define small strips of 10 mm height in z-direction, as shown in
Figure 4.3b, and choose the node with maximum displacement
during contact as most representative, as it is usually the one that
stayed the longest in contact with the impactor. It is also the one
that gave the best results in terms of accuracy in my investigations.
For sake of convenience, I define a width of 250 mm for the outer
LFM surface and center it around the shooting position, as shown
in in Figure 4.3b for the position y = 0 mm. The width, however,
as long as it covers the contact surface, does not play a role in
the computation. The combination of a strip and the respective
force-deformation characteristics is called load level in this thesis.
It is assumed that each load level moves independently from the
others.

4.1.3  Degrees of Freedom

Three physical quantities should be taken into account in the
generation of a mechanical LFM:

DEFORMATION: u = u(x,¥,z) is a vector in R3. It is saved by the
FE solver PAM-CRASH v2018 for every node defined as
output of a simulation.

FORCE: F = F(u) is a vector in R®. Unfortunately, the contact
force cannot be saved by the FE solver PAM-CRASH
v2018 on a single node as output of a simulation, rather on
a group of nodes [25]. I define all the nodes in a strip.

MECHANICAL WORK: W is a scalar and can be computed as:

W= /F(u) -du (4.1)

where F and u are defined above. Considering the whole
system, following the work-energy principle, the mechan-
ical work equals the variation of kinetic energy Ej of the
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(b) LFM at y = 0mm

3
X
Y

(c) LEM at y = 450 mm

Figure 4.3: Comparison of an FE High-Fidelity Model (HFM) of a
medium-sized sedan and its respective Low-Fidelity Model
(LEM) at the shooting positions y = 0mm and y = 450 mm.
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impactor and is the sum of the energy absorbed by the front-
end structures and the energy dissipated by friction at the
contact interface?.

Translational springs act, by definition, on a straight line. If both
F and u, recorded during the high-fidelity model simulation, were
linear and coincident, all force, deformation and mechanical work
could be exactly reproduced and the springs could be perfectly
accurate. Unfortunately, this is not always the case. Figure 4.4
shows the evolution of normalized F and u in the xz-plane for
two different load levels. The level in Figure 4.4a presents a very
linear deformation and a quite linear force, whose regression line
is almost coincidental to the displacement one; we can expect the
translational spring to approximate really well the high-fidelity
model here. This is usually the case for the load levels in front of
the bumper beam, as they deform mainly in x-direction. The level
shown in Figure 4.4b, instead, presents a much more complex
deformation and the deviation from the regression line is more
evident. In addition, force and deformation vectors develop in
different directions: the first one still acts mainly in x-direction,
while the second one has a strong z-component. We can expect
the spring to be a rougher estimation here. Furthermore, it raises
the question which inclination should be taken for the spring. A
translational spring, if fully constrained at one end, cannot deform
in its orthogonal directions. To prevent this movement, it can exert
an artificially large force. Furthermore, the location where the
force acts, defined by the deformation of the spring, is especially
important for flexible impactors as aPLI and FlexPLI. Therefore,
to orient the spring according to the direction of the displacement
averaged over time is, in general, a better choice. This is also
confirmed by better accuracy of the results, as reported in [89].
Figure 4.5 shows the orientation of the springs for the LFMs in
Figure 4.3b and Figure 4.3c.

In the LEM, friction is taken into account in the contact definition between im-
pactor and vehicle outer surface. It should be, therefore, excluded from the force-
deformation characteristics of the spring. This is, however, not trivial, as the friction
force is integrated into the contact force. All in all, I consider this effect negligible,
due to the fact that it takes place in the direction tangential to the vehicle surface,
which is not the main one for energy-absorption.
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(b)

Figure 4.4: Comparison of the evolution of normalized force and defor-
mation vectors in the xz-plane and their respective regression
lines for two load levels of the model in Figure 4.3a: (a) taken
from the license plate (lev26), (b) taken from the bonnet (levs1),
where, during unloading, re-loading takes place.
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(a) LFM at y = Omm

(b) LFM at y = 450 mm

Figure 4.5: Side view of the Low-Fidelity Model (LFM) of the medium-
sized sedan in Figure 4.3a at the shooting positions y = 0 mm
and y = 450 mm.
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A deviation of u from the regression line during the HFM sim-
ulation, as the one shown in Figure 4.4b, would cause the related
load-level to exert an artificially large force in the orthogonal
direction during the LFM simulation to prevent movement. Fur-
thermore, changes in the LFM during parametrization may induce
load levels to move out-of-line and, thus, give rise to locking. This
is inconvenient, especially if the force caused by artificial stiffness
is comparable —or even larger— than the original one exerted by
the load level. A possible solution to this problem is to define
springs also in the orthogonal directions. As the y—component
of the force-deformation characteristics gets relevant for non-
central shooting positions, I define a system of three orthogonal,
translational, non-linear springs rigidly attached to the respective
front-end strip, at one extremity, and supported by one roller each,
at the other extremity, as shown in Figure 4.6. I could use also one
single spring with three translational Degrees of Freedom (DOFs)
and hinged at one end. However, the reference frame attached
to the spring may rotate during deformation and the directions
along which the force-deformation characteristics act would not
correspond to the initial ones anymore. Additionally, the angles
of rotation would depend on the position of the constrained end,
causing this to be a relevant parameter. Therefore, to always keep
the springs with the same orientation, I use rollers, able to move
freely in the spring orthogonal plane.

Let U be the n x 3 matrix that contains n vectors u of a single
load level, where #n is the number of recorded time-steps during
the HFM simulation in which the load level is in contact with the
impactor. The orientation of the three orthogonal, translational
springs for that load level is obtained by Principal Component
Analysis (PCA) of U. PCA is computed by standard Singular
Value Decomposition (SVD) [35] with the python library NumPy
[96]:

U=wzv’ (4.2)
where

W is an n X n matrix containing the left singular vectors of U,
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A A

z
y x
Figure 4.6: System of three orthogonal translational springs —represented
as connector elements- rigidly attached at one common end

and supported by rollers at the other end. The rollers can
freely move in their orthogonal plane.

L is an n x 3 diagonal matrix containing the singular values of
U,

V is a 3 x 3 matrix containing the right singular vectors of U.

V forms an orthogonal basis for R® and contains the cosines of
rotation into the principal components. Therefore, in order to
transform the vectors F and u -recorded at each time-step— in
the new basis, these are multiplied by V by means of matrix
multiplication:

F =F'v u=u'Vv (4.3)

where F' and u’ are, respectively, the force and deformation vec-
tors expressed in principal components. Each component i of F/
and u’ is then mapped together —as (F/,u})- to the i-th transla-
tional spring. For each spring, a subset of the n recorded time-
steps is defined: those pairs (F/, u}) belonging to the loading phase
and defined in the first and, possibly, third quadrants.

It is worth noting that the force recorded from the high-fidelity
model simulation is a function of the deformation in x-, y- and z-
directions. Therefore, it can be considered a mapping f: R® — R3.
The force defined in each translational spring, instead, is only
a function of the deformation in the corresponding principal



4.1 LOW-FIDELITY MODEL GENERATION

component: f;: R — R. This mapping is repeated three times,
once per each component, to generate three independent force-
deformation characteristics. Some loss of information happens
here. This is direct cause of the choice to replace most of the
elements and DOFs of the HFM with translational springs. This
topic will be discussed more in detail in Chapter 8.

4.1.4 Unloading

The force-deformation characteristics of a non-linear spring can
be divided into two phases: the loading phase and the unloading
one. While the first one can be precisely defined in FE solvers,
the second one requires some special treatment. As a matter of
fact, as far as the deformation is monotonically increasing, the
recorded, possibly non-linear, force-deformation mapping can be
used directly for the loading. For what concerns the unloading,
instead, the recorded data return only one possible unloading curve,
i.e., the one starting at the recorded maximum intrusion. However,
the FE solver needs to know how to unload the structure also for
maximum intrusions different from the recorded one. MofSner [88]
—with the explicit FE solver AB A QU S- prescribes two sample
unloading curves and compute the actual one as interpolation
between the two. PAM-CRASH allows to choose between two
strategies [25]:

1. The unloading phase consists of two stages: a sample unload-
ing curve and a transition line, which starts from the point
of maximum intrusion and reaches the unloading curve.
The unloading curve must be monotonically decreasing and
lower at any point than the loading one.

2. The unloading phase is implemented via a power function:
F(u) =a(u— E“max)b (4-4)

where 4, is the maximum intrusion, ¢ the permanent
deformation factor3 and a and b two coefficients that are

3 EUgqy is the permanent deformation.
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automatically calculated by PAM-CRASH to match a
user-defined dissipation factor D. This is computed as:

feu"’” F(u) du‘

Umax

D=1 IHmx ~ 7 ]
Jo" = F(u) du

(4-5)

where the denominator is the energy absorbed during the
loading phase, while the numerator the one recovered dur-
ing the unloading phase. In other words, D = 0 describes
a perfectly elastic material —i. e., with no dissipation— and
D =1 a perfectly inelastic one —i. e., purely dissipative, such
as one following a fracture.

For sake of both simplicity and accuracy, I adopt the second strat-
egy and set ¢ to zero. First, the use of a dissipation factor as only
parameter is a convenient way to control the unloading phase and
is exploited in Section 4.2 for the LFM parametrization. Then, the
power law shape approximates well most of the recorded curves.
Figure 4.7 shows a comparison of the force-deformation charac-
teristics between HFM and LEM for two different load levels. In
Figure 4.7a, both the loading and the unloading phases appear to
be sufficiently well approximated. In Figure 4.7b, instead, we see
a typical behavior that occurs on the first part of the bonnet area:
this is first loaded while the impactor is still vertically straight;
then, once the Upper Body Mass (UBM) of the aPLI rotates over
the bonnet, it is loaded again. Therefore, during the unloading
phase, re-loading takes place. An analogous issue is experienced
by MoBner et al. [89] with the FlexPLI. PAM-CRASH uses,
in both of the above mentioned strategies, the same curve for
unloading and re-loading.

4.1.5 Extrapolation

Both levels in Figure 4.7 have a smaller maximum intrusion in
the LEM than in the HFM simulation, with the effect being more
significant in Figure 4.7b. This hints that the load levels in these
regions are, in that particular simulation, stiffer than their HFM
counterparts. Sometimes, the contrary happens and some load
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Figure 4.7: Comparison of the recorded force-deformation characteristics
in x-direction between the High-Fidelity Model (HFM) in
Figure 4.3a and the Low-Fidelity Model (LFM) in Figure 4.3b
for two load levels: (a) taken from the license plate (lev26), (b)
taken from the bonnet (levs1).



46

LOW-FIDELITY MODEL

levels intrude more in the LFM than in the HFM. In this case,
extrapolation of the recorded data is necessary. Extrapolation is
particularly relevant for simulations where variations are applied
to the LFM. Here, deviations in the LFM deformation with respect
to the HFM are not only due to model inaccuracy, but especially to
the changes applied. PAM-CRASH automatically extrapolates
the force-deformation curve on the basis of the slope between the
last two points defined [25]. Some engineering know-how should
be introduced here to prevent unrealistic intrusions. In fact, the
deformation space reserved for pedestrian protection is rather
limited and relatively-hard structures, such as the bumper beam
and the engine cover, are placed afterwards. However, they are
not generally hit during a pedestrian leg impact; hence, there
is no force-deformation information for those structures. A pos-
sibility to gather more information is to increase the impactor
initial kinetic energy. This ensures more deformation and, thus,
more recorded data. Nevertheless, this may change the impactor
kinematics and the responses of the structures due to inertial
effects and material strain-rate dependency. Therefore, the force-
deformation characteristics in the originally recorded area may
differ. Without changing the initial kinetic energy, the impactor
shooting height could be varied. This causes more intrusion in
some areas and less in others. The information coming from differ-
ent shooting heights should then be combined together. However,
the different impactor position and kinematics lead the upper
body mass of the aPLI to hit the bonnet in different regions. The
stiffness of the bonnet, usually made of steel or aluminum, gen-
erates a rather global deformation —i.e., also regions, or load
levels, not in contact with the impactor are deformed. This de-
formation contributes to the stiffness —i. e., the force-deformation
characteristics— of the regions in contact. By changing the impactor
position, new load levels go in contact with the upper body mass.
By combining together the information coming from different
simulations, the risk is to consider the stiffness of some load levels
more than once, overestimating, then, the overall bonnet stiffness.

In light of the above reasons, I define the extrapolation on the
basis of the information provided by the recorded data of a single
reference simulation. A linear extrapolation, because of its sim-
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----- Original
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Figure 4.8: Example of the linear extrapolation of a loading force-
deformation curve.

plicity, seems reasonable. Neglecting cases where material failure
applies, it is rather unlikely that structures decrease their exerted
load as deformation goes on. Therefore, similarly to [89], I set the
minimum extrapolation slope to zero. Due to many components
interacting and contacting each other and plasticity, the recorded
force-deformation curve may be very non-linear. To rely on a
small portion of the curve may be risky. Therefore, I compute the
average slope in the last 25% of the deformation of the loading
curve and use the point of maximum force in the portion con-
sidered as starting point for the linear extrapolation. Figure 4.8
shows an exemplary extrapolation curve. If the computed slope is
negative, the extrapolation follows a constant line from the point
of maximum deformation.

4.1.6 Load Levels Clustering

A height of 10mm for each load level is necessary to keep the
mismatch between recorded force and deformation sufficiently
low. However, this implicates a large number of load levels to be
defined in the LFEM. The model of the medium-sized sedan in
Figure 4.3b, for instance, consists of 8o load levels. Out of these,
only 53 are non-zero —i.e., get in contact with the impactor. A
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reduction of the number of load levels does not speed-up the
simulation, as the elements of the impactor take most of the
simulation time. Rather, it is beneficial for the parametrization:
on the one hand, because the fewer the load levels, the easier is
to apply the changes; on the other hand, because load levels of
just 10 mm height are not representative of any structural member
underneath the vehicle outer surface. In order to define valuable
parameters, these should be as closely related to real components
as possible. Therefore, it would be appropriate to merge some
load levels together, or in other words, to cluster them, so as to
get closer to the force-deformation characteristics of the single
structures. The downside is that a rougher representation of the
front-end generally may reduce the accuracy.

Cluster analysis is a popular data mining technique to find
regularity in a set of observations and arrange them into groups
according to some similarity criteria. There exists several cluster-
ing algorithms, which differ for how they measure similarity or
how they group observations together. A thorough overview can
be found in [102]. In order to recognize load levels belonging to
the same structure, it is necessary to define one or more criteria
that describe how a structure works. I use three features:

1. the maximum intrusion in the first principal component
!
1mnx’

2. the inclination of the deformation vector u in the xz-plane,
3. the inclination of the force vector F in the xz-plane.

Essentially, I assume that a structure is mainly characterized by
how it deforms. Furthermore, a load level may only be merged
with its adjacent levels. Therefore, a connectivity constraint has
to be taken into account. This is possible with the hierarchical
clustering algorithm, which I apply in its agglomerative form with
the python library scikit-learn [97]. Agglomerative hierarchical
clustering starts with each observation in its own single cluster
and merges together a pair of clusters at each iteration according
to the metric and linkage criterion used. I specify Ward'’s crite-
rion, originally introduced by Ward [132], that, at each iteration,
selects the pair of clusters to merge that minimizes the increase
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in variance within all clusters. With this linkage criterion, only
Euclidean distance can be used as similarity measure. In order
to allow the computation of meaningful distances, the features
are first normalized in the interval [0, 1]. The variance is used as
similarity metric also by the k-means clustering algorithm, though
this uses a different approach to form the clusters, which does not
allow the definition of connectivity constraints. Both the k-means
and hierarchical clustering algorithms require the user to specify
the number of clusters k.

The connectivity matrix C is a symmetric matrix with rows and
columns labeled by observations, with a 1 or 0 in position (i, )
according to whether the i-th observation may be connected with
the j-th one. Since a load level may be only connected with its
adjacent ones, I define an n X n connectivity matrix that is the
sum of an upper shift matrix and a lower shift matrix:

o 1 0 ... 0 0 0
1
Cn = ol + 10 =
1
0 0 0 0 1 0
0 1 0 0
1
=10 0
O ... 0 1 O

where n is the number of load levels in the LEM.
Once similar load levels are grouped together into clusters, their

equivalent force-deformation characteristics must be computed.

The load levels in a cluster are analogous to a system of springs
in parallel. Unlike such springs, though, the load levels do not
share the same deformation. In order to compute the equivalent
characteristics a shared quantity has to be found. I use time. In
fact, data are recorded along the same time axis. Therefore, at each
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time step at which the HFM output is saved —i. e., every 0.05 ms—
I compute the equivalent force and displacement vectors in the
global reference frame, Feq and ueq, respectively as the sum of
the force vector and the weighted average of the displacement
vector of the load levels in the cluster:

n
Feq = Z Fi
i=1
.6
n (f”max F dlll) u; (4 )
Uer =
eq — n O”max F ( ) . dui

where 7 is the number of load levels in the cluster. The weighting
factor is the energy absorbed during the loading phase. By means
of Equation 4.6, from a set of load levels in a cluster, I obtain an
equivalent single load level for each cluster.

4.1.7  Validation Metrics

In order to quantify the accuracy of the LEM, several quantities
can be measured, ranging from the force-deformation character-
istics of the load levels to the displacement at different sections
of the impactor [89]. I use directly the output responses that are
considered in the regulation and consumer test protocols, as ulti-
mately these are the quantities of interest. For aPLI, they are the
bending moment around the y-axis at four sections of the tibia,
the ACL, the MCL, the PCL and the bending moment around y
at three sections of the femur, for a total of 10 injury criteria, as
shown in Figure 1.3b.4 Although other quantities may be more
directly related to the impactor’s kinematics, the injury criteria
represent a good estimate of the LFM performance in different
regions of the impactor, as they are measured over the entire leg.

It is not only relevant what to compare, rather also how. I con-
sider two approaches:

ACL and PCL are currently not taken into account by the C-NCAP [18]. Anyway,
I consider them in the validation, as they measure physical quantities related to
the leg’s kinematics.
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RELATIVE ERROR: the maximum value of the i-th injury criterion
over time, IC;(t), of the LFM is compared relatively to the
HFM:

ICiHFM,mX = mtaX (|ICiHFM (t) ‘)
ICiLFMn;,;x = mtaX (|ICiLFM (t) |)

ICijpp,,,, — IC
Er@muxi - IC

(4-7)

iHFMmux

iHFMmux

where E, is the relative error and the subscript @y, high-
lights that what is computed is not the maximum relative
error, rather the relative error on the maximum values of
the two curves. The relative error could be computed also
at different time points of the curves —e.g., at fixed time
intervals— to get a better overview of the whole simulation.
Nevertheless, I consider the maximum point most relevant,
because it is the quantity steering the design changes.

CORA ERROR: Correlation and Analysis (CORA) is a tool de-
veloped by Gehre et al. [33] to objectively compare two
time-signals, typically from simulation and experimental
test. It combines a corridor and a cross-correlation rating:
the first evaluates how the curve fits in a corridor, while
the second takes into account phase shift, shape and area
under the curve. The CORA rating of the i-th injury crite-
rion, Rcora,, quantifies how similar two curves are with
a number between o and 1. In order to express an error, 1
simply compute:

Ecora; =1 — Rcora;- (4.8)

Although Ecorg, is a more comprehensive evaluation of the sim-
ilarity of two curves, the relative error on the maximum value
is what matters for the evaluation of the pedestrian leg impact.
Therefore, as validation metric I measure what matters —i.e., E;, .

Finally, it is practical to validate the simulation on the basis of
a single value. Out of the 10 injury criteria, then, I consider the
worst case:

Er@maxmax = m;jax (EV@maxi) (49)
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where i expresses the error on the i-th injury criterion.

4.1.8 Workflow

After the discussion of the single facets that compose an LFM, it is
helpful to outline the actual sequence of steps I follow to generate
an LFM.

1. INPUT: Import the HFM and the outer surface of the vehicle
front-end.

The outer surface must include all elements that go in con-
tact with the impactor. An automatic outer surface genera-
tion is possible, as done, for instance, in [118].

2. PROCESS: Prepare the HFM for simulation.
2.1. Slice the front-end outer surface around the shooting
position, as shown in Figure 4.3b.
2.2. Split the front-end outer surface in strips of 10 mm
height.
3. PROCESS: Run HFM simulation.
I use the explicit FE solver PAM-CRASH [25].
4. PROCESS: Post-process the HFM simulation output.
4.1. Read the HFM force and deformation output curves
for each load level.

4.2. Rotate force and deformation vectors in principal com-
ponents.

4.3. Cluster the load levels together in k groups.

4.4. Compute the equivalent force and deformation vectors
for each group in global coordinates.

4.5. Rotate new force and deformation vectors in new prin-
cipal components.

4.6. Split the loading and unloading curves.

4.7. Compute the dissipation factor during unloading.
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4.8. Extrapolate the loading curves.
5. PROCESS: Prepare the LFM for simulation.

5.1. Define the strip of each load level as a rigid body.

5.2. Connect each strip to three orthogonal, translational
springs.

5.3. Map the corresponding loading curve and dissipation
factor to each spring.

6. PROCESS: Run LFM simulation.
I use the explicit FE solver PAM-CRASH [25].
7. DECISION: Check the LFM accuracy.

I compute the maximum relative error among the injury cri-
teria, calculated on the maximum value, A according
to Equation 4.9.

If ’Er@mxmx < 0.1, move on; otherwise, increase the number
of clusters and repeat from step 4.5

8. outruT: Export the LFM.
The LFM is ready for parametrization.

This workflow is schematized in Figure 4.9.

4.2 LOW-FIDELITY MODEL PARAMETRIZATION

To state the importance of this section, I could simply claim that
the procedure described in the previous section would be pointless
without this one. The LFM is a simplification. This is justified only
if useful. As George E. P. Box wisely summarized, "all models
are wrong but some are useful"®. The usefulness of the LFM lies in

5 In case clustering is not the problem, a more detailed understanding of the error
source is required in order to improve the model.
6 The expression is used in a technical report as title of the following section:

Now it would be very remarkable if any system existing in the real
world could be exactly represented by any simple model. However,
cunningly chosen parsimonious models often do provide remark-
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Figure 4.9: Workflow to generate a Low-Fidelity Model (LFM), as de-
scribed in Section 4.1.8.
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its capability to be modified while preserving the validity of its
output. It is clear, then, that what is modified and how are crucial
to the model validity. With output, I mean the set of information
that can be gathered from one or more simulations: typically, for
the pedestrian leg impact, trends and sensitivities of some design
parameters with respect to the impactor injury criteria.

What should be modified is strictly related to the questions
engineers are posed during the vehicle development process. In
the early phase, questions regarding both the position and the
stiffness characteristics of the load levels arise. At later stages,
questions about the stiffness of the structures present in the front-
end become more precise. Therefore, both geometry- and stiffness-
related modifications should be investigated. Since where one
load level acts and how much force it exerts are strictly linked,
both categories of parameters should be used at the same time.
An effort should be done, then, to keep the number of parameters
as low as possible. The curse of dimensionality is a well-known
problem [8] and should not be underestimated. Even more so
considering the computational run time of an LFM simulation,
which limits the number of simulations completed in a reasonable
time period.

How the modifications should be -that is, which range of varia-
tion they should cover- is related to both the phase of the vehicle
development process under consideration and the range of valid-
ity of the model. In early stages, general, conceptual investigations
are carried out. Here, modifications should be rather broad to
allow for sufficient flexibility. In later stages, big changes usually

ably useful approximations. For example, the law PV = RT relating
pressure P, volume V and temperature T of an "ideal" gas via a
constant R is not exactly true for any real gas, but it frequently
provides a useful approximation and furthermore its structure is
informative since it springs from a physical view of the behavior of
gas molecules.

For such a model there is no need to ask the question "Is the
model true?". If "truth" is to be the "whole truth" the answer must
be "No". The only question of interest is "Is the model illuminating
and useful?".

From: George E. P. Box. “Robustness in the Strategy of Scientific Model Building.”
In: Robustness in Statistics. Ed. by Robert L. Launer and Graham N. Wilkinson.
Academic Press, 1979, pp. 201236, excerpt pp. 202-203.
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involve high costs. Here, investigations aim to fine-tune the model
and study local sensitivities. However large the variation, it should
not exceed the range, where the model is trustworthy. Further de-
tail on this topic is provided in Section 6.1. Furthermore, the range
of variation can affect also the amount of simulations required by
the investigation. In fact, in case the number of parameters can-
not be decreased, reducing range of variation of each parameter
lowers, in general, the non-linearities in the design space.
In addition to what and how, the modifications should be:

e automatically implemented through the definition of param-
eters,

¢ uniquely defined by the value of the parameters,
e realizable in real-world vehicle front-ends,
¢ easy to understand and to communicate.

The first two points enable the usage of structural optimization
techniques. The last two focus on the usefulness of the parametriza-
tion. In fact, we must not forget that the outcome of the investiga-
tions carried out with the proposed LFM should be transferred to
the front-end design of real cars. This transfer is, however, outside
the scope of this thesis and left to experienced CAD engineers.

In order to keep the number of parameters low, I concentrate
the modifications to four main load regions of the front-end, as
highlighted in Figure 4.10:

Low: the lower region including the front spoiler;

MID: the middle region including the license plate;
MID-UP: the middle-upper region including the emblem;
ur: the upper region including the bonnet.

A middle-lower region is missing, as that space is usually reserved
for Advanced Driver-Assistance Systems (ADAS) sensors and air
inlet.

By means of clustering, the number of load levels is reduced in
such a way as to better represent the characteristics of single com-
ponents. Nevertheless, to preserve accuracy, this number cannot
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Figure 4.10: The four load regions used in the LFM parametrization.

get as low as four. Therefore, each load region being parametrized
may consist of a few load levels, manually selected. The parame-
ters are, then, applied to all levels in the region.

4.2.1  Geometry Parameters

Geometrical variations modify the x- and z-positions of the load
regions. The aim does not lie in finding a new front-end styling;
rather, in identifying the location where the load regions should
act. How these are covered is mainly a creative task and is up to
designers. The variations are implemented as rigid translations
in the xz-plane, respectively Ax and Az, where each load region
is moved independently. This may create either overlap between
regions or some empty areas. However, this does not cause nu-
merical issues. In fact, contact is not defined among load levels,
but only between load levels and impactor. Therefore, an overlap
simply simulates a situation where the sum of the stiffnesses of
the load levels in the overlapping portion is applied and an empty
area one where no structurally relevant components are present.

The lower load region is kept fixed in x and used as reference
position. This avoids to obtain the same relative positions with
different sets of parameter values. In z this issue does not apply, as,
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although the load regions have the same relative positions, their
position would be different relative to the impactor, thus giving
a different kinematics. Nevertheless, the height of the bumper
beam is not linked to pedestrian protection requirements, rather
to front and low-speed crash ones. Therefore, the z-position of the
middle load region, usually placed in front of the bumper beam,
is kept fixed. Instead, the deformation space in front of the bumper
beam is strictly linked to pedestrian leg impact requirements.
Hence, an additional parameter, upg, ., is implemented for the
middle load region that defines the deformation at which a rigid
behavior starts. The stiffness here is set constant to 1 kNmm~!. It
is worth noting, that this deformation may not be reached during
the simulation, depending on the actual intrusion.

The load levels in the upper load region have recorded the bon-
net stiffness according to only one specific impactor kinematics
—i.e., with the aPLI UBM impacting at a precise location. In gen-
eral when changes are applied, but especially when shifting the
bonnet, the area of impact of the UBM changes and the LFM may
not be valid anymore. Therefore, I discourage large geometrical
variations of the upper load region.

In outwards shooting positions, the angle of tapering of the
front-end —i.e., from a top view the angle with respect to the
y-axis— affects the impactor rotation around the z-axis during the
simulation. Therefore, that angle could be a relevant parameter
for the pedestrian leg impact; however, it is not implemented in
this work.

To sum up, I define a maximum of 7 geometry-related parame-
ters: Azjoy, AXyig, UDs Axmid—upr AZmid—up/ Axyp, Dzyp.

mid”
4.2.2  Stiffness Parameters

Variations related to the stiffness of a load region modify the shape
of the force-deformation characteristics of the levels in that region.
For the loading phase, two parameters, s; and s;, are defined:
they scale the curve, respectively, at zero deformation and at the
last point of deformation recorded during the HFM simulation,
similarly to what is proposed in [88]. If only s; is used, the curve
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is scaled globally, i. e., the parameter acts as a scaling factor of the
whole curve. Each entry of the force for the i-th spring defined in
the load level is simply given by:

Ff = s1F, (4.10)

where the star symbol indicates the scaled quantity. If both s;
and s; are used, a linear scaling function over the deformation is
defined and each entry of the force is computed as:

S2 — 51

$=s51+ U; F* = sF; (4.11)

. 1
Umax

where u; _ is the maximum intrusion of the i-th component.
Figure 4.11a shows an exemplary curve, scaled with either one or
two parameters, and Figure 4.11b the respective scaling functions
over the deformation.

Instead of expressing the variations relative to an original shape,
a completely new force-deformation curve could be defined. I
prefer using scaling parameters for the following reasons:

¢ the need to apply the same parameter to each level defined
in the load region,

¢ the need to keep the number of parameters low,

¢ the simplicity to express variations relative to the original
curve,

¢ the flexibility in shapes it still enables.

In fact, it is rather unlikely that all the levels in a load region have
the same force-deformation characteristics. Therefore, a curve for
each one should be defined, increasing significantly the number
of parameters. A cubic curve, for instance, needs three points to
be specified —the fourth one being the origin— and often offers too
much flexibility in shape for the limited deformation space to be
accurately realized in real components. Furthermore, in order to
communicate the variations, it is easier to express them in relation
to a known construction, rather than starting from scratch.

In the early stages of the vehicle development process, rather
general indications on the force-deformation characteristics are
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Figure 4.11: Example of scaling parameters on the force-deformation
characteristics: (a) shows the scaled curves, (b) shows the
respective scaling functions over the deformation.
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Figure 4.12: Example of cubic polynomial fit of a force-deformation char-
acteristics.

sought. The reference characteristics may be taken even from pre-
vious similar vehicle models. Therefore, it is convenient to smooth
out small oscillations in the reference curve and improve gener-
ality of the results. A cubic polynomial fits sufficiently well the
reference curve, as shown exemplarily in Figure 4.12. The curve is,
then, extrapolated as discussed in Section 4.1.5. Simulations show
that the effect of small oscillations in the reference curve is rather
small. Nevertheless, in later stages, precise information about the
force-deformation characteristics are sought. Here, the reference
curve typically belongs to the model under development and the
indications should be as close as possible to reality; in these cases,
I recommend using the original reference curve.

For the unloading phase, I vary directly the dissipation factor D,
defined in Section 4.1.4. I assign the same dissipation factor to
each level in the load region. Although being an approximation,
it is a very convenient way, with a single parameter, to control the
energy that the load region returns.

Linked to how the load levels deform is the inclination of the
springs. This may play a large role, especially in the lower and
upper load regions. Nevertheless, it would be difficult to precisely
transfer the inclination back to the HFM and, therefore, I do not
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employ it as a parameter in this thesis. I suggest its usage in
targeted investigations to understand the way load regions should
deform.

To sum-up, I define a maximum of 12 stiffness-related parame-
ters: 81,7 52,0r Diows 51,47 82,0i0r Dmids 81,17 52 igepr Dmid-upsr S1,p0
Szu P Dup-

4.3 NOVELTY OF THE PROPOSED METHOD

The idea of using a simplified model of the vehicle front-end
for investigations of the pedestrian leg impact is nothing new.
Though, to the best of my knowledge, the way I generate and use
it has some original aspects. The major ones are:

DEGREES OF FREEDOM: state-of-the-art approaches use one spring
per load level [51, 89]; the use of three orthogonal, trans-
lational springs allows a more faithful approximation of
both forces and deformations of the HFEM. Especially when
modifications are applied to the original model, a system
of three springs avoids the introduction of artificially-large
stiffness in the orthogonal direction of deformation.

CLUSTERING: the approach in [89] selects the load levels of the
model and groups some of them for the parametrization.
The definition of 10 mm high load levels, instead, allows a
much finer record of the local deformations in the HFM. Fur-
thermore, the subsequent clustering combines together those
levels deforming similarly so as to better approximate the
force-deformation characteristics of single energy-absorbing
structures in the front-end.

PARAMETRIZATION: state-of-the-art approaches mostly use ide-
alized force-deformation characteristics or focused on spe-

cific load regions [88, 94]; I define simple —yet quite comprehensive-

— parameters that involve both geometry and stiffness of the
front-end, are easy to understand and are suitable to both
early and late design stages.

