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Whole-Body Multicontact Haptic Human—Humanoid
Interaction Based on Leader—Follower Switching: A Robot

Dance of the “Box Step”

Taisuke Kobayashi,* Emmanuel Dean-Leon, Julio Rogelio Guadarrama-Olvera,

Florian Bergner, and Gordon Cheng

For physical human-robot interaction (pHRI) where multi-contacts play a key
role, both robustness to achieve robot-intended motion and adaptability to follow
human-intended motion are fundamental. However, there are tradeoffs during
pHRI when their intentions do not match. This paper focuses on bipedal walking
control during pHRI, which handles such tradeoff when a human and a
humanoid robot having different footsteps locations and durations. To resolve
this, a force-reactive walking controller is proposed by adequately combining
ankle and stepping strategies. The ankle strategy maintains the robot’s intention
based on an analytically-optimal center of pressure, leading the robot to oppose
resistance to multiple contacts from the human. Based on the robot’s kinody-
namic constraints and/or the confidence of the robot’s intention, the stepping
strategy updates the robot’s footsteps based on the human’s intention implied by
the multiple contact forces. Consequently, the proposed walking control on pHRI

area, e.g., physical power assistance!?;
clinical gait training for the elderly?;
and/or teaching amateurs dance steps.!*”’
In general, on physical human—robot
interaction (pHRI), robots have their own
purpose (e.g., promotion of physical fitness
for the elderly), whereas users also have
requirements (e.g., easy walking for users).
As can be expected, they are often tradeoffs
and, sometimes, in conflict. Hence, a robot
for pHRI should consider the user’s inten-
tion appropriately while satisfying the
robot’s intention in the best possible way.
The balance between the human—robot
intentions would be determined according
to the mutual exchanges of information

mutually exchanges human-robot intentions in real-time, thereby achieving
coordinated steps. With a full-sized humanoid robot that is able to detect multi-
contacts in real-time, we succeeded in performing a long-term “box-step” with
multi-contacts pHRI, demonstrating the robustness of our approach.

1. Introduction

The development of robots subject to physical interactions is one
of the most challenging robotic research topics for the future
robotic society. Such robots would greatly expand their applicable
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through the pHRI.

As the first step for pHRI, multiple con-
tact forces applied by a human (and/or
some objects) have to be precisely sensed.
General robots, however, only have six-axis
force and torque sensors mounted on their
end-effectors.>® This fact significantly
limits the areas where the contacts can
be exerted. Even if torque sensors (or estimators) are mounted
on all the joints,”™ the contact positions are difficult to be local-
ized, especially with multiple contacts.

To sense all the contacts and their positions on robots, several
research groups have developed robotic skin to cover the bodies
of robots.'®' In particular, the skin cell that we have
developed!™ can be localized automatically using an embedded
accelerometer," and we measure the contact force and precon-
tacts using a proximity sensor, which can be directly converted
into joint torques. By covering the whole body of a humanoid
robot with more than 1000 cells over ~1m?* of the robot
(see Figure 1), the robot can sense multiple contact forces, mak-
ing multicontact pHRIs tractable. Note that, in this Review, all
the forces are transformed into a net wrench with respect to
the center of mass (COM) to simplify the walking control.

An important next step for multicontact pHRI is motion
control according to the sensed tactile information that must
be considered. If robots are limited to manipulators and mobile
robots with natural stable dynamics, the contact forces can be
distributed to the joint and task spaces, where respective virtual
impedances are predefined or adaptively given, without any
concern on failure (e.g., such as falling).’”"** Even in the case
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Figure 1. A full-sized humanoid robot, named H1, covered by robotic skin
(=1 m? of the covered surface): all the contact forces are measured by skin
cells; these forces can be transformed into a net wrench with respect to the
COM, which is convenient to generate walking motions. Reproduced with
permission. Copyright 2019, A.Eckert/TUM.

of humanoid robots with unstable dynamics, quasistatic tasks
can be resolved with similar approaches, e.g., a slow standing-
up motion."” The whole-body controller with explicit objectives
considers physical interactions with humans or objects.*® That
is, by adjusting impedances and suitable objectives, the balance
between the human—robot intentions can be accommodated.

In contrast, bipedal walking is generally classified as a fast
dynamic system without any stable equilibrium points.
Without focusing on walking control during pHRI, advanced
control methods based on simplified dynamic models have been
proposed to keep walking balance and hold the robot’s walking
intention (i.e., footstep locations and durations)."*-*? Note that
this Review exploits a concept of a divergent component of
motion (DCM) proposed in another study®! as well as the
conventional works.?>?” Therefore, they regard the contact
forces for pHRI as disturbances and resist them robustly but
have no capability for adapting to human walking intention based
on multicontact forces. Here, we note that intention in the case of
walking is defined to be the direction in which one wants to walk,
footstep locations, and the duration for each step.

Bipedal walking explicitly accounting for multiple contacts can
be considered as the next major challenge in humanoid robotics
and pHRI. The controller proposed by Nishiwaki et al.*”!
compensates the external forces at the wrists (with the six-axis
force—torque sensors) by providing the offsets to reference
signals. The joint research group of AIST and CNRS has suc-
ceeded in making a humanoid robot carry a board together with
an operator by combining the impedance control for the upper
body and walking control for the lower body.**=% In that case,
the interaction would be limited due to the indirect force-reactive
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walking control. In addition, the robot in this situation is merely
regarded as an operator’s follower, which only reacts to human
intention. The study of Agravante et al.'¥ proposed a model pre-
dictive control, by directly handling the external wrench on the
COM with two types of cost functions: as the leader (to hold the
robot’s intention) and the follower (to adhere to the human’s
intention), respectively. However, the interaction models of the
leader and the follower are differently given; hence, no interme-
diate role is given. In addition, in all of the earlier studies, the
prediction and control of the external force are relatively easy
because the contact points are limited to end-effectors. When
multiple contacts with the whole body are allowed, direct control
of the external force becomes difficult due to inaccurate predic-
tion. We believe that the next challenge in pHRI, the robot and a
partner, who is in contact with the robot, should convey their
intentions using physical cues during physical interactions with
each other through multiple contact points, and according to the
interactions, the robot uniformly decides whether to be the leader
or the follower.

Hence, our project focuses on multicontact pHRI walking,
where the leader or the follower is nondiscretely given the robot’s
role. As the first step, this Review proposes a new force-reactive
walking control to achieve multicontact pHRI tasks that require
walking skills like dance, as shown in Figure 2. In this controller,
the robot dynamics are represented by DCM with the explicit
input of the external forces, which are measured by the robotic
skin cells and propagated to the COM. Under these DCM dynam-
ics, an ankle strategy controls the balance of walking for holding
the robot’s intention. To follow the human intention, a stepping
strategy is designed, so that the robot’s intention is smoothly
updated and reactive to the external forces. Here, we consider
a concept, the “confidence” of the nominal footstep locations
and durations (as the robot’s intention), to make it possible to
adjust the ratio between whether the robot holds the robot inten-
tion or follows the human intention. The robot has to estimate
the nominal footstep commands, some of which should be
conducted accurately (e.g., the commands to walk on stairs),
and some of which may be uncertain (e.g., the commands esti-
mated from noisy sensing data). The “confidence” is defined as
the quantity of the classification of the nominal footstep. Based
on this “confidence,” the robot can behave as the leader or fol-
lower of the partner during pHRI in a uniform manner. The
“confidence” also implicitly adjusts the contact force with the
partner, which is difficult to be accurately predicted and con-
trolled because of the arbitrary multipoint contacts.

