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A B S T R A C T

Probabilistic generative modelling is a powerful framework for de-
scribing the world on the basis of observations and accounting for
the resulting uncertainty. In order to increase their expressiveness,
generative models are often defined as latent-variable models, i.e. by
a hierarchy of latent (unobservable) and observable variables, where
our knowledge is represented by the corresponding conditional prob-
ability distribution. A key challenge in this regard is the inference of
the latent variables that underlie our observations and are assumed to
capture the characteristics of the data.

The posterior distribution defined by Bayes’ theorem provides a
latent representation of the observed data. However, it is computation-
ally intractable in all but the simplest cases due to an intractable nor-
malising constant. Amortised variational inference allows us to approx-
imate the posterior distribution by framing inference as an optimisa-
tion problem and leveraging the expressive power of neural networks.
Nevertheless, current approaches often lead to an over-regularisation
of the approximate posterior distribution, which considerably limits its
informative value.

The focus of this dissertation is on learning latent representations—
with the corresponding generative models—that reflect the factors of
variation and topology of the observed data. To this end, we propose
a constrained optimisation-based formulation of amortised variational
inference and complement it with a powerful empirical Bayes method.
We first demonstrate the effectiveness of this approach within the
framework of variational autoencoders. We then show in the context
of dynamic systems that our approach significantly improves system
identification in deep state-space models, which is accompanied by
an increased prediction accuracy of the models. Another area where
our approach provides substantial benefits is unsupervised metric
learning: the learned latent representations allow us to create similarity
measures of data which achieve the performance of state-of-the-art
supervised learning methods in object tracking and re-identification.
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Z U S A M M E N FA S S U N G

Die probabilistische generative Modellierung ist eine leistungsstarke
Methode, um die Welt auf Grundlage von Beobachtungen zu beschrei-
ben und die dabei entstehende Unsicherheit zu berücksichtigen. Um
ihre Ausdruckskraft zu erhöhen, werden generative Modelle oft als
latente Variablenmodelle definiert, d.h. durch eine Hierarchie von la-
tenten (unbeobachtbaren) und beobachtbaren Variablen, wobei unser
Wissen durch die entsprechende bedingte Wahrscheinlichkeitsvertei-
lung repräsentiert wird. Eine zentrale Herausforderung in diesem
Zusammenhang ist die Inferenz latenter Variablen, die unseren Beob-
achtungen zugrunde liegen und von denen angenommen wird, dass
sie die Charakteristika der Daten erfassen.

Die durch den Satz von Bayes definierte A-posteriori-Verteilung lie-
fert eine latente Darstellung der beobachteten Daten. Eine Berechnung
ist jedoch in meisten Fällen nicht möglich, da die Normierungskonstan-
te nicht berechenbar ist. Amortisierte Variationsinferenz ermöglicht
es uns, die A-posteriori-Verteilung zu approximieren, indem wir die
Inferenz als Optimierungsproblem auffassen und dabei die Ausdrucks-
kraft neuronaler Netze nutzen. Dennoch führen aktuelle Ansätze oft zu
einer Überregularisierung der approximierten A-posteriori-Verteilung,
was ihre Aussagekraft erheblich einschränkt.

Der Schwerpunkt dieser Dissertation liegt auf dem Erlernen latenter
Repräsentationen – mit den entsprechenden generativen Modellen –
welche die Faktoren der Variation und die Topologie der beobachteten
Daten widerspiegeln. Zu diesem Zweck stellen wir eine, auf einge-
schränkter Optimierung basierende, Formulierung der amortisierten
Variationsinferenz vor und ergänzen diese durch eine leistungsstarke
empirische Bayes-Methode. Wir demonstrieren die Effektivität dieses
Ansatzes zunächst im Rahmen von Variational Autoencodern. An-
schließend zeigen wir im Kontext dynamischer Systeme, dass unser
Ansatz die Systemidentifikation in tiefen Zustandsraummodellen si-
gnifikant verbessert, was mit einer erhöhten Vorhersagegenauigkeit
der Modelle einhergeht. Ein weiterer Bereich, in dem unser Ansatz
erhebliche Vorteile bietet, ist das unüberwachte Lernen von Metri-
ken: Die erlernten latenten Repräsentationen ermöglichen es uns,
Ähnlichkeitsmaße von Daten zu erstellen, welche die Leistung mo-
dernster überwachter Lernmethoden bei der Objektverfolgung und
Re-Identifizierung erreichen.
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During my PhD, I was fortunate to work on various research projects
that have been the main source of inspiration for this thesis. Some
of these projects resulted in publications, which are related to the
contributions of this work as follows:

Chapter 3 addresses the question of how to learn latent representa-
tions with variational autoencoders that reflect the factors of variation
and topology of observed data. It lays the foundation for the meth-
ods presented in the following chapters and incorporates previously
published work from

• Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke and
Patrick van der Smagt (2019b). ‘Learning Hierarchical Priors
in VAEs’. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 32. Curran Associates, Inc., pp. 2870–2879, Spot-
light Presentation

Compared to the publication, the introduced method is explained in
more detail; in Section 3.2, an additional analysis provides a deeper
insight into the theory of the method. Furthermore, results that have
only appeared in the appendix of the publication are incorporated
and discussed in Section 3.5.

Chapter 4 deals with the question of how to accurately predict ob-
served dynamic systems. To this end, the method presented in Chap-
ter 3 is extended to enable the learning of deep state-space models.
This chapter is based on recently published work:

• Alexej Klushyn, Richard Kurle, Maximilian Soelch, Botond Cseke
and Patrick van der Smagt (2021). ‘Latent Matters: Learning Deep
State-Space Models’. In: Advances in Neural Information Processing
Systems (NeurIPS). Vol. 34. Curran Associates, Inc.

In Chapter 5, we return to the framework of variational autoencoders
and discuss how the method presented in Chapter 3 can be applied to
measure the similarity of data. This chapter incorporates work from
the following two publications:

• Nutan Chen*, Alexej Klushyn*, Richard Kurle*, Xueyan Jiang,
Justin Bayer and Patrick van der Smagt (2018). ‘Metrics for Deep
Generative Models’. In: Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS). Vol. 84. PMLR,
pp. 1540–1550
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1
I N T R O D U C T I O N

An essential aspect of human learning is to observe. Based on new
observations, we create an increasingly precise model of our environ-
ment. Accordingly, this model can never be perfect. Both our model
and the knowledge of its inaccuracy are crucial sources of information
for our decision-making process.

Probabilistic generative modelling follows this principle. It is a pow-
erful framework for describing the world on the basis of observations,
taking into account the uncertainty involved. We naturally want gener-
ative models to be as expressive as possible. For this reason, they are
often defined as latent-variable models, i.e. by a probability distribu-
tion over observations conditioned on latent (unobservable) variables.
The latent variables are assumed to capture the underlying charac-
teristics of the data, and the conditional distribution represents our
knowledge about the observed system. A key challenge in learning
such models is the inference of latent variables.

Bayes’ theorem defines the posterior distribution over the latent vari-
ables, providing a latent representation of the observed data. However,
the posterior distribution is computationally intractable in all but the
simplest cases due to an intractable normalising constant. Amortised
variational inference offers a solution to this problem: it enables the
approximation of the posterior distribution by framing inference as
an optimisation problem and opens up the possibility to leverage
the expressive power of neural networks (Kingma and Welling, 2014;
Rezende et al., 2014). Nevertheless, current approaches often lead
to an over-regularisation of the approximate posterior distribution
(Alemi et al., 2018; Higgins et al., 2017; Tomczak and Welling, 2018),
which considerably limits the informative value of the learned latent
representation, as we show in our experiments. The informative value
of the inferred latent representation, however, has a significant impact
on the quality of the learned model (X. Chen et al., 2017; Kingma et al.,
2016; Rezende and Mohamed, 2015).

In this thesis, we address the question of how to learn latent
representations—with the corresponding models—that reflect the fac-
tors of variation and topology of the observed data. Previous work has
tackled this by either improving the optimisation process (Bowman
et al., 2016; Higgins et al., 2017; Rezende and Viola, 2018) or the ca-
pacity of the model (X. Chen et al., 2017; Tomczak and Welling, 2018).
Our approach builds on both concepts: we propose a constrained
optimisation-based formulation of amortised variational inference and
complement it with a powerful empirical Bayes method. Moreover, we

1



2 introduction

demonstrate that latent representations learned this way are useful for
various applications, such as model-based reinforcement learning or
unsupervised metric learning.

Chapter 2 covers the fundamentals of Bayesian inference that are
essential for understanding our approach and the related methods.
First, we motivate and introduce latent-variable models in the context
of probabilistic generative modelling. Building upon this, we show
how inference in latent-variable models can be framed as an opti-
misation problem. We then present amortised variational inference
in the context of variational autoencoders (VAEs), i.e. for learning
latent-variable models on the basis of independent and identically
distributed (i.i.d.) data. Finally, we extend the introduced concepts to
sequential Bayesian inference, allowing us to build and learn proba-
bilistic models of observed dynamic systems.

In Chapter 3, we introduce our approach within the framework
of VAEs and derive the theoretical foundations for the constrained
optimisation-based formulation of amortised variational inference.
This lays the groundwork for the methods presented in the following
chapters of this thesis. In contrast to the original VAE, our method
avoids an over-regularisation of the approximate posterior distribution
and facilitates learning informative latent representations that reflect
the factors of variation and topology of the observed data.

Chapter 4 addresses the question of how to accurately predict
observed dynamic systems. To this end, we apply our approach to
sequential data by introducing a constrained optimisation framework
for learning deep state-space models (DSSMs). Building upon this,
we combine amortised variational inference with classic Bayesian
filtering and smoothing to improve approximate inference for DSSMs.
In contrast to previous approaches, our method facilitates system
identification, with the consequence that the learned latent variables
represent the true underlying state of the observed dynamic system.
The result is a substantial increase in prediction accuracy. Furthermore,
we use our method to learn state-space representations where static
and dynamic features are disentangled and show how these can be
applied in model-based reinforcement learning.

In Chapter 5, we focus on another area where our approach pro-
vides considerable advantages: unsupervised metric learning. In order
to find a metric that measures the similarity of i.i.d. data, we first
analyse the topology of latent spaces learned by VAEs with the help
of Riemannian geometry. Based on this, we combine our method in-
troduced in Chapter 3 with a regularisation approach that allows us
to learn latent spaces where the Euclidean distance is a similarity
measure for observed data. We use this method for object tracking and
re-identification and show that it can compete with state-of-the-art
supervised learning methods.



2
F U N D A M E N TA L S

In this chapter, we cover the fundamentals of Bayesian inference that
are essential for understanding the methods presented in this the-
sis. In Section 2.1, we motivate and introduce latent-variable models
in the context of probabilistic generative modelling of observed sys-
tems. Building upon this, we show how inference in latent-variable
models can be framed as an optimisation problem. In Section 2.2, we
present amortised variational inference within the framework of varia-
tional autoencoders, where the expressive power of neural networks
is leveraged. We then extend in Section 2.3 the introduced concepts
to sequential Bayesian inference, which allows us to build and learn
probabilistic models of observed dynamic systems.

In addition to this chapter, we recommend (Bishop, 2006) and (Mur-
phy, 2012) for a detailed introduction to probabilistic modelling and
(Särkkä, 2013) for a comprehensive summary on sequential Bayesian
inference. Further references to relevant literature can be found in the
related sections of this chapter.

2.1 latent-variable models

In probabilistic generative modelling, we want to approximate the true
probability distribution p∗(x) underlying an unknown but observable
system, where observed variables x ∈ RDx are assumed to be i.i.d.
random samples. To this end, we introduce a probabilistic model pθ(x)
with the aim of determining its parameters θ such that we obtain

p∗(x) ≈ pθ(x)

for each observed x.
We naturally want pθ(x) to be as expressive as possible in order to

get a sufficiently accurate model of the true probability distribution.
For this reason, pθ(x) is often defined as a latent-variable model. The
term latent refers to unobserved or unobservable, and latent variables
z ∈ RDz are random variables that are assumed to capture the under-
lying characteristics/essence of the data. The marginal distribution
over the observed variables is thus given by

pθ(x) =
∫

pθ(x, z)dz, (2.1)

which is also called the marginal likelihood or the model evidence
when defined as a function of θ. The joint distribution factorises as

pθ(x, z) = pθ(x|z) p(z),

3



4 fundamentals

where the conditional distribution pθ(x|z) is referred to as the likeli-
hood distribution and p(z) as the prior distribution. The latter repre-
sents our prior knowledge and is usually defined in advance; therefore,
we do not emphasise its parameters.

The latent-variable model can be interpreted as follows: the essence
of data is captured by the latent variables, which we refer to as the
latent representation of the data; the likelihood distribution captures the
information how this essence is translated into an observation. This
leads to the generative process:

z′ ∼ p(z) → x′ ∼ pθ(x|z′).

Such a generative model can be quite expressive. For example, if the
prior distribution is discrete, and pθ(x|z) is a Gaussian distribution,
then pθ(x) is a mixture of Gaussians. For a continuous p(z), pθ(x) can
be seen as an infinite/continuous mixture, which is a powerful model
for approximating the true probability distribution p∗(x).

The focus of this dissertation is on learning latent representations—
with the corresponding generative models—that reflect well the fac-
tors of variation and topology of the observed data. The necessary
fundamentals, e.g. how we can determine the parameters θ or how
probabilistic models are parametrised, are presented in the following
sections.

2.1.1 Difficulties With Classical Learning Approaches

Learning is referred to as the process of finding the optimal parame-
ters θ∗ given a dataset D = {xi}N

i=1 consisting of i.i.d. random observa-
tions. Under the i.i.d. assumption, the joint probability of the dataset
factorises as a product of individual probabilities:

pθ(D) = ∏
i

pθ(xi).

In maximum likelihood (ML) learning1—which is the prevailing
method in statistical inference—we want to find the parameters that
maximise the log-likelihood:

argmax
θ

log pθ(D) = argmax
θ

∑
i

log pθ(xi).

Considering the latent-variable model defined in Eq. (2.1), we obtain:

∑
i

log pθ(xi) = ∑
i

log
∫

pθ(xi|z) p(z)dz︸ ︷︷ ︸
usually intractable

. (2.2)

1 We refer to (Murphy, 2012) for a detailed introduction to maximum likelihood
learning.



2.1 latent-variable models 5

However, the integral in Eq. (2.2) is intractable in all but the simplest
cases where a closed-form solution exists. This is due to the intractable
summation over all possible outcomes, making it infeasible to directly
perform ML learning.

An intuitive approach would be to find a way of inferring the latent
variable zi that corresponds to xi—with the idea of applying ML
learning as if we had a fully-observed model. Bayes’ theorem defines
a posterior distribution based on our latent-variable model, which in
theory allows us to infer the respective latent variables:

pθ(z|xi) =
pθ(xi|z) p(z)∫
pθ(xi|z) p(z)dz︸ ︷︷ ︸
usually intractable

.

It does, however, also reveal the connection between the posterior and
the marginal likelihood, which acts as a normalisation constant. Hence,
an intractable marginal likelihood leads to an intractable posterior, and
vice versa. In the next section, we introduce a method that allows us to
approximate the posterior pθ(z|xi) as well as the marginal likelihood∫

pθ(xi|z)p(z)dz and thus to learn the parameters of our model.

2.1.2 Variational Inference

The main idea behind variational inference is to frame the inference of
the posterior distribution as an optimisation problem. To this end, we
specify a family Q of densities over the latent variables, which we refer
to as the variational family. Each variational distribution qi(z) ∈ Q is
a candidate for approximating the posterior, and we aim to find the
most suitable candidate:

pθ(z|xi) ≈ qi(z).

In this way, Bayesian inference can be turned into an optimisation
problem over variational parameters. As supplementary reading to
variational inference, we recommend (Blei et al., 2017) and (Beal, 2003).

The next step is to find a way to measure the similarity between
qi(z) and pθ(z|xi) in order to define an objective function for our
optimisation problem.

2.1.2.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL) is an information-theoretic mea-
sure of the proximity between two distributions. Typically, one of the
distributions represents an approximation, while the other represents
an exact probability distribution:

KL
(
q(z)‖ p(z)

)
=
∫

q(z) log
q(z)
p(z)

dz = Eq(z)

[
log

q(z)
p(z)

]
≥ 0,
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which is zero if and only if q(z) = p(z).
In variational inference, we aim to minimise the KL between the

variational distribution and the posterior, where q∗i (z) is the best
approximation of the posterior within the variational family Q:

q∗i (z) = argmin
qi(z)∈Q

KL
(
qi(z)‖ pθ(z|xi)

)
. (2.3)

Although this objective function is not computable—because it re-
quires us to compute the posterior and thus the integral in Eq. (2.2)—it
is still an excellent choice since it can be minimised indirectly, as we
elaborate in the next section.

2.1.2.2 Evidence Lower Bound

In the following, we show that minimising the KL between the vari-
ational distribution and the posterior is equivalent to maximising a
lower bound, which is referred to as the evidence lower bound (ELBO):

log pθ(xi) ≥ log pθ(xi)−
≥ 0︷ ︸︸ ︷

KL
(
qi(z)‖ pθ(z|xi)

)
= Eqi(z)

[
log

pθ(z|xi) pθ(xi)

qi(z)

]
= Eqi(z)

[
log

pθ(xi, z)
qi(z)

]
= Eqi(z)

[
log

pθ(xi|z) p(z)
qi(z)

]
(2.4)

= Eqi(z)
[

log pθ(xi|z)
]
−KL

(
qi(z)‖ p(z)

)
(2.5)

=: FELBO(qi(z), θ; xi).

Since we have access to the variational distribution, the ELBO is
tractable, for example, via Monte Carlo integration, which we explain
in more detail in Section 2.2.1.

Note that the gap between the ELBO and the marginal log-likelihood
corresponds to KL

(
qi(z)‖ pθ(z|xi)

)
and becomes zero if and only

if qi(z) = pθ(z|xi). Consequently, the variational distribution that
maximises the ELBO concurrently minimises the KL between the
variational distribution and the posterior:

argmin
qi(z)∈Q

KL
(
qi(z)‖ pθ(z|xi)

)
= argmax

qi(z)∈Q
FELBO(qi(z), θ; xi). (2.6)

On the other hand—and that makes this formulation so elegant—
the ELBO is a lower bound on the marginal log-likelihood. Thus,
maximising it can be viewed as an alternative to the (intractable) ML
estimate:

argmax
θ

log pθ(xi) → argmax
θ

FELBO(qi(z), θ; xi) . (2.7)
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However, the parameters θ that maximise the ELBO are highly re-
lated to qi(z), which in turn depends on the previous/initial model
parameters. This interdependence leads us directly to the optimisation
algorithm that we introduce in Section 2.1.2.3.

alternative derivation of the elbo Note, however, that the
ELBO is typically derived using Jensen’s inequality. Although this
alternative derivation does not provide the insight about the relation
between the ELBO and the KL in Eq. (2.6), it is often easier to grasp:

log pθ(xi) = log
∫

pθ(xi|z) p(z)dz

= log
∫

qi(z)
pθ(xi|z) p(z)

qi(z)
dz

= log Eqi(z)

[
pθ(xi|z) p(z)

qi(z)

]
≥ Eqi(z)

[
log

pθ(xi|z) p(z)
qi(z)

]
, (Jensen’s inequality)

which is identical to Eq. (2.4).

2.1.2.3 Variational Expectation-Maximisation Algorithm

In this section, we discuss how to find the optimal model parame-
ters θ∗ starting with an some initial parameters θ(0). As mentioned
in the previous section, the variational distribution that maximises
FELBO(qi(z), θ(0); xi) is highly related to θ(0). Since the initial param-
eters are most likely not optimal, this therefore also applies to the
variational distribution

q(1)i (z) = argmax
qi(z)∈Q

FELBO(qi(z), θ(0); xi). (2.8)

Note that this step has to be carried out for each xi in D, resulting
in N separate variational distributions

{
q(1)i (z)

}N
i=1. Due to the (most

likely) suboptimal variational distributions, maximising the ELBO in
a next step with respect to θ,

θ(1) = argmax
θ

∑
i
FELBO

(
q(1)i (z), θ; xi

)
, (2.9)

will not immediately lead to the optimal model parameters θ∗. Conse-
quently, we need an alternating optimisation approach that iteratively
finds the optimal model parameters.

The variational expectation-maximization (EM) algorithm (e.g. Neal
and Hinton, 1998) alternates between an E-step, which infers the
variational distributions given the current parameter (θ(n)), and an
M-step that maximises the ELBO with respect to the parameters θ

given the variational distributions
{

q(n+1)
i (z)

}N
i=1 obtained from the
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E-step—where the superscript (n) denotes the iteration number of the
optimisation process:

E-step: q(n+1)
i (z) = argmax

qi(z)∈Q
FELBO

(
qi(z), θ(n); xi

)
∀xi ∈ D

M-step: θ(n+1) = argmax
θ

∑
i
FELBO

(
q(n+1)

i (z), θ; xi
)

However, the variational EM algorithm requires us to infer a sepa-
rate variational distribution for each xi in D. This makes variational
inference relatively expensive for large datasets, which are increas-
ingly becoming the norm. Furthermore, we only have access to latent
variables zi that represent the dataset we use to train our model. This
is because we do not learn a function/conditional distribution that
allows us to directly infer the latent variable of a new observation.

2.2 amortised variational inference within the frame-
work of variational autoencoders

In the previous section, we have introduced latent-variable models
and shown how to learn the model parameters through variational
inference. However, variational inference is relatively expensive for
large datasets, and it does not allow us to directly infer latent variables
of new observations as it requires a separate variational distribution
for each data point. Amortised variational inference solves theses
problems. It is the central method in this thesis and enables us to
model an approximate posterior distribution qφ(z|x) using a constant
number of parameters φ with respect to the size of the dataset D.

In the following sections, we introduce amortised variational in-
ference within the framework of variational autoencoders (VAEs),
which exploit the expressive power of neural networks and provide
a computationally-efficient optimisation approach. We start with the
classical VAE in Section 2.2.1 and present two concepts of improve-
ment in Sections 2.2.2 and 2.2.3. As supplementary reading to VAEs,
we recommend (Kingma and Welling, 2019).

2.2.1 Variational Autoencoders

The term variational autoencoder has its origins in autoencoders, where
a deterministic encoder–decoder pair is used for learning a com-
pressed representation of high-dimensional data. The VAE (Kingma
and Welling, 2014; Rezende et al., 2014) can be viewed as a stochastic
counterpart with two independently parametrised probabilistic mod-
els as encoder–decoder pair: a recognition/inference model qφ(z|x)
and a generative model pθ(x|z) p(z). The purpose of the recognition
model is to approximate the posterior distribution:

pθ(z|xi) ≈ qφ(z|xi).
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Thus, in contrast to variational inference, the posterior is approxi-
mated by a conditional distribution, qi(z) → qφ(z|xi), whose model
parameters φ do not depend on one specific data point xi. More pre-
cisely, they are used to model the relation between observed and latent
variables for the entire dataset. This is typically referred to as amor-
tisation, which gives rise to the term amortised variational inference.
In Section 2.2.1.1, we show how such a parametrisation is realised in
detail by means of neural networks.

As a consequence of amortising the approximate posterior distri-
bution, the ELBO in Eq. (2.5) is defined as a function of the parame-
ters (θ, φ):

FELBO(θ, φ; xi) = Eqφ(z|xi)

[
log pθ(xi|z)

]︸ ︷︷ ︸
reconstruction term

−KL
(
qφ(z|xi)‖ p(z)

)︸ ︷︷ ︸
regularisation term

.

(2.10)

In the context of VAEs, the ELBO is often divided into a reconstruction
and regularisation term. The former optimises the model towards a
good reconstruction and represents the actual stochastic counterpart to
autoencoders. The latter regularises the approximate posterior towards
the prior distribution p(z). This ensures that the likelihood pθ(x|z) is
optimised to process samples from p(z), which is necessary in order
to generate realistic data. In Section 2.2.1.3, we explain this concept
in more detail using a popular dataset as an example Before that,
however, we present in Section 2.2.1.2, how the ELBO is optimised in
detail.

2.2.1.1 Parametrisation With Neural Networks

Neural networks (NNs) can be viewed as expressive function ap-
proximators. They are differentiable and computationally scalable,
which makes them a suitable basis for gradient-based optimisation
approaches, as we elaborate in Section 2.2.1.2. The term neural network
encompasses (among others) the classical deep feed-forward neural
networks referred to as multilayer perceptrons (MLPs)—as well as
convolutional neural networks (CNNs), which are particularly well
suited for processing high-dimensional image data. We assume that
the reader is familiar with the basics of neural network architectures
and refer to (Goodfellow et al., 2016) for a comprehensive introduction.

In this thesis, we are mainly interested in the use of NNs in proba-
bilistic models, i.e. for modelling probability density (or mass) func-
tions, which is based on the idea of defining the distribution parame-
ters as functions of the conditioning variables. This approach allows
the aforementioned amortisation of the approximate posterior. For
example, if we use a Gaussian distribution, which is the most common
case in VAEs, we obtain:

qφ(z|x) = N
(
z| µφ(x), Σφ(x)

)
, {µφ(x), Σφ(x)} = NNφ(x),
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where µφ(x) and Σφ(x) are implemented by means of an NN charac-
terised by the parameters φ. Therefore, in case of a new observation,
we just need to pass it through the network, and we obtain an approx-
imate posterior distribution over its associated latent variables. The
same concept is used in VAEs for modelling the likelihood distribution.
Depending on the dataset, it is usually defined as a Gaussian or as a
Bernoulli distribution:

pθ(x|z) =

N
(
x| µθ(z), Σθ(z)

)
, {µθ(z), Σθ(z)} = NNθ(z),

Ber
(
x| pθ(z)

)
, pθ(z) = NNθ(z),

where µθ(x) and Σθ(x) or pθ(z) are also implemented by means of an
NN. Note, however, that in the context of VAEs it is often advanta-
geous to define the covariance of a Gaussian likelihood distribution as
a global parameter, Σθ(x)→ Σ, as we elaborate in Section 3.2.

2.2.1.2 Stochastic Gradient-Based Optimisation

The parametrisation of the approximate posterior and the likelihood
distribution with neural networks enables us to compute their deriva-
tives, ∇φ log qφ(z|x) and ∇θ log pθ(x|z), by means of the back-
propagation algorithm (Rumelhart et al., 1986). In the following, we
show that this forms the basis for a gradient-based optimisation of the
ELBO, where we start with some random initial parameters (θ0, φ0)
and optimise them, in contrast to the variational EM algorithm, jointly
via gradient ascent:

θn+1 = θn + γ∇θFELBO(θn, φn),

φn+1 = φn + γ∇φFELBO(θn, φn).

Here, γ is the learning rate, and the ELBO is defined with respect to
the entire dataset D as

FELBO(θ, φ) = EpD(x)
[
FELBO(θ, φ; x)

]
, (2.11)

where pD(x) = 1
N ∑N

i=1 δ(x− xi) is the empirical distribution repre-
senting D.

However, computing the derivatives∇θ,φFELBO(θ, φ) is an expensive
operation for large datasets since it scales linearly with the size of the
dataset. Furthermore, FELBO(θ, φ; x) is not analytically solvable and
has to be approximated. In both cases, the solution is to express the
integral by a finite sum, which is known as Monte Carlo integration:

Ep(x)
[
g(x)

]
≈ 1

M

M

∑
i=1

g(xi), xi ∼ p(x). (2.12)
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Consequently, in order to reduce the computational cost, we can
approximate Eq. (2.11) by

EpD(x)
[
FELBO(θ, φ; x)

]
≈ 1

M

M

∑
i=1
FELBO(θ, φ; xi), xi ∼ pD(x),

where M < N corresponds to the size of a randomly drawn so-called
minibatch. Maximising an objective function based on minibatches
is referred to as stochastic gradient ascent—or as stochastic gradient
decent (SGD) if the objective function, which in our case would cor-
respond to the negative ELBO, is minimised (see Murphy, 2012, for
further details).

The gradient of the ELBO with respect to the generative model
parameters θ is obtained as follows:

∇θFELBO(θ, φ; xi) = ∇θ Eqφ(z|xi)

[
log pθ(xi|z)

]
= Eqφ(z|xi)

[
∇θ log pθ(xi|z)

]
≈ ∇θ log pθ(xi|zi), (2.13)

where Eq. (2.13) is a Monte Carlo estimate (cf. Eq. (2.12)) on the basis
of a single sample zi ∼ qφ(z|xi). Computing the gradient with respect
to the variational parameters φ is more complicated, however, because
the expectation is taken over the approximate posterior distribution,
which is a function of φ:

∇φFELBO(θ, φ; xi) = ∇φ Eqφ(z|xi)

[
log

pθ(xi|z) p(z)
qφ(z|xi)

]
6= Eqφ(z|xi)

[
∇φ log

pθ(xi|z) p(z)
qφ(z|xi)

]
.

