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Abstract

Growth and remodeling in arterial tissue have attracted considerable attention over the last
decade. Mathematical models have been proposed, and computational studies with these
have helped to understand the role of the different model parameters. So far it remains,
however, poorly understood how much of the model output variability can be attributed to
the individual input parameters and their interactions. To clarify this, we propose herein
a global sensitivity analysis, based on Sobol indices, for a homogenized constrained mix-
ture model of aortic growth and remodeling. In two representative examples, we found that
54-80% of the long term output variability resulted from only three model parameters. In
our study, the two most influential parameters were the one characterizing the ability of the
tissue to increase collagen production under increased stress and the one characterizing the
collagen half-life time. The third most influential parameter was the one characterizing the
strain-stiffening of collagen under large deformation. Our results suggest that in future com-
putational studies it may - at least in scenarios similar to the ones studied herein - suffice to
use population average values for the other parameters. Moreover, our results suggest that
developing methods to measure the said three most influential parameters may be an impor-
tant step towards reliable patient-specific predictions of the enlargement of abdominal aortic
aneurysms in clinical practice.
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his work not only to us but in fact to numerous generations of doctoral students and postdoctoral
researchers in biomechanics worldwide.
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1 Introduction

Growth and remodeling of arteries has been researched extensively during the past 15 years.
In particular their important role in diseases such as aneurysms, which belong to the most
important causes of mortality and morbidity in industrialized countries, has attracted signif-
icant attention. Aneurysms are local pathological dilatations of blood vessels that often keep
growing over years until the blood vessel ruptures. Understanding and predicting this pro-
cess is important for planning surgical interventions and researching potential future thera-
pies. In the early 2000s, Watton et al. [1] and Baek et al. [2] proposed the first computational
models to understand the natural history and evolution of fusiform aneurysms. A few years
later Kroon and Holzapfel studied for the first time growth and remodeling of saccular cere-
bral aneurysms and identified the “continuous turnover of collagen” as the “driving mech-
anism in aneurysmal growth” [3]. Together with the constrained mixture theory of growth
and remodeling introduced by Humphrey and Rajagopal [4], [1-3] inspired a host of increas-
ingly detailed studies of vascular growth and remodeling over the last decade, for example,
[5-29]. While computational constrained mixture models of arterial growth and remodeling
have substantially contributed to our understanding of this complex phenomenon, their clin-
ical application, for example, for the computer-aided planning of treatments and surgeries,
is still pending. A major difficulty in transferring these models from academic studies to
clinical practice is the determination of patient-specific mechanobiological model parame-
ters, which are required to make individualized predictions. It is naturally difficult and in
particular potentially very expensive - if possible at all - to determine all these parameters
with high accuracy. Therefore, it is important to understand which of these parameters have
the most impact on the results of computational predictions. Knowing this, research can fo-
cus on the development of novel approaches to measure at least these parameters in a way
that is on the one hand compatible with standard clinical workflows and acceptably cheap
and on the other hand still sufficiently accurate for meaningful computer-aided predictions.
To understand, which parameters in computational models of growth and remodeling are
most important, [30, 31] proposed parametric studies where single parameters were var-
ied in growth and remodeling model based on the constrained mixture theory introduced
in [4]. While the studies presented in [30, 31] provided important insights, they also had
limitations. Most importantly, they were limited to variations of single parameters, skip-
ping thereby completely the in general important interactions between different parameters
[32]. One notable exception was the study of Valentin and Humphrey [33] who investigated
the combined influence of two parameters. Another more recent branch of research uses
Bayesian methods [34-37], which are well-known from other areas of applied mechanics
to be powerful tools for quantifying the effect of parameter uncertainties. However, what
remains missing is a mathematically rigorous global sensitivity analysis ranking the impor-
tance of all the different parameters of computational models of growth and remodeling.

In this paper, we are presenting such an analysis for the homogenized constrained mixture
models introduced in [38]. Our analysis uses the mathematically rigorous variance-based ap-
proach of Sobol and Saltelli [39—42]. This method decomposes the variance in the model’s
output upon variation of the input parameters and determines the contribution of each input
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parameter to the output’s variance. Thereby, it allows us to understand not only the im-
portance of single parameters of homogenized constrained mixture models but, for the first
time, also the importance of combinations of input parameters. The resulting global and also
quantitative understanding of parameter sensitivity allows us to make comprehensive, reli-
able and even quantitative statements about which parameters are most important in order
to make reliable computational predictions. At the moment, most parameters of computa-
tional models of growth and remodeling are difficult to determine in a patient-specific way
that fits into a standard clinical workflow. To overcome this problem systematically over the
next years, one will have to develop step by step more and more methods to this end. The
key question thereby is, the development of which methods should be prioritized in order
to increase the predictive ability of computational models as fast and as much as possible.
The global sensitivity analysis presented in this paper provides an important basis to make
rational and well-founded decisions with respect to this question because it provides math-
ematically rigorous and quantitative statements about the importance of the different model
parameters. We thus hope that this paper can help to guide the future biomedical research
focused on vascular growth and remodeling.

This paper is organized as follows. In Sect. 2, we first introduce the concept of global
sensitivity analysis and Sobol’ indices. In Sect. 3, we briefly summarize the homogenized
constrained mixture model introduced in [38]. In Sect. 4, we discuss the details of a global
sensitivity analysis of this model. The results of this analysis are summarized in Sect. 5
and discussed in Sect. 6. Finally, in Sect. 7, we discuss the conclusions drawn from these
results with respect to potential future research into methods for the clinical determination
of mechanobiological parameters.

2 Sobol Indices: An Approach for Global Sensitivity Analysis

Many parameter studies use so-called local methods where only single parameters are varied
at a time. However, this approach is not suitable for nonlinear models because it neglects
the possibly important interactions between different parameters and tends to underestimate
the input space due to the “curse of dimensionality”. To overcome these limitations, global
sensitivity analysis methods try to infer the global influence of model parameters on the
model output by quantifying the amount of uncertainty in the model output caused by the
individual parameters including their interactions with other parameters [32].

2.1 Definition and Interpretation of Sobol Indices

This section introduces variance-based global sensitivity measures for general, nonlinear
models, which are often referred to as Sobol indices [39—44]. To keep the notation simple,
we abstain in the following from a notational distinction between random variables and
their realizations and trust that the difference is evident from the context. Thus, let x =
{x1,x2,...,x,} € Q denote a continuous random vector whose components x; are random
variables. By x;, we denote the random vector of all components except x;, that is,

X ={X1, X0, ooy Xio1, Xl -5 Xp ) (D

The expected value of a function y of x is denoted by
Ex [y(x)] 2/ y(x) px(x)dx, (@)
Q
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where p, (x) is the probability density function of x. The corresponding variance follows as

Vi [y =E, [(y(x) — Ex [y(x)D)*] = /Q (f@) —E: [fOD px(x)dx.  (3)

Let the model of interest be represented by an integrable function y with n mutually inde-
pendent input parameters x = {xy, X, ..., X, } and scalar output such that

y:K"=[0,11"—> R, x = y(x). )

For the sake of readability, we commit a slight abuse of notation by not distinguishing be-
tween the function y and its value y(x) in the following. Herein we assume, without loss of
generality (cf. [42] or [45, Chap. 15]) that the model parameters are distributed uniformly
within the n-dimensional unit hypercube K", that is, x; ~ U(0, 1), where U(a, b) denotes
the continuous uniform distribution on the interval [a, b] with —00 < a < b < 00. Due to
the mutual independence of the x;, the joint probability density function is calculated as
Pre(x1, X2, ..., %) = [[/_; Py, (x;) = 1. One can show that, under the above assumptions,
there exists a unique decomposition of y, often called analysis of variance (ANOVA) repre-
sentation [39, 41] or high-dimensional model representation (HDMR) [45], such that

n—1 n n—2n—-1 n
y(x)—y0+2yl+ZZY11+ZZZ)@I¢+ +Y12 no (5)

i=1 j>i i=1 j>i k>j
where y is constant and the components y;jr.. = yijk.. (i, Xj, Xk, ...) are functions of as

many (up to n) arguments {x;, x;, X, ...} as they exhibit subscripts. Using (5), we can de-
compose the total variance of y as

n—=1 n n=2n—1 n

V [y] va, [%]‘FZZVW(, Yij +ZZZVX1XJX]‘ yl/k +- +Vx[y12 n]

i=1 j>i i=1 j>i k>j
Q)

where inxjka [y,-_,-k_“] are the variances of the summands in (5). Dividing (6) by V, [y]
yields

-1 n n—=2n—1 n
ZS +Zzsu+zzzsuk+ +512 n—l (7)
i=1 j>i i=1 j>i k>j

where the

inx.ka... [yijk...]

