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Zusammenfassung

Diese Dissertation widmet sich der Schätzung der Wahrscheinlichkeit von seltenen
Ereignissen.
Wir präsentieren zwei neue Sampling-basierte Methoden, die eine effiziente Schät-

zung von Wahrscheinlichkeiten seltener Ereignisse ermöglichen. Die erste Methode
ist ein Mehrgitterverfahren, welches eine Hierarchie von Diskretisierungsebenen
verwendet. Diese Diskretisierungsebenen werden in einer adaptiven Weise kombiniert,
um die Anzahl an Modellauswertungen auf einem feinen, rechenintensiven Gitter
zu verringern. Die zweite Methode baut auf dem Ensemble Kalman Filter auf, der
ursprünglich für Datenassimilationsprobleme entwickelt wurde. Hierfür formulieren
wir das Problem der seltenen Ereignisse als ein inverses Problem und wenden den
Ensemble Kalman Filter an, um Samples des seltenen Ereignis zu erzeugen. Neben
der Beschreibung des Algorithmus untersuchen wir Eigenschaften des Partikelflusses
des Ensemble Kalman Filters.
Ein weiterer Teil dieser Dissertation ist die Analyse des Approximationsfehlers

der Wahrscheinlichkeit seltener Ereignisse. Dabei untersuchen wir den Approximati-
onsfehler, der von der diskretisierten Lösung einer elliptischen Differentialgleichung
stammt. Wir leiten eine obere Schranke des absoluten Fehlers her, welche sich verhält
wie der Diskretisierungsfehler des zugrundeliegenden Modells multipliziert mit einer
Approximation der Wahrscheinlichkeit des seltenen Ereignis.

Abstract

This dissertation is devoted to the estimation of the probability of rare events.
We present two novel sampling-based methods, which enable an efficient estimation

of rare event probabilities. The first method is a multilevel algorithm, which employs
a hierarchy of discretization levels. These discretization levels are combined in an
adaptive way to decrease the number of high-level computationally intensive model
evaluations. The second method builds on the ensemble Kalman filter, which has
been originally developed for data assimilation problems. Thereby, we reformulate
the rare event problem as an inverse problem and apply the ensemble Kalman filter
to generate samples of the rare event. In addition to describing the algorithm, we
investigate properties of the particle flow of the ensemble Kalman filter.
Another part of this dissertation is the analysis of the approximation error of the

probability of rare events. Therein, we study the approximation error that stems from
the discretized solution of an elliptic diffusion equation. We derive an upper bound
of the absolute error, which behaves as the discretization error of the underlying
model multiplied by an approximation of the rare event probability.
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1. Introduction

In many applications, the reliability of an engineering system is of high importance.
Failure of the system can have high societal consequences, including financial losses
and loss of life. Therefore, the determination of the probability that failure occurs is
of high relevance. For instance, in choosing the geographic position of a radioactive
waste disposal [23, 89], the porosity of the soil has a decisive influence. A potential
risk of the disposal is the outflow of radioactive particles and the pollution of
groundwater. Since the porosity of the soil is at best only available on a finite number
of measurement points, the hydraulic conductivity is modelled as a random field.
Therefore, numerical simulation and sampling methods are combined to determine
the probability of failure. However, as the simulation of the flow of the radioactive
particles requires the numerical solution of a partial differential equation (PDE),
smart algorithms have to be chosen to obtain a computationally tractable estimate
of the probability of failure. Further occurrences of rare events are examined in
settings such as structural reliability [72, 84, 97, 99], financial risk [2], aerospace [86],
and in steam generator tubing [22]. In this dissertation, we investigate two novel
sampling-based methods and study the approximation error of the probability of
failure, which is introduced by the numerical simulation method.
Formally, failure and safe events are distinguished by a so-called limit-state function

(LSF). It is common to define states which lead to negative LSF outcomes as failure
states, while safe states yield positive outcomes. The collection of all failure states is
defined as the failure domain and the probability mass of the failure domain is the
probability of failure. Indeed, the denomination probability of rare events is another
commonly used term, which implies that failure occurs very infrequently.
In the following, we give an overview of existing methods and we categorize

our novel approaches. We begin with deterministic approximation methods, which
are based on an approximation of the failure domain and do not require sampling
approaches. In the first order reliability method (FORM) [28, 52], the LSF is
linearized at the most likely failure point (MLFP) and the FORM estimate is equal
to the probability mass of the failure domain with respect to the linearized LSF.
Similarly, the second order reliability method (SORM) [28, 81] approximates the LSF
at the MLFP by a second order Taylor expansion.
Besides deterministic approximation methods, there are sampling-based methods.