The reparametrisation trick (Kingma and Welling, 2014; Rezende et
al., 2014) solves this problem by applying a change of variables, where
the (continuous) random variable z is replaced by the deterministic
expression z = gφ(ε, xi) with the random noise sample ε ∼ p(ε). For
example, in case of a Gaussian approximate posterior distribution, we
get:

z = µφ(xi) + Lφ(xi) ε︸ ︷︷ ︸
gφ(ε,xi)

, ε ∼ N (0, 1)︸ ︷︷ ︸
p(ε)

, (2.14)

where Lφ(x) is a lower triangular matrix resulting from the Cholesky
decomposition Σφ(x) = Lφ(x)Lφ(x)T. Note that the reason for us-
ing Lφ(x) instead of Σφ(x) is a significant increase in computational
efficiency (see Kingma and Welling, 2019, for details).
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The change of variables allows us to compute the gradient with
respect to the variational parameters φ as follows:

∇φ Eqφ(z|xi)

[
log

pθ(xi|z) p(z)
qφ(z|xi)

]
= ∇φ Ep(ε)

[
log

pθ(xi|z) p(z)
qφ(z|xi)

]
= Ep(ε)

[
∇φ log

pθ(xi|z) p(z)
qφ(z|xi)

]
≈ ∇φ log

pθ(xi|zi) p(zi)

qφ(zi|xi)
, (2.15)

where Eq. (2.15) is a single-sample Monte Carlo estimate. This method
of estimating the gradients is referred to as stochastic gradient varia-
tional Bayes (SGVB) (Kingma and Welling, 2014).

In practice, the computation of gradients is handled by software
packages for automatic differentiation, such as (Abadi et al., 2016) or
(Paszke et al., 2019).

2.2.1.3 Example: Binarised MNIST

In order to gain a better understanding of how VAEs work, we conduct
a simple experiment on the example of the binarised version of MNIST
(Larochelle and Murray, 2011). It is a popular benchmark dataset
consisting of 50,000 training, 10,000 validation, and 10,000 test images
of handwritten digits (0 to 9), which are 28× 28 pixels in size. For
visualisation purposes, we use a two-dimensional latent space. The
approximate posterior is defined as an isotropic Gaussian distribution,
the prior as standard normal distribution, and the likelihood as a
product of independent Bernoulli distributions, each representing one
pixel. Both conditional distributions are parametrised by an MLP, and
we use a two-dimensional latent space for visualisation purposes.

As mentioned before, the reconstruction term in the ELBO (cf.
Eq. (2.10)) optimises the model towards a good reconstruction. This
means that the VAE learns (i) to encode data into the latent space,
where the aggregated posterior EpD(x)

[
qφ(z|x)

]
defines the latent rep-

resentation of the dataset (Figure 2.1, left); and (ii) to decode samples
from the aggragated posterior into realistic observations reflecting the
respective encoded data point.

The Kullback-Leibler divergence KL
(
qφ(z|x)‖ p(z)

)
, on the other

hand, regularises the approximate posterior towards the standard
normal prior, as shown in Figure 2.1 (left), such that

EpD(x)
[
qφ(z|x)

]
≈ p(z). (2.16)

This ensures that the likelihood pθ(x|z) is optimised for processing
samples from p(z) and thus allows the VAE to generate realistic data
(cf. Figure 2.1, right).
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Figure 2.1: VAE trained on the binarised MNIST dataset. The learned two-
dimensional latent representation of the dataset is depicted on the left side,
and the right side shows generated digits based on the marked area in the
latent space. (Klushyn, 2019)

2.2.1.4 Limitations

In the following, we identify three main limitations for generative
modelling with vanilla VAEs (cf. Kingma and Welling, 2019).

blurriness of the generative model Generated samples
sometimes appear blurry, as can be seen in Figure 2.1 (right). This issue
typically occurs if the aggregated posterior does not correspond to the
prior distribution (cf. Eq. (2.16))—and thus the generative model is not
optimally trained to process samples from the prior. One reason is the
limited flexibility of a Gaussian approximate posterior distribution,
which we address in Section 2.2.2.

over-regularisation of the approximate posterior In
the vanilla VAE, the aggregated posterior is regularised towards a
predefined prior, which is usually the standard normal distribution (cf.
Figure 2.1, left). As a consequence, the learned latent representation
does not necessarily reflect the topology of the data. To solve this
problem, the prior distribution can be learned from data, which we
explain in more detail in Section 2.2.3.

posterior collapse A local optimum of the ELBO is where
qφ(z|xi) = p(z) for all xi in our dataset D. This corresponds to the
optimum of the regularisation term KL

(
qφ(z|x)‖ p(z)

)
and is referred

to as posterior collapse. As a consequence, the VAE is not capable of
reconstructing data because the approximate posterior is identical for
each data point, and thus the generative model is not optimised.

Especially at the beginning of an optimisation process, where the
model has not yet learned to reconstruct data, we may end up in such
an initially attractive state. One solution, proposed by Bowman et al.
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(2016) and Sønderby et al. (2016), is to slowly increase the weight of
the KL term in the ELBO from 0 to 1 during the optimisation process,
known as annealing or warm up (WU). In Chapter 3, we introduce a
novel approach to this problem based on constrained optimisation.

2.2.2 Beyond Gaussian Posteriors

In this section, we discuss how to improve the flexibility of the recog-
nition model in order to achieve EpD(x)

[
q(z|x)

]
≈ p(z) and thus to

obtain a tighter lower bound on the marginal log-likelihood. This
would allow the generative model to be optimally trained for process-
ing samples from the prior, as detailed in the previous section.

A popular method, which we use throughout this thesis, is the
importance-weighted autoencoder (IWAE) (Burda et al., 2016). It treats
qφ(z|x) as a proposal distribution for importance sampling:

EpD(x)
[

log pθ(x)
]
≥ FIW-ELBO(θ, φ; K)

= EpD(x)Ez1:K∼qφ(z|x)

[
log

1
K

K

∑
k=1

pθ(x|zk) pθ(zk)

qφ(zk|x)

]
, (2.17)

where K is the number of importance samples; and the higher K, the
tighter is lower bound:

EpD(x)
[

log pθ(x)
]
≥ FIW-ELBO(θ, φ; K) ≥ FELBO(θ, φ).

This can be explained as follows: by using qφ(z|x) as a proposal dis-
tribution for importance sampling, the generative model is optimised
on the basis of a more complex implicit distribution,

qIW(z|x) = Ez1:K∼qφ(z|x)
[
q̃(z|x, z1:K)

]
,

which approaches the true posterior for K → ∞ (Cremer et al., 2017),
i.e. EpD(x)

[
qIW(z|x)

]
= p(z). As a result, the IWAE learns a more

accurate generative model than the original VAE.
In order to obtain the latent representation of our data, i.e. to sample

from the implicit distribution, we have to use sequence importance
resampling (SIR), as described in Algorithm 1.

Algorithm 1 Sampling from the implicit distribution qIW(z|x) via SIR

K ← number of importance samples
for k in 1 . . . K do

zk ∼ qφ(z|x)
wk =

pθ(x,zk)
qφ(zk |x)

end for
Each w̃k =

wk
∑K

i=1 wi

j ∼ Categorical(w̃)
Return zj
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Another popular method that we would like to mention in this
context, but will not discuss in detail, is normalising flows (Kingma
et al., 2016; Rezende and Mohamed, 2015). To learn a more com-
plex approximate posterior distribution, normalising flows use the
change of variables method, where the transformation is framed as
an optimisation problem. We refer to (Papamakarios et al., 2021) for a
comprehensive introduction.

2.2.3 Learnable Priors

In the previous section, we have shown how to increase the flexibility
of qφ(z|x) in order to learn an aggregated posterior that corresponds
to a predefined prior distribution. An alternative approach to obtain
a tighter lower bound on the marginal log-likelihood and a more
accurate generative model is to improve the complexity of the prior
distribution by learning it from data. Furthermore, this has the conse-
quence that the approximate posterior is not restricted by a predefined
prior distribution, which allows the model to learn a latent represen-
tation that reflects the topology of our data and has thus a higher
informative value, as we discuss in detail in Chapter 3.

Learning the prior distribution from data is referred to as empirical
Bayes, which is also known as type-II maximum likelihood because
the parameters of the prior distribution are usually learned via ML
(Murphy, 2012). However, this often results in an undesirable double
use of the data (Berger et al., 2006). In the context of amortised varia-
tional inference, by contrast, pθ(x|z) is learned based on samples from
qφ(z|x) (reconstruction term in the ELBO), and a learnable prior pri-
marily prevents the approximate posterior from being over-regularised
by the KL/regularisation term in the ELBO. Consequently, one can
show that the optimal prior is the aggregated posterior distribution
(Tomczak and Welling, 2018):

p∗(z) = EpD(x)
[
qφ(z|x)

]
. (2.18)

Therefore, posterior inference with VAEs can be considered to approx-
imate empirical Bayes inference (Wang et al., 2019), and a learnable
prior pΘ(z) ≈ p∗(z) is just supposed to mimic the aggregated poste-
rior, which is realised by

EpD(x)
[
KL
(
qφ(z|x)‖ pΘ(z)

)]
(2.19)

in the ELBO. We refer to prior distributions learned this way as empir-
ical Bayes priors.

Popular examples of learnable priors are introduced in X. Chen
et al. (2017) and Tomczak and Welling (2018). The former makes
use of normalising flows (cf. Section 2.2.2), the latter (referred to as
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VampPrior) is based on a finite mixture of approximate posterior
distributions conditioned on pseudo-inputs:

pΘ(z) =
1
K

K

∑
k=1

qφ(z|uk),

where the pseudo-inputs uk are also learned from data (cf. Eq. (2.19));
thus, Θ = {u1, u2 . . . , uK, φ}. Note that the VampPrior is motivated by
the fact that the optimal prior distribution is the aggregated posterior
(Eq. (2.18)) and is therefore a suitable approximation in this regard.

In Chapter 3, we revisit this topic and introduce a new concept on
how to learn approximate posterior/prior distributions in order to
obtain more informative latent representations of data.

2.3 extension to sequential data

In this section, we introduce probabilistic models for sequences of
observations x1:T = (x1, x2, . . . , xT) that occur at discrete time steps
within a fixed time interval. Therefore, time is considered as a discrete
variable in the following discussion.

The observations x1:T provide information about a dynamic system
that can be observed but whose exact dynamics are usually unknown.
Furthermore, the system can be externally influenced by optional
control signals u1:T = (u1, u2, . . . , uT). In Chapter 4, we study such
dynamic systems and introduce state-of-the-art methods for modelling
them. The necessary fundamentals are presented in this section.

In order to model and predict an observed system, we need to
learn the underlying dynamics. To this end, we introduce latent vari-
ables z1:T = (z1, z2, . . . , zT) that allow us to model the distribution of
sequential data D =

{
x(i)1:T, u(i)

1:T
}N

i=1 as the marginal

∏
i

pθ

(
x(i)1:T| u

(i)
1:T

)
= ∏

i

∫
pθ

(
x(i)1:T, z1:T| u(i)

1:T

)
dz1:T . (2.20)

Similar to the non-sequential case (cf. Section 2.1.2), the model param-
eters in Eq. (2.20) can be learned by maximising a variational lower
bound that we refer to as sequential ELBO:

log pθ

(
x(i)1:T| u

(i)
1:T

)
≥ FELBO

(
qi(z1:T), θ; x(i)1:T, u(i)

1:T

)
= Eqi(z1:T)

log
pθ

(
x(i)1:T, z1:T| u(i)

1:T

)
qi(z1:T)

 . (2.21)

The sequential ELBO forms the basis for the parameter learning
methods discussed in the following sections, where we present several
approaches to facilitate the optimisation problem.
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First, we introduce in Section 2.3.1 state-space models (SSMs), a
specific class of sequential latent-variable models that allows us to
efficiently model sequences x1:T of arbitrary length T.

Building upon this, we discuss in Sections 2.3.2 and 2.3.3 different
methods for efficiently learning SSMs based on the sequential ELBO
in Eq. (2.21). In Section 2.3.2, we introduce Bayesian filtering and
smoothing—and extend in Section 2.3.3 the amortised variational
inference framework (Section 2.2) to sequential data. The former allows
us to analytically compute the optimal qi(z1:T), the latter to substitute
qi(z1:T) by an amortised approximate posterior distribution.

2.3.1 State-Space Models

The joint distribution p(x1:T, z1:T| u1:T) can be factorised by applying
the chain rule of probability:

p(x1:T, z1:T| u1:T)

=
T

∏
t=1

p(xt, zt| x1:t−1, z1:t−1, u1:t−1)

=
T

∏
t=1

p(xt| x1:t−1, z1:t, u1:t−1) p(zt| x1:t−1, z1:t−1, u1:t−1).

However, modelling the conditional distributions p(xt| x1:t−1, z1:t, u1:t−1)

and p(zt| x1:t−1, z1:t−1, u1:t−1) becomes computationally more expen-
sive as t increases. This is because with each time step the number of
conditioning variables increases and so does the number of parameters
necessary to represent the conditional distributions.

To model an arbitrary number of conditional variables with a fixed
number of parameters, it is common to impose the Markov assump-
tion, which states that the future is independent of the past given the
present:

p(zt|���x1:t−1, zt−1,���z1:t−2, ut−1,���u1:t−2) = p(zt| zt−1, ut−1),

p(xt|���x1:t−1, z1,���z1:t−1,���u1:t−1) = p(xt| zt).

Consequently, the latent variable zt represents the state of the system
that contains all information necessary to predict the future state
zt+1 as well as the current observation xt. This is depicted by the
graphical model in Figure 2.2. The corresponding probabilistic model
is referred to as state-space model (SSM) and defined by the transition
model p(zt| zt−1, ut−1) and the observation model p(xt| zt). Both are
independent of time; thus, the same parameters are used for each time
step. As a result, we arrive at the factorisation:

p(x1:T, z1:T| u1:T) =
T

∏
t=1

p(zt| zt−1, ut−1) p(xt| zt), (2.22)

where p(z1| z0, u0) = p(z1) is referred to as the initial or prior distri-
bution.
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Figure 2.2: Graphical model of state-space models.

2.3.2 Bayesian Filtering and Smoothing

In the following, we consider the case where pθ(z1:T| x1:T, u1:T) can be
computed analytically given the parameters θ. Unlike stationary/non-
dynamic systems, where we were not interested in the simple cases
where the posterior can be computed analytically, Bayesian filtering
and smoothing can be a powerful tool in the context of dynamic
systems. It allows us to express the optimal variational distribution by
(e.g. Neal and Hinton, 1998)

q(n+1)
i (z1:T) = pθ(n)

(
z1:T| x(i)1:T, u(i)

1:T

)
,

where the superscript (n) denotes the iteration number of the EM
optimisation process introduced in Section 2.1.2.3. As a consequence,
we can define the sequential ELBO with respect to the entire dataset D
as

FELBO
(
θ, θ(n)

)
= EpD(x1:T ,u1:T)

[
Ep

θ(n)
(z1:T | x1:T ,u1:T)

[
log pθ(x1:T, z1:T| u1:T)

]
−Ep

θ(n)
(z1:T | x1:T ,u1:T)

[
log pθ(n)(z1:T| x1:T, u1:T)

]︸ ︷︷ ︸
constant w.r.t. θ

]
, (2.23)

where pD(x1:T, u1:T) is the empirical distribution representing D. Since
the second term in Eq. (2.23) is constant with respect to the optimisa-
tion parameters, maximising the ELBO is equivalent to maximising

Q
(
θ, θ(n)

)
= EpD(x1:T ,u1:T) Ep

θ(n)
(z1:T | x1:T ,u1:T)

[
log pθ(x1:T, z1:T| u1:T)

]
.

Hence, the variational inference/variational expectation-maximisation
problem (cf. Section 2.1.2.3) is simplified to an expectation-maximisation
problem with the corresponding EM algorithm:

E-step: compute Q
(
θ, θ(n)

)
M-step: θ(n+1) = argmax

θ

Q
(
θ, θ(n)

)
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Considering the Markovian structure of SSMs defined in Eq. (2.22),
we obtain (Schön et al., 2011):

Q
(
θ, θ(n)

)
= EpD(x1:T ,u1:T)

[
Ep

θ(n)
(z1| x1:T ,u1:T−1)

[
log pθ(z1)

]
+

T

∑
t=2

Ep
θ(n)

(zt,zt−1| x1:T ,u1:T−1)

[
log pθ(zt| zt−1, ut−1)

]
+

T

∑
t=1

Ep
θ(n)

(zt| x1:T ,u1:T−1)

[
log pθ(xt| zt)

]]
. (2.24)

Consequently, we do not need the full posterior distribution, but
only the smoothed distributions pθ(n)(zt| x1:T, u1:T−1) and the pairwise
smoothed distributions pθ(n)(zt, zt−1| x1:T, u1:T−1).

2.3.2.1 Bayesian Filtering and Smoothing Equations

The Bayesian filtering equations consist of a prediction and update step
that define the filtered distributions p(zt| x1:t, u1:t−1). The Bayesian
smoothing equations extend the filtering equations by a backward
recursion, which defines the smoothed distributions p(zt| x1:T, u1:T−1)

and pairwise smoothed distributions p(zt, zt−1| x1:T, u1:T−1).

prediction step In the prediction step, the distribution of the
future state—referred to as the predictive distribution—is computed
by means of the transition model using the Chapman–Kolmogorov
equation:

p(zt| x1:t−1, u1:t−1)

=
∫

p(zt| zt−1, ut−1) p(zt−1| x1:t−1, u1:t−2)dzt−1.

update step In the update step, the predictive distribution is
updated by the current observation. To this end, we use Bayes’ theorem
to define the filtered distribution

p(zt| x1:t, u1:t−1) =
p(xt| zt) p(zt| x1:t−1, u1:t−1)∫

p(xt| zt) p(zt| x1:t−1, u1:t−1)dzt
.

backward recursion The backward recursion is initialised by
the filtered distribution at time step T and goes backwards in time
using the smoothing equation (Kitagawa, 1987):

p(zt| x1:T, u1:T−1)

= p(zt| x1:t, u1:t−1)
∫ p(zt+1| zt, ut) p(zt+1| x1:T, u1:T−1)

p(zt+1| x1:t, u1:t)
dzt+1.

(2.25)
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Thus, the pairwise smoothed distribution can be computed by not
marginalising zt+1 in Eq. (2.25) (note that the time steps are shifted by
one):

p(zt, zt−1| x1:T, u1:T−1)

= p(zt−1| x1:t−1, u1:t−2)
p(zt| zt−1, ut−1) p(zt| x1:T, u1:T−1)

p(zt| x1:t−1, u1:t−1)
.

In Sections 2.3.2.2 and 2.3.2.3, we present analytic solutions of the
Bayesian filtering and smoothing equations for linear and nonlinear
Gaussian systems. A more extensive introduction to Bayesian filtering
and smoothing can be found in (Särkkä, 2013).

2.3.2.2 Kalman Filter and Smoother

Linear Gaussian systems are characterised by a linear transition and
observation model:

zt = Ft−1 zt−1 + Bt−1 ut−1 + qt−1,

xt = Ht zt + rt,

where Ft−1, Bt−1, and Ht are the transition, control, and observation
matrices, respectively. The process noise qt−1 ∼ N (0, Qt−1) and obser-
vation noise rt ∼ N (0, Rt) are sampled from zero-mean multivariate
normal distributions. Consequently, the corresponding probabilistic
versions of the transition and observation model are given as follows:

p(zt| zt−1, ut−1) = N (zt| Ft−1 zt−1 + Bt−1 ut−1, Qt−1),

p(xt| zt) = N (xt|Ht zt, Rt).

The Kalman filter algorithm (Kalman et al., 1960) provides the analytic
solutions of the prediction and update step defined in Section 2.3.2.1.
Thus, it allows for analytically computing the filtered distribution
p(zt| x1:t, u1:t−1) for linear Gaussian systems.

The Kalman smoother algorithm (Rauch et al., 1965) is an extension
of the Kalman filter and provides the analytic solutions of the backward
recursion defined in Section 2.3.2.1, i.e. for analytically computing
the smoothed distribution p(zt| x1:T, u1:T−1) and pairwise smoothed
distribution p(zt, zt−1| x1:T, u1:T−1).

prediction step In linear Gaussian systems, the predictive distri-
bution is obtained through

m−t = Ft−1 mt−1 + Bt−1 ut−1,

P−t = Ft−1 Pt−1 FT
t−1 + Qt−1,

where m−t and P−t are the mean and covariance of

p(zt| x1:t−1, u1:t−1) = N (zt|m−t , P−t ).
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update step In order to update the predictive distribution with
the current observation, we use the linear observation model:

vt = xt −Ht m−t ,

St = Ht P−t HT
t + Rt,

Kt = P−t HT
t S−1

t ,

mt = m−t + Kt vt,

Pt = P−t −Kt St KT
t ,

which defines the filtered distribution

p(zt| x1:t, u1:t−1) = N (zt|mt, Pt).

backward recursion The backward recursion starts with the
filtered distribution at time step T—determining ms

T = mT and
Ps

T = PT—and goes backwards in time using the recursive equations

Gt = Pt FT
t
[
P−t+1

]−1, (2.26)

ms
t = mt + Gt

[
ms

t+1 −m−t+1

]
, (2.27)

Ps
t = Pt + Gt

[
Ps

t+1 − P−t+1

]
GT

t . (2.28)

Therefore, at time step t < T, the backward recursion enables the
consideration of all observations up to time step T. As a result, we
obtain the smoothed distribution

p(zt| x1:T, u1:T−1) = N (zt|ms
t , Ps

t).

Furthermore, Eqs. (2.26–2.28) allow us to define the joint mean and
covariance,

m̃s =

(
ms

t

ms
t−1

)
,

P̃s =

(
Ps

t Ps
t GT

t−1

Gt−1 Ps
t Ps

t−1

)
,

of the pairwise smoothed distribution

p(zt, zt−1| x1:T, u1:T−1) = N (zt, zt−1| m̃s, P̃s).

The Kalman smoother algorithm therefore enables us to compute
Q(θ, θ(n)) in Eq. (2.24) for linear Gaussian systems.

2.3.2.3 Extended Kalman Filter and Smoother

Under the assumption that process and observation noises are additive,
nonlinear Gaussian systems can be characterised by

zt = f(zt−1, ut−1) + qt−1,

xt = h(zt) + rt,
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where f(zt−1, ut−1) and h(zt) are nonlinear functions referred to as
the transition and the observation model function. In order to enable
an analytic computation, f(zt−1, ut−1) and h(zt) are locally linearised
in the extended Kalman filter/smoother algorithm using a first-order
Taylor series expansion, as we describe below.

prediction step The prediction step follows the same concept
as the original Kalman filter/smoother algorithm, with the difference
that the local Jacobian of the transition model function is used for
computing the covariance of the predictive distribution:

m−t = f(mt−1, ut−1),

P−t = Fz(mt−1, ut−1) Pt−1 FT
z (mt−1, ut−1) + Qt−1,

where

Fz(mt−1, ut−1) =
∂f(z, u)

∂z

∣∣∣∣
mt−1,ut−1

. (2.29)

update step According to the same principle as the prediction
step, the observation model function is locally linearised around m−t in
order to compute the mean and covariance of the filtered distribution:

vt = xt − h(m−t ),

St = Hz(m−t ) P−t HT
z (m

−
t ) + Rt,

Kt = P−t HT
z (m

−
t ) S−1

t ,

mt = m−t + Kt vt,

Pt = P−t −Kt St KT
t ,

where

Hz(m−t ) =
∂h(z)

∂z

∣∣∣∣
m−t

is the local Jacobian of the observation model function.

backward recursion The backward recursion is identical to the
Kalman smoother except that the local Jacobian defined in Eq. (2.29)
is used as transition matrix:

Gt = Pt FT
z (mt, ut)

[
P−t+1

]−1, (2.30)

ms
t = mt + Gt

[
ms

t+1 −m−t+1

]
, (2.31)

Ps
t = Pt + Gt

[
Ps

t+1 − P−t+1

]
GT

t . (2.32)

The Eqs. (2.30–2.32) define the smoothed and pairwise smoothed dis-
tribution, p(zt| x1:T, u1:T−1) and p(zt, zt−1| x1:T, u1:T−1), respectively.
Hence, the extended Kalman smoother algorithm allows the computa-
tion of Q(θ, θ(n)) in Eq. (2.24) for nonlinear Gaussian systems.
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However, the necessity of locally-linear approximations is a disad-
vantage that causes the extended Kalman filter/smoother to perform
poorly in problems with significant nonlinearities, as it is the case
for image data (Särkkä, 2013). We address this issue in the following
section.

2.3.3 Amortised Variational Inference

Amortised variational inference enables modelling probability distri-
butions of highly nonlinear data, as demonstrated in Section 2.2.1.
This is achieved by introducing an amortised approximate posterior
distribution

qi(z1:T) → qφ

(
z1:T| x(i)1:T, u(i)

1:T

)
,

also referred to as recognition model. Consequently, we can define the
sequential ELBO as

FELBO(θ, φ) = EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
log

pθ(x1:T, z1:T| u1:T)

qφ(z1:T| x1:T, u1:T)

]
,

where pD(x1:T, u1:T) is the empirical distribution representing D. In-
stead of an EM-based optimisation, amortised variational inference
allows us to maximise the ELBO by optimising (θ, φ) jointly, as dis-
cussed in Section 2.2.1.2.

By taking into account the Markovian structure of SSMs in Eq. (2.22),
we obtain (Krishnan et al., 2015):

FELBO(θ, φ) = EpD(x1:T ,u1:T)

[
Eqφ(z1| x1:T ,u1:T)

[
log

p(z1)

qφ(z1| x1:T, u1:T)

]

+
T

∑
t=2

Eqφ(zt,zt−1| x1:T ,u1:T)

[
log

pθ(zt| zt−1, ut−1)

qφ(zt| zt−1, xt:T, ut−1:T)

]

+
T

∑
t=1

Eqφ(zt| x1:T ,u1:T)

[
log pθ(xt| zt)

]]
. (2.33)

Similar to the framework of variational autoencoders, the sequential
ELBO in Eq. (2.33) can be divided into a reconstruction term and a
KL term. The reconstruction term is defined by

T

∑
t=1

Eqφ(zt| x1:T ,u1:T)

[
log pθ(xt| zt)

]
,

whereas the KL term consists of a prior KL,

Eqφ(z1| x1:T ,u1:T)

[
log

p(z1)

qφ(z1| x1:T, u1:T)

]
= −KL

(
qφ(z1| xt:T, ut−1:T)‖ p(z1)

)
,
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for the initial time step and transition KLs for time steps T ≤ t ≤ 2:

Eqφ(zt,zt−1| x1:T ,u1:T)

[
log

pθ(zt| zt−1, ut−1)

qφ(zt| zt−1, xt:T, ut−1:T)

]
=−Eqφ(zt−1| x1:T ,u1:T)

[
KL
(
qφ(zt| zt−1, xt:T, ut−1:T)‖ pθ(zt| zt−1, ut−1)

)]
.

The distribution parameters of pθ(xt| zt), pθ(zt| zt−1, ut−1), and
qφ(zt| x1:T, u1:T) are functions of the conditioning variables. If we use,
for example, Gaussian distributions, which is the most common case,
we obtain:

pθ(xt| zt) = N
(
xt| µθ(zt), Σθ(zt)

)
,

pθ(zt| zt−1, ut−1) = N
(
zt| µθ(zt−1, ut−1), Σθ(zt−1, ut−1)

)
,

qφ(zt| x1:T, u1:T) = N
(
zt| µφ(x1:T, u1:T), Σφ(x1:T, u1:T)

)
.

The functions representing the distribution parameters of pθ(xt| zt)

and pθ(zt| zt−1, ut−1) are usually modelled by MLPs or CNNs, as de-
scribed in Section 2.2.1.1. In order to process sequential data, as is
the case with qφ(zt| x1:T, u1:T), recurrent neural networks (RNNs) are
typically used. Thus, the RNN is expected to replace the Bayesian fil-
tering and smoothing equations discussed in Section 2.3.2.1. Common
RNN architectures are long short-term memorys (LSTMs) (Hochreiter
and Schmidhuber, 1997) or gated recurrent units (GRUs) (Cho et al.,
2014).2 This class of SSMs is therefore also referred to as DSSMs.

A key challenge in the context of DSSMs is the implementation of
the conditional approximate posterior qφ(zt| zt−1, xt:T, ut−1:T) within
the neural setting. In Chapter 4, we present established state-of-the-art
methods that address this issue and show how combining amortised
variational inference with classic Bayesian filtering/smoothing can be
a powerful approach in this regard.

2 We refer to (Goodfellow et al., 2016) for a detailed introduction to neural network
architectures.



3
L E A R N I N G I N F O R M AT I V E L AT E N T R E P R E S E N -
TAT I O N S W I T H VA R I AT I O N A L AU T O E N C O D E R S

The methods and experimental results discussed in this chapter have been
previously published in (Klushyn et al., 2019b). Sections 3.1, 3.3, 3.4, and
3.5 are based on revised text from this publication.

This chapter addresses the question of how to learn latent representa-
tions with variational autoencoders (VAEs) that reflect the factors of
variation and topology of observed data

VAEs are a class of probabilistic latent-variable models for unsuper-
vised learning (Kingma and Welling, 2014; Rezende et al., 2014). They
model the unknown distribution of observed data by learning a map-
ping from a (predefined) prior distribution. The resulting generative
model is a useful tool for a wide range of applications. For example,
the generation of photo-realistic images (Child, 2020; Razavi et al.,
2019) and coherent text (Bowman et al., 2016; Hu et al., 2017)—or
the automatic design of chemicals and molecules (Gómez-Bombarelli
et al., 2018; Riesselman et al., 2018).

As detailed in Section 2.2.1, VAEs learn the generative model by
simultaneously inferring an approximate posterior distribution of
latent variables, which is expected to capture semantically meaningful
features of the observed data. The informative value of the inferred
latent representation has a significant impact on the quality of the
learned generative model (X. Chen et al., 2017; Kingma et al., 2016;
Rezende and Mohamed, 2015).