Sijk.. =
7 V, [y]

®)

define variance-based sensitivity measures, called Sobol indices. A Sobol index of order s
(written with s subscripts) gives the fraction of the total variance of the model output that
can be attributed to the interaction between the s different input parameters x;, x;, xx, . ..
alone. In general, the computation of all Sobol indices of a model is very expensive. For
this reason, in practice one often computes only the first order sensitivity indices S; and the
so-called total sensitivity indices S/ . The latter is defined as the sum of all Sobol indices
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where parameter x; is involved:

S,‘T:Si+2Sij+ZZSijk+"'+Sl2...n~ 9

j=I j=1k>j
J#i A ki

One can prove [39-42] that the first order sensitivity indices and total sensitivity indices can

be computed equivalently to the definitions (8) and (9) as

V}(i []EXN,' [ylxl]]

S; =
Vi [y]

) (10)

oy Ve [Bubylel]  Bo [V Iylx] )
' Vi [yl Vi [y] '

where IE,_; [y|x;] and IE,, [y|x~;] are the expected values given the component x; respec-
tively the vector x ;. The latter two equations are often used for the efficient computation
of Sobol indices (see Appendix).

The first order sensitivity index S; is often also called the main effect of parameter x;.
It describes the fraction of the variance of y that can directly be linked to an uncertainty
in x; alone. In other words, it describes by which fraction the variance of y would reduce
if the component x; were known exactly. The total sensitivity index ST is also called the
total effect of parameter x;. It describes the expected fraction of the variance of the output
y that would remain if all parameters except for x; were known exactly. It is a measure of
the combined influence of x; alone (i.e., its first order effect) together with all higher order
interaction terms where x; is involved.

While the S; quantify the influence of each parameter alone on the model output variance,
the ST additionally quantify the influence of the interactions into which each parameter is
involved. In practice, computing these two types of indices and omitting the other higher
order indices defined above has been found to be a good trade-off between computational
cost and insight into the characteristic properties of the model of interest [43]. For example,
the S; and S} can be used for the following analyses.

Linearity analysis: if )_:_, S; is close to one, the model is largely linear, whereas if this sum
is close to zero, the model is dominated by nonlinear interaction terms. Similarly, on the
individual parameter level, the difference Sl-T — §; gives the amount of variance of y due to
all interactions where parameter x; is involved.

Parameter priority analysis: let us assume, we seek to reduce the uncertainty of our model as
much as we can by measuring one of the input parameters exactly. Then the above delineated
theory tells us that we have to focus on the parameter with the highest first order sensitivity
index S;.

Parameter fixation: to simplify the execution of computations, it is often helpful to choose
reasonable ad-hoc values for a couple of parameters without spending too much effort on
measurements or analyses of their exact value. Such simplifications are acceptable, however,
only if the effect of where exactly a parameter is fixed within a certain reasonable range can
be trusted to be small. As pointed out by [43] this is the case for parameters with SiT ~0.
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2

Fig. 1 Membrane subject to a large deformation: a displacement field u translates at each time ¢ each ma-
terial point X in some reference configuration 2( to a current position x in the current configuration ;
(image created by Sebastian L. Fuchs and licensed under the Creative Commons Attribution 4.0 International
License, https://creativecommons.org/licenses/by/4.0/)

For practical purposes it is important to choose a smart strategy to compute the sensitivity
indices because brute-force approaches quickly become prohibitively expensive as the num-
ber of model input parameters increases. The Appendix briefly summarizes such a smart
strategy that enables the evaluation of a full set of first order and total sensitivity indices at
the cost of just Ny, = N (n 4+ 2) model evaluations, where N is the number of Monte Carlo
sample points used for integration and n the number of model input parameters [42, 46].

3 Homogenized Constrained Mixture Model of Vascular Growth and
Remodeling

3.1 Continuum Mechanical Framework

In this section, we briefly summarize the concept of homogenized constrained mixture mod-
els of vascular growth and remodeling as developed in [38, 47, 48]. Thereby, we focus on
the simple (but for this paper sufficient) special case that the blood vessel is modeled as a
thin membrane. The deformation of this membrane is modeled on the basis of the theory
of nonlinear continuum mechanics [49]. Thereby we model the artery as a continuum with
some reference configuration £2p. Mechanical loading as well as growth and remodeling can
result in a deformation of the artery over time ¢ into some current configuration €2,. This
deformation translates each material point X in the reference configuration to at time ¢ to a
current position

x(X,H)=X+uX,1), (12)

where u is the so-called displacement field (Fig. 1). A key quantity to describe this defor-
mation within the theory of nonlinear continuum mechanics is the deformation gradient

_8x

F=—.
X

13)

Constrained mixture models assume that a mechanical body consists in general of m dif-
ferent constituents, distinguished in the following by m different superscripts i € I gathered
in an index set /. These different constituents share each differential volume element. They
form a compound and thus deform together. However, the single constituents may exhibit
different stress-free configurations [4]. In the theory of nonlinear continuum mechanics this
concept can be modeled as follows. As the constituents deform together, they all exhibit
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the same deformation gradient F. However, for the different constituents it is in general
multiplicatively decomposed into different elastic parts F’, and inelastic parts F fgr:

F=F,F,. (14)

The inelastic part changes only by growth and remodeling of the respective constituent. For
each constituent, F' and F fg,, define its respective state of elastic deformation and thus its
strain energy W' (F i). The total strain energy of the constrained mixture is assumed to be
the sum of the contributions of the individual constituents:

w=>"w=3"pw. (15)

iel iel

Here W' denotes a strain energy per unit (referential) volume of the i-th constituent, W' its
strain energy per unit mass, and p}, its (referential) mass density. The mechanical stress in
the continuum can be defined by the 1st Piola Kirchhoff stress

P= 0w (16)
T JF’

where the partial derivative with respect to F should be understood in a way that all F ;,
are kept constant so that only the F’ and thus also F may vary. Growth and remodeling
in vascular tissue occurs on very long time scales so that inertia can be neglected. As typi-
cally also body forces such as gravitation are negligible in vascular tissue compared to the
mechanical loading from blood pressure, the balance of linear momentum reduces to

div P(F) = 0. (17)

Solving this equation renders at each point in time and space the a priori unknown defor-
mation. This is possible with standard methods such as a finite element discretization of
the blood vessel geometry as long as the inelastic parts F ;r of the deformation gradient are
known. These can be computed by the mathematical model of growth and remodeling as
pointed out below in Sect. 3.3.

3.2 Constitutive Equations

Following the lines of [50] and subsequently in the context of growth and remodeling, for
example [30, 31, 38], we assume herein that vascular tissue can be modeled as a constrained
mixture of elastin and a number of collagen and smooth muscle fiber families.

For elastin, we use a superscript i = el and assume a Neo-Hookean strain energy per unit
mass

WEl —

D=

[t (FSTF) —3], (18)

with the trace operator tr(-) and a material parameter .

Smooth muscle and collagen are modeled as uniaxial fiber families aligned in the ref-
erence direction with some unit vector af). Unlike in [30, 31, 38], for simplicity we do not
distinguish herein between collagen and smooth muscle and rather assume that the fiber
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families in our model describe a mixture of both together. Their elasticity is governed by a
Fung exponential function, which for the i-th constituent takes on the form

W= Zk_k]z (exp [ka(CL: (a), ® al,) —1)°] —1). (19)
Here ® denotes a dyadic tensor product, the colon a double contraction product, Ci, =
F.T F is the elastic right Cauchy-Green tensor, and @', = F', a{)/|| F},.a{||. Note that herein
we assume that the two material parameters k; and k, of the Fung exponential function are
identical for all the fiber families in our model.