IMPACTOR: no previous work has developed an LFM and run
front-end design analyses with the aPLL



4.3 NOVELTY OF THE PROPOSED METHOD

Some minor aspects that are peculiar of my work concern the
unloading —through the definition of the dissipation factor directly
in the LEM- the extrapolation —by averaging the slope of the last
25% of the force-deformation curve— and the node selected for
the deformation in the load level —that is, the one with largest
intrusion.
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DESIGN FLEXIBILITY OPTIMIZATION OF
COMPUTATIONALLY EXPENSIVE BLACK-BOX
FUNCTIONS

Your answers ought to be general, not generic.

— Rossana Negri®

In Chapter 4, I proposed a method to generate and parametrize
a simplified vehicle model for the pedestrian leg impact. Concept
engineers can use it in early phases of the development process
to run first investigations and determine what is necessary to
fulfill the requirements. In this regard, a global sensitivity analysis
would be useful to rank the importance of the parameters and
identify a subset of the most relevant ones. Even more useful
would be to find out, not only on which parameters to focus, but
also how their value should be; in other words, to provide design
engineers with guidelines about optimal parameters set-up. Ac-
cording to the Cambridge Dictionary, guidelines are "information
intended to advise people on how something should be done". Ergo, they
would represent a good starting point for the design process of
vehicles front-end for the pedestrian leg impact and, thus, support
the initial development stages. Furthermore, they would boost
understanding of the complex link between vehicle and impactor.
This know-how can, then, guide some trial-and-error that may
take place in later stages.

The conventional approach is to identify one feasible set of
parameters, i.e., one that fulfills the requirements. However, in
the early stages, this is of little help; essentially, because of two
reasons:

1. Lots of uncertainties are present at the beginning of the
development process about its evolution. Several construc-

1 Directed at me, during an oral exam of the Philosophy class at high-school.
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tion decisions must still be taken and the initial design may
undergo significant changes.

2. The parameter values belong to the LEM. It is unlikely that
these values can be exactly matched by a HFM. No informa-
tion is provided about how the impactor’s response changes
when those values are not met.

Therefore, one single feasible set-up provides little help. Useful
guidelines would recommend, instead, a range of values for each
design parameter, where the requirements are satisfied. Namely,
useful guidelines should offer flexibility.

In the context of design under uncertainty, the term flexibility
was initially introduced by Grossmann and Morari [42] to describe
the ability of a chemical plant to satisfy specifications despite the
variations that may occur in the parameter values during oper-
ation. According to the Merriam-Webster Dictionary, flexibility
is the "ready capability to adapt to new, different, or changing require-
ments". Therefore, the aim of this chapter is the optimization of the
capability of the design parameters to adapt to new requirements,
not specific to the pedestrian leg impact, that may arise during
the development process, while still fulfilling the pedestrian leg
impact ones.

The word optimization comes from the Latin optimus, superla-
tive of bonus, good, and means to take the quality of an object to
its highest degree. True optimization is outside the scope of this
work. In fact, due to the relatively high-dimensionality of the
problem under investigation and the stochastic approach used
to assess flexibility —described in Section 5.2— the highest degree
of flexibility of a design is not known. More pragmatically, I
aim for a bonization, that is, for a satisfactory degree of flexibility
given the circumstances. Nonetheless, for sake of clarity, the word
optimization is used in the rest of the thesis.

Figure 5.1 shows an overview of the steps taken in the current
chapter. In the first section, I describe an adaptive strategy to
train a surrogate model for feasibility analysis; in the second
one, I propose a revision of an existing algorithm to compute
flexibility-oriented design guidelines.
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Figure 5.1: Broad overview of steps described in Chapter 5.

5.1 BAYESIAN FEASIBILITY ANALYSIS

In order to identify feasible intervals of parameter values, it is
first necessary to mathematically define what feasible means. A
convenient way to do this is by means of the feasibility function ¢
[44]-

Let x; € R be a real-numbered value of the design parameter i.

Let X := [T%; [x;,, xi,] C R? be a compact, convex subset of
the Euclidean space of dimension d, RY, obtained by Cartesian
product of d intervals. X is commonly called design space.

Let x := (xq,...,x4) € Xbe a vector in X, i. e., a d-tuple of input
parameter values. x is commonly called sample or, simply, point.

Let f: X — R be an output scalar quantity. f;j(x), then, refers
specifically to the output response f; of the sample x. For the
pedestrian leg impact, f; represents, in general, the j-th injury
criterion.

Let f;, be the threshold value for the response f;. Therefore,
fi < fj, is a requirement to fulfill. This can be rewritten in the
form of an inequality constraint g:

_fiw

Jt

gi(x)

-1<0. (5.1)
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Hence, if g; is non-positive, the j-th requirement is satisfied. It
follows that, if the condition g; < 0 is true for each j € {1,...,m},
where m is the number of requirements, x is said to be feasible. It
comes in handy to define a function that quantifies the feasibility
of a sample x. That is the feasibility function 1, introduced by
Halemane and Grossmann [44]:

pix) = max  g(x) (52)
which measures how far the most critical response is, relative to
its threshold value. By way of example, a value i = 0.1 means
that the most critical response is 10% higher than its threshold.
Accordingly, if ¢ > 0, there exists at least one requirement that is
not fulfilled, and if < 0, every requirement is fulfilled. All the
samples x € X, for which the condition 1(x) < 0 holds, belong to
the feasible region of the design space. ¢ = 0 identifies, then, the
boundary of the feasible region. The aim of feasibility analysis is
to determine the feasible region of the design space [130].

The algorithm to obtain the guidelines —described in the second
part of the chapter— requires, first, a large number of samples and,
second, the category to which they belong: feasible or infeasible.
One FE simulation of the LFM for pedestrian leg impact, intro-
duced in Chapter 4, still takes too long to run large data sets in a
reasonable amount of time. For computationally expensive mod-
els, mathematical, data-driven, approximation methods are often
introduced to describe the input-output behavior of the simula-
tion model. The physical nature of the problem is assumed to be
a black-box and only the relationship between output responses
and input parameters is investigated, as shown in Figure 5.2. The
challenge lies in the precise identification of this relationship on
the basis of a limited number of training samples. The described
approximation methods are known under several names, among
which surrogate models [100], response surface models [64] or
metamodels [129]. In this thesis, | use the name surrogate model.

The efficiency of surrogate models is exploited for many pur-
poses, such as:

GLOBAL APPROXIMATION: to describe the model behavior in
the whole input space,
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Figure 5.2: Sketch of a single-output black-box model.

GLOBAL OPTIMIZATION: to direct the search towards the global
optimum,

RELIABILITY ANALYSIS: to compute the failure probability of a
system,

FEASIBILITY ANALYSIS: to classify the samples based on their
feasibility status.

Models used for the global approximation require high global
accuracy, with no preferred region of the space to focus on. Those
used for the last three purposes, instead, do still require a general
global accuracy, but present region of interest in the space, where
high accuracy is more important. In global optimization, this is
the region close to the global optimum. In reliability analysis,
it is the one where limit states contribute to system failure. In
feasibility analysis, it is the boundary of the feasible region.
Depending on the purpose of the surrogate model, the way to
train it differs. There are, essentially, two sampling approaches:

UNIFORM The sampling plan is designed to fill out the entire
input space, maximizing the uniformity; e.g., a common
space-filling design is Latin Hypercube Sampling (LHS) [7,
85]. A thorough discussion on computer experimental de-
signs can be found in [105]. The sampling budget is, gen-
erally, used in one solution. For deterministic computer
simulations, the goal of an experimental plan should be to
reduce systematic errors, rather than random errors [104].
Therefore, uniformity is desired for global accuracy.

ADAPTIVE The sampling strategy is divided into two phases. The
initial phase generates a uniform sampling; however, this
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time not all the sampling budget is used. Then, an iterative
phase starts, where the samples are specifically chosen so as
to provide maximum information on the region of interest,
based on current knowledge. It is, therefore, a greedy ap-
proach. Usually, a figure of merit, also called infill criterion,
is defined that quantifies the quality of a sample. It aims to
balance exploitation of the surrogate model prediction and
exploration of the design space. The former tries to locate
samples where the prediction value is interesting, while the
latter where the prediction error is high. An overview of in-
fill criteria is given in [58]. After each iteration, the surrogate
model is updated with the newly evaluated samples. The it-
erative phase stops when either the sampling budget is over
or a satisfactory accuracy is reached. Adaptive sampling,
also called sequential sampling in statistics, aims to reduce
the computational effort —i. e., the number of evaluations—
necessary to reach the same accuracy in the region of interest
with respect to a uniform approach. Popularity of adaptive
sampling has grown remarkably since the work of Jones
et al. [59] in the context of Bayesian global optimization.
In machine learning, the key principle related to adaptive
sampling —namely to let a learning model query for new
data points at self-chosen locations- is called active learning

[109].

In this thesis, I use surrogate models for feasibility analysis,
i.e., to assess the feasibility status of a sample. Since this is a
binary classification task, a uniform degree of accuracy over the
whole design space is not necessary. Rather, the prediction accu-
racy should be especially high in the area between feasible and
infeasible categories —that is, close to the feasible region boundary.
I adopt, therefore, an adaptive sampling technique.

Similarly to the Bayesian approaches for global optimization [50,
59, 86], I use Gaussian processes to approximate the objective func-
tion. The definition Bayesian is due to the probabilistic approach of
the approximation: Gaussian process can be considered a Bayesian
statistical method. In fact, they assume a prior distribution® on the

2 Details on Gaussian process theory will follow in Section 5.1.1.
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underlying function, analogously to the a-priori probability in
Bayesian decision theory [87]. Therefore, to be consistent with the
global optimization nomenclature, I call the described feasibility
analysis strategy, Bayesian feasibility analysis.

5.1.1 Gaussian Process Regression

Theories related to Gaussian processes go back more than a cen-
tury.3 During this period, the mathematical foundation has been
re-invented several times and termed with many different names;
this already suggests how powerful the theory is. Generally ac-
cepted names are Kriging, stochastic process, Best Linear Unbi-
ased Estimator (BLUE) and Wiener-Kolmogoroff prediction. Gaus-
sian process is the most commonly used name in the context of
machine learning, presumably because it hints to the mathemati-
cal foundation of the model. The theory became popular thanks
to the formulation in the field of geostatics by French mathemati-
cian Matheron [83], which builds on the Master’s thesis of South
African mining engineer Krige [74] on the prediction of gold dis-
tribution on the basis of few boreholes. The modern theory refers
to the book of Rasmussen and Williams [99].

The historical digression points out the significance of the theory
in several fields. This finds two main explanations. For a given
finite set of observations, there is an infinite number of functions
passing through them. In simple terms, Gaussian processes:

1. assign a probability to each possible function. That can be
used to predict, on the one hand, which function most likely
interpolates the data —given by the mean of the probability
distribution— on the other hand, the error associated with
this prediction —given by the standard deviation.

2. are versatile, as they can generate functions with any shape,
and so are suitable to interpolate non-linear and multimodal
problems.

3 Early work dates back to 1880 by Danish astronomer Thorvald N. Thiele [76]. The
primitive theory was, then, formalized by American mathematician Wiener [136]
and Soviet mathematician Kolmogoroff [67] for time series analysis.
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The first strength comes from the probabilistic approach typical
of Gaussian distributions; the second one from the non-parametric
modeling approach. While parametric approaches —e. g., polyno-
mial regression— assume a certain shape of the function and opti-
mize the parameters —e. g., the coefficients of the polynomial- that
ensure the best fit to the training data, non-parametric approaches
—e.g., Gaussian processes, Support-Vector Machine (SVM) or
Artificial Neural Network (ANN)- may assume any shape and
automatically learn the actual shape of the function from the
training data, after optimization of so-called hyper-parameters. On
the one hand, the model learns the best fitting parameters for a
certain shape; this is called parametric machine learning. On the
other hand, the model learns the best fitting shape for a certain
set of hyper-parameters; this is called non-parametric machine
learning. The latter is way more powerful, as it enables much
more flexibility and can fit any data, though at the cost of many
more samples required to be accurate.

Gaussian processes have an important drawback, particularly
relevant in high-dimensional spaces. In fact, their computational
complexity is (’)(n3), i.e., cubic with the number of training sam-
ples n [5]. Therefore, as they are not sparse -namely they use
the whole amount of training samples to compute a prediction—
they may become very expensive for large data sets, as it is often
required in high-dimensional spaces.

After an introduction on pros and cons of Gaussian processes,
some math is needed to describe the fundamentals of the regres-
sion method.

Let {x1,...,xa} € X be a finite set of n arbitrary points in the
design space.

Let y: X — R be an output scalar quantity. y(x), for any point
x € X, is the function to model. In Gaussian process theory, the
quantity y(x;), at location x;, is considered a random variable.

Here the complex bit: a Gaussian process is defined as a set of
random variables {y(x1),...,y(xn)} that has a multivariate Gaus-
sian distribution [99]. This is a generalization of the univariate
Gaussian distribution for more than one variable. As the one-
dimensional Gaussian distribution is fully determined by mean
and variance, the multivariate one is fully determined by the mean
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function, denoted as y(x), and the covariance function, also called
kernel, k(x;, x;):

n(x) = puly(x)) = E[y(x)]
k(xi,xj) = cov(y(xi), y(x5)) = (53)
=E [(y(x) — n(x)) (y(x5) — u(x5))] -

In Bayesian statistics, the distribution of possible functions y(x),
before any observation is taken into account, is called prior. Ex-
emplary functions from this distribution are shown in Figure 5.4a.
As there is no information on the underlying function yet, namely
no observations, the prior distribution is often assumed to have
mean constant and equal to zero. This means that the average of
all possible functions y(x) at any point x equals zero. With this
assumption, mean and kernel of the Gaussian Process (GP) prior,
in Equation 5.3, simplify to:

H(x) =0
k(xi, %) = E [y(x)y(x)] -
Assuming a zero mean does not affect the shape of the possible
functions. Specifying the covariance function does. In fact, this de-
fines the similarity between pairs of function values, (y(x;), y(xj)),
and so the function’s degree of smoothness. The covariance is as-
sumed to be a function of the distance between x; and x; only.
Therefore, in case of isotropy, as assumed in this thesis, it assumes
the form:

k(xi, x;) = k(||x; — x| (5.5)

where ||-|| indicates the Euclidean norm. With the kernel it is
possible to specify which shape the function most likely has,
based on the a priori knowledge. A GP, whose prior has constant
mean and covariance function that depends only on the distance
between two points, is said to be stationary.

A common kernel, because of its flexibility, is the Matérn covari-
ance function [99], introduced by the Swedish statistician Matérn
[82]:

1—v X; — X; v X — X;
k(xi, xj) = ;V) <\/2T/||ll||> K, (@HZJH> (5.6)

(5-4)
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where

v is a positive parameter called smoothness coefficient,
I is a positive parameter called length-scale,

I'(v) is the gamma function,

K, is the modified Bessel function of the second kind.

At zero distance, k(x;, xj) = 1, meaning that the function interpo-
lates the points.

The smoothness coefficient v defines the class of differentiabil-
Xi —xj|| = 0. For v > p, the
function y(x) is p-times continuously differentiable. The smooth-
ness affects also how the prediction uncertainty grows close to a
point. The higher v, the more similar two distinct points are, the
smoother the function is, the less uncertain the prediction close
to a point is. For v = 1/2, the well-known exponential covariance
function is obtained, which is C° continuous, while for v — inf, it
tends to another well-known covariance function, the squared ex-
ponential, also called Gaussian, which is infinitely differentiable.
The decay in similarity for different values of v as function of
the distance between two points is shown in Figure 5.3. Popular
choices of v are 3/2 and 5/2. Due to the nature of the functions
that I aim to approximate, namely responses of a non-linear FE
simulation, I use v = 3/2, which generates C* continuous func-
tions. For this choice, the covariance function simplifies to:

k(xi, x;) = <1+\[HX1 x]||> exp( \fH ]H> (5.7)

The length-scale, as the name suggests, scales the distance
between two points. Ergo, it controls how close two points (x;, x;)
must be to consider their function values (y(x;),y(x;)) similar.
The higher [, the more similar two points at unit distance are, the
smoother the function is, the less uncertain the prediction close to
a point is. The length-scale is the hyper-parameter of Equation 5.7.

A squared term (7}%, called signal variance, is sometimes used to

multiply Equation 5.6 and Equation 5.7. It defines the variance of
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Figure 5.3: Matérn covariance as function of the distance between two
points for different values of the smoothness coefficient v,
according to Equation 5.6.

the function y(x) ~whose mean is zero, as defined in Equation 5.4—
and would be another hyper-parameter of the covariance function.
However, in order to keep low the number of hyper-parameters
to infer from the training samples, I assume a unitary variance.

Figure 5.4a shows some randomly sampled realizations of the
prior distribution with zero mean and kernel as defined in Equa-
tion 5.7 for a one-dimensional case. For the plot, a length-scale
of 0.1 is assumed. The functions have different shape, but same
smoothness. However, they do not approximate any specific prob-
lem, as no observation is taken into account. In other words, the
model is still untrained.

Let X = [x1 ... xx]” be a N x d matrix of N training samples
—where d is the dimensionality of the design space— and x, be a
test sample.

Let y = [y(x1) ... y(xn)]" be a column vector of N obser-
vations, called training outputs, and v, = y(x;) the unknown
function value to predict, called test output.

Let Kxx be the N x N covariance matrix -whose entry KXixj

is equal to k(x;j, xj)— and kxx, = [k(x1,xx) ... k(xN,x*)]T the col-
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umn vector of covariances between training points and test point.
Then, the multivariate probability distribution of the training
outputs y and test output y. is Gaussian and given by:

[Y} Y (0, Kxx  kxx, ]) (5.8)
Y

k)T(x* k(xx, %)

Finally, the Gaussian probability distribution of v is obtained
by conditioning the prior, right hand-side of Equation 5.8, on the
observations y. In simple words, the conditioning operation is
equivalent to force the distribution of functions given by the prior,
such as those in Figure 5.4a, to pass through the observations.
Details on this operation are more cryptic and can be found in
[99]. The resulting expected value, 7., and variance, (Tf, of the
prediction at location x, are computed as:

- (5:9)
0% = 0% (xs) = k(xs, xs) — k;(x*Kx%(kXx*-

Equation 5.9 describes the posterior distribution of v, at location
Xy, 1.e., the distribution obtained once information is inferred
from the available observations. The posterior distribution of
functions y(x) is shown in Figure 5.4b with a v = 3/2 Matérn
covariance function. The length-scale is chosen to best fit the
data. The shape of the functions is much more similar, once
training points are taken into account, and the uncertainty overall
smaller. Therefore, the model has, partially, learned the shape of
the underlying function.

Looking at Equation 5.9, it is now clear where the drawback of
Gaussian processes comes from. The larger the number of training
samples N, the larger the size of the covariance matrix Kxx, the
more computationally expensive it is to invert it. As told already
in undergraduate math courses, matrix inversion is no fun.

7« in Equation 5.9 can be interpreted as a linear combination of
N covariance functions centered, respectively, at xq, ..., xN:

N
9(x) = Y aik(xi, x4
i=1 (5.10)

T -1
"‘:{“1 D‘N} = Kyxy-
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Figure 5.4: Randomly sampled functions y(x), mean and interval at 95%
confidence level of Gaussian process: (a) prior distribution, as
in Equation 5.4, with Matérn covariance function (v = 3/2,
I = 0.1); (b) posterior distribution, as in Equation 5.9, with
Matérn covariance function (v = 3/2,1 = 0.182).
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Noteworthy, although the mean of the prior is assumed to be
zero, the mean of the posterior is not necessarily zero. Neverthe-
less, this tends to zero in the area where no information —i. e., no
observation- is available, as in the right side of Figure 5.4b.

Most numerical simulations are noisy. Therefore, no observa-
tions of the actual underlying function are available, but only
noise-corrupted values. In this case, it is inconvenient to interpo-
late the data, as it is likely to lead to a problem known as overfitting.
This occurs when the model overestimates the changes in the un-
derlying function.# In such cases, to pass close to the observations
may be a better approach than passing through them. This can be
achieved by introducing a term ¢2, called noise variance, in the
covariance matrix of the training inputs Kxx:

Kxx, = Kxx + U,%I (5.11)

where I is the identity matrix. Noise is assumed to have a Gaussian
distribution with zero mean and variance 2.

Equation 5.11 adds a variance to the diagonal of the covari-
ance matrix, namely to the covariance of each training point with
itself, k(x;, x;). This is also called nugget effect. By substituting
Kxx, with Kxx in Equation 5.9, the posterior distribution for
GP regression for noisy training data is obtained [99].5 A tiny
noise term may be beneficial also for deterministic observations,
as it enhances the numerical stability of matrix computation by
preventing singular matrices, similarly to the Tikhonov regular-
ization [40]. Furthermore, Gramacy and Lee [41] argue that it is
better to add a noise term and use a flexible kernel, rather than
interpolating the data with a very smooth kernel.

To sum up, the Gaussian process learns the input-output re-
lationship of the underlying model only through the available
set of observations and the prior distribution. As the former may
be limited, the only way to bring some know-how into the pre-
dictions is to work on the prior. Because the mean is assumed

Overfitting may be especially relevant when the training points are non-uniform,
with some very close to each other —as it happens, for instance, around the region
of interest with adaptive sampling.
Note that the prediction is noise-free, unless the noise variance is added to the
predicted variance. That is fine, because goal of the prediction is to approximate
the noise-free underlying function.
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zero, specifying a proper covariance function is of the utmost
importance.

In this thesis, I use the implementation of GP regression in the
python library scikit-learn [97]. It is often recommended to not
assume too much smoothness in the data and include a regular-
ization term [21, 40, 99]. For this reason and on the basis of the
above discussion, I employ the Matérn covariance function with
smoothness coefficient v = 3/2, as in Equation 5.7, together with
a noise term, as in Equation 5.11. The two hyper-parameters, I
and 02, are optimized by Maximum Likelihood Estimation (MLE)
[110], which aims at finding the hyper-parameters that most likely
explain the data. As likelihood function, the logarithm of the
marginal likelihood is used [99]. Due to the multimodal form of
this function, the optimizer is started in 15 different initial config-
urations. Despite the computational overhead, hyper-parameters
MLE is performed each time new observations are acquired,
namely at each adaptive sampling iteration, in order to enhance
prediction accuracy, as suggested in [113]. The hyper-parameters
are optimized inside the range:

LENGTH-SCALE: | € [1071,10°],
NOISE VARIANCE: 07 € [1077,1073].

According to the discussion following Equation 5.7, it is clear
that specifying too small length-scales is dangerous. In fact, the
approximation function may get too flexible and likely cause
overfitting [21]. Flexibility is especially risky in high-dimensional
spaces, where, because of limited sampling budget, distances
among samples tend to get larger. In this case, smooth functions
are preferable. Since I normalize the design space used for the
GP to the unit hyper-cube, a lower limit of 0.1 for the length-scale
looks appropriate. 10~ as lower limit of the noise variance is
considered enough for regularization. As I use Gaussian processes
to approximate normalized constraints, of the type in Equation 5.1,
an upper limit of 1073 expresses a standard deviation of about 3%
of the threshold of the measured response and looks appropriate.
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5.1.2 Expected Improvement for Feasibility Analysis

The predictions on mean and variance, in Equation 5.9, can be
used to iteratively improve the GP accuracy close to the feasi-
ble region boundary, and so in feasibility analysis. New samples
should be chosen at each iteration on the basis on an infill crite-
rion, which is required to guide the search towards the feasible
region boundary. On the one hand, the criterion should exploit
the current information and favor points whose expected value
lies on the boundary. On the other hand, it should promote the
exploration of unsampled areas and favor points whose predic-
tion —although not expected to lie on the boundary- have a high
uncertainty, because of which they may still lie on the boundary.
Therefore, new samples should contribute to relocate the feasible
region boundary more precisely —or in other words, with less
uncertainty.

In this thesis, I use the Expected Improvement (E) for feasibility
analysis infill criterion, Elf.;, introduced by Boukouvala and
Ierapetritou [11]. This is based on the E! criterion, first formulated
by Mockus [86] and successfully applied by Jones et al. [59] for
efficient, surrogate-based, global optimization. The EI founds on
the definition of an improvement.

Let x be a candidate sample for the next iteration.

Let y = y(x), at location x, be a random variable that belongs
to a GP, as described in the previous subsection. Therefore, it has
a Gaussian distribution, with mean § and standard deviation o,
according to Equation 5.9.

GLOBAL OPTIMIZATION The improvement, I, is non-zero for
values ¥ < fmin, Where y is the quantity to minimize and fpyin =
min(y(x1),...,y(xn)) is the current best observation. Simply put,
the optimum is improved if the sample’s value is lower than the
current ones. I is defined as [108]:

fmin_]/ 1fy <fmin

0 otherwise

I = = max (0, fmin — V) (5.12)
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i.e, if ¥ < fmin, the further y from fi,in, the more the optimum is
improved. Accordingly, the EI at location x, EI = EI(x), is [59]:

EI = E [I] = E [max (0, fmin — ¥)] =
= (fmin —9) P (fm“;»g) o (fn’ur:j?) (5.13)

with EI = 0 if 0 = 0, where ¢(-) and ®(+) indicate, respectively,
the probability density function and the cumulative distribution
function of the standard normal distribution. Equation 5.13 is
derived in Section A.1.

FEASIBILITY ANALYSIS The improvement, Ifeqs, is non-zero
for values y <0, if § > 0, and for values y > 0, if § < 0, where y
approximates the feasibility function ¢ of the underlying problem,
defined in Equation 5.2. Simply put, if the sample is predicted as
infeasible, 7 > 0, the feasibility analysis capability of the surrogate
model is improved only in case the sample turns out to be feasible,
y < 0; and vice versa. I, is defined as [131]:

J-y ify<0<y
Ifeas = qy—79 ifp <0<y (5.14)
0 otherwise

i.e., if the sample is predicted as infeasible, > 0, and the sample
is actually feasible, y < 0, the further y from #, the more feasible
the sample, the larger the prediction error, the more the feasibility
analysis capability of the surrogate model is improved; and vice
versa. Noteworthy, if § # 0, If.,s equals | § | at y = 0 and presents
a discontinuity. Accordingly, the EI for feasibility analysis at
location x, Elfyys = Elfes(x), can be conveniently computed as
[11]:

~

Elfeus =E [Ifeas} =09 ((yf) (5.15)

with Elfs = 0 if o = 0. Equation 5.15 is derived in Section A.2.
For the sake of completeness, it is worth mentioning that Shin-
tani et al. [112] use the standard E! as infill-criterion to improve
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the feasibility analysis capability of the surrogate model. They set
then the current value to improve —fpin in Equation 5.13- to zero.
However, with this approach, samples are not added around the
feasibility boundary, but rather mostly inside the feasibility region.
Hence, the feasibility analysis capability of the surrogate model
may improve, but this is not the direct goal of the EI formulation
—as it is, instead, for EI feas-

Figure 5.5a shows, by way of example, I, for the case § > 0,
together with a possible probability density function of y. Accord-
ingly, the probability density function of Ir,,s —and its expected
value Elf,;s— can be determined, as shown in Figure 5. 5b.6

d(t) expresses the probability that the function’s value is lower
or equal to t and monotonically increases as t increases. Therefore,
the first term of £1, in Equation 5.13, increases as fmin — J increases
or as the prediction uncertainty ¢ decreases. This term exploits
the surrogate model prediction to seek the optimum.

¢(t) expresses the probability that the function’s value is equal
to f; it is symmetrical and maximum for ¢+ = 0. Therefore, the
second term of EI increases as i tends to fuin Or as ¢ increases: it
explores the design space to seek points whose value is similar to
the current optimum, but with high uncertainty.

Elfegs, in Equation 5.15, has the same form of the second term
of EI, yet does not only perform exploration. Rather, it combines
exploitation and exploration in a single term. In fact, Elz,s in-
creases as i tends to zero, which is the region of interest —-namely
the feasibility boundary— or as ¢ increases, which occurs in un-
explored regions. This is confirmed by the partial derivatives of
Elfeqs with respect to § and o

Recalling the expression of the probability density function for
a standard Gaussian distribution, I can rewrite Elf.; as:

_ L 17}
EIfCﬂS = O’E eXp <_2 <0_> > (516)

6 Ify—30>0,EI feas would be, to a first approximation, zero.
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Figure 5.5: (a) Improvement for feasibility analysis, If.,s, and possible
Probability Density Function (PDF) of y, for the case § > 0,
according to Equation 5.14.
(b) PDF of Ifeqs in (a): the corresponding expected value Elf,gs
is also reported.
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and compute the partial derivatives:
8E1{eﬂs _ 1 exp 71 (y)Z E
oy 27T 2 \o o

1
OEIfens 1 ( 1 (g)2> ( (y)2> (517
= exp| —z (= 1+ (= .

telog V27 2 \o o
0Elfeq5/07 and 7 are of opposite signs: if § is positive, 0El s/ 07
is negative, so Elf,,; increases as J decreases; vice versa if J is
negative. Therefore, El.s increases as §j tends to zero. dElf.qs/00
is strictly positive. Therefore, Elf,,s increases monotonically as
o increases. Although a noise term is defined in the covariance
function, as in Equation 5.11, ¢ is very low at sampled locations;
thus, Elr.,s does not tend to focus on a very local area over the
iterations. This is crucial, as the feasible region boundary is, in
general, a hyper-surface, and not a single point similarly to the
global optimum.

Figure 5.6 shows a comparison of EI and Elf.; for the one-
dimensional case in Figure 5.4b. As § barely goes below the
best observation, EI is mainly related to the second term in Equa-
tion 5.13 and driven by high prediction uncertainty. El ;s presents
two peaks in proximity of § = 0, whose magnitude mainly de-
pends on the standard deviation in these locations.

The most promising location to sample is the one, x*, that
maximizes EI feas:

x" = argmax Elfeqs(x). (5.18)
xeX

Therefore, an optimization algorithm is required.

5.1.3 Multimodal Optimization

Recent advances in large-scale computing, such as, HPC or cloud
computing, offer the capability to efficiently run more than one
simulation at the time. Several observations could be, therefore,
added at each iteration and run in parallel. This would accelerate
the adaptive sampling process, because, on the one hand, more
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Figure 5.6: Comparison of expected improvement formulations for the 1-
dimensional case in Figure 5.4b: (a) EI for global optimization;
(b) Elfegs for feasibility analysis.
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simulations would be completed in the same time period, and
on the other hand, less iterations would be necessary to reach a
satisfactory level of accuracy. When many samples are used to
fit the surrogate model, the training phase gets computationally
expensive; thus, reducing the number of iterations would be ad-
vantageous. Nevertheless, not all the sampling budget should be
utilized in a single iteration in order to capitalize on the Bayesian
approach and infer information from the observations as they
become available.

As feasibility analysis is interested in a region, rather than a
single point, sampling the design space in multiple locations at
each iteration is potentially even more beneficial than for global
optimization. For this one, a special form of Expected Improve-
ment is first defined by Schonlau [108] and used by Ginsbourger
et al. [34] to find the best set of g points that improves the estimate
of the global optimum at each iteration; it is called multi-points £1
or g-EI. As each sample contributes to the global optimum only
to the extent that it is actually better than the current optimum,
the multi-points improvement, g-I, is defined as the maximum of
the improvements of each sample:

g-1 = max (I(xq1),...,1(xq)) (5.19)

where I(x) is specified in Equation 5.12.

The expected value of g-1, g-El, is not a simple scalar as the
standard EI, but requires high-dimensional numerical integration.
For instance, the 2-EI is derived explicitly in [34] and consists of
the sum of the Expected Improvements of the two samples plus
some correlation factors that depend on their relative distance.
For larger g, Ginsbourger et al. [34] propose a sequential approach
where g sub-iterations are carried out at each adaptive sampling
iteration: at each sub-iteration, the standard EI is optimized and
the surrogate model is updated with the estimated value of the
obtained sample. However, the surrogate model requires q training
phases per each iteration, which may be a major computational
effort.

Feasibility analysis looks for a region, rather than a single point.
Therefore, the multi-points improvement for feasibility analysis
cannot be simply defined as the maximum of the improvements



5.1 BAYESIAN FEASIBILITY ANALYSIS

Ifeqs of each sample. In fact, more than one sample contributes, in
general, to the representation of the feasible region boundary. An
alternative would be to define the multi-points improvement for
feasibility analysis as the sum of the improvements I, of each
sample. This is not correct either: if two points are coincident, the
improvement would be double the real one. A definition of the
multi-points improvement for feasibility analysis does not seem
straightforward. To my knowledge, there is no definition for it in
literature.

Rogers and lerapetritou [101] add several observations per iter-
ation by clustering large values of Elf,s in the design space and
using the clusters’ centers as starting points for local optimization.
This approach assumes, implicitly, the multi-points improvement
for feasibility analysis as the sum of If,; of each sample, yet
prevents the samples from being too close to each other. Further-
more, as no sub-iteration is performed, only one training phase is
required per iteration. I employ this approach in the present work;
though, instead of a do-it-yourself combination of clustering and
local optimization, I apply directly a multi-modal optimizer to
Elfegs to find the set of samples for the iteration.