The prior distribution over the latent variables is typically defined as
a standard normal distribution. However, in the context of VAEs, this
often leads to an over-regularised posterior distribution resulting in
latent representations that do not reflect the topology of the observed
data, as we verify in Section 3.5

To solve this problem, we draw on concepts from previous work,
which can be grouped into two categories: optimisation algorithms
and empirical Bayes methods. Bowman et al. (2016), Higgins et al.
(2017), and Rezende and Viola (2018) have developed optimisation
algorithms that facilitate finding minima in the objective function of
VAEs—known as the evidence lower bound (ELBO)—which corre-
spond to informative latent representations. X. Chen et al. (2017) and
Tomczak and Welling (2018) have proposed empirical Bayes meth-
ods for learning complex prior distributions in order to avoid an
over-regularisation of the approximate posterior. In the following,
we combine these two approaches and show how this enables VAEs

25
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to learn latent representations reflecting the factors of variation and
topology of the observed data:

• In Section 3.1, we formulate the ELBO as the Lagrangian of a
constrained optimisation problem. To this end, we impose an
inequality constraint on the reconstruction error and use the
KL between the approximate posterior and the standard normal
prior as the optimisation objective. This allows controlling the
reconstruction quality achieved by the VAE.

• Section 3.2 provides a detailed analysis of the introduced con-
strained optimisation-based formulation: we prove that the op-
timisation problem is concave with respect to the Lagrange
multiplier and derive the connection to the ELBO for Bernoulli
and Gaussian likelihood distributions.

• In Section 3.3, we introduce a hierarchical empirical Bayes prior
and the associated constrained optimisation algorithm. This
extends the VAE to a two-level stochastic model, such that the
first layer learns the latent representation and the second layer
models the empirical Bayes prior. Therefore, the model is capable
of learning complex latent representations reflecting the topology
of the observed data.

• In Section 3.4, we propose a graph-based interpolation method,
which allows us to validate the quality of the learned latent
representation on the basis of the manifold hypothesis.

• In Section 3.5, we evaluate our approach. This includes exper-
iments on a moving pendulum, on real-world human motion
data, on standard benchmark datasets, and on high-dimensional
image data.

3.1 variational autoencoders as a constrained optimi-
sation problem

VAEs model an unknown distribution of i.i.d. data D = {xi}N
i=1 by

means of typically lower-dimensional latent variables:

∏
i

pθ(xi) = ∏
i

∫
pθ(xi|z) p(z)dz. (3.1)

Supplementary to the general introduction to VAEs in Section 2.2.1, we
emphasise some important details that are relevant for understanding
our proposed method.

The model parameters in Eq. (3.1) are learned through amortised
variational inference. This requires introducing an approximate poste-
rior distribution qφ(z|x) ≈ pθ(z|x), which we use to learn an informa-
tive latent representation of the observed data D, allowing the VAE to
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generalise to unseen data. For example,
{

Eqθ(z|xi)[z]
}N

i=1 cluster with
respect to some discrete features or important factors of variation in D.

This allows us to learn the model parameters (θ, φ) by maximising
the ELBO:

EpD(x)
[

log pθ(x)
]
≥ FELBO(θ, φ)

= EpD(x)

[
Eqφ(z|x)

[
log pθ(x|z)

]
−KL

(
qφ(z|x)‖ p(z)

)]
, (3.2)

where qφ(z|x) and pθ(x|z) are typically assumed to be diagonal Gaus-
sians, and pD(x) = 1

N ∑N
i=1 δ(x− xi) represents the empirical distribu-

tion of D.
Amortised variational inference was originally formulated as an

EM optimisation problem, i.e. as a double-loop algorithm, which is
described in Section 2.1.2.3:

min
θ, φ
−FELBO(θ, φ) =̂

M-step︷︸︸︷
min

θ
min

φ︸︷︷︸
E-step

−FELBO(θ, φ).

In the context of VAEs and neural inference models in general, though,
it is common practice to optimise the parameters (θ, φ) jointly.

However, it has been shown that local minima with high ELBO
values do not necessarily result in informative latent representations
(Alemi et al., 2018; Higgins et al., 2017). In order to address this
problem, several approaches have been developed, which typically
introduce weighting schedules for either the negative expected log-
likelihood or the KL in the ELBO (Bowman et al., 2016; Sønderby
et al., 2016). This is because a different ratio targets different regions
in the rate–distortion plane, either favouring better reconstruction or
compression (Alemi et al., 2018).

Rezende and Viola (2018) reformulate the ELBO as the Lagrangian
of a constrained optimisation problem1. They specify the Kullback-
Leibler divergence KL

(
qφ(z|x)‖ p(z)

)
as optimisation objective and

impose the inequality constraint Eqφ(z|x)
[
Cθ(x, z)

]
≤ κ2. Here, Cθ(x, z)

is defined as the reconstruction-error-related term in − log pθ(x|z).
As a consequence, this formulation allows for a better control of the
quality of the reconstructed data. In the resulting Lagrangian

L(θ, φ; λ)

= EpD(x)

[
KL
(
qφ(z|x)‖ p(z)

)
+ λ

(
Eqφ(z|x)

[
Cθ(x, z)

]
− κ2

)]
,

(3.3)

the Lagrange multiplier λ can be viewed as a weighting term for
EpD(x) Eqφ(z|x)

[
− log pθ(x|z)

]
.

1 We refer to (Boyd et al., 2004) for a detailed introduction to constrained optimisation
with Lagrange multipliers.
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This approach leads to a similar optimisation objective, as defined by
Higgins et al. (2017), with β = 1/λ. Rezende and Viola (2018) propose
a descent-ascent algorithm (GECO) for finding the saddle point of
the Lagrangian. The parameters (θ, φ) are optimised through gradient
descent, and λ is updated as

λt = λt−1 · exp
(
ν ·
(
Ĉt − κ2)) , (3.4)

corresponding to a quasi-gradient ascent due to ∆λt · ∂λL ≥ 0. Here,
ν is the update’s learning rate. In the context of stochastic batch gradi-
ent training, Ĉt ≈ EpD(x) Eqφ(z|x)

[
Cθ(x, z)

]
is estimated as the running

average Ĉt = (1− α) · Ĉba + α · Ĉt−1, where Ĉba is the batch average
EpD(xba) Eqφ(z|x)

[
Cθ(x, z)

]
.

However, Cθ(x, z) is not optimised in the classical constrained opti-
misation setting, and thus the parameters θ are not optimised either.
To address this issue, we interpret the optimisation problem as a
sequence of constrained optimisation problems. To the best of our
understanding—this is not explicitly stated in Rezende and Viola
(2018)—the GECO algorithm solves

M-step︷︸︸︷
min

θ
max

λ
min

φ︸ ︷︷ ︸
E-step

L(θ, φ; λ) s.t. λ ≥ 0, (3.5)

where the constrained optimisation problem maxλ minφ L(θ, φ; λ) and
the M-step minθ L(θ, φ; λ) are alternately updated. However, in gen-
eral, the Lagrangian can only be guaranteed to optimise the ELBO if
λ = 1, or in case of 0 ≤ λ < 1, a scaled lower bound on the ELBO.
In Section 3.2, we show that the optimisation problem in Eq. (3.5) is
concave with respect to the newly introduced Lagrange multiplier λ

and provide a detailed discussion about the connection to the ELBO.

3.2 analysis of the constrained optimisation-based for-
mulation

In Section 3.1, we have reformulated the ELBO as the Lagrangian of a
constrained optimisation problem. This can be viewed as an alternative
approach for optimising VAEs. Yet it might be helpful to discuss two
important points in more detail.

We have argued that the original EM optimisation problem can
be formulated as a sequence of constrained optimisation problems
(Eq. (3.5)), where the constrained optimisation corresponds to the
E-step. In this section, we prove that the optimisation problem in
Eq. (3.5) is concave with respect to the newly introduced Lagrange
multiplier λ—and show explicitly the connection to the ELBO on the
example of Bernoulli and Gaussian likelihood distributions.
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3.2.1 Concavity of the Optimisation Problem

By formulating the ELBO as the Lagrangian of a constrained optimi-
sation problem, we introduce a Lagrange multiplier λ. This adds an
additional optimisation cycle with respect to λ to the classical EM
approach. In the following, we analyse if the optimisation problem is
concave with respect to the Lagrange multiplier and explain the idea
behind the introduced update scheme for λ in Eq. (3.4). As a first step,
we derive the optimal q∗i (z) in distribution space:

L(θ, qi(z); λ) = KL
(
qi(z)‖ p(z)

)
+ λ

(
Eqi(z)

[
Cθ(xi, z)

]
− κ2).

For simplicity, the normalisation constraints
∫

qi(z)dz = 1 are not
explicitly stated. By setting the derivative ∂qiL(θ, qi(z); λ) to zero:

∂qi

(∫ (
log

qi(z)
p(z)

+ λ Cθ(xi, z)− λ κ2
)

qi(z)dz
)

!
= 0,

we obtain

q∗i (z) =
1

Z(λ)
p(z) exp

(
− λ Cθ(xi, z)

)
,

where Z(λ) =
∫

p(z) exp
(
− λ Cθ(xi, z)

)
dz is the normalising factor.

The constrained optimisation problem can now be reduced to

max
λ

min
qi(z)
L(θ, qi(z); λ) = max

λ
L(θ, q∗i (z); λ),

with

L(θ, q∗i (z); λ) = Eq∗i (z)

[
log

p(z) exp
(
− λ Cθ(xi, z)

)
Z(λ) p(z)

]
+ λ

(
Eq∗i (z)

[
Cθ(xi, z)

]
− κ2

)
= − log Z(λ)− λ κ2.

As a next step, we compute

∂λL(θ, q∗i (z); λ) = − 1
Z(λ)

∂λZ(λ)− κ2

=
1

Z(λ)

∫
p(z) exp

(
− λ Cθ(xi, z)

)
Cθ(xi, z)dz− κ2

=
Z(λ)
Z(λ)

∫
q∗i (z) Cθ(xi, z)dz− κ2

= Eq∗i (z)
[
Cθ(xi, z)

]
− κ2 (3.6)

and

∂2
λL(θ, q∗i (z); λ) = ∂λ

(
− 1

Z(λ)
∂λZ(λ)− κ2

)
= −Z(λ) ∂2

λZ(λ)− ∂λZ(λ) ∂λZ(λ)
Z(λ)2

= −Eq∗i (z)
[
Cθ(xi, z)2]+ Eq∗i (z)

[
Cθ(xi, z)

]2︸ ︷︷ ︸
≤0

. (3.7)
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Eq. (3.7) can be interpreted as a negative variance term; thus, it is less
than or equal to zero. As a result, L(θ, q∗i ; λ) is concave down with
respect to λ and has a global maximum at Eq∗i (z)

[
Cθ(xi, z)

]
= κ2. In

practice, we do not optimise over distribution space, and qφ(z| x) is
often a highly non-convex function. However, we show empirically in
Section 3.5.3 that this does not introduce limitations to our method.

Furthermore, Eq. (3.6) allows for a better interpretation of the up-
date rule λt = λt−1 exp

(
∝ (Ĉt − κ2)

)
(see definition in Eq. (3.4)). The

comparison of the two equations shows that the update of λ is aligned
with the gradient. However, due to the use of the exponential function,
the step size varies in an elegant way: the larger the distance to the
optimum the larger the update step, and vice versa. This leads to a
faster convergence of the optimisation procedure.

3.2.2 Connection to the Evidence Lower Bound

In Section 3.1, we argued minθ maxλ minφ L(θ, φ; λ) optimises the
ELBO if and only if λ = 1. In the following, we draw a connection
between the Lagrangian and the negative ELBO—and clarify the role
of the Lagrange multiplier on the example of Bernoulli and Gaussian
likelihood distributions.

Note that the negative ELBO and the Lagrangian are not necessarily
identical, but optimising them:

min
θ

min
φ
−FELBO(θ, φ),

min
θ

max
λ

min
φ
L(θ, φ; λ) s.t. λ ≥ 0,

can lead to the same parameters (θ, φ). In order to figure out under
which conditions this is the case, we look at the gradients:

∃λ ≥ 0 : −∇θ, φ FELBO(θ, φ) = ∇θ, φ L(θ, φ; λ).

Since the KL term is identical in FELBO(θ, φ) and L(θ, φ; λ) (cf. Eq. (3.2)
and Eq. (3.3)), we focus on the difference between − log pθ(x|z) and
Cθ(x, z). The latter is defined as the reconstruction-error-related term
in the negative log-likelihood. To do this, we analyse Cθ(x, z) on the
example of two frequently used likelihood distributions in the context
of VAEs: the Bernoulli and the Gaussian distribution.

3.2.2.1 Bernoulli Likelihood Distribution

In case of a Bernoulli likelihood distribution, the probability of success,
p, is a function of the latent variable:

pθ(x|z) =
D

∏
d=1

(
f (d)θ (z)︸ ︷︷ ︸

pd

)xd
(
1− f (d)θ (z)

)1−xd ,
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where D is the dimensionality of x. We define the reconstruction-error-
related term Cθ(x, z) as the binary cross entropy, which is a natural
choice:

Cθ(x, z) = −
D

∑
d=1

xd log f (d)θ (z) + (1− xd) log
(
1− f (d)θ (z)

)
.

As a consequence, Cθ(x, z) is identical to − log pθ(x|z). It follows that
the negative ELBO and the Lagrangian are identical for λ = 1 (cf.
Eq. (3.2) and Eq. (3.3)):

−FELBO(θ, φ) = L(θ, φ; λ = 1).

Thus, we obtain

−∇θ, φ FELBO(θ, φ) = ∇θ, φ L(θ, φ; λ = 1).

Note that for 0 ≤ λ < 1, we optimise a lower bound on the ELBO since
the impact of the KL, which can be interpreted as a regularisation
term, is increased. Conversely, L(θ, φ; λ) does not represent a lower
bound on EpD(x)

[
log pθ(x)

]
anymore if λ > 1.

3.2.2.2 Gaussian Likelihood Distribution

The Gaussian likelihood distribution in VAEs is typically defined to
have a diagonal covariance matrix (Kingma and Welling, 2014). This
is due to improving computational efficiency. Furthermore, current
research, e.g. by Rybkin et al. (2020), shows that parametrising the
covariance matrix by a global standard deviation σ (i.e. Σ = 1 σ2)
achieves better results in terms of generation quality and numerical
stability. The mean µ, by contrast, is defined as a function of the latent
variable. As a consequence, we obtain:

pθ(x|z) =
D

∏
d=1

1√
2πσ2

exp

(
−
(
xd −

µd︷ ︸︸ ︷
f (d)θ (z)

)2

2σ2

)
.

The reconstruction-error-related term Cθ(x, z) is specified as

Cθ(x, z) =
D

∑
d=1

(
xd − f (d)θ (z)

)2

2σ2 ,

which corresponds to a scaled squared error. For this reason, the
gradients are identical for λ = 1 and a given σ:

−∇θ, φ FELBO(θ, φ) = ∇θ, φ L(θ, φ; λ = 1).

Note that σ can be either predefined or learned in a separate loop.
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As in case of the Bernoulli likelihood distribution, a lower bound on
the ELBO is optimised if 0 ≤ λ < 1. For λ > 1, minimising L(θ, φ; λ)

does not result in maximising a lower bound on EpD(x)
[

log pθ(x)
]

due
to the ratio between the KL and the reconstruction term.

3.3 hierarchical priors for learning informative la-
tent representations

In this section, we propose a hierarchical empirical Bayes prior for
VAEs and integrate it with the constrained optimisation method de-
rived in Section 3.1. The goal is to incentivise the learning of infor-
mative latent representations as well as to avoid over-regularising the
posterior. We achieve this by increasing the complexity of the prior
distribution and by providing an optimisation method to learn such
models. An introduction to empirical Bayes in the context of amortised
variational inference can be found in Section 2.2.3.

3.3.1 Variational Hierarchical Prior

It has been shown by Tomczak and Welling (2018) that the opti-
mal empirical Bayes prior is the aggregated posterior distribution
p∗(z) = EpD(x)

[
qφ(z|x)

]
. We follow Tomczak and Welling (2018) to

approximate the aggregated posterior by a mixture distribution. How-
ever, we opt for a continuous mixture in form of a hierarchical model

p∗(z) ≈ pΘ(z) =
∫

pΘ(z|ζ) p(ζ)dζ,

with a standard normal p(ζ). As a result, intuitively, our approach
inherently favours the learning of continuous latent features.

In order to learn a precise conditional pΘ(z|ζ), we use an importance-
weighted lower bound (Burda et al., 2016) on the optimal empirical
Bayes prior, i.e. on the aggregated posterior distribution:

Ep∗(z)
[

log pΘ(z)
]
= EpD(x) Eqφ(z|x)

[
log pΘ(z)

]
≤ EpD(x) Eqφ(z|x) Eζ1:K∼qΦ(ζ|z)

[
log

1
K

K

∑
k=1

pΘ(z|ζk) p(ζk)

qΦ(ζk|z)

]
︸ ︷︷ ︸

=FVHP(Θ,Φ; z)

,

where K is the number of importance samples. A more detailed ex-
planation of the importance-weighted lower bound can be found
in Section 2.2.2. We refer to this model as variational hierarchical
prior (VHP). The VHP defines an upper bound on the KL, which
leads to a hierarchical model with two stochastic layers:

EpD(x)

[
KL
(
qφ(z|x)‖ pΘ(z)

)]
≤ FVHP-VAE(φ, Θ, Φ)

= EpD(x) Eqφ(z|x)
[

log qφ(z|x)−FVHP(Θ, Φ; z)
]
. (3.8)
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Learning the VHP as part of the VAE is in line with our optimisation
problem in Section 3.1 because Eq. (3.8) is an upper bound on the
KL and thus a lower bound on the ELBO. As a result, we obtain the
Lagrangian

LVHP-VAE(θ, φ, Θ, Φ; λ)

= FVHP-VAE(φ, Θ, Φ) + λ
(

EpD(x) Eqφ(z|x)
[
Cθ(x, z)

]
− κ2

)
(3.9)

and arrive at the constrained optimisation problem

min
Θ,Φ︸︷︷︸

Empirical
Bayes

M-step︷︸︸︷
min

θ
max

λ
min

φ︸ ︷︷ ︸
E-step

LVHP-VAE(θ, φ, Θ, Φ; λ) s.t. λ ≥ 0. (3.10)

3.3.2 Optimisation Algorithm

The constrained optimisation problem in Eq. (3.10) can be optimised
by the following double-loop algorithm: in the outer loop the bound
is updated with respect to (Θ, Φ); in the inner loop the optimisation
problem minθ maxλ minφ LVHP-VAE(θ, φ, Θ, Φ; λ) is solved by applying
an update scheme for λ or β = 1/λ. In the following, we use the
β-parametrisation to be in line with, for instance, Higgins et al. (2017)
and Sønderby et al. (2016).

In the GECO update scheme (Eq. (3.4)), β increases/decreases until
Ĉt = κ2. However, if the constraint is fulfilled, we want to obtain a
tight lower bound on the log-likelihood. As discussed in Section 3.1,
this holds when β = 1 (ELBO)—for β > 1, we would optimise a
scaled lower bound on the ELBO. Therefore, we propose to replace
the corresponding β-version of Eq. (3.4) by

βt = βt−1 · exp
[
ν · fβ

(
βt−1, Ĉt − κ2; τ

)
·
(
Ĉt − κ2)] , (3.11)

where we define

fβ(β, δ; τ) =
(
1− H(δ)

)
· tanh

(
τ · (β− 1)

)
− H(δ).

Here, H(•) is the Heaviside function, and we introduce the slope
parameter τ. A visualisation of the β-update scheme, as well as a
comparison to GECO, is shown in Figure 3.1. The update can be inter-
preted as follows: if the constraint is violated, i.e. Ĉt > κ2, the update
scheme is equivalent to Eq. (3.4). In case the constraint is fulfilled, the
tanh term guarantees that the optimisation process finishes at β = 1 to
obtain/optimise the ELBO at the end of the training. Thus, we impose
β ∈ (0, 1], which is reasonable since β < βmax does not violate the
constraint.
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Figure 3.1: β-update schemes of REWO and GECO: ∆βt = βt − βt−1 as a
function of βt−1 and Ĉt − κ2 for ν = 1 and τ = 3.

Note that there are alternative ways to modify Eq. (3.4), as shown
in Section 3.5.1. However, in our experiments Eq. (3.11) achieves the
best results.

The double-loop approach in Eq. (3.10) is often computationally
inefficient. Therefore, we choose to run the inner loop only until the
constraint is fulfilled. That is, we optimise Eq. (3.10) with respect to
(θ, φ) and skip the outer loop (empirical Bayes) updates when the
constraint is not satisfied. It turned out that the bound updates were
often skipped in the initial phase, but rarely skipped later on. Hence,
the algorithm behaves as layer-wise pre-training (Bengio et al., 2007).
For these reasons, we propose Algorithm 2 (REWO) that separates
the training into two phases: an initial phase where we only optimise
the reconstruction error and a main phase where all parameters are
updated jointly.
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Algorithm 2 (REWO) Reconstruction-error-based weighting of the
objective function

Initialise t = 1
Initialise β� 1
Initialise InitialPhase = True

while training do
Read current data batch xba

1:T
Sample from variational posterior z ∼ qφ(z|xba)

Compute Ĉba = 1
batch_size ∑i Cθ(xi, zi)

Compute Ĉt = (1− α) · Ĉba + α · Ĉt−1, (Ĉ0 = Ĉba)
if Ĉt < κ2 then

InitialPhase = False

end if
if InitialPhase then

Optimise LVHP-VAE(θ, φ, Θ, Φ; β) w.r.t. θ, φ
else

β← β · exp
[
ν · fβ

(
β, Ĉt − κ2; τ

)
·
(
Ĉt − κ2)]

Optimise LVHP-VAE(θ, φ, Θ, Φ; β) w.r.t. θ, φ, Θ, Φ
end if
t← t + 1

end while

The initial phase starts with β� 1 to enforce a reconstruction opti-
misation. Thus, the model is first trained to achieve a good encoding
of the data through qφ(z|x), which is measured by the reconstruction
error. In order to prevent β of becoming smaller than the initial value
during the first iteration steps, we do not update β as long as the
condition Ĉt < κ2 is not fulfilled. A good encoding is required to learn
the conditionals qΦ(ζ|z) and pΘ(z|ζ) in the second stochastic layer. In
the main phase, i.e. as soon as Ĉt < κ2 is fulfilled, we additionally start
to optimise the parameters of the second stochastic layer (Θ, Φ) and
to update β. This approach avoids posterior collapse in both stochastic
layers and helps the VHP to learn an informative latent representation
of the observed data. See Section 3.5.1 for empirical evidence.

3.3.3 Summarising Note

The proposed method—which is a combination of an ELBO-like La-
grangian and an importance-weighted lower bound—can be inter-
preted as follows: the posterior of the first stochastic layer qφ(z|x)
can learn an informative latent representation due to the hierarchical
empirical Bayes prior. The parameters of the prior are optimised by ap-
plying an importance-weighted lower bound on the optimal empirical
Bayes prior, which is the aggregated posterior EpD(x)[qφ(z|x)]. Despite
the diagonal Gaussian qΦ(ζ|z), the importance weighting allows us to
learn a precise conditional pΘ(z|ζ) from the standard normal distribu-
tion p(ζ) to the aggregated posterior (cf. Section 2.2.2). Note that for
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this purpose we could have also used, for example, normalising flows
(Rezende and Mohamed, 2015) instead of importance weighting.

3.4 graph-based interpolation for verifying latent rep-
resentations

A major reason for using the VHP is to facilitate the learning of
informative latent representations, as it allows for less over-regulation
of the posterior distribution.

To verify the quality of the latent representations, we build on the
manifold hypothesis defined by Cayton (2005) and Rifai et al. (2011a).
It can be summarised by the following assumption: real-world data
presented in high-dimensional spaces is likely to concentrate in the
vicinity of nonlinear sub-manifolds of much lower dimensionality,
where distance reflects the similarity of data. Following this hypothe-
sis, we can evaluate the quality of a learned latent representation—i.e.
if the latent representation reflects the topology of the data—by recon-
structing interpolations between points on the latent manifold.

To realise the above idea, we propose a graph-based method (N.
Chen et al., 2019) that summarises the continuous latent space by a
graph consisting of a finite number of nodes Z = {z1, . . . , zN}. The
nodes are N random samples from the (learned) prior distribution:

zn, ζn ∼ pΘ(z|ζ) p(ζ), n = 1, . . . , N.

The graph is constructed by connecting each node through undirected
edges to its k-nearest neighbours. The edge weights are defined as the
Euclidean distances between the related node pairs in the latent space.

Once the graph is built, interpolation between two additional data
points xi and xj can be realised as follows: first, both data points
are encoded z(•) = µφ(x(•)), where µφ(x(•)) is the mean of qφ(z|x(•)),
and added as new nodes to the existing graph. Afterwards, a clas-
sic search algorithm such as A? can be used to find the shortest
path between zi and zj through the graph. The result is a sequence
Zpath =

(
zi, Zsub, zj

)
—with Zsub ⊆ Z—that represents the shortest path

on the learned latent manifold. Finally, we obtain the interpolation by
reconstructing Zpath to the observable space.

3.5 experimental results

We conduct the following experiments to validate our approach. In
Section 3.5.1, we demonstrate that our method learns to represent the
factor of variation in the data of a moving pendulum. Section 3.5.2
deals with the generation of human movements based on the learned
latent representations of real-world human motion data (CMU Graph-
ics Lab Motion Capture Database). In Section 3.5.3, we evaluate the
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marginal log-likelihood on standard datasets, such as MNIST, Fashion-
MNIST, and OMNIGLOT. In Section 3.5.4, the method is compared
on the high-dimensional image datasets 3D Faces and 3D Chairs.
The model architectures used in our experiments can be found in
Appendix A.1.1.

3.5.1 Artificial Pendulum Dataset

We have created a dataset of 15,000 images of a moving pendulum
(see Figure 3.7). Each image has a size of 16× 16 pixels, and the joint
angles are distributed uniformly in the range [0, 2π). Thus, the joint
angle is the only factor of variation.

3.5.1.1 Comparison of Different Optimisation Approaches

Figure 3.2 shows latent representations of the pendulum data learned
by the VHP when applying REWO or GECO (we use the same κ

in both cases). The variance of the posterior’s standard deviation,
expressed by the greyscale, measures whether the contribution to the
ELBO is equally distributed over all data points.

Furthermore, we compare REWO and GECO to the classical amor-
tised variational inference approach. In the latter, we optimise the VAE
objective (not the Lagrangian) defined as the combination of an ELBO
and an importance-weighted bound, similar to Eq. (3.9). The main
difference is that Cθ(x, z) is replaced by the negative log-likelihood.
Additionally, we combine amortised variational inference with warm
up (WU) (Sønderby et al., 2016): a linear annealing schedule of β,
which is an established method for improving the optimisation pro-
cess and for avoiding posterior collapse. The related plots can be found
in Figure 3.3.

To validate how informative the learned latent representations are,
we apply a linear regression (Figure 3.4), where the rotation angles

Table 3.1: Prediction of the pendulum’s joint angle by means of an OLS re-
gression on the learned latent representation. The encodings are transformed
to polar coordinates, and the rotation angles are used as labels.

method absolute error

VHP + REWO 0.054

VHP + GECO 0.53

VHP?
0.49

VHP? + WU (20 epochs) 0.20

VHP? + WU (200 epochs) 0.31

?VAE objective optimised through amortised variational inference
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(a) VHP

(b) VHP + WU (20 epochs)

(c) VHP + WU (200 epochs)

Figure 3.3: Latent representation of the pendulum data at different iteration
steps when optimising the VHP via amortised variational inference (+WU).
The top row shows samples from the approximate posterior, where the colour
encodes the rotation angle of the pendulum. The bottom row shows samples
from the hierarchical prior.
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Figure 3.4: Prediction of the pendulum’s joint angle by an OLS regression on
the latent representations learned by the VHP when applying REWO, GECO,
or amortised variational inference (+WU). The absolute errors can be found
in Table 3.1.

(ground truth) function as labels. For this purpose, the encodings are
transformed to polar coordinates, where the encoded rotation angle
is computed by arcsin(z2/r). Here, z2 is the second dimension of the
latent space, and the radius r is estimated from the learned latent
representation. The goal is to predict the joint angle of the pendulum
as precise as possible. Table 3.1 shows the absolute errors of the
ordinary least squares (OLS) regression on the latent representations
learned by the different optimisation approaches. As a result, REWO
leads to the most precise representation of the ground truth.

3.5.1.2 Variational Hierarchical Prior Without Importance Weighting

In the context of VAEs, optimising an importance-weighted bound
instead of the original ELBO results in a more expressive posterior
distribution (Cremer et al., 2017). In the following, we demonstrate
the impact of the importance-weighted bound in the second stochastic
layer in our model on the learned latent representation. Without
importance weighing, the VHP learns poor encodings, as shown in
Figure 3.5a. This is because the model compensates the less expressive
posterior qΦ(ζ|z) (compared to the original VHP implementation) by
restricting qφ(z|x), as discussed in Section 3.3.

3.5.1.3 Alternative Update Scheme for the Lagrange Multiplier

In the following, we compare our proposed update rule in Eq. (3.11)
with an alternative one in order to elaborate on our design choices. The
alternative λ-update scheme also guarantees λ ≥ 1 and thus β ≤ 1:

λt = 1 + τ · γt, with γt = γt−1 · exp
(
ν · (Ĉt − κ2)

)
. (3.12)
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where ν is defined as the update’s learning rate, and τ is a slope
parameter. Eq. (3.12) defines the β-update scheme as

βt =
1

1 + τ · γt
. (3.13)

Figure 3.5b shows the latent representation learned by the VHP
when applying REWO with the alternative update rule from Eq. (3.13).
In our experiments, Eq. (3.13) was more difficult to tune than the
proposed β-update in Eq. (3.11), resulting in less informative latent
representations (cf. Figure 3.5b and Figure 3.2a). Furthermore, unlike
the update rule in Eq. (3.11), the update scheme in Eq. (3.13) allows
any β > 0 to be chosen as the initial value.