Vascular tissue can often be modeled as an incompressible material. Specifically when
blood vessels are modeled as membranes as we are doing it herein, this constitutive assump-
tion can easily be implemented by requiring that the out-of-plane component of F always
equals the inverse of the product of the two principle stretches in in-plane direction. Doing
so, the related elasticity problem can be solved by a discretization with two-dimensional
membrane finite elements whose thickness parameter is simply always adjusted such that it
preserves the tissue volume under elastic deformation, see also [30, 31, 38].

Remark 1 Note that herein we neglect for simplicity active smooth muscle tension because
we primarily aim at aortic aneurysms. Unlike cerebral vessels, the aorta is an elastic rather
than a muscular artery so that smooth muscle tension can be assumed to play only a minor
role there compared to passive elasticity.

3.3 Growth and Remodeling

Living tissues are subject to a continuous mass turnover during which extant collagen and
smooth muscle tissue is degraded and new such tissue is deposited. In mathematical models
of growth and remodeling, it is often assumed that deposition and degradation balance in
case the tissue is in a so-called homeostatic state. The exact definition of the homeostatic
state remains controversial. For simplicity most mathematical models define it as a preferred
(homeostatic) stress or strain of the collagen and smooth muscle tissue. Herein, we follow
this approach and assume that no growth and remodeling takes place if the absolute value
of the Cauchy stress o in collagen and smooth muscle fibers equals a preferred value o,.
Deviations from this preferred stress value are assumed to have two consequences.

First, they result in a net mass production, which is assumed to be governed for each
constituent subject to growth and remodeling by the evolution equation

1) = i T 20)
Pol) = Py T o

where k, is a dimensionless gain parameter for mass deposition and T represents the average
life time of fibers during the continuous turnover process of deposition and degradation
in the tissue. It is worth mentioning that the turnover time 7 corresponds to a half-life
time of In(2)7. This simple evolution equation assumes that the production of collagen
and smooth muscle is directly proportional to the amount of extant tissue, which appears
reasonable, because production and degradation are mainly driven by cells, whose number
can be assumed to scale in living tissues under typical conditions roughly linearly with
the amount of tissue. Moreover, (20) assumes that the net mass production scales linearly
with the deviation of the current stress from the homeostatic value, which can always be
considered a straightforward first order approximation of reality, following directly from
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the rational of Taylor expansion around a homeostatic state with zero net mass production.
In a nonlinear continuum mechanical membrane model of incompressible vascular tissue
as assumed herein, net mass production and degradation can directly be included via an
inelastic net change of the membrane thickness by a factor

Ziel lo(i)([)

A () = —————""—,
=T =0

@2y

where the denominator is equal to the constant current mass density p =), pé (t=0).
For reasons discussed in [38], in membrane models of vascular growth and remodeling
Ag(2) is typically assumed to govern the inelastic deformation due to changes of mass of all
constituents alike.

The second result of a deviation between the current and the homeostatic stress in colla-
gen and smooth muscle tissue is remodeling. Remodeling can be understood as a reorgani-
zation of the tissue microstructure, which results in an inelastic deformation of the tissue on
the macroscale, in many respects similar (though not exactly identical [51]) to a viscoelastic
deformation. As discussed in [38], for uniaxial fiber families as used herein to model col-
lagen and smooth muscle this inelastic deformation can be captured by an inelastic part A
of the total fiber stretch A’ along the fiber axis, and the evolution equation for this inelastic
fiber stretch can be shown to be

N O N B S L N El i R
ph Tl [aa " T(@n)

In (22) it is assumed that fibers are aligned in the in-plane direction of the membrane rep-
resenting the vessel wall and that growth, that is, the above A, results in a nonlinear de-
formation only in the referential out-of-plane direction aé so that the in-plane fiber stretch
A=Al can always be multiplicatively decomposed into an inelastic remodeling part A!
and an elastic part ki. With these assumptions (20), (21) and (22) together define the tempo-
ral evolution of the inelastic part of the deformation gradient, which itself can be computed
at each point in time from

) A . : 1 ; i
Fl, = "Xay ®ag +ay©ay+ —=1I —a; ®aj — ay @ ap). (23)

B Vi

The first term on the right-hand side captures the thickening in out-of-plane direction by
net mass deposition and the potential simultaneous transverse contraction that may result in
case of an inelastic fiber remodeling stretch due to the assumption of incompressibility. The
second term captures the inelastic fiber remodeling stretch, and the third term the resulting
in-plane transverse contraction.

The algebraic and differential equations (12) through (23) form a closed system that de-
fines at each point in time and space the deformation of vascular tissue due to growth and
remodeling if the material parameters and the parameters characterizing the vascular geom-
etry are known. Both types of parameters form the set of input parameters to our model of
growth and remodeling. It is the objective of this paper to analyze the sensitivity of the out-
put of our model to variations of these input parameters. Details of this sensitivity analysis
are discussed in the subsequent section.
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collagen fiber cos

collagen fiber co;
elastin matrix e/

collagen fiber coy

collagen fiber co;

Fig.2 Illustration of idealized thin-walled cylindrical model aorta of length L, diameter d and wall thickness
H. The inlay depicts the constituents of the constrained mixture forming the wall and consisting of four
collagen fiber families coy - co4 embedded in an elastin matrix el. The fiber directions are uniquely defined
with respect to the circumferential direction by the angle o'. (image created by Sebastian L. Fuchs and
licensed under the Creative Commons Attribution 4.0 International License, https:/creativecommons.org/
licenses/by/4.0/)

4 Global Sensitivity Analysis of Arterial Growth and Remodeling

In this section, we discuss how the global sensitivity analysis framework from Sect. 2 can
be applied to the homogenized constrained mixture model of growth and remodeling from
Sect. 3. Thereby we focus on a generic, idealized model of the abdominal aorta described in
the following subsection.

4.1 Idealized Model of Abdominal Aorta

Geometry: we study an idealized abdominal aorta represented by a thin-walled cylinder of
diameter d = 2 cm, length L = 18 cm and wall thickness H. Dirichlet boundary conditions
are imposed at both ends of the cylinder mimicking the support of the aorta by surrounding
tissue and branching vessels such as the renal arteries. Our model aorta is subject to an
internal mean blood pressure p = 100 mmHg. The vessel wall is modeled as a constrained
mixture of m = 5 constituents, which are an elastin matrix and four fiber families modeling
the collagen and smooth muscle fibers. Hence, our index set to distinguish between the
different constituents is I = {el, co, co,, cos, cos}, where index el refers to elastin and the
other four indices to the four collagen and smooth muscle fiber families. The referential unit
direction vector a, of these fiber families can be uniquely defined by the angle o between
them and the circumferential direction of the cylinder. We assume that one fiber family
is oriented in circumferential and axial direction, respectively. Moreover, we assume that
there exist two diagonal fiber families forming an angle of +45° with the circumferential
direction. This setting is illustrated in Fig. 2. Note that by variations of the mass densities
assigned to the different fiber families one can resemble at least in the sense of a good
approximation the effect of a great variety of different fiber orientation distributions, which
endows our study with a sufficient generality.