As demonstrative example, I use a modified version of the
Branin function, defined as:

2
1= S+ Sx1—6) +10 (1 - gl ) cos(xr)

fla,x2) = ( 250

(5.20)

where x; € [-5,10], x, € [0,15]. Figure 5.7a shows the contour
plot of f. The Branin function is a popular choice as test func-
tion in multi-modal optimization problems, especially due to the
presence of three global optima [108]. With respect to the version
in [106, 108], I shift and normalize f so as to, first, create three
feasible regions of reasonable size and, second, make it more
representative of a feasibility function.

Maximizing Elf.,s is not a trivial task. Figure 5.7b shows Elfs
for the modified Branin function —used as feasibility function—
and a set of 60 uniformly-distributed training samples. Elf,; is:
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* asymptotically zero in large areas of the space distant from
the feasible region boundary,

* highly non-linear due to the variation of the predicted vari-
ance in proximity of training samples.

A multi-modal or a multi-start local optimizer, as in [10, 130], is,
therefore, required. I employ the Niching Migratory Multi-Swarm
Optimiser (NMMSO) developed by Fieldsend [30], freely available
via the python package pynmmso.”

NMMSO is based on Particle Swarm Optimization (PSO), an
approach first introduced by Kennedy and Eberhart [63] and be-
come very popular in global optimization due to its simplicity and
rapid convergence. Each particle of a swarm is a point that moves
iteratively in the design space based on its previous movement
direction, its personal best location and the swarm best location.
By balancing these three components, a compromise between
exploration and exploitation in the optimization search can be
found.

Niching multi-modal optimization does not search for one so-
lution, x*, as in Equation 5.18, but for multiple ones, namely for
all the sampling locations that maximize the objective function
in isolated peak regions, also called niches. The first niching PSO
technique was introduced by Brits et al. [13].

NMMSO uses multiple PSOs with strong local search, i.e.,
greater exploitation than exploration, to rapidly optimize sep-
arate local maxima. The sub-swarms do not work independently.
Rather, particles may migrate to another sub-swarm if they find a
peak different than the one of the parent sub-swarm. Furthermore,
sub-swarms may be merged if they converge on the same peak
or if the distance among them is smaller than a tolerance one,
default set to 10~°. Additionally, new regions can be identified by
splitting particles of existing sub-swarms.

In conclusion, NMMSO presents three important features that
make it an effective multi-modal optimizer:

¢ it dynamically identifies the number of modes,

7 The NMMSO algorithm won the 2015 IEEE CEC Competition on Niching Methods
for Multimodal Optimization [80].
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Figure 5.7: (a) Contour plot of the Branin function, as defined in Equa-
tion 5.20;
(b) Contour plot of Elfes according to a set of 60 uniformly-
distributed training samples for the Branin function in (a);
the optimal sampling locations computed with NMMSO are
reported as well.
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e it self-adapts to the problem type, with few meta-parameters
to be set a priori,

e it rapidly climbs the peak regions [30].

I use the default meta-parameters of the NMMSO algorithm
to optimize the El.,s function. Figure 5.7b reports the optima
returned by NMMSO for the Elf,,; of the Branin function in Fig-
ure 5.7a. The optimizer successfully identified the most significant
6 peaks.

I define a maximum amount of points to be sampled at each
iteration, fixed across the iterations in order to have an approxi-
mately uniform expansion of the data set in the adaptive phase. If
the number of samples returned by the optimizer is larger than
the maximum allowed, those with lowest Elf,,; are discarded.

Furthermore, in order not to sample points with dispropor-
tionate and too low Elf,s values, I define a minimum Elf;
threshold below which a sample is discarded: Els,s must be
larger than one third of the maximum value found in the iteration,
x* | EI', (x*) > EI, s,/ 3 Where the superscript i indicates the
i-th adaptive phase iteration.

5.1.4 Validation Metrics

A critical step in training a surrogate model is its validation,
i.e., the determination of its degree of accuracy in the domain
of application [65]. One or more quantitative measures should
be defined to assess whether the model can be used or requires
further training data —as long as further data can be collected. In
case of adaptive sampling, the assessment should be carried out
both before and after the adaptive phase.

Due to the cardinal role validation metrics play in the method-
ology, they are examined in details in the following. As the GP
regression model is used in this thesis for both regression —during
the adaptive sampling phase— and classification —for feasibility
analysis— validation metrics for both tasks should be considered.

REGRESSION is a predictive mapping from the design space to
a continuous scalar quantity. Therefore, it is possible to measure
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the scalar differences between true and predicted values, usually
called residuals.

Let y be the observed value of a continuous variable, 7 its pre-
dicted value and n the number of observations.

The simplest metric that evaluates the accuracy of the prediction
is the Mean Absolute Error (M AE):

n ..
MAE = w (5.21)

which is an equally-weighted average of the residuals. For this
reason, the MAE is robust against outliers. If, instead, large de-
viations should not be considered outliers and are particularly
undesirable, more weight can be attributed to them. This is ob-
tained, e. g., with the Mean Squared Error (MSE):

MSE = ?:1 (yl‘_]?i)z

. (5.22)

or its square-rooted variant, the Root Mean Squared Error (RMSE):

RMSE = v MSE (5.23)

which, over the MSE, has the important property of being ex-
pressed in the same unit of measure of y and represents the stan-
dard deviation of the residuals. It holds the condition RMSE >
MAE.

Both MAE and RMSE are absolute measures of the goodness of fit
and are, therefore, related to the specific quantity y. Nevertheless,
in order to compare the surrogate model accuracy among different
applications, a relative measure is required. A well-known relative
measure is the coefficient of determination, usually denoted R2:

RZ —1— ;Zzl (yl - ]?i)z
n —

(5-24)
im1 (vi — y)z

where 7 = Y, y;/n is the mean of the observations. R? repre-
sents the proportion of variance of the output parameter y that is
explained by the input parameters in the set of observations [22].
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More intuitively, it measures how good the surrogate model pre-
dicts the observed data set with respect to a model that constantly
predicts the mean of the observations.

The coefficient R? is defined in the range (—oo,1]. If:

R? < 0, the surrogate model prediction is worse than the mean
prediction,

R? = 0, the surrogate model prediction is as good as the mean
prediction,

0 < R? < 1, the surrogate model prediction is better than the
mean prediction,

R? =1, the surrogate model makes no prediction error in the
observed data set.

R? strongly depends on the size of the data set and its uniformity
in the design space. In fact, few observations that accidentally
have similar values are very well predicted by the mean, but may
be slightly mispredicted by a rather globally accurate surrogate
model; thus, giving negative R2. A similar situation happens in
case samples are not uniformly distributed, but mostly concen-
trated in one region of the space with similar output values: R?
may be low, but not representative of the global accuracy of the
surrogate model. This is the case of adaptive sampling for feasi-
bility analysis, where the added observations mostly lie around
y=0.

A variant of R?, the adjusted R? —indicated as R?>- is often consid-
ered in feature selection to adjust for the number of explanatory
input parameters d relative to the number of observations 7, via
the term (n —1)/(n —d — 1) [123]. Nevertheless, as n > d in my
applications and feature selection is outside the scope of this work,
I simply consider R?.

Further information on the evaluation of regression models can
be found in [22].

CLASSIFICATION is a predictive mapping from the design
space to a category, i.e., a discrete quantity. Therefore, the predic-
tion may either be true, if the predicted category is the same as the
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OBSERVED CATEGORY

POSITIVE NEGATIVE
POSITIVE True False
PREDICTED Positive (TP) Positive (FP)
CATEGORY False True
NEGATIVE

Negative (FN)  Negative (TN)

Table 5.1: Confusion matrix for binary classification.

observed one, or false, otherwise. In case of binary classification,
as for feasibility analysis, the categories are usually called positive
and negative.®

Metrics mostly focus on the positive class, regarded as the relevant
one and usually smaller in size than the negative one. For sake
of convenience with the metrics definition, I label the feasible
samples as positive —although they have non-positive feasibility
function i values— and the infeasible ones as negative —although
they have positive 1.

In order to define the evaluation metrics, it is useful to introduce
the so-called confusion matrix, in Table 5.1. Accordingly, True
Positive (TP) cases are samples both predicted and observed feasi-
ble, False Positive (FP) ones are predicted feasible but observed
infeasible, False Negative (FIN) ones are predicted infeasible, but
observed feasible and, lastly, True Negative (TN) ones are both
predicted and observed infeasible. In the metrics equations, the
number of samples in each case is considered.

The completeness of the positive prediction is measured by the True
Positive Rate (T'PR), also called recall in computer science context
and sensitivity in medical one:

TP

TPR = ———
TP+ FN

(5-25)

which is the portion of True Positives among all the observed
positive cases.

This terminology originates in medical context, where patients are diagnosed
either positive or negative to a disease.
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The completeness of the negative prediction is measured by the
True Negative Rate (T NR), also called specificity in medical con-
text:

TN

TNR = TN Fp

(5.26)
which is the portion of True Negatives among all the observed
negative cases.

The exactness of the positive prediction is measured by the Positive
Predictive Value (PPV), also called precision in computer science
context:

TP

PPV = o Fp (5.27)

which is the portion of True Positives among all the predicted
positive cases.
The information from the three above-defined measures is of-
ten condensed in two scores, Balanced Accuracy (BA) and FI,
regularly used for the evaluation of binary classification.

BA performs the arithmetic average of TPR and TNR:

TPR + TNR
BA = %N (5.28)

and represents the balanced completeness of the correct predic-
tions, both positive and negative. It ranges from o to 1. It is an
important measure for my application, as I aim to correctly pre-
dict both as many feasible and as many infeasible as possible.
Nevertheless, it says little on the precision of the predictions if the
categories have very different sizes.

F1 performs the harmonic mean of PPV and TPR:

. PPV-TPR

Fl=2——71—+—
PPV +TPR

(5-29)
and represents the average of precision and completeness of the
correctly predicted positive class. It ranges from o to 1. It is also an
important measure, as I aim to predict as feasible samples that are
actually feasible -thus, to be precise— and also as many of them as
possible —thus, to be complete. Nevertheless, it is biased towards
the positive class and does not consider the True Negatives.
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An all-in-one solution is the Matthews Correlation Coefficient
(MCC), formulated by Matthews [84]:
TP-TN — FP-FN

MCC = V(TP + FP)(TP + FN)(TN + FP)(TN + FN) (5.30)

which takes into account the four cases of the confusion matrix
in a way to balance categories of different sizes. It measures the
correlation between predicted and observed data and, thus, ranges
from -1 to 1. If:

MCC = —1, the predictions are in perfect disagreement with
the observations,

MCC = 0, the predictions are in random agreement with the
observations,

MCC =1, the predictions are in perfect agreement with the
observations.

In statistics, MCC is known as phi coefficient. BA and MCC are
independent on which category is defined as positive or nega-
tive; F1 is, instead, category-dependent. Chicco and Jurman [17]
recommend the usage of MCC over accuracy and F1. Further in-
formation on the evaluation of classification models can be found
in [122].

While for regression, the comparison of observation and predic-
tion gives a real-valued output —i. e., the residual- in classification
it gives only four outcomes, shown in Table 5.1. Therefore, classi-
fication measures cannot express an absolute error, such as, for
instance, the RMSE, but only a relative one, which is computed
on the basis of the number of samples with each outcome. Conse-
quently, they strongly depend on the number of samples and their
uniformity in the design space. If points lie close to the boundary
between the categories, it is more likely that the classifier makes
a mistake. This is the case, for instance, of adaptive sampling for
feasibility analysis.

It is not only relevant which validation metric is used, but
also which data set is used to compute it. In this thesis, I use two
approaches, depending on the computational effort involved in a
single function evaluation.
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¢ For cheap-to-evaluate functions, such as mathematical func-
tions, I generate a new LHS to test the accuracy of the trained
surrogate model against the newly observed function val-
ues. Due to the uniformity of the samples, I evaluate both
regression and classification metrics: RMSE, R? and MCC.

* For expensive-to-evaluate functions, such as LEM FE simu-
lations, I use k-fold cross-validation. This technique is par-
ticularly useful to test the accuracy of a predictor directly on
the available set of observations. In fact, this is split into k
subsets of equal size: the model is trained with the union
of k — 1 subsets and tested against the remaining one. This
procedure is repeated k times, so that each sample is once
a test sample and k — 1 times a training sample. Therefore,
a prediction is obtained for each sample in the available
set of observations. Noteworthy, the actual accuracy of the
surrogate model trained with the entire data set is actually
unknown. Nevertheless, the higher k, the better the approx-
imation. As training the surrogate model k times may be
computationally expensive with a large data set, I use k = 10,
meaning that the model is repeatedly trained with 9o% of
the data. For the initial uniform sampling, I evaluate the ac-
curacy of the surrogate model with the R? score. Since in the
adaptive phase the samples are not uniformly distributed, I
use the RMSE to check the accuracy at the end of this phase.
Further details on cross-validation can be found in [66].

The metrics values obtained with new uniform test data and
with cross-validation are compared in Section 6.2 by means of
mathematical functions.

5.1.5 Workflow

After the description of the single pieces of the Bayesian feasibility
analysis puzzle —-namely surrogate model, infill criterion, new
samples selection and validation metrics— I explain in the follow-
ing how I compose the puzzle. In other words, I go through the
steps that I use to train a surrogate model for feasibility analysis.
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1. INPUT: Choose design parameters and respective ranges.

It is an obvious task, though a fundamental one. In fact, it is
the foundation of the entire analysis. Shan and Wang [111]
examine strategies to deal with the curse of dimensional-
ity [8] for computationally-expensive black-box functions,
i.e., those for which only relatively few samples can be
available.” An often-used approach is to screen irrelevant
parameters with a sensitivity analysis. In this thesis, I choose
those parameters for which I aim to get guidelines. There-
fore, although a parameter may be less relevant than others,
it is still important to consider it, if a guideline for it is re-
quired. In fact, the guideline fixes the interval of values that
each parameter should assume in order to fulfill the require-
ments. If a parameter is not considered in the analysis, it is
actually not proved that it may assume any value.

Less effective than dimensionality reduction, yet still use-
ful is the reduction of the parameter ranges. Since I aim to
optimize the flexibility of the parameters, too small ranges
would already be a limiting factor and may exclude interest-
ing regions of the design space.

Therefore, for both number of parameters, d, and associ-
ated ranges, {[x1,,x1,],..., [%4,,%4,] }, in case of design
flexibility optimization, a compromise based on engineering
knowledge and requirements is recommended.

2. INPUT: Define sampling budget, ratio uniform/adaptive
sampling and number of iterations in the adaptive phase.

The amount of samples necessary to reach a satisfactory
level of surrogate model accuracy depends on the problem
dimensionality and the non-linearities of the underlying
function in the design space —which are, however, difficult
to foresee. Since each LFM FE simulation is computationally
expensive, I define a maximum sampling budget, which
represents a time and cost limit. I allocate more time, as the
dimensionality d grows. This is rather natural: the bigger

9 Such strategies are problem decomposition, variables screening, variables mapping
and design space reduction.
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DIMENSION SAMPLES DIMENSION SAMPLES
100 5 625
1600 12 3600
15 5625

Table 5.2: Sampling budget for different dimensions computed with Equa-

tion 5.31.

the problem, the longer I am inclined to wait. To use an
exponential function, even with base two, i.e., 24 would be
too computationally expensive in high-dimensional spaces
—say with 15 variables 21° = 32,768. Often-used rules of
thumb for the initial sampling are either 104 [10] or 10d [131];
nevertheless, the former is too expensive in high-dimensions,
the latter too sparse. Therefore, I use a quadratic curve with
base 54:

n = (5d)° (5.31)

where 7 is the maximum number of samples allowed for
the analysis. Table 5.2 reports the sampling budget for some
dimensions used in this thesis.

The surrogate model accuracy after the initial sampling is
crucial to be able to precisely identify the feasible region
boundary during the adaptive phase. Furthermore, the fo-
cus in the present work is not to find the strategy to get
the best surrogate model accuracy with the lowest possible
amount of samples. Rather, it is to find a robust strategy to
get good accuracy with a limited amount of samples. Ro-
bust is intended here in the sense that it should work for
several dimensions and types of function. In fact, the most
efficient strategy depends on the problem at hand [130]. For
the above mentioned reasons, I assign more importance to
the uniform phase, exploratory, than to the adaptive one,
exploitative.

In low-dimensions, say up to 7D, I use 60% of the budget for
the uniform sampling and a maximum of 40% for the adap-
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tive one in 25 iterations, which means 1.6% per iteration.™®

In high-dimensions, say from 8D, the amount of samples given
by Equation 5.31 is relatively scarce, considering the dimen-
sionality, yet large in absolute sense. Therefore, on the one
hand, the exploratory phase should be enhanced and, on
the other hand, the number of iterations should be limited,
as surrogate model training takes time. Accordingly, I assign
80% of the sampling budget for the uniform sampling and
a maximum of 20% for the adaptive one in 10 iterations,
which means 2% per iteration.

3. PROCESS: Generate uniform sampling.

I use an improved LHS, originally introduced by Beachkof-
ski and Grandhi [7] and implemented in the python library

diversipy [134].
4. PROCESS: Run simulations and collect output quantities.

I run FE simulations of the LFM for pedestrian leg impact
described in Chapter 4.

5. PROCESS: Train surrogate models for feasibility function.

In order to perform Bayesian feasibility analysis, the pre-
dictions of mean and standard deviation of the feasibility
function, ¢, are needed. The simplest approach would be
to directly train the surrogate model with ¢, as done in
[10, 101, 130]. However, in case more than one constraint, g,
is active inside the design space, 1 is C° continuous —i.e.,
is continuous, but its first derivative, ¥/, is not. Gaussian
processes cannot accurately interpolate C° functions. Even
though a C° covariance function is used, such as the ex-
ponential one, the points of non-differentiability are at the
location of the training samples —see Section 5.1.1— and may
not be where 1/ presents the discontinuities. Adding a noise
term improves the situation, as the function is not forced
to over-fit the samples. Nevertheless, a much more signif-
icant improvement is obtained by training one surrogate

10 Depending on the outcome of NMMSO, the number of samples selected at each
iteration may be less than the prescribed one.
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model per each normalized constraint™ and then compute

1 according to Equation 5.2. Nonetheless, the computational
effort associated with the training of several surrogate mod-
els is considerable. Therefore, in case of LFM FE simulations
with the aPLI, shown in Figure 1.3b, I split its 8 injury crite-
ria in three groups and apply Equation 5.2 to each one. The
groups consist of:

a) the four tibia bending moments,
b) the Medial Collateral Ligament (MCL) elongation'?,
c) the three femur bending moments.

The current GP implementation in scikit-learn does not
allow to get the standard deviation for multiple outputs.'3
Hence, I train a single GP, with related hyper-parameter
optimization, for each group’s ¢. Noteworthy, this function
is still, in general, non-differentiable, but with less points
of discontinuity in its first derivative than the global ¢. The
expected value and standard deviation of the global i are,
then, equal to those of the group with the most critical —
highest— expected value.

As zero is the value of the feasible region boundary —hence,
is a meaningful value- it is often recommended to not use it
as mean of the GP prior distribution [21]. Therefore, the ob-
servations are centered around the mean of the observations
from the uniform sampling.

. DECISION: Check surrogate model accuracy with cross-

validation.

I use the R? score, as samples are uniformly distributed.
If R?2 > 0.8, move on; otherwise, increase amount of samples.

. PROCESS: Select samples for iteration.

I apply NMMSO to Elfs. The number of selected samples
is limited to the value chosen in step 2. The number of

11 This effect will be shown in Figure 6.13.

12 This group can be extended to consider also ACL and PCL, in case they should
also be evaluated.

13 As of version 0.22.2
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returned optima may be, however, lower. Therefore, the
adaptive phase may use less sampling budget, than the
allocated one.

8. PROCESS: Repeat steps 4 and 5.
9. DECISION: Check if iterations are over.
If iter > iter,,x, move on; otherwise, repeat steps 7 and 8.

10. DECISION: Check surrogate model accuracy with cross-
validation.

I compute the RMSE for observed feasibility function values
 in range [—0.1,0.1]. The global accuracy of the surrogate
model was already tested in step 6. Here, the interest lies
in its accuracy for feasibility analysis, namely close to the
feasible region boundary @ = 0. I do not check surrogate
model accuracy at each iteration, since cross-validation is
expensive.

If RMSEy1 < 0.05, move on; otherwise, consider increasing
number of iterations for adaptive phase.

11. OUTPUT: Store trained surrogate models and training data.

The surrogate models are ready to be used for feasibility
analysis.

The described steps are condensed in Figure 5.8.

Rogers and lerapetritou [101] adjust the feasibility function
prediction by its prediction error. In other words, they do not
consider feasible samples for which ¢ < 0, rather § + ¢ < 0.
However, since the method I propose mainly addresses the early
stages of the development process, I consider such approach too
conservative; some error can be still corrected in later stages. In
fact, I aim to equip concept engineers with design guidelines, not
strict rules to follow.

5.2 STOCHASTIC OPTIMIZATION OF FLEXIBILITY BOXES

At the beginning of the chapter, I stated the need for flexibility
of design for each design parameter value in the early phases of
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/ Choose Design Parameters /

!

/ Define Sampling Budget /
]

\ 2
Generate LHS Sampling Uniform

!

Run Simulations

!

Train Gaussian Process Models

Increase
Sampling Budget
A
If R > 0.8:
v
Find Samples by NMMSO of Elfeqs Adaptive

v

Run Simulations

v

Train Gaussian Process Models

If iter > itetyax:

Increase iteryax

A

If RMSE,, < 0.05:

/ Store Gaussian Process Models /

Figure 5.8: Workflow to train surrogate models for feasibility analysis. A
detailed description can be found in Section 5.1.5.
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the development process. In this section, I explain in detail what
flexibility boxes are and how I compute them.

Let x; € R be a real-numbered value of the design parameter i.

Let X := [T%; [x;,, xi,] C R? be a compact, convex subset of
the Euclidean space of dimension d, obtained by Cartesian product
of d intervals [x; ,x;,]. X is commonly called design space.

Let x := (xq,...,x4) € Xbe a vector in X, i.e., a d-tuple of input
parameter values. x is commonly called sample or, simply, point.

Let ¢: X — R be the feasibility function, as defined in Equa-
tion 5.2.

Let B :=[]%, {xfi,xiBu} C X |Vx e B:y(x) <0be acompact,
convex subset of the design space, obtained by Cartesian product
i
is feasible. Just like X, B is an axis-aligned hyper-rectangle, also
called hyper-box and abbreviated as box in the following for sake
of convenience. Unlike X, however, B is a feasible box. X may be a
feasible box if it does not contain any infeasible region.

Design flexibility optimization aims at quantifying the maxi-

mum limits of variation {xi ,xlBu} of each design parameter x;

of d intervals [xl-BL X } C [x4,,xi,], such that any included point

such that the requirements are always fulfilled. In other words,
it aims at maximizing the flexibility of B. Quantitative flexibility
measures are described in Section 5.2.2.

Axis-aligned feasible boxes, also called solution boxes [141], have
an important property: they allow for decoupling of design param-
eters. In fact, each design parameter may assume any value inside
its prescribed interval independently on the other parameters’
values —as long as they also lie in their prescribed interval- and
always fulfill the requirements. This means, on the one hand, that
concept engineers have the possibility to choose the best setup for
each parameter on the basis of considerations not directly con-
sidered in the feasibility analysis —e. g., manufacturability, weight
or cost. On the other hand, it means that modifications of a pa-
rameter do not require modifications of the other ones as long
as the modified design lies in the feasible box. This makes the
box a container of a very robust set of solutions. Decoupling is
especially beneficial in product development processes that in-
volve complex interactions of design parts and synergies among
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different working teams. In fact, each team can now focus only
on the guideline assigned to it.

One feasible box may not include all the feasible solutions inside
the design space, i. e., may not be equal to the feasible region. It
would be convenient to get more than one feasible box. Concept
engineers may, then, use the multiple guidelines for different
purposes:

* in early stages, to choose the most suitable one based on con-
siderations not directly taken into account in the feasibility
analysis, as previously mentioned;

¢ in later stages, in case one or more parameters cannot lie
in the prescribed range, to quickly find backup solutions or
realize if feasibility can still be ensured, by simply checking
whether the new values of the non-conform parameters lie
in other boxes and how the other parameters are affected;

e to better understand how the feasible region expands in the
design space.

In order not to carry the same information, the guidelines should
be different among each other; I quantify this difference by the
extent of overlap between two boxes and set an upper limit to
it. Furthermore, they should not be contained in any others, i.e.,
the boxes should be maximal. Third, they should be limited in
number, so as to be manageable: I look for the p boxes with highest
flexibility level. On the basis of these requirements, I can formulate
the optimization problem.

5.2.1  Problem Formulation

Find the p maximal feasible boxes with highest flex-
ibility level, whose relative overlap is lower than or
equal to Guax.

Let B C X be a feasible box inside the design space. If B exists
—-namely if there exists a feasible region in X— and is not point-like,
then there exists an infinite number of it, i.e., 3B; |Vk e NAj #
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k: Bj # By. In fact, as real numbers are infinite, there are infinite
compact subsets of the Euclidean space.

Let F: B — R be a scalar quantity, representing a flexibility
measure. F(B), then, refers specifically to the flexibility F of the
feasible box B.

Let B := {B; | Vj € N : B; C X} be the set of all, infinite feasi-
ble boxes inside the design space.

In order to derive the mathematical formulation, it is convenient
to first break down the single requirements and then bring them
together.

FLEXIBILITY LEVEL The objective of the optimization problem
is to find the boxes with highest flexibility level. In case only one
box is sought, then the formulation is simply:

B* = argmax F(B). (5.32)

BCX

If, instead, p boxes are sought, the formulation becomes more
complex. Several objective functions can be defined. I maximize
the sum of the flexibility measures of the boxes. Clearly, the p
largest values in a set are those that give the largest sum. Thus,
the unconstrained optimization formulation is:

B* = argmax Y F(B) (5-33)
B/'CB, |B’|=p BeB/

where |-| indicates the cardinality of the set.

MAXIMAL The term maximal is here adapted from graph theory,
where cliques, i. e., connected graphs, are denoted as maximal if
inextensible. Maximal feasible boxes are, therefore, those which
cannot be enlarged without adding infeasible points. Not to be
confused with the maximum feasible box, which is, instead, the
one with the largest volume. The set of maximal feasible boxes is,
then, formulated as:

Byax = {B] | vBj/Bk €BA Bj # By Bj Z Bk} (5-34)

and is also an infinite set. Figure 5.9 shows an exemplary feasible
region for a 2-D case and the corresponding set of maximal fea-
sible boxes. Since the sought boxes with highest flexibility level
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should not be contained in any others, maximality is a constraint
for the optimization problem.

DIFFERENT The desired boxes should not only be inextensible,
but also different one to the other. I measure the extent of similar-
ity between two boxes B; and By as the volume of their overlap
normalized by the volume of the smallest box and denote it as
B]' N By:

I, (min (xéj,xg’;) — max (x?i,xik))

] d B; B; d By By
min (Hz‘:l (xiu =X ) | | X, —X

ip

BjﬂBk:

- (5:35)
)

The set of maximal feasible boxes whose relative overlap is lower
than or equal to g,y can be, thus, formulated as:

]quax = {Bj | VBj,Bk € Byax N B]- # By : Bj NB < qmax} (5.36)

and is, in general, finite. Figure 5.10a shows an exemplary feasible
region for a 2-D case and the corresponding set of largest maximal
feasible boxes, whose maximum relative overlap is 0.5; only three
boxes satisfy this condition. The maximum relative overlap is the
last constraint for the optimization problem, which can be, finally,
obtained by replacing B with By, . in Equation 5.33.

On the basis of the above described objective and constraints,
the explicit mathematical formulation of the optimization problem
is as follows:

B* = argmax Y F(Bj)

BB’ BB’
subjectto B’ C B
B = p (5-37)
B; Z B, VB € BAB; # By

BijkSqmux VBkE]B/\B]‘ # By.

5.2.2  Flexibility Measures

In order to optimize the design flexibility, this should be first
quantified. A general rule is: the larger the ranges for each param-
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Bl Infeasible region
I Feasible region
[T5 Feasible box

X1

Figure 5.9: Maximal feasible boxes in an exemplary 2-D case with maxi-
mum relative overlap gyax = 0.95%.

eter, the more flexibility the guideline offers. As a box is obtained
by Cartesian product of intervals, intuitively, the larger its volume,
the more flexibility it offers. Therefore, volume is a possible mea-
sure of the flexibility level of a box and used, for instance, in [39]:

d
Fr(B) =[] (xf, —=F). (5.38)
i=1

Maximizing the volume has, in general, advantages and disadvan-
tages. First, it seeks the largest box and so the highest combined
flexibility across the parameters. Moreover, volume is indepen-
dent on the nature or unit of measure of parameters. Hence, it
does not require values normalization. However, it may provide
imbalanced flexibility across the parameters. In fact, some param-
eters may have very large ranges and others very narrow ones
and combined give rise to the largest volume. Furthermore, it is
not possible to define weights. As volume is obtained by multi-
plication, it does not matter how one parameter is scaled: all the
boxes will be scaled equally.
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Balanced flexibility across parameters can be obtained by maxi-
mizing the minimum interval. This seeks, in general, the largest
hyper-cube inside the feasible region. In fact, the minimum inter-
val is largest when the flexibility level of the most critical parame-
ter is as close as possible to that of the other ones. In other words,
it tries to make the best compromise among the parameters and
maximize uniformity. Nonetheless, as intervals are directly com-
pared among each other, the unit of measure of the parameters
does play a role. Therefore, a normalization is needed. Graff [38]
uses the interval mean value as normalization factor. However, I
find it rather dangerous, when the parameters have very different
nature. As a matter of fact, if an interval is centered around zero,
its normalized size will tend to infinite. On the contrary, if an
interval mean value is very large, its normalized size will tend to
a relative small value. Such a dependency is rather undesirable.
Instead, I recommend to exploit the need for normalization to
introduce a weight factor for the parameters. I specify the required
minimum interval size for each parameter, Z\xJi, and define the
flexibility measure based on the minimum interval width as:

xB — B

F;(B) = min ——"L. (5-39)
! Ax;

Ax; is an user-defined quantity that expresses how large the in-
terval size of parameter x; should be so that x; has a satisfactory
level of flexibility. If F;(B) > 1, each parameter offers, at least, as
much flexibility as required; otherwise, one or more parameters
cannot ensure the required flexibility.

Figure 5.10 reports a comparison of the two flexibility measures
on an exemplary 2-D case: Figure 5.10a shows the maximal boxes
with highest flexibility level that satisfy the 50% maximum overlap
constraint based on volume, while Figure 5.10b those based on
minimum interval —in this case, the two parameters are equally-
weighted. The latter presents two square-shaped boxes and two
rather imbalanced ones that approximate the remaining feasible
region.

Other flexibility measures definitions are, certainly, possible,
though not investigated in this work.
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Bl Infeasible region
I Feasible region
70 Flexibility box

(a) volume-based

Bl Infeasible region
I Feasible region
[ Flexibility box

X1

(b) minimume-interval-based

Figure 5.10: Maximal feasible boxes with highest flexibility level —so
called, flexibility boxes— whose relative overlap does not
exceed Gmuax = 0.50%, in an exemplary 2-D case: (a) based
on volume; (b) based on minimum interval, where x; and x;
are equally weighted.
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5.2.3 Stochastic Algorithm for Maximum Feasible Box

In order to gradually increase the complexity, I first address the
solution of the optimization problem in Equation 5.32, where a
single box is sought.

To begin with, how do I determine whether a box is feasible?
A non-point-like box contains an infinite number of points. It is,
clearly, impractical to evaluate them all. I consider, then, three
categories.

® In case the problem can be expressed in terms of linear
constraint inequalities, the question can be answered analyt-
ically. This is done, for instance, in [29].

¢ In case the problem is not known in closed-form, yet the
feasible region can be assumed convex, it is possible to claim
that a box is feasible if its 27 vertices are feasible.

* In case the constraints are treated as black-box functions
—as in this work- evaluating only the vertices is not enough;
each point inside the box must be tested to ascertain box’s
feasibility. The infinite number of them implies that it is
not possible to assess deterministically whether a box is fully
feasible. Even the evaluation of a coarse, equi-spaced grid
becomes impractical in high-dimensional spaces.™

In the early phases of the development process, design guide-
lines should provide rather large ranges for each design parameter.
It is not necessary at this point to ensure feasibility for each possi-
ble sample inside the box. A high percentage —say 85%- of feasible
samples would be enough. In other words, I can state that, in an
early stage, flexibility is more important than full feasibility. Be-
cause of this reason and of the impossibility to determine box’s
complete feasibility with black-box functions, Zimmermann and
von Hoessle [141] relax the feasibility requirement by estimating
the probability of feasibility and the respective confidence interval
by means of Bayesian inference and Monte Carlo sampling. Such
approach is described in more detail in Section 5.2.6.