3.5.1.4 Graph-Based Interpolation

Finally, we use the graph-based interpolation method described in
Section 3.4 to compare the latent representations learned by the VHP
and the importance-weighted autoencoder (IWAE) (Burda et al., 2016).

The graphs in Figure 3.6 are built with 1000 samples from the
prior distribution of the respective model. The red curves depict
the interpolation on the learned latent manifold. As start and end
point, we choose pendulum images with a joint angle of 0 and 180

degrees, respectively. The reconstructions of the interpolations are
shown in Figure 3.7. The top row (VHP + REWO) shows a smooth
change of the joint angles, whereas the middle (VHP + GECO) and
bottom row (IWAE) contain discontinuities that result in unrealistic
interpolations.

(a) VHP + REWO (b) VHP + GECO (c) IWAE

Figure 3.6: Graph-based interpolations on the learned latent manifold. The
graphs are based on samples of the respective prior distributions. The red
curves depict the interpolations, the bluescale indicates the edge weight.

3.5.2 Human Motion Capture Database

The CMU Graphics Lab Motion Capture Database2 consists of a large
number of human motion recordings, which have been recorded by

2 mocap.cs.cmu.edu
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top: VHP + REWO, middle: VHP + GECO, bottom: IWAE

Figure 3.7: Pendulum reconstructions of the graph-based interpolation on
the learned latent manifold, shown in Figure 3.6. Discontinuities are marked
by blue boxes.

using a motion capture system. Human subjects wear 41 markers
while walking, dancing, etc. The data is pre-processed as described
by N. Chen et al. (2015) such that each frame is represented by a 50-
dimensional feature vector. In our experiments, we use five different
motions: walking, balancing, jogging, punching, and waving.

We compare our method with the VampPrior (Tomczak and Welling,
2018) and the IWAE. Samples from the prior and aggregated approx-
imate posterior of the three methods are shown in Figure 3.8. As
expected, for both the VHP and VampPrior the latent representations
of different movements are separated. In both cases the learned prior
matches the aggregated posterior. By contrast, the IWAE is restricted
through the Gaussian prior and cannot learn a spatially separated
representation of the different motions.

(a) VHP + REWO (b) VampPrior (c) IWAE

Figure 3.8: Latent representation of human motion data: approximate poste-
rior (top) and prior (bottom). The colour encodes the five human motions.
The different sample densities are caused by a different amount of data
points for each motion.

Figure 3.9 shows four generated interpolations using our graph-
based interpolation method: between two frames within the same
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(a) VHP + REWO (b) VampPrior (c) IWAE

Figure 3.9: Graph-based interpolation of human motions. The graphs are
based on the (learned) prior distributions, depicted in Figure 3.8. The
bluescale indicates the edge weight. The coloured lines represent four inter-
polated movements depicted in Figure 3.10.

(a) VHP + REWO

(b) VampPrior

(c) IWAE

Figure 3.10: Human-movement reconstructions of the graph-based interpola-
tions in Figure 3.9. The blue boxes mark discontinuities.
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Figure 3.11: Smoothness measure of the human-movement interpolations.
For each joint, the mean and standard deviation of the smoothness factor are
displayed. Smaller values correspond to smoother movements.

motion (black line) and of different motions (orange, red, and maroon).
The reconstructions are depicted in Figure 3.10. In contrast to the
IWAE, the VampPrior and the VHP enable smooth interpolations.

Figure 3.11 depicts the movement smoothness factor, which we de-
fine as the root mean square of the second order finite difference along
the interpolated path. Thus, smaller values correspond to smoother
movements. For each of the three methods, the smoothness factor is av-
eraged across 10 graphs, each with 100 interpolations. The starting and
ending points are randomly selected. As a result, the latent represen-
tation learned by the VHP leads to smoother movement interpolations
than in case of the VampPrior and the IWAE.

3.5.3 Evaluation on MNIST, Fashion-MNIST, and OMNIGLOT

We compare our method quantitatively with the VampPrior and the
IWAE on MNIST (Larochelle and Murray, 2011; Lecun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), and OMNIGLOT (Lake et al., 2015).

To this end, we report the marginal log-likelihood on the respective
test set. Following the test protocol of previous work by Tomczak
and Welling (2018), we evaluate the log-likelihood using importance
sampling with 5,000 samples (Burda et al., 2016). The results are

Table 3.2: Negative test log-likelihood estimated with 5,000 importance
samples.

dynamic MNIST static MNIST Fashion-MNIST OMNIGLOT

VHP + REWO 78.88 82.74 225.37 101.78

VHP + GECO 95.01 96.32 234.73 108.97

VampPrior 80.42 84.02 232.78 101.97

IWAE (L=1) 81.36 84.46 226.83 101.57

IWAE (L=2) 80.66 82.83 225.39 101.83
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(a) static MNIST
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(b) dynamic MNIST
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(c) Fashion-MNIST
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(d) OMNIGLOT

Figure 3.12: VHP optimised with REWO (left) and WU (right). The plots
show KL

(
qΦ(ζd|x) || p(ζd)

)
depending on the latent dimension d. The di-

mensions are sorted by the KL value, and the histograms are displayed on a
logarithmic scale.
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Figure 3.13: Curse of the rate (which corresponds to −FVHP-VAE(φ, Θ, Φ)) as
a function of the iteration step for different optimisation strategies on static
MNIST data.

reported in Table 3.2. VHP + REWO performs as good or better than
state-of-the-art on these datasets. The same κ is used for training
VHP with REWO and GECO. The two stochastic layer hierarchical
IWAE does not perform better than VHP + REWO, supporting our
claim that a flexible prior in the first stochastic layer and a powerful
approximate posterior (importance sampling) in the second stochastic
layer is sufficient.

Furthermore, REWO prevents the posterior from collapsing and
leads to a similar amount of active units as WU. We show this, similar
to Sønderby et al. (2016), by evaluating KL

(
qΦ(ζd|x) || p(ζd)

)
, where

∏D
d=1 qΦ(ζd|x) = qΦ(ζ|x), and D is the dimensionality of the second

stochastic layer represented by the latent variable ζ. The main differ-
ence to WU, however, is that REWO can learn an informative latent rep-
resentation of the data after much fewer iterations. This can be shown
by analysing the rate, which corresponds to −FVHP-VAE(φ, Θ, Φ) in
Eq. (3.8), and is motivated by the rate–distortion theory (Shannon,
1948). Figure 3.13 displays the course of the rate depending on the
iteration step for different optimisation strategies on static MNIST
data. Note that this result is consistent with the experimental findings
in Section 3.5.1 (cf. Figures 3.2 and 3.3).

3.5.4 Qualitative Results on 3D Chairs and 3D Faces

We have generated the 3D Faces dataset (Paysan et al., 2009) based
on images of 2000 faces with 37 views each. The 3D Chairs (Aubry
et al., 2014) dataset consists of 1393 chair images with 62 views each.
In both cases, the images have a size of 64× 64 pixels.

We compare our approach to the IWAE, using a 32-dimensional
latent space. The learned encodings are evaluated qualitatively with
the graph-based interpolation method. Figures 3.14a and 3.15a show
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(a) VHP + REWO

(b) IWAE

Figure 3.14: 3D Faces: graph-based interpolations between two data points
from the test set on the learned 32-dimensional latent manifold. The graph
is built by using samples from the (learned) prior distribution.
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(a) VHP + REWO

(b) IWAE

Figure 3.15: 3D Chairs: graph-based interpolations between two data points
from the test set on the learned 32-dimensional latent manifold. The graph
is built by using samples from the (learned) prior distribution.
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interpolations on the latent manifold, learned by the VHP + REWO.
Compared to the IWAE (Figures 3.14b and 3.15b), they are less blurry
and smoother, i.e. more realistic.

3.6 summarising discussion

In this chapter, we have addressed the question of how to learn infor-
mative latent representations of data with VAEs. To this end, we have
reformulated the ELBO as the Lagrangian of a constrained optimisa-
tion problem. We have proposed a hierarchical empirical Bayes prior to
enable richer latent representations of observed data. In order to learn
the hierarchical prior, we have extended the constrained optimisation
approach to hierarchical models by using an importance-weighted
bound on the optimal empirical Bayes prior. Concurrently, we have
introduced the associated optimisation algorithm to facilitate good
encodings.

We have shown that the learned hierarchical prior is indeed non-
trivial; moreover, it is well-adapted to the latent representation re-
flecting the topology of the data. In contrast to the original VAE, our
method provides informative latent representations and performs
particularly well on data where the relevant features change contin-
uously. In case of the moving pendulum (Section 3.5.1), the model
has learned to represent the factor of variation in the data, which
allows us to predict the pendulum’s angle by a simple ordinary least
squares regression. Furthermore, we have shown in this context that
our proposed optimisation algorithm REWO leads to a significant
improvement of the latent representation’s interpretability compared
to previous optimisation methods. The experiments on real-world
human motion data in Section 3.5.2 and on the high-dimensional
3D Faces and 3D Chairs datasets in Section 3.5.4 have demonstrated
that the learned hierarchical prior leads to smoother and more realistic
interpolations than a standard normal prior or the VampPrior. More-
over, we have achieved test log-likelihoods (Section 3.5.3) comparable
to or better than state-of-the-art on established benchmark datasets.

The capability of our model to learn complex latent representations
that reflect the topology of the data is a useful tool for various VAE-
based approaches. For this reason, the introduced method forms the
basis for the following chapters in this dissertation: in Chapter 4, we
extend it to deep state-space models in order to improve the prediction
accuracy of dynamic systems; and Chapter 5 addresses the issue of
learning encodings that allow measuring the similarity of data in the
context of unsupervised metric learning.



4
E X T E N S I O N T O S E Q U E N T I A L D ATA : L E A R N I N G
D E E P S TAT E - S PA C E M O D E L S

The methods and experimental results discussed in this chapter have been
previously published in (Klushyn et al., 2021). Sections 4.1, 4.2, 4.3, and 4.4
are based on revised text from this publication.

This chapter addresses the question of how to learn deep state-space
models (DSSMs) in order to obtain accurate temporal predictions of
observed dynamic systems. To this end, we extend the constrained
optimisation approach introduced in Chapter 3 to sequential data.

A limitation frequently encountered in machine learning—and sci-
ence in general—is systems that can be (partially) observed, but whose
exact dynamics and constraints are unknown. Nevertheless, an accu-
rate model of the system is essential because we want, for example,
to forecast weather, traffic flow, or electricity consumption (e.g. Ran-
gapuram et al., 2018; Salinas et al., 2020). Further areas of application
are model-based reinforcement learning and model predictive control.
Here, the learned model of an unknown dynamic system is used for
planning, e.g. for learning to fly a drone (Becker-Ehmck et al., 2020) or
to make a humanoid robot run (Levine and Koltun, 2013). However,
learning models that are accurate enough for forecasting or planning
is the subject of current research, especially in image-based domains
(e.g. Hafner et al., 2019).

DSSMs enable temporal predictions by learning the underlying
dynamic system of observed sequential data. They infer a typically
lower-dimensional latent representation—similar to VAEs—which is
then used to learn a transition model that takes into account the
dynamics and constraints of the observed system. The idea is that
learning a transition model based on low-dimensional latent variables
is more feasible than on the basis of high-dimensional sensory data,
such as images.

DSSMs are typically trained by maximising the sequential evidence
lower bound (ELBO). We show that high ELBO values, however, do
not indicate the model has learned the underlying dynamics, i.e. to
accurately predict the observed system. We address this problem as
follows:

• In Section 4.1, we propose a constrained optimisation framework,
including an empirical Bayes method, as a general approach for
learning DSSMs. To this end, we extend the method introduced
in Chapter 3 to DSSMs. We do this by formulating the sequential

51
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ELBO as the Lagrangian of a constrained optimisation problem
and by introducing a hierarchical empirical Bayes prior distri-
bution for the initial time step. Concurrently, we introduce the
associated optimisation algorithm, an extension of REWO (Algo-
rithm 2) and show how our framework can be applied to existing
models.

• Building upon the constrained optimisation framework, we intro-
duce in Section 4.2 the extended Kalman variational autoencoder,
which combines amortised variational inference with classic
Bayesian filtering/smoothing to model dynamics more accu-
rately than RNN-based DSSMs.

• In Section 4.3, we demonstrate how to learn state-space repre-
sentations with the extended Kalman variational autoencoder,
where static and dynamic features are disentangled—and how to
use these in the context of model-based reinforcement learning
for defining reward functions and validating the learned model.

• In Section 4.4, we evaluate our proposed method. This includes
experiments on image data of a moving pendulum and on the
reacher environment of Deepmind’s control suite, where we use
angle as well as high-dimensional image data as observations.

4.1 constrained optimisation framework for improved

system identification

4.1.1 A Rate–Distortion Perspective on Deep State-Space Models

DSSMs (e.g. Karl et al., 2017; Krishnan et al., 2015; Watter et al.,
2015) model an unknown distribution of observed sequential data
x1:T = (x1, x2, . . . , xT) by means of typically lower-dimensional latent
variables z1:T that represent the underlying state of the system. To
achieve this, the Markov assumption is imposed. It states that the
future state zt+1 as well as the current observation xt solely depend
on zt:

p(x1:T, z1:T| u1:T) = pθ(x1:T|z1:T) pψ(z1:T| u1:T)

= p(z1) pθ(x1| z1)
T

∏
t=2

pψ(zt| zt−1, ut−1) pθ(xt| zt), (4.1)

where u1:T are optional control signals (actions), and the use of dif-
ferent parameters (θ, ψ) will become important in the course of this
chapter. Note that a detailed introduction to state-space models can
be found in Section 2.3.

The model parameters in Eq. (4.1) are often learned through amor-
tised variational inference (e.g. Karl et al., 2017; Krishnan et al., 2015).
This requires introducing a recognition model qφ(z1:T| x1:T, u1:T) that
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learns—in combination with the transition model pψ(zt| zt−1, ut−1)—
the dynamics underlying the observed data. The resulting objective
function is known as sequential ELBO:

EpD(x1:T ,u1:T)

[
log p(x1:T| u1:T)

]
≥ FELBO(θ, ψ, φ)

= EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
log

pθ(x1:T| z1:T) pψ(z1:T| u1:T)

qφ(z1:T| x1:T, u1:T)

]
,

(4.2)

where pD(x1:T, u1:T) is the empirical distribution representing the
dataset D =

{
x(i)1:T, u(i)

1:T
}N

i=1.
In the context of generative models, the ELBO can be divided into a

reconstruction term (distortion) and a compression term (rate) (Alemi
et al., 2018). We transfer this approach to deep state-space models,
where the distortion,

D(θ, φ) = −EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
log pθ(x1:T| z1:T)

]
, (4.3)

optimises the model’s ability for reconstructing observations—whereas
the rate,

R(φ, ψ) = EpD(x1:T ,u1:T)

[
KL
(
qφ(z1:T| x1:T, u1:T)‖ pψ(z1:T| u1:T)

)]
,

(4.4)

enables learning the underlying dynamics. Eq. (4.3) and (4.4) lead to
the following general formulation of the ELBO:

FELBO(θ, ψ, φ) = −D(θ, φ)−R(ψ, φ). (4.5)

Balancing the ratio between distortion and rate during optimisation
can be an effective approach to improve the learning of DSSMs, as we
discuss in the following section.

4.1.2 The Sequential Evidence Lower Bound as Lagrangian Function

High ELBO values do not necessarily imply that the model has learned
the underlying system dynamics of the observed data, as we verify
in Section 4.4.2. This is because different combinations of rate and
distortion can result in the same ELBO value. Previous work addresses
this issue by introducing weighting schedules for either D(θ, φ) or
R(ψ, φ) (e.g. Bowman et al., 2016) since a different ratio favours either
better reconstruction or compression (Alemi et al., 2018). However, we
demonstrate in Section 4.4 that balancing reconstruction and compres-
sion with predefined annealing schedules often does not achieve the
desired result.

In Chapter 3, we have defined the objective function of VAEs as
the Lagrangian of a constrained optimisation problem, which allows
for controlling the model’s reconstruction quality. We transfer this
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approach to DSSMs to guarantee a good reconstruction—i.e. a low
D(θ, φ)—and thus provide a sufficient basis for learning the underly-
ing dynamic system. To this end, we formulate the sequential ELBO
as the Lagrangian of a constrained optimisation problem by specifying
the rate R(ψ, φ) in Eq. (4.5) as optimisation objective and by imposing
an inequality constraint C(θ, φ) ≤ κ2. Here, C(θ, φ) is defined as the
reconstruction-error-related term in D(θ, φ), which is, for instance, the
cross-entropy in case of a Bernoulli or the mean squared error in case
of Gaussian likelihood. Further details can be found in Section 3.2.
The corresponding Lagrangian is

L(θ, ψ, φ; λ) = R(ψ, φ) + λ
(
C(θ, φ)− κ2),

where the Lagrange multiplier λ can be viewed as a weighting term
for the distortion.

As discussed in Section 3.1, the original EM algorithm for optimis-
ing the ELBO, minθ,ψ minφ −FELBO(θ, ψ, φ), provides the following
connection to the constrained optimisation problem:

M-step︷ ︸︸ ︷
min

θ
min

ψ
max

λ
min

φ︸ ︷︷ ︸
E-step

L(θ, ψ, φ; λ) s.t. λ ≥ 0, (4.6)

where, unlike in the original EM algorithm, we want qφ(z1:T| x1:T, u1:T)

to additionally satisfy the inequality constraint C(θ, φ) ≤ κ2 in the
E-step. This is achieved by maxλ minφ L(θ, ψ, φ; λ), as detailed in
Section 3.2. The observation and transition model are optimised
by minθ L(θ, ψ, φ; λ) and minψ L(θ, ψ, φ; λ), respectively, on the ba-
sis of qφ(z1:T| x1:T, u1:T). However, it can only be guaranteed that
L(θ, ψ, φ; λ) optimises a lower bound on log p(x1:T| u1:T) if and only
if 1 ≥ λ ≥ 0, as we have shown Section 3.2.

4.1.2.1 Learning the Initial Distribution

It is common practice to define the initial/prior distribution p(z1) as
standard normal distribution (e.g. Fraccaro et al., 2017; Krishnan et al.,
2015). However, in case of a standard normal p(z1), the prior KL in the
ELBO can cause an over-regularisation of the approximate posterior
and thus of the transition model as well. Furthermore, if the discrep-
ancy between prior and posterior is too large, we may obtain a broken
generative model, where p(zt| zt−1, ut−1) is not trained to process
samples from p(z1). We provide empirical evidence in Section 4.4.1.

This issue often arises in the context of neural models trained by
stochastic gradient methods, where batching typically happens by
cutting the time-series data into equally-sized short-length units to
alleviate possible vanishing-gradient problems. Thus, one can assume
that initial-state samples uniformly cover the manifold of the learned
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latent representation. As a consequence, the marginal approximate pos-
terior is the optimal initial distribution p∗(z1) = EpD(x,u)

[
qφ(z1| x, u)

]
(cf. Tomczak and Welling, 2018)—and an empirical Bayes prior pψ0(z1)

must have the complexity to approximate p∗(z1) ≈ pψ0(z1).
For this reason, we propose to learn a hierarchical empirical Bayes

prior, pψ0(z1) =
∫

pψ0(z1|ζ) p(ζ)dζ, as part of the DSSM by applying
the VHP approach introduced in Section 3.3. The VHP defines, by
means of an approximate distribution qφ0(ζ| z1), a VAE-like lower
bound on the optimal empirical Bayes prior:

Ep∗(z1)

[
log pψ0(z1)

]
= EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
log pψ0(z1)

]
≥ EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
FVHP(ψ0, φ0; z1)

]
,

where

FVHP(ψ0, φ0; z1) = Eqφ0 (ζ| z1)

[
log

pψ0(z1| ζ) p(ζ)
qφ0(ζ| z1)

]
, (4.7)

and p(ζ) is defined as standard normal distribution. Note that in con-
trast to the VAE-based approach in Eq. (3.8) (Chapter 3), we do not use
the computationally expensive importance weighting. This is because,
in DSSMs, a slightly less expressive empirical Bayes prior does not
affect the learned latent representation, as we verify in Section 4.4.1.

The VHP (Eq. (4.7)) defines an upper bound on the rate
R(ψ, φ, ψ0) =̂ R(ψ, φ) (cf. Eq. (4.4)), where ψ0 denotes the now learn-
able parameters of the prior:

R(ψ, φ, ψ0) ≤ R(ψ, φ, ψ0, φ0)

= EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
log qφ(z1:T| x1:T, u1:T)

−FVHP(ψ0, φ0; z1)−
T

∑
t=2

log pψ(zt| zt−1, ut−1)

]
. (4.8)

Learning the VHP as part of the model is consistent with our optimisa-
tion problem since the upper bound on R(ψ, φ, ψ0) introduces a lower
bound on the sequential ELBO. As a result, we obtain the Lagrangian

L(θ, ψ, φ, ψ0, φ0; λ) = R(ψ, φ, ψ0, φ0) + λ
(
C(θ, φ)− κ2), (4.9)

with the corresponding optimisation problem

min
ψ0,φ0︸︷︷︸

Empirical
Bayes

M-step︷︸︸︷
min

θ,ψ
max

λ
min

φ︸ ︷︷ ︸
E-step

L(θ, ψ, φ, ψ0, φ0; λ) s.t. λ ≥ 0, (4.10)

which extends the constrained optimisation problem in Eq. (4.6) by
the optimisation of the empirical Bayes prior.
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Algorithm 3 REWO for deep state-space models
Initialise t = 1
Initialise β0 = 1
Initialise InitialPhase = True

while training do
Compute Ĉba (batch average)
Ĉt = (1− α) · Ĉba + α · Ĉt−1, (Ĉ0 = Ĉba)
βt ← βt−1 · exp

[
ν · fβ

(
βt−1, Ĉt − κ2; τ1, τ2

)
·
(
Ĉt − κ2)]

if Ĉt ≤ κ2 then
InitialPhase = False

end if
if InitialPhase then

Optimise L(θ, ψ, φ, ψ0, φ0; βt) w.r.t. θ, φ
else

Optimise L(θ, ψ, φ, ψ0, φ0; βt) w.r.t. θ, ψ, φ, ψ0, φ0
end if
t← t + 1

end while

4.1.2.2 Optimisation Algorithm

In order to find the saddle point of the Lagrangian in Eq. (4.10), we
propose Algorithm 3, which is an extension of REWO (Algorithm 2) to
deep state-space models. It ensures through a special update scheme
for λ that we optimise a lower bound on log p(x1:T| u1:T) at the end
of training (that is 1 ≥ λ ≥ 0)—and allows efficiently learning the
parameters of the hierarchical empirical Bayes prior (ψ0, φ0) and the
transition model (ψ).

Similar to Chapter 3, we use the β-parametrisation of the Lagrange
multiplier, β = 1/λ, to be in line with previous literature (e.g. Higgins
et al., 2017; Sønderby et al., 2016).

Algorithm 3 divides the constrained optimisation process into two
phases, an initial and a main phase, which explains the use of different
parameters for the transition and observation model. In the initial
phase, the model is optimised to reduce the reconstruction error in
order to learn the features of individual observations xt. For this
purpose, we optimise the bound solely with respect to (θ, φ), and
β is updated by applying a similar update scheme as introduced in
Section 3.3:

βt = βt−1 · exp
[
ν · fβ

(
βt−1, Ct − κ2; τ1, τ2

)
·
(
Ct − κ2)],

where t is the iteration step of the optimisation, and fβ is defined as

fβ(β, δ; τ1, τ2) =
(
1− H(δ)

)
· tanh

(
τ1 · (β− 1)

)
− τ2 · H(δ).

H is the Heaviside function, and τ1 and τ2 are slope parameters. A
visualisation of this update scheme can be found in Figure 3.1a.

The main phase starts as soon as the inequality constraint
C(θ, φ) ≤ κ2 is satisfied. This serves as a starting point for learning
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the transition model and the hierarchical empirical Bayes prior, i.e. to
learn the system dynamics. To do this, we optimise all parameters
(θ, ψ, φ, ψ0, φ0) jointly.

4.1.3 Application to Existing Models

Our constrained optimisation framework can be applied to any DSSM
whose objective function is covered by the general rate–distortion
formulation of the ELBO (Eq. 4.5). In Section 4.4, we demonstrate
our approach on the smoother versions of deep Kalman filters (DKFs)
(Krishnan et al., 2015), deep variational Bayes filters (DVBFs) (Karl
et al., 2017), recurrent state-space models (RSSMs) (Hafner et al., 2019),
and Kalman variational autoencoders (KVAEs) (Fraccaro et al., 2017).
In the following we integrate DKF/DKS and DVBF/DVBS with our
constrained optimisation framework by defining the respective dis-
tortion D(θ, φ) and rate R(ψ, φ, ψ0, φ0), which includes the VHP. This
allows us to formulate the Lagrangian of the constrained optimisation
problem in Eq. (4.10).

4.1.3.1 Deep Kalman Filter and Smoother

original evidence lower bound (smoother version) The
objective function introduced by Krishnan et al. (2015) for training
deep Kalman smoothers (DKSs) is

FDKS
ELBO(θ, ψ, φ) = −DDKS(θ, φ)−RDKS(ψ, φ).

The distortion is defined by

DDKS(θ, φ) = −EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
T

∑
t=1

log pθ(xt| zt)

]
,

with the joint approximate posterior factorising as

qφ(z1:T| x1:T, u1:T) =
T

∏
t=1

qφ(zt| x1:T, u1:T).

Consequently, the rate is given by

RDKS(ψ, φ)

= EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
KL
(
qφ(z1| x1:T, u1:T)‖ p(z1)

)
+

T

∑
t=2

KL
(
qφ(zt| x1:T, u1:T)‖ pψ(zt| zt−1, ut−1)

)]
,

where p(z1) is a standard normal distribution. See (Krishnan et al.,
2015) for further implementation details. Note that the filter version
(DKF) is obtained by replacing qφ(zt| x1:T, u1:T) with qφ(zt| x1:t, u1:t).
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vhp-based evidence lower bound (smoother version) In
the following, we integrate the VHP with DKS:

FVHP-DKS
ELBO (θ, ψ, φ, ψ0, φ0)=−DDKS(θ, φ)−RVHP-DKS(ψ, φ, ψ0, φ0).

(4.11)

Note that the distortion remains identical to DKS. By replacing the
standard normal prior p(z1) in RDKS(ψ, φ) with the VHP defined in
Eq. (4.7), we get:

RVHP-DKS(ψ, φ, ψ0, φ0)

= EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
log qφ(z1| x1:T, u1:T)−FVHP(ψ0, φ0; z1)

+
T

∑
t=2

KL
(
qφ(zt| x1:T, u1:T)‖ pψ(zt| zt−1, ut−1)

)]
.

The filter version (VHP-DKF) is obtained, as with DKF, by replacing
qφ(zt| x1:T, u1:T) with qφ(zt| x1:t, u1:t).

4.1.3.2 Deep Variational Bayes Filter and Smoother

original evidence lower bound (smoother version) The
original model was introduced in (Karl et al., 2017). In the follow-
ing, we refer to the updated version presented in (Karl et al., 2019).
The locally-linear transition model is described in Section 4.2.1. The
corresponding objective function for training deep variational Bayes
smoothers (DVBSs) is

FDVBS
ELBO (θ, ψ, φ, ψ0, φ0)=−DDVBS(θ, φ, ψ0, φ0)−RDVBS(ψ, φ, ψ0, φ0).

The distortion is defined by

DDVBS(θ, φ, ψ0, φ0)

= −EpD(x1:T ,u1:T) Eqφ0 (ζ| x1:T ,u1:T) Eqφ(z2:T | fψ0 (ζ),x2:T ,u1:T)

[
log pθ(x1| fψ0(ζ))

+
T

∑
t=2

log pθ(xt| zt)

]
,

where fψ0(ζ) =̂ z1 mimics an empirical Bayes prior that is learned
from data, and the joint approximate posterior factorises as

qφ(z2:T| fψ0(ζ), x2:T, u1:T)

= qφ(z2| fψ0(ζ), x2:T, u1:T)
T

∏
t=3

qφ(zt| zt−1, xt:T, ut−1:T).



4.1 constrained optimisation framework 59

Therefore, the rate is given by

RDVBS(φ, ψ, ψ0, φ0)

= EpD Eqφ0 (ζ| x1:T ,u1:T) Eqφ(z2:T | fψ0 (ζ),x2:T ,u1:T)

[
KL
(
qφ0(ζ| x1:T, u1:T)‖ p(ζ)

)
+ KL

(
qφ(z2| fψ0(ζ), x2:T, u1:T)‖ pψ(z2| fψ0(ζ), u1)

)
+

T

∑
t=3

KL
(
qφ(zt| zt−1, xt:T, ut−1:T)‖ pψ(zt| zt−1, ut−1)

)]
,

where p(ζ) is a standard normal distribution.