Constituent mass in constrained mixture: the mass of the different constituents in the con-
strained mixture at any point in time is defined by their referential mass density oy (¢). In
our discussion below, it is convenient to express it in a normalized form in terms of a mass
fraction

(1)

- 24
> ier PO(1) @

o't =
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The mass fractions of the different constituents satisfy a partition of unity property. For
simplicity, we assume herein that both the mass fractions of the circumferential and axial
fiber families and the mass fractions of the two diagonal fiber families are equal, respectively.
The partition of the total fiber content between these two sets of fiber families remains,
however, a free parameter. Overall, this reduces the number of free input parameters in the
model and thus the computational cost of a global sensitivity analysis without compromising
too much the generality. We formalize the above assumptions by first introducing the initial
mass fraction of elastin <pf0’ = ¢°/(t = 0). In the following, the index £, shall always refer to
(initial) quantities at + = 0. Next, the initial mass fraction of all four fiber families together
is g =1- (pfol Finally, we introduce the initial fraction of total fiber content attributed
to one diagonal fiber family 8, € [0, 0.5]. In the extreme case of B;, = 0.5 all fiber mass
is initially oriented in diagonal direction. For soft tissue one often assumes as a reasonable
approximation a constant spatial mass density p = 1050 kg/m? of the tissue as a whole.
Under this assumption, the initial referential mass density of elastin is (pf()’p, the one of the
diagonal fiber families take on the value B, (1 — <pf01 )p and the ones of the circumferential and
axial fiber families the value (1 — B,,)(1 — <pf0’ )p. In other words, with respect to referential

mass densities our model has two independent input parameters, which are gafol and B,,.

Initial configuration: we assume that our model aorta is in a homeostatic configuration at
t < 0, that is, no growth and remodeling of the fiber families takes place until = 0 because
the Cauchy stress of all fibers equals the homeostatic value. In our simulations, we establish
such an initial configuration as follows. First, the homeostatic stress o, of the fiber families
is prescribed as an independent input parameter. Second, the balance of linear momentum in
the circumferential direction is used to eliminate the model parameter H, which is uniquely
determined by this balance equation and the other input parameters of our model.

Elastin degradation and prestretch: during adulthood, no deposition of load-bearing elastin
takes place [47]. Rather it is degraded with half-life time of a few decades. Therefore, (20)
does not apply to elastin, but the elastin referential mass density is rather assumed to be
governed by an evolution equation of the type

o8l (1) =1 — D(1)]1p§ (0), (25)

where D(¢) describes a time-dependent damage parameter between zero and one that can
be used to model damage and loss of elastin and that is specified in more detail below. As
elastin is not subject to growth and remodeling according to (20), its elastic prestretch in the
inital (homeostatic) configuration at time ¢ = 0 is not defined by o, so that we have to define
it independently. While there is some evidence that axial and circumferential prestretches of
elastin are different in general [18, 52], their values are typically found to be very similar in
healthy blood vessels (see also [30, 53]). In this study, we thus assume both of them to be
defined by some (in principle independent) model input parameter A ...

The above paragraphs define an initial configuration resembling a healthy blood vessel.
We will use this configuration as a starting point for two case studies of arterial growth and
remodeling.

Case 1: Hypertension. In this example, we study the growth and remodeling response of

our idealized aorta to hypertension, that is, a persistent increase of mean blood pressure p
inside the vessel. For this purpose, we track the radial expansion of the model aorta over a
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period of 15 years. As already in previous work [12, 13], we assume hypertension to arise
in the following way: during the first year, the mean blood pressure increases linearly from
the reference value p to an elevated level of p = 120 mmHg. The pressure remains at this
elevated level for the rest of the simulated time. For simplicity, we do not consider any
damage to the elastin matrix in the context of hypertension, i.e., D(t) =0.

Case 2: Idealized fusiform abdominal aortic aneurysm (AAA). Spontaneous damage to the
elastin matrix has previously been hypothesized to trigger the development of aneurysms
[13, 26, 30, 38, 53]. We adhere to this approach and apply the following damage to the
elastin matrix of the model aorta:

o)
D(t) = H(t)exp —0.5< > . (26)

Ldam

We use a coordinate system whose center coincides with the center of the cylinder repre-
senting our aorta and whose X;-axis is aligned with its rotational symmetry axis. The term
on the right-hand side describes an abrupt, spatially distributed damage to the elastin ma-
trix with spread parameter L,,,,. H (t) denotes the Heaviside function. Typically AAAs are
accompanied with significant reduction in the elastin content of the tissue over time often
until complete depletion [54-57]. Here, we model this degradation process with a simpli-
fied approach by instantly removing the complete elastin content at the center. The geo-
metrical shape of the elastin damage has a large influence on the evolving aneurysm shape
[17, 19, 25]. However, we limit our analysis to L, and fix the shape as defined by (26) in
order to keep the number of overall parameters for the global sensitivity analysis feasible.
Again, we track in our simulations the radial expansion over a period of 15 years. The mean
blood pressure inside the vessel remains constant at the initial value p.

4.2 Sensitivity Analysis Setup
4.2.1 Output

Naturally, the growth and remodeling response of the two cases specified in the previous
section depends on the choice of model parameters. It is our main goal to quantify the
sensitivity of the model output to the model input parameters for both cases. Sobol’s method
for global sensitivity analysis as introduced in Sect. 2 is defined for models with scalar
outputs only. By contrast, the solution of the homogenized constrained mixture model of
Sect. 3 results in a vectorial displacement field. To resolve this mismatch, we define herein
as our model output the maximum current diameter d,,,, of our aorta over time. We define

d(), ifd{)<8cm

8 cm, else 7)

Aypax (t) = {
Here the limit value of d,,, = 8 cm is assumed to represent the diameter where the
aneurysm ruptures. This choice is motivated by statistical data showing that unruptured
AAAs with a diameter larger than 8 cm are extremely rare [58]. Mapping all diameters
greater or equal to 8 cm to the same diameter value of 8 cm is thus reasonable because all
aneurysms with such a large diameter indeed represent the same model outcome, that is, a
ruptured aneurysm. Of course, the rupture criterion applied here is very simplistic. However,
it appears sufficient for the purpose of this paper which does not aim at quantifying the ex-
act moment of rupture for a specific aneurysm but rather the impact of the different model
parameters on growth and remodeling in arteries in general.
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Table 1 Parameters with fixed

values for the model cases of Parameter Value

Sect. 4.1
initial diameter d 2cm
length L 18 cm
mean blood pressure p 100 mmHg
current mass density P 1050 %
collagen fiber angles of 0°, 90°, +45°
hypertension:
mean high blood pressure p 120 mmHg

4.2.2 Known Input Parameters

In our sensitivity analysis, we do not include all the model parameters because some can be
assumed to be known in clinical practice and others can be assumed a priori to play such a
minor role that they need not be included in our study. Indeed, d and L can be measured in
clinical practice by medical imaging, and p and p by standard blood pressure measurements.
On the other hand, the mass density p obviously has nearly no impact as we model arteries
as thin membranes and define their strain energy per unit fiber mass. Finally, also our choice
of & does not significantly determine the model as long as the mass fractions of the different
fiber families are allowed to vary freely. Therefore, we fix all these parameters according to
Table 1 and do not include them in our sensitivity analysis.

4.2.3 Unknown Input Parameters

Fixing some parameters according to Table 1, there remain nine parameters in case 1 (hy-
pertension) and 10 parameters in case 2 (idealized AAA). These are in both cases the home-
ostatic Cauchy fiber stress oy, the turnover time 7', the gain parameter k,, the stiffness pa-
rameters [, k; and k,, the initial mass fraction of elastin gafol, the initial fraction of the fiber
mass attributed to the diagonal fiber families 8;, and the prestretch of elastin A .. (equal in
axial and circumferential direction). In case 2 (idealized AAA), we additionally study the
spatial damage spread L, -

Remark 2 Due to the assumption of an initial homeostatic configuration (see Sect. 4.1) and
the definition of stress (16), the choice of the collagen material parameters ki, k, and the
homeostatic Cauchy fiber stress o;, as independent input parameters implies that the deposi-
tion stretch of collagen becomes a dependent parameter that is varied implicitly with these
three parameters.