Specifically, the ankle strategy provides the analytical position
of ground reaction force derived from the DCM dynamics to
keep the footstep location and duration within a target range.
The allowable area of the ground reaction force is limited
within a support polygon, and its size can be shrunk virtually
according to the confidence value to easily activate the stepping
strategy. Only when the ankle strategy cannot provide its
analytical solution, the stepping strategy numerically solves
two optimization problems during the single support phase
(SSP) and the double support phase (DSP), named, SSP-Opt
and DSP-Opt, respectively. Here, these two are designed to
achieve three objectives: 1) to guarantee the DCM dynamics con-
sidering the contact forces as the partner’s walking intention;
2) to keep the nominal parameters as the robot’s walking
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Figure 2. The proposed walking control framework: the walking intention of the human partner generates multiple contact forces measured by the robotic
skin; using the contact forces and the original/predicted walking intention of the robot/partner, the ankle and stepping strategies adapt the footstep and
command it as the new walking intention of the robot; according to this new footstep, the human partner adjusts his/her walking intention; note that in
this article, the walking intention of the partner is not predicted, and the original walking intention of the robot is given as commands.

intention; and 3) to smoothly change the optimal parameters in
practice. The confidence is utilized to assign the contribution
weight for each.

To verify our method, three types of real experiments with a
full-sized humanoid robot covered with artificial sensing skin
were conducted:

1) We first confirm the appropriate combination of the ankle
and stepping strategies through experiments for pushing from in
four directions (i.e., forward, backward, rightward, and leftward).
Even when pushing from any direction, the stepping strategy is
activated only when the ankle strategy exceeds its limitation to
keep balance during walking.

2) Next, we conduct trials of robot—robot interactions
(i-e., between a humanoid robot and a mobile robot). We show
that the humanoid robot can switch its role between a leader and
a follower according to “confidence.”

3) Finally, we conduct stepping demonstration during multi-
contact pHRI. The robot first tries a “box-step” dance with a small
stride. After that, the human tries to achieve the “box step” with a
larger stride by pushing the robot, and consequently, the robot
succeeds in increasing its stride for the “box step” by following
the forces applied by the human.

In our earlier work, we examined the ankle and stepping strat-
egies for footsteps of the robot to adjust through pHRI, while
maintaining stable motion.””) Here, we further examine the
effects of rotation produced by the contact forces and the real-
time updates of swing-leg trajectory. In addition, to investigate
the mean of whole-body haptic interactions, we introduce the
“confidence” of the nominal footstep and integrate it with a
framework for walking control that supports multicontact
pHRI. The “confidence” defines the role of the robot as a leader
or as a follower during whole-body haptic interaction. This is con-
ducted by integrating the ankle and stepping strategies with the
“confidence” as their priorities, which heuristically amplifies the
parts of design parameters in the respective strategies by taking
those functions into account. Thus, the framework can switch the
role of the robot between the leader and follower of the partner in
a uniform manner.

The performances of our method are investigated through
three types of experiments in terms of 1) the robustness and
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adaptability to disturbances from any direction, 2) the capability
to switch the robot’s role between leader and follower according
to the “confidence,” and 3) the practicality on multicontact
human—robot interaction. Only nominal footsteps with
“confidence” is changed for each experiment, indicating that
the robot’s behavior (i.e., leader or follower) can be determined
only by adjusting the “confidence.”

The remainder of this Review is structured as follows.
Section 2 simplifies the whole-body robot dynamics for multiple
contacts to DCM dynamics with a net wrench at the COM.
Section 3 derives the ankle strategy from the DCM dynamics
analytically. Section 4 defines two optimization problems,
which are solved numerically in real time, for the stepping strat-
egy during SSP and DSP, respectively. Section 5 shows the three
types of real experiments. Section 6 discusses the limitations of
the proposed method and suggestions to overcome them.
Section 7 concludes this article with a summary and potential
future work.

2. Dynamics for Walking Control
2.1. Whole-Body Dynamics with Multiple Contacts

The rigid-body dynamics of a humanoid robot with multiple
contacts are given as follows.
K
“lw )

. N

wal[o] )= [l
22 2 T -1 i21 i22

where M denotes the inertia, G includes the gravity, centripetal,
and Coriolis forces, and K is the transformation and propagation
matrix, respectively. As a bipedal humanoid robot is a floating
Dbase system, its world coordinate g, has to be considered in addi-
tion to its joint angles 6 and their torques 7. As shown in Figure 1,
our humanoid robot, H1,"*?”] has 1260 skin cells to cover the
whole body. Theoretically, the same number of contact terms
with their respective wrenches w; is needed. Thus, it is compu-

tationally infeasible if such complicated dynamics are used to
directly control the robot.

[Mll
MZl
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To simplify such complicated dynamics, let us introduce
point-mass dynamics, which is well known for controlling
bipedal walking such as the linear inverted pendulum model™®!
and the DCM."" In that case, we can consider only the propa-
gated forces to the floating base (i.e., the COM in the model).
That is, the robot with multicontact pHRI is modeled as the
point-mass model by only propagating all the contact forces onto
the robotic skin cells to the COM. As a result, the control problem
with multicontact pHRI can be solved in a computationally fea-
sible manner.

2.2. Multiple Contact Forces Sensed by the Robotic Skin

As mentioned earlier, the robot has 1260 skin cells, all transfor-
mation matrices T (consisting of rotation matrices R and trans-
lation vectors p), which are identified by the calibration
technique.!"® Each cell has five modalities for sensation and indi-
cates the cell’s state: 1) three normal force sensors; 2) one prox-
imity sensor; 3) a three-axis accelerometer; 4) one thermometer;
and 5) one LED to show the contact state. The sampling rates of
these sensors are 250 Hz for acceleration, proximity, and temper-
ature and 2 kHz for the force sensors. To minimize the commu-
nication latency, the communication paths between the robot
(i.e., the host computer) and all the skin cells are optimized,"]
resulting in less than 1ms of communication latency.
These measurements are managed on the host computer with
a strictly clock-driven control algorithm using real-time OS
and ros_control,?? the effectiveness of which has been demon-
strated in our other works.**** Even so, a heavy burden on
traffic is expected if these all measurements are sent to the host
computer simultaneously, and that could break the real-time con-
trol of the system. To overcome this problem, an event-triggered
communication system (i.e., only the activated cells send their
data) has been developed.’® Furthermore, the force sensors
and the proximity sensor are used to handle pHRI as a pseudo-
force; hence, the other modalities are deactivated.

The skin cells implement a change detection regime. In each
skin cell, a change detector monitors the sensor signals of the
skin cell and creates events (updates on the state of the sensory
signals) when a sensor value changed. Thereby, the change detec-
tor reduces the temporal redundancy of information sent to the
controller. The transmission rate and the computation power for
providing tactile feedback of large-area e-skin decrease signifi-
cantly. At the same time, the information conveyed by the events
is practically identical to the information conveyed in the samples
of clock-driven systems. Controller implementations that take
the feedback of event-driven e-skin systems can either decode
the events back to samples or follow the traditional control
regimes. Alternatively, controllers can exploit the event-driven
information representation to increase their computational effi-
ciency by reducing the number of calculations. In both cases, the
controller can strictly realize a constant control frequency. Thus,
the event-driven representation of the tactile feedback does not
negatively affect control performance, it rather improves its real-
time performance by reducing computational demands.