Monte Carlo Sampling (MCS) [41, 61, 105] can be easily applied to estimate the
probability of failure. The MCS estimate is equal to the portion of failure samples
with respect to the total number of samples. MCS gives an unbiased estimator, but
a large number of samples is required to obtain an estimator with a small coefficient
of variation if the failure probability is small. Thus, MCS is usually infeasible if the
LSF consists of a computationally expensive model evaluation. Starting from MCS,
several variance reduction techniques have been developed to increase efficiency. In
Importance Sampling (IS) [1, 105], samples are drawn from a certain IS density and
are reweighted to estimate the probability of failure. The IS density should admit
large values in the failure domain to increase the number of failure samples. The
best possible choice, the so-called optimal IS density, is in general not available [94].
Therefore, sequential approaches have been developed to approximate the optimal
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IS density by a sequence of certain IS densities. In Subset Simulation (SuS) [4, 6, 8,
122], these densities have compact support and satisfy the nestedness property, i.e.,
their supports are nested and determine a sequence of more probable failure events.
Similar to SuS, Sequential Monte Carlo (SMC) [18], Moving Particle [121], and
generalized splitting methods [12, 48] have been developed, which also approximate
the failure domain by a sequence of more probable failure events. In Sequential
Importance Sampling (SIS) [94], the support of all IS densities is the whole parametric
space, which induces nestedness automatically. The densities are approximated by
samples which are sequentially updated by a Markov chain Monte Carlo (MCMC)
algorithm [24, 92, 103]. In cross-entropy-based IS [45, 93], the sequence of densities
is determined by minimizing the Kullback–Leibler divergence within a parametric
family of densities. In Line Sampling [3, 67, 98], the probability of failure is estimated
by samples which are distributed on the line perpendicular to the failure surface.
In this dissertation, we extend the collection of sampling-based methods by the
ensemble Kalman filter (EnKF) [120].

For part of the above methods, multilevel or multifidelity approaches have been
developed to further improve the efficiency. Therein, sample evaluations from
low accuracy models are combined with sample evaluations from high accuracy
models to estimate an expectation with respect to the highest accuracy model. This
yields computational benefits since evaluations of low accuracy models are usually
less cost intensive. Applying the multilevel idea leads to Multilevel Monte Carlo
(MLMC) [36, 47], Multilevel Subset Simulation (MLSuS) [114], Multilevel Sequential
Monte Carlo [10, 27], and multifidelity cross entropy based IS [95]. In this dissertation,
we extend the collection of multilevel methods by Multilevel Sequential Importance
Sampling (MLSIS) [119].

Another way to improve the efficiency is the application of surrogate models.
Recently, tools from Machine Learning [49, 87] are widely used to construct surrogate
models in various fields. For instance, in [76] a hierarchy of neural network approx-
imations is employed. In [91], SuS is combined with a Neural Network, while [59,
75] employs the polynomial chaos expansion as a surrogate model. Alternatives are
response surface approaches [16, 96] and active learning approaches that are based
on Gaussian process regression [35, 108] or polynomial chaos expansion [82]. We
note that surrogate models are not considered further in this dissertation.
If the evaluation of the LSF requires the solution of a PDE, the exact LSF is

in general not available. The LSF approximation involves a discretization scheme,
such as Finite Differences [50, 73], Finite Volumes [40, 74] or Finite Elements (FEs)
[14, 15, 21]. However, these discretization schemes introduce a PDE discretization
error in the evaluation of the LSF, which leads to an erroneous probability of failure
estimate. The authors of [36] derive an upper bound of the absolute approximation
error of the probability of failure, which behaves as the PDE discretization error.
In this dissertation, we derive, under certain assumptions, a novel upper bound for
the absolute error, which behaves as the PDE discretization error multiplied by the
FORM estimate [118]. Moreover, we derive an upper bound for the relative error
of the FORM estimate. These bounds can be used to construct efficient multilevel
methods as in [36].
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1.1. Summary of results

This dissertation contains three articles, which deal with the estimation of rare event
probabilities. Article I and III propose novel sampling-based methods to estimate the
probability of rare events, while Article II performs an error analysis. In more detail,
Article I develops a multilevel strategy for SIS [94], which is based on Multilevel
Sequential2 Monte Carlo (MLS2MC) given in [70]. In Article II, we perform an error
analysis for the approximation error of the probability of rare events, which is induced
by the PDE discretization error. In Article III, we apply the EnKF to estimate the
probability of rare events and derive theoretical properties of the particle flow of the
EnKF particles.