These parameters can typically not be measured in clinical practice at the moment and yet
it cannot be excluded that they have a considerable impact on the model output. However,
while patient-specific measurements of these parameters in vivo are not possible, we have
information from various experimental and clinical studies, for example, from mechanical
testing of tissue samples ex vivo. Therefore, we can at least define a reasonable range for
the above parameters within which they can be assumed to vary. In the following, we will
do so for all the above parameters and assume for simplicity (and typically lacking more
specific information) a uniform distribution of the parameters within the defined bounds in
our sensitivity analysis. The derived distributions are summarized in Table 2.
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Table2 Probability distributions of uncertain (free) input parameters as derived in Sect. 4.2.3. All parameters
are assumed to be distributed uniformly within the given bounds. The last column collects the literature
references on which our estimates rely

Parameter Distribution Unit References
elastin:

constitutive parameter " U(40, 80) kJ—g [18, 53, 68, 73,75, 77]
initial volume fraction (pfol U(0.2,0.3) - [53, 59, 60]
prestretch Apre U(1.2,1.4) - [18, 53, 65-68]
spatial spread of damage (case 2) Laam U(0.5,2) cm

collagen:

constitutive parameter k1 U450, 600) kJ_g [30, 53, 68]
constitutive parameter ko U(7,30) - [30, 53, 68]
initial fraction diagonal fibers Bry U(0.0,0.5) -

homeostatic stress op U(125,250) kPa [47, 92, 93]
turnover time T U(25, 140) d [86-89]

gain parameter (case 1) ko U(0.12,0.42) - [12]

gain parameter (case 2) ko U(0.05, 0.150) - [12]

Elasticity and mass fraction of elastin: The elastin content in healthy aortic tissue has been
investigated in several studies [53, 59, 60]. In these studies, consistent values between
0.227 £ 0.057 [59] and 0.224 £ 0.031 [60] have been reported. Based on these findings,
we set the bounds for the initial mass fraction of elastin (pfol to [0.2, 0.3]. Elastin is predom-
inantly deposited during early life [61] and has a very long mean life time of approximately
101y, cf. Table 1, [62]. During normal biological growth, elastin therefore undergoes signif-
icant mechanical deformation which has been hypothesized to result in a considerable level
of prestretch in the healthy aorta [63, 64]. Mean values reported in the literature are between
1.18 and 1.37 [18, 53, 65-68]. We follow these studies and assume that the prestretch of
elastin A, varies in the range [1.2, 1.4]. Physiological ranges of mechanical wall proper-
ties of arterial tissue in health and disease have been studied extensively in the literature
[57, 69-76]. However, the quantitative comparison of material parameters derived from dif-
ferent experimental studies is a challenging task. One reason for this is the fact that often the
experimental data is fitted to different constitutive models. A general method to solve this
problem is beyond the scope of this paper. As a simplistic solution, we tried to relate at least
reported values for closely related constitutive models in a reasonable way to each other.
For example, we made the parameter values from homogeneous models of the arterial wall
comparable to the values reported for constrained mixture models by correcting them by a
factor accounting for the mass fractions of the different constituents that can typically be
assumed (see also [77]). Pooling in such a way the data reported in [18, 53, 68, 73, 75, 77]
- under the assumption of p as in Table 1 and ¢ = 0.25 - we were able to define for the
material parameter u of elastin a range 40-80 ki For the spatial spread parameter L, we
choose 0.5-2 cm to mimic both localized as well as considerably spread elastin damages.

Elasticity and mass fraction of collagen: A quantitative comparison of the material parame-
ters k; and k, for collagen from different sources is even more challenging than for the pa-
rameter u of elastin. For modeling the constitutive behavior of collagen generally includes
also several other structural parameters [78] whose choice may then also affect the values
of k; and k, reported. These other parameters are, for example, the number of fiber families
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(a) (b)

Fig.3 Exemplary simulation result for one sample of case 2 (idealized AAA). (a) shows the reference config-
uration and (b) the deformed configuration with dy;;qx = 4 cm after 15 years. The aneurysmatic dilatation of
the vessel is clearly visible. The reduced computational domain, exploiting the symmetries of the problem, is
depicted in blue

and their orientation or the fiber dispersion. Naturally, structural parameters and material
parameters co-depend nonlinearly rendering approximate conversions, as suggested for the
elastin case above, almost impossible [76]. Therefore, we had to limit our focus on a choice
of papers using very similar constitutive models [30, 53, 68]. From these, we derive the
parameter range 450-600 kj—g for k; and 7-30 for k,. Research concerning the structural pa-
rameters of collagen in arterial tissue, like fiber orientation and dispersion, is a vibrant field
[57, 71, 79-85]. In particular is known that fiber orientation and dispersion may vary con-
siderably in health and disease. To ensure a sufficient scope of our analysis, we thus allowed
the initial fraction of collagen and smooth muscle fibers in the diagonal direction to vary in
the theoretically maximal range, that is, 8;, € [0-0.5].

Growth and remodeling: the half-life time of collagen is in the range of 6070 d for healthy
aortic tissue [86, 87]. It can however change drastically due to a change of mechanical
loading or during disease [86, 88, 89]. Therefore, we consider in our study an extended
range of 25-140 d for the turnover time 7'. Note, that there is a linear dependence between
half-life and turnover time by a factor of In2. The exact nature of the homeostatic state of
soft tissue remains controversial to date [47, 89-91]. Thus only little information is available
about a reasonable range for o;,. The studies of [92] and [93] suggest for the homeostatic
stress of arterial tissue a range of 150-300 kPa. [47] derived a homeostatic stress range of
around 200-300 kPa from theoretical considerations. Motivated by these studies we assume
herein for the collagen and smooth muscle fibers alone a range o;, € [125-250 kPa].

Experimental data on the gain parameter k, is very limited. Based on the concept of
mechanobiological stability, [11, 12] estimated typical values in health and disease. Follow-
ing these considerations, we assume herein for case I (hypertension) k, € [0.12-0.42] and
for case 2 (idealized AAA) k, € [0.05-0.15].

4.3 Implementation and Discretization

The homogenized constrained mixture model for thin-walled (membranous) anisotropic vol-
umetric growth described in Sect. 3 was implemented in our in-house research code BACI
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(written in C++) [94]. An explicit time integration scheme is used to solve the evolution
equations at each time step (see, for example, Appendix 3 of [13]).

We note that the two cases introduced in Sect. 4.1 exhibit both a reflection symmetry
with respect to the cross-sectional plane in the center of the vessel and a rotational symmetry
around the cylinder axis. To reduce the computational cost, we exploited these symmetries.
That is, we simulated only half of the cylinder in axial direction and only a wedge with an
opening angle of 11.25° in circumferential direction. The application of suitable Dirichlet
boundary conditions enforcing the respective symmetries enables this reduction. Figure 3
illustrates the reduced computational domain in comparison with the full domain for one
exemplary simulation of case 2 (idealized AAA). We discretized the computational domain
with 50 standard quadrilateral nonlinear membrane finite elements in axial direction and one
in circumferential direction. Within each finite element, the direction vectors of the fiber
families were assumed to be constant. In all simulations, we used a timestep size of 10 d.

The implementation of the algorithm to compute the Sobol indices according to Sect. 2.1
has been adapted from the open-source project SAlib [95]. The adapted code was included
in the QUEENS code project (written in Python). QUEENS is a general purpose framework
for large scale uncertainty quantification and simulation analytics of complex computational
models [96]. For each sensitivity analysis, we use N = 6000 Monte Carlo samples which
results in a total of 66000 model evaluations for case I (hypertension) and 72000 for case
2 (idealized AAA). These can be split into 12000 independent — drawn from the distribu-
tions defined in Table 2 — plus 54000 or 60000 cross-sampled samples, respectively (cf.,
Appendix).

5 Results
5.1 Probability Distributions of Model Output

Figure 4 shows the probability density functions (PDFs) of the maximum current diameter
dyax for both case 1 (hypertension) and case 2 (idealized AAA) for three points in time illus-
trating their evolution in time. The densities are approximated by kernel density estimation
(KDE) with Epanechnikov kernels based on the 12000 independent samples of each case
study.