In this Review, we take advantage of this property. Specifically,
from the sensor values (for the force and proximity information),
we can easily find the set of activated skin cells, N,, as follows:
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Nac = {i‘f}i,force > €force N Vi prox > €prox> i=12..., N} (2)
where ;e and ;o denote the values transmitted from the
three force sensors (actually, the mean of them) and the proxim-
ity sensor on i-th skin cell, respectively. By taking the respective
thresholds (i.e., eforee and €proy), the large computational cost for
the following transformation can be reduced.

In addition to ; gy, the system can detect precontact using
Viprox @S a pseudoforce, which can improve the response speed.
The pseudoforce f; o applied to the i-th activated skin cell is
given as the weighted sum of ¥; g, and v; prox.

G)

f icell — wforcel_}i,force + 1’]”proxvi,prox

where Weorce and Wy, are respective weights calibrated empirically.

Here, as shown in Figure 3, we suppose that all the pseudo-
forces of all the activated skin cells N,. are propagated to the
COM (more accurately, the base link of the robot) and are applied
to the DCM dynamics explicitly. As mentioned earlier, we know
the transformation matrix from the COM to i-th skin cell’s
frame, T; with R; and p;, and therefore, the net applied wrench

Wsin = [l 7o, T is derived as follows.

Fskin = Z Rifi,cell (4)
iEN,

Tskin = ZP;‘ X (Rificen) ()
ieN,

where f; .1 = 0,0, — f; 1T is the applied force vector to the i-th
skin cell’s frame. Fyg, and 7, are fed to the walking controller, as
described in the next section. Note that 74, rotates the upper body,
which has a feedback controller to preserve the vertical posture.

2.3. DCM Dynamics with Applied Force

Let us introduce the DCM dynamics with explicit contact forces
except feet (see Figure 4). Given the COM position x with a point
mass m and the natural frequency w, = \/g/h with g as the
gravitational acceleration and h as the COM height, the DCM
position &, which exhibits the unstable walking component, is
derived as follows.

i-th skin cell

_ T T
Wgkin = [Fskin’ Tskin

}T

Figure 3. Force propagation from robotic skin to the COM: the contact
force to i-th skin cell is propagated to the COM using the corresponding
transformation matrix; the sum of all the propagated forces from the acti-
vated skin cells are given as wgyn.
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Figure 4. Definition of main variables in the DCM dynamics: the contact
forces summarized as Fg, affect the COM and DCM dynamics; the COM
x converges to the DCM ¢&; & diverges from the VRP u; in SSP (represented
by green arrows) with T, duration, the controller aims to match £ and & by
manipulating u;, ue, and Tg; in DSP (represented by the yellow arrows) with
T4 duration, the controller adjusts u; and T4 to achieve &,.

E=x+—
@o

(©)
Using this formula, the robot dynamics is simplified as two
first-order linear differential equations.

()
E=wy(€—u) ®)

where u is the so-called virtual repellent point (VRP). Note that
the ground reaction force from the supporting leg(s) is implicitly
included in this dynamics.

Provided by the robotic skin (i.e., Fgin and 7gn), @ part of u
related to the contact forces except feet can be explicitly distin-
guished as u,,, which is further decomposed into uy for the trans-
lational force and u, for rotational effect. That is, the following
formulae are additionally given to the dynamics.

X = —wo(x —§)

u= ”’ref — Uy = uref - (uF - u‘r)

©

F skin
_ 10
ur vmwd (10)
1 7'-skin,y
U =— |:_Tskin,x:| (11)
vmg 0

where v denotes a hyperparameter to determine a virtual robot’s
mass similar to the general impedance control. It is desirable
to set v <1 for fast response to the physical interactions,
although v — o0 makes the dynamics with the explicit contact
forces converge on the original DCM dynamics without the con-
tact forces. u™ is the reference VRP to control the DCM (and the
COM) and corresponds to one of the walking intentions, footstep
location.

In addition, the additional acceleration by the contact forces
except feet is described with the virtual robot’s mass.
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o _Fskin
% =0

p = (12

This will be directly added to Equation (7) using Euler’s
method.

Using these dynamics, Kalman-filter-based state estimation
(e.g., see another study®) is conducted to gain the COM and
DCM positions. According to the dynamics with the estimated
positions, their reference positions are updated with discrete
time steps df, and the Jacobian-based inverse kinematics!®”!
solves the reference joint angles of the stance leg(s). To walk
as desired, u™" is required to be tracked with sufficient precision;
otherwise, the robot has to change its walking intention (i.e., foot-
step locations and durations).

The framework we provide later is similar to the one devel-
oped by Jeong et al.,*® but the dynamics we assume explicitly
contain contact forces on the whole body. Although all the con-
tact forces are concentrated on the supporting leg(s), there would
be a delay in the measurement. In addition, as the robotic skin
can sense immediately before contact as pseudoforce, potentially
high-level responsiveness is expected.

2.4. Real-Time Swing-Leg Trajectory Planning

In our approach, not only the COM but also the swing-leg trajec-
tory has to be dynamically planned in task space in accordance
with the human—robot walking intentions. We therefore solve a
ridge regression for the weighted least square problem of n-th
polynomial curve fitting in real time. Here, n-th polynomial curve
is defined by the coefficient matrix A = [ag, a4, - . ., a,]T and the
basis function vector f(t) = [1,t,#, ...,#"]T as follows.

y(t) = ATe(t)

where y(t) corresponds to the swing-leg trajectory in our case
(more specifically, its pose).

To fit this curve to the given conditions, the optimal coefficient
matrix A« is derived by solving the following problem.

(13)

A, = argmjn(d)A —Y)TE(®A - Y) + 1||A3
(14)
= (OTS® + AI)"1DTTY

where ® = [¢py, ..., ¢,,|T and Y =[p, ...,y,,)T denote the
matrices of m input and output conditions described in the next
paragraph, respectively. ¥ = diag(c) is the diagonal matrix for
the weights of respective conditions, and the hyperparameter
A stabilizes the numerical solution. At every time step, A is
updated, and the reference of the swing-leg position at the
current time t = T, is given as follows.

me(Tc) = A;r(ﬁ(Tc) (15)

Note that, by differentiating the above equation, y**{(T,) and
7 (T.) can be obtained as well.

As conditions, the initial and terminal conditions can be given
as a smooth point-to-point trajectory, i.e., y(0) =y;, y(0) =0,
7(0) = 0, p(Ts) = ye, ¥(Ts) = 0, and j(T) = 0. Here, T denotes
the reference of the swing-leg duration and y, . are the initial and
terminal locations. In addition, the previous references are
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t= T, —dt ie, y°f (T, — dt), yF (T — dt), and (T — dt), to
smoothly update the trajectory from the previous trajectory. The
observations by the forward kinematics, i.e., y°(T. — dt),
75 (T. — dt), and y°¥ (T, — 2dt), that is for numerically deriving
the velocity, are also added as the conditions to generate a smooth
trajectory. Only in the case of z-axis (step height), the offset Az is
given to the conditions, i.e., z(yTs) = Azand z((1 — y) T,) = Az,
where y € (0,1/2] is the ratio against the SSP duration.