The conditional approximate posterior is implemented as the prod-
uct of two distributions (Karl et al., 2019):

qφ(zt| zt−1, xt:T, ut−1:T) ∝ pφ(zt| zt−1, ut−1)× qφ(zt| xt:T, ut:T).
(4.12)

Further implementation details can be found in (Karl et al., 2017) and
(Karl et al., 2019). Note that the filter version (DVBF) is obtained by
replacing qφ(zt| xt:T, ut:T) in Eq. (4.12) with qφ(zt| xt).

vhp-based evidence lower bound (smoother version) In
the following, we integrate the VHP with DVBS:

FVHP-DVBS
ELBO (θ, ψ, φ, ψ0, φ0)

= −DVHP-DVBS(θ, φ)−RVHP-DVBS(ψ, φ, ψ0, φ0).

By replacing the deterministic transformation fψ0(ζ) with the VHP
defined in Eq. (4.7), the marginal approximate posterior simplifies to
qφ(zt| xt:T, ut:T) for all time steps including the initial time step. As a
result, the joint approximate posterior factorises as

qφ(z1:T| x1:T, u1:T) = qφ(z1| x1:T, u1:T)
T

∏
t=2

qφ(zt| zt−1, xt:T, ut−1:T).

Thus, the distortion is given by

DVHP-DVBS(θ, φ)

= −EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
T

∑
t=1

log pθ(xt| zt)

]
,
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and the rate is defined as

RVHP-DVBS(ψ, φ, ψ0, φ0)

= EpD(x1:T ,u1:T) Eqφ(z1:T | x1:T ,u1:T)

[
log qφ(z1| x1:T, u1:T)−FVHP(ψ0, φ0; z1)

−
T

∑
t=2

KL
(
qφ(zt| zt−1, xt:T, ut−1:T)‖ pψ(zt| zt−1, ut−1)

)]
.

The conditional approximate posterior qφ(zt| zt−1, xt:T, ut−1:T) is im-
plemented as for DVBS, see Eq. (4.12). The filter version (VHP-DVBF)
is obtained, as with DVBF, by replacing qφ(zt| xt:T, ut:T) in Eq. (4.12)
with qφ(zt| xt).

4.2 extended kalman variational autoencoder

The constrained optimisation framework facilitates system identifi-
cation, as we show in our experiments. However, to achieve high
prediction accuracies, the model itself should not prove to be a limit-
ing factor in learning a precise description of the dynamic system.

The amortised variational inference framework requires us to in-
troduce an approximate posterior distribution q(z1:T| x1:T, u1:T). The
optimal q(z1:T| x1:T, u1:T) is the posterior distribution p(z1:T| x1:T, u1:T),
which can be computed analytically through Bayesian filtering or
smoothing for simple models as linear Gaussian systems. A detailed
introduction can be found in Section 2.3.2. In neural models it is
therefore common to learn the parameters of the approximate poste-
rior through an RNN(x1:T, u1:T), which is expected to replace classic
Bayesian filtering/smoothing, as discussed in Section 2.3.3. However,
this can result in learning a less accurate model of the dynamic system,
as we show in Section 4.4.2.

To address this issue, Fraccaro et al. (2017) use an auxiliary-variable
model in the KVAE:

p(x1:T, a1:T, z1:T| u1:T) = p(x1:T| a1:T) p(a1:T| z1:T) p(z1:T| u1:T).

It is based on linear Gaussian p(at| zt, ht−1) and p(zt| zt−1, ht−1, ut−1),
whose model parameters are conditioned on a deterministic hidden
state ht−1 = LSTM(a1:t−1) for modelling nonlinear dynamic systems.
This allows analytically computing p(z1:T|a1:T, u1:T) by Kalman fil-
tering or smoothing (cf. Section 2.3.2.2); and leads to the posterior
approximation

q(z1:T, a1:T| x1:T, u1:T) = p(z1:T| a1:T, u1:T) q(a1:T| x1:T).

However, as a consequence of the LSTM-based deterministic path in
the transition model, the KVAE learns a non-Markovian state repre-
sentation in z, as we verify in Section 4.4.3.
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In order to learn a Markovian state-space—i.e. the state is fully
represented by zt—we introduce the extended Kalman variational au-
toencoder (EKVAE). We dispense with the LSTM-based deterministic
path by using a transition model with a nonlinear dependence on zt−1.
To compute the posterior, we leverage the concept of extended Kalman
filtering/smoothing (see Section 2.3.2.3) but avoid the computational
expensive linearisation (first-order Taylor expansion) of the transition
and observation model. This is achieved (i) by learning the Jacobian
of the dynamic system as a function of the current state, which we
refer to as neural linearisation (Section 4.2.1); and (ii) by introducing
an auxiliary-variable model similar to the KVAE (Section 4.2.2). The
EKVAE can be used as filter or smoother. In the following, we focus
on the more complex smoother version and refer to Section 4.2.5 for
the filter version.

4.2.1 Neural Linearisation of the Dynamic Model

We model the (unknown) nonlinear dynamic system by a Gaussian
transition model that is locally linear with respect to discrete time
steps (Karl et al., 2017; Watter et al., 2015):

pψ(zt+1| zt, ut)

= N
(
zt+1| Fψ(zt, ut) zt + Bψ(zt, ut) ut, Qψ(zt, ut)

)
, (4.13)

where Fψ, Bψ, and Qψ are modelled by linear combinations of M base
matrices, for example:

Fψ(zt, ut) =
M

∑
m=1

α
(m)
ψ (zt, ut) F(m)

weighted by

αψ(zt, ut) = softmax
(
gψ(zt, ut)

)
∈ RM. (4.14)

The base matrices
{

F(m), B(m), Q(m)
}M

m=1 are learned parameters, and
gψ(zt, ut) is implemented as a neural network.

Next, we make the connection to extended Kalman filtering/s-
moothing, where the prediction step is based on the local Jacobian
(first-order Taylor expansion) of the nonlinear dynamic model func-
tion zt+1 = f(zt, ut) + qt, which is unknown in our case. Our transition
model in Eq. (4.13) learns to represent the local Jacobian as a function
of the current state (Watter et al., 2015), for example:

Fψ(zt, ut) =̂
∂f(z, u)

∂z

∣∣∣∣
zt,ut

, (4.15)

which we refer to as neural linearisation approach This allows us to
apply the extended Kalman filter or smoother algorithm but avoid the
computationally expensive linearisation (first-order Taylor expansion)
in the prediction step, as we derive in Section 4.2.3.
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4.2.2 Linear Auxiliary-Variable Model

The observation model often needs to learn highly nonlinear func-
tions, especially in case of high-dimensional sensory data, such as
images. In order to enable an analytic computation of the posterior
but avoid an expensive linearisation of the observation model, we
introduce auxiliary variables a1:T with a linear dependence on z1:T. As
in (Fraccaro et al., 2017), the nonlinear mapping from a1:T to the high-
dimensional observations x1:T is learned by a VAE’s encoder–decoder
pair, qφ(at| xt) and pθ(xt| at).

Since the entire dynamics are modelled by the transition model in
z1:T, and at can be viewed as a low-dimensional representation of xt,
we obtain the observation model:

p(x1:T, a1:T| z1:T) =
T

∏
t=1

pθ(xt| at) pψ(at| zt). (4.16)

In contrast to Fraccaro et al. (2017), we propose a time-invariant (no
conditioning on ht) auxiliary-variable model,

pψ(at| zt) = N (at|H zt, R), (4.17)

where H and R are globally learned or predefined. The time-invariant
H additionally allows us to learn state-space representations where
static and dynamic features are disentangled, as we discuss in Sec-
tion 4.3. By using a1:T as pseudo observations, our update step cor-
responds to the classical Kalman filter/smoother algorithm because
we do not need to linearise the observation model (see Section 4.2.3).
In combination with the neural linearisation approach, we can now
compute the filtered and smoothed distributions, pψ(zt| a1:t, u1:t−1)

and pψ(zt| a1:T, u1:T−1), respectively. Note, however, that these are gen-
erally not optimal because we have a nonlinear Gaussian system that
is locally linearised. As a result, we can define the recognition model
(smoother version) as follows:

q(z1:T, a1:T| x1:T, u1:T) =
T

∏
t=1

pψ(zt| a1:T, u1:T−1)
T

∏
t=1

qφ(at| xt).

(4.18)

4.2.3 Connection to Extended Kalman Filtering and Smoothing

In Section 2.3.2.3, we have introduced the extended Kalman filter and
smoother. In the following, we provide an analysis of how extended
Kalman filtering/smoothing is applied in combination with the neural
linearisation-based transition model defined in Eq. (4.13) and the
auxiliary-variable model defined in Eq. (4.17). To this end, we first
consider the prediction step that allows analytically computing

pψ(zt| a1:t−1, u1:t−1) = N (zt|m−t , P−t ),
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given the filtered distribution

pψ(zt−1| a1:t−1, u1:t−1) = N (zt−1|mt−1, Pt−1),

where m refers to the mean and P to the covariance of a Gaussian
distribution.

The nonlinear dynamic model is typically defined as

zt = f(zt−1, ut−1) + qt−1.

In extended Kalman filtering/smoothing, the dynamic model function
f(z, u) is locally linearised by means of a first-order Taylor expansion,
which allows applying the Kalman filter/smoother algorithm, as we
describe in the following. The prediction step is defined by:

m−t = f(mt−1, ut−1),

Ft−1 =
∂f(z, u)

∂z

∣∣∣∣
mt−1,ut−1

,

P−t = Ft−1 Pt−1 FT
t−1 + Qt−1.

In case of an unknown dynamic model function, we can approximate
f(z, u) by a function that is locally linear with respect to discrete time
steps. This allows formulating the prediction step of the mean as

m−t =
∂f(z, u)

∂z

∣∣∣∣
mt−1,ut−1

·mt−1 +
∂f(z, u)

∂u

∣∣∣∣
mt−1,ut−1

· ut−1.

In our proposed transition model (Eq. (4.13)), the above Jacobians are
modelled by

∂f(z, u)
∂z

∣∣∣∣
mt−1,ut−1

≈ Fψ(mt−1, ut−1), (4.19)

∂f(z, u)
∂u

∣∣∣∣
mt−1,ut−1

≈ Bψ(mt−1, ut−1). (4.20)

Eq. (4.19) and (4.20) allow defining the prediction step of the extended
Kalman filter/smoother as

m−t = Fψ(mt−1, ut−1) ·mt−1 + Bψ(mt−1, ut−1) · ut−1, (4.21)

Ft−1 = Fψ(mt−1, ut−1), (4.22)

Qt−1 = Qψ(mt−1, ut−1),

P−t = Ft−1 Pt−1 FT
t−1 + Qt−1. (4.23)

The update step corresponds to the classical Kalman filter/smoother
due to the linear Gaussian pψ(at| zt) (Eq. (4.17)). The backward recur-
sion is defined by m−t , Ft−1, and P−t in Eqs. (4.21–4.23). Therefore, it
is identical to the Kalman smoother. Details regarding the Kalman
filtering/smoothing algorithm can be found in Section 2.3.2.2.
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4.2.4 Integration With the Constrained Optimisation Framework

To integrate the extended Kalman variational autoencoder (EKVAE)
with the constrained optimisation framework introduced in Section 4.1,
we define in the following the distortionD(θ, φ) and rateR(ψ, φ, ψ0, φ0)

based on the transition, observation, and recognition model in Eqs. (4.13,
4.16, 4.18)—and the VHP in Eq. (4.7). A detailed derivation (filter and
smoother version) can be found in Section 4.2.5.

The distortion of the EKVAE is simply defined by the encoder–
decoder pair:

D(θ, φ) = −EpD(x1:T ,u1:T)

[
T

∑
t=1

Eqφ(at| xt)

[
log pθ(xt| at)

]]
. (4.24)

Deriving the rate is more complicated: (i) we need to perform
a sample-based optimisation of transition parameters ψ. This is es-
pecially crucial for gψ(zt, ut) in Eq. (4.14), where an optimisation
solely via extended Kalman smoothing, i.e. via deterministic mean
values (cf. Section 4.2.3), does not cover the range of application and
would therefore cause a poorly trained transition model. (ii) Our
recognition model q(z1:T, a1:T| x1:T, u1:T) (cf. Eq. (4.18)) does not con-
tain the computationally more expensive pairwise smoothed dis-
tributions pψ(zt, zt−1| a1:T, u1:T−1) but only smoothed distributions
pψ(zt| a1:T, u1:T−1). However, an optimisation of pψ(zt| zt−1, ut−1) based
on samples (zt, zt−1) from smoothed distributions would lead to an
inaccurate transition model.

To address these issues, we use the rate

EpD(x1:T ,u1:T) Eqφ(a1:T | x1:T)

[ T

∑
t=1

log
qφ(at| xt)

pψ(at| a1:t−1, u1:t−1)

]
(4.25)

as our starting point. But instead of computing pψ(at| a1:t−1, u1:t−1)

analytically, we solve the corresponding integral (derived from the
Bayesian filtering equations, see Section. 4.2.5.2) only with respect to
zt in closed form and marginalise zt−1 via Monte Carlo integration:

log pψ(at| a1:t−1, u1:t−1)

= log
∫∫

pψ(at| zt)pψ(zt| zt−1, ut−1)pψ(zt−1| a1:t−1, u1:t−2)dzt dzt−1

≥ Epψ(zt−1| a1:T ,u1:T−1)

[
log

pψ(at| zt−1, ut−1) pψ(zt−1| a1:t−1, u1:t−2)

pψ(zt−1| a1:T, u1:T−1)

]
.

(4.26)

In this context, the distribution pψ(at| zt−1, ut−1) plays a crucial role as
it includes all transition parameters ψ and decouples zt from zt−1. It
therefore allows a sample-based optimisation of the transition model
on the basis of the smoothed distribution pψ(zt−1| a1:T, u1:T−1).
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By combining Eq. (4.25) with Eq. (4.26)—the complete derivation can
be found in Section. 4.2.5.2—we obtain the following rate (smoother
version):

R(ψ, φ, ψ0, φ0)

= EpD(x1:T ,u1:T)Eq(z1:T ,a1:T | x1:T ,u1:T)

[
Rinitial(ψ, φ, ψ0, φ0; z1, a1:T, x1, u1:T−1)

+
T

∑
t=2

log
qφ(at| xt) pψ(zt−1| a1:T, u1:T−1)

pψ(at| zt−1, ut−1)pψ(zt−1| a1:t−1, u1:t−2)

]
, (4.27)

where the VHP introduced in Section 4.1.2.1 is learned via

Rinitial(ψ, φ, ψ0, φ0; z1, a1:T, x1, u1:T−1)

= log
qφ(a1| x1)

pψ(a1| z1)
+ log pψ(z1| a1:T, u1:T−1)−FVHP(ψ0, φ0; z1).

(4.28)

Eq. (4.24) and (4.27) allow us to define the Lagrangian of the con-
strained optimisation problem defined Eq. (4.10) and thus to integrate
the EKVAE with our constrained optimisation framework.

4.2.5 Derivation of the Extended Kalman Variational Autoencoder

In the following, we derive FELBO of the EKVAE, i.e. the distortion
D(θ, φ) and rate R(ψ, φ, ψ0, φ0) in Eq. (4.24) and (4.27). To this end,
we start with the generative model that defines p(x1:T| u1:T).

4.2.5.1 Generative Model

In addition to the latent variables zt, we use the auxiliary variables at

to facilitate extended Kalman filtering/smoothing and ζ to model the
empirical Bayes prior:

p(x1:T| u1:T)

=
∫∫∫

p(x1:T, a1:T, z1:T, ζ| u1:T)da1:T dz1:T dζ

=
∫∫∫

p(x1:T| a1:T,��z1:T, ��ζ,���u1:T) p(a1:T| z1:T, ��ζ,���u1:T)

p(z1:T| ζ, u1:T−1) p(ζ)da1:T dz1:T dζ

=
∫∫∫

p(x1:T| a1:T) p(a1:T| z1:T) p(z1:T| ζ, u1:T)

p(ζ)da1:T dz1:T dζ

=
∫∫∫ T

∏
t=1

(
pθ(xt| at) pψ(at| zt)

) T

∏
t=2

(
p(zt| zt−1, ut−1)

)
p(z1| ζ) p(ζ)da1:T dz1:T dζ. (4.29)
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4.2.5.2 Evidence Lower Bound (Smoother Version)

EpD(x1:T ,u1:T)

[
log p(x1:T| u1:T)

]
≥ EpD(x1:T ,u1:T) Eq(a1:T | x1:T)

[
log

p(x1:T| a1:T)

q(a1:T| x1:T)

+ log
∫∫ T

∏
t=2

(
p(at| zt) p(zt| zt−1, ut−1)

)
p(a1| z1) p(z1| ζ) p(ζ)dz1:T dζ

]

= EpD(x1:T ,u1:T) Eq(a1:T | x1:T)

[
log

p(x1:T| a1:T)

q(a1:T| x1:T)
+ log

∫∫
p(a1| z1) p(z1| ζ) p(ζ)dz1 dζ

+
T

∑
t=2

log
∫∫

p(at| zt)︸ ︷︷ ︸
observation

transition︷ ︸︸ ︷
p(zt| zt−1, ut−1) p(zt−1| a1:t−1, u1:t−2)︸ ︷︷ ︸

filtered distribution

dzt dzt−1

]
(4.30)

= EpD(x1:T ,u1:T) Eq(a1:T | x1:T)

[
log

p(x1:T| a1:T)

q(a1:T| x1:T)
+ log

∫∫
p(a1| z1) p(z1| ζ) p(ζ)dz1 dζ

+
T

∑
t=2

log
∫ ∫

p(at| zt) p(zt| zt−1,ut−1)dzt︷ ︸︸ ︷
p(at| zt−1, ut−1) p(zt−1| a1:t−1, u1:t−2)dzt−1

]

≥ EpD(x1:T ,u1:T) Eq(a1:T | x1:T)

[
log

p(x1:T| a1:T)

q(a1:T| x1:T)

+ Ep(z1| a1:T ,u1:T−1)

[
log p(a1| z1)− log p(z1| a1:T, u1:T−1) +

FVHP(ψ0,φ0; z1) in Eq. (4.28)︷ ︸︸ ︷
Eq(ζ|z1)

[
log

p(z1| ζ) p(ζ)
q(ζ| z1)

] ]

+
T

∑
t=2

Ep(zt−1| a1:T ,u1:T−1)

[
log p(at| zt−1, ut−1) + log

filtered distribution︷ ︸︸ ︷
p(zt−1| a1:t−1, u1:t−2)

p(zt−1| a1:T, u1:T−1)︸ ︷︷ ︸
smoothed distribution

]]

= EpD(x1:T ,u1:T) Eq(a1:T | x1:T)

[
T

∑
t=1

log p(xt| at)︸ ︷︷ ︸
−D(θ,φ) in Eq. (4.24)

−Ep(z1| a1:T ,u1:T−1) Eq(ζ| z1)

[
log

q(a1| x1)

p(a1| z1)
+ log

p(z1| a1:T, u1:T−1)

p(z1| ζ)
+ log

q(ζ| z1)

p(ζ)

]
︸ ︷︷ ︸

Rinitial(ψ,φ,ψ0,φ0; z1,a1:T ,x1,u1:T−1) in Eq. (4.27)

−
T

∑
t=2

Ep(zt−1| a1:T ,u1:T−1)

[
log

q(at| xt)

p(at| zt−1, ut−1)
+ log

p(zt−1| a1:T, u1:T−1)

p(zt−1| a1:t−1, u1:t−2)

]]
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4.2.5.3 Evidence Lower Bound (Filter Version)

The filter version of the EKVAE corresponds to the smoother version
with the difference of replacing pψ(zt| a1:T, u1:T−1) by pψ(zt| a1:t, u1:t−1).
In contrast to a closed-form evaluation, this enables a sample-based
optimisation of the transition-model parameters ψ, as discussed in
Section 4.2.4. Consequently, we obtain:

EpD(x1:T ,u1:T)

[
log p(x1:T| u1:T)

]

≥ EpD(x1:T ,u1:T) Eq(a1:T | x1:T)

[
T

∑
t=1

log p(xt| at)

−Ep(z1| a1) Eq(ζ| z1)

[
log

q(a1| x1)

p(a1| z1)
+ log

p(z1| a1)

p(z1| ζ)
+ log

q(ζ| z1)

p(ζ)

]
−

T

∑
t=2

Ep(zt−1| a1:t−1,u1:t−2)

[
log

q(at| xt)

p(at| zt−1, ut−1)

]]
.

4.3 disentangling static and dynamic features for pol-
icy learning

Learning DSSMs—in the context of model-based reinforcement learn-
ing and model predictive control—that are accurate enough for plan-
ning is subject of current research (e.g. Hafner et al., 2019). Further-
more, substantial engineering effort has to be invested into the design
of cost/reward functions. This is because reward functions based on
observable data—for instance, the Euclidean distance to a desired
position of a robot arm—do not take into account the dynamics and
constraints of a system.

In Sections 4.1 and 4.2, we have introduced the constrained opti-
misation framework and the EKVAE for learning accurate models
of dynamic systems, where the dynamics as well as the constraints
of the system are encoded in the transition model pψ(zt| zt−1, ut−1).
To validate the learned transition model, we propose a method for
defining reward functions by means of the latent representation in
order to learn policies exclusively through pψ(zt| zt−1, ut−1).

4.3.1 Disentangling Static and Dynamic Features

Disentanglement, as typically employed in literature, refers to indepen-
dence among features in a representation (e.g. Bengio et al., 2013). In
the context of latent-variable models, the aim is to represent different
features by different dimensions in latent space (e.g. Higgins et al.,
2017). In order to predict dynamic systems, DSSMs learn a represen-
tation of the system’s state in the latent space. The state can usually
be split into static and dynamic features, for example, the position and
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velocity of a moving robot arm, where the position can be inferred
from a single frame, while inferring the velocity requires a sequence
of frames.

The EKVAE is capable of disentangling static and dynamic features
in the latent space due to its architecture: static features are repre-
sented separately by the auxiliary variables at, which are learned via
the encoder–decoder pair. By defining H in pψ(at| zt) (Eq. (4.17)) as
rectangular identity matrix (cf. Figure 4.19),

H =
(
δij
)
∈ RDa×Dz , (4.31)

the model learns a state-space representation where the first Da dimen-
sions of zt correspond to static features at ∈ RDa , such that z(d)t = a(d)t
for d = 1, 2, . . . , Da. The remaining Dz−Da dimensions of zt represent
dynamic features, as we demonstrate in Sections 4.4.2 and 4.4.4.

4.3.2 Encoding the Reward Function

In the context of model-based reinforcement learning, the state of
a dynamic system often consists of position and velocity. For this
reason, we discuss on the example of disentangled position–velocity
representations how such state-space representations can be used to
learn policies πω(ut| zt) that enable a dynamic system to reach a goal
state. This can be, for example, a certain position of a robot arm or a
certain angular velocity at which a pendulum should rotate.

The EKVAE allows us to use an observation for encoding a goal po-
sition pg = a directly through qφ(a| x)—or a goal velocity vg through
pψ(z| a1:T, u1:T−1) qφ(a1:T| x1:T), where vg ∈ RDv is represented by the
last Dv = Dz − Da dimensions of z. As a result, we can define two
independent reward functions—based on an encoded pg or vg—that
target dimensions in zt either representing the position or the velocity:

rpos
t (zt, pg) = −

Da

∑
d=1

(
z(d)t − p(d)g

)2
, (4.32)

rvel
t (zt, vg) = −

Dv

∑
d=1

(
z(Da+d)

t − v(d)g

)2
, (4.33)

where the negative mean squared error is a natural choice in the
context of state-space representations motivated by the Euclidean
distance metric (cf. Section 3.4). Depending on the task, we can use
the reward function in either Eq. (4.32) or Eq. (4.33) to learn a policy
by means of

J(ω, ψ) =
H−1

∑
t=1

Eπω(ut| zt) Epψ(zt+1| zt,ut)

[
rt+1

]
, (4.34)

where J(ω, ψ) is maximised with respect to ω, and H is the planning
horizon.
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4.4 experimental results

We validate our approach on image data of a moving pendulum and
on the reacher environment of Deepmind’s control suite (Tassa et al.,
2018), where we use angle as well as high-dimensional image data.
The pendulum dataset was originally introduced in (Karl et al., 2017)
and consists of 500 sequences with 15 images each, which have a size
of 16× 16 pixels. The reacher dataset consists of 2000 sequences with
30 time steps each. We use two versions in our experiments: the first
contains partially observed system states, i.e. the angle of the first and
second joint; in the second version, observations are represented by
RGB images of 64× 64 pixels in size.

In our experiments, we use smoothing posteriors during training.
This allows inferring an accurate state-space representation of partially
observed systems already in the initial time step. In Section 4.4.1, we
demonstrate our constrained optimisation framework on the example
of deep Kalman smoothers (DKSs) (Krishnan et al., 2015)—and show
in Sec. 4.4.2 that it significantly improves learning the underlying
dynamics of observed systems on the example of DKSs, deep vari-
ational Bayes smoothers (DVBSs) (Karl et al., 2017), and extended
Kalman variational autoencoders (EKVAEs). Furthermore, we verify
in Section 4.4.3 that RNN-based transition models, as is the case in
Kalman variational autoencoders (KVAEs) (Fraccaro et al., 2017) and
recurrent state-space models (RSSMs) (Hafner et al., 2019), lead to a
non-Markovian state space. In Section 4.4.4, we demonstrate learn-
ing disentangled position–velocity representations with the EKVAE.
These are used to validate the learned dynamic model in the context
of model-based reinforcement learning. The model architectures can
be found in Appendix A.1.2.

4.4.1 Demonstrating the Constrained Optimisation Framework

First, we demonstrate the constrained optimisation framework intro-
duced in Section 4.1 on the example of the DKS, which we train on im-
age data of a moving pendulum (see Figure 4.3). We refer to this model
as VHP-DKS (CO), implying that it is trained through constrained
optimisation (CO) with the variational hierarchical prior (VHP) as part
of the model. The objective function can be found in Eq. (4.11).

Karl et al. (2017) have shown that the DKS is not capable of learning
the underlying dynamics of the moving pendulum—i.e. to accurately
predict the observed system—when trained classically or by apply-
ing (linear) annealing. In the following, we demonstrate that our
constrained optimisation framework solves this problem.

Figure 4.1 shows the optimisation process of VHP-DKS (CO), where
Figure 4.1a depicts the learned state-space representation of the pen-
dulum at selected optimisation steps (epochs). As mentioned in Sec-
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(a) State-space representation at selected epochs

(b) Course of β

Figure 4.1: VHP-DKS (CO): Learning the state-space representation of a
pendulum (image data) with our constrained optimisation framework. Dis-
tortion and rate are balanced by β. It is updated (cf. Algorithm 3) such that
the model first reduces the reconstruction error (constraint) by learning the
rotation angle (see epoch 70). As soon as the constraint is satisfied, β increases
and the model starts learning the underlying dynamics, i.e. to represent the
angular velocity.

tion 4.1.2.1, we use the β-parametrisation of the Lagrange multiplier,
β = 1/λ, to be in line with previous literature. The ratio between dis-
tortion and rate is balanced by β, which is updated (cf. Algorithm 3)
to reduce first the reconstruction error (constraint) by learning the
rotation angle (see epoch 70 in Figure 4.1a). As soon as the constraint
is satisfied, β increases, and the model starts learning the underlying
dynamics, i.e. to represent the angular velocity.

In Figure 4.2, we compare annealing with constrained optimisa-
tion and demonstrate the effect of the VHP. Constrained optimisation
(Figure 4.2, middle & top) enables the DKS to learn the underlying
system dynamics, which is indicated by the barrel shape of the learned
representation (cf. Karl et al., 2017; Watter et al., 2015) and verified in
Section 4.4.2. By contrast, training the DKS with annealing (Figure 4.2,
bottom) does not lead to a state-space representation where the model
learns to infer the angular velocity of the pendulum (cf. Table 4.1),
which confirms the experimental findings in (Karl et al., 2017). Further-
more, we show that the VHP (Figure 4.2, top) significantly improves
the quality of generated sequences. This is because the VHP learns
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Figure 4.2: Pendulum (image data). In contrast to annealing (bottom),
constrained optimisation (CO) (middle & top) enables the model to learn
the underlying system dynamics, as we verify in Table 4.1. Furthermore,
the VHP (top) significantly improves the quality of generated sequences
p(z1:T | u1:T), as verified in Figure 4.3.

(a) VHP-DKS (CO)

(b) DKS (CO)

(c) DKS (annealing)

Figure 4.3: Generated sequences of a moving pendulum. In order to gen-
erate realistic data, the prior has to match the inferred latent manifold.
This is realised by the VHP, which learns a prior p(z1) corresponding to
q(z1| z1:T , u1:T), cf. Figure 4.2 (top).
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a p(z1) that matches the manifold of the initial q(z1| z1:T, u1:T). As a
consequence, the manifold of the generated sequences p(z1:T| u1:T) cor-
responds to q(z1:T| u1:T). This leads to realistic generated pendulum
movements, as verified in Figure 4.3.

4.4.2 Prediction Accuracy: The Impact of the State-Space Representation

In this section, we demonstrate that our constrained optimisation
framework improves learning the underlying dynamics of observed
systems on the example of DKSs, DVBSs, and EKVAEs.

4.4.2.1 Pendulum Dataset

Table 4.1 shows, on the example of pendulum image data, that the
constrained optimisation framework significantly improves system
identification in contrast to (linear) annealing. This is indicated by a
high correlation between inferred and ground-truth states—i.e. rota-
tion angle φ and angular velocity φ̇—which we measure through R2

of an OLS regression. Since the pendulum can make a full 360 degree
turn, the model learns to represent the rotation angle φ by a circle,
resulting in a barrel-shaped state-space representation (cf. Figure 4.2).
Therefore, we perform three OLS regressions on the learned represen-
tations. In the first two, we use sin(φ) and cos(φ) as ground truth (cf.
Karl et al., 2017), where R2 (ang. φ)

OLS reg. is the corresponding mean. R2 (vel. φ̇)
OLS reg.

refers to the third OLS regression with φ̇ as ground truth.