In case 1 (hypertension), the increase in mean blood pressure of 20 mmHg generally
leads to minor dilatation of the vessel that largely stabilizes after around 10 years. By con-
trast, the elastin damage in case 2 (idealized AAA) typically entails a substantial dilatation,
which surpasses the dilatation threshold of 3 cm - the clinical criterion for an aneurysm - in
more than 18% of cases. A considerable number of simulated aneurysms does not stabilize
even after a decade but rather keeps enlarging, which in reality typically results in rupture at
some point, if not treated clinically. In total 3.83% of the 72000 simulations performed for
case 2 (idealized AAA) numerically failed within the simulated 15 years. A detailed analysis
revealed that this phenomenon was exclusively linked to buckling close to the clamped ends
of the cylinder. In accordance with the remarks in Sect. 4.1, the missing results of the nu-
merically failed simulations were mapped to d,,,, = 8 cm because in these simulations we
also observed an excessive volume of the aneurysm, which is in practice typically associated
with excessive stresses and thus rupture.

5.2 Sensitivity Analysis

In this section, we present the evolution of the first order and total sensitivity indices of the
maximum current diameter d,,,, for each free input parameter over a period of 15 years.
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Fig. 4 Probability density of the maximum diameter djy,q for different points in time in (a) case I (hyper-
tension) and (b) case 2 (idealized AAA)
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Fig.5 Evolution of first order and total Sobol indices for the maximum current diameter dy; 4 over a period
of 15 years for case 1 (hypertension). For each parameter 15 bars are shown: from left to right, each bar
corresponds to an annual pair of first order (orange) and total (blue) indices, such that the left-most bar
represents the indices after one year and the right-most the ones after 15 years

Case I (hypertension): Fig. 5 shows the evolution of the Sobol indices for the nine free input
parameters. Values of the indices for selected years are collectively shown in Table 3. Only
four parameters have noticeable total indices. These are the turnover time of collagen T,
the gain parameter k,, the initial fraction of total fiber content attributed to each diagonal
fiber family B;, and the collagen material parameter k,. These four parameters can be further
separated where k;, B,,, and ko sustain considerably larger, long-term total indices compared
to T. The total indices of the remaining five parameters are all below 0.01 and many are
practically zero. Therefore, their influence on the variability of d,,,. appears to be negligible
compared to the other four parameters. As explained in Sect. 2.1, these five parameters are
prime candidates for parameter fixation.

The four indices of considerable magnitude change drastically over time. The turnover
time of collagen T influences d,,,, only during the first years. Its total index quickly de-
creases from 0.325 to 0.045 within the first five years. After 10 years, T has become neg-
ligible. With a total index of 0.359, B, is the most influential parameter after the first year.
However, its total index decreases almost exponentially and seems to stabilize at approxi-
mately 0.125 after 15 years. With this value 8, remains the third most influential parameter.
The difference between first order and total indices of B, is very small and increases only
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Table 3 First order and total Sobol indices in case I (hypertension) for selected years. The last row shows
the sum of first order indices erle S;, a measure for the linearity of the model (cf., Sect. 2.1). The amount
of interactions of parameter i is given by SI.T — S;. In each total index column, the four highest values are
highlighted in bold letters

Parameter 1 year 5 year 10 year 15 year
S; st S st S; st S; st

7 0.003 0.006 0.001 0.002 0.001 0.002 0.001 0.001
(pfol 0.003 0.004 0.001 0.001 0.001 0.001 0.001 0.001
Apre 0.005 0.008 0.003 0.006 0.002 0.006 0.002 0.006
ki 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002
ko 0.166 0.189 0.123 0.175 0.115 0.186 0.114 0.197
Bty 0.330 0.359 0.139 0.165 0.108 0.133 0.099 0.125
op 0.000 0.004 0.001 0.006 0.001 0.009 0.001 0.010
T 0.256 0.325 0.013 0.045 0.001 0.009 0.001 0.003
ko 0.140 0.201 0.622 0.716 0.681 0.775 0.688 0.795
sum: 0.904 0.902 0.910 0.906

minimally to a maximum of 0.026 at 15 years indicating that interactions of f,, with other
parameters are minor. The second most influential parameter is the material parameter k.
For k, the total index drops from 0.189 after the first years to a value of 0.175 before it rises
to 0.197 after 15 years again. In the later years, the first order index of k, remains constant
such that the influence of the interaction of k, with the other parameters increases over time.
Figure 5 clearly shows that the gain parameter k, is by far the most influential parameter
except for the first year. From an initial value of 0.201, its total index rises to 0.716 within
5 years. It peaks at 0.795 after 15 years. The evolution of the total index of k, over time
suggests that it converges to a value close to this. With a value of 0.688 for the first order
index of the gain parameter k,, at 15 years, an overwhelming amount of the total variance
of d,q, after 15 years can be explained by the uncertainty in k, alone. From five through 15
years, the interaction terms of k, account for 10% of the output variance which is approxi-
mately equal to the overall amount of interactions (compare to 1 — Y., ;). The majority
of interactions occur between k, and k, alone. Ultimately, this reveals, however, that ko is
the cornerstone of the relevant interactions between all parameters.

The sum of all first order indices is shown in the last row of Table 3. At all times, it is
Yo S > 0.902, which is close to the theoretical limit of 1.0 indicating that the variability
in the model output is dominated by linear terms while interaction between the parameters
seem to play a minor role.

Case 2 (idealized fusiform abdominal aortic aneurysm): in the sensitivity analysis of the
radial expansion of the idealized AAA, we investigated the influence of 10 parameters on the
variability of the model output d,,,,, . Table 4 summarizes the values of Sobol indices for four
selected points in time, namely after one, five, 10, and 15 years. Figure 6 shows the evolution
of the sensitivity indices in time over a period of 15 years evaluated annually. The collagen
material parameter k, turnover time T and gain parameter k,, all have considerably higher
total indices compared to the rest of the parameters. While, some of the less-influential
parameters have non-zero total indices of up to 0.149 (8;,) in the first year, their total indices
decrease over time; in many cases until they are almost zero. Interestingly, most of the less
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Table 4 First order and total Sobol indices in case 2 (idealized AAA) for selected years. The last row shows
the sum of first order indices Z;’zl S;, a measure for the linearity of the model (cf., Sect. 2.1). The amount
of interactions of parameter i is given by SI.T — S;. In each total index column, the four highest values are
highlighted in bold letters

Parameter 1 year 5 year 10 year 15 year
S; st S st S; st S; st
7 0.074 0.098 0.021 0.045 0.006 0.021 0.006 0.016
(pfol 0.047 0.062 0.012 0.027 0.003 0.013 0.004 0.010
Apre 0.052 0.068 0.016 0.033 0.008 0.019 0.008 0.016
ki 0.000 0.001 0.000 0.005 0.000 0.005 0.000 0.005
ko 0.087 0.137 0.087 0.339 0.088 0.375 0.103 0.334
Bty 0.115 0.149 0.035 0.069 0.009 0.031 0.006 0.024
op 0.053 0.066 0.008 0.014 0.002 0.009 0.002 0.008
T 0.360 0.484 0.187 0.617 0.132 0.524 0.117 0.420
ko 0.030 0.062 0.182 0.508 0.221 0.636 0.323 0.693
Liam 0.036 0.058 0.021 0.062 0.010 0.034 0.011 0.029
sum: 0.853 0.568 0.479 0.579
0.8 m ST

sensitivity index
o o o
N ™ o

Fig.6 Evolution of first order and total Sobol indices for the maximum current diameter d;, 4, over a period
of 15 years for case 2 (idealized AAA). For each parameter 15 bars are shown: from left to right, each bar
corresponds to an annual pair of first order (orange) and total (blue) indices, such that the left-most bar
represents the indices after one year and the right-most the ones after 15 years

influential parameters are related to the elasticity of the tissue with the notable exception
of k,. Generally, the sum of first order indices decreases from 0.853 to 0.579 after 15 years
showing that the importance of interactions increases substantially over time.