If A« is obtained with the earlier conditions, smooth trajecto-
ries can be obtained by the ridge regression. However, y(0) = y;
and y(Ts) = y., which are always required to be passed through,
are not satisfied. The equality constraints for them are therefore
applied as follows.

Ao = Yi

_ (16)
a, = Ty n(Ye — Y- Ar[l;;nfl,;]gb[l:n—l](’rs))
where Ay,.,,_q . and ¢;.,_) are the submatrix/vector of the orig-
inal matrices A and f, to exclude a,,. From all the coefficients
obtained earlier, the swing-leg trajectory can be generated.
The trajectory obtained by this polynomial function is not neces-
sarily monotonically increasing or decreasing, and therefore,
the monotonicity of the trajectory is enforced by modifying the
obtained trajectory.

To dynamically update the trajectory according to the updated
footstep location and duration in real time, we used the swing-leg
trajectory using the polynomial curve fitting under n = m (as pre-
viously described in the study by Khadiv et al.”*! Such a design is,
however, sensitive to noise and likely to generate infeasible tra-
jectories. In contrast, the ridge regression and the design
n < m allows the trajectory to ignore noisy conditions while arriv-
ing at the optimal footstep location at the desired time Ts.

2.5. Control Objective with Confidence

Under the earlier dynamics, the robot is desired to be controlled
to achieve its control objective, i.e., stepping on the nominal foot-
step location u! at the nominal time T% and starting a new step
after the nominal duration T}. Alternatively, when the given
nominal footstep seems to be unachievable, it should be
adjusted. To this end, our framework is developed with the ankle
and stepping strategies for respective purposes: the ankle strat-
egy is to achieve the nominal footstep and the stepping strategy is
to adjust it. The details of the proposed method, which is

www.advintellsyst.com

introduced in the next section, are summarized in Figure 5 with
the formula references.

Here, we define a new concept for this problem: the
“confidence” of the nominal footstep. In general, the nominal
footstep is given as a command or estimated by classification/
regression from sensory data. For example, the footstep
commands like walking on stairs are of high importance,
whereas those like walking on flat freely are of low importance.
In addition, the desired footstep location and duration can be
estimated with the high confidence in situations that have been
experienced frequently, whereas the estimated results are not
always correct especially in inexperienced situations. To explicitly
represent these characteristics in the nominal footstep, we
assume that each nominal footstep has the confidence
¢ € [0, 1]. That s, the nominal footstep is defined as the following
tuple (ug, T¢, T4, ¢). In addition, to distinguish the nominal foot-
step from the adjusted one, the adjusted target footstep is defined
as the tuple (u., Ts, Ty).

3. Ankle Strategy

3.1. Overview

In this section, the ankle strategy is introduced to hold the robot’s
intention as much as possible. Specifically, we mainly analyze the
optimal VRP (zero moment point, ZMP) u to gain the target foot-
step under the DCM dynamics in Equation (7)—(12). The DCM
dynamics is the first-order linear differential equation, its trajec-
tory can be analytically solved under two assumptions. According
to the predicted DCM position linearly related to u, we can
inversely solve the optimal VRP u*.

3.2. DCM Trajectory with Contact Forces

To solve the DCM dynamics and reveal the DCM in the future,
two assumptions were made: 1) the natural frequency is hardly
changed (i.e., @, = const.) and 2) the VRP u is given as the time-
dependent and analytically solvable function, such as a sine wave
and/or a constant.

Since u is expressed in the reference u™f and the part corre-
sponding to the contact forces u,, we obtain their respective
functions. u™*" is simply designed as a constant and a sine wave
under SSP and DSP, respectively.

Given:
T+
Wskin = [F

skin»

Footstep = (u!, 1., T}, c)

T

"‘skin}T

Ankle strategy (Section IlI):
Predict u(t) by eqs. (16)—(18)

Solve u* by egs. (19)-(25)
OR
Check boundary by eq. (26) w/ ¢

Ue = quTs = T:

Tq=1T;

Stepping strategy (Section IV):
Solve SSP-Opt by egs. (27)-(32) w/ ¢

OR
Solve DSP-Opt by egs. (33)-(37) w/ ¢

Figure 5. Details of our framework with formula references: the ankle and stepping strategies mutually exchange their solutions.
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wet(e) = {Au(sinwdt —1)+ u. EDSP)) (17)
where u, is the center of the next supporting foot, u; is the manip-
ulated VRP, which is identical to the center of the current sup-
porting foot, and Au = u, — u; (see Figure 4). wq is the frequency
to make u = u, at the DSP duration Ty (i.e., wq = z/(2Ty)).
Based on this design, the robot can switch its stance leg via DSP.

Next, the VRP for the contact forces, u,, should be predicted as
a time-dependent function. As can be expected, one way is to
learn that function using deep-learning-based function approxi-
mators to provide high accuracy (e.g., see the study by
Kobayashi.®?). Instead of such a high-accurate but high-
computational-cost method, to prioritize the computational cost,
we assume it to be constant as follows.

Uy (1) = i

ﬁw(_(l - a)ﬁw + a(uF - ur)

where a € [0, 1] is the parameter for the low-pass filter. That is, if
large contact forces are applied for a long period, the robot
expects that the future forces are also large; if the impulsive
forces are given momentarily, they are ignored for the trajectory
prediction. Note that the simple assumption as constant in
Equation (18) has been used even in the conventional work,
and a further suggestion is discussed in Section 6.

By substituting (17) and (18) for (8) (i.e., replacing u according
to Equation (9)), the DCM trajectory is analytically solved as
follows.

dn={ ot
] Ce®ot — Au(l — CdSC(t)) + Ue — By,

(SSP)
(DSP) (20)
where C is dependent on a given (e.g., initial) condition,
Cq = wo/ (0§ +@3), and SC(t) = w,sin(wyt) + wg cos(wyt).
Now, the future DCM position can be given as the function of
u™ (more specifically, w;).

3.3. Conversion from Target Footstep to Target DCM

Here, we convert the target footstep to the target DCM at SSP and
DSP. According to the literature,*” the target DCMs for SSP
and DSP are set for two target footsteps in a backward manner.
Here, each footstep includes stride from the support leg s (or the
VRP as footstep location u), the SSP duration T, and the DSP
duration Tj.

First, let us consider that the robot stops walking after the sec-
ond footstep. That is, the terminal DCM for the second footstep
should match the second footstep location, u, = u. + s, at the
time for the second SSP, T,,. The initial DCM for the second foot-
step (the terminal DCM of DSP), &4, should, therefore, be in
accordance with the DCM trajectory at SSP in Equation (20) as

a = Ue + be (21)
Uy — Up S -
be = e0Tn - W = ew()—Tn — Uy (22)

£41is used as the target DCM at DSP. In practice, the robot will
continue walking as long as the footstep commands are renewed
by planning at every step.
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Next, the initial DCM of DSP (the terminal DCM of SSP), &, is
solved from the DCM trajectory at DSP in Equation (20). As
Equations (21) is the constraint of the DCM trajectory at DSP,
& is given as follows.