Core articles as principal author

� Article I [119] in Appendix A:
Multilevel sequential importance sampling for rare event estimation
In this article, we propose a novel multilevel method to estimate the probability
of rare events. Our method is based on SIS [94] and requires an approximating
sequence of the LSF with increasing accuracy. We approximate the optimal IS
density with a twofold adaptive algorithm. On the one hand, we sequentially
enhance the approximation of the indicator function, which is contained in
the optimal IS density. On the other hand, we increase the discretization
level, which gives a better approximation of the LSF. We apply the scheme of
[70] to combine both sequential approaches in a computational cost-efficient
way. The samples are sequentially updated by an MCMC algorithm such that
the samples are distributed according to the desired target densities. For the
MCMC algorithm, we consider adaptive conditional sampling (aCS) [92] and
sampling from the von Mises–Fisher–Nakagami (vMFN) distribution model [93],
which are applicable even in high-dimensional parameter settings. Indeed, the
application of the vMFN distribution model as an independent proposal density
in the MCMC step is another contribution of this article. In contrast to MLSuS,
MLSIS does not have the nestedness issue, since the support of the IS densities
is the whole parametric domain. Indeed, the nestedness issue of MLSuS is the
main motivation to implement MLSIS. In numerical experiments, we compare
the performance of MLSIS with SIS, SuS and MLSuS.

� Article II [118] in Appendix B:
Error analysis for probabilities of rare events with approximate models
In this article, we study the PDE approximation error of the probability of
failure estimate. We assume that the evaluation of the LSF requires the
solution of an elliptic PDE with a stochastic diffusion coefficient. Since the
exact solution of the PDE is in general not available, it is approximated by
an FE approximation. The mesh size of the FEs determines the accuracy of
the approximation. A fine resolution of the mesh yields an accurate PDE
approximation and, thus, an accurate approximation of the probability of
failure. It is well known that the PDE discretization error has a certain
convergence order with respect to the mesh size. In this article, we prove that,
under certain assumptions, the induced approximation error of the probability
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of failure behaves as the PDE discretization error multiplied by the FORM
estimate. One of these assumptions is the convexity of the failure domains. For
general failure domains, we prove that the relative error of the FORM estimate
behaves as the PDE discretization error. Moreover, if the LSF is affine linear,
we prove that the relative error of the probability of failure estimate behaves
as the PDE discretization error.
Our provided error bounds require that the stochastic diffusion coefficient
is uniformly elliptic and bounded. We conjecture and observe in numerical
experiments that similar error bounds hold for diffusion coefficients which are
only pathwise elliptic and bounded.

Further articles as principal author

� Article III [120] in Appendix C:
The ensemble Kalman filter for rare event estimation
In this article, we reformulate the rare event problem as an inverse problem
and apply the EnKF for inverse problems [57, 106]. With this reformulation,
the EnKF generates samples which are contained in the failure domain or
in proximity to the failure domain. Since the EnKF generates approximate
samples from a so-called analysis variable [37], the distribution of the EnKF
particles is in general unknown. Therefore, we fit a distribution model with the
generated EnKF particles and apply IS with respect to the fitted parametric
density to estimate the probability of failure. Moreover, we apply the adaptive
approach of SIS to determine the tempering parameters in the EnKF, which
yields a more efficient algorithm [58]. To handle multi-modal failure domains,
we combine a clustering approach with the localized covariance approach
of [102].
In addition, we derive theoretical properties of the EnKF in the rare event
estimation context. We derive the continuous-time limit of the EnKF update,
which results in a coupled system of stochastic differential equations (SDEs).
If the LSF is affine linear, we prove for the continuous-time limit, infinite
ensemble, and infinite time limit that the mean of the EnKF particles converges
to a convex combination of the MLFP and the mean of the optimal IS density.
In numerical experiments, we show that the EnKF yields the same level of
accuracy as SIS. In the case where the failure domain is unimodal, the EnKF
requires less computational costs than SIS for a fixed level of accuracy.