In the first years, the variability of the model output is dominated by 7 as indicated by
the comparably large total index of 0.484. The total index of T evolves markedly over time.
Overall, it decreases slightly. A minimal value of 0.420 makes 7 the second most influential
parameter at 15 years. By contrast, the first order index of T decreases from 0.360 to 0.117
indicating that T is increasingly involved in higher order interactions. The total index of the
material parameter k; rises over time from 0.137 to a final value of 0.334 at 15 years. Within
2 years, k, becomes and stays the third most influential parameter. However, the first order
index of k, remains almost constant between 0.074—0.102 indicating that a rise of higher
order interactions is responsible for the increase of the total order index. The gain parameter
k, quickly becomes the most influential parameter. Initially, its total index is very small
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(0.062) but it rapidly grows to a maximum value of 0.693 at 15 years. While its first order
index follows this trend, the difference between the two increases considerably over time.
With values between 0.415 at 10 years and 0.370 at 15 years, k, has the highest amount of
interactions in the last five year period. In fact, these values are close to the total interaction
values indicating that k, is involved in nearly all interactions.

Interestingly, interactions seem to occur almost exclusively between the three most influ-
ential parameters (k,, T and k,). Generally, higher order interactions between parameters
play a significant role in explaining output variability, in particular in later years, as indicated
by the large total interaction value 1 — >";_, S; in this period.

5.3 Input-Output Relations

The results of the sensitivity analysis in Sect. 5.2 reveal that in particular in case 2 (idealized
AAA) there remains a substantial fraction of output variability that can only be explained by
interactions between the input parameters. Sensitivity analysis can identify which param-
eters influence the model output but it is beyond its scope to identify how the parameters
influence the model output. In general, such an analysis is a very complex task in particular
when studying the nature of nonlinear interactions between the parameters. In this section,
we use the model evaluations carried out during the sensitivity analysis to partially answer
this question. We do so by studying so-called parallel coordinate plots for case 2 (idealized
AAA) as depicted in Fig. 7.

Remark 3 For an interactive experience of this section, the reader may refer to the elec-
tronic supplementary material. It provides an interactive version of the parallel coordinate
plot discussed in this section in a standalone HTML file. The user can constrain arbitrary
combinations of parameter and output ranges. Additionally the order of coordinates can be
adjusted. The figure was created with the visualization software plotly [98]. Image created
by Sebastian Brandstaeter and licensed under the Creative Commons Attribution 4.0 Inter-
national License, https://creativecommons.org/licenses/by/4.0/.

In Fig. 7a, all 12000 independent samples evaluated are shown together with the cor-
responding model outputs: each line connects the respective parameter values with their
output. The color additionally illustrates the value of the model output. The parameters are
arranged by ascending total index after 15 years from left to right. The objective is to study
whether specific parameter combinations can be identified as mainly responsible for certain
output ranges. From the orange to dark red lines in Fig. 7a, we see that the unifying property
of samples that lead to very large model outputs d,,,, > 6 cm is a combination of relatively
small turnover time 7 < 100 d and most prominently small gain parameter k, < 0.1. At
the same time, very large values of k, > 26 inhibit extreme radial expansions. This is also
highlighted by Fig. 7b which shows all samples that lead to aneurysmatic dilatations with
dyay > 3 cm. Figure 7b shows for example that also large 7 can lead to aneurysms but only
in combination with very small k, and small k,. Albeit not shown here, the same is true for
large values of k, which may lead to aneurysms but only in combination with very small
T and k,. Indeed, these three parameters have the highest total sensitivity indices with the
largest fraction of interactions SiT — S; (see Table 4). The other parameters do not show a
clear trend as indicated by the random arrangement of lines on the left side of Fig. 7a. Al-
though less visible from Fig. 7a, it is truly the interaction between T and k, that leads to
elevated d,,,,. Choosing a small value for only one of these two parameters generally does
not yet produce a large, aneurysmatic dilatation. Figure 7c illustrates this by restricting the
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Fig. 7 Parallel coordinate plot of parameter samples and model output dy,qx after 15 years for case 2 (ide-
alized AAA). Units for the parameters are as defined in Table 2. djqx is given in cm. The colorbar relates
to dmax and applies to all figures. Coordinates are arranged according to increasing total index from left to
right. (a) shows all 12000 independent samples. The smaller figures extract a subset of samples as indicated
by the magenta colored areas; (b) shows all samples that lead to dj;qx > 3 cm, i.e., all samples that can be
classified as aneurysms [97]; (c) shows only samples with k; < 0.075; (d) depicts diax < 3 cm; (e) limits
the samples to Eg >0.12
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Fig. 8 Comparison of the PDFs of the maximum current diameter dp,qx for case 2 (idealized AAA) for
different points in time resulting from varying numbers of uncertain parameters. The dark lines show the
reference solution with all 10 parameters (cf., Fig. 4b). The pale lines show the distributions resulting if all
parameters except the three most influential ones (collagen material parameter k3, turnover time 7 and gain
parameter ko) were fixed at their mean values. The good agreement between the distributions confirms the
results of the sensitivity analysis: a restriction of the uncertainty problem to only the three most influential
input parameters suffices for a good approximation of the output uncertainty

range of k. to k, < 0.075. We find that, on the one hand, small k, can result in almost the
full range of model output, which means that small k, is a necessary condition for large
dyax but not sufficient. On the other hand, large values of k. > 0.12 alone guarantee smaller
radial expansions. Figure 7e shows that d,,,, <3 cm for k, >0.12 irrespective of the other
parameters. The reverse statement is, however, not necessarily true. Figure 7d shows all
samples with d,,.; <3 cm indicating again that also small k, can lead to non-aneurysmatic
dilatations if the other parameter values are favorable. The missing lines between small k,
and small T illustrate again that the combination of these always result in aneurysmatic
radial expansion.

5.4 Validation of Parameter Fixation

As described in Sect. 2.1, the parameter fixation paradigm suggests that parameters with
SiT 2~ (0 can be fixed anywhere within the range studied without significantly affecting the
model output. Thereby, the complexity of the uncertainty quantification problem can be re-
duced substantially. In this section, we compare the PDFs of the maximum current diameter
for case 2 (idealized AAA) resulting from a parameter fixation, with the fully resolved results
as presented in Sect. 5.1. Specifically, we fixed all parameters that were identified with neg-
ligible total indices to the mean value of their respective probability distributions defined in
Table 2. We then evaluated the model for 12000 independent samples from the distributions
of the remaining 3 parameters, that is, collagen material parameter k,, collagen turnover
time T and gain parameter k.. Figure 8 shows the KDE of the resulting distributions of the
maximum current diameter d,,, after 5, 10 and 15 years compared to the fully resolved
ones with 10 uncertain parameters. As predicted by the sensitivity analysis, the distributions
of the reduced uncertainty model are indeed very good approximations of the full model
in particular after 10 and 15 years. The densities depicted in Fig. 8 agree very well. Both
the mean values and the variances are almost identical. Due to the quasi-random nature of
the Sobol sequences used to draw the samples (cf., Appendix), we were able to directly
relate the samples of the full model with the ones from the reduced model. This enabled
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the computation of the mean relative error of d,,,, (t = 15 y) caused by the fixation of the
non-influential parameters at their mean values. This mean relative error was computed as
6.54%. Overall, these results justify the fixation of the 7 non-influential parameters with
small total indices as predicted by the parameter fixation paradigm.

6 Discussion

The choice of our examples allows a systematic interpretation of our results. Both in case
1 (hypertension) and case 2 (idealized AAA), an inelastic deformation by growth and re-
modeling is triggered by some perturbation. However, while in case I our system quickly
converges to a new steady state after an initial period of growth and remodeling, in case 2, a
continued, unbounded enlargement of the vessel is observed in many cases. That is, in case
1, we study a mechanobiologically stable system in the sense of [11, 12], whereas in case 2,
we study a potentially mechanobiologically unstable system.