&= + bi (23)

bi = beeiwﬂ"d - uw(l - einTd)

(24)
+ Aufe=®Ta(1 — Cqwy) — (1 — Cqmq)}

& is used as the target DCM at SSP.

In both SSP and DSP, only the terminal DCMs of the respec-
tive phases should be on the targets, i.e., & and &g, at the end of
their durations, i.e., Ty and Ty, respectively. The DCM trajectory
in the middle is not required to track Equation (20), although
perfect tracking would suppress sudden changes in the referen-
ces due to drastic replanning. This shift from tracking to regula-
tion problem improves the capability to make the robot adapt to
its surroundings during the pHRI.

3.4. Ankle Strategy

To force the terminal DCMs on their respective targets, i.e., &
for SSP (see Equation (23)) and &4 for DSP (see Equation (21)),
the ankle strategy serves the optimal reference VRP u*. Let us give
the current and target conditions for Equation (20) as &(T.) = &,
and &(T,q) = & 4. In both SSP and DSP, C and u; (instead of u™f)
are unknown but controllable variables, namely, we have the ear-
lier two conditions to solve these two variables.
Then, u; is analytically solved in both phases as u}.

fs + ﬂw — ewUATS (fc + uaz)
1— @‘UOATs
fd — Uew — ewOATd (§c - uew)
Ue — 7 (DSP)
en®1¢(1 = CgSC(T.)) — (1 — Camo)

(SSP)

=%

(25)

where AT g = Tsq — T and uey, = u, — i,. By substituting this
result in Equation (17), u* at the current time T is obtained as
follows.

uf (SSP

f— 1
v { Au*(sinwgt — 1) + u, (26)

where Au* = u, — u}.

Before applying u* to the DCM dynamics (Equation (7)—(12)),
we have to consider its limitation and confidence. First, u* is
generated by the stance leg(s) (especially, ankle torques), and
therefore, it must be within the convex of support polygons S.
Second, if the robot intention is far away from the partner’s
intention, the partner will change the contact forces to convey
his/her intention to the robot. In that time, the prediction of
the future forces would be unreliable, and the estimation of
u* should be given less confidence.

Hence, u* is limited by the following boundary with regard to

S and the confidence c.
u* ef(c)S (27)

where f(c) € [0,1] is for nonlinear mapping for generality. Note
that, in this article, f{c) is assumed as a constant to simplify the
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experimental verification of our framework (see Appendix 8), and
therefore, the appropriate design of f{c) is an open problem.
One possibility is to define a receding horizon problem like in
the study by Wieber et al.*!

According to the confidence, S is virtually shrunk to more eas-
ily activate the stepping strategy. If u* obtained by Equation (25)
and Equation (26) does not satisfy the boundary above, it is
moved to the closest point on the boundary. In addition, at that
time, when the target footstep (the nominal footstep) can no lon-
ger be obtained, the stepping strategy is required to plan a new
target footstep.

4. Stepping Strategy

4.1. Overview

In this section, the stepping strategy is introduced to follow the
human intention by replanning the footstep. Specifically, the new
target footsteps, i.e., location u., SSP duration T;, and DSP
duration Ty, are numerically given by solving two optimization
problems (namely, SSP-Opt and DSP-Opt), which consist of the
following objectives: 1) to follow the DCM dynamics, 2) hold the
nominal footstep, and 3) smoothly update the target footstep.
While the first objective is quasiconstraint with a larger weight
than others, the others represent the confidence of the robot’s
intention, i.e., whether the robot wants to hold the high-confident
footstep or not.

4.2. SSP-Opt for Footstep Location and SSP Duration

Here, we first introduce SSP-Opt to optimize the footstep
location, u., and SSP duration, T, at SSP. Given u = u* — i,
the DCM diverges from the current observation &(T.) = &, as
follows.

E1) = (6 — w7 4y

(28)
) = (&~ wpe e+ u
where z(t) = e** is a linearization technique.l?®! If u* is clipped
to be within its boundary, the DCM no longer reaches &; on time
T, and would diverge as it is.

To keep walking balance without going against the dynamics
in Equation (28), u and T are required to be updated. That is, the
following cost function should be minimized.

a_1 2

Js =5 lgs(ue) = &(=)l12 (29)
where 7, = 7(T) is optimized instead of T to define a linear
optimization problem.””! Here, &(u.) is already defined in
Equation (23). This minimization is actually quasiconstraint
for DCM-based walking under the contact forces (as i, ). The rea-
son why it is “quasiconstraint” is because the ankle strategy has
the capability to return the trajectory toward the target footstep by
changing u.

Hence, the quasiconstraint allows the additional optimization
targets to be satisfied. On the one hand, if the robot has high
confidence in the current nominal footstep (e.g., to demonstrate
the desired footstep to the partner or to walk on limited spaces),

Adv. Intell. Syst. 2021, 2100038 2100038 (8 of 18)

www.advintellsyst.com

the nominal footstep represented by u? and 7! is desired to be
kept. On the other hand, if the nominal footstep is hardly confi-
dent (e.g., when the robot is guided to where to walk), the target
footstep, uf and 7§, is desired to be smoothly updated according
to the current dynamics. In summary, the following two cost
functions, J? and J§, should be included in the minimization
problem.

0 = 2 (e — w1+ w (e — 222 60)
where w, and w, are weights for scaling. Here, J" and J$ would be
in tradeoff if uf and 7 vary from u? and ¢, the difference
between them is caused by the dynamics during pHRI (namely,
the partner’s intention).

Consequently, SSP-Opt optimizes u. and 7 (T;) to minimize

the earlier three cost functions with respective weights, wd, w?,
and wg, under the confidence of the nominal footstep c.

g, 7t = argminwfJ¢ + w2 + (1 - w3 &)
subject to

STy < u < ST 4y (32)
e T < g < gmoTH™ (33)

where sminmax gnd TRMX 5p6 houndaries for the respective
parameters depending on the geometric and kinodynamic con-
straints. This is regarded as a quadratic programming (QP) prob-
lem, which can be solved with the L-BFGS-B solver!*? in real time
(i-e., within the control period of our robot). 7§ is reconverted to
TS after solving, i.e., TS = w, ! log7$. Note that, in the ankle strat-
egy, uf and T3 are given as the new targets to be sustained, i.e.,
ue = ud and T, = T5.

4.3. DSP-Opt for DSP Duration

Here, we introduce DSP-Opt to optimize the DSP duration, Ty, at
DSP. The contribution for the stabilization capability of DSP is
well known; however, its duration has often been heuristically
fixed to a sufficient value in many studies!®* % or simply the
DSP is ignored in mainly quasipassive walker approaches.!*>23]
Ty actually causes a tradeoff between stability and walking speed.
This Review, therefore, optimizes Ty, which is usually relatively
short but enables to recover from unexpected disturbances, in
addition to SSP.

From the current observation &(T.) = &, the DCM reaches
the following state at Tj.

§(Td) = C(Td)ewOTd + U — 1y

T 1 — Ca(Tq)wo
¢ 1 = sin(wq(Tq)Tc)

(34)

where all the parameters related to Ty are explicitly described.
The nonlinearities in them are unfortunately unavoidable,
although we have their analytically differentiable definitions.
Similar to the case of SSP, the DCM dynamics with the clipped
u* cannot lead to &3 on time Ty. Instead, a long T4 would allow
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achieving &4 by updating u* with the ankle strategy repeatedly, or
£ may pass & before Tj.