An uniform grid of samples with 6 points per dimension contains 6> = 36 points
in 2 dimensions and 6!° = 60,466,176 points in 10 dimensions.
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Furthermore, they introduce a stochastic algorithm to find the
maximum feasible box inside an arbitrary one on the basis of a
uniform set of samples. The input box is shrunk to the largest one
containing only feasible samples.

Let C = H?zl {xfi xfﬂ C R? be a compact, convex subset

of the Euclidean space of dimension d, obtained by Cartesian
product of d intervals [xi(i,xl%] C is the input box where the

maximum feasible box is sought. It is convenient to initialize it as
a unit hyper-cube: C = [T%, [0, 1]. It can be, then, the normalized
design space or a normalized subset of the design space.

Let X := {xq,...,xn} € C be a finite set of n arbitrary points
uniformly distributed in the input space.

Let Xpk = {x € X | ¢(x) < 0} C X be the set of feasible points
in the initial set and Xyox = {x € X | ¥(x) > 0} C X be the set
of infeasible ones. Xpx and Xyok are, hence, two complementary
subsets of X, i.e., Xox N Xyokx = @ and Xpx U Xyok = X.

Let npg and nyoxk be the cardinalities, respectively, of Xox and
XNOK-

The algorithm’s cornerstone is to find, for each feasible sample,
the box with the largest number of feasible samples and no infea-
sible ones, by repeatedly shrinking the input box until no more
infeasible samples are present. Among the npg obtained boxes,
the one with largest flexibility measure is regarded as maximum
feasible box. The algorithm runs three nested loops: first, over
the feasible samples in the initial set; second, over the infeasible
samples in the current box; finally, over the dimensions.

In essence, the algorithm works as follows:

¢ for each feasible sample xok in Xpg —see Figure 5.11a:

— while the set X of infeasible samples in the current
box C is not empty:

+ select the infeasible sample xNoxk in X%OK closest
to xok —see Figure 5.11b;

* for each dimension i:

- count the number npg of feasible samples that
would be retained if C was shrunk along i to
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the position of xNok, so that xok is possibly
still in C —see Figure 5.11¢;

+ select i that retains most feasible samples or, in
case of multiple maxima, the one that also removes
most infeasible ones'> —see Figure 5.11d;

+ shrink C along i —see Figure 5.11¢;
+ update X§ o

— get feasible box B by shrinking C to the minimum axis-
aligned bounding box around XSK —see Figure 5.11f;

- compute flexibility measure of B;
e select box B* with largest flexibility measure.

A more complete pseudo-code of the algorithm is reported in
Algorithm 5.1.

Once all the infeasible samples are removed from the candidate
box, this is further shrunk to the outermost feasible samples, as
they represent the last available information on feasibility. Since
the algorithm approximates the largest feasible box as that with
the most feasible samples, it is crucial to have a set of uniformly
distributed samples.

Zimmermann and von Hoessle [141] remove at each iteration
the infeasible sample xyox With highest objective value'®. I opt,
instead, for the closest one to the current feasible sample xgk,
as it makes the algorithm faster. In fact, shrinking the box to
the position of the closest infeasible sample removes, in general,
many of the remainders as well. Since all the infeasible samples
must be removed from the box, the more of them are removed per
iteration, the faster the algorithm is. I use the Euclidean distance to
measure the distance between two samples. In order to compute
meaningful distances, the design space should be normalized.
I initialize the input space Cjpjt as the minimum axis-aligned
bounding box around the feasible region and normalize it to an
unit hyper-cube.

To sum up, Algorithm 5.1 only provides an approximation of the
maximum feasible box. This finds two explanations:

15 As done in Graff et al. [39].
16 As objective function, the feasibility function ¢ could be used.



X2

X3

(a)

X1

XoK

(©

X1

X2

X2

5.2 STOCHASTIC OPTIMIZATION OF FLEXIBILITY BOXES

SRS
([ ]
o ®
XNOK
o
@
X0k
o
® %
X1
(b)
¥ o
® x
o
@
XoK
o
%
X1

(d

— 1 o
([
> . ‘
XoK
o
*—
X1
69

Figure 5.11: Graphical steps of the stochastic algorithm for maximum

feasible box, according to Equation 5.32. Based on [141].

113



114 DESIGN FLEXIBILITY OPTIMIZATION

Input: Set of feasible samples X, set of infeasible
samples Xyok, dimensionality d.
Output: Feasible box with largest flexibility, B*.

Cinit := minimum bounding box around Xopg;
FB* = 0;
for XOK in XOK:
C:= Cinivs
. C .
while 1y # 0..
select xyoKk in XI%OK closest to Xgk;
T ._ Q.
n(%{( =0; .
"Nok *= "Nok’
foriin {1,...,d}:

T:=C;
if xnok; > Xok;:
‘ Xi; = XNOK;s
else:
T ._ .
‘ X; = XNOK;s

iL
nby = number of feasible samples in T;

T I . . . .
nyo = ru;*mber ofT mfeas;‘t:le samples in T;
if nyy > npog or (nyy = npy and

T ™ .
nyox < ok

T :=T;
™ _ T .
1’1?9{( = TIOI%,
NNok *= "Nok’
C:.=T%

B := minimum bounding box around Xg K
Fp := flexibility measure of B;

if FB > FB*:
B* := B;
FB* = FB;

Algorithm 5.1: Pseudocode of a stochastic algorithm for maxi-
mum feasible box, according to Equation 5.32. Based on [141].
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SAMPLING Regions of the design space without samples remain
unexplored. Here no information on feasibility is available.
These regions are included in or excluded from the fea-
sible boxes so approximately, depending on the available
neighboring samples. This error can only be mitigated by
increasing the sampling size. The need to collect a large
amount of samples in a limited amount of time explains
why I employ a surrogate model in the proposed method.
In high-dimensional spaces, though, extensive sampling re-
mains not practical.

ALGORITHM The algorithm may fail to find the most feasible box
for the given set of samples. The selection of the infeasible
sample to remove at each iteration affects the algorithm
speed, but not its accuracy. The selection of the dimension
along which the box is shrunk at each iteration does affect,
instead, the search for the optimum. In fact, the algorithm
uses a heuristic to approximate the best decision to take at
each iteration. Nevertheless, the heuristic may sometimes be
wrong. This error can be mitigated by allowing the algorithm
to correct the decision taken at each iteration.

Noteworthy, Zimmermann and von Hoessle [141] use Algo-
rithm 5.1 to find the largest feasible box inside a candidate one,
not directly inside the design space. To find that inside the design
space, they repeatedly enlarge, sample and shrink a candidate
box until it does not change significantly. At each iteration, they
generate a set of 100 samples, which, already starting from few
dimensions, leaves lots of regions unexplored. For this reason,
they require a large number of iterations to precisely identify the
box’s boundaries. Furthermore, this optimization strategy does
not allow to look for different boxes. Therefore, I use a one-shot
approach, where the minimum bounding box is sampled only
once, yet with a relatively large amount of samples, and a revised
version of Algorithm 5.1 seeks the boxes with highest flexibility.
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5.2.4 Depth-Bounded Discrepancy Search

Taking a decision means choosing one of several options. These
can be considered branches starting from the same node. If deci-
sions are taken more than once consecutively —as it happens, for
instance, in an iterative loop— a tree structure is obtained. This
is composed of nodes, branches and leaves, i. e., the termination
points of any possible path starting from the root node.

Algorithm 5.1, at each iteration, decides the dimension along
which the box is shrunk so as to remove a chosen infeasible
sample and to retain as many feasible samples as possible. The
decision is based on a heuristic: the number of retained feasible
samples. There are as many options as dimensions, yet only one is
explored. This is repeated for each infeasible sample still present
in the box, giving rise to a tree structure. One tree is obtained for
each feasible sample. Ultimately, the number of iterations, also
called depth levels, of the tree are related to the steps necessary to
remove all infeasible samples, while the number of trees to the
amount of feasible samples.

When a heuristic is available, it is convention to rank the
branches in descending heuristic order from left to right. Ac-
cordingly, Algorithm 5.1 always chooses the left-most branch, and
so explores only the left-most path, as displayed in Figure 5.13a and
Figure 5.14a. Several other paths exist as well. A precise estimation
of their number is difficult, as the tree is rather unbalanced. In
fact, it is reasonable to expect some paths to reach a leaf sooner
—i.e., with less iterations— than others, depending on how many
infeasible samples are removed at each iteration. Nonetheless, a
balanced tree with branching factor b and depth d has b leaves.
Therefore, to get a sense of the problem size, assuming a rather
small, 5-dimensional problem and an average of 8 iterations, the
tree would have 58 = 390,625 leaves, and so paths.™”

In order to increase the chances of finding the largest feasible
box containing a particular feasible sample, the algorithm should
explore more than just one path. In turn, this would increase
the chances of finding the box with highest flexibility —or the p

17 There is only one path between the root node and each leaf.
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ones-— for the given set of samples. Obviously, the more paths the
algorithm explores, the longer it takes. Speed and accuracy often
do not like each other and a tradeoff is legitimate.

There are two fundamental ways to traverse a tree and several
variations of them [19]:

DEPTH-FIRST SEARCH explores all the depth levels of a branch
before moving to the next branch,

BREADTH-FIRST SEARCH explores all the branches of a depth
level before moving to the next level.

Both of them visit each node only once. Breadth-First Search (BFS)
requires an amount of space exponentially growing with the depth
levels, while Depth-First Search (DFS) only linearly [72]. BES is
not suitable to applications, such as the one in this thesis, where
a leaf must be reached in order to get a solution. In fact, it may
take a vast amount of time before all the branches of every depth
level are explored and even a single solution is reached. A DFS
approach, instead, attains a promising solution fast. In fact, it starts
from the left-most path, explored in Algorithm 5.1, and reaches
this solution with the same speed. Any further path exploration
implies further possibilities to find a better solution. By exploring
all possibilities, the best solution is guaranteed. Nevertheless, a
complete tree-traversal may be impractical for problems with high
branching factor or high number of depth levels —or both.

Pruning can be a powerful technique to reduce the complexity
of the tree. Shrinking the box along different dimensions may
retain the same set of feasible samples. This means that those
branches hold the same information, and so will lead to the same
solutions. Therefore, only one of those branches can be further
explored and the remaining ones pruned.

Furthermore, since a promising solution is obtained fast, some
branches may be pruned if the box they will lead to cannot be
larger than the best one found so far. Nevertheless, pruning is
most effective when it is possible to stop branches early in the
tree, namely in the first depth levels; otherwise, the tree will
explode anyway. If the branch can only be pruned in the second-
to-last depth level, only few paths can be saved. Additionally,
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computational effort is spent to compute the volume and perform
the check.

In case pruning is not enough to completely traverse the tree,
incomplete strategies must be considered. A thorough overview
of them is given in [6].

The most simple incomplete strategy is the timeout: the search
is interrupted after a user-defined time and the best solution found
so far returned. This is rather useful, as it sets an upper limit on
the computational time, and is often combined with strategies that
try to improve the order according to which paths are explored, so
that to reach the optimal solution sooner. They frequently rely on
iterative procedures that first expand the portion of the tree that is
most likely to lead to the optimal solution and then progressively
increase the complexity of the tree. Iterative searches, though, re-
visit some nodes multiple times, as opposed to DFS and BFS. The
underlying assumption is that the better order makes up for the
inefficiency due to node re-visiting. It is clear, thus, that iterative
algorithms take longer than DFS or BFS to search the complete
tree. They are, indeed, not meant for this, as the denomination
incomplete strategies suggest.

Among the basic iterative strategies:

ITERATIVE DEEPENING performs, at iteration 7, DFS up to depth
i —hence, it progressively increases the depth limit of the
tree to search [71];

ITERATIVE BROADENING performs, at iteration i, BFS up to branch
i —hence, it progressively increases the branching factor of
the tree to search.

Harvey and Ginsberg [48] introduced the concept of discrepancy
to guide tree-search with the Limited Discrepancy Search (LDS)
algorithm. A discrepancy is a decision taken against the heuristic.
Accordingly, the left-most branch has discrepancy b = 0, the
second from left b = 1, the third one b = 2 and so on. Discrepancy-
based algorithms rely on the assumption that if the heuristic fails,
the number of mistakes made along the path is rather low. They
try to correct those mistakes at little cost. Figure 5.12 show the
discrepancy values of the nodes of a tree with branching factor
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3 and depth 3. LDS explores, at iteration i, the nodes whose
cumulative discrepancy, discrep, is lower or equal to i, discrep < i
with i > 0 [48]. Hence, the O-th iteration follows the left-most path,
the 1-th one expands both the left-most path and those where
only one discrepancy takes place. It does not matter whether
the mistake takes place at the top or at the bottom of the tree,
LDS explores paths with the same amount of mistakes at the
same iteration. On the contrary, DFS would need to explore a
great portion of the tree before correcting a mistake at the top
of the tree. Improved Limited Discrepancy Search (ILDS) avoids
re-exploring previously explored paths, yet requires to specify an
a-priori depth limit [72]. Figure 5.13 shows the first four iterations
of ILDS on a tree with branching factor 3, depth 3 and depth limit
3.

It is reasonable to expect that the heuristic —i. e., the number of
feasible samples retained inside the box— is more likely to make a
mistake at the beginning of the search, when still several infeasible
samples must be removed, rather than at the end, when only few
infeasible samples are left. It would be beneficial, then, to correct
an early mistake at less cost than a late one. Depth-bounded
Discrepancy Search (DDS), developed by Walsh [128], does that:
it iteratively increases the depth limit at which discrepancies may
take place. This is obtained by combination of LDS and iterative
deepening.

Let depth be the depth level of the current node, discrep the
discrepancy accumulated until the current node and b the discrep-
ancy of a branch extending from the current node. At iteration
iter, DDS expands:

e if depth < iter — 1, branches with b < iter — discrep;

e if depth = iter — 1 Aiter # discrep, branches with 1 < b <
iter — discrep;

e clse, the branch with b = 0, i. e., the left-most one.

Figure 5.14 shows the first four iterations of DDS on a tree with
branching factor 3 and depth 3. The complexity of the search
increases more gradually with DDS than with ILDS: the first
iterations are faster, yet the last ones slower.
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Figure 5.12: Discrepancies in a tree with branching factor 3 and depth 3.
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(a) iter =0
(b) iter =1
(c) iter =2
(d) iter =3

Figure 5.13: Improved Limited Discrepancy Search on a tree with branch-
ing factor 3, depth 3 and depth limit 3.
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(a) iter =0
(b) iter =1
(c) iter =2
(d) iter =3

Figure 5.14: Depth-bounded Discrepancy Search on a tree with branching
factor 3 and depth 3.
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5.2.5 Optimization Algorithm

I tackle the optimization problem in Equation 5.37 with the fol-
lowing steps:

1. list all maximal feasible boxes,
2. sort them according to their feasibility measure,

3. select first p ones whose relative overlap is lower than or
equal to gy

The second and third steps are computationally simple and do
not interfere with the validity of the optimization process. The
first step is, instead, from a theoretical point of view, impossible:
the number of maximal feasible boxes —if the feasible region is
non-point-like— is infinite. Yet, because I use a sampling-based
approach to approximate feasible boxes, a maximal feasible box
becomes one for which no other available sample can be added
to it.’® In other words, finding all maximal feasible boxes for the
given set of samples means finding, for each feasible sample, the
largest feasible box in which it is contained. Algorithm 5.1 tries
already to find the largest feasible box for each feasible sample. In
order to increase the chances of succeeding in the task, I extend
its search strategy with a DDS approach.

Algorithm 5.2 reports a pseudo-code of the optimization algo-
rithm:

shrink_dds is a recursive implementation of the shrinking pro-
cedure in Algorithm 5.1: at each function call, the input
box is shrunk so as to remove the selected infeasible sam-
ple and retain the input feasible one. Unlike Algorithm 5.1,
the dimensions along which the box is shrunk —that is, the
branches to expand at each function call- are selected ac-
cording to the DDS strategy. The zeroth-iteration explores,
then, the left-most path, as in Algorithm 5.1. The number
of feasible samples retained in the box and the number of
removed infeasible ones are used as heuristics to sort the

18 Feasible samples in a box can be thought as adjacent nodes in a graph; in this way,
maximal feasible boxes are the equivalent of maximal cliques.
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branches. If a leaf is reached, namely if the box of a branch
contains no more infeasible samples, the resulting feasible
box is yielded. The search does not stop at this point, but
continues until all the leaves planned for the DDS iteration
are reached. Branches that contain the same set of feasible
samples are pruned to avoid reaching the same feasible
boxes more than once. Instead, I do not prune branches
that cannot lead to a feasible box larger than the largest one
obtained so far for the considered feasible sample. In fact,
this check is computationally expensive, as it should be per-
formed for each branch at each function call, and becomes
effective only towards the end of tree.

main controls the calls to shrink_dds. I implement both a max-
imum time and iteration limit: the former because, when
the number of feasible samples increases, the computational
time for even few iterations may become prohibitive; the
latter because, when iterations are very fast, I assume a
maximum number of discrepancies to may happen along
the path. The iterations could be also stopped if no larger
box is found for a certain number of consecutive iterations.
The largest feasible box for each feasible sample is stored
in the set of maximal feasible boxes, B. This set is then
sorted on the basis of the flexibility measure and the first p
boxes, whose overlap, calculated according to Equation 5.35,
satisfies the constraint, are returned as output.

5.2.6  Workflow

The algorithm presented in the previous subsection solves, with a
stochastic approach, a mathematical optimization problem. Alone,
though, it does not guarantee accurate results. Its effectiveness
lies in the quality of its inputs. In fact, Algorithm 5.2 is part of a
larger framework that, from the results of the Bayesian feasibility
analysis —described in Section 5.1— leads to design guidelines for
flexibility. This framework is outlined in the following;:
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Function shrink_dds (Xok, Xnoxk, C, Xox, d, iter, depth,
discrep):

Input: Set of feasible samples X, set of infeasible
samples Xyok, input box C, feasible sample
xok, dimensionality d, iteration iter, depth level
depth, accumulated discrepancy discrep.

Output: Any feasible box B found during the search.

select xyok in Xyok closest to xgk;
foriin {1,...,d}:

T:=C;
if xnok, > Yok
‘ xiTu ‘= XNOK;/
else:
‘ xl = XNOK;/

L
nby := number of feasible samples in T;
nl ok = number of infeasible samples in T;
if n{]OK =0
B := minimum bounding box around X[;
yield B
save T to T;
remove duplicates in T containing same feasible
samples;
sort T in descending order of npx and ascending order
of nNok;
if depth < iter — 1:
| branches := {0, ... iter — discrep};
elif depth = iter — 1 and iter # discrep:
‘ branches := {1,...,iter — discrep};
else:
| branches := {0};
for b in branches:
if n{}’OK > 0:
shrink_dds (X(T)bK, XZT\]bOK, Ty, X0k, d, iter,
depth + 1, discrep + b);

Algorithm 5.2: Pseudocode of a stochastic algorithm for opti-
mization of flexibility boxes, according to Equation 5.37 — Part
1.
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Function main(Xogk, Xnok, 4, P, Gmax, tmax, Imax):

Input: Set of feasible samples Xk, set of infeasible
samples Xyok, dimensionality 4, number of
output boxes p, maximum allowed overlap gy,
time limit f,,,, and iteration limit i, .

Output: Set of p feasible boxes with highest flexibility,

B*, whose relative overlap < gqy.

Cinit := minimum bounding box around Xopg;
time := 0;
iter :=0;
while time <ty and iter < ipgyc
for xpk in Xpg:
BXOK = shrink,dds(XOK, XNOK! Cinit/ X0OK/ d,
iter, 0, 0);
compute volume of By, ;
if By is larger than By :
Byok = Bxows

update By in BB;

XOK

update time;

iter .= iter +1;

compute flexibility measure of boxes in IB;

sort B in descending order of flexibility measure;

B* := first p boxes in B whose relative overlap < qyax;
return B*

Algorithm 5.2: Pseudocode of a stochastic algorithm for opti-
mization of flexibility boxes, according to Equation 5.37 — Part
2.
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. INPUT: Import design space, trained surrogate models, train-
ing data.

The design space is the same used as input for the Bayesian
feasibility analysis procedure in Section 5.1.5, while the
trained surrogate models and training data are the outputs
of that procedure. Accordingly, the surrogate models approx-
imate the normalized constraints that delimit the feasible
region.

. PROCESS: Generate uniform sampling inside design space.

I use the standard LHS, developed by McKay et al. [85] and
implemented in the python library diversipy [134]. I use
this version over the improved one, used for training, due
to faster run time: linear versus quadratic with the number
of samples. Thanks to the surrogate model computational
efficiency, I can define a sampling budget significantly larger
than the one used for Bayesian feasibility analysis: 10 times
the number of training samples, namely 1 = 10 - (5d)*.

. PROCESS: Predict samples’ feasibility function with surro-
gate models.

In case of multiple surrogate models, the feasibility function
is computed as the maximum of the predictions of each
surrogate model, according to Equation 5.2.

. PROCESS: Compute minimum bounding box around feasi-
ble region.

The area of the design space of interest is the feasible region.
Therefore, I zoom into this by extracting the minimum axis-
aligned bounding box around it and concentrating here the
samples.

. PROCESS: Generate uniform sampling inside bounding box.

I use the standard LHS, as in step 2. The initial sampling
budget in the bounding box is n = 7 - (5d)*. Sampling uni-
formity is crucial, as it is exploited by the heuristics used in
Algorithm 5.2.
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6.

7-

10.

PROCESS: Repeat step 3.

DECISION: Check number of feasible samples.

Sampling of the feasible region should be as dense as possi-
ble to compute accurate flexibility boxes. Otherwise, these
may include unsampled infeasible regions or exclude un-
sampled feasible ones. However, as often stated in the cur-
rent chapter, dense sampling in high dimensional spaces is
utopia. Moreover, the larger the number of feasible samples
nok, the more loops Algorithm 5.2 runs, the longer it takes.
Therefore, a compromise is required.

If nog > 7- (5d)2, move on; otherwise, increase sampling
budget in bounding box and repeat from step 5.

. PROCESS: Add training samples to uniform sampling.

The training samples carry true information, i. e., not affected
by surrogate model error. Furthermore, those collected dur-
ing the adaptive phase lie mostly on the boundary of the
feasible region and help to delimit it. It is, therefore, valuable
to add them to the set of predictions.™

. PROCESs: Compute flexibility boxes.

I use Algorithm 5.2 to perform the task. In general, I set a
time limit of one hour for the last iteration to start.

PROCESS: Generate uniform sampling inside selected flexi-
bility box.

Out of the resulting boxes, I select one —e. g., the one with
highest flexibility— and perform a validation run. Goal is to
prove that the percentage of feasible samples in the box is
larger than a given threshold. To do so, I must define how
many samples I need to simulate, 1, and the percentage of
them that has to result feasible, pyeqs. 1 follow the proba-
bilistic approach proposed by Lehar and Zimmermann [78].

19 Adding feasible samples may slightly compromise sampling uniformity inside

the feasible region. However, this effect is considered negligible, due to the large
number of feasible samples, nok.
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By means of Bayes’ theorem, they demonstrate that, given
an uniform set of samples of which npg are feasible and
nnok are infeasible, the probability density function, f, of
the percentage, p, of feasible samples in the box is given by:

pox (1 — p)™Nox

fol sMok (1 — s)""™NOK (g

f(p | nox, nnok) = (5.40)

which corresponds to the probability density function of a
beta distribution of the first kind, whose parameters are « =
nokx + 1 and B = nyok + 1 [57]. The cumulative distribution,
F, for values of p larger than the threshold pj,,, is computed
as:

I

low

1 pok (1— p)™Nok dp
F(p = prow) = /p fdp= (5-41)

low fol s"ok (1 — s)""NOK dg

and represents the confidence level in the statement that the
percentage of feasible samples in the box is larger than p;yq,.
p can also be interpreted as a probability of feasibility inside
the box. Noteworthy, as long as the samples are randomly
drawn from an uniform distribution, Equation 5.40 and
Equation 5.41 do not depend on the problem dimensionality.
nok and nyog can be expressed in terms of the total number
of samples, n = npox + nyok, and measured percentage of
feasible samples, pumess = nox/n:

PP (L= p) P dp

F(p =2 piow) = . (542
(p =P ) fol gPmeas™ (1 _ S)(l—l’nwaS)” ds (5 4 )

Equation 5.42 presents four variables: the confidence level F,
the percentage lower limit p;,,,, the number of samples n and
the measured percentage pu.eas. I set, first, the confidence
level to 97.5%: F(p > Piow) = 97.5%%°. I select, then, the
remaining quantities with the help of Figure 5.15. This shows
the dependency of pjeqs on n for different values of pjy,, at

20 Pjow corresponds, accordingly, to the lower limit of a two-sided distribution at 95%
confidence level.
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11.

12.

13.

a 97.5% confidence level. 12 samples —provided that they
are all feasible— are enough to state that the percentage of
feasible samples in the box is greater than or equal to 75%;
22 for p > 85% and 71 for p > 95%. Zimmermann and
von Hoessle [141] require 100 samples to be all feasible to
estimate a 96% probability of feasibility inside the box. I
opt for a more significant sampling, n = 200, and less strict
percentage requirement, p > 85%. I consider 85% enough
for my purpose because:

* some error is acceptable in early phases of the develop-
ment process,

¢ the few infeasible samples will not be, in general, far
away from feasibility.

According to Figure 5.15, then, the condition that needs to be
satisfied in order to validate the feasible box is pyess > 90%
—i.e., npog > 180.

To sum up, I randomly draw 200 samples from a uniform
distribution.

PROCESS: Run simulations and collect output quantities.

Here, real FE simulations, and not surrogate model’s predic-
tions, are used. I employ the LFM in Chapter 4.

DECISION: Check flexibility box’s feasibility.

I evaluate the percentage of feasible samples among the
simulated ones, pmeqs, to validate box’s feasibility. If the con-
dition is not satisfied, a more extensive sampling should
improve the flexibility boxes” accuracy. Some error may be
also related to the surrogate model inaccuracy. However, this
has already been validated in Section 5.1.5 and, therefore,
should not play the major role.

If preas > 90% —i.e., nox > 180— move on; otherwise, in-
crease sampling budget in bounding box and repeat from

step 5.

oUTPUT: Store flexibility boxes.



5.2 STOCHASTIC OPTIMIZATION OF FLEXIBILITY BOXES 131

1.00 ~~——_

0.95
. —— i = 075
£ 090 = Do = 0.85
(N

= Plow = 0.95
0.85
0.80
0 100 200 300 400
n

Figure 5.15: Bayesian inference applied to probability of feasibility. De-
pending on the measured percentage of feasible samples
Pmeas and the total number of samples #, I can predict at
97.5% confidence level different lower limit values pj,,, of
the actual percentage of feasible samples, according to Equa-
tion 5.42. The red dot indicates the chosen requirement for
the validation run.
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Design guidelines for flexibility are ready to be delivered to
concept engineers.

The described steps are condensed in Figure 5.16.

5.3 NOVELTY OF THE PROPOSED METHOD

Feasible boxes, also called solution boxes, have been the target
of several previous works [29, 39, 141]; yet, to the best of my
knowledge, the approach I follow differs in many ways. First off,
the workflow is different: instead of adopting an iterative procedure
that enlarges, samples and shrinks a candidate box, I first train
a surrogate model for feasibility analysis, that I use to gather a
relatively large number of samples over the entire design space,
and then apply once the stochastic optimization algorithm in
Algorithm 5.2 —unless validation fails.

Bayesian feasibility analysis, also called adaptive sampling for
feasibility analysis, has become popular in recent times. With
respect to the methods described in [10, 101, 131], the main aspects
in which my implementation differs are:

MULTIPLE SURROGATE MODELS: instead of training directly one
surrogate model with the feasibility function, I train several
ones with as many constraints as computationally reason-
able and compute the feasibility function afterwards. This
is done in order to reduce the number of points of non-
differentiability, where the GP approximation would be too
rough. Such a simple trick can improve significantly the
quality of the approximation, as it will be shown in Fig-
ure 6.13.

MULTI-POINTS Elf,,: instead of the classical single-point opti-
mization algorithms, I employ a multi-modal one, NMMSO,
to find the samples to add to the training set at each iteration,
taking advantage of parallel computing capabilities.

VALIDATION METRICS: Iseparate the validation of the surrogate
model training process after uniform and adaptive sampling
phases by using a different metric for each, respectively R?
and RMS Eghl.
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Figure 5.16: Workflow to compute flexibility boxes. A detailed description
can be found in Section 5.2.6.



134

DESIGN FLEXIBILITY OPTIMIZATION

Novel aspects are also to be found in the flexibility optimization:

OPTIMIZATION FORMULATION: instead of only one, I look for
different boxes to provide the designers with different solu-
tions and to improve the know-how on the feasible region.
The diversity among the boxes is ensured by the maximum
relative overlap.

OPTIMIZATION ALGORITHM: instead of an iterative sampling
approach, the algorithm uses one set of samples to find the
optimal boxes. The shrinking algorithm in [141] is enhanced
in Algorithm 5.2 with a DDS strategy in order to extend the
search for maximal feasible boxes.

Further minor aspects are the choice of the closest sample as the
one to be removed in Algorithm 5.1, which improves algorithm
speed, and the introduction of a required interval size —defined
by the user— which helps weighting the different parameters in
the flexibility measure computation based on minimum-interval
width.
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11 meglio e I'inimico del bene.”

— Italian proverb?

The goal of the current chapter is to answer the question
whether the proposed methods are good enough for the intended
use. In other words, these methods need validation. According to
the Cambridge Dictionary, validation is the "proof that something is
correct", namely, "in agreement with true facts or with what is generally
accepted". Taking into account that

¢ the methods mainly address the early stages of the vehicle
development process, where many uncertainties are present,

e several simplifications, either mechanical or mathematical,
are done to improve the numerical efficiency,

 the computational budget —i. e., sample size— at disposal is
limited,

I propose to accept, in general, a 10% error. Nevertheless, depend-
ing on the nature of the problem and of the used error measure,
the validation condition may vary.

The first section focuses on the capability of the LEM to repro-
duce the impactor’s kinematics of the HFEM, both in reference
conditions and when modifications are applied. The second one
focuses on the capability to find axis-aligned boxes in the design
space, where feasibility is guaranteed and flexibility optimized.

1 Literally, the best is the enemy of the good.
2 In: Voltaire. Dictionnaire philosophique. 1770.
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6.1 LOW-FIDELITY MODEL

In Chapter 4, I describe a procedure to generate a simplified
vehicle front-end model, LFM, for the pedestrian lower leg im-
pact from a detailed one, HFM. This section focuses on the LFM
requirements related to run time and accuracy.

An LFM simulation runs in approximately 20 min with 48 pro-
cessors on a HPC cluster, about 17 times faster than the corre-
sponding HFM simulation. These values are obtained by average
of 8 different vehicle models. Nearly all the computational effort
is associated with the impactor, being the vehicle model in the
LEFM reduced only to rigid bodies and few translational springs.
The impactor, instead, still consists of over 250 thousand elements.
A further speed up would be, therefore, obtained by simplifying
the impactor as well. Nevertheless, this is outside the scope of the
current work. The topic is discussed further in Chapter 8.

Central Shooting Position

First, the accuracy is evaluated in reference conditions —i.e., those
used to generate the LFM— at the central shooting position, y =
Omm. Figure 6.1 shows the comparison of the injury criteria
curves over time for three models: the HFM in Figure 4.3a, the
corresponding LFM with 8o load levels of 10 mm equal height —of
which only 53 have non-zero energy absorption— and the LFM
with 20 clustered load levels. In general, both simplified models
are able to replicate faithfully all the reference curves. More in
detail, all injury criteria of both LEMs slightly deviate from the
HFM towards the end of the simulation. This is reasonable, as
the error tends to accumulate during the simulation and the
unloading phase of the force-deformation characteristics is usually
represented less accurately than the loading one.

The femur bending moments are the first criteria to show a
permanent —although slight- deviation between LFMs and HFM.
This is associated with the re-loading of the first part of the
bonnet, which takes place during the rotation phase of the UBM
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Figure 6.1: Comparison of the aPLI injury criteria among the HFM shown
in Figure 4.3a, its LFM with 8o equally high load levels and
its LFM with 20 clustered load levels at shooting position
y = 0mm.
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over the bonnet.3 Furthermore, the femur curves show some
difference between LFM 8o and LFM 20 at the very end of the
simulation. This hints that the rougher discretization of the bonnet
slightly affects energy absorption and deformation in this area.
Nevertheless, the peak values of the curves are not affected, as the
deviation starts later in time.

The bending moments measured on the tibial shaft do not
show, instead, particular differences between LFM 8o and LFM 20
for most of the simulation time. Both tend to underestimate the
second peak of the HFM curves, which is related to the contact of
the UBM with the bonnet. The same effect is seen in the ligaments
curves —namely, ACL, MCL and PCL.