In both cases, the turnover time 7 determines the time scale of growth and remodeling.
Therefore, it substantially affects the model output in both cases directly after the perturba-
tion when the system is subject to highly dynamic growth and remodeling. In case 2, this
remains so for the whole simulated period at least for mechanobiologically unstable vessels,
which are subject to a continued process of growth and remodeling and which, as a subclass
of the vessels studied in case 2, have a large impact on the overall variance of the model
due to their unbounded enlargement. By contrast, in case [ the influence of T quickly de-
clines over time. Because after a while all the vessel attain a new stable mechanobiological
equilibrium configuration, which depends on k, but only to a minor extent on T. The latter
can be seen from combining Eq. (79) and Eq. (82) in [11]. This reveals that in mechanobio-
logically stable blood vessels the residual deformation, that remains in the long term after a
perturbation, depends only to a relatively small extent on the turnover time 7 (for parameter
values typical for the aorta). In short, T is typically a parameter of high impact on the model
output as long as a blood vessel is subject to an ongoing growth and remodeling dynam-
ics. Therefore, it can be expected to be of particular importance for clinical predictions of
aneurysmal enlargement.

The two only elastic parameters of major importance for the model output in our study
are B, and k,. The former describes the orientation of the collagen fibers in the vessel wall.
In both examples, it was found to be of major importance directly after the perturbation of
the systems. In this very early stage, elastic deformation is still much larger than inelastic
deformation due to growth and remodeling. Therefore, it is not surprising that the orien-
tation of the collagen fibers, which substantially affects the elastic properties of the vessel
wall, has a large impact on the model output. However, the larger the ratio between inelastic
and elastic deformation of the vessel, the less important becomes ;. In case 1, it can al-
ways retain some importance because the overall deformation due to growth and remodeling
remains small. However, in mechanobiologically unstable systems such as the one studied
in case 2, the substantial inelastic deformation due to growth and remodeling soon makes
the impact of B;, negligible. This indicates that 8, is an important parameter for the elastic
deformation of the system but not for its growth and remodeling dynamics. The latter is af-
fected only by one elastic parameter, k,, which determines the strain-stiffening of the tissue.
Large k, are associated with substantial strain-stiffening, which apparently can effectively
reduce the inelastic deformation due to growth and remodeling.

Both in the early and late stage of case I and case 2, k, plays a dominant role. Again, this
is coherent with the theory of mechanobiological stability [11, 12], which reveals that this
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parameter has not only a major impact on the rates of inelastic deformation during growth
and remodeling but also on the steady state itself that is reached in mechanobiologically
stable systems in the long term.

7 Conclusions

We presented a variance-based global sensitivity analysis for the homogenized constrained
mixture model of arterial growth and remodeling in two case studies. In case 1 (hyper-
tension), we investigated the adaptation of an idealized vessel to an elevated mean blood
pressure level. In case 2 (idealized AAA), we considered radial expansion of an idealized
vessel induced by spontaneous damage to the elastin component. For each case, we stud-
ied how the uncertainty in the model input parameters contributes to the uncertainty in the
chosen model output, that is, the maximum current diameter of the vessel.

A striking difference between case I and case 2 is the fact that in the latter, interactions
between the parameters were observed to play a much larger role. This underlines the ne-
cessity for global sensitivity analysis and suggests that previous simple parameter studies
where only one parameter at a time was varied [30, 33, 53] could reveal in principle only a
limited part of the parameter sensitivities.

As discussed in Sect. 6, the results of our simulations can be interpreted in a systematic
way. In the cases studied herein, only three model parameters were found to have a major
impact on the inelastic deformation of the blood vessel due to growth and remodeling. These
parameters were ko, T and k. While k, can be identified with the ability of the tissue to
increase collagen production as stress in the vessel wall increases, T is the average life time
of collagen fibers, directly linked to their half-life time. The elastic parameter k, describes
the strain stiffening of the collagen tissue.

Our results may have important implications both for future computational studies and
for the directions that appear promising in clinical research.

For future computational studies of growth and remodeling, they mean that it can be
acceptable to fix many of the parameters to values close to the population mean reported by
the literature without bothering about case- or patient-specific values. This can substantially
simplify the design of future computational studies and save resources in parameter studies.

It remains an important goal of clinical research to predict which enlargement can be
expected for specific aneurysms. Our global sensitivity analysis clearly suggests that signif-
icant progress could be made if ways are found to measure or at least estimate the ability of
the vascular tissue to produce collagen and ideally also the collagen half-life time. At the mo-
ment there are no clinical imaging protocols available to measure both. Our study suggests
that developing such protocols, for example on the basis of functional magnetic resonance
tomography, might be one of the most effective steps that could be taken to improve our
ability to predict the future enlargement of aneurysms. Additionally, model predictive capa-
bilities might be enhanced by improving the measurement of collagen material properties
under large deformation, which, however, may be non-trivial in a non-invasive manner.

While this seems to indicate a promising direction of future research, also some limita-
tions of the presented study should be mentioned. First, only scalar output quantities can
be investigated with the variance-based method chosen herein. Hence, we focused on the
maximal diameter as the single output quantity of interest. However, input parameters that
have little effect on one output quantity might be very important for another one. To over-
come this limitation of our study one may combine in the future multiple scalar outputs
as suggested in [44] or use more sophisticated methods as suggested in [99-101]. Next, it
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is important to underline that our study is based on simplified physical model assumptions
neglecting the influence of blood flow and associated wall shear stresses. For larger, elas-
tic arteries such as the aorta considered herein, also several other groups have apparently
considered this simplification acceptable [6, 19, 30, 53, 67]. However, at least for smaller
arteries such as cerebral arteries blood flow and wall shear stress are frequently discussed as
key quantities [5, 24, 102, 103]. In the future, more detailed work should therefore aim at in-
cluding also such effects. It should also be noted that in clinical practice many larger AAAs
contain intraluminal thrombi, which were not considered herein. Their effect on aneurysmal
expansion is, however, often not thought to be primarily a mechanical one [104—-106] but
rather a biochemical one [21, 29, 56]. That is, it should translate into changes of the pa-
rameter T and k,, in our model and is thus at least implicitly covered by this study to some
extent. Nevertheless, an extended sensitivity analysis on the basis of a model including the
intraluminal thrombus explicitly would be required to make strong statements about its role.

Finally, we note that, as is the nature of global sensitivity analysis, our study focused
on but one computational model of vascular growth and remodeling, the homogenized con-
strained mixture model. Therefore, additional research is needed to corroborate the results
of our study and to ensure that the conclusions drawn here are not artifacts of a specific
model but are in fact revealing important aspects of the real physiology.

Appendix: Algorithm for the Computation of First and Total Order
Indices

The computation of an estimate for the first order and total order Sobol indices can be carried
out by the following algorithm which is similar to the one presented in [44]:

1. Generate two sampling matrices A and B which each have dimension N x n such that
each row in A and B corresponds to a realization of x:

aj a al b| b} b}
A= , B= . (28)
al al al b bY by

In other words, the aij and bij are independently drawn samples from U(0, 1). In prac-
tice, instead of using pseudo-random numbers one uses quasi-random samples from low-
discrepancy sequences such as the Sobol sequence for improved performance [107-109].
In the following, we denote the j-th row of A and B by a; and b;, respectively.

2. Based on A and B compute n cross-sampling matrices Ag) in the following manner:
every column of Ag) is from A except for the i-th column which is replaced by the i-th
column of B,

all .. bi1 .. oal
Al = : . (29)
al ... BN ... al

3. Evaluate the model y(x) at every row of the (n +2) matrices {A, B, A(Bl), Ag), e A%’)}.
This results in a total of N,o; = N (n + 2) model evaluations. In the following, we denote
by y(A) a vector whose j-th component is y(a;), that is y evaluated at the j-th row

@ Springer



216 S.Brandstaeter et al.

of A. Likewise, we define the vectors y(B) and y(Ag)). Note that keeping the ordering
between the sampling matrices and the result vectors is essential. For ease of notation,
we introduce the vector y(C) € R*" denoting the concatenated vectors of y(A), y(B),

that is
y(C) = [ ;g;};] . (30)

4. Based on the above model evaluations the following estimators for the first-order and
total-order sensitivity indices can be computed:

I @), (yag), - @)

i (€2))
Velyl
and
LN ) :
T (v - va)
ST~ , (32)
Velyl
where the total variance of y is estimated with
2
L Ll
VeI~ Velyl = o ;y@,y(a,- o b ;yw)j : (33)
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