To start the ideal next footstep, DSP-Opt optimizes Ty. Similar
to SSP-Opt, three cost functions are designed for 1) convergence
on & to satisfy the DCM dynamics, 2) keeping Ty nominal to
hold the robot intention, and 3) smoothing its change to
smoothly follow the partner’s intention.

1
Ji=5léa—&(Ta)l3 (35)

1 n,s n,s
L Swi(Ta = T¢°)" Taz Ty
=2 36)

Sw(Ta =Ty Ty <T§

where T} and T denote the nominal and target values. w, and
w_ denote asymmetric weights. Usually, this asymmetric design
in J7* has to consider the risk of shortening Ty, i.e., w_ > w,.

In summary, DSP-Opt optimizes Ty in pursuit of the minimi-
zation of the above cost functions with the respective weights, w{,
w4, and w$, under the confidence of the next footstep c.

TS = arg n%inngﬁ +ewf Ji 4 (1 = c)w§ J§ (37)
d
subject to
yminTg < Td < ymaxTéL (38)
COM DCM ZMP Footstep Fskin
(@) 0.1~ 0
= += --10 —
E 0.0 =z
c
[72] [~ (o]
g 01 1st
--30
-0.2- 2nd
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time [s]
From forward (1st: -7.2 Ns, 2nd: -13.9 Ns)
COM DCM ZMP Footstep Fskin
(c) o2- 2nd
-60
_ 1st
£ 0.1-
= ~40Z.
§ 0.0/ | foric / 208
|
: -0
,Oll_
0.0 25 5.0 7.5 10.0 125 15.0

Time [s]
From rightward (1st: 23.1 Ns, 2nd: 38.2 Ns)
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@) (b) (©

Attract to
nominal footstep

=] |

Low confidence

m] [

Nominal case High confidence

Figure 6. Behaviors of the proposed strategies: with high confidence, the
stepping strategy is rarely activated due to the maximum activity of the
ankle strategy, and even if it is activated, the footstep values are attracted
to the nominal footsteps; with low confidence, the activity of the ankle
strategy is suppressed by shrinking the support polygons virtually, and
the stepping strategy smoothly updates the footstep values without the
attraction to the nominal footsteps.

where y™inm2x are upper and lower boundaries depending on the
nominal time. This optimization problem is nonlinear but with

COM DCM ZMP Footstep Fskin
() 2nd
0.10-
— 1st -40
E, Yi =
.5 0.05- g
§ -20 8
0.00- :
‘ -0
0.0 25 5.0 7.5 10.0 12.5 15.0
Time [s]
From backward (1st: 1.54 Ns, 2nd: 35.6 Ns)
COM DCM ZMP Footstep Fskin
(d)
0.1- | Lo
—_— |
S \ =
o 00- ——20&
k= 8
3 =
& -0.1- -—a0't
-0.2- 1st 2nd --60
0.0 25 5.0 7.5 10.0 12.5 15.0
Time [s]

From leftward (1st: -33.1 Ns, 2nd: -38.1 Ns)

Figure 7. Results of pushing from four directions: the COM, the ZMP, the footstep location, and the contact forces are shown. The gray areas indicate the
durations of pushing; x-axis data in (a) and (b) and y-axis data in (c) and (d) are shown for visibility purposes. The pushing impulses are described in
the respective subcaptions. After the first pushing, the ZMP was adjusted to resist that force by the ankle strategy, as shown particularly in (b). After the
second pushing, the robot updated its footstep location according to the direction of that force by the stepping strategy.
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differentiable cost functions. Therefore, we solve this problem
with the L-BFGS-B solver in real time to gain at least a locally
optimal solution. After solving, T§ becomes the new target for
the ankle strategy at DSP, Ty = T5,.

As a consequence, the stepping strategy updates the target
footstep (ug, T, and T9) by solving the two optimization prob-
lems, named, SSP-Opt (31) and DSP-Opt (37), if the ankle strat-
egy cannot find a u* satisfying the boundary as defined in
Equation (27). Note again that the above box-constrained optimi-
zation problems can be solved within the control period due to its
simplicity with only a few optimization variables. In addition, by
providing the real-time update capability under the box con-
straints, incorrect updates can be modified in the next updates,
and undesirable updates can be avoided by the box constraints.

X-axis
Robs Rdes Lobs Ldes Fskin
(@) !
. 0.0- 0
E —-10Z
c
o [}
=1 L (8]
2 -01- 20 5
o [
o --30
Z-axis
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_.0.04- "o
E —-10Z
5 0.02 - @
g --20 E
& 0.00- | _30
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Time [s]
From forward (x- and z-axes)
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E 5z
c
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.g =
o ot
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www.advintellsyst.com

In this strategy of switching, the confidence of the nominal
footstep ¢ absolutely plays an important role, i.e., whether the
robot holds/follows the robot’s/partner’s intention (see Figure 6).
With high confidence, the ankle strategy tends to resist the con-
tact forces from the partner, and even if the stepping strategy is
activated, it aims to keep the footstep nominal as much as possi-
ble (i.e., preserving the walking balance). With low confidence,
the ankle strategy easily relies on the stepping strategy, which
aims to follow the partner’s intention.

5. Experimental Results

In this section, three types of experiments with a real full-sized
humanoid robot covered with artificial sensing skin (see

X-axis
Robs Rdes Lobs Ldes Fskin
b
( )0.10-
£ -40%
§0.05- g
5 -20 5
g i
0.00- Lo
Z-axis
Robs Rdes Lobs Ldes Fskin
—0.04 -
£ -40Z
p= =
S 0.02- 3
= -20 5
o i
o
0.00- 0
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time [s]
From backward (x- and z-axes)
Y-axis
Robs Rdes Lobs Ldes Fskin
(d) 0.1-
— -10
E oo- z
E 5
G -0.1- 5
g o
-0.2-
Z-axis
Robs Rdes Lobs Ldes Fskin
0.04 - L
T 10 =
§0.02- 5 9
B S
£ 0.00- o &
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time [s]

From leftward (y- and z-axes)

Figure 8. Tracking accuracies for the reactive swing-leg trajectories: “R” and “L” in legends denote the right and left legs, and “obs” and “des” in legends
mean the observed and desired values. The observed noises were caused by the state estimator and the gain setting for motors. A remarkable feature was
found in the z-axis trajectories because the footstep duration was modified or the landing was earlier than expected due to the unexpected tilting of the
base link. The large applied forces smoothly updated the desired trajectories toward the next footstep locations, and the inverse kinematics-based con-

troller accurately tracked them.
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Figure 1) are reported. The configurations of the proposed
method are summarized in Appendix A. Note that all the nomi-
nal footsteps in the experiments are given by an operator for sim-
plicity. Adaptive updates of the nominal footsteps are discussed
in the next section.

5.1. Pushing from Four Directions

In this experiment, the robot steps in place with the confidence
¢ = 0. The robot is pushed twice with small and large impulses
in the same direction of each trial. We show the results of pushing
in four directions, i.e., forward, backward, leftward, and rightward
(see Figure 7 and the attached video). The specific values of the two
impulses are given in the respective captions.