The MCL and PCL curves look alike. It would not be the case
with the FlexPLI and it is the direct consequence of the change
in the positioning of the cruciate ligaments in the aPLI [55]. Both
LFMs:

1. slightly overestimate the first local peak of the MCL curve,
due to a steeper unloading of the mid-up load region,

2. reconnect to the HFM MCL curve, when -before the second
peak— the UBM starts the rotation over the bonnet, thanks
to a faithful rebound of the lower load region,

3. deviate a little in presence of the third peak, when the UBM
hits the bonnet. This effect is slightly larger in the LFM 20.

The fact that the only meaningful deviations between LFM 8o
and LEM 20 seem to come from the bonnet area suggests that the
discretization obtained with clustering in the lower and mid load
regions can be considered accurate.

Small oscillations in the curves, such as those appearing at
the beginning of the simulation in ACL and Femur 3, are not
reproduced by any LFMs. This suggests that the simplified model
is capable of faithfully representing the main global trend, though
filters out small non-linearities of the loading phase of the HFM.
This effect is stronger, when cubic polynomials are used to fit the

The re-loading behavior of the force-deformation characteristics is explained in
Section 4.1.4 and shown in Figure 4.7b.
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RELATIVE ERROR CORA ERROR
8o 20 8o 20
TIBIA MAX 3.3% 1.6% 7.1% 5.2%
ACL 0.4% -1.7% 7.0% 9.6%
MCL -0.4% -4.0% 6.8% 7.9%
PCL 0% -3.2% 6.2% 7.5%
FEMUR MAX 4.9% 4.5% 7.1% 6.7%

Table 6.1: Relative error E;,  , as defined in Equation 4.7, and CORA
error Ecora, as defined in Equation 4.8, of the injury criteria
for LFM 8o and LFEM 20 at the shooting position y = 0 mm.

original loading force-deformation characteristics. Yet, the impact
on the injury criteria, overall, is small and, hence, not reported in
this thesis.

The relative error E,;, , as defined in Equation 4.7, is reported
for each injury criterion in Table 6.1. For sake of conciseness, I
consider the maximum bending moment among the four tibia
sections and that among the three femur sections. The relative er-
rors are comparable between LFM 8o and LFM 20; only MCL and
PCL suffer a significant worsening, of about 3.5%. Nevertheless,
all injury criteria are remarkably precise, all below 5% relative
error. Therefore, the LFM shows correct performance under the
simulated loading condition.

Table 6.1 reports also the CORA error, as defined in Equation 4.8.
This error is significantly higher than the relative one and lies
around 7% for both LEMs. The largest difference between LFM 8o
and LFM 20 is in the ACL, which worsens of 2.6%. The bending
moments, instead, show a slight improvement.

Outwards Shooting Position

The previous comparison was carried out for a central shooting
position. When the impactor is moved towards the side of the
car, the tapering of the front-end generates a rotation of the leg
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around the z-axis. A y-component is introduced in the LEM right
to improve the representation of this situation. The injury criteria
curves over time at the shooting position y = 450 mm are shown
in Figure 6.2 for the same three models previously considered:
the reference HFM, the corresponding LFM with load levels of
equal 10mm height and the LFM with 20 clustered load levels.
The second model consists here of 97 load levels, of which 63
have non-zero energy absorption. LEM 97 and LFM 20 show only
marginal differences between them in all injury criteria. This
indicates that the clustering can be considered accurate over the
entire model in this shooting position.

Both LFMs follow the HFM curves with remarkable precision.
More in detail, the bending moments on the femur are more
accurately reproduced at y = 450 mm than at y = Omm, due to a
smaller influence of the re-loading of the bonnet. MCL and PCL
show an analogous behavior as in the central shooting position,
with the overestimation of the first peak and underestimation
of the third one. Differently from the y = 0mm position, the
tibia bending moments experience an overestimation of the first
peak in the sections closer to the knee. This is related to a steeper
unloading of the middle load region, which causes also an increase
in the first MCL peak. The ACL curve shows, again, some filtering
effect in both simplified models. Also for this shooting position,
cubic polynomial fits enhance the filtering effect, without though
major impact on the injury criteria overall.

The relative errors, as defined in Equation 4.7, are reported in
Table 6.2. The ligaments show excellent accuracy, whereas the
bending moments lie around 7%. Nonetheless, this is still accept-
able. Also in the relative error, LFM 97 and LFM 20 show only
marginal differences. This confirms the quality of the clustering
procedure.

The CORA errors, reported in the same table, show, instead,
larger values for the ligaments than for Tibia and Femur Max.
Now the bending moments lie below 5% and the ligaments above.
Since this error measure takes into account the entire curve in the
calculation, this suggests that the LFMs represent very well the
ligaments in the peak value, yet experience some deviations in
the rest of the simulation. The bending moments, instead, suffer
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Figure 6.2: Comparison of the aPLI injury criteria among the HFM shown
in Figure 4.3a, its LFM with 97 equally high load levels, shown
in Figure 4.3¢, and its LFM with 20 clustered load levels at
shooting position y = 450 mm.
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RELATIVE ERROR CORA ERROR
97 20 97 20
TIBIA MAX 7.9% 8.8% 3.4% 4.1%
ACL 1.4% 0.3% 6.3% 5.9%
MCL 0.7% -1.1% 7.3% 5.5%
PCL 1.0% -0.5% 7.1% 5.7%
FEMUR MAX 6.1% 7.4% 3.0% 4.6%

Table 6.2: Relative error E,,, ., as defined in Equation 4.7, and CORA
error Ecora, as defined in Equation 4.8, of the injury criteria
for LFM g7 and LEM 20 at the shooting position y = 450 mm.

no deviation other than the peak value, as confirmed by the curve
trend in Figure 6.2.

The CORA error is certainly more suitable to objectively eval-
uate the LEM performance during the entire simulation. Never-
theless, as the peak values of the injury criteria are the quantities
that matter in the assessment of the pedestrian leg impact, only
this relative error will be reported in the following investigations.

Clustering

The comparisons at different shooting positions in Table 6.1 and
Table 6.2 report, in general, no significant increase in the relative
error when the number of load levels is reduced to 20. Never-
theless, they do not reveal how far clustering can go without
compromising the LFM accuracy. Figure 6.3 shows the trend of
the absolute value of the relative error E;,  for different num-
bers of load levels, with the model in Figure 4.3b, at the shooting
position y = 0mm.

Taking into account that the LFM 8o has only 53 non-zero load
levels, it is of little surprise that there is minimal variation when
the number of load levels is reduced to 40. Between 40 and 20
load levels, we can spot an improving trend for Tibia Max, while
the other criteria slightly worsen. 20 load levels is the minimum
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Figure 6.3: Evolution of the absolute value of the relative error E,, .,
as defined in Equation 4.7, for the aPLI injury criteria for
different numbers of load levels in central position. The model
in Figure 4.3b is used.

number of load levels —for this loading condition— where all injury
criteria stay below 5% relative error. With 15 load levels, Femur
Max, MCL and PCL lie between 5 and 7% relative error, while
Tibia Max decreases to 0.6%. With 10 load levels, the relative
error of Tibia Max becomes negative and slightly increases in
absolute value. The relative error of the ligaments, negative until
here, jumps above 8% in the positive side. With 5 load levels, the
ligaments rise above 20% relative error, Femur Max at 14%, while
Tibia Max remains below 5%. However, the section of the tibia
shaft where the maximum occurs changes, with the old one falling
at about -15%. Noteworthy, with 5 load levels most of the curves
score a CORA error close to 30%.

The strong inaccuracy of LFM 5 is due to the over-sized load
levels, as the outer surface of LFMs is modeled as rigid body.
If some levels were simply deleted —instead of added up to the
clusters— results would, most likely, improve.
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To conclude, I consider 20 a good number of load levels for the
vehicle under investigation.

Vehicle Type

In the previous subsections, the accuracy of the LFM was as-
sessed for one specific vehicle model, the medium-sized sedan
in Figure 4.3a. Nonetheless, different vehicles deform differently.
Furthermore, the impactor’s kinematics varies greatly depending
on the front-end outer surface. Hence, in order to analyze the LFM
performance for different vehicle types, 8 models are compared.
They range from a compact car to a large SUV.

Figure 6.4a shows the box plot of the absolute value of the
relative error E;,, of 8 LFMs with 10 mm high load levels for
each injury criterion. The analysis is performed in central shoot-
ing position. All the medians remarkably lie around 3 to 4%.
Femur Max has the smallest variation in the relative error: from
1.5% to 6%. This hints that the responses on the bonnet are well
reproduced with any kinematics. Tibia Max and MCL have the
largest variation, from 0% to 9%, but Tibia Max has the lowest
inter-quartile range, about 3%, and MCL the lowest median, at
3%. This suggests that there exists very few vehicle models where
the deformation mode of the lower or middle load region is not
extremely well reproduced. PCL is strictly related to MCL, in
confirmation of the results in previous subsections. In general, the
lower and upper quartiles are closer for the bending moments
than for the ligaments elongation. This means that several models
commit a similar error in the bending moments.

In order to examine the effect of clustering for different vehicle
models, the same box plot is repeated with 20 load levels in
Figure 6.4b. The medians are still remarkably low: 3% relative
error for the ligaments and Tibia Max and 5% for Femur Max. The
range of Femur Max moves from 1 to 6% to 0 to 11%. This suggests
that the rougher discretization is not beneficial for the bonnet
representation; yet, the inter-quartile range is rather low, about 3%.
Tibia Max’s median and upper quartile decrease, as one simulation
is recognized as outlier. The rougher discretization in the lower
and middle region, in general, benefits the approximation, as it
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Figure 6.4: Box plot of the absolute value of the relative error E,,,,., as
defined in Equation 4.7, for the aPLI injury criteria with 8
different vehicle LFMs in central position, with: (a) 10 mm
equally-high load levels and (b) 20 load levels.
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tends to stabilize the deformation mode and avoid large errors.
The MCL distribution looks analogous to that in Figure 6.4a, with
the whisker and inter-quartile ranges slightly extending. This
means that the MCL is not greatly affected by the clustering of the
load levels to 20. Similar considerations apply to ACL and PCL.

To sum up, the LFM performs well for all 8 considered vehicle
models: the median relative errors lie below 6% for all injury
criteria and the largest error in the distribution hardly overcomes
10%. A number of 20 load levels appears to be a good choice for
all models.

Geometry Variation

Recalling from Section 4.2, the usefulness of the LFM lies in its ca-
pability to be modified while preserving the validity of its output.
It is, therefore, fundamental to analyze the LFM performance in
out-of-reference conditions —i. e., different from the one used to
generate the model. The modifications defined for the LFM affect
the position and the force-deformation characteristics of the load
levels. As regards the first one, load levels are rigidly shifted in
the xz-plane. It is rather demanding to move the load levels in the
HFM as it is done in the LFM. Morphing is a great tool. However,
its capability to make changes that are comparable with the rigid
translations of the LFM parametrization is questionable. There-
fore, I investigate the effect of the variation in relative position
between the load levels and the impactor and not among the load levels
themselves. In other words, I do not move the levels individually,
but the vehicle as a whole. This analysis is, first of all, directly
comparable. Furthermore, it provides information about the be-
havior of the load levels with a different impactor’s kinematics
—thus, in out-of-reference conditions— similarly to as if I moved
the load levels separately.

Figure 6.5 shows the trend of the absolute value of the rela-
tive error for each injury criterion for variations of the impactor
shooting height in the interval [-50 mm, 50 mm]| in central posi-
tion. The LEM is generated at the reference shooting height. It is
immediately evident that the trend is not symmetrical. Raising
the impactor —or lowering the car— generates more troubles than
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Figure 6.5: Evolution of the absolute value of the relative error E,,,, as
defined in Equation 4.7, for each injury criterion, for different
aPLI shooting height variations, in central position. The model
in Figure 4.3b, obtained with no shooting height variation, is
used.

the opposite. The relative errors remain marginal in the negative
range: below 1% for the ligaments, below 5% for Femur Max and
below 6% for Tibia Max. Instead, already at 10 mm variation, the
ligaments lie above 5% error; they grow steadily until 40 mm, with
10% relative error being crossed at 30 mm.

When the impactor is raised —i. e., for positive shooting height
variations— the maximum elongation of each ligament is under-
estimated. This is caused by the inaccurate extrapolation of the
force-deformation characteristics in the first portion of the bon-
net. The original curve has a decreasing slope in the last quarter
of the deformation, as shown in Figure 4.7b. Therefore, accord-
ing to the procedure described in Section 4.1.5, the extrapolation
follows a constant line starting from the point of maximum in-
trusion. However, this underestimates the reality. Furthermore,
the MCL elongation decreases with larger intrusion in the upper
load region, as it will be shown in the next chapter in Figure 7.2.
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Therefore, the higher the impactor, the larger the intrusion in the
first part of the bonnet, the larger the error.

The extrapolation in the first part of the bonnet is the only
significant source of error for impactor positions higher than the
reference one. It notably affects also Femur Max from 30 mm
onward. Tibia Max is, instead, less influenced.

Noteworthy, for positive shooting height variations, the CORA
errors of the ligaments are smaller than the relative ones. Starting
from 40 mm, this holds also for the bending moments. In general,
the CORA errors lie below 10% in the whole range of variation.
This means that the LFM always replicates accurately the kine-
matics of the impactor, though not always the peak value of the
injury criteria.

To sum up, the LEM performs well also in out-of-reference
conditions, except for the extrapolation of the first part of the
bonnet. Nevertheless, when the impactor is vertically shifted in
the range [—50 mm, 30 mm], the relative error lies approximately
below 10%.

Stiffness Variation

The second type of modifications that are implemented in the
LEM parametrization concerns the stiffness of the load levels. I
define four load regions —each one consisting of multiple levels—
whose force-deformation characteristics is modified. In loading,
two scaling factors, respectively at the beginning and at the end
of the curve, can be varied; in unloading, the dissipation factor.
It is not straightforward to apply these changes to the HFEM,
especially in an automated way. As discussed in Section 4.2, this
is outside the scope of the current work. Therefore, I do not prove
whether the LFM changes can be accurately reproduced by the
HFM, rather whether HFM changes can be accurately reproduced by
the LFM.

I vary one load region at a time and compute the relative error
between HFM and LFM.4 More in detail, I scale the thickness —in

4 I do not perform a DOE, where I vary all load regions together, because it would
become, then, more difficult to understand where the error comes from.
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case of shells— or the density —in case of foam— of the most im-
portant structural components of each load region in the HFM in
the range 0.5 to 1.5. I apply the newly recorded force-deformation
characteristics of the levels in the analyzed load region to the
corresponding LFM levels. I leave, though, the inclination of their
springs unchanged, as in the LFM parametrization. Furthermore,
the levels not present in the modified load region remain also
unvaried. In this way, I define a new force-deformation curve for
some load levels —as if I used some scaling factors— and test the
accuracy of both their inclination and the other levels’ response in
out-of-reference conditions.

The error of the LFM relative to the HFM is shown in Figure 6.6
for each load region and each injury criterion, with the vehicle
model in Figure 4.3a, at the central shooting position.

Starting from the lower load region, two large errors are experi-
enced: in Tibia Max, about 9%, when the scaling factor is lowered
to 0.75 and in the ligaments, about 10%, with o.5. These errors,
actually, come from the same source: when the stiffness is lowered,
the intrusion in this region becomes larger; if the principal spring
direction is not aligned with the new intrusion, the second spring
in the xz-plane opposes to the movement. As a result, the LFM
intrudes less, with a significant impact on the tibial bending mo-
ment and ligaments elongation. At 0.5, Tibia Max is not recorded
at the section in contact with the lower load region anymore and,
thus, does not suffer from this effect.

In the middle load region, modifications do not seem to signif-
icantly alter the LFM accuracy. This is helped by the fact that
the deformation of the levels in this region is almost-horizontal.
Therefore, the relative error is rather stable and does not experi-
ence large variations. This is a very good indication. In fact, the
LFM is useful to investigate trends and sensitivities. If the relative
error in the investigated range of stiffness remains constant, then
trends and sensitivities are identical between LFM and HFM.

In the mid-up load region, stiffness changes significantly affect
the relative error of the ligaments: the softer this load region,
the larger the error and vice versa. The cause is, actually, to be
found in the upper load region: the softer mid-up, the larger the
intrusion in the first part of the bonnet, the larger the effects of
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Figure 6.6: Evolution of the absolute value of the relative error E,,,,.,
as defined in Equation 4.7, for the aPLI injury criteria for
different shooting height variations in central position. The
model in Figure 4.3b, obtained at the reference shooting height,
i. e., with zero variation, is used.



6.2 DESIGN FLEXIBILITY OPTIMIZATION

extrapolation and re-loading already discussed in the previous
subsection —when addressing positive impactor’s shooting height
variations. Vice versa, the stiffer mid-up, the lower those effects.

Finally, the upper load region —analogously to the middle one—
does not generate significant accuracy variations. Interestingly,
increasing its stiffness —and thus, reducing the intrusion in this
region— benefits less in terms of accuracy than increasing the
stiffness of the region mid-up. The variation is, however, marginal.

To sum up, two significant errors seem to occur by lowering the
stiffness of the levels:

¢ in the lower load region, due to the inclination of the main
spring of a level in this region;>

¢ in the mid-up load region, due to the extrapolation of the
first part of the bonnet —similarly to the error generated by
raising the impactor.

Therefore, an intrusion larger than that in reference conditions
—induced by a lower stiffness— highlights some error due to extrap-
olation or stiffness in non-principal directions. However, the error
remains below 10%. Furthermore, for most of the stiffness changes,
the error remains stable, suggesting that trends and sensitivities
investigated with the LFM should be mostly accurate.

6.2 DESIGN FLEXIBILITY OPTIMIZATION

In Chapter 5, I describe a method to solve a design flexibility
optimization problem for computationally expensive black-box
functions. The method consists of, first, adaptively training a GP
regression model for feasibility analysis and, then, using a stochas-
tic algorithm to find axis-aligned flexibility boxes in the design
space. In this section, I validate this method via mathematical
functions, with a special focus on the determination of the effect
of dimensionality. In order to account for the influence of random
factors, I repeat the runs 10 times and provide mean and standard
deviation for each computed metric.

In the actual LFM parametrization, when the force-deformation characteristics of
a load level is scaled down, all its springs become more compliant and this effect
should be less significant.
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6.2.1 Bayesian Feasibility Analysis

Bayesian feasibility analysis comprises two phases:

1. a uniform sampling, where a global model accuracy is
sought;

2. an adaptive sampling, where the model accuracy is refined
around the feasible region boundary, ¢ = 0.

The detailed procedure is described in Section 5.1.5 and summa-
rized in Figure 5.8.

In the following, I compare three strategies that make different
use of the sampling budget in Equation 5.31:

u1o00: the budget is entirely used for uniform sampling;

U60/A40: the budget is split in 60% uniform sampling and 40%
adaptive one;

u80/Az20: the budget is split in 80% uniform sampling and 20%
adaptive one.

In order to evaluate the effect of the adaptive phase, the initial
uniform one must be evaluated as well. Therefore, I consider also
u60 and U8o in the analysis.

I validate the proposed method for Bayesian feasibility analysis
with the help of three questions:

QUESTION 1. Are the samples added during the adaptive phase
located close to the feasibility boundary?

QUESTION 2. How much does the adaptive phase improve the
prediction accuracy of the surrogate model in feasibility
analysis?

QUESTION 3. Is the surrogate model at the end of the adaptive
phase accurate enough for my purposes?

The last question would be, actually, enough to validate the sur-
rogate model for feasibility analysis. Yet, the first two help me to
evaluate the added value of the Bayesian approach.

In order to quantify the accuracy of the surrogate model, 1
compare two approaches:
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* 50,000 new test samples,

¢ cross-validation of the training samples.

Branin

In Section 5.1.3, a modified version of the Branin function —defined
in Equation 5.20— was introduced for exemplary purposes and
used as feasibility function, (x1,x2) = f(x1,x2). I use this 2D
function to run the first validation. In accordance with Table 5.2,
I set the budget to 100 samples. The Branin function is used for
validation of feasibility analysis also in [130, 131].

QUESTION 1. Figure 6.7 shows the location of the training sam-
ples over the design space every five iterations of the adaptive
phase for the u60/ A40 strategy. Two samples are added at each
iteration. The newly added samples lie extremely close to the fea-
sible region boundary. This is highlighted by Figure 6.8a, which
shows the PDF distribution of the feasibility function ¢ of the
training samples added during, respectively, uniform and adap-
tive phases. In order to obtain a more representative outcome, I
take into account all the training samples of the 10 runs. Only a
glimpse of the uniform distribution can be caught, as the spike of
the adaptive one at ¢y = 0 predominates.

It is not only important to consider the feasibility function value
of the training samples. Their location matters as well. In fact,
the samples added during the adaptive phase should be spatially
spread around the whole feasible region boundary and not con-
centrated in one specific area. In 2D, it is rather easy to visualize
them: from Figure 6.7, we can see that the samples completely
cover the feasible region boundary. In higher dimensions, visual-
ization is not possible. Therefore, it is convenient to analyze the
Euclidean distance between each sample and its closest one. This
indicates the samples” degree of spatial uniformity. Figure 6.8b
shows the PDF distribution of the minimum distance for the sam-
ples added during uniform and adaptive phases. For the latter, the
closest sample is searched among all training ones —i. e., uniform
and adaptive. An ideal uniform sampling would present a single
spike at the largest minimum distance possible -meaning that
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Figure 6.7: Training samples over the design space for different iterations
of the adaptive phase of the U60/ A40 strategy with the mod-
ified Branin function in Equation 5.20.
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Figure 6.8: Probability Density Function (PDF) of:
(a) the feasibility function i,
(b) the distance from the closest sample
of the training samples added during, respectively, uniform
and adaptive phases of the U60/A40 strategy with the modi-
fied Branin function in Equation 5.20.
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all samples are at the same distance and maximally spread. The
distribution obtained with an improved LHS presents, instead,
some non-uniformities and extends over a range of distances. The
sampling obtained during the adaptive phase is clearly denser. Its
distribution moves towards lower values, yet it remains at reason-
able distance. In fact, the peak lies at about half the one from the
uniform sampling® and only few samples almost coincide.

On the basis of the information coming from both Figure 6.8a and
Figure 6.8b, we can state that the adaptive phase of the u6o/a40
strategy successfully explores the area immediate around the
feasible region boundary. Specifically, the plots suggest that, in
2D, both the Expected Improvement for feasibility analysis, Elf.s,
and the multi-modal optimizer, NMMSO, work properly. This
leads us to the question how much additional value the adaptive
phase actually brings to feasibility analysis.

QUESTION 2. The used GP is a regression model, yet feasibility
analysis is a classification task. Therefore, it is reasonable to as-
sume that most of the error in predicting feasibility lies in a range
of values around ¢ = 0 —say ¢ € [—0.1,0.1]. Figure 6.9 scatters
the predicted feasibility function ¢ against the observed one i
for new test data in the interval ¢ € [—0.1,0.1] with strategies
U60, v100 and U60/A40. The bisector represents the ideal pre-
diction. In blue, True Positive and True Negative predictions; in
red, False Positive and False Negative ones. A great improvement
is obtained increasing the number of uniform samples from U60
to U100, yet an outstanding tiny error is achieved with u6o/a4o.
Noteworthy, the distribution of predictions for u6o/a4o is sig-
nificantly narrower than for u100 only in the very proximity of
P =0.

Quantitatively, I validate the adaptive phase with the metric
RMSEj; —i.e., the RMSE for observed values ¢ € [—0.1,0.1].
Figure 6.10a plots mean and standard deviation of RMSEy; for
all the sampling strategies with new test data, while Figure 6.10b
those with cross-validation data. Taking into account, first, the
results with new test data, the lowest RMSE; is achieved with

Note that 67% of the uniform sampling budget is added during the u6o/Aa40
adaptive phase.
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Figure 6.9: Predicted feasibility function ¢ against observed one ¢ for
new test data in the interval ¢ € [—0.1,0.1] for u6o, U100
and U60/ A4o0 strategies with the modified Branin function in
Equation 5.20.
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U60/ A40. While the mean is similar to that of u8o/A20, the
standard deviation is significantly lower, hinting that it is a more
robust strategy. In general, both adaptive strategies show outstand-
ing low standard deviation values with respect to the uniform
ones. This suggests that the adaptive phase compensates for the
randomness of the initial uniform sampling. During the adaptive
phase of u60/a40, RMSE(; mean decreases of about 75%, while
its standard deviation of 95%. As U8o offers a better accuracy than
u60, RMSE(); mean and standard deviation decrease of about,
respectively, 65% and 80% during the adaptive phase of u8o/azo0.
Noteworthy, u100 does not seem to improve significantly the
RMSEy; over u8o: an adaptive strategy is considerably more
effective. To sum up, the two-dimensional Branin function shows
that the adaptive strategies reduce the RMSE(; on average of
65% with respect to a uniform strategy with the same sampling
budget.

The difference in RMSE(; between cross-validation and test data
is remarkable, with the former being regularly more than double
the latter one. This is related to two factors:

1. cross-validation repeatedly uses only a subset of the available
samples as training samples —in this case, 90%— with the rest
being used as test samples;

2. as direct consequence of the previous point, in cross-validation
the test samples are located where training samples lack,
thus the surrogate model is evaluated at some of the weakest
spots.

Therefore, cross-validation generally underestimates the surrogate
model accuracy. The smallest effect seems to affect the u100
strategy: RMSE 1 with cross-validation data is only 1.5 times that
with new test data. This is due to the fact that, the more training
samples are used, the less effect it has using only a subset of
them. The strategy that is underestimated the most with cross-
validation is, instead, u80/A20, with RMSE( differing of a
factor four and being even higher than for u100. This may find an
explanation in the purpose of the adaptive phase: to add samples
that improve the accuracy of the GP around the feasible region
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Figure 6.10: Bar plot of mean and standard deviation of RMSE for
¢ € [-0.1,0.1], for different sampling strategies, with the
modified Branin function in Equation 5.20, with: (a) new test
and (b) cross-validation data.
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boundary. Using only a subset of these samples undermines its
accuracy. The u6o/a4o0 strategy, having more points around
1 = 0 than U80/A20, is less affected.

The RMSE is an absolute measure of the inaccuracy of the sur-
rogate model. Relative metrics, such as the R? or the MCC co-
efficients, more intuitively express its accuracy. Nevertheless, as
anticipated in Section 5.1.4, both R?> and MCC do not work well
with cross-validation and adaptive sampling for feasibility analy-
sis. This is made clear by Table 6.3. Here, R?, R%'l and MCCy are
reported with both new test data and cross-validation. The metrics
with subscript 1 are computed for ¢ € [—0.1,0.1]. I do not report
the global MCC, as I am mostly interested in the classification
ability close to the feasible region boundary. R?, instead, is used
for the validation of the initial uniform phase.

Taking into account, first, the results with new test data, R? shows
that the adaptive strategies do not improve significantly the global
surrogate model accuracy —which is already remarkably high.
Yet, R3; and MCCj; show that they succeed in ensuring global
accuracy also on local level, both in terms of mean and standard
deviation. u60/A40 reaches consistently 99.8% accuracy in all
metrics with almost zero standard deviation. u8o/A20 performs
similarly well: slightly better globally, slightly worse in feasibility
analysis. The adaptive phase of u60/ 40 improves R3 | of about
4% and MCCyq of about 8% and zeroes both standard deviations.
All the relative metrics suggest that u8o and u100 do not differ
much in terms of neither global nor local accuracy.

Very different —and misleading— numbers are obtained with cross-
validation for ¢ € [—0.1,0.1]. As for the absolute metric RMSE,
U100 is the least underestimated by cross-validation. The adap-
tive strategies suffer further underestimation with relative met-
rics7: besides the standard downsides of cross-validation, dis-
cussed previously, since many samples lie close to the feasibility
boundary i = 0, on the one hand, the average of the observa-
tions tends to zero —influencing the R ;- on the other hand, it is
more likely to wrongly predict the feasibility class of the observa-
tions —influencing the MCCy ;. This results, e. g., in an MCCy; of

7 See Section 5.1.4 for details.
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U80/A20 16.5% lower than that of U100, instead of 3.4% greater.
The global R? score, although underestimated, is the only one to
remain comparable to the one with new test data and is, therefore,
used for validation of the uniform phase: both u6o and u8o fulfill
the condition R% > 0.8.

QUESTION 3. I assess the accuracy of the surrogate model in
feasibility analysis with the condition RMSEj1 < 0.05 on cross-
validation data. The condition —-independent on the dimensionality
of the problem- is, in 2D, abundantly satisfied even by the uv60o
strategy. U60/A40 achieves a score lower than 0.002 and, thus,
can be considered remarkably accurate.

To sum up, Bayesian approaches for feasibility analysis look
very promising on the two-dimensional Branin function. They
are more computationally intensive than uniform sampling —as
they require successive iterations of GP training and acquisition
function optimization- yet they provide a substantial boost in ac-
curacy. U6o/ a40 performs slightly better than v80/A20. Cross-
validation generally underestimates both regression and classifi-
cation accuracy scores with respect to brand new test data. This
is aggravated by Bayesian approaches for feasibility analysis, as
samples are mostly added in critical locations. However, due to
the fact that the proposed method mostly addresses problems
with computationally expensive black-box functions, it is incon-
venient to generate a large set of test data. Therefore, I do use
cross-validation. Cross-validated RMSE(; better approximates
the true score than relative metrics.

Rosenbrock

Several indications on Bayesian feasibility analysis can be obtained
with the Branin function. However, this is only defined in 2D. The
effect of dimensionality on the proposed method remains an open
point. A popular function in global optimization is the Rosenbrock
function, first formulated in 2D by Rosenbrock [103]. Because of
its multi-modal behavior and multi-dimensional generalization, it
is a good choice to further test the method.
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2 2
STRATEGY R Rga MCCoa

Mean Std Mean Std Mean Std

Uu60 0.997 0.002 0.959 0.032 0.917 0.034

u80 0.999 0.001 0980 0.021 0.960 0.017
U100 0.999 0.001 0.982 0.014 0.960 0.022
U6o/A40 0.998 0.001  0.998 0 0.998  0.001
u80o/A20 0.999 0 0.998 0.001 0.994  0.001

(a) New test data

2 2
STRATEGY R Roa MCCoa

Mean Std Mean Std Mean Std

u6bo 0.969 0.013 0.670 0.140 0.713 0.179

u80 0.992 0.003 0.889 0.039 0.842 0.099
U100 0.998 0.001 0.956 0.022 0.917 0.054
u6o/A40 0986 0010 0.971 0.010 0.829 0.041
u80/A20 0.994 0.003 0.943 0.023 0.752 0.088

(b) Cross-validation data

Table 6.3: Regression and classification metrics for different sampling
strategies with the modified Branin function in Equation 5.20,
with: (a) new test and (b) cross-validation data.

The subscript o; indicates that the metric is computed for ¢ €
[~0.1,0.1].
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As I aim to apply Bayesian feasibility analysis on a problem with
multiple constraints —i. e., pedestrian leg impact’s injury criteria—
I define two modified versions of the generalized Rosenbrock
function as constraints:

yil (100 (xip1 — x2)° + (1 - xi)z)
g1(x) = 124 -1

Y1 (100 (x40 — 22)° + (1 - x;)? 6.
$2(x) = — 1( +16d >—1 (6.1)

P (x) = max (g1(x), g2(x))

where x := (x1,...,%;) € [T, [~0.4,0.7] and d is the number of
dimensions, with 4 > 2. With respect to the standard definition of
the generalized Rosenbrock function in [56], I shift and normalize
g1 and g7 so as to, first, ensure that both constraints are active and,
then, create feasible regions of reasonable size over all dimensions
under investigation -namely 2, 5, 8, 12, 15.

Figure 6.11 shows the contour plot of the feasibility function
¢ for the 2D variant. Here, the combination of two constraints
generates two separate feasible valleys, which cover approximately
22% of the design space. Table 6.4 reports the approximate size of
the feasible region with respect to the one of the design space for
all investigated dimensions. In high-dimensions, the portion of
feasible region in the design space gets larger and reaches about
half the total volume.

As done for the Branin function, I validate the Rosenbrock-
based problem by answering the three questions posed at the
beginning of the section. The sampling budget used in each di-
mension is reported in Table 5.2.

QUESTION 1. Figure 6.12 shows the feasibility function and
minimum distance PDF distributions for the training samples
added during uniform and adaptive phases of the u60/a40
strategy for all investigated dimensions.

In 2D, the distributions look very similar to those obtained with
the Branin function: most of the samples added during the adap-
tive phase are located in the very close proximity of ¢ = 0; they
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Figure 6.11: Contour plot of the 2D variant of the Rosenbrock-based
feasibility function defined in Equation 6.1.