Table 4.1: Pendulum (image data). The constrained optimisation framework
significantly improves system identification, as indicated by the high cor-
relation (R2) between inferred and ground-truth states (φ, φ̇). In contrast to
high ELBO values, high R2 values coincide with an increase of the models’
prediction accuracy (mean squared error (MSE)).

model test ELBO R2 (ang. φ)
OLS reg. R2 (vel. φ̇)

OLS reg. MSE (smoothed)
predict

VHP-EKVAE (CO) 807.3 0.992 0.998 1.99E-4

EKVAE (CO) 805.9 0.957 0.991 3.53E-4

EKVAE (annealing) 804.2 0.687 0.339 1.94E-3

VHP-DVBS (CO) 804.3 0.992 0.989 5.63E-4

DVBS (CO) 803.8 0.985 0.980 9.41E-4

DVBS (annealing) 803.1 0.795 0.237 4.67E-3

VHP-DKS (CO) 804.7 0.973 0.990 1.73E-3

DKS (CO) 804.1 0.912 0.962 2.36E-3

DKS (annealing) 804.0 0.330 0.040 2.12E-2
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Figure 4.4: Pendulum (image data). Statistic evaluation of different annealing
schedules. For this purpose, we measure the correlation between inferred
and ground-truth angular velocity by R2 (OLS regression) and compare the
best schedule with CO (right), cf. Table 4.1. The statistics are based on 25

experimental runs each and indicate that CO facilitates system identification.

Figure 4.5: Predicted sequences of a moving pendulum conditioned on
z1 ∼ q(z1| x1:5, u1:4) or, in case of the EKVAE, on z1 ∼ p(z1| a1:5, u1:4), where
a1:5 ∼ q(a1:5| x1:5). The average prediction accuracy, measured by the MSE,
can be found in Table 4.1.

A high correlation between inferred and ground-truth states goes
hand in hand with an increase of the models’ prediction accuracy. This
is measured in Table 4.1 by MSE (smoothed)

predict , the MSE of 500 predicted
sequences x1:15 (15 times steps). The predictions are conditioned on
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z1 ∼ q(z1| x1:5, u1:4) or, in case of the EKVAE, on z1 ∼ p(z1| a1:5, u1:4),
where the auxiliary variables are obtained through a1:5 ∼ q(a1:5| x1:5).
Conditioning on z1 allows us to additionally verify whether the model
has learned a good state-space representation in the initial time step.
Note that high ELBO values, by contrast, do not indicate the model
has learned to accurately predict the observed system.

Supplementary to Table 4.1, we show in Figure 4.5 the correspond-
ing predicted sequences of the moving pendulum. Figure 4.4 provides
a statistic evaluation of different linear annealing schedules compared
with CO, where the correlation between inferred and ground-truth
angular velocity is measured based on 25 experimental runs each.
The results indicate that constrained optimisation facilitates system
identification. Figures 4.6–4.14 show visualisations of the state-space
representations learned by the different models and provide further
evaluations including reconstructed observations and one-step predic-
tions.

Figure 4.6: VHP-EKVAE (CO) trained on pendulum image data (supple-
mentary to Table 4.1). In combination with the constrained optimisation
framework, the EKVAE identifies the dynamic system of the pendulum and
learns to predict it accurately.
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Figure 4.7: EKVAE (CO) trained on pendulum image data (supplementary
to Table 4.1). Without the VHP, the EKVAE identifies the dynamic system of
the pendulum but does not learn to process samples from the prior, which
results in a broken generative model.

Figure 4.8: EKVAE (annealing) trained on pendulum image data (supple-
mentary to Table 4.1). Without the constrained optimisation framework, the
EKVAE does not learn to accurately predict the observed dynamic system.
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Figure 4.9: VHP-DVBS (CO) trained on pendulum image data (supplemen-
tary to Table 4.1). In combination with the constrained optimisation frame-
work, DVBS identifies the dynamic system of the pendulum and learns to
predict it accurately.

Figure 4.10: DVBS (CO) trained on pendulum image data (supplementary
to Table 4.1). The original empirical Bayes prior proposed for DVBS leads to
a poorer generative model than the VHP.
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Figure 4.11: DVBS (annealing) trained on pendulum image data (supplemen-
tary to Table 4.1). Without the constrained optimisation framework, DVBS
does not learn to accurately predict the observed dynamic system.

Figure 4.12: VHP-DKS (CO) trained on pendulum image data (supplemen-
tary to Table 4.1). In combination with the constrained optimisation frame-
work, DKS identifies the dynamic system of the pendulum and learns to
predict it accurately.
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Figure 4.13: DKS (CO) trained on pendulum image data (supplementary
to Table 4.1). Without the VHP, DKS identifies the dynamic system of the
pendulum but does not learn to process samples from the prior, which results
in a broken generative model.

Figure 4.14: DKS (annealing) trained on pendulum image data (supplemen-
tary to Table 4.1). Without the constrained optimisation framework, DKS
does not learn to accurately predict the observed dynamic system.
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4.4.2.2 Reacher Dataset

Table 4.2 compares the constrained optimisation framework with
(linear) annealing on the example of the reacher environment, where
we use angle as well as high-dimensional image data (cf. Figure 4.16)
as observations.

As in the pendulum experiments, we measure the correlation be-
tween inferred and ground-truth states—i.e. the joint angles (φ, ψ) and
the related angular velocities (φ̇, ψ̇)—through R2 of an OLS regression.
In case of angle data (Table 4.3a), we perform four OLS regressions on
the learned representations with (φ, ψ, φ̇, ψ̇) as ground truth. In case
of image data (Table 4.3b), we perform five OLS regressions on the
learned representations because we use sin(φ) and cos(φ), instead of
φ, as ground truth, where R2 (ang. φ)

OLS reg. refers to the corresponding mean.
As in the pendulum experiments, this is necessary for image data
since the model learns to represent the first joint angle φ of the reacher
by a circle (cf. Figure 4.15). This is because the first joint can make, in
contrast to the second one, a full 360 degree turn.

A high correlation between inferred and ground-truth states coin-
cides with an increase of the models’ prediction accuracy. This is mea-
sured by MSE (smoothed)

predict , the MSE of 500 predicted sequences x1:30 (30

times steps). The predictions are conditioned on z1 ∼ q(z1| x1:5, u1:4) or,
in case of the EKVAE, on z1 ∼ p(z1| a1:5, u1:4), where a1:5 ∼ q(a1:5| x1:5).

Figure 4.15 shows the disentangled 5-dimensional position–velocity
representation learned by the VHP-EKVAE (CO) (see Section 4.3 for
a description of our disentanglement method). The first three dimen-
sions represent the two joint angles (φ, ψ), the last two dimensions

Table 4.2: Reacher. The correlation between inferred and ground-truth states
(φ, ψ, φ̇, ψ̇) is measured by R2 (OLS regression). The models’ prediction accu-
racy is measured by the MSE.

(a) angle data

model R2 (ang. φ)
OLS reg. R2 (ang. ψ)

OLS reg. R2 (vel. φ̇)
OLS reg. R2 (vel. ψ̇)

OLS reg. MSE (smoothed)
predict

VHP-EKVAE (CO) 0.988 0.997 0.989 0.986 2.13E-5

EKVAE (annealing) 0.712 0.835 0.881 0.339 4.38E-4

VHP-DVBS (CO) 0.990 0.994 0.979 0.991 2.75E-4

DVBS (annealing) 0.897 0.949 0.963 0.778 4.17E-4

VHP-DKS (CO) 0.984 0.991 0.986 0.980 3.52E-4

DKS (annealing) 0.693 0.781 0.965 0.016 1.12E-3

(b) image data (cf. Figure 4.15 and Figure 4.16)

model R2 (ang. φ)
OLS reg. R2 (ang. ψ)

OLS reg. R2 (vel. φ̇)
OLS reg. R2 (vel. ψ̇)

OLS reg. MSE (smoothed)
predict

VHP-EKVAE (CO) 0.980 0.986 0.991 0.987 1.64E-4

EKVAE (annealing) 0.672 0.052 0.668 0.091 1.82E-3
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Figure 4.15: Reacher (image data). Disentangled 5-dimensional position–
velocity representation learned by the VHP-EKVAE (CO). The first three
dimensions represent the two joint angles (φ, ψ), the last two dimensions
represent the respective angular velocities (φ̇, ψ̇).

Figure 4.16: VHP-EKVAE (CO). Predicted sequences (first 15 time
steps) of the moving reacher conditioned on the smoothed distribution
z1 ∼ p(z1| a1:5, u1:4), where the auxiliary variables are obtained through
a1:5 ∼ q(a1:5| x1:5).
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represent the respective angular velocities (φ̇, ψ̇). The barrel shape indi-
cates the model has learned that the first joint can make a 360 degree
turn, whereas the second joint is restricted to avoid self-collisions. This
is verified by the experiments in Figure 4.21.

Predicted sequences (first 15 time steps) of the moving reacher
can be found in Figure 4.16. They are conditioned on the smoothed
distribution z1 ∼ p(z1| a1:5, u1:4), where the auxiliary variables are
obtained through a1:5 ∼ q(a1:5| x1:5). The average prediction accuracy
measured by the MSE can be found in Table 4.3b.

4.4.3 Limitations of Recurrent-Neural-Network-Based Transition Models

In this section, we show that as a consequence of the LSTM-based
transition models, the KVAE and the RSSM learn a non-Markovian
state space, i.e. not all information about the state is encoded in zt,
but partially in the LSTM. This is indicated by the low correlation
(R2) between the inferred and ground-truth angular velocity, when
trained on pendulum image data (see Table 4.3). The OLS regressions
are performed identically to Section 4.4.2.

In order to verify that the KVAE and the RSSM learn a non-Markovian
state space, we compare in Table 4.3 the accuracy (MSE) of 500 pre-
dicted sequences x1:15 (15 time steps), which are either conditioned
on the smoothed or the filtered posterior (referred to as MSE (smoothed)

predict

and MSE (filtered)
predict ). This allows us to isolate the influence of the LSTM

on the model’s prediction accuracy, as we elaborate below.
The KVAE uses the transition model p(zt| zt−1, ht−1, ut−1), where

ht−1 = LSTM(a1:t−1). Table 4.3 shows that predictions conditioned on
{z1 ∼ p(z1| a1:5, u1:4), h1 = LSTM(a1)} (denoted by MSE (smoothed)

predict )
are significantly less accurate than predicted sequences conditioned on
{z5 ∼ p(z5| a1:5, u1:4), h5 = LSTM(a1:5)} (denoted by MSE (filtered)

predict ).
Figure 4.17 shows that the predicted position of the pendulum in
the initial time step is identical to the observed position. Thus, we can

Table 4.3: Pendulum (image data). The correlation between inferred and
ground-truth states (φ, φ̇) is measured by R2 (OLS regression). The models’
prediction accuracy is measured by the MSE.

model R2 (ang. φ)
OLS reg. R2 (vel. φ̇)

OLS reg. MSE (smoothed)
predict MSE (filtered)

predict

VHP-KVAE (CO) 0.989 0.043 2.87E-3 4.24E-4

KVAE (annealing) 0.652 0.134 3.16E-3 6.67E-4

VHP-RSSM (CO) 0.915 0.086 3.10E-3 4.80E-4

RSSM (annealing) 0.158 0.060 3.23E-3 6.94E-4
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Figure 4.17: VHP-KVAE (CO). The predictions demonstrate that the KVAE
encodes the angular velocity of the pendulum in ht = LSTM(a1:t) and not in
zt, cf. Table 4.3.

Figure 4.18: VHP-RSSM (CO). The predictions demonstrate that the RSSM
encodes the angular velocity of the pendulum in ht = LSTM(z1:t, u1:t) and
not in zt, cf. Table 4.3.

conclude that the low accuracies of the smoothing-based predictions
are due to missing information about the dynamics, i.e. the angular
velocity of the pendulum. When smoothing back to the initial time
step, this information can only be provided by z1 since h1 = LSTM(a1)

does not have access to sequential data and therefore cannot infer any
dynamics. Consequently, we state that the angular velocity is encoded
in ht = LSTM(a1:t) and can only be inferred for t ≥ 2, as shown in
Figure 4.17.

The same line of argument can be applied to the RSSM. It uses the
transition model p(zt| ht−1), where ht−1 = LSTM(z1:t−1, u1:t−1). The
experimental results in Table 4.3 and Figure 4.18 show that the RSSM
learns a non-Markovian state representation in z since the angular
velocity of the pendulum is inferred by the LSTM.
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4.4.4 Model Validation: Policy Learning With Disentangled Position–Velocity
Representations

In the following, we use the approach introduced in Section 4.3 to
learn disentangled position–velocity representations with the EKVAE.
Figure 4.19 demonstrates, on the example of pendulum image data,
how defining H in p(at| zt) (Eq. (4.17)) as rectangular identity matrix
(Figure 4.19, left) allows disentangling the rotation angle and the
angular velocity in the latent space. Furthermore, Figure 4.19 shows
how different permutations of H change the dimensions where the
model learns to represent the rotation angle or angular velocity. The
learned disentangled representation of the reacher (image data) can
be found in Figure 4.15.

As a next step, we validate the learned models in the context of
model-based reinforcement learning. To this end, we use the method
presented in Section 4.3.2 for defining reward functions based on
disentangled position–velocity representations. This allows us to learn
policies exclusively through p(zt| zt−1, ut−1).

Figure 4.20 shows the visualisation of different policies that are
learned based on the disentangled position–velocity representation
of the pendulum (image data) in Figure 4.19 (left). The policies are
tested on the original pendulum environment, which was also used
to generate the dataset. The first example (top) demonstrates the pen-
dulum swing-up, which is achieved by encoding the goal position for
rpos

t (zt, pg) and using an action interval of 7 ≥ a ≥ −7. The second
and third example (middle and bottom) demonstrate steady clock-
wise and counter-clockwise rotations of the pendulum with different
angular velocities using an action interval of 30 ≥ a ≥ −30. We
achieve this by encoding the goal angular velocity for rvel

t (zt, vg): in
Figure 4.20 (middle), we use 50% of the maximum speed and in Fig-

Figure 4.19: Pendulum (image data). Disentangled 3-dimensional position–
velocity representations learned by the VHP-EKVAE (CO). Depending on
H, the model learns to represent the angular velocity φ̇ solely by one of the
three dimensions of the latent space.
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Figure 4.20: VHP-EKVAE (CO). Visualisation of different policies that we
learned based on the disentangled position–velocity representation in Fig-
ure 4.19 (left). Swinging up the pendulum by encoding the goal position
for rpos

t (zt, pg) (top). Steady rotating the pendulum by encoding the goal
angular velocity for rvel

t (zt, vg): clockwise with 50% of the maximum speed
(middle); and counter-clockwise with 85% of the maximum speed defined by
the dataset (bottom).

Figure 4.21: VHP-EKVAE (CO). Policy for reaching an encoded goal posi-
tion (red dot) that we learned based on the disentangled position–velocity
representation in Figure 4.15. The results show that the EKVAE has learned
an accurate model of the observed system.

ure 4.20 (bottom) 85% of the maximum speed defined by the dataset.
The experiments verify that the EKVAE has learned an accurate model
of the pendulum. Furthermore, they demonstrate the variety of ap-
plications for disentangled position–velocity representations and the
related policy learning approach.

Figure 4.21 shows the visualisation of the policy that is learned
based on the disentangled position–velocity representation of the
reacher (image data) in Figure 4.15. The respective goal position used
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for defining the reward function is denoted by the red dot. The policies
are tested in the reacher environment of Deepmind’s control suite.
Our results show that the EKVAE has learned an accurate model of
the reacher environment that avoids self-collisions and ensures precise
reaching of a desired position.

4.5 summarising discussion

In this chapter, we have dealt with the question of how to learn DSSMs
in order to obtain accurate temporal predictions of the observed dy-
namic system. We have addressed this problem by proposing a con-
strained optimisation framework as a general approach for learning
DSSMs. To this end, we have derived a general Lagrangian formula-
tion of the sequential ELBO on the basis of distortion and rate—and
extended the hierarchical empirical Bayes prior (VHP) as well as the
associated optimisation algorithm introduced in Chapter 3 to DSSMs.
Building upon the constrained optimisation framework, we have in-
troduced the EKVAE that leverages the concept of extended Kalman
filtering/smoothing for approximate inference and is capable of learn-
ing disentangled position–velocity representations. Furthermore, we
have proposed a method—in the context of model-based reinforce-
ment learning—for defining/encoding reward functions by means
of disentangled position–velocity representations, which allows us to
learn policies exclusively through the transition model.

We have shown in Section 4.4.2 that high ELBO values do not imply
the model has learned the underlying dynamics of the data, i.e. to
accurately predict the observed system. Our proposed constrained
optimisation framework addresses this issue. Indeed, the experiments
on the pendulum and reacher data have demonstrated that it sig-
nificantly improves system identification using DKSs, DVBSs, and
EKVAEs—which goes hand in hand with an increase of the models’
prediction accuracy. Furthermore, we have shown in Section 4.4.1
that the hierarchical empirical Bayes prior substantially improves the
quality of generated sequences. In Section 4.4.3, we have verified that
KVAEs and RSSMs learn a non-Markovian state space due to their
RNN-based transition models, i.e. not all information about the state
of the system is captured by the latent variables. In Section 4.4.4, we
have learned disentangled position–velocity representations of the
pendulum and the reacher with our EKVAE—and used these to define
reward functions for model-based reinforcement learning. In this way,
we have verified that the model of the pendulum environment is pre-
cise enough for learning policies that allow us to swing the pendulum
up or make it rotate with a constant angular velocity. Moreover, we
have shown that the EKVAE has learned an accurate model of the
reacher environment that avoids self-collisions and ensures the precise
reaching of a desired position.
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In the conducted experiments, we have primarily used our policy-
learning method to validate the learned dynamic model of the ob-
served system. In future studies, it can be compared with state-of-
the-art policy-learning methods, which is particularly interesting for
environments where rewards are not available.



5
U N S U P E RV I S E D M E T R I C L E A R N I N G W I T H
VA R I AT I O N A L AU T O E N C O D E R S

In this chapter, we return to the framework of variational autoencoders
(VAEs) and show how VAEs can be applied to measure the similarity
of data in an unsupervised way.

A variety of algorithms rely on suitable distance metrics. Popular
examples are k-nearest neighbours (Altman, 1992); kernel methods,
such as KernelPCA (Schölkopf et al., 1997) and KernelNMF (Li and
Ding, 2006); or interpolation methods for creating new data (Caruso
and Quarta, 1998). Applications in computer vision, such as object
tracking over time (Bewley et al., 2016; Wojke et al., 2017), depend on
the quality of similarity scores.

It can be challenging, however, to define such distance metrics.
Applying the Euclidean distance, for instance, on image data gives
each pixel the same importance; thus, the background might have a
higher impact on the similarity score than the actual object of interest.
Similar issues occur with other predefined metrics, for example, the
Minkowski distance, since they come with certain assumptions on the
data. Therefore, it is often not straightforward to find a mathematical
description of similarity.

As a consequence, learning a distance metric directly from data,
referred to as metric learning, has become a popular approach (Kulis
et al., 2013; Tosi et al., 2014; Weinberger et al., 2006; Xing et al., 2002).

In this chapter, we demonstrate how metric learning can be ad-
dressed by the framework of variational autoencoders. VAEs are well
suited for learning similarity metrics because they provide an encoder–
decoder pair that captures underlying characteristics of the data, as
detailed in Section 2.2.1. Furthermore, we show in our experiments
that VAEs are capable of generating data with a continuous change of
similarity when combined with an accurate distance metric.

The latent representation learned by VAEs, however, cannot be di-
rectly used for measuring similarities. This is because the objective
function of VAEs does not incentivise learning a topology- or distance-
preserving mapping to the latent space. Moreover, as discussed in
Chapter 3, VAEs regularise the latent space to be compact, i.e. to
remove low-density regions, due to the standard normal prior distri-
bution. In the following sections, we show how Riemannian geometry
provides a solution to this problem.

In Section 5.1, we define the latent space of VAEs as a Riemannian
manifold. This allows us to compute geodesics, which takes into
account the gradients of the decoder. Geodesics are length-minimising
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curves on a Riemannian manifold, and we show that they can be used
to define an accurate measure of similarity between data points. In
other words: the information that allows evaluating the similarity of
the data is contained in the latent variables and the decoder. To define
a distance metric, we use both sources of information.

In Section 5.2, we go one step further and learn latent spaces that
can directly act as a Euclidean similarity metric. For this purpose,
we use the VHP-VAE introduced in Chapter 3. Due to the empirical
Bayes prior, it can learn complex latent representations that reflect
the topology of the data. To facilitate a Euclidean distance-preserving
mapping to the latent space, we extend the objective function of the
VHP-VAE by a regularisation term for the Riemannian metric tensor.

5.1 the latent space as a riemannian manifold

The methods and experimental results discussed in this section have been
previously published in (Chen*, Klushyn*, Kurle*, Jiang, Bayer and Smagt,
2018).

The latent-variable model learned by VAEs,

p(x, z) = p(x|z) p(z), (5.1)

characterises the observable data x by typically lower-dimensional
latent variables z, as detailed in Section 2.1.

In the following, we demonstrate how to use these learned character-
istics for defining a distance measure δ(xi, xj). The latter is supposed
to adequately reflect the similarity of different data points xi and xj.
Since VAEs allow for inferring the corresponding latent variables zi
and zj, the Euclidean distance ||zi − zj||2 seems to be an obvious simi-
larity metric. This has the implicit assumption that moving a certain
distance in latent spaces moves us proportionally far in observable
space: ||zi − zj||2 ∝ ||xi − xj||2.

However, this assumption is often a fallacy. In order to model the
data correctly, stark discontinuities in the likelihood function p(x|z)
are virtually always present due to the predefined prior distribution.
To see this, we note that the prior can be expressed as the posterior
aggregated over the data:

p(z) = Ep(x)
[
p(z|x)

]
.

Thus, independent of the topology of the data manifold, the latent
manifold corresponds to the prior distribution. In case of VAEs, the
prior is typically the standard normal distribution; thus, the latent
manifold does not include regions of low density. As a consequence,
separated data in the observation space (e.g. sets of points from dif-
ferent classes) is placed next to each other in the latent space. This
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can solely be realised by high gradients in the posterior p(z|x)—and
therefore in the likelihood p(x|z)—at the respective borders.

Concurrently, these gradients can provide the necessary information
for defining a similarity metric. In order to harness this information,
we propose to make use of Riemannian geometry, a mathematical
framework for studying the curvature of spaces.

Tosi et al. (2014) define the latent space of Gaussian-process latent-
variable models as a Riemannian manifold. We follow their line of
argument and define the VAE’s latent space as a Riemannian manifold.
This allows computing the length of curves on the latent manifold
based on the Jacobian of the likelihood function and thus with respect
to the observable space. The length-minimising curves are referred
to as geodesics, and we show that their Riemannian length can be
interpreted as an accurate similarity measure of the data.

In the following, we introduce our VAE-based approach for learning
similarity metrics:

• In Section 5.1.1, Riemannian geometry is integrated with the
framework of variational autoencoders by defining the VAE’s
latent space as a Riemannian manifold.

• In Section 5.1.2, we propose a method for finding/approximat-
ing geodesics between different data points, as the length of
geodesics provides a measure of similarity.

• In Section 5.1.3, we address the question of how to analyse the
Riemannian metric tensor by providing a visualisation method.

• In Section 5.1.4, we evaluate our proposed method. This includes
experiments on a moving pendulum, on binarised MNIST, on a
simulated robot arm, and on real-world human motion data.

5.1.1 Riemannian Geometry in the Context of Variational Autoencoders

Supplementary to the general introduction to VAEs in Section 2.2.1,
we emphasise in the following paragraph some important details that
are relevant for understanding our proposed method.

VAEs learn the parameters of the generative model in Eq. (5.1) by
maximising the evidence lower bound (ELBO):

EpD(x)
[

log pθ(x)
]
≥ EpD(x)Eqφ(z|x)

[
log

pθ(x|z) pθ(z)
qφ(z|x)

]
, (5.2)

where pD(x) = 1
N ∑N

i=1 δ(x− xi) is the empirical distribution of the
observed data D = {xi}N

i=1. This requires learning an approximate
posterior distribution qφ(z|x)—with the idea that qφ(z|x) and pθ(x|z)
infer the underlying characteristics of D and enable the model there-
fore to generalise to unseen data. For example,

{
Eqθ(z|xi)[z]

}N
i=1 cluster



90 unsupervised metric learning

with respect to some discrete features or important factors of variation
in the data.

In order to use these encoded features for learning a similarity met-
ric, two criteria need to be considered. First, for measuring δ(xi, xj),
we must be able to infer the corresponding latent variables. This is
addressed by the approximate posterior qφ(z|x), which allows encod-
ing observable data into the latent space. Second, the Jacobian of the
likelihood function has to be taken into account. This is because, by
maximising the ELBO in Eq. (5.2), the latent manifold is regularised
towards the standard normal prior distribution (see Section 2.2.1). To
harness the information of the likelihood’s Jacobian, we define the
latent space of the VAE as a Riemannian manifold.

5.1.1.1 Riemannian Distance Function

A Riemannian manifold is a differentiable manifold, which is addi-
tionally equipped with a metric tensor G. The latter provides math-
ematical spaces with a measure for distances and angles. A simple
example is the inner product of two vectors in the Euclidean space,
〈a, b〉 = aT 1 b. The Euclidean spaces is a special case of a Riemannian
manifold referred to as the Euclidean metric, where G = 1.

By defining the latent space of VAEs as a Riemannian manifold M,
an inner product on the tangent space Tz M is assigned to each point
z ∈ M on the latent manifold:

〈a, b〉z = aT G(z) b, (5.3)

where a, b ∈ Tz M. The Riemannian metric tensor

G(z) = J(z)TJ(z)

is defined by the Jacobian of the likelihood pθ(x|z). In the context of
VAEs, the Jacobian is determined by the decoder fθ : RDz → RDx :

J =
∂fθ(z)

∂z
∈ RDx×Dz . (5.4)

In case of a Gaussian likelihood, the decoder typically returns the
likelihood’s mean since the variance is learned as a global parameter—
in case of a Bernoulli likelihood, the decoder returns the probability
of success.

Since a Riemannian manifold is differentiable, the inner product
in Eq. (5.3) allows computing the length of curves on the manifold
with respect to the observable space. Assume a curve γ : [0, 1]→ RDz
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in the latent space of the VAE: the length of γ in the observable
space—referred to as the Riemannian length—is defined by

L(γ) =
∫ 1

0

∥∥∥∥∥∂fθ

(
γ(t)

)
∂t

∥∥∥∥∥
2

dt

=
∫ 1

0

∥∥∥∥∥∂fθ

(
γ(t)

)
∂γ(t)

∂γ(t)
∂t

∥∥∥∥∥
2

dt

=
∫ 1

0

∥∥∥∥J
∂γ(t)

∂t

∥∥∥∥
2

dt

=
∫ 1

0

√〈
γ̇(t), γ̇(t)

〉
γ(t)︸ ︷︷ ︸

φ(t)

dt, (cf. Eq. (5.3)) (5.5)

where φ(t) can be interpreted as the rate of change at point γ(t).
Therefore, we refer to it as velocity. The velocity is used in our experi-
ments (Section 5.1.4) for measuring the smoothness of a trajectory in
the latent space with respect to the observable space.

As a next step, we define the similarity metric as the Riemannian
distance

D = min
γ

L(γ), (5.6)

which is the Riemannian length of the shortest path between two data
points according to Eq. (5.5). In order to compute the Riemannian
distance, we need to find the shortest path

γgeodesic = argmin
γ

L(γ),

which is referred to as the geodesic. However, computing the geodesic
is not trivial. In Section 5.1.2, we address this issue and introduce an
approach for approximating geodesics in the context of VAEs.

5.1.1.2 Particularity of Importance Weighted Autoencoders

In order to learn a richer latent representation and to obtain a more
accurate generative model—compared to the classical VAE—we use
the importance-weighted autoencoder (IWAE) (Burda et al., 2016;
Cremer et al., 2017) in our experiments. As detailed in Section 2.2.2,
the approximate posterior distribution qφ(z|x) in IWAEs is treated
as a proposal distribution for importance sampling. This leads to a
tighter lower bound than the original ELBO in Eq. (5.2):

EpD(x)
[

log pθ(x)
]

≥ EpD(x)Ez1:K∼qφ(z|x)

[
log

1
K

K

∑
k=1

pθ(x|zk) pθ(zk)

qφ(zk|x)

]
. (5.7)
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However, as qφ(z|x) in Eq. (5.7) functions as a proposal distribution,
it does not reflect the latent representation of our data. This is an
important aspect that has to be taken into account when computing
Riemannian distances. In order to obtain the latent representation,
we use sequence importance resampling (SIR) (cf. Algorithm 1), as
described in Section 2.2.2.

5.1.2 Approximating Geodesics

As discussed in the previous section, we define the similarity of data
points by the Riemannian distance in Eq. (5.6). In the context of VAEs,
the Riemannian distance is the length of the shortest path between two
encoded data points on the latent (Riemannian) manifold, referred to
as the geodesic.

However, VAEs learn a complex mapping from the latent to the
observable space by means of neural networks that define the parame-
ters of the likelihood. This is realised by high gradients resulting in a
complex topology of the latent manifold, as we verify in Section 5.1.4.
Therefore, it is not possible to analytically compute geodesics. In the
following, we propose an approach for approximating geodesics in
latent space of VAEs.