After the first push with a small impulse, the ankle
strategy succeeded in resisting that force by adjusting the ZMP.
The second push was relatively larger than the limits of the ankle
strategy, and as a result, the stepping strategy was activated to
change the footstep location. Note that the difference in the mag-
nitude of the allowable impulses between the directions, e.g., the
first push from leftward (33.1 Ns) was larger than the second push
from forward (13.9 Ns), is due to the influence of multiple factors,
such as the size of the support polygons, the timing of the push,
and the moving direction of the COM. In summary, although
thresholds for the impulses cannot achieve proper activation of
the stepping strategy due to the influence of such multiple factors,
the proposed method keeps the balance of stepping motion
against the contact forces from any direction.

From these experiments, we also confirm how smoothly the
swing-leg trajectories were updated according to the large applied
forces, as shown in Figure 8. The IK-based controller imple-
mented on the robot was able to track the desired swing-leg tra-
jectories updated in real time with high accuracy. However, the
robot’s state estimator was disturbed by the applied forces and/or
impacts on landing and the observed values were sometimes
with noise.

5.2. Robot—Robot Interaction with Leader and Follower

In this experiment, the humanoid robot, H1, interacts with a
mobile robot as a partner, ie., TIAGo™ with an impedance
controller. The control behavior of TIAGo is described in
Appendix 9. A leader moves forward and pushes a follower,
which moves according to the contact forces up to around
80 N (see Figure 9 and the attached video).

When the humanoid robot is the leader, its nominal stride is
given as 0.1 m and its confidence ¢ = 1. The results at that time
are shown in Figure 10a. From the upper and middle part of
Figure 10a, we found that the humanoid walked forward while
pushing the partner mobile robot backward. Based on the ankle
strategy with high confidence, the robot hardly changed its
footstep except for a small change in the SSP duration, while
maintaining walking balance. This was because the contact
forces backward prevented the humanoid robot from walking
forward, and the DCM (and the COM) needed a longer SSP dura-
tion to reach the target.

When the humanoid robot is the follower, it steps in place
with confidence ¢ = 0. The results in that time is shown in
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Figure 10b. The humanoid robot received the same amount
of force (up to around 80 N) from the mobile robot (see upper
part of Figure 10a,b), and as a result, it stepped back once.
However, the humanoid robot succeeded in returning to the
stepping-in-place task. This is because the mobile robot pushed
the humanoid robot during the DSP, which has large support
polygons, and the COM offset was obtained by the ankle strategy
to resist the contact forces. The timing of the push was conve-
niently adjusted by DSP-Opt, which made the DSP duration
almost double after going back to the stepping-in-place task.

From these results, if the magnitude of the contact forces is
within the allowable range (under 80 N and/or 40 Ns estimated
from the earlier experiments), we can expect that when the physi-
cal interactions are given at the appropriate timing or the size of
support polygons in Equation (27) is appropriately shrunk virtu-
ally according to the confidence, the humanoid can switch its role
between leader and follower, using the proposed method.
However, it should be noted that even if the humanoid robot
is the follower, its top priority is to maintain balance, namely,
it is not desired to be completely obedient to the leader when
the mobile robot is the follower.

5.3. “Box Step” with pHRI

In this experiment, the humanoid robot tries the box step
(see Figure 11) with small stride at 0.05 m. To allow the updates,
the confidence ¢ is given as 0.5. That is, the partner who is in
contact with the humanoid robot, as shown in Figure 12, tries
to increase the stride by pushing the robot (specifically, its right
arm and left shoulder) at the right time. The results are shown in
Figure 12 (snapshots extracted from the attached video),
Figure 13 and 14.

During the first round (from the beginning to around 10s),
the partner hardly applied forces to assess the nominal
footsteps of the robot (see Figure 14). At that time, as shown in

Figure 9. Experimental setup for the robot—robot interaction: the robot’s
touch with torso and end-effector, respectively. One moves forward as a
leader and the other moves as a follower according to the contact forces.
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Figure 10. Results of robot—robot interaction with leader and follower. Note that the difference in the total movement distances is due to sensing error
and slippage. In (a), even when the humanoid pushed the mobile robot, it succeeded in walking with nominal stride, thanks to the ankle strategy and the
adjustment of SSP duration. In (b), the mobile robot pushed the humanoid again and again, but the COM offset onto the front by the ankle strategy
enabled the humanoid to resist the contact forces without changing the footstep location; after going backward once, DSP duration was nearly doubled to

gain balance and to make the COM offset converge.

Figure 13a,b, the robot motion was stable but with small stride.
After that, the partner applied larger forces to increase the stride.
In several attempts (in particular, during lateral stepping), the
interaction failed due to wrong timing and insufficient impulse,
which allow the robot to recover balance using only the ankle
strategy. However, as shown in Figure 13cd, i.e., from 19s
and 42 s, the partner applied the forces along the COM trajectory,
and as a result, the stride increased compared with the cases
without the forces, as shown in Figure 13a,b, respectively.

The earlier experimental results show that our method made it
possible for the robot to interact with the partner through natural
and multiple-contact pHRIs in real time. However, we have to
remark that the robot reacted the partner’s intentions only in
12 of 16 steps, and the partners were forced to make a great effort
to increase the stride at every step.

Adv. Intell. Syst. 2021, 2100038 2100038 (12 of 18)

6. Discussion

In this section, we discuss the limitations and improvements of
the proposed method based on the experimental results and the
implementation details.

6.1. Update of Nominal Footstep

In all the experiments, the nominal footsteps were given as com-
mands by an operator. That means, even if the humanoid robot
changes its footstep location and/or duration before, the
robot never updates and learns the optimal nominal footsteps
using the proposed method. As in robot—robot interactions,
the humanoid robot resisted the contact forces applied by
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Figure 13. Typical footsteps: a,b) the cases without the contact forces; c,d) the robot was pushed by the partner (also see Figure 12). Comparing (a) and
(c), the strides to backward and leftward were certainly increased. Similarly, in (d), the robot gained larger steps than in (b).

the mobile robot after one-step modification. Even in the
box-step case during the multicontact pHRIs, the partner had
to convey the next footstep by pushing the humanoid robot at every
step. The humanoid robot with the proposed method, therefore,
cannot predict the partner’s intention as a human does, and the
partner needs to make effort to provide his/her intention.

One solution for this problem would be to apply learning-
based methods. Using time-series data from the contact forces,
the robot could learn to predict intended direction, the stride, and
duration of the current footstep(s). However, only supervised sig-
nals at the time to change the phase between SSP and DSP can be
collected; hence, semisupervised learning like in the study by
Kobayashi et al.* would be more suitable. With such a method,
the robot will be able to predict the human’s walking from the
history of the contact forces.

6.2. Limitations in Dealing with Various Contact Forces

Our framework utilizes the composite force on the base link,
i.e., a composite of the contact forces on the whole body skin; it

Adv. Intell. Syst. 2021, 2100038 2100038 (14 of 18)

can handle forces of various magnitudes and directions in the
same way for keeping walking balance. However, to ensure
smooth handling of undesirable overreactions, several smooth-
ers were installed in our framework like J ; for careful updates
of the robot motion, and the robot response would not
change the footstep too quickly. Thus, our framework can
safely maintain gait balance for modest force magnitudes
and changes, but it would not keep the robot in balance with
arbitrarily forces.