DIMENSION FEASIBLE REGION VOLUME
2 22%
5 47%
8 53%
12 54%
15 53%

Table 6.4: Approximate size of the feasible region with respect to that
of the design space for different dimensions according to the
Rosenbrock-based feasibility function defined in Equation 6.1.
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increase the density of samples inside the design space, yet remain
at a reasonable distance.

As the problem dimensionality increases, the curves of both feasi-
bility function and minimum distance flatten. Following consider-
ations apply:

FEASIBILITY FUNCTION: the larger the problem dimensionality,
the more spread the adaptive samples are around the fea-
sible region boundary. This is due to the fact that, on the
one hand, the GP prediction becomes less accurate, since
the initial training samples become sparser —as discussed
below. On the other hand, the multi-modal NMMSO algo-
rithm may become less effective in the optimization of the
expected improvement. Noteworthy, a strong worsening in
sharpness of the adaptive sampling distribution seems to
happen between 2D and 5D and between 8D and 12D.

MINIMUM DISTANCE: the larger the problem dimensionality,
the larger the minimum distances —i.e., the sparser the
points— and the wider the range of minimum distances -
—i.e., the less uniform the degree of sparseness inside the
design space. This is especially relevant for the uniform
sampling distribution, whose sharpness in 2D is rapidly lost
increasing the number of dimensions.® This suggests that the
performance of the improved LHS, used to generate the uni-
form sampling, becomes less effective in high-dimensions
—i.e., the samples become less uniformly distributed. The
minimum distance of the adaptive samples becomes also
more spread, yet moves towards larger distances, compa-
rable to those obtained from the uniform sampling. This
indicates that the samples added during the adaptive phase
always maintain an exploratory characteristic.

QUESTION 2. Figure 6.13a plots mean and standard deviation of
RMSEj; for all investigated sampling strategies and dimensions
with 50,000 new test samples.

8 NB: the most uniform sampling distribution would have a single spike at the
maximum possible minimum distance.
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Figure 6.12: Probability Density Function (PDF) of the feasibility function
1 and of the minimum distance for each training sample
added during uniform and adaptive phases of the u6o/A40
strategy, for different dimensions, with the Rosenbrock-based
problem in Equation 6.1.

Both x- and y-axis are shared column-wise.



6.2 DESIGN FLEXIBILITY OPTIMIZATION

In 2D, the relative performance of the different sampling strategies
is similar to that in the Branin case. From an absolute perspective,
though, mean and standard deviation values are larger here —circa
double. This suggests that the Rosenbrock-based problem -with
the combination of two constraints— is more challenging than the
Branin function. u60o/A40 is the best performing strategy and re-
duces the mean error of: about 80% with respect to u6o —standard
deviation -65%— 55% with respect to U100 —standard deviation
-50%— and 25% with respect to U80/A20 —standard deviation
-20%. The standard deviation values with adaptive strategies are
significantly higher than with the Branin function. This indicates
that, for the Rosenbrock-based problem, the adaptive phase is not
enough to compensate for random effects intrinsic to the initial
sampling.

The difference in mean RMSE( error between u60 and u8o
remains approximately constant over the investigated dimensions:
increasing the initial sampling by 20% brings about 15 to 20%
improvement. Such a large improvement suggests that the sur-
rogate model accuracy obtained with the U6o strategy is often
inadequate to proceed with the adaptive phase: if in low dimen-
sions the Bayesian approach compensates for the inaccuracy of
the initial sampling, in high dimensions this is no more the case.
The difference in mean error between u8o and U100 is very large
in 2D —i.e., 40%— then settles around 7 to 9% for dimensions
5 to 15. This indicates that, even in large dimensions, the GP
accuracy can be significantly enhanced by decreasing the degree
of sparseness of the samples.

In 5D, the sampling strategies u60/a40 and U80/A20 perform
equally, both in terms of mean and standard deviation. The im-
provement with respect to U100 is 20% in mean value and 33%
in standard deviation.

From 8D upwards, u80/A20 performs better than u6o/a4o,
suggesting that a better starting point -namely, a larger initial
sampling— prevails over an extended adaptive phase. In 8-, 12-
and 15-D, u80/A20 reduces the mean error with respect to
u100 of, respectively, 6%, 3%, 1%. The standard deviation is,
generally, more significantly improved. In 15D, the adaptive strat-
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egy U60/ A40 performs slightly worse than the uniform strategy
U100.

Summing up, as dimension increases, two effects are notable:
first, the RMSE 1 error increases; second, the beneficial effect of
adaptive strategies decreases. The two effects are, actually, related:
the larger the RMSE 1 error, the less accurate the surrogate model,
the larger the uncertainty of the surrogate model prediction, the
more Elf.;s tends to explore rather than exploit, the less effective
Elfegs is, the more spread the points are around the feasibility
threshold ¢ = 0. The inaccuracy of the surrogate model comes
at a large extent from the increasing degree of sparseness of the
samples in high dimensions, displayed by the minimum distance
distribution in Figure 6.12. In other words, it comes from the
insufficient sampling budget. Furthermore, the performance of
the multi-modal optimizer -namely, the NMMSO algorithm— may
worsen in high-dimensions.

Figure 6.13b shows the cross-validated data: as discussed for
the Branin function, also here we can note that cross-validation
underestimates the accuracy. Yet, the effect reduces as the problem
dimensionality increases. This may be related to the increase in
sample size. Analogously to the Branin case, adaptive strategies
are more underestimated than uniform ones: from dimension
5 upwards, the U100 strategy achieves the best cross-validated
score.

Table 6.5 reports relative regression and classification metrics for
all investigated dimensions and sampling strategies with new
test data. Globally, the R? score does not undergo substantial
drops: even in 15D, u60 scores 0.955 and U100 0.974 with very
low standard deviation.® Locally, though, the accuracy decreases
more significantly: R%J passes from 0.996 of u6o/Aa40 in 2D
to 0.643 of u8o/A20 in 15D.'° Therefore, if in 2D the global
accuracy can be achieved —with adaptive strategies— also locally,
in high dimensions that is no more the case. Furthermore, in high
dimensions, even the standard deviation is little improved.

The cross-validated R? performs similarly. Therefore, the condition R? > 0.8 in
Figure 5.8 is satisfied for any uniform strategy in any dimension.

The R3; of the worst-performing strategy, U60, passes from 0.903 in 2D to 0.373
in 15D.



6.2 DESIGN FLEXIBILITY OPTIMIZATION

s U6o
I = Uso
| == U00
2 -— mmm U6o/A40
-— mmm USo/A20
-

I
s

s
- =
—
I
I

y
3
=
I
e

-
1
1
I
-

.
I
1

0.00 0.01 0.02 0.03 0.04 0.05
RMSEg,

(a) New test data

169



170 VALIDATION

- I —
s I
s =
-
|- U6o
15 I- U8o
I- U100
I- U6o/A40
mmm UBo/A20
0.00 0.01 0.02 0.03 0.04 0.05

RMSEq
(b) Cross-validation data

Figure 6.12: Bar plot of mean and standard deviation of RMSE for ¢ €
[—0.1,0.1], for different dimensions and sampling strategies,
with the Rosenbrock-based problem in Equation 6.1, with:
(a) new test and (b) cross-validation data.
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The classification metric MCCy; steadily decreases as dimension
increases; less dramatically, though, than R%.l’ The difference
between best- and worst-performing sampling strategy remains
approximately constant over the dimensions, about 8%. Up to 8D,
the feasibility analysis capabilities of the surrogate model look
improved with an adaptive strategy. From 12D upwards, those
capabilities do not seem to differ significantly between u8o0/a20
and U100 strategies, certainly less than the regression capabilities.

Noteworthy, with any metric used, the accuracy of the surrogate
model for i € [—0.1,0.1] decreases rapidly across low-dimensions
—say from 2D to 8D- yet only slightly across high-dimensions —
from 8D to 15D. Furthermore, the difference in accuracy among
sampling strategies that make use of the whole sampling budget is
large in low-dimensions and little in high-dimensions. Therefore,
it seems that the surrogate model accuracy with the Rosenbrock-
based problem converges as the number of dimensions increases
and that to improve this accuracy becomes more difficult without
an increase in sampling budget.

QUESTION 3. Only the strategy u6o does not satisfy, on aver-
age, the validation condition RMSE(; < 0.05 with cross-validation
data from 8D upwards. All strategies that make use of the whole
sampling budget do fulfill the validation condition. However,
the margin with respect to the threshold becomes smaller as the
number of dimensions increases. A stricter condition, such as
RMSEj; < 0.03, may require a much larger sampling budget for
any sampling strategy. Based on the results, I choose to adopt the
U60/ A40 sampling strategy up to 7D and u8o0/A20 from 8D
upwards.

To conclude, the Rosenbrock-based test problem confirms that
Bayesian approaches are great in low-dimensions. Here, they sig-
nificantly boost the accuracy of the surrogate model in feasibility
analysis. It is questionable whether Bayesian approaches, with the
current sampling budget, should be applied in high-dimensional
spaces: they are very computationally demanding and seem to
bring little benefit. This discussion will be examined more in
depth in Chapter 8.
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R? R3, MCCp;
Mean Std Mean Std Mean Std

DIM STRATEGY

U60 0.997 0.001 0.903 0.047 0.905 0.024

Uu80 0.999 0.001 0.927 0.081 0.942 0.016

2 U100 0.999 0.001 0.955 0.060 0.955 0.018
U60/A40 0.999 0.001 0.996 0.003 0.984 0.006
u8o/A20 1 0 0.992 0.006 0.979 0.004

U6o 0.984 o0.001 0.638 0.038 0.763 0.009

u80 0.990 0.001 0.766 0.020 0.814 0.008

5 U100 0.992 0.001 0.792 0.028 0.828 0.009
Uu6o/A40 0.990 0.001 0.872 0.012 0.848 0.007
u80/A20 0.993 0.001 0.872 0.012 0.849 0.006

U60 0.971 0.001 0.435 0.034 0.684 0.009

u80 0.979 0.001 0.614 0.012 0.735 0.007

8 U100 0.983 0.001 0.673 0.018 0.758 0.008
U60/A40 0.979 0.001 0.696 0.009 0.752 0.006
u80/A20 0.983 o0.001 0.718 0.009 0.765 0.006

U60 0.961 0.002 0.389 0.025 0.656 0.008

u80 0.972 0.001 0.567 0.015 0.709 0.008

12 U100 0.977 0.001 0.624 0.011 0.734 0.006
U60/A40 0.972 0.001 0.632 0.012 0.724 0.008
U80/A20 0.975 0.001 0.647 0.013 0.730 0.007

U60 0.955 0.001 0.373 0.025 0.637 0.006

U80 0.969 0.001 0.562 0.014 0.703 0.004

15 U100 0.974 0.001 0.632 0.014 0.727 0.011
U60/A40 0.969 0.001 0.621 0.013 0.714 0.007

u80/A20 0.972 0.001 0.643 0.011 0.727 0.005

Table 6.5: Regression and classification metrics with new test data, for dif-
ferent dimensions and sampling strategies, for the Rosenbrock-
based problem in Equation 6.1.
The subscript (; indicates that the metric is computed for ¢ €
[—0.1,0.1].
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Influence of Multiple Surrogate Models

Being the Rosenbrock-based feasibility function composed of two
constraints, I can evaluate the effect of training one surrogate
model for each constraint, instead of only a single one directly
for the feasibility function. Figure 6.13 compares the RMSEg
with a single surrogate and with multiple surrogates for the
U60/ A40 strategy, for different dimensions, with new test data.
The difference is extremely large. Training multiple surrogate
models boosts the accuracy, especially in low-dimensions: the
mean error sinks of about 9o% in 2D and of 60% in 15D. Also the
standard deviation is, regularly, at least 70% less.

Hence, points of non-differentiability do undermine the accu-
racy of GP models and each constraint should be individually
trained, as long as the computational budget allows it.

6.2.2  Stochastic Optimization of Flexibility Boxes

After training of the GP regression model for feasibility analysis,
the proposed workflow for design flexibility optimization con-
tinues with the stochastic optimization of flexibility boxes. The
design space is, first, reduced to the minimum axis-aligned box
that bounds the feasible region; then, I sample this box and run
an algorithm to find the p maximal feasible boxes with highest flexi-
bility level, whose relative overlap is lower than or equal to qax. The
detailed procedure is described in Section 5.2.6 and summarized
in Figure 5.16.

The flexibility boxes will not be perfectly feasible. 1 accept their
feasibility level if the measured percentage of feasible samples
among 200 ones randomly drawn from a uniform distribution is
larger than 9o%. With this percentage, it is possible to estimate a
probability of feasibility inside the box larger than 85% at 97.5%
confidence level.'"

Besides the evaluation of the validation condition, in the follow-
ing investigations I will focus on the effect of two factors on the
flexibility boxes:

11 See Section 5.2.6 for details.
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Figure 6.13: Bar plot of mean and standard deviation of RMSE for ¢ €
[—0.1,0.1] with a single surrogate model, approximating the
feasibility function, or multiple ones, approximating each
constraint of the Rosenbrock-based problem in Equation 6.1,
with the U60/ A40 strategy, for different dimensions, with
new test data.
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e the curse of dimensionality —that is, in this case, the effect of
samples’ sparseness in high-dimensions,

¢ the accuracy of the input surrogate model —trained and
validated in the previous sub-section.

Feasible Hyper-Sphere

The first test problem is a feasible hyper-sphere, investigated in 2-,
5-, 8-, 12 and 15-dimensions.’ The peculiarities of this shape are
the non-linearity, the multi-dimensional generalization and the
possibility to compute analytically its largest inscribable hyper-
cube as measure of comparison.

No underlying feasibility function is defined: the samples are
classified as feasible or infeasible depending on the Euclidean
distance from the sphere center and its radius. Therefore, Bayesian
feasibility analysis does not apply to this test problem: samples’
feasibility is not predicted via a surrogate model, rather based
on true evidence. Hence, the results are not affected by the input
surrogate model accuracy, instead —at a first approximation- by
the amount of samples and Algorithm 5.2 only."3

I define the design space as X = []7_, [0,1] and set the hyper-
sphere center at xc = (0.5,...,0.5). The hyper-sphere radius R
remains to be set. The largest hyper-cube inscribable in a hyper-
sphere is the one whose diagonal D equals the diameter of the
hyper-sphere, D = 2R. Being the diagonal of a hyper-cube D =
\/H I —where d is the number of dimensions and [ the length of a
hyper-cube edge- the radius of the hyper-sphere can be expressed
as:

Vd

R= -l (6.2)

A feasible hyper-cube that covers a quarter of the design space can be successfully
solved with more than 99% accuracy in any dimension in the range 2 to 15. This
is simply obtained by computing the minimum axis-aligned bounding box. Due
to the not-so-interesting results, I do not include the hyper-cube as test problem in
this work.

The position of the samples, chosen according to an LHS scheme, also plays a role
and causes the variance of results among the 10 repetitions.
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Figure 6.14: Largest flexibility box for the 2D variant of the hyper-sphere
test problem in Equation 6.4. The largest square inscribable
in the feasible circle is highlighted for sake of comparison.

Iset I = 0.5, i.e., half the length of a design space edge. Hence:

R= \/730.5. (6.3)

The feasibility condition is, therefore:

Vd
Ix = xe[| < —-05 (6.4)

where ||-|| indicates the Euclidean norm and x := (x1,...,x;) € X.

In this test problem, I look for the largest flexibility box only.
Figure 6.14 shows design space, feasible circle, largest inscribable
square and an exemplary output flexibility box in 2D. The flex-
ibility box is very close to the maximum inscribable square, yet
slightly larger. In fact, all four vertices lie in the infeasible region.
However, this is acceptable as —with a 99.2% percentage of feasible
samples— the probability of feasibility inside the box is still larger
than 96.8% with 97.5% confidence level.
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Figure 6.15: Bar plot of percentage of infeasible samples in the largest
flexibility box out of 200 ones randomly drawn from a uni-
form distribution, for different dimensions, for the hyper-
sphere test problem in Equation 6.4. Noteworthy, the almost-
exponential behavior.

Figure 6.15 plots the percentage of infeasible samples in the
largest flexibility box for all investigated dimensions. The val-
idation condition is always satisfied. Up to 8D, the infeasible
samples cover, on average, less than 1% of the total, which means
a probability of feasibility larger than 96.4%. In 12- and 15-D, the
infeasibility exponentially increases to, respectively, 2.8 and 5%.
The growing sparseness of the samples in high-dimensions leads
to larger voids where feasibility is not proved and, thus, lowers
the method accuracy. Nevertheless, the probability of feasibility,
even in 15D, is larger than 91% and, therefore, satisfactory.

The feasible hyper-sphere problem, besides the assessment of
the feasibility of flexibility boxes in multi-dimensions, offers the
possibility to compare their volume with that of the largest in-
scribable ~hence, 100% feasible— hyper-cube, denoted as reference
box in the following. The volume of this box can be computed as:

v =1%=05"% (6.5)
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REFERENCE FLEXIB. BOX VOL RATIO FLEX/REF

o poX VoL Mean Std Mean Std
2 0.25 0.28 5.9E-3 1.1 0.024
5 0.031 0.081 1.8E-3 2.6 0.059
8 3.9E-3 0.029 9.4E-4 7.5 0.24
12 2.4E-4 0.011 3.6E-4 45 1.46
15 3.1E-5 6.2E-3 2.2E-4 204 7.27

Table 6.6: Volume of reference and flexibility boxes and relative ratio for
different dimensions, for the hyper-sphere problem in Equa-
tion 6.4.

Table 6.6 reports the volume of reference and flexibility boxes and
their ratio for all investigated dimensions.’# In 2D, the optimum
flexibility box is about 10% larger than the reference one. In 5D
and 8D, it is, respectively, 2.6 and 7.5 times as large as the refer-
ence one. The difference in volume is remarkable. The difference
in feasibility, though, is not as significant: almost negligible —as
depicted in Figure 6.15. As for the 2D case shown in Figure 6.14,
also in higher dimensions all the vertices are infeasible. The num-
ber of vertices of a box is 27: 4 in 2D, 256 in 8D, 32768 in 15D. By
compromising the vertices, then, a great volume can be included
in the flexibility box, which is excluded by the largest inscribable
cube. Besides, due to the shape of the hyper-sphere, most of this
volume belongs to the feasible region, as only the area around the
vertices is infeasible. Therefore, as both more feasible and more
infeasible regions are added, the probability of feasibility remains
approximately constant, yet the volume profits from both. The
higher the number of dimensions, the larger this effect. It comes at
no surprise, now, that in 12D the flexibility box is 45 times larger
than the reference one and in 15D 204 times. Here, though, the
percentage of infeasible samples increases, as a result of the larger
samples’ sparseness.

Noteworthy, the effect of dimensionality on the reference box: whereas in 2D, a
cube with 0.5 edge length covers 25% of the unitary cube, in 15D only 0.003%.
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It is worth to highlight that compromising the vertices is not
a deliberate choice, rather a side-effect of both the sample-based
approach used to compute boxes and the choice of ignoring the
feasibility of the vertices.

To sum up, on the basis of the results of the feasible hyper-
sphere test problem we can state that as the dimensionality in-
creases, the volume of the flexibility box becomes significantly
larger —in other words, it offers more flexibility— than that of
the largest 100% feasible box. Remarkably, up to 8D, this hap-
pens without notably diminishing the probability of feasibility. In
higher dimensional spaces, instead, the curse of dimensionality
increases not only the volume, but also the probability of infeasi-
bility. Nevertheless, the validation condition is satisfied for any
investigated dimension.

Rosenbrock

Both the effect of dimensionality and that of the input surrogate
model accuracy can be assessed with the Rosenbrock-based test
problem, introduced in Section 6.2.1 and defined in Equation 6.1.

I run the flexibility boxes optimization workflow in Figure 5.16
both with and without inputs from the Bayesian feasibility anal-
ysis workflow, validated in Section 6.2.1. The first case is how I
intend to use the proposed method, while the second one is how
I validated the feasible hyper-sphere test problem —that is, with
samples based on true observations, rather than on predictions.
In the following, the two cases will be denoted as, respectively,
prediction-based and observation-based.

First, I look for the three largest flexibility boxes, whose relative
overlap does not exceed 50%. Figure 6.16 shows design space,
feasible region and resulting boxes in 2D with prediction-based
samples. Similarly to the feasible hyper-sphere test problem, most
of the vertices lie in the infeasible region. Due to the shape of the
feasible region, not all vertices actually lie in the infeasible one.
On average, the percentage of feasibility measured in the boxes
lies around 96%, which ensures a probability of feasibility larger
than 92% with 97.5% confidence level. Therefore, according to the
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Figure 6.16: Three largest flexibility boxes, whose relative overlap is lower
than or equal to 0.5, with prediction-based samples, for the
2D variant of the Rosenbrock-based problem in Equation 6.1.

validation condition, the level of feasibility inside the boxes in 2D
is acceptable.

Looking for three boxes —rather than one- offers, first, alter-
native solutions to satisfy the constraints and, then, valuable
information on the feasible region. Figure 6.17 shows the parallel
coordinates plot with lower and upper limits of the flexibility
boxes in Figure 6.16. The two largest boxes are similar in volume
and in the range of flexibility of x; —say [-0.3, 0.3]- but very differ-
ent in xp values: box 1 lies around 0.4, while box 2 around -0.4. If
this was a real design problem, we would have to decide how to
satisfy the requirements between two opposite designs. Moreover,
as box 3 is significantly smaller, we would realize that we would
lose a lot of design flexibility if we were not able to stay in box 1
or box 2. Then, as no flexibility box has x; > 0.4, we would also
learn that, although other feasible solutions may lie in this range,
their flexibility would be very low. For a 2D problem, the previous
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Figure 6.17: Parallel coordinates plot of the three largest flexibility
boxes, whose relative overlap is lower than or equal to o.5,
with prediction-based samples, for the 2D variant of the
Rosenbrock-based problem in Equation 6.1.

considerations can be easily made by looking at the plot of the
design space, such as Figure 6.16. However, in higher dimensions,
a parallel coordinates plot of the flexibility boxes is one of the best
ways to understand how the feasible region extends.

Figure 6.18 shows mean and standard deviation of the average
percentage of infeasible samples in the resulting boxes, with both
prediction- and observation-based samples, for all investigated
dimensions. First of all, contrary to what we might expect, the
boxes computed with samples predicted by the GP regression
model contain, on average, less infeasible samples than those
computed with true observations; this consistently happens in
any dimension. The difference is only slight —1.5% at most- yet
an explanation may come from the average volume of the boxes.
Figure 6.19 shows the average volume of the boxes considered in
Figure 6.18.'> The boxes computed with observation-based sam-

It is worth to compare the fraction of feasible region inside the design space,
reported in Table 6.4, with the average volume of the largest three flexibility boxes.

181



182

VALIDATION

I observation-based

N

B prediction-based ]

S
S —
 ——
 —
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Percentage of Infeasible Samples [%]

Figure 6.18: Bar plot of average of percentage of infeasible samples in the
three optimized flexibility boxes, out of 200 ones randomly
drawn from a uniform distribution, for different dimensions,
for the Rosenbrock-based problem in Equation 6.1.

ples are consistently larger than the prediction-based counterparts.
This suggests that the surrogate model, trained in the previous
subsection, may slightly underestimate the size of the feasible
region. Accordingly, the boxes computed with predictions would
be, first of all, smaller than the observation-based ones and, then,
more likely to be inside the feasible region.

The validation condition for the Rosenbrock-based test problem
is only satisfied in 2-, 5 and 8-dimensions. In 12- and 15-D, the
measured percentage of feasible samples lies below 90% and

In 2D, the feasible region covers about 22% of the design space, while one box 4%.
In 15D, the feasible region covers about 53% of the design space and the flexibility
box 1.5%. This means that, in 2D, approximately 82% of the feasible region is
excluded by the flexibility box and, in 15D, 97%. In other words, the flexibility box
neglects 97% of the feasible solutions. This is a direct consequence of the choice to
look for axis-aligned boxes.
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Figure 6.19: Bar plot of average of volume of the three optimized flexibil-
ity boxes, for different dimensions, for the Rosenbrock-based
problem in Equation 6.1.

approaches 85%.1® This means that, in these dimensions, the
probability of feasibility inside the flexibility box is, on average,
larger than 80% with 97.5% confidence level.

It is worth looking at the feasibility function value of the infea-
sible samples in the flexibility boxes in 15D. The PDF distribution
of these samples’ 1 is shown in Figure 6.20, together with the dis-
tribution of infeasible samples inside the design space as measure
of comparison. Although the probability of infeasibility can be as
high as 20% in the flexibility boxes, the infeasible samples mostly
lie close to the feasible region boundary —say, up to o.1. Hence, fea-
sibility is not too far away: if this was a real design problem, these
samples would have potential to be turned in feasible designs. Yet,
due to the fast growing shape of the Rosenbrock function, there
are as well samples inside the flexibility boxes with i > 0.1.

According to the workflow in Figure 5.16, I should increase at this point the
amount of samples used to compute the boxes, in order to enhance their feasibility
level. I do not report, though, this investigation in the present work.
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Figure 6.20: Probability Density Function (PDF) of the feasibility function
1 of the infeasible samples inside the flexibility boxes and in-
side the design space, in 15-dimensions, for the Rosenbrock-
based problem in Equation 6.1.

Finally, I investigate the benefit of the DDS tree-search approach
in Algorithm 5.2 to find the maximal feasible boxes. Extending
the search further than the left-most path, as in Algorithm 5.1,
increases the chances, not only to find the largest box, but all
maximal —i. e., inextensible— boxes. This is especially important
both when looking for different boxes and when not using volume
as flexibility measure.

The increase in boxes’ maximality thanks to the tree-search can
be evaluated in many ways. I measure the increase in volume,
from the O-th iteration —i. e., the left-most path— to the 5-th itera-
tion, of the 50 largest feasible boxes whose overlap is lower than
or equal to 90%. I stop the search at the 5-th iteration to limit
the computational effort. Since the longer the tree-search goes,
the more boxes it returns, I have to filter them so as to find a
reasonable set of boxes for comparison. Therefore, each box from
the 5-th iteration may have only one box among those from the
0-th iteration with an overlap larger than 9go%. This ensures that
each box from the upper iteration finds at most one equivalent in
the lower iteration.
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Figure 6.21: Increase, from O-th iteration to 5-th iteration of Algorithm 5.2,
in sum of volumes of largest 50 flexibility boxes whose maxi-
mum overlap does not exceed 0.9, for 2-, 5- and 8-dimensions,
for the Rosenbrock-based problem in Equation 6.1.

I run the investigation for 2-, 5- and 8-dimensions. In 12- and
15-dimensions, the search until the 5-th iteration is too compu-
tationally intensive.’” I do not stop the search earlier for these
dimensions, as it would compromise the comparison of results
among dimensions. Figure 6.21 shows the increase in the sum of
the volumes of the resulting boxes. In 2D, the increase is negligi-
ble: 1.8%. Being the branching factor only 2, the heuristic regularly
predicts the correct branch to expand. Nevertheless, the compu-
tational effort involved in running the tree-search up to the 5-th
iteration is very low. In other words, little effort, little benefit.
In 5D, both effort and benefit grow: the flexibility boxes are, on
average, about 37% larger after the 5-th iteration, yet the com-
putational time —on 32 Central Processing Units (CPUs)- passes
approximately from 10 seconds to 10 minutes. In 8D, the trend
amplifies: the volume gain is about 80% and the run time changes
from 3 minutes to 3 hours.

To sum up, the Rosenbrock-based test problem suggests that
the inaccuracy of the trained surrogate model has only a minor im-

The higher the dimension, the more samples are used. Therefore, both the size of
each tree and the number of trees significantly increase.
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pact on the probability of feasibility inside the flexibility boxes.™®
The major impact is given by the sparseness of samples in high-
dimensions. The validation condition is not satisfied for 12- and
15-dimensions with the standard amount of feasible samples in-
side the bounding box. This amount should be increased to reach
the satisfactory level. Nevertheless, the infeasible samples lie close
to the feasibility threshold. Few iterations of tree-search may
significantly improve the chances of finding the maximal boxes,
though the involved computational cost is not negligible.

18 N.B.: this does not mean that the input surrogate model accuracy is not relevant. It
means that the accuracy of the trained surrogate model is high enough to not play a
major role in the determination of the probability of feasibility inside the flexibility
box. It is, indeed, an excellent confirmation of the validity of the proposed method
for Bayesian feasibility analysis.
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DESIGN GUIDELINES FOR THE ADVANCED
PEDESTRIAN LEGFORM IMPACTOR

God help us, we’re in the hands of engineers.

— Tan Malcolm?

In the very early phase of the development of a new vehicle,
after the definition of its requirements at system-level, concept
engineers start to investigate what is necessary, at sub-system level,
to satisfy the requirements. Normally, a useful orientation comes
from the analysis of a similar vehicle at the end of the development
process. Numerical simulation is essential in this phase. Often,
a preliminary, rough Computer-Aided Design (CAD) model is
constructed, through which first, rudimentary indications are
collected.

For pedestrian leg impact’s requirements, the method proposed
in this thesis offers a tool that can be used right before the avail-
ability of —or even together with— early CAD models. This tool
provides the means to obtain geometrical and structural guide-
lines on the most relevant load regions. This information affects,
in turn, the next construction cycle of Class A surface and CAD
model for the new vehicle.

In the present chapter, I describe an exemplary investigation
of design guidelines for the pedestrian leg impact in the initial
phase of the development process of a medium-sized sedan. The
investigation consists of three steps: first the design parameters
and their respective ranges are defined, then a surrogate model
is trained for feasibility analysis and, finally, flexibility boxes are
identified in the design space where the requirements are, for the
most part, satisfied. The investigation is run with, both, aPLI and
FlexPLI to highlight the differences in guidelines for front-end
design between the two.

1 Fictional character. From the movie: Jurassic Park. 1993.
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7.1 FINITE ELEMENT LOW-FIDELITY MODEL

First, I choose model, loading condition and design space for the
investigation. I use, as a reference, the model shown in Figure 4.3b,
and validated in Section 6.1, with the advanced Pedestrian Leg-
form Impactor (aPLI). To increase the generality of the design
guidelines, I employ the cubic fit of the original loading force-
deformation characteristics of the load levels.

Due to the initial phase of the development process, the in-
vestigation should be comprehensive. Therefore, I consider all
four load regions depicted in Figure 4.10 and I vary both their
structural behavior and position, as described in Section 4.2. I
define a scaling factor for the entire loading force-deformation
curve, a change in dissipation factor for the unloading, a change in
deformation space in front of the bumper beam and translations
in the xz-plane. Specifically, I define for the load region:

Low: scaling factor s1, , dissipation factor difference ADj,y, z-
position difference Azj,;

MID: scaling factor sy ., dissipation factor difference AD,;4, x-

position difference Ax,,;;, deformation space difference Aupg, .;

MID-UP: scaling factor sy . dup? dissipation factor difference AD 4.,
x- and z-position differences AXmig-up and DZimigup;

UP: scaling factor sq, pr dissipation factor difference ADy, x- and
z-position differences Ax,p and Azyy.

In total, I use 15 parameters. All parameters are expressed rela-
tively to the reference —i. e., original- values of the model. Their
range of variation is rather broad and general, as befits initial
investigations: I set +/-50% for the scaling factor, +/-20% for the
dissipation factor difference, +/-20 mm for the rigid translations
—similarly to what is done in [32]- and +/-10 mm for the defor-
mation space difference.> Table 7.1 reports the list of 15 design

HFM variations, such as those performed in the validation Section 6.1, do not
correspond, one-to-one, to LFM variations. Therefore, the defined LFM parameter
ranges cannot be exactly, but only indicatively validated.
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DESIGN SPACE
PARAMETER UNIT

Lower Lim Upper Lim

$110 0.5 1.5 —
ADjpy -0.2 0.2 -
Az -20 20 mm
1, 0.5 1.5 —
AD,,i4 -0.2 0.2 —
AXyiq -20 20 mm
Aups, .. -10 10 mm
S igup 0.5 1.5 —
ADyig-up -0.2 0.2 -
AXiidup -20 20 mm
AZmid-up -20 20 mm
14y 0.5 1.5 —
ADW -0.2 0.2 —
Axyp -20 20 mm
Azup -20 20 mm

Table 7.1: Name, range of variation inside the design space and unit of
measure of the 15 design parameters used for the pedestrian
leg impact’s design guidelines investigation.

parameters with their respective range of variation. For investiga-
tions that take place later in the development process, both ranges
and choice of parameters can be fine-tuned for specific purposes.