In order to approximate the geodesic γgeodesic between two encoded
latent variables z0 and z1, we use a neural network gω : R→ RDz that
learns to map time steps t ∈ [0, 1] to the corresponding latent variables.
This allows approximating the Riemannian length in Eq. (5.5) by
Monte Carlo integration:

L(γ) ≈ L(ω) =
1
T

T

∑
i=0

√〈
ġω(ti), ġω(ti)

〉
gω(ti)

, (5.8)

where the time steps t1:T ∼ U (0, 1) are sampled from a continuous
uniform distribution. We obtain an approximation of the geodesic
by minimising L(ω) with respect to ω and subject to the constraint
that the curve starts at z0 and ends at z1. This results in the following
constrained optimisation problem:

min
ω

L(ω) s.t. gω(0) = z0, gω(1) = z1. (5.9)

5.1.2.1 Satisfying the Boundary Constraints

To satisfy the boundary constraints in Eq. (5.9), we shift and rescale
the curve predicted by gω(t):

γ̂geodesic(t) = a ◦ gω(t)− b,
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where

ai =
z(i)0 − z(i)1

g(i)ω (0)− g(i)ω (1)
,

bi =
z(i)0 g(i)ω (1)− z(i)1 g(i)ω (0)

g(i)ω (0)− g(i)ω (1)
.

The advantage of this approach is that the optimisation problem in
Eq. (5.9) is simplified to minω L(ω).

5.1.2.2 Smoothing the Riemannian Metric Tensor

The Riemannian length in Eq. (5.8) is approximated by Monte Carlo
integration with a finite number of time steps. As a consequence, the
Riemannian metric tensor G is only evaluated at these time steps
during the minimisation L(ω)—the gradients between the time steps
are not taken into account. As a result, the approximate geodesic
does not always correspond to the shortest path on the Riemannian
manifold since it uses in some cases shortcuts through small regions
with high gradients. This is because such small regions have a lower
impact on the Riemannian distance when it is approximated by the
finite sum in Eq. (5.9).

To ensure the approximated geodesic corresponds to the shortest
path on the Riemannian manifold, we smooth G by means of a low-
rank approximation, as described in (Jiang, 2014):

G̃ = Ur diag
{

s3
i

s2
i + λs

}r

i=1
VT

r , (5.10)

where λs > 0 acts as a regularisation coefficient, and r is the rank of G.
The low-rank approximation in Eq. (5.10) is computed by a compact
singular value decomposition G = UrSrVT

r : the diagonal elements of
Sr are the singular values si of the Riemannian metric tensor; Ur and
Vr are the corresponding left- and right-singular vectors.

In order to provide an intuitive interpretation, we show that G̃ is
equivalent to a linear smoother (Buja et al., 1989):

Ur diag
{

s3
i

s2
i + λs

}r

i=1
VT

r = Ur diag
{

s2
i

s2
i + λs

}r

i=1
UT

r︸ ︷︷ ︸
smoothing matrix

G,

where λs nonlinearly rescales the singular values of G. This increases
the gap between the smaller and the dominant singular values.

By replacing G in Eq. (5.8) by G̃, we obtain the objective function
for approximating geodesics:

Lgeodesic(ω) =
1
T

T

∑
i=0

√
ġT

ω(ti) G̃
(
gω(ti)

)
ġω(ti) ,

with t1:T ∼ U (0, 1).
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5.1.2.3 Avoiding Local Minima

We found that the initialisation of gω significantly influences whether
the optimisation minω Lgeodesic(ω) gets stuck in a local minimum.
Therefore, we propose to use a Bézier curve (De Casteljau, 1986) as
initial approximation of the geodesic for pre-training gω.

The Bézier curve is determined by the starting and ending point,
z0 and z1, as well as a set of C additional control points {zc}C

c=1, each
sampled from a separate uniform distribution. The means of these
uniform distributions are

µc = z0 +
c

C + 1
(z1 − z0), where c = 1, 2, . . . , C.

The support is defined to be orthogonal to the vector (z1 − z0) and to
have a range of ‖z1−z0‖/2. This approach allows creating a variety of
different curves.

In order to find a suitable initial approximation of the geodesic,
we generate N Bézier curves and fit a separate neural network to
each curve. The model gω with the best validation value is used for
optimising Lgeodesic(ω).

5.1.3 Visualising the Riemannian Metric Tensor

Analysing the likelihood function with respect to the latent represen-
tation can provide useful information about the quality of the model,
for example, whether high gradients occur at the boundaries of en-
coded classes. For this purpose, we introduce the magnification factor
(Bishop et al., 1997):

MF =
√

det(G), (5.11)

which allows visualising the Riemannian metric tensor. In order to
get an intuitive understanding of the magnification factor, it is helpful
to first consider two equidimensional spaces: the rule for changing
variables dx = |det(J)|dz expresses the relation between infinitesimal
volumes of these two equidimensional spaces. The relation between
spaces of different dimensions is expressed by

√
det(JTJ), i.e. by the

MF. As a consequence, the magnification factor represents the extent
of change of an infinitesimal volume mapped from the latent to the
observable space.

5.1.4 Experimental Results

We evaluate our approach by conducting a series of experiments on
four datasets: a moving pendulum, the binarised MNIST digit dataset,
a simulated KUKA robot arm, and real-world human motion data.

In our experiments, we analyse the topology of the latent manifold
learned by an IWAE and visualise how high gradients in the likelihood
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function realise the compact encoding of continuous movements or
different classes. In this context, we empirically show that geodesics
reflect the similarity of data in contrast to Euclidean interpolations
in the latent space. In Section 5.1.4.1, we demonstrate that the Rie-
mannian distance is a linear function of the pendulum’s joint angle.
Section 5.1.4.2 addresses how different classes can be distinguished in
the latent space. In Sections 5.1.4.3 and 5.1.4.4, we show how geodesics
can be used for efficient motion planning.

The model architectures used in our experiments can be found in
Appendix A.1.3.

5.1.4.1 Artificial Pendulum Dataset

We created a dataset of a moving pendulum, identical to the one in
Section 3.5.1. It consists of 15,000 images (see Figure 5.2) with a size
of 16× 16 pixels, and the joint angles are distributed uniformly in the
range [0, 2π). Therefore, the joint angle is the only degree of freedom.

Figure 5.1: Latent representation of pendulum data learned by an IWAE.
The magnification factor visualises the topology of the Riemannian manifold.
In contrast to the Euclidean interpolation, the geodesic follows the data
manifold as this is the shortest path on the Riemannian manifold.

Figure 5.1 shows the two-dimensional latent manifold of pendulum
data learned by an IWAE. The grayscale in the background repre-
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Figure 5.2: Reconstruction of the geodesic (top row) and the Euclidean
interpolation (second row). The velocity φ(t) along the respective trajectories
is a measure of smoothness with respect to the observable space.
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Figure 5.3: Riemannian length of geodesics, Euclidean interpolations, and
encoded sequences of the moving pendulum (manifold) that functions as
ground truth. The Riemannian distance (Riemannian length of the geodesic)
is a linear function of the pendulum’s rotation angle, i.e. an accurate similarity
metric.

sents the magnification factor defined in Section 5.1.3, Eq. (5.11). It
visualises the gradient of the likelihood function, i.e. the topology
of the Riemannian manifold. Therefore, in contrast to the Euclidean
interpolation, the geodesic follows the data manifold as this is the
shortest path on the Riemannian manifold.

In order to compare the geodesic with the Euclidean interpola-
tion, we reconstruct both trajectories in Figure 5.2 and use the veloc-
ity φ(t) defined in Eq. (5.5) for measuring the smoothness of both
trajectories with respect to the observable space. In contrast to the
Euclidean-interpolation-based reconstructions, the geodesic-based re-
constructions (top row) show a uniform and smooth rotation of the
pendulum. This is also confirmed by their Riemannian length that is
0.827 in case of the Euclidean interpolation, whereas the Riemannian
distance is 0.538.

As a next step, we demonstrate that the Riemannian distance ade-
quately reflects the similarity of different data points. Figure 5.3 shows
the Riemannian distance of 100 random geodesics and Euclidean
interpolations, with a rotation angle of (0, 180] degrees. As ground
truth, we additionally encode 100 sequences of a moving pendulum
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and compute the Riemannian length of the interpolations along the
encoded data points of each sequence. The idea behind this is: we
know the continuous movement of the pendulum is equivalent to a
continuous change of similarity in the (image) data. Therefore, our
approximate geodesic follows the data manifold in Figure 5.1, and
the Riemannian distance corresponds to the Riemannian length of the
encoded sequences in Figure 5.3. As a result, the Riemannian distance
is a linear function of the pendulum’s joint angle and thus a precise
similarity metric.

5.1.4.2 Binarised MNIST

In order to demonstrate how high gradients in the likelihood function
realise the compact encoding of the data, we evaluate our model
on the binarised version of MNIST (Larochelle and Murray, 2011),
a benchmark dataset with ten different classes. It consists of 50,000

training, 10,000 validation, and 10,000 test images of handwritten
digits (0 to 9), which are 28× 28 pixels in size.

Figure 5.4: Latent representation of MNIST data learned by an IWAE. The
magnification factor visualises the topology of the Riemannian manifold. The
equidistance lines refer to the Riemannian distance to the selected data point.
This example illustrates how Riemannian geometry allows for separating
different classes (digits) in the latent space.
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Figure 5.5: Latent representation of MNIST data learned by an IWAE. The
magnification factor visualises the topology of the Riemannian manifold. In
contrast to the Euclidean interpolation, the geodesic does not pass regions
with high gradients that separate different classes (digits). This leads to a
more accurate similarity measure as shown by the smooth interpolation in
Figure 5.6.
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Figure 5.6: Reconstruction of the geodesic (top row) and the Euclidean
interpolation (second row). The velocity φ(t) along the respective trajectories
is a measure of smoothness with respect to the observable space.

Figure 5.4 shows the two-dimensional latent representation of MNIST
data learned by an IWAE. The magnification factor visualises the topol-
ogy of the Riemannian manifold and illustrates how high gradients in
the likelihood function realise the compact encoding of the data. The
equidistance lines refer to the Riemannian distance to the selected data
point and illustrate how the similarity of data varies in the latent space.
The course of the equidistance lines demonstrates that Riemannian
geometry enables for separating classes since the Riemannian distance
between data of the same class is smaller than between data of differ-
ent classes. This is especially useful for state-of-the-art methods that
lead to very tight boundaries with high gradients, as the IWAE. By
contrast, it is mostly not possible to distinguish encodings of different
classes by their Euclidean distance. This demonstrates that Euclidean
distances in the latent space do not reflect the similarity of data.
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In Figure 5.5, the geodesic does do not pass regions with high
gradients that separate different classes. This leads to a more accu-
rate similarity measure as shown in Figure 5.6. The geodesic-based
reconstructions (top row) show a smooth change of the digit. The
abrupt changes in the Euclidean-interpolation-based reconstructions
are caused by high velocities at the transitions between different
classes. As a result, the Riemannian length of the Euclidean interpola-
tion is 74.3, whereas the Riemannian distance is 62.9.

5.1.4.3 KUKA Robot Arm

As a next step, we use our approach to interpolate the movement of a
KUKA robot arm with six degrees of freedom. For this purpose, we
generated a dataset where the end effector moves along a circle with
a radius of 0.4 meters. It consists of 6284 training and 150 test time
steps of six-dimensional joint angles. The latter corresponds to one
complete circumnavigation. At each time step, the joint angles were
obtained by inverse kinematics.

Figure 5.7: Latent representation of the robot-arm movement learned by an
IWAE. The magnification factor visualises the topology of the Riemannian
manifold. In contrast to the Euclidean interpolation, the geodesic follows the
data manifold as this is the shortest path on the Riemannian manifold.
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Figure 5.8: Reconstructed end-effector trajectories in the Cartesian space:
xc and yc represent the position of the end effector (zc is constant). The
smoothness of the geodesic and Euclidean interpolation are measured by
φ(t) in Figure 5.9.
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Figure 5.9: The velocity φ(t) along the geodesic and the Euclidean interpola-
tion, depicted in Figure 5.8, is a measure of smoothness with respect to the
observable space.

To efficiently plan motions, constraints were applied in prior work.
For example, by constraining the end effector to move in a two- in-
stead of three-dimensional Cartesian space (Berenson et al., 2009). By
contrast, our method does not explicitly require such constraints since
it is based on the learned latent manifold and thus on the training
data.

In order to show that the geodesic (Figure 5.7) allows a more efficient
motion planning than the Euclidean interpolation, we reconstruct both
trajectories and use forward kinematics for visualising the path of
the end effector in Cartesian space (Figure 5.8). As shown by the
velocity in Figure 5.9, the reconstructed geodesic corresponds to a
smooth movement on the data manifold. This also results in a shorter
Riemannian distance of 0.54, compared to the Riemannian length of
the Euclidean interpolation, which is 1.48.
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In the next section, we extend this experiment to real-world human
motion data with a 50-dimensional joint vector.

5.1.4.4 Human Motion Capture Database

The CMU Graphics Lab Motion Capture Database1 consists of a large
number of human motion recordings, which were recorded by using a
motion capture system. Human subjects wear 41 markers while walk-
ing, dancing, etc. The data is pre-processed as described by N. Chen
et al. (2015) such that each frame is represented by a 50-dimensional
feature vector. Similar to prior work (e.g. Bitzer et al., 2008; Taylor
et al., 2007), we evaluate our approach on the walking movements of
subject 35, which is a subset of the dataset we used in Section 3.5.2.

Figure 5.10: Latent representation of human motion data learned by an
IWAE. The magnification factor visualises the topology of the Riemannian
manifold. In contrast to the Euclidean interpolation, the geodesic follows the
data manifold (blue points) as this is the shortest path on the Riemannian
manifold. Reconstructions of selected samples (cyan points) can be found in
Figure 5.11.

The learned latent representation of the walking movements, as
well as selected reconstructions, can be found in Figures 5.10 and 5.11

The reconstruction of the geodesic (top row) shows a realistic and
smooth walking movement (Figure 5.12). By contrast, the Euclidean
interpolation passes two regions with high MF value, which cause
abrupt changes in the movement. Apart from that, the body poses

1 mocap.cs.cmu.edu
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Figure 5.11: Selected reconstructions of human walking movements (cyan
points in Figure 5.10). One circle in the latent space corresponds to a complete
walking movement in the observation space.

Figure 5.12: Reconstruction of the geodesic (top row) and the Euclidean
interpolation (second row). The velocity φ(t) along the respective trajectories
is a measure of smoothness with respect to the observable space.

hardly change. This is also reflected by the Riemannian length of the
Euclidean interpolation, which is 2.89. The Riemanian distance, on the
other hand, is 2.57.

5.1.5 Summarising Discussion

In this section, we have analysed the topology of the latent manifold
learned by VAEs in order to find a distance metric that measures
the similarity of data. For this purpose, we have defined the latent
space as a Riemannian manifold and have visualised the gradient
of the likelihood function by means of the magnification factor. We
have shown that geodesics on the latent manifold reflect, in contrast to
Euclidean interpolations, the similarity of data since their computation
is based on the Riemannian metric tensor and thus on the gradient of
the likelihood function. As a result, we have demonstrated that the
Riemannian distance—i.e. the Riemannian length of the geodesic—is
an accurate metric of measuring the similarity of data.

In Section 5.1.4.1, we have shown that the Riemannian distance
is a linear function of the pendulum’s joint angle. Section 5.1.4.2
has addressed how the Riemannian distance can be used to identify
different classes in the latent space. In Sections 5.1.4.3 and 5.1.4.4, we
have demonstrated how geodesics can be applied for efficient motion
planning.

The capability of our approach for defining a similarity metric by
means of the learned latent representation has formed the basis for
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further work: in (N. Chen, Klushyn, Paraschos, Benbouzid and Smagt,
2018), we have proposed a novel algorithm for active learning and have
shown its utility for generating smooth movements on the example of
an anthropomorphic robot arm.

The main limitation of our approach, however, is the approximation
of the geodesics, which involves a computationally expensive non-
convex optimisation based on the Jacobian of the likelihood function.
In (N. Chen, Ferroni, Klushyn, Paraschos, Bayer and Smagt, 2019), we
have shown how the major computational demand of approximating
geodesics can be sidestepped by solving a related graph-based shortest
path problem instead. This entails pre-computing a graph in the
latent space, where the encoded data points are the nodes and the
edge weights are defined by the Riemannian length of the Euclidean
interpolation between these nodes.

Nevertheless, these two approaches of approximating geodesics
are not always applicable in practice. For example, in case of object
tracking, the similarity metric has to be evaluated in real-time on
new data. In Section 5.2, we address this problem by learning latent
representations that act directly as Euclidean similarity metric.

5.2 the latent space as euclidean similarity metric

The methods and experimental results discussed in this section have been
previously published in (N. Chen, Klushyn, Ferroni, Bayer and Smagt, 2020).
Section 5.2.3.3 is based on revised text from this publication.

VAEs regularise the latent space to be compact, i.e. to remove low-
density regions. As a consequence, the learned latent representation
cannot be directly used as a distance metric for measuring the similar-
ity of data. For this reason, we have defined the latent space of VAEs
as a Riemannian manifold in Section 5.1. This introduces a distance
metric, referred to as the Riemannian distance, that accurately reflects
the similarity of data by taking into account the gradient of the like-
lihood function. Concurrently, computing the Riemannian distance
requires solving a computationally expensive non-convex optimisation
problem, as discussed in Section 5.1.2. Hence, this approach is not
suitable for applications in real-time environments.

The aforementioned issue can be addressed by learning latent rep-
resentations where the similarity of data is directly reflected by the
Euclidean distance. This implies that the Euclidean distance in the
latent space is proportional to the Riemannian distance, which would
make similarity measures computationally very efficient. We refer to
such latent manifolds that are isometric to the Euclidean space as flat
latent manifolds.

In order to learn flat latent manifolds, we propose a method that
combines the VHP-VAE introduced in Chapter 3 with the Riemannian-
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geometry approach discussed in Section 5.1. Due to the empirical
Bayes prior distribution, the VHP-VAE is capable of learning com-
plex latent representations that reflect the topology of the data. To
incentivise a distance-preserving mapping between the latent and
observable space, we extend the objective function of the VHP-VAE by
a regularisation term which regularises the Riemannian metric tensor
towards a scaled identity matrix. As a consequence, the model learns
a latent representation where the Euclidean metric is a proxy for the
similarity of data. This results in a computationally efficient distance
metric that is practical for applications in real-time scenarios. In the
following, we introduce our approach in detail:

• In Section 5.2.1, we define flat latent manifolds in the context of
VAEs and Riemannian geometry.

• In Section 5.2.2, we introduce a method for learning flat latent
manifolds, which is an extension of the VHP-VAE (Chapter 3)
and the associated constrained optimisation algorithm REWO.

• In Section 5.2.3, we evaluate our proposed method. This includes
experiments on real-world human motion data, on binarised
MNIST, and on the MOT16 object-tracking database.

5.2.1 Flat Latent Manifolds

In this section, we specify under which conditions the latent represen-
tation of data learned by VAEs can act as Euclidean similarity metric.
The idea is to obtain a computationally efficient similarity measure
that avoids solving the non-convex optimisation problem discussed in
Section 5.1.3.

In Section 5.1.1, we defined the latent space of VAEs as a Riemannian
manifold. This allows computing the Riemannian length of a trajectory
in the latent space γ : [0, 1]→ RDz with respect to the observable
space:

L(γ) =
∫ 1

0

√
γ̇(t)T G

(
γ(t)

)
γ̇(t)dt, (5.12)

where G is the Riemannian metric tensor, and γ̇(t) is the velocity. As
demonstrated in Section 5.1.4, the Riemannian distance D = minγ L(γ)
between two data points is an accurate similarity metric.

If it is proportional to the Riemannian distance, the Euclidean dis-
tance in the latent space therefore reflects the similarity of data:

‖z(1)− z(0)‖2 ∝ min
γ

L(γ).

This presupposes that the Riemannian metric tensor in Eq. (5.12)
corresponds to a scaled identity matrix, i.e. to a scaled Euclidean
metric:

G(z) = c2 1 ∀ z ∈ RDz , (5.13)
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where c is the scaling factor. As a consequence, the geodesic γgeodesic =

argminγ L(γ) is identical to the Euclidean interpolation. Furthermore,
the velocity γ̇(t) is constant due to the flat topology of the Rieman-
nian manifold defined by G. We refer to a latent manifold with such
properties therefore as flat latent manifold (Lee, 2006).

As a result, the latent space of VAEs can act as Euclidean similarity
metric if the generative model fulfils the condition in Eq. (5.13). In the
next section, we discuss how to learn flat latent manifolds with VAEs.

5.2.2 Learning Flat Latent Manifolds With Variational Autoencoders

In order to learn flat latent manifolds, the VAE has to be capable of
modelling latent representations that correspond to the topology of
the data manifold. Moreover, the Riemannian metric tensor, deter-
mined by the Jacobian of the likelihood function, has to be a scaled
Euclidean metric, as described in Section 5.1.1. For this reason, we
propose to apply the hierarchical empirical Bayes prior introduced
in Chapter 3—in order to enable our model to learn complex latent
representations—and to regularise the curvature of the likelihood
function such that G ∝ 1.

As demonstrated in Section 3.5, the VHP-VAE learns latent repre-
sentations that reflect the topology of the data manifold. However, it
is not guaranteed that the Euclidean distance between encoded data
in the latent space is a sufficient distance metric with respect to the
observable space. This is because it is not incentivised by the objective
function (Eq. (3.9)). Therefore, we extend the objective function of the
VHP-VAE by a regularisation term.

5.2.2.1 Mixup-Based Regularisation of the Jacobian

VAEs map the latent space through a continuous function fθ(z), the de-
coder, to the observable space. More precisely: the decoder determines
the parameters of the likelihood function. The Riemannian metric
tensor is defined by Gθ(z) = Jθ(z)TJθ(z), where J is the Jacobian of
the decoder, as stated in Eq. (5.4).

For regularising G towards a scaled Euclidean metric, we use a
stochastic approximation (first order Taylor series expansion) of the
Jacobian (Rifai et al., 2011b):

J(i)θ (z) = lim
σ→0

1
σ

Eε∼N (0, σ2)

[
fθ(z + ε ei)− fθ(z)

]
,

where J(i)θ ∈ RDx is the Jacobian of the i-th latent dimension, and ei is
the respective standard basis vector. This approximation method leads
to a faster computation of the gradient and avoids the second-order-
derivative problem of piece-wise-linear layers in neural networks.

Another important detail is that the impact of the regularisation
is limited to regions in the latent space where data is available. To
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address this issue, we propose to use mixup (Zhang et al., 2018), a
data-augmentation method that was introduced in the context of
supervised learning. We integrate this method with the VAE frame-
work by applying it to latent variables. It allows augmenting data by
interpolating between two encoded data points zi and zj:

g(zi, zj, ρ) = (1− ρ) zi + ρ zj, (5.14)

with xi,j ∼ pD(x), zi,j ∼ qφ(z|xi,j), and ρ ∼ p(ρ) = U(−ρ0, 1 + ρ0). In
contrast to (Zhang et al., 2018), where the data augmentation is limited
to solely convex combinations due to ρ0 = 0, we define ρ0 > 0 to take
into account the outer edge of the data manifold. As a result, we obtain
the following regularisation term:

Freg
(
θ, φ; c2)

= Exi,j∼pD(x) Ezi,j∼qφ(z|xi,j) Eρ∼p(ρ)

[∥∥Gθ

(
g(zi, zj, ρ)

)
− c2 1

∥∥2
F

]
.

Furthermore, we define the scaling factor, inspired by batch normali-
sation, as the mean of the diagonal elements of G over batch samples
and latent dimensions Dz:

c2 = Exi,j∼pD(x) Ezi,j∼qφ(z|xi,j) Eρ∼p(ρ)

[
1

Dz
tr
(

Gθ

(
g(zi, zj, ρ)

))]
.

(5.15)

An ablation study regarding the impact of mixup (Eq. (5.14)) and
the normalisation of the scaling factor (Eq. (5.15)) can be found in
Section 5.2.3.1.

5.2.2.2 Flat Manifold Variational Autoencoder

In the next step, the constrained optimisation approach introduced
in Chapter 3 is extended for learning flat latent manifolds. For this
purpose, we integrate Freg

(
θ, φ; c2) with the Lagrangian defined in

Eq. (3.9). The resulting model is referred to as flat manifold variational
autoencoder (FMVAE).

As detailed in Section 3.3, the VHP approximates the optimal empir-
ical Bayes prior, p∗(z) ≈ pΘ(z), by optimising an importance-weighted
bound on the aggregated posterior. This introduces a lower bound on
the ELBO since the VHP defines an upper bound on the KL:

EpD(x)

[
KL
(
qφ(z|x)‖ pΘ(z)

)]
≤ FVHP-VAE(φ, Θ, Φ)

=EpD(x) Eqφ(z|x) Eζ1:K∼qΦ(ζ|z)

[
log qφ(z|x)− log

1
K

K

∑
k=1

pΘ(z|ζk) p(ζk)

qΦ(ζk|z)

]
,

where K is the number of importance samples, and p(ζ) is the standard
normal distribution.
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By combining FVHP-VAE(φ, Θ, Φ) with the regularisation term, we
obtain a looser upper bound on the KL:

F
(
θ, φ, Θ, Φ; c2) = FVHP-VAE (φ, Θ, Φ) + ηFreg

(
θ, φ; c2) ,

where η is a hyper parameter determining the impact of the regulari-
sation. We follow the line of argument in Chapter 3 and reformulate
the resulting ELBO as the Lagrangian of a constrained optimisation
problem:

LVHP-FMVAE
(
θ, φ, Θ, Φ; λ, c2)

= F
(
θ, φ, Θ, Φ; c2)+ λ

(
EpD(x) Eqφ(z|x)

[
Cθ(x, z)

]
− κ2

)
,

(5.16)

with the optimisation objective F
(
θ, φ, Θ, Φ; c2) and the inequality

constraint EpD(x) Eqφ(z|x)
[
Cθ(x, z)

]
≤ κ2. The Lagrange multiplier λ

can be viewed as a weighting term for Cθ(x, z), which is defined as
the reconstruction-error-related term in − log pθ(x|z).

5.2.2.3 Optimisation Algorithm

To optimise the Lagrangian LVHP-FMVAE
(
θ, φ, Θ, Φ; λ, c2) in Eq. (5.16),

we propose Algorithm 4, which is an extension of REWO (Algorithm 2)
in Section 3.3. It divides the constrained optimisation process into
two phases: an initial and a main phase. Like in Chapter 3, we use
the β-parametrisation of the Lagrange multiplier, β = 1/λ, to be in
line with previous literature (e.g. Higgins et al., 2017; Sønderby et al.,
2016).

In the initial phase, the goal is to reduce the reconstruction error in
order to force the model to learn an informative encoding of the data.
For this purpose, we define β � 1(λ � 1) and optimise the bound
solely with respect to (θ, φ). Furthermore, β is not updated as long as
the inequality constraint EpD(x) Eqφ(z|x)

[
Cθ(x, z)

]
≤ κ2 is not fulfilled.

The main phase starts as soon as the constraint is satisfied, i.e. a
meaningful encoding is achieved. This serves as a starting point for
learning a flat latent manifold and the corresponding empirical Bayes
prior distribution. To do this, we optimise all parameters (θ, φ, Θ, Φ)

jointly and start to update β by applying the update scheme introduced
in Section 3.3:

βt = βt−1 · exp
[
ν · fβ

(
βt−1, Ct − κ2; τ

)
·
(
Ct − κ2)] ,

where fβ is defined as

fβ(β, δ; τ) =
(
1− H(δ)

)
· tanh

(
τ · (β− 1)

)
− H(δ).

H is the Heaviside function, and τ is a slope parameter. A visualisation
of this update scheme can be found in Figure 3.1a.
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Algorithm 4 REWO with mixup-based regularisation of the Jacobian

Initialise t = 1
Initialise β� 1
Initialise InitialPhase = True

while training do
Read current data batch xba
Sample from variational posterior zba ∼ qφ(z|xba)
Shuffle samples from variational posterior z′ba = shuffle(zba)
Sample from uniform ρba ∼ p(ρ)
Augment data zaug

ba = g(zba, z′ba, ρba)

Compute c2 = 1
batch_size ∑i

1
Dz

tr
(
G(zaug

i )
)

Compute Ĉba = 1
batch_size ∑i Cθ(xi, zi)

Compute Ĉt = (1− α) · Ĉba + α · Ĉt−1, (Ĉ0 = Ĉba)
if Ĉt < κ2 then

InitialPhase = False

end if
if InitialPhase then

Optimise LVHP-FMVAE
(
θ, φ, Θ, Φ; β, c2) w.r.t. θ, φ

else
β← β · exp

[
ν · fβ

(
β, Ĉt − κ2; τ

)
·
(
Ĉt − κ2)]

Optimise LVHP-FMVAE
(
θ, φ, Θ, Φ; β, c2) w.r.t. θ, φ, Θ, Φ

end if
t← t + 1

end while

As β increases, the impact of the regularisation term Freg(θ, φ, c2)

becomes greater. Hence, the latent space is converted smoothly into
a flat manifold. This regularisation method exploits the fact that the
latent representation learned by the VHP-VAE (without regularisa-
tion) already reflects the topology of the data manifold, as shown in
Section 3.5. Thus, the regularisation fine-tunes the likelihood function.
As a result, the latent space of VHP-FMVAEs can act as Euclidean
similarity metric, which we demonstrate in Section 5.2.3.