As another perspective, the question on how to predict the
future contact forces (e.g., see Equation (18) and (19)) remains
an open problem to achieve high agility to various contact forces
and natural physical interactions with walking balance.
Dangerous pHRIs can be expected when this prediction has
low accuracy. In particular, when the points of contact can
be changed freely as in our system, which requires to predict
where it will be touched in the future, it is a big challenge to
improve the accuracy of this prediction. To improve the predic-
tion accuracy, we have to investigate the best function to repre-
sent the trajectory of the contact forces while satisfying the

© 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Figure 14. Time-series data of the COM and the contact forces: during the
first 10s (i.e., one round), the partner checked the robot motion without
applying the contact forces. the amplitude of the COM was increased like
synchronizing with the contact forces. When the timing of pushing was
incorrect and/or the impulse was insufficient, the robot kept the footsteps
nominal.

condition that an analytical solution can be derived in real time.
The improved prediction accuracy and the controller based on it
would be able to compensate for the inherent delays in the robot
and our framework.

6.3. Integration with Other Strategies

In the proposed method, only the COM is reactive for the contact
forces in pursuit of control in real time. This implementation
made multicontact pHRIs difficult in certain aspects. For
instance, the positions and orientations (i.e., the transformation
matrices to the COM) of the skin cells attached to the upper body
were fixed, and that restricts the direction of the contact force
onto each cell. Therefore, in the third experiment, the partner
frequently changed the touched skin cells (see the attached
video).

If the joints have compliance to relieve the contact forces, a
part of f; . will be used to change the robot’s pose, and the
remaining will be propagated to the COM according to the
degree of the compliance and the joints’ performance.!®
While such compliance is important to make the robot robust
to contact forces, it generally leads to behaviors that avoid con-
tacts and hinder continuous interactions. Even though, our walk-
ing controller can be integrated with a compliant system using
the concept of intentional contacts,** that is, if the partner wants
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to keep in touch with specific parts of the robot, the robot will
allow contacts by reducing the compliance of the corresponding
joints after a short time. Using this concept, the partner will be
able to walk together with the robot while changing its posture in
such a way that it is suitable to push toward the desired direction.

7. Conclusion

In this article, we presented bipedal walking control during mul-
ticontact pHRIs dealing with the tradeoffs between robustness to
achieve the robot-intended motion and adaptability to follow the
human-intended motion. Two main strategies were proposed:
the ankle and stepping strategies were integrated for this pur-
pose. Specifically, the ankle strategy derives the analytically opti-
mal VRP to hold the target footstep representing the robot’s
intention. However, when the optimal VRP is out of the robot’s
support polygons, the stepping strategy is activated to update the
target footstep by solving two optimization problems. Whether
the robot is the leader or a follower is simply determined accord-
ing to the confidence of the nominal footstep, which was intro-
duced in these strategies quantitatively. Three types of real
experiments verified that our approach could 1) keep walking bal-
ance from various magnitudes and directions of the contact
forces, 2) switch the robot’s role between the leader and follower
according to confidence, and 3) achieve “box-step” dance between
a human and a full-sized humanoid robot during multicontact
pHRIs while adjusting its own stride.

As discussed in the earlier section, our approach presents sev-
eral research challenges that should be explored in future work.
In particular, to fully exploit the benefits from robotic skin and
for even more complex multicontact pHRISs, the integration with
joints compliance will be explored. We will also examine how
best to allow the robot to update its own intention (i.e., the nom-
inal footstep) after a few physical interactions based on multiple
contact forces. The robot with these improvements will be better
equipped to be applied to real-world problems in the future, such
as the physical assistance of the elderly.

Appendix A

Controller Configurations

The parameters for the proposed method in this article are
shown in Table 1. First, these parameters, except the ones related
to the robotic skin, were tuned in a dynamic simulator,
Gazebo.*®! Afterward, they were fine tuned on the real robot.
The parameters with regard to the robotic skin were calibrated
by pushing the skin cells mounted on the end-effector, which
also has a six-axis force and torque sensor. Nominal footstep loca-
tion (or stride) and the confidence of the nominal footstep are
task dependent, and therefore, they were set in the respective
experiments.

As a remark, to specify the definition of f{c) in Equation (28)
with the confidence ¢, we simply assume that f{c) is given as a
constant along the respective axes: f(c) = f,. That is, the sup-
port polygon is no longer shrunk according to c. This is because
the behaviors of the robot were very sensitive to the size of the
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support polygon, and to analyze stable experimental results, the
size was desired to be fixed.

Appendix B
Controller for TIAGo

TIAGo, which is developed by PAL Robotics,**! is used for push-
ing the humanoid robot or being pushed by the humanoid robot.

Table 1. Parameters for the proposed method.

Symbol Meaning Value
Otorce Threshold for force sensors 0.005
Oprox Threshold for proximity sensors 0.05
Weorce Weight for force sensors 99
Wprox Weight for proximity sensors 1

m Total mass 86 kg
h Desired COM height 0.83 m
dy Distance between legs 0.15m
dt Time step 0.005 s
v Gain for virtual mass 1

n Model complexity 6

2 Damping factor for ridge regression 0.01
Az Swing-up height 0.05 m
V4 Ratio for swing-up time 1/3
Gpos Weight for position 1
Oel Weight for velocity dt 1%
Gace Weight for acceleration d2 1%
Gobs Weight for observation 0.0001
a Low-pass filter for force prediction de 1 *
Py Shrinking ratio along x-axis 0.5
By Shrinking ratio along y-axis 0.8
smin Minimum stride [-0.2,0+4d,|" m
smax Maximum step location [0.2,012+d,]" m
Tmin Minimum SSP duration 0.7s
Tmax Maximum SSP duration 1.7 s
wy Weight for location

W, Weight for time m
wd Weight for following dynamics 15
wi Weight for keeping nominal footstep 1

w3 Weight for smooth update 1
ymin Minimum ratio for DSP duration 0.5
ymH Maximum ratio for DSP duration 5.0
W Positive part for asymmetric weight 1
w_ Negative part for asymmetric weight 5
wi Weight for following dynamics 15
wi Weight for keeping nominal footstep 1

Wy Weight for smooth update 1

T? Nominal SSP duration 0.8 s
T; Nominal DSP duration 0.38s
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Table 2. Parameters for TIAGo controller.

Symbol Meaning Value
M Mass 50
D Damping coefficient 60
K Spring coefficient 200
stride 0.1
Built-in force 15

n

To make it possible to physically interact with the humanoid
robot, we implemented a simple impedance controller as follows.

M% + Dx + Kx = foo + fin + Kx, (39)

1 .
kzﬁ{fex+fin7DxiK(x7xr)} (40)
where the position of TIAGo is given as x. M, D, and K denote the
virtual impedance. f , is the external force measured by a six-axis
force and torque sensor equipped at the end-effector of TIAGo.
fin applies the built-in force, which allows the robot to actively
move as the leader. According to this virtual dynamics, the ref-
erence position and velocity are then updated. Here, to imitate
the walking behavior of a human partner, the rest position x,
is updated when TIAGo moves over the stride S.

xx+S x>x+S
x-S x<x —S
X, otherwise

Xy

(41)

where the initial value of x; is equal to 0. These parameters are
shown in Table 2. Note that the built-in force is applied only
when TIAGo is the leader.
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