The constraints that delimit the feasible region are the 8 injury
criteria measured with aPLI. I normalize them according to their
requirement, as in Equation 5.1. The value of the feasibility func-
tion equals, then, for each sample, that of the largest normalized
constraint, as in Equation 5.2. For the GP regression model, I
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arrange the constraints in three groups and use each group as
single output response of the surrogate model:3

TIBIA MAX: the maximum bending moment among the four sec-
tions on the tibia shaft,

McCL: the maximum Medial Collateral Ligament elongation,

FEMUR MAX: the maximum bending moment among the three
sections on the femur shaft.4

7.1.1  Understanding the advanced Pedestrian Legform Impactor

In high-dimensions, the relevance of each parameter to an out-
put response can be assessed by means of sensitivity analysis
[115]. The information that can be acquired with scatter plots is,
generally, limited. In fact, these show a projection of the multi-
dimensional design space along one single dimension?. It follows
that the dependency of the output response on the combination of
two or more parameters cannot be appreciated. In other words,
scatter plots only show the global, first-order effect of each param-
eter, independent on the interaction with the other ones. In some
cases, however, this information may be still useful.

TIBIA MAX Figure 7.1 shows the scatter plot of Tibia Max for
each design parameter with uniform sampling. Looking at the cu-
bic polynomial fit, 6 parameters, out of 15, show a non-negligible
global influence on Tibia Max in the investigated design space:

$11pn the larger the scaling factor of the lower load region, the
higher the maximum tibial bending moment; the trend soars
for values greater than 1. Hence, the more the lower load

region presses with force, the more the tibia bends.

lo

ADjyy: the larger the dissipation factor of the lower load region,
the slightly lower the maximum tibial bending moment. A

See Section 5.1.5 for details.

4 Here, maXx refers to the fact that the maximum is computed among different injury
curves. It is implied that, for each curve, the maximum is considered.

5 The second axis of the plot reports the output response.

S8



7.1 FINITE ELEMENT LOW-FIDELITY MODEL

weaker rebound of the lower load region helps lowering
tibia’s bending.

Azj,y: the higher the position of the lower load region, the higher
the maximum tibial bending moment; the trend is linear
and is the most significant one among the chosen design
parameters. The larger the portion of tibia below the lower
load region, the larger the bending of this portion due to
inertia.

s1,,,: similar trend to sy, , yet less strong, as the middle load

mid *
region acts around the knee.

Axy,iq: for negative values, the more the middle load region
moves forward, the higher the maximum tibial bending
moment. We have a slight opposite trend for positive values.
Positions around the current one seems positive for tibia.

S1,ia,- the larger the scaling factor of the mid-up load region,
the lower the maximum tibial bending moment. Supporting
the top extremity of tibia, reduces its banana-like deforma-

tion shape.

Noteworthy, the upper load region seems to not contribute signif-
icantly —in the investigated design ranges— to the global trends of
Tibia Max. The scatter plots for Tibia Max with FlexPLI are shown
in Figure B.1.

MmcL Figure 7.2 shows the scatter plot of MCL for each design
parameter with uniform sampling. Looking at the cubic polyno-
mial fit, 11 parameters, out of 15, show a non-negligible global
influence on MCL in the investigated design space:

CET the larger the scaling factor of the lower load region, the
lower the maximum MCL elongation; the trend strengthens
for values below 1 and almost zeroes for values around
o0.5. Limiting tibia’s intrusion in the lower load region helps
reducing the misalignment with femur and starting earlier

its rebound.

lo
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Tibia Max

Tibia Max Tibia Max

Tibia Max
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Figure 7.1: Scatter plot of Tibia Max and cubic polynomial fit —dashed-
— for each design parameter for the medium-sized sedan in
Figure 4.3b, with the aPLlI, inside the design space in Table 7.1.
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ADj,y: the larger the dissipation factor of the lower load region,
the higher the maximum MCL elongation. The weaker the
tibia rebound is, the slower tibia realigns with femur.

Azj,y: the higher the position of the lower load region, the higher
the maximum MCL elongation. The larger the distance of
the lower load region from the knee, the larger the lever
arm, the less tibia intrudes.

$1,,4" the larger the scaling factor of the middle load region, the
higher the maximum MCL elongation. Opposite trend as for
$1,,,- @8 the position of the middle load region hits around
the knee. The more the knee intrudes, the more aligned the
leg stays —in other words, the less the leg forms a banana-like

shape.

AD i the larger the dissipation factor of the middle load region,
the slightly lower the maximum MCL elongation. The less
the rebound on knee is, the less the leg forms a banana-like
shape.

Axy,iq: the more the middle load region moves backward, the
lower the maximum MCL elongation. Same explanation as
for sq

mid *

51 : the larger the scaling factor of the mid-up load region,

" the higher the maximum MCL elongation. The trend is the
most significant one among the design parameters. The mid-
up load region hits the top part of the knee and acts as a
center of rotation for the UBM. The more this part intrudes,
the less the leg forms a banana-like shape —as for the middle

load region— and the later the UBM starts the rotation.

ADyig-up: the larger the dissipation factor of the mid-up load
region, the lower the maximum MCL elongation. Same ex-
planation as for AD,,;;.

AXpid-up: the more the mid-up load region moves backward,
the significantly lower the maximum MCL elongation. The
more the top part of the knee freely intrudes, the less the
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leg forms a banana-like shape and the later the UBM starts
the rotation.

AZyig-up: the higher the position of the mid-up load region, the
slightly higher the maximum MCL elongation. The more
the mid-up load region moves towards the bottom part of
the knee, the less it acts as center of rotation for the UBM.

Azyp: the higher the position of the upper load region, the
slightly lower the maximum MCL elongation. As the whole
bonnet is shifted upwards, the higher it is, the less the UBM
rotates before hitting it. However, the shift is little.

Noteworthy, as for Tibia Max, the upper load region contributes
only slightly —in the investigated design ranges— to the global
trends of MCL. The scatter plots for the maximum normalized
ligament elongation with FlexPLI are shown in Figure B.2.

FEMUR MAX Figure 7.3 shows the scatter plot of Femur Max
for each design parameter with uniform sampling. Looking at
the cubic polynomial fit, 9 parameters, out of 15, show a non-
negligible global influence on Femur Max in the investigated
design space:®

$1,,,: the larger the scaling factor of the lower load region, the
higher the maximum femoral bending moment. The more
the tibia bends —see effect on Tibia Max— the more the knee
rotates around the y-axis, the larger the negative curvature

of the femur around the y-axis.

lo

Az, the higher the position of the lower load region, the higher
the maximum femoral bending moment. Same explanation
as for sy, .

s1 ... the larger the scaling factor of the middle load region, the

mid *

higher the maximum femoral bending moment. The more

N.B.: Initially, as the UBM is in free-flight, while tibia is stopped by the vehicle
lower and middle load regions, the femur experiences a negative curvature around
the y-axis. Then, as the UBM rotation around the y-axis progresses, the femoral
curvature changes sign.
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Figure 7.2: Scatter plot of MCL and cubic polynomial fit ~dashed- for
each design parameter for the medium-sized sedan in Fig-
ure 4.3b, with the aPLI, inside the design space in Table 7.1.
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the knee intrudes, the less the femur bends in the negative
direction around the y-axis.

Axyiq: the more the middle load region moves backward, the
lower the maximum femoral bending moment. The trend is
the most significant one among the design parameters. Same
explanation as for s;

mid
Aupsg, ... the more deformation space the middle load region has,

the lower the maximum femoral bending moment. Same
explanation as for s, .7

S1pid.u,” the larger the scaling factor of the mid-up load region,
the significantly lower the maximum femoral bending mo-
ment. The less the bottom part of the femur intrudes, the
sooner the femur bends in the positive direction around the

y-axis.

AXyig-yp: the more the mid-up load region moves backward, the
significantly higher the maximum femoral bending moment.
Same explanation as for s;

mid-up*

Azyigup: the higher the position of the mid-up load region, the
lower the maximum femoral bending moment. The larger
the portion of femur below the mid-up load region, the less
the femur bends in the negative direction around the y-axis.

Axyyp: for negative values, the more the upper load region moves
forward, the lower the maximum femoral bending moment.
Same explanation as for sy, , 1+ Even moving the upper load
region backward seems to have a slight beneficial effect on
Femur Max.

Noteworthy, as for Tibia Max and MCL, the upper load region
contributes only slightly —in the investigated design ranges— to
the global trends of Femur Max.

N.B.: If the actual deformation does not make use of the whole permissible space,
this parameter is not active. Therefore, if it shows no or little tendency, it is not
possible to distinguish whether it is active and does not play a role or it is not
active. However, this distinction is not relevant for the design guidelines.
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Figure 7.3: Scatter plot of Femur Max and cubic polynomial fit —dashed-
— for each design parameter for the medium-sized sedan in
Figure 4.3b, with the aPLlI, inside the design space in Table 7.1.
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The above analysis takes into consideration each group of injury
criteria separately. However, the significance of each parameter on
feasibility depends on the actual maximum among the normalized
injury criteria. In other words, a parameter that may be very
relevant for one injury criterion, may be totally irrelevant for the
overall fulfillment of requirements, if that criterion, normalized,
is always lower than the other ones.

7.2 BAYESIAN FEASIBILITY ANALYSIS

The second step in order to compute the design guidelines is to
train a surrogate model for feasibility analysis. I use a Bayesian
model to approximate the feasibility function and, iteratively, add
samples where they are most needed. According to Table 5.2, the
budget defined for this investigation is 5625 samples; as stated
in Section 5.1.5, it is split between 80% LHS and 20% adaptive
sampling, distributed over 10 iterations.

Table 7.2 reports the R? coefficient and RMSE; error of the
feasibility function 1 and of the single trained GP models after
uniform and adaptive phases. The R? coefficient of ¢ after the
uniform phase scores 0.95, which fulfills the validation condition.
Tibia Max seems to be the least accurately approximated injury
criterion. One explanation may be that the maximum bending
moment here occurs at different sections over the design space,
making Tibia Max C° continuous.

The scores do not improve after the adaptive phase. Rather,
some slightly worsen. This is, most likely, due to the use of
cross-validation data to compute the scores. As stated in Sec-
tion 5.1.4 and demonstrated in Figure 6.10b and Figure 6.13b,
cross-validation is not reliable when combined with adaptive sam-
pling for feasibility analysis. Furthermore, for both Branin- and
Rosenbrock-based problems in Section 6.2.1, u8o/A20 was the
most underestimating strategy.

To assess more comprehensively the adaptive phase, it is useful
to look at both the feasibility function value and the location of
the added samples. Figure 7.4a shows the PDF of ¢ for the sam-
ples added uniform and adaptive phases. The latter consistently
adds observations close to the feasible region boundary, rarely
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R? RMSEy
RESPONSE
U880 U80/A20 U880 Uu80/A20
P 0.95 0.95 0.018 0.019
Tibia Max 0.95 0.94 0.019 0.020
MCL 0.99 0.99 0.010 0.014
Femur Max 0.98 0.97 0.018 0.020

Table 7.2: R? coefficient and RMSE in the range [—0.1,0.1], RMSEy;,
after uniform, u8o, and adaptive, U8o/ A20, phase of Bayesian
feasibility analysis, with cross-validation data, for the design
problem in Section 7.1.

exceeding the range [—0.05,0.05]. Hence, the samples from the
adaptive phase successfully provide information on the area of
interest.

Figure 7.4b shows the PDF of the minimum distance for the
same sets of samples. As expected, the standard deviation of the
adaptive distribution is larger than for the uniform one, almost
double. Surprisingly, however, the samples added during the
adaptive phase are located, in general, further from their closest
one compared to those added during the uniform phase. This was
not the case with the mathematical functions used in Section 6.2.1.
An explanation may be found looking at the scatter plots of the
feasibility function against the design parameters for the samples
added during the adaptive phase, shown in Figure 7.5. For most
of the design parameters, samples are added at the extremities of
their range of variation. This means that they are located either
in vertices or in outer hyper-faces of the design space, where the
LHS may fail in placing them. Due to the large minimum distance,
these locations may have been characterized by a greater-than-
average uncertainty, exploited by the Elf,;.

For few parameters, such as sy, , Az, and Axg,, instead,
a significant portion of samples is added inside their range of
variation. This suggests that these parameters, opposed to the rest,
more actively shape the feasible region boundary.
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Figure 7.4: Probability Density Function (PDF) of:
(a) the feasibility function 1,
(b) the distance from the closest sample
for uniform and adaptive phase of Bayesian feasibility analysis
applied to the design problem in Section 7.1.
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Figure 7.5: Scatter plot of the feasibility function i during the adaptive

sampling phase for each design parameter for the medium-
sized sedan in Figure 4.3b, with the aPLI, inside the design
space in Table 7.1.
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To conclude, the larger minimum distance of the samples from
the adaptive phase may provide a further explanation for the non-
improving cross-validation scores. In fact, being located at further
distances, the new samples are more critical for cross-validation
than the uniform ones. The new samples are, though, not used to
test the surrogate model after the uniform phase.

7.3 FLEXIBILITY BOXES

Finally, I compute the flexibility boxes with the procedure de-
scribed in Section 5.2.6. I look for the three maximal feasible boxes
with highest flexibility level whose relative, pairwise overlap does
not exceed 25% of their volume. This seems a small portion of vol-
ume that is allowed to overlap, yet in high-dimensions it becomes
relatively significant: in 15D, as for the current design problem,
each parameter is allowed to overlap, on average, for 91% of its
range of variation. Still, overall three quarter of their volumes is
different. I consider this sufficient to, on one hand, understand
how the feasible region extends inside the design space, and on
the other hand, obtain useful design guidelines -namely, that offer
great design flexibility.

I compute the boxes with both volume-based and minimum-
interval-based flexibility measures —introduced in Section 5.2.2—
and highlight the differences between the two approaches.

7.3.1  Volume-based

Figure 7.6 shows the parallel coordinates plot of the volume-based
flexibility boxes. In the same plot, the minimum axis-aligned box
that bounds the feasible region is also depicted. The bounding
box extends for the full range of variation of each parameter,
except for Azjy,: no design is feasible when the position of the
lower load region is too high, namely in the upper 20% of its
range of variation.® Az, is, also, the design parameter whose
range of flexibility is reduced the most in all flexibility boxes: the

This means that about 20% of the uniform samples were wasted, as they provided
no information on the feasible region. Therefore, in order to improve the surrogate
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FRACTION OF DESIGN
SPACE’S VOLUME

Minimum Bounding Box 78%

Feasible Region 19%

Volume-based Flexibility Box 1.5%
Min-Interval-based Flexibility Box 0.08%

Table 7.3: Approximate volume size relative to the design space’s one.

smaller its range, the larger the ranges of the other parameters.
Recalling the scatter plots in Section 7.1.1, Az, significantly
influences all injury criteria with a same positive trend: the smaller,
the better. We can state, then, that Az, is the most relevant
parameter affecting the design flexibility of the medium-sized
sedan in Figure 4.3b for the aPLL

Box 1, the largest feasible box in the design space, extends for
as little as 1.5% of the design space; as reported in Table 7.3, the
feasible region extends, instead, for 19% of it.9 This reduction by a
factor 10 is due to the shape —hyper-rectangular— and orientation
—axis-aligned- of the flexibility box, which enable the parameter
values to be designed independently in their given ranges.

Box 1 restricts the interval of Az, to the bottom 15% of its
total range of variation, that of sy, to its bottom 35% and that
of Ax,,;z to its top 60%. Hence, it prescribes a lower and more
compliant lower load region and limits the forward shift of the
middle load region. Other restrictions, such as those on sy, dup?
ADsigups DXmigup and Azpg.yp, are less severe. The rest of the
design parameters can take, instead, almost any value inside their
original range of variation.

model accuracy inside the feasible region, the investigation should be run again
with a reduced Az, range of variation.

N.B.: The minimum bounding box corresponds to the minimum circumscribable
axis-aligned box around the feasible region. On the contrary, the maximum feasible
box corresponds to the maximum inscribable axis-aligned box inside the feasible
region. The two volumes differ of a factor 50.
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Figure 7.6: Parallel coordinates plot of volume-based flexibility boxes,
for the medium-sized sedan in Figure 4.3b, with the aPLI,
inside the design space in Table 7.1. The normalized volume
is reported in the legend for each flexibility box.
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Box 2 allows slightly more flexibility on Azj,,, and sy, —on both,
about one third more—- yet compromises the total box volume
of one third with respect to Box 1. Strong interval restrictions
concern Axy,;; ~limited between 55 and 85% of its range-s; . dap
limited to the top 50%— AD,jg.,p ~limited to the bottom 80%-— and
AXypigup —limited to the top 75%. Hence, a higher and stiffer lower
load region can be compensated by adjusting the longitudinal
position of the middle load region and stiffness, dissipation and
longitudinal position of the mid-up load region.

Box 3 allows about as much flexibility on Azj,, and sy, ~and
covers as much volume as Box 2. Yet, it compromises differently
the other parameters. Noteworthy, s1 , is limited to the bottom
70%, Axpig to the range 25/75% of variation, Aupg . to its top
80% and Axy,;4.,,p to the range 10/80%. Hence, a higher and stiffer
lower load region can be also compensated by adjusting stiffness,
longitudinal position and intrusion of the middle load region and
the longitudinal position of the mid-up region.

In conclusion, volume-based flexibility boxes effectively indicate
which parameters are the most-significant ones and should be
carefully considered in the early phases of the development pro-
cess. Not designing these parameters inside their recommended
range may still lead to a feasible design, yet would significantly
reduce the flexibility of other parameters. On the other hand,
though, the parameter ranges prescribed by volume-based boxes
may be very imbalanced, as in the present case: the flexibility
of few parameters may be strongly restricted, while that of the
majority almost unaffected. In fact, the volume-based flexibility
measure does not allow to weight the parameters’ flexibility, so as
to reach a more uniform compromise.

7.3.2  Minimum-Interval-based

Maximizing the boxes” minimum interval, defined in Equation 5.39,
leads to more cubically-shaped boxes. This metric requests as in-
put a required minimum interval size: I choose, for each parameter,
half its total range of variation. Besides providing a considerable
degree of flexibility to each parameter, this size would also include
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the reference model. In fact, this lies in the present investigation
exactly at the middle of the range of variation.

Figure 7.7 shows the parallel coordinates plot of the minimum-
interval-based flexibility boxes. None of them satisfies the re-
quired minimum interval size: the one with highest flexibility
level reaches 96% of the required size. Similarly to the volume-
based boxes, Azj,,, is the most restricted parameter. Nevertheless,
all parameters are somehow restricted here. This suggests that,
although some parameters may not show a strong global tendency
inside the design space or may be indeed less significant than
others, they are still relevant in order to reach an adequate degree
of design flexibility for all the parameters.

The reference model is not included in any boxes. It is, in fact,
slightly infeasible.”> ™" However, as Box 1 and 2 suggest, it would
be enough to lower the lower load region of few millimeters to
obtain a feasible design. Box 3, instead, also slightly increases the
stiffness of the mid-up load region.

All boxes roughly agree on the ranges of sq, _, Azjoy, 81, DXmid,
ST ideup? AXmigups BZmig-up and Azyp: lower and more compliant
lower load region, middle load region with limited stiffness and
limited longitudinal shift, stiffer mid-up load region with limited
longitudinal and downward shift and upper load region with
limited upward shift. It is crucial, therefore, to design these pa-
rameters inside the recommended ranges in the early stages of the
development. For the remaining parameters, instead, the union of
the interval of each box covers the whole range of variation. Hence,
any value inside their total range of variation is recommended
by at least one box. For these parameters, the design can be ad-
justed even at later stages, without significantly compromising
the flexibility of the other ones.

Box 1 allows the highest flexibility level for Aupsg, ., among the
three boxes. Box 2 restricts the most Axy, yet provides the largest
range for s1,,, hinting that limiting both forward and backward
shifts of the upper load region allows it to take a larger range of
loading force-deformation characteristics. Box 3 offers the highest

It was, hence, predictable that the minimum interval could not satisfy the required
size.
The reference model was not developed to fulfill aPLI’s requirements.
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Figure 7.7: Parallel coordinates plot of minimum-interval-based flexibility
boxes, for the medium-sized sedan in Figure 4.3b, with the
aPLI, inside the design space in Table 7.1. The normalized
minimum interval is reported in the legend for each flexibility
box.
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flexibility level for AD)oy, ADyig and AD,yig.yp, yet limits sy .,
$1,i44p @0 51, the most. Each box, hence, has its peculiarity and
enables a different compromise among the parameters.

Figure 7.8 shows the parallel coordinates plot of the volume-
based optimum flexibility box and the minimum-interval-based
one. The difference in volume is substantial: the volume-based
one is about 20 times larger than the minimum-interval-based
one. Yet, the latter offers a great increase in flexibility of Azjy,:
from 15% to 48% of its total range of variation. Therefore, as long
as the vehicle’s styling will not be fixed, the minimum-interval-
based box may be a preferable solution. Also the range for sy,
becomes larger, while all other intervals get significantly restricted.
Noteworthy, the mid-up load region undergoes strong limitations,
proving to be particularly crucial for aPLI. Furthermore, the de-
sign parameters of the upper load region are restricted in the
minimume-interval-based flexibility box, but not in the volume-
based one; especially, the reduced height of this load region seems
important to counterbalance the increased height of the lower one.

The two boxes have also different probability of feasibility. Out
of 200 samples drawn from an uniform distribution, 99% of them
were feasible in the volume-based box, while only about 90%
in the minimume-interval-based one. The first corresponds to a
probability of feasibility greater than 96%, the second one to a
probability greater than 85%, still acceptable. Furthermore, the
infeasible designs lie here close to the feasible region and can,
thus, be potentially modified during the development to become
feasible. Figure 7.9 shows the PDF of the feasibility function for
the infeasible samples inside the optimum minimum-interval-
based flexibility box. Most samples lie below 1 < 0.05 and violate,
hence, one requirement by at most 5%.

In conclusion, maximizing the minimum-interval measure leads
to more uniform flexibility among the parameters, although this
may implicate a smaller total flexibility —expressed by the volume.
Uniformity is reached by compromising more parameters at the
same time —in the present investigation, all of them- instead of
significantly restricting only the most important ones. Changing
the required minimum interval size allows to reach more tar-
geted compromises. Therefore, this quantity can act as a flexibility
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Figure 7.8: Parallel coordinates plot of optimum volume-based and
minimum-interval-based flexibility boxes, for the medium-
sized sedan in Figure 4.3b, with the aPLI, inside the design
space in Table 7.1. The normalized volume is reported in the
legend for each flexibility box.
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Figure 7.9: Probability Density Function (PDF) of the feasibility function
¢ of the infeasible samples inside the optimum minimum-
interval-based flexibility box and inside the design space in
Table 7.1, for the medium-sized sedan in Figure 4.3b, with the
aPLL

weighting factor. As more parameters are restricted, the difference
among the boxes -measured by the overlap— spreads over more
ranges and becomes less evident. | recommend, in general, to use
a lower allowed overlap with the minimum-interval measure than
with the volume one in order to enforce a more tangible difference
among the boxes.

7.4 COMPARISON APLI-FLEXPLI GUIDELINES

In Section 1.1, I introduced the aPLI as the new legform impactor
that will replace the FlexPLI in C-NCAP consumer rating. How-
ever, the FlexPLI will remain —in the near future— the prescribed
legform impactor for type approval. Therefore, the requirements
for both impactors need to be satisfied: the number of injury cri-
teria to be taken into account almost doubles and reaches a total
of 15.7* Satisfying the requirements of two different impactors
raises further the complexity of the design process. In such circum-

12 FlexPLI’s injury criteria include tibial bending moments, MCL, ACL and PCL.
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stances, design guidelines that indicate feasible sets of parameter
ranges become even more valuable.

If I was to compute the flexibility boxes fulfilling the require-
ments of both aPLI and FlexPLI during a real development pro-
cess, I would consider the constraints all together and define a
single feasibility function.’3 In the present work, though, I aim for
a more academical investigation: to identify the differences in ve-
hicle design between the two impactors. Therefore, I compare the
resulting optimum flexibility box after applying the exact same
procedure to both impactors. I use the Low-Fidelity Model (LFM)
for the medium-sized sedan in Figure 4.3b™ and the design space
in Table 7.1.

Figure 7.10 shows the parallel coordinates plot of the opti-
mum minimume-interval-based flexibility box with both aPLI and
FlexPLI. The required minimum interval is set to half the total
parameter range. As opposed to aPLI’s box, this requirement is
amply fulfilled by the box for FlexPLI, as its minimum interval is
30% larger than the required one. It comes at no surprise that the
reference model is included in the box: it was actually developed
to satisfy FlexPLI’s requirements, hence the design is feasible.

Looking at the recommended ranges, the two boxes provide
contrasting guidelines for the following parameters:

81,,,: FlexPLI benefits from a stiffening of the lower load region,
while aPLI from its softening’>; a light softening, up to
20%, of the current stiffness characteristics would fulfill both

impactors’ requirements.

lo

ADj,y: FlexPLI benefits from a more energetic rebound of the
lower load region, while aPLI from a less energetic one;
a light variation, up to +/- 10%, of the current fraction

Due to the increased number of constraints, I would also increase the number
of trained surrogate models accordingly, in order to ensure a proper degree of
accuracy.

The validation of a vehicle LFM —similar to the one proposed in this thesis— with
the FlexPLI can be found in [89].

The guideline, clearly, depends on which injury criterion is most critical for the
respective impactor in the reference model and should not be considered generally
valid.
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Figure 7.10: Parallel coordinates plot of the optimum minimum-interval-
based flexibility box with aPLI and with FlexPLI, for the
medium-sized sedan in Figure 4.3b, inside the design space
in Table 7.1. The overlap between the two flexibility boxes is
highlighted. The normalized minimum interval is reported
in the legend for each flexibility box.



7.4 COMPARISON APLI-FLEXPLI GUIDELINES

of energy recovered during unloading would fulfill both
impactors’ requirements.

S1piaup- F1eXPLI benefits from a softening of the mid-up load
region, while aPLI from its stiffening; a light stiffening, up
to 20%, of the current stiffness characteristics would fulfill

both impactors’ requirements.

ADyig-up: FlexPLI benefits from a less energetic rebound of the
mid-up load region, while aPLI from a rebound similar to
the current one; a light variation, up to +/- 10%, of the
current energy recovered during unloading would fulfill
both impactors’ requirements.

The guidelines for FlexPLI firmly favor its MCL elongation —as
shown in Appendix B— while those for aPLlI its tibial and femoral
bending moments —as discussed in Section 7.1.1.

For the above parameter ranges, the overlap between the two
boxes is lowest. For other parameter ranges, instead, the overlap
is more significant and covers almost the whole recommended
range for one box, but not for the other one. This means that
the two boxes provide similar guidelines for these parameters, yet
their flexibility is larger for one impactor than for the other. These
parameters are: Azjoy, 51, ADimias AXmid, DXmidg-ups DZmid-up and
Axyy. For all of them, the FlexPLI box offers more flexibility,
except for Axup. Here, FlexPLI limits the forward translation of
the bonnet more than aPLI. A rearward position of the bonnet
leading edge with respect to the lower load region —so-called
soft-nose— is a typical styling characteristic of modern cars, led
by the fulfillment of FlexPLI’s requirements. The flexibility boxes
indicate that, for the investigated vehicle, a soft-nose is more
relevant for FlexPLI than for aPLI.

Finally, for the remaining design parameters, the recommended
ranges of variation are analogous for both boxes and display the
largest overlap. Such parameters are: Aupg, .., s1, b7 ADyp and Azyy.
Hence, these parameters do not show particular differences in
the influence they have on both impactors and the boxes provide
quite identical guidelines.

In conclusion, the guidelines on the vehicle’s front-end geom-
etry are similar for both impactors with a medium-sized sedan.
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Those on the stiffness of the lower and mid-up load regions are,
instead, contrasting. This indicates that finding a good compro-
mise for these parameters is crucial to satisfy both impactors’
requirements. The guidelines for the bonnet are mostly identical
for both impactors; yet, a soft-nose seems to be less relevant for
aPLI than for FlexPLL. Not only the overlap in the upper load
region is larger than in the other ones, the design flexibility of the
parameters here is larger as well. This indicates that lower, mid
and mid-up load regions are, in general, more critical than the
upper one for both aPLI and FlexPLI. Lastly, aPLI offers, for the
investigated vehicle, less overall front-end design flexibility than
FlexPLIL



CRITICAL REFLECTION

An education isn’t how much you have committed to memory,
or even how much you know. It's being able to differentiate
between what you do know and what you don't.

— William Feather?

With Chapter 7, the work presented in this thesis can be con-
sidered concluded: I proposed, validated and applied the method.
I take now a step back and reflect on the work done, discussing
the achievement of the single objectives set and advantages and
disadvantages of the proposed approaches.

8.1 LOW-FIDELITY MODEL

Which low-fidelity modeling technique of the vehicle front-
end is appropriate for the impact with the aPLI?

I link the vehicle outer surface to non-linear translational springs.
The outer surface is split in several sections, each one modeled as a
rigid body and attached to three orthogonal springs. The principal
spring is oriented according to the recorded deformation.

The model is accurate enough for the intended use in this thesis:
it shows generally an error below 10% in all investigated condi-
tions, both in- and out-of-reference. Nevertheless, the modeling
technique has advantages and disadvantages and I discuss them
in the following.

ADVANTAGES

e The model consists of only few elements —less than 100
against HFM’s 4 millions—- and is, thus, very computationally
efficient.

1 From: William Feather. Telephony. Volume 150. 1956.
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The model reproduces and condenses the macro-level of
information exchanged by the vehicle during contact with
the pedestrian leg impactor. This is achieved by the high
degree of abstraction, as structural members are replaced
by translational springs. The implementation of changes
becomes, therefore, very easy and precise: it does not involve
anymore complex geometrical and material properties of
the front-end components, but rather directly the position or
the force-deformation curve of the load levels.

The model is automatically generated and sufficiently accu-
rate with any vehicle type.

The model is valid for both FlexPLI and aPLlI.

By means of clustering, the number of load levels can be
chosen: 20 seems a reasonable choice.

The use of a cubic interpolation of the force-deformation
curve has little effect on the injury criteria. This is in agree-
ment with Takahashi et al. [121], who, using an HBM, found
that maximum force, maximum deformation and energy
absorbed by a load level are important in order to ensure a
good correlation with the HFM, while the actual shape of
the curve plays a minor role.

Completely new force-deformation curves may be defined,
enabling great freedom for conceptual investigations.

DISADVANTAGES

¢ Replacing millions of DOFs with a bunch of them comes at a

price: the model is tailored to one specific load case -pedestrian
leg impact— and one specific impactor kinematics. Constructing
the model on the basis of the recorded forces and deforma-
tions means losing information on the model performance
in loading conditions different from the recorded one.

¢ As direct consequence of the point above:

— No force-deformation characteristics is recorded for
load levels that do not go in contact with the impactor.
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— The force-deformation curve must be extrapolated for
deformations larger than the recorded one. I assume a
linear positive extrapolation.

These issues did not appear to affect significantly the model
accuracy in the investigated range —except for the bonnet, that
I will discuss separately. Surely, those issues contribute to
limit the range of validity of the model. Possible solutions
are the increase in kinetic energy or change of shooting
position of the impactor. However, it is questionable whether
the advantages of these solutions overcome the disadvantage
of changing the reference loading condition. In fact, at the
end, one force-deformation curve and one inclination must
be defined for each spring. A different approach would be
to obtain the characteristics individually for each load level
with dedicated sub-impactors, as done in [51, 94]. However,
this does not appear practical when the number of load
levels is high. In fact, it would be difficult to isolate each
single load level and avoid the interaction with the other
ones. Furthermore, the loading condition of sub-impactors
may not be representative of the actual one with aPLL

¢ Out of the recorded data, a further simplification takes place
in the mapping to one-dimensional elements —i. e., the trans-
lational springs. The force may be very non-linear?, the de-
formation not. In fact, the model is only valid for small non-
linear deformations. The set of three orthogonal springs does
not build one three-dimensional system, F = F(uy, uy, uz),
but three one-dimensional ones, Fy = Fx(uyx), Fy = Fy(uy),
F, = F;(uz), whose resultant is three-dimensional. This is
based on the assumption that the deformation occurs mostly
along one dimension and the other two prevent a locking
effect.

¢ Most of the model inaccuracies were found to be related to
the bonnet. Here, two issues arise:

— The first load levels of the bonnet undergo re-loading
during the unloading phase due to the rotation of the fe-

2 In the recorded range.



220

CRITICAL REFLECTION

mur. In the HFM, the unloading, the re-loading and the
re-unloading follow very different force-deformation
curves. In the LFM, instead, the curve is the same. Fur-
thermore, in the HFM, also the direction along which
the deformation occurs, during loading and re-loading,
is different. In the LFM, the deformation occurs mostly
along the level’s first principal component.

- Depending on the impactor’s kinematics, the UBM hits
the bonnet at a specific location. Hence, most of the
forces are recorded here. If the UBM hits the bonnet at a
different location in the LFM, the stiffness of the bonnet
will most likely be underestimated.3 Therefore, besides
large variations of the model in general, which may
cause significant changes in the impactor’s kinematics,
especially large geometrical variations of the bonnet
should be avoided.