5.2.3 Experimental Results

We evaluate our approach by conducting a series of experiments on
three datasets: human motion data, the binarised MNIST digit dataset,
and MOT16. The latter is a benchmark dataset for multiple object
tracking in real-world scenarios.

In our experiments, we verify that Euclidean distances in the la-
tent space of VHP-FMVAEs reflect the Riemannian distance, i.e. the
similarity of data. Furthermore, we compare the VHP-FMVAE with
the VHP-VAE to demonstrate the effect of the regularisation term.
The topology of the learned latent manifolds is analysed by means of
the Riemannian metric tensor. In this context, we use the condition
number and the magnification factor to evaluate whether G ≈ c2 1.
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The condition number is defined as k(G) = smax(G)
smin(G)

, where smax and
smin are maximal and minimal singular values of G. Therefore, the
condition number measures the ratio between the highest and lowest
elongation of the latent space with respect to the observable space. The
magnification factor MF =

√
det(G) represents the extent of change

of an infinitesimal volume mapped from the latent to the observable
space. A detailed introduction can be found in Section 5.1.3. To com-
pare magnification factors of different models, we normalise them by
their mean. In case of a flat latent manifold, the condition number and
the normalised MF equal approximately to 1.

In Sections 5.2.3.1 and 5.2.3.2, we analyse the topology of the learned
latent manifolds by means of the condition number and the magni-
fication factor—and show that the VHP-FMVAE learns flat latent
manifolds. In Section 5.2.3.3, we use our similarity metric for re-
identification and object tracking, where the performance of our unsu-
pervised approach nears that of state-of-the-art supervised methods.

The model architectures used in our experiments can be found in
Appendix A.1.4.

5.2.3.1 Human Motion Capture Database

We select five different movements to evaluate our method on the
CMU Graphics Lab Motion Capture Database2: walking (subject 35),
jogging (subject 35), balancing (subject 49), punching (subject 143), and
kicking (subject 74). After pre-procession, each frame is represented by
a 50-dimensional feature vector. Note that the dataset is not balanced:
the walking subset, for example, contains more data points than the
jogging subset.

condition number and normalised magnification factor

In order to compare the VHP-FMVAE with the VHP-VAE, we examine
the topology of the learned latent manifolds by computing the condi-
tion number and normalised MF shown in Figure 5.13. Both metrics
are based on 3,000 samples, and they indicate the VHP-FMVAE has
learned a latent space that is close to a flat manifold, in contrast to
the VHP-VAE. Furthermore, we demonstrate the impact of the scaled
identity term c2 1 (Eq. (5.15)) and of mixup (Eq. (5.14)). For this pur-
pose, we provide an ablation study where the VHP-FMVAE is trained
without applying mixup and without including c2 1 in the regulari-
sation term. The corresponding latent representations are shown in
Figures 5.14 and 5.15.

visualisations of the learned latent manifolds Fig-
ure 5.14 depicts the latent representations of human motion data
learned by the VHP-FMVAE and the VHP-VAE. The magnification

2 mocap.cs.cmu.edu
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Figure 5.13: Human motion data: if the condition number and the normalised
MF correspond approximately to 1, this implies that G ∝ 1. The box plots
are based on 3,000 samples.

factor visualises the topology of the latent manifold. To enable a visual
comparison of the two models, we define the upper range of the colour
bar related to the VHP-FMVAE by

MFmax
VHP-FMVAE =

max
(

MFVHP-VAE(grid)
)
·mean

(
MFVHP-FMVAE(data)

)
mean

(
MFVHP-VAE(data)

) ,

where max
(

MFVHP-VAE(grid)
)

is the maximum value in the latent space
depicted in Figure 5.14b, and MF(data) is computed with encoded
training data. Here, the idea is to normalise MFmax

VHP-FMVAE with respect
to both models.

The equidistance lines refer to the Riemannian distance to the re-
spective encoded data point and illustrate how the similarity of data
varies in the latent space. In case of the VHP-FMVAE, the contour
lines are homogeneous circles. This is because the regularisation term
smoothens the latent space towards G ≈ c2 1. Without regularisation,
we obtain a latent space with regions of high MF values that lead to
distorted contour lines.

As a next step, we analyse the latent representations of the indi-
vidual movements. Jogging, for example, is a large-range movement
compared with walking. In Figure 5.14a (VHP-FMVAE), the latent rep-
resentation of jogging therefore occupies a larger area than walking.
By contrast, in case of the VHP-VAE (Figure 5.14b), the latent repre-
sentation of walking occupies a larger area than the one of jogging.

The comparison of Figures 5.14a and 5.15a illustrates the effect of
mixup (Eq. (5.14)). Without data augmentation, the influence of the
regularisation term is limited to regions where data is available. This
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(b) VHP-VAE

Figure 5.14: Latent representation of human motion data: the magnification
factor visualises the topology of the Riemannian manifold. The equidistance
lines refer to the Riemannian distance to the respective encoded data point.
Note: round, homogeneous contour plots indicate that G ∝ 1. Reconstruc-
tions of the Euclidean interpolations and the geodesics can be found in
Figure 5.16. A statistical evaluation of the length ratios is summarised in
Table 5.1.
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(a) VHP-FMVAE without mixup
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(b) VHP-FMVAE without c2 1

Figure 5.15: Latent representation of human motion data: the magnification
factor visualises the topology of the Riemannian manifold. The equidistance
lines refer to the Riemannian distance to the respective encoded data point.
The comparison to Figure 5.14a illustrates the effect of mixup and c2 1 on the
learned latent manifold.

is verified by high MF values between the different movements. As a
further experiment, we demonstrate the impact of the identity term
c2 1 (Eq. (5.15)) on the latent manifold learned by the VHP-FMVAE (see
Figures 5.14a and 5.15b). Without the identity term, the Riemmanian
metric tensor is regularised towards zero—with the consequence that
the model does not learn a flat latent manifold.
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(a) VHP-FMVAE

(b) VHP-VAE

Figure 5.16: Human motion data: reconstructions of the Euclidean interpo-
lations in Figure 5.14. Note that the blue boxes mark discontinuities in the
motions.
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Figure 5.17: Smoothness measure of reconstructed human motions. The
smoothness measure is based on 100 reconstructed Euclidean interpolations
in the latent space. We display the mean and standard deviation for each
joint. Note that the smaller the value, the smoother the movement.

interpolations between different movements Figure 5.16

shows the reconstructions of the Euclidean interpolations in Fig-
ure 5.14. The blue boxes mark discontinuities in the reconstructed
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human motions. The reconstructions demonstrate that Euclidean inter-
polations in the latent space of the VHP-VAE contain abrupt changes
in the motions, as indicated by the high MF values in Figure 5.14b.

In order to obtain an accurate statistic, we randomly sample 100

data-point pairs in the latent space and reconstruct the Euclidean inter-
polation between each pair. Figure 5.17 depicts the average smoothness
factor for each joint. The smoothness factor is defined as the second
derivative of the joint with respect to time. As a result, the Euclidean
interpolations in the latent space of the VHP-FMVAE lead to smoother
movements compared to the VHP-VAE.

verification of the euclidean similarity metric In the
following, we verify whether Euclidean interpolations in the latent
space indeed correspond to geodesics. For this purpose, we approxi-
mate the geodesics with the graph-based approach introduced by N.
Chen et al. (2019). The graph consists of 14,400 nodes with 12 neigh-
bours each. The nodes are sampled from a two-dimensional uniform
distribution representing the latent space.

In our experiment, we compare 100 geodesics to their corresponding
Euclidean interpolations. An example of five geodesics with their
corresponding Euclidean interpolations can be found in Figure 5.14.
Table 5.1 displays the ratio between Euclidean distances in the latent
space and the corresponding lengths of the geodesics. Furthermore, we
list the ratio between Riemannian lengths of Euclidean interpolations
and Riemannian distances (Riemannian lengths of geodesics). If the
length ratios are close to 1, Euclidean interpolations correspond to
geodesics. As a result, Euclidean distances in the latent space of the
VHP-FMVAE reflect Riemannian distances, i.e. the similarity of data.

Table 5.1: Human motion data: verifying that the latent space can act as
Euclidean similarity metric. The table shows the length ratio of Euclidean
interpolations to their corresponding geodesics (latent space). Additionally,
we list the ratio between Riemannian lengths of Euclidean interpolations and
Riemannian distances (observable space).

method length ratio (latent space) length ratio (observable space)

VHP-FMVAE 0.93 ± 0.03 1.02 ± 0.06

VHP-VAE 0.82 ± 0.10 1.23 ± 0.20

5.2.3.2 Binarised MNIST

Similar to Section 5.1.4.2, we evaluate our model on the binarised
version of MNIST (Larochelle and Murray, 2011). This benchmark
dataset consists of 50,000 training, 10,000 validation, and 10,000 test
images of handwritten digits (0 to 9), which are 28× 28 pixels in size.
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Figure 5.18: MNIST: if both the condition number and the normalised MF
correspond approximately to 1, this indicates that G ∝ 1. The box plots are
based on 10,000 samples.

The condition number and normalised MF depicted in Figure 5.18

allow analysing the topology of the latent manifolds learned by the
VHP-FMVAE and the VHP-VAE. Both metrics are based on 10,000

samples, and they indicate that the VHP-FMVAE, in contrast to the
VHP-VAE, has learned a latent space that is close to a flat manifold.

Figure 5.19 shows the corresponding latent representations of the
MNIST digits. The equidistance lines refer to the Riemannian distance
to the respective encoded data point. The homogeneous contour plots
in Figure 5.19a indicate that G ∝ 1.

In Table 5.2, we verify that the VHP-FMVAE has learned a flat latent
manifold by comparing 100 geodesics to their associated Euclidean
interpolations. The procedure is identical to Section 5.2.3.1. The table
shows the ratio between Euclidean distances in the latent space and

Table 5.2: MNIST: verifying that the latent space can act as Euclidean simi-
larity metric. The table shows the length ratio of Euclidean interpolations to
their corresponding geodesics (latent space). Additionally, we list the ratio
between Riemannian lengths of Euclidean interpolations and Riemannian
distances (observable space).

method length ratio (latent space) length ratio (observable space)

VHP-FMVAE 0.92 ± 0.05 1.01 ± 0.08

VHP-VAE 0.70 ± 0.31 1.13 ±0.22
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Figure 5.19: Latent representation of MNIST data: the equidistance lines refer
to the Riemannian distance to the respective encoded data point. Round,
homogeneous contour plots indicate that G ∝ 1.

the corresponding lengths of the geodesics. In addition, we list the
ratio between Riemannian lengths of Euclidean interpolations and
Riemannian distances.

5.2.3.3 MOT16 Object Tracking Database

In this section, we evaluate our approach on the MOT16 object track-
ing database (Milan et al., 2016), which is a large-scale person re-
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identification dataset containing both static and dynamic scenes from
diverse cameras. We compare our method with two baselines: SORT
(Bewley et al., 2016) and DeepSORT (Wojke et al., 2017).

SORT is a simple online and real-time tracking method, which uses
bounding box intersection over union (IoU) for associating detections
between frames and Kalman filters for the track predictions. It relies
on good two-dimensional bounding box detections from a separate
detector and suffers from ID switching when tracks overlap in the
image. The two-dimensional detections are obtained from a neural
network, and SORT associates measurements of each frame to tracks
that are initiated, kept, or removed over time. The IoU overlap is used
as a distance/similarity function between a given track box and a
measurement box, and all boxes are optimally associated using the
Hungarian algorithm.

DeepSORT extends the original SORT algorithm to integrate appear-
ance information based on a deep appearance descriptor, which helps
with re-identification in the case of such overlaps or missed detections.
The deep appearance descriptor is trained using a supervised cosine
metric learning approach (Wojke and Bewley, 2018) and outputs a
fixed vector output per object, which contains appearance information.
During online application, the vector is used with nearest-neighbour
queries to establish measurement-to-track associations, instead of just
the IoU overlap used by the vanilla SORT.

In our experiments, we use the latent manifolds learned by the VHP-
FMVAE and the VHP-VAE as a drop-in replacement to the fixed vector
outputted by the appearance descriptor of DeepSORT, effectively only
running the encoder during evaluation. Consequently, the dimension
of the latent space is identical to the dimension of the fixed vector. The
candidate object locations of the pre-generated detections for SORT,
DeepSORT, and our methods are taken from (Yu et al., 2016).

Table 5.3 shows that the performance of VHP-FMVAE-SORT is
better than that of VHP-VAE-SORT and even close to the performance
of supervised learning (DeepSORT). All methods rely on the same
underlying detector for object candidates and identical Kalman filter
parameters. Compared to baseline SORT, which does not utilise any
appearance information, DeepSORT has 2.54 times, VHP-VAE-SORT
has 2.14 times, VHP-FMVAE-SORT (η = 300) has 2.41 times, and VHP-
FMVAE-SORT (η = 3000) has 2.48 times fewer ID switches. Whilst the
supervised DeepSORT descriptor has the least, using unsupervised
VAEs with flat latent manifolds has only 2.2% more switches, without
the need for labels.

Furthermore, by ensuring a quasi-Euclidean latent space, one can
query nearest-neighbours efficiently via data-structures such as k-
dimensional trees. Figure 5.20 shows an example of the results. In
other examples, VHP-FMVAE-SORT works similar as DeepSORT.
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(a) VHP-FMVAE-SORT with η = 3000

(b) VHP-VAE-SORT

(c) SORT

(d) DeepSORT

Figure 5.20: MOT16: example identity switches between overlapping tracks.
For VHP-FMVAE-SORT, the track 42 gets occluded, but is re-identified cor-
rectly when again visible. For VHP-VAE-SORT and DeepSORT, the occluding
track gets assigned the same ID as the track it occludes (42/61), and sub-
sequently keeps this (erroneous) track. For vanilla SORT, track 3260 gets
occluded and when subsequently visible, it gets assigned a new ID 3421.
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5.2.4 Summarising Discussion

In this section, we have introduced flat manifold variational autoen-
coders. We have shown that this class of VAEs learns latent repre-
sentations where the Euclidean metric reflects the similarity of data,
making measures computationally very efficient. This is realised by
defining the latent space as a Riemannian manifold and by combining
a powerful empirical Bayes prior, introduced in Chapter 3, with a
regularisation method that constrains the Riemannian metric tensor
to be a scaled identity matrix.

We have conducted experiments on human motion data, the bina-
rised MNIST digit dataset, and the MOT16 object tracking database,
demonstrating the effectiveness of our proposed method for mea-
suring the similarity of data. In Sections 5.2.3.1 and 5.2.3.2, we have
analysed the topology of the learned latent manifolds by means of
the condition number and the magnification factor. The results have
shown that our method learns flat latent manifolds, where Euclidean
interpolations correspond to geodesics. In Section 5.2.3.3, we have
used our similarity metric for object tracking and re-identification,
where the performance of our unsupervised learning approach nears
that of state-of-the-art supervised learning methods.

However, a limitation of our method is the low effectiveness of
the mixup-based Jacobian regularisation in high-dimensional latent
spaces. In order to learn a flat latent manifold, the Riemannian metric
tensor has to be regularised towards a scaled identity matrix for the
entire latent space, i.e. also in regions where no data is available. Data-
augmentation methods such as mixup can provide this data, but the
efficiency of the regularisation suffers from the curse of dimensionality.
This is because the amount of data required for regularising the
Riemannian metric tensor increases exponentially with the dimension
of the latent space. This issue can be addressed by future research.
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In this thesis, we have addressed the question of how to learn latent
representations—in the context of probabilistic generative modelling—
that reflect the factors of variation and topology of the observed
data. To this end, we have proposed a constrained optimisation-based
formulation of amortised variational inference and complemented it
with a powerful empirical Bayes method.

In Chapter 3, we have introduced this approach within the frame-
work of VAEs and thus laid the foundation for the further methods
presented in this thesis. For this purpose, we have reformulated the
ELBO as the Lagrangian of a constrained optimisation problem and
mathematically proven that this is a valid alternative for learning
generative latent-variable models. Building upon this, we have pro-
posed the VHP, an empirical Bayes method for learning the prior
distribution by means of a lower bound on the optimal prior, which
is the aggregated posterior distribution. Concurrently, we have intro-
duced the associated constrained optimisation algorithm REWO. In
contrast to the original VAE, our method provides informative latent
representations reflecting the topology of observed data, with the
VHP preventing an over-regularisation of the approximate posterior
distribution. Moreover, the learned prior distribution is non-trivial
and well-adapted to the latent representation.

In Chapter 4, we have applied our approach to sequential data of dy-
namic systems by introducing a constrained optimisation framework
for learning DSSMs. To this end, we have derived a general Lagrangian
formulation of the sequential ELBO on the basis of distortion and rate,
as well as extended the VHP and REWO to DSSMs. Building on the
constrained optimisation framework, we have introduced the EKVAE,
which combines extended Kalman filtering/smoothing with amortised
variational inference and a neural linearisation approach to model
dynamics more accurately than RNN-based DSSMs. Our experimental
evaluations have demonstrated that applying the constrained optimisa-
tion framework to established DSSMs facilitates system identification,
with the consequence that the learned latent variables represent the
true underlying state of the observed dynamic system. The result
is a substantial increase in prediction accuracy. In this context, we
have shown that the EKVAE achieves a significantly higher prediction
accuracy than state-of-the-art (RNN-based) models. Furthermore, we
have verified that the EKVAE can learn disentangled position–velocity
representations and demonstrated how these can be used for model-
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122 conclusion and outlook

based reinforcement learning to define/encode reward functions and
learn policies.

In Chapter 5, we have focused on another area where our approach
provides substantial benefits: unsupervised metric learning. In order
to find a metric that measures the similarity of i.i.d. data, we have
analysed the topology of latent spaces learned by VAEs. For this pur-
pose, we have defined the latent space as a Riemannian manifold and
shown that the Riemannian distance—i.e. the Riemannian length of
geodesics—is an accurate similarity metric. To enable computationally
efficient similarity measures, we have introduced the VHP-FMVAE.
This method allows us to learn latent spaces where Euclidean dis-
tances are proportional to Riemannian distances and therefore reflect
the similarity of data. This is realised by combining our method in-
troduced in Chapter 3 with a regularisation approach that constrains
the Riemannian metric tensor to be a scaled identity matrix. We have
used the VHP-FMVAE to learn similarity metrics for object tracking
and re-identification, where our unsupervised learning approach can
compete with state-of-the-art supervised learning methods.

In conclusion, we have shown in this work that amortised variational
inference in latent-variable models and sequential latent-variable mod-
els can be significantly improved by combining it with constrained
optimisation and empirical Bayes priors. Our experimental results
have emphasised the importance of the latent representation for the
quality of generative models and the prediction accuracy of DSSMs.
Moreover, we have demonstrated how latent representations can be
used for various applications, such as model-based reinforcement
learning or unsupervised metric learning.

For future research, another class of latent-variable models is of
particular interest: conditional latent-variable models. They are ap-
plied for modelling one-to-many mappings, where a single condition
has several equivalent solutions—and the parameters are typically
learned using the framework of conditional VAEs. In (Klushyn et al.,
2019a), we have shown that already a simple empirical Bayes approach
can increase the generalisation capacity of conditional VAEs, leading
to a larger variety of realistic generations. This is because classical
conditional VAEs suffer from a difficulty to represent multimodal dis-
tributions, which we have verified is a consequence of the optimisation
approach and the predefined, typically unimodal prior distribution.
Our constrained optimisation-based formulation, as well as the VHP
and REWO, can be straightforwardly adapted to conditional latent-
variable models—and we expect, based on our previous results, that
this will considerably improve the performance of conditional VAEs.
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a.1 model architectures

a.1.1 Model Architectures Chapter 3

Table A.1: Model architectures. FC refers to fully-connected layers. GatedFC/-
GatedConv denote pairs of fully-connected/convolutional layers multiplied
element-wise, where one of the layers (gate) always uses sigmoid activations.

Dataset Optimiser Implementation Details

Pendulum Adam Input 256 (flattened 16×16)

1e-4 Latents 2

qφ(z|x) FC 256, 256, 256, 256. ReLU activation.

pθ(x|z) FC 256, 256, 256, 256. ReLU activation. Gaussian.

qΦ(ζ|z) FC 256, 256, 256, 256. ReLU activation.

pΘ(z|ζ) FC 256, 256, 256, 256. ReLU activation.

Others κ = 0.02, ν = 5, K = 16

Graph 1,000 nodes, 18 neighbours.

CMU Human Adam Input 50

1e-4 Latents 2

qφ(z|x) FC 256, 256, 256, 256. ReLU activation.

pθ(x|z) FC 256, 256, 256, 256. ReLU activation. Gaussian.

qΦ(ζ|z) FC 256, 256, 256, 256. ReLU activation.

pΘ(z|ζ) FC 256, 256, 256, 256. ReLU activation.

Others κ = 0.02, ν = 1, K = 32

Graph 2,530 nodes, 15 neighbours.

3D Faces, Adam Input 64×64×1

3D Chairs 5e-4 Latents 32

qφ(z|x) Conv 32×5×5 (stride 2), 32×3×3 (stride 1), 48×5×5 (stride 2),

48×3×3 (stride 1), 64×5×5 (stride 2), 64×3×3 (stride 1),

96×5×5 (stride 2), 96×3×3 (stride 1). FC 256. ReLU activation

pθ(x|z) Deconv reverse of encoder. ReLU activation. Bernoulli.

qΦ(ζ|z) FC 256, 256. ReLU activation.

pΘ(z|ζ) FC 256, 256. ReLU activation.

Others κ = 0.2, ν = 1, K = 16

Graph 10,000 nodes (faces), 8,637 nodes (chairs), 18 neighbours.

dynamic MNIST, Adam Input 28×28×1

static MNIST, 5e-4 Latents 32

Fashion-MNIST, qφ(z|x) GatedConv 32×7×7 (stride 1) , 32×3×3 (stride 2),

OMNIGLOT 64×5×5 (stride 1), 64×3×3 (stride 2), 64×3×3 (stride 1)

pθ(x|z) GatedFC 784. GatedConv 64×3×3 (stride 1),

64×3×3 (stride 1), 64×3×3 (stride 1), 64×3×3 (stride 1).

linear activation. Bernoulli.

qΦ(ζ|z) FC 256, 256. ReLU activation.

pΘ(z|ζ) FC 256, 256. ReLU activation.

Others κ = 0.18 (dynamic MNIST, static MNIST, OMNIGLOT),

κ = 0.31 (Fashion-MNIST),

ν = 1, K = 16
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a.1.2 Model Architectures Chapter 4

Table A.2: Model architectures of EKVAE. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)

1e-3 Time Steps 15

Actions 1

Latents 3

qφ(at|xt) FC 128, 128, 128. ReLU activation.

pθ(xt|at) FC 128, 128, 128. ReLU activation. Gaussian.

Number of Base Matrices M 16

α-Network FC 64. ReLU activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.03, τ1 = 10, τ2 = 0.01, ν = 300

Reacher (angle data) Adam Observations 2

1e-3 Time Steps 30

Actions 2

Latents 4

qφ(at|xt) FC 128. ReLU activation.

pθ(xt|at) FC 128. ReLU activation. Gaussian.

Number of Base Matrices M 8

α-Network FC 64, 64. ReLU activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.3, τ1 = 1, τ2 = 0.001, ν = 10

Reacher (image data) Adam Observations 64×64×3

5e-3 Time Steps 30

Actions 2

Latents 5

qφ(at|xt) Conv 32×5×5 (stride 2), 64×5×5 (stride 2),

128×5×5 (stride 2). FC 256. ReLU activation.

pθ(xt|at) Deconv reverse of encoder. ReLU activation. Gaussian.

Number of Base Matrices M 8

α-Network FC 64, 64. ReLU activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.2, τ1 = 10, τ2 = 0.01, ν = 30
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Table A.3: Model architectures of DKS. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)

1e-3 Time Steps 15

Actions 1

Latents 3

qφ(zt|x1:T, u1:T) BiLSTM 128. sigmoid activation. FC 64. ReLU activation.

pθ(xt|zt) FC 128, 128, 128. ReLU activation. Gaussian.

pθ(zt|zt−1, ut−1) FC 128, 128, 128. ReLU activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.03, τ1 = 10, τ2 = 0.01, ν = 300

Reacher (angle data) Adam Observations 2

1e-3 Time Steps 30

Actions 2

Latents 4

qφ(zt|x1:T, u1:T) BiLSTM 128. sigmoid activation. FC 64. ReLU activation.

pθ(xt|zt) FC 128. ReLU activation. Gaussian.

pθ(zt|zt−1, ut−1) FC 128, 128, 128. ReLU activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.2, τ1 = 1, τ2 = 0.001, ν = 10

Table A.4: Model architectures of DVBS. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)

1e-3 Time Steps 15

Actions 1

Latents 3

qφ(zt|xt:T, ut:T) LSTM 128. sigmoid activation. FC 64. ReLU activation.

pθ(xt|zt) FC 128, 128, 128. ReLU activation. Gaussian.

Number of Base Matrices M 16

α-Network FC 64. ReLU activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.03, τ1 = 10, τ2 = 0.01, ν = 300

Reacher (angle data) Adam Observations 2

1e-3 Time Steps 30

Actions 2

Latents 4

qφ(zt|xt:T, ut:T) LSTM 128. sigmoid activation. FC 64. ReLU activation.

pθ(xt|zt) FC 128. ReLU activation. Gaussian.

Number of Base Matrices M 8

α-Network FC 64, 64. ReLU activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.3, τ1 = 1, τ2 = 0.001, ν = 10
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Table A.5: Model architectures of KVAE. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)

1e-3 Time Steps 15

Actions 1

Latents 3

qφ(at|xt) FC 128, 128, 128. ReLU activation.

pθ(xt|at) FC 128, 128, 128. ReLU activation. Gaussian.

Number of Base Matrices M 16

α-Network FC 64. ReLU activation.

Dynamics Parameter Network LSTM 64. sigmoid activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.03, τ1 = 10, τ2 = 0.01, ν = 300

Table A.6: Model architectures of RSSM. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)

1e-3 Time Steps 15

Actions 1

Latents 3

qφ(zt|ht−1, xt:T, ut:T) LSTM 128. sigmoid activation. FC 64. ReLU activation.

pθ(xt|zt) FC 128, 128, 128. ReLU activation. Gaussian.

pθ(zt|ht−1) FC 128, 128, 128. ReLU activation.

Deterministic State Model LSTM 64. sigmoid activation.

qφ0(ζ|z1) FC 64, 64. ReLU activation.

pψ0(z1|ζ) FC 64, 64. ReLU activation.

Others κ = 0.03, τ1 = 10, τ2 = 0.01, ν = 300
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a.1.3 Model Architectures Chapter 5.1

Table A.7: Model architectures. FC refers to fully-connected layers.

Optimiser Implementation Details

Geodesics Adam Input 1

1e-2 Output 2

gω(t) FC 150, 150. tanh activation.

Others T = 500

Dataset Optimiser Implementation Details

Pendulum Adam Input 256 (flattened 16×16)

1e-4 Latents 2

qφ(z|x) FC 512, 512. tanh activation.

pθ(x|z) FC 512, 512. tanh activation. Gaussian.

Others K = 50

MNIST Adam Input 784 (flattened 28×28)

1e-4 Latents 2

qφ(z|x) FC 512, 512. tanh activation.

pθ(x|z) residual 128, 128, 128, 128, 128, 128, 128.

tanh activation. Gaussian.

Others K = 50

Robot Arm Adam Input 6

1e-3 Latents 2

qφ(z|x) FC 512, 512. tanh activation.

pθ(x|z) FC 512, 512. tanh activation. Gaussian.

Others K = 15

CMU Human Adam Input 50

1e-3 Latents 2

qφ(z|x) FC 512, 512, 512. tanh activation.

pθ(x|z) FC 512, 512, 512. tanh activation. Gaussian.

Others K = 15
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a.1.4 Model Architectures Chapter 5.2

Table A.8: Model architectures. FC refers to fully-connected layers. Conv2D
and Conv2DT denote two-dimensional convolution layer and transposed
two-dimensional convolution layer, respectively.

Dataset Optimiser Implementation Details

CMU Human Adam Input 50

1e-4 Latents 2

qφ(z|x) FC 256, 256, 256, 256. ReLU activation.

pθ(x|z) FC 256, 256, 256, 256. ReLU activation. Gaussian.

qΦ(ı|z) FC 256, 256, 256, 256, ReLU activation.

pΘ(z|ı) FC 256, 256, 256, 256, ReLU activation.

Others κ = 0.03, ν = 1, K = 32, η = 8000

MNIST Adam Input 784 (flattened 28×28)

1e-4 Latents 2

qφ(z|x) FC 256, 256, 256, 256. ReLU activation.

pθ(x|z) FC 256, 256, 256, 256. ReLU activation. Bernoulli.

qΦ(ı|z) FC 256, 256, 256, 256. ReLU activation.

pΘ(z|ı) FC 256, 256, 256, 256. ReLU activation.

Others κ = 0.245 , ν = 1, K = 16, η = 8000

MOT16 Adam Input 64×64×3

3e-5 Latents 128

qφ(z|x) VGG16 (Simonyan and Zisserman, 2015)

pθ(x|z) Conv2DT+Conv2D 256, 128, 64, 32, 16.

ReLU activation. Gaussian.

qΦ(ı|z) FC 512, 512. ReLU activation.

pΘ(z|ı) FC 512, 512. ReLU activation.

Others κ = 0.8 , ν = 1, K = 8, η = 300 or 3000
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