The issues on the bonnet are not trivial to be solved with a
spring-based LEM. Other techniques for model’s complexity
reduction may be investigated. Nevertheless, due to the
complex bonnet deformation, a sensible alternative would
be to use directly the original, shell-based bonnet, without
simplifying it.# The model would become a hybrid low-
/high-fidelity one: low-fidelity lower, middle and mid-up
load regions with a high-fidelity upper one. By slicing out
the lateral parts of the bonnet, where no deformation takes
place, I reckon the computational time of the hybrid model
would remain reasonable and not significantly higher than
the LEM’s one. On the other hand, the accuracy —especially
in out-of-reference conditions— could benefit significantly,
and so, the range of validity of the model. Geometrical
parameters for the upper load region could remain the same:
rigid shifts of the entire bonnet in the xz-plane. Stiffness
parameters should be reviewed.

3 There were no or little forces recorded here.

4 Former colleague Mofiner [88] gave me once this wise suggestion: "Do not spend
too much time on the simplified model. It is a simplified model. The more time you will
spend on it trying to gain 1-2% accuracy, the more complex you will make it.”



8.2 PARAMETRIZATION

¢ Essentially, all the computational effort in an LFM simu-
lation is associated with the impactor. In this work, I did
not simplify the impactor, because 1 did not have to im-
plement changes to it —and so, neither to facilitate their
implementation. This thesis, in fact, focuses on front-end
design, not design of the impactor. However, a great num-
ber of simulations is required by the proposed flexibility
optimization work-flow, yet that number is limited by the
sampling budget at disposal. Simplifying the aPLI could
substantially increase the sampling budget. On the other
hand, the accuracy of the impactor’s response may deterio-
rate. Model Order Reduction (MOR) techniques, such as the
one proposed in [4], seems promising for this task.

So, all in all, "is the model illuminating and useful?"> Definitely useful.
Moderately illuminating, as it allows to run investigations that
with the HFM would not be trivial to run; yet, the illumination
may not always be reliable.

8.2 PARAMETRIZATION

Which parametrization approach is recommended for the
representation of design variability and handling of com-
plexity?

I identify four load regions in the vehicle front-end —lower, mid-
dle, mid-up and upper- and define geometrical and structural
parameters for each of them. Geometrical variations include rigid
shifts of the load regions in the xz-plane and the deformation
space in front of the bumper beam. From the structural side, I use
scaling factors to vary the reference force-deformation curve of
each level in the region during loading and dissipation factors
during unloading.

ADVANTAGES

¢ The parameters are easy-to-understand and -to-communicate
in the design process. Expressing the parameters in the form

5 See first paragraph of Section 4.2 for contextualization.
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of relative variations to existing structures provides, in fact,
the designers with a basis for orientation.

The use of one or two scaling factors for the force-deformation
characteristics offers still adequate flexibility: both the force

level and the curve shape vary significantly. Additionally,

the variations remain related to a real structure, where re-
quirements from other disciplines are also taken into consid-
eration. Finally, scaling factors allow to keep the number of

parameters low, reducing the complexity of the parametriza-
tion. Defining, e. g., a brand-new cubic curve would require

three points® and offer superfluous flexibility: the force-
deformation characteristics of a bonnet cannot take any

shape.

Moving the load regions independent on another offers
a simple solution to the problem of their positioning: the
guidelines are meant for concept engineers, not stylists.

DISADVANTAGES

¢ The range of variation of the parameters should be limited

in order to preserve the trustworthiness of the outcome. This
is related to the LFM trustworthiness.” Being the impactor
the true one —and not a simplification— the outcome of the
simulation is accurate for any parameter choice. The ques-
tion is, whether the LFM with that parameter choice can be
realistically reproduced so in the HFM. In other words, the
outcome of the simulation is correct; the interpretation of it
may not be correct anymore.

The validation of the parametrization is not straightforward.
The parameters defined for the LFM cannot be reproduced
so trivially in an automated way in the HFM. Structural
members are replaced by non-linear springs in the LFM:

6 The fourth one being the origin.

7 Here, I use the word accuracy to refer to investigations for which there is a HFM
model to be compared with, while the word trustworthiness when there is no
corresponding HFM the model can be validated with. Hence, the LFM can only
be trusted.
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8.3 FEASIBILITY ANALYSIS

force-deformation characteristics are not easily correlated to
actual dimensions of the structure they replace. Therefore, I
validated the opposite problem: reproducing, with the LFM,
changes happening in the HFM.

Related to the point above, I did not investigate the possibil-
ity of an inverse parametrization: i. e., from the LEM to the
HFM. The aim of this work was to compute design guide-
lines, not to implement them back in the detailed model.
Nevertheless, that would be a logical further development
of the proposed method: topology optimization may help
finding the structure that, loaded under pedestrian leg im-
pact, exhibits a force-deformation characteristics inside the
prescribed corridor —such as the one in Figure 8.1.

FEASIBILITY ANALYSIS

Which method for the evaluation of design feasibility is
appropriate with computationally-expensive black-box func-
tions?

I exploit an established infill-criterion —the Expected Improvement
for feasibility analysis— to improve the classification capability
of a surrogate model between feasible and infeasible samples.
I define a training work-flow that, first, uniformly samples the
design space and, then, iteratively adds samples in the neediest
locations. On the basis of the problem dimensionality, I set the
available sampling budget. In all investigated test problems, the
method satisfied the accuracy requirements.

ADVANTAGES

* The use of a surrogate model enables the evaluation of a

very large number of samples in a reasonable period of time.
This would not be possible with computationally-expensive
functions, such as an LFM simulation, which takes minutes
to run: a surrogate model prediction lies in the range of
milliseconds.
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® The proposed Bayesian feasibility analysis strategy is very ef-
fective in low-dimensions: adding samples in progressively
critical locations greatly benefits feasibility analysis. The
adaptive approach, in low-dimensions, consistently outper-
formed the completely-uniform one in terms of accuracy,
both mean and standard deviation. This means that, over the
iterations, the adaptive sampling phase neutralizes the ran-
domness of the uniform sampling and regularly reaches the
attainable degree of accuracy with the available sampling
budget.

¢ The proposed strategy is also relatively efficient in low-
dimensions: due to the moderate amount of samples, the
computational effort to train the Gaussian process model
remains acceptable.

e Training multiple surrogate models with the normalized
constraints, instead of approximating directly the feasibility
function, has a great, positive impact on the prediction ac-
curacy. This, clearly, comes at a computational cost; yet, its
value, at least for the Rosenbrock-based problem, proved to
be much more significant than the adaptive strategy itself.

* Gaussian process model and EI for feasibility analysis per-
form well, as the selected samples at each iteration lie very
close to the feasible region boundary.

¢ NMMSO algorithm performs well, as the selected samples
—besides having high Elf,,s values- lie far enough from one
another.

® The accuracy of the trained Gaussian process model proved,
in the Rosenbrock-based test problem, to be high enough to
not significantly affect the accuracy of the flexibility boxes.
Therefore, the accuracy requirement on the surrogate model
seems satisfactory.

DISADVANTAGES

¢ The proposed strategy is not very effective in high-dimensions:
for the Rosenbrock-based problem, the benefit in terms of ac-
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curacy decreases as dimension increases and almost nullifies
in 15D. This is not primarily related to the adaptive sam-
pling approach itself, but rather to the proposed work-flow,
and more particularly, to the available sampling budget®. The
problem is not adding samples iteratively; rather, starting
the iterations from a bad, inaccurate spot. As the strategies
U60, U80, U100 show, accuracy does improve with higher
sample size. In high-dimensions, though, the adaptive phase
is not able to compensate for the smaller initial uniform
sample size. This is confirmed by the better accuracy of
u80/A20 over U60/A40 in high dimensions, despite the
fewer iterations. Hence, a good starting point —i. e., an ac-
curate surrogate model- is crucial to get the most out of an
adaptive strategy. In high-dimensions, for the Rosenbrock
problem, neither u6o nor u8o deliver a surrogate model
accurate enough for an effective adaptive phase. In the work-
flow proposed in Figure 5.8, I check the global surrogate
model accuracy, R?> > 0.8 after the uniform phase: I reckon
now that that is not appropriate. The adaptive phase relies
on the expected improvement for feasibility analysis, which
values samples close to the feasible region boundary. Here,
therefore locally, the surrogate model must have a minimum
accuracy; globally is not relevant. Hence, I recommend to
prove, after the uniform sampling phase, its local accuracy
with cross-validation: e. g., R(z)'1 > 0.5.

¢ The proposed strategy is not efficient in high-dimensions
either. High-dimensional spaces, in fact, require a large sam-
pling scheme. This raises two issues:

- Function evaluations, namely simulations, are computationally-
expensive.

— Training Gaussian processes becomes computationally-
intensive when a large data set is used, e. g., 5000 sam-
ples.

8 This hypothesis is supported also by the increasing average distance among
samples with the available sampling budget, as dimension increases.
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Function evaluations are treated in Bayesian feasibility anal-
ysis as black-box functions. So, little can be done to improve
the first issue. The second issue, instead, is related to the
adaptive approach: the number of training iterations should
be, hence, limited.

* As direct consequence of the above two points, the proposed
strategy does not offer the best value for money —time— with
dimensions larger that or equal to 12. It is worth noting that,
the accuracy with an adaptive approach is still high and
satisfies the requirement. However, about the same accuracy
can be obtained with a completely-uniform strategy. The
time saved on iterations could, actually, be invested to run
more function evaluations, and so, to significantly improve
accuracy.

¢ [ did not precisely investigate:

- how large the sampling budget should be for a completely-
uniform strategy to achieve the same accuracy of the
U60/ A40 one in low-dimensions and compare the com-
putational effort of both approaches;

— how high the accuracy would be if the computational
effort of the u8o/A20 strategy would be used for a
completely-uniform sampling in high-dimensions.

Both studies would be interesting to analyze the value for
money/time of adaptive approaches. However, they should
be carried out with expensive-to-evaluate functions and not
mathematical ones.

* Cross-validation does not return trustworthy results with
adaptive sampling for feasibility analysis and relative met-
rics. The situation improves with absolute metrics. Still,
function evaluations are computationally expensive and all
samples should be used to train the model. Therefore, cross-
validation should be preferred. However, it would be worth
to investigate a more reliable cross-validation strategy in
order to more precisely quantify the actual model accuracy.
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* The proposed strategy uses a regression model for a clas-
sification task: feasibility analysis. It would be interesting
to analyze the benefits of using directly a classifier for the
task, at least at the end of the adaptive phase, for the final
classification.

¢ The proposed work-flow does not make use of methods to
filter out non-relevant parameters, such as feature selection.
However, this would solve, quite pragmatically, the limits of
the current strategy in high-dimensions: simply not working
in high-dimensions in the first place. The curse of dimen-
sionality is a renowned problem and should be avoided:
dura lex, sed lex.

&4 TYPE OF GUIDELINES

Which type of guideline is recommended to support the
design process?

I formulate a problem that aims to find axis-aligned feasible boxes
in the design space, which offer, on the one hand, a high degree
of flexibility and, on the other hand, different solutions to the
feasibility problem.

ADVANTAGES

* Being axis-aligned, the boxes prescribe independent inter-
vals of values for each design parameter. This means that
feasibility is ensured as long as each parameter is designed
inside its prescribed interval, without consideration of its
exact value.

¢ Maximizing the flexibility level, the boxes offer room for un-
certainties in component design, manufacturing tolerances,
requirements from other disciplines, etc. that may occur
during the development process.
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® Limiting the maximum overlap, the boxes propose different,

equally-valid® solutions and provide valuable information
on the extension of the feasible region.

The volume-based flexibility measure requires no normal-
ization of the design parameters —hence, no user input- and
points out which parameters are most relevant for feasibility
analysis.

The minimum-interval-based flexibility measure allows to
define the compromise among design parameters that the
user seeks. In this way, engineers’ experience can directly
flow into the problem formulation.

Searching for maximal feasible boxes allows to obtain still
the largest box under the same minimum interval.

DISADVANTAGES

8.5

¢ The maximum overlap between boxes is affected by the

problem dimensionality: boxes, where each interval overlaps
for 70%, overlap overall for about 50% in 2D and for about
0.5% in 15D. I recommend, hence, to scale the maximum
allowed overlap on the basis of the dimension in order to
obtain really diverse solutions across most dimensions: e. g.,
Gmax = 0.8,

The volume-based flexibility measure, not imposing any
aspect ratio, delivers extremely unbalanced results in case
the relevance of the design parameters to the feasibility
problem is unbalanced.

The minimume-interval-based flexibility measure, favoring a
precise aspect ratio, may exclude a big portion of the feasible
region to reach the desired compromise.

OPTIMIZATION OF FLEXIBILITY BOXES

Which optimization procedure is appropriate to maximize
the flexibility level of the guidelines?

9 Apart from the level of design flexibility.



8.5 OPTIMIZATION OF FLEXIBILITY BOXES

I propose a stochastic optimization algorithm that, based on an
extensive uniform sampling of the box bounding the feasible
region, implements an incomplete, depth-first search strategy to
collect all maximal feasible boxes and choose the desired ones.

Out of the investigated test problems, the strategy satisfied
the probability of feasibility requirement in all dimensions of
the hyper-sphere problem and in the real pedestrian leg impact
example in 15D. Yet, for the Rosenbrock-based problem, that
presents two distinct feasible regions, accuracy was slightly below
the threshold in 12D and 15D with the default sample size.

ADVANTAGES

e Sampling the bounding box only once and running the op-
timization algorithm on that allows to find more than one
flexibility box at the same time. Furthermore, it is less likely
to fall into a local optimum than by zooming into a specific
area with an iterative sampling approach.

¢ The tree-search enhances the optimization of the flexibil-
ity boxes. When the heuristics for the shrinking direction
fails, a tree-search strategy gives the chance to correct the
mistake. In 2D the error of the left-most path is negligible;
for higher problem dimensionalities, instead, the error be-
comes remarkable. In 8D, correcting up to 5 mistakes along
the tree-search path, the sum of volumes of the largest 50
maximal boxes increases of about 80%.

DISADVANTAGES

e The probability of feasibility inside the flexibility boxes
decreases significantly in high-dimensions. The surrogate
model inaccuracy proved here not to play a role. Hence, the
inaccuracy is solely due to the limited amount of samples in
high-dimensions: no information on feasibility lies in non-
sampled areas. Therefore, in general, in order to improve
the probability of feasibility, the sampling budget must be
increased. In cases where two or more feasible regions are
present, as in the Rosenbrock-based test problem, a signifi-
cant boost in accuracy would come from the generation of
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one bounding box per each one of them. Each bounding box
would, then, be individually optimized. Since the number
and location of separate feasible regions cannot be known
a-priori, cluster analysis may be used to solve this task, as
done for instance in [37].

¢ The tree-search strategy becomes very computationally in-
tensive with large sample size and branching factor. With
the proposed work-flow, this occurs in 12/15D. A time limit
can effectively stop the exploration, ultimately exploring
only the state-of-the-art left-most path.

® One-shot sampling approaches tend not to be suitable when
the feasible region is small with respect to the design space
[141]. Because of that, I find first the box bounding the
feasible region. In this way, the samples are as concentrated
as possible in the feasible region. The design space should
not be, anyway, much larger than the bounding box, since,
otherwise, also the surrogate model accuracy around the
feasible region may be too low.

* As side-effect of the optimization procedure, vertices of
the flexibility boxes are, often, infeasible. On the one hand,
this generates much larger flexibility boxes. On the other
hand, this compromises the accuracy. The test problems
show that, in low-dimensions, the first effect predominates.
In high-dimensions, instead, larger portions of the flexibil-
ity boxes lie in the infeasible region and the probability of
feasibility drops accordingly. Infeasible samples here, usu-
ally, do not experience large feasibility function values and
can, thus, potentially be turned feasible during the design
process. Nevertheless, concept engineers —the recipients of
the guidelines— should be made aware that the limits of the
intervals are, in general, troubling.

Allin all, the proposed one is a satisfactory bonization procedure®:
the algorithm does not return the true feasible boxes with highest
flexibility level, still the boxes present a reliable degree of flexibility
and feasibility.

10 See introduction of Chapter 5 for contextualization.
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8.6 RECOMMENDED RANGES

Which range of values is recommended for front-end param-
eters to fulfill the pedestrian leg impact requirements?

I applied the entire proposed method to a real design problem:
I computed design guidelines for the front-end of a medium-
sized sedan under consideration of the pedestrian leg impact
requirements with both aPLI and FlexPLIL. Furthermore, I com-
pared both the volume-based and the minimum-interval-based
flexibility boxes with the aPLIL

ADVANTAGES

¢ The volume-based boxes, clearly, point out which the most
relevant parameters are for the fulfillment of the aPLI re-
quirements, for the investigated vehicle: the stiffness and
vertical position of the lower load level and the longitudinal
position of the middle one. Although not reported in this
thesis, the rank of the parameters that are restricted the most
in the largest flexibility box, interestingly, matches the rank
obtained with Sobol’s sensitivity indices [115].*

¢ The minimum-interval-based boxes make a more uniform
compromise among the parameters: more flexibility is given
to stiffness and vertical position of the lower load level, less
flexibility to all other parameters. By defining the required
minimum interval, the flexibility measure indicates also
whether the required flexibility has been achieved.

* Some parameters show equal ranges among all flexibility
boxes. These ranges, therefore, represent those that should
be carefully considered in the early phases, as flexibility may
drop significantly outside. For the remaining parameters,
instead, the boxes show that different solutions over the

11 N.B.: Although the interesting analogy, the two ranks intrinsically measure dif-
ferent things: the maximum feasible box reveals the most relevant parameters for
feasibility analysis, the Sobol’s sensitivity indices the most relevant parameters
globally.

231



232

CRITICAL REFLECTION

entire original range of variation are possible, without major
consequences on the flexibility level.

® Out of the prescribed ranges of stiffness variation, a force-
deformation corridor for each load region can be identified.
Figure 8.1 shows the corridors obtained with the optimum
minimume-interval-based box for aPLI in Section 7.3.2, to-
gether with the reference curve. This plot represents a clear
prescription for the designers, where the design should lie.

e The boxes are very useful to identify the differences in
design guideline between aPLI and FlexPLIL: contrasting
guidelines are, for the vehicle under study, stiffness and
dissipation factor of the lower and mid-up load regions.

* The boxes are very useful also in later development stages,
when the design is almost finalized, to understand how
much tolerance to uncertainties each load region has and
which the most critical one is.

DISADVANTAGES

* The design guidelines are specific to the reference HFM
used to generate the LFM and do not have general validity.
This is an advantage in the development of a vehicle project
-because the indications are precisely tailored to that project—
and a disadvantage if general guidelines are sought.

¢ The guidelines are only limited to the original range of
variation. This should be kept relatively small to not com-
promise the model trustworthiness. Large geometrical varia-
tions should be, hence, avoided: an LFM based on a sedan
should not be used to investigate an SUV.

¢ In the minimum-interval-based boxes, some parameters are
slightly restricted although showing no or little relevance in
any scatter plot. It is questionable, whether the restriction
comes from the actual shape of the feasible region or from
the limited amount of samples, since the boxes are only
tenths of percent the size of the bounding box. Excluding
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Figure 8.1: Force-deformation corridor for each load region of the
medium-sized sedan in Figure 4.3b, according to the optimum
minimum-interval-based flexibility box with aPLI, reported
in Chapter 7.
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non-significant parameters from the investigation would be
very advantageous to reduce the curse of dimensionality
and, in turn, improve this issue.

About 99.6% of the feasible region is not included in the
optimum minimume-interval-based box for aPLI. In other
words, only the 0.4% of the designs fulfilling the require-
ments are contained in the flexibility box.™ It is clear, then,
that the guideline communicates only a tiny, tiny portion of
the actual possible solutions. This finds three explanations:

— the box-like shape,
— the axis-parallelism of the box,

— the aspect ratio of the box, promoted by the defined
minimum intervals.

Without any restriction on the aspect ratio, the largest fea-
sible box includes about 7.9% of the feasible designs: a sig-
nificant increase from 0.4%, yet still a small portion. There-
fore, most of the feasible designs are excluded because of
the box-like shape and/or axis-parallelism. Dropping axis-
parallelism completely would couple all parameters. The
approach proposed in [24] seems more promising: coupling
pairs of parameters. This could be done by either finding a
tilted rectangle for each pair [46] or, more general, a polygon
[47]: the box"3 would become a product of polygons, rather
than of rectangles. The current parametrization would also
be suitable to a pair-wise coupling: for each load region,
the scaling factor could be coupled with the dissipation
factor and the longitudinal shift with the vertical one. The
intra-pair dependencies could be, easily, displayed on a 2D
Cartesian plot, while the inter-pair independencies still with
a parallel coordinates plot.

12 Actually, not all samples inside this flexibility box are feasible. The probability of
feasibility is only greater than or equal to 85% at 97.5% confidence level.
13 It would be, actually, a polytope, not a box anymore.
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A work is never completed
—a word which for them is meaningless—
but abandoned.

— Paul Valéry*

9.1 SUMMARY OF FINDINGS

In this thesis, I propose an answer to the following question:

Which method is appropriate to compute design guidelines
for pedestrian leg impact on the basis of a low-fidelity vehicle
front-end model?

LOW-FIDELITY MODEL The method starts with the genera-
tion of a Low-Fidelity Model (LFM) of the vehicle front-end. I
introduce a very computationally-efficient model for the impact
with the advanced Pedestrian Legform Impactor (aPLI) and val-
idate it for different vehicle types and shooting positions. The
structural properties of the model are obtained from a reference
High-Fidelity Model (HFM). I use the original front-end outer
surface for contact representation with the impactor and non-
linear translational springs for stiffness representation. The outer
surface is split in several load levels, which I then cluster down to
about 20 in order to be representative of the real components they
substitute. Out of these load levels, I identify four load regions to
apply structural changes to. I define a wide range of geometry-
and stiffness-related parameters, which rigidly translate the load
regions, limit the deformation space in front of the bumper beam,

1 In: La Nouwvelle Revue frangaise. 1933.
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scale the original loading force-deformation curve and vary the en-
ergy dissipated during the unloading phase. The model is about
17 times faster than the correspondent HFM and exhibits less
than 10% error in all investigated conditions. Nevertheless, the
modeling of the bonnet raises some challenges. Furthermore, the
range of the parameters should be limited in order to preserve
the model trustworthiness.

GUIDELINES The LFM is used to generate guidelines for de-
signers of the vehicle front-end on how to fulfill the pedestrian leg
impact requirements. Guidelines are expressed in the form of an
independent range of values for each design parameter. In the de-
sign space, the guidelines become axis-parallel hyper-rectangles,
or boxes, inscribed in the feasible region. The computational effi-
ciency of the LEM is still not high enough to collect all samples
that are necessary to compute those boxes. Hence, first, I train a
surrogate model for feasibility analysis.

BAYESIAN FEASIBILITY ANALYSIS ladopt a Bayesian approach
in the sense that I use a Gaussian Process (GP) to build a prior dis-
tribution and derive the posterior one as observations are collected.
The available sampling budget is split in two phases: an initial uni-
form sampling is followed by an iterative process, where batches
of samples, maximizing the Expected Improvement for feasibility
analysis, are added. A multi-modal optimization algorithm, the
Niching Migratory Multi-Swarm Optimiser (NMMSO), is used to
select the samples for the next iteration. I use cross-validation to
quantify the model accuracy, although it proved to underestimate
significantly the accuracy of adaptive strategies. I define a multi-
dimensional test function that combines together two Rosenbrock
functions. The proposed Bayesian feasibility analysis satisfies the
accuracy requirements in every investigated dimension. Espe-
cially remarkable is the improvement on the standard deviation.
Nevertheless, a tangible boost of accuracy is only noticeable up
to 8D. Afterwards, completely-uniform and adaptive strategies
are comparable, mostly because of the limited available bud-
get in high-dimensions. Furthermore, GP training becomes very
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computationally-expensive with large data sets, making adaptive
strategies less suitable in high-dimensions.

DESIGN FLEXIBILITY OPTIMIZATION The final phase of the
proposed method involves the design flexibility optimization of
black-box functions. I formulate a problem to find multiple boxes
with highest flexibility level and limited relative overlap. The
constraint on the relative overlap forces the boxes to explore
different areas of the feasible region. I introduce a stochastic
optimization procedure to solve this problem: it, first, extensively
samples the bounding box and, then, runs a discrepancy-based
tree-search strategy to shrink the bounding box to the maximal
feasible box for each feasible sample. The tree-traversal strategy
allows to correct early mistakes along the box-finding path and
proves to be very beneficial as the number of branches increases.
Nevertheless, the computational effort becomes prohibitive in
high-dimensions. Hence, I stop the iterative search as a time
limit is reached. I recommend the use of a minimum-interval-
based flexibility measure over a volume-based one in case the
parameters’ significance is very unbalanced. The introduction
of the required minimum intervals allows to favor a particular
aspect ratio during the box optimization, based on engineering
experience. I verify the boxes’ feasibility with a state-of-the-art
probabilistic approach. The validation shows negligible influence
of the surrogate model inaccuracy on the boxes’ probability of
feasibility. This is, instead, mostly related to the sparseness of
samples and becomes especially troubling in high-dimensional
spaces. Boxes’ vertices lie often in the infeasible region and should
be avoided.

PEDESTRIAN LEG IMPACT [ applied the method to a real-world
industrial problem of vehicle front-end design for pedestrian leg
impact. The stiffness and vertical position of the lower load region
and the relative longitudinal position between lower and middle
load regions were identified as the most significant parameters
for the investigated vehicle and the aPLI. Defining a required
minimume-interval for each parameter allowed to obtain a more
uniform allocation of design flexibility among the parameters.
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Stiffness and dissipation factor of the mid-up load region, rela-
tive longitudinal position between lower and mid-up regions and
height of the bonnet turned out to also play a major role in the
design. Furthermore, I compared the design guidelines with aPLI
and with FlexPLlI: for the investigated vehicle, contrasting guide-
lines were obtained for the loading and unloading characteristics
of lower and mid-up load regions. Still, a compromise is possible
and is obtained by intersection of the respective flexibility boxes.

9.2 SO WHAT?

So...

¢ the LFM provides the designer with a tool that facilitates
extremely the implementation of structural changes and
accelerates their evaluation;

¢ the parameters are easy-to-understand and define general,
conceptual modifications, as they act on the macro-structural
behavior of the load regions?;

¢ adaptive strategies are very effective to improve the accuracy
of the approximation in targeted regions in low-dimensions;

* the method generates guidelines for the designers on the
structural properties that the front-end should have in order
to fulfill the pedestrian leg impact requirements;

e flexibility boxes prescribe the exact range of values that each
parameter may assume so that its design does not depend
on any other parameters;

¢ understanding the flexibility of each parameter in the early
phases allows to timely recognize eventual bottle-necks in
the development process;

¢ providing the concept engineers with multiple compromises
on how to satisfy the functional requirements support them
with know-how, which can, in turn, guide future trial-and-
error, ultimately minimizing it;

2 As opposed to micro-structural properties, such as the thickness of a stiffening rib.
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the LFM generation and the computation of guidelines, be-
ing mostly automatized, can become a standard procedure
during the development process, to be run regularly;

flexibility-oriented design guidelines are suitable to both
concept and series development phases:

CONCEPT PHASE: to identify the parameters to focus on
and how to design them,

SERIES PHASE: to quantify the parameters’ tolerance to
uncertainties, and so, the robustness of the design;

the method has successfully been validated on industrial
applications.

OUTLOOK

This work is finished, yet several questions remain unanswered:3

Which is the most appropriate low-fidelity modeling tech-
nique for the bonnet under pedestrian leg impact loading?
Or would it be an option to use directly the high-fidelity
model of the bonnet, giving rise to a hybrid low-/high-
fidelity model of the front-end?

Which is the most appropriate procedure to automatically
generate components whose force-deformation character-
istics under pedestrian leg impact loading lies in the pre-
scribed corridor? Would topology optimization be an op-
tion?

Which is the most efficient method for feasibility analysis in
high-dimensions?

Which is the most reliable cross-validation strategy when a
large portion of samples has similar function values?

Which is the most appropriate technique to identify the
least relevant parameters for feasibility analysis, that may

3 For further contextualization, see Chapter 8.
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assume quite any value in the design space and may be,
hence, excluded by the flexibility optimization procedure?

® Which is the most appropriate technique to identify separate
feasible region and construct a bounding box for each of
them?

¢ How larger would the flexibility polytopes be, if pairs of
parameters would be coupled in tilted rectangles? And how
larger, if coupled in polygons?

I am convinced that revealing the answer to these questions will
push the method significantly further. In the worst case, it will
help to discover and to define better questions.

I think solutions come through evolution.

It comes through asking the right question,

because the answer pre-exists.

But it's the question that we have [. .. ] to discover and to define.
[...11f you think of David and Michelangelo:

it was in the stone. But it had to be unveiled and revealed.

You don’t invent the answer. You reveal the answer.

— Jonas Salk#

4 During an interview in Bill Moyers’s television series A World of Ideas, broadcast
on January 17, 1990.
Dr. Jonas Salk is best known for having developed the first successful polio vaccine,
announced on April 12, 1955.
I report a larger excerpt of the interview:
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BILL MOYERS Iread the other day [...] that by the year 2000, which is not very
far from now, there will be some 20 million people in the world carrying
the AIDS virus. Is that a comparable challenge to what you faced with
polio 50 years ago?

DR. JONAS SALK Well, it’s an even more difficult challenge, [...]. The virus, if it
prevails, then we will lose. But if we are able to reduce the damage caused
by the virus and, at the same time, try to enhance the immune response to
the virus and establish a more favorable balance between the two, then we
will be doing in relation to that problem what we want to do in relation to
the world and that is to reduce the negative and enhance the positive at
one and the same time.

MOYERS The good news would be that there is a vaccine that protects us and
immunizes us, against the AIDS virus. Are we going to have that good
news, do you think, in your time and mine?

sALK My expectation is that we will solve the problem. It’s just a matter of time
and just a matter of strategy. Now, why do I say that this is the case? It’s
because I think solutions come through evolution. It comes through asking
the right question, because the answer pre-exists. But it’s the question that
we have to define and discover, to discover and to define.

MOYERS You mean, when you asked the question about how to defeat polio, the
answer was already there?

SALK Mm-hmm, in a way. If you think of David and Michelangelo: it was in the

stone. But it had to be unveiled and revealed. You don’t invent the answer.

You reveal the answer.
MOYERS From nature.

SALK From nature.
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DERIVATION OF THE EXPECTED IMPROVEMENT

A.1 EXPECTED IMPROVEMENT FOR GLOBAL OPTIMIZATION

Let I be the improvement for global optimization, as defined in
Equation 5.12.

Let z be a random variable with a standard normal distribution,
i.e., zero mean and unitary standard deviation such that:

R e (A1)

where f! . is the best observed value of the variable z.

I can be, therefore, rewritten as:

1= { min =% 12 < fruin = max (0, fjin — 2) (A.2)
0 otherwise
Accordingly, EI for global optimization can be computed as:
EI = E [max (0, fyn —2)] =
= [0 (fain—2) 9 (=) dz =

fmm fr/nin
= frin [ 9 (@) dz 0 [ 29 (2) dz =

= 0 fmin® (fmin) —U/fim oF <\/; /2 dz = (A.3)

= 0fpin® (fmin) +0 NeTs

e (-~ )2
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DERIVATION OF THE EXPECTED IMPROVEMENT

~ (o= D)@ (T2 =0 4 g (S =1

A.2 EXPECTED IMPROVEMENT FOR FEASIBILITY ANALYSIS

Let Ie45 be the improvement for feasibility analysis, as defined in
Equation 5.14.

Let z be a random variable with a standard normal distribution,
i.e., zero mean and unitary standard deviation such that:

Y- _0-9_ 7§
zZ= o Zy = o - (A-4)

where zy is the feasibility threshold of the variable z.
Ifeqs can be, therefore, rewritten as:
—0z ifz<zy <0
Ifeas = § 0z if0<zy <z (A.5)
0 otherwise

Accordingly, for the case z is predicted as infeasible, zy < 0,
equivalent to 0 < § in Equation 5.14, EI for feasibility analysis
can be computed as:

Elfes = E[~02] =
:/ -0z (z) dz =

Il
N)
—
oi‘
)
X
o
/—\
\
)

:er( /2 (A6)

—0o0
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20

Similar steps can be taken for the case z is predicted as feasible,
0 < zy, equivalent to § < 0 in Equation 5.14, ending with the
same result.
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Figure B.1: Scatter plot of Tibia Max and cubic polynomial fit ~dashed-
for each design parameter for the medium-sized sedan in
Figure 4.3b, with the FlexPLlI, inside the design space in Ta-
ble 7.1.
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Figure B.2: Scatter plot of maximum normalized ligament and cubic
polynomial fit —~dashed- for each design parameter for the
medium-sized sedan in Figure 4.3b, with the FlexPLI, inside
the design space in Table 7.1.
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