1.2. Outline of this dissertation

This dissertation continues with the problem setting of estimating the probability of
failure in Chapter 2. In addition, we recap some of the sampling-based methods and
their multilevel algorithms, as well as the FORM estimate. Chapter 3 discusses the
model problems which are considered in the numerical experiments of the contributed
articles. In Chapter 4, we discuss the MLSIS algorithm, which is based on Article I.
Chapter 5 presents the analysis results of Article II with respect to the induced
approximation error of the probability of failure. Chapter 6 presents the EnKF for
rare event estimation given in Article III. In Chapter 7, we give a brief conclusion
and outlook. Article I, II, and III are given in Appendix A, B, and C, respectively.
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2. The probability of rare events

We start by defining the probability of failure in a formal way and discuss its
computational challenges. Moreover, we discuss existing methods which form the
basis of our contributions in the contributed articles.

2.1. Problem setting

We consider a probability space (Ω,A,P). As mentioned in the introduction, failure
is determined by the outcome of a limit-state function G : Rn → R. The LSF
depends on a parameter u ∈ Rn, which is the realisation of an n-variate random
vector U : Ω→ Rn. Failure is defined as the event G(U(ω)) ≤ 0, while G(U(ω)) > 0
is the safe event. We assume that U is distributed according to the n-variate standard
normal distribution N(0, Idn), where Idn ∈ Rn×n denotes the identity matrix. The
probability density function (PDF) of U is denoted by φn : Rn → [0,∞[.

Remark 2.1. We require the Gaussian assumption in the proofs of Article II
and III. In addition, the Gaussian assumption yields computational advantages in
the implementations of the MCMC algorithm. Indeed, adaptive conditional sampling
requires that U is Gaussian distributed [92]. However, we note that the Gaussian
assumption is not very restrictive. Under mild assumptions, a non-Gaussian random
vector Ũ can be transformed to a Gaussian random variable U . The Nataf transform
[30] can be applied if Ũ can be modelled by a Gaussian copula. A second transform is
the Rosenblatt transform [56], which can be applied if the conditional distributions of

Ũi+1 given Ũ1, . . . , Ũi are known for i = 1, . . . , n− 1, where Ũi denotes the ith entry

of Ũ .

The probability of failure is determined by integrating the PDF φn over all failure
states. Formally, the probability of failure is denoted by Pf and is defined by

Pf :=P({ω ∈ Ω : G(U(ω)) ≤ 0})

=

∫

u∈Rn
I(G(u) ≤ 0)φn(u)du = Eφn

[I(G(U) ≤ 0)], (2.1)

where I is the indicator function with outcomes I(true) = 1 and I(false) = 0. The
expression Eφn

[·] denotes the expectation assuming that U is distributed according
to φn. The collection of all failure states is called the failure domain and is denoted
by A := {u ∈ Rn : G(u) ≤ 0}. The boundary ∂A := {u ∈ Rn : G(u) = 0} is called
the limit-state surface and the complement AC := {u ∈ Rn : G(u) > 0} is the safe
domain.

We consider two computational challenges which occur in rare event estimation.
First, it is a priori unknown which parameter values belong to the failure domain.
Hence, the failure domain has to be determined or approximated to evaluate the
integral in (2.1). Secondly, the evaluation of G might be cost intensive or even not
feasible, since only an approximation Gh is available, where h > 0 is a discretization
parameter. In this case, the approximate probability of failure Pf,h is defined by

Pf,h := P({ω ∈ Ω : Gh(U(ω)) ≤ 0}) = Eφn
[I(Gh(U) ≤ 0)],
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and the approximate failure domain is denoted by Ah := {u ∈ Rn : Gh(u) ≤ 0}. For
instance, if the evaluation of G requires the solution of a PDE, an approximation Gh

can be obtained by FEs, where h is the FE mesh size. If a small FE mesh size is
employed, the evaluation of Gh is accurate but cost demanding.
In this dissertation, we perform an error analysis in Article II of the error |Pf−Pf,h|

if an approximation Gh is given. Moreover, we propose two novel sampling-based
methods to estimate the probability of failure Pf accurately and efficient. The first
method is the MLSIS estimator of Article I, which is a novel multilevel method. The
second approach is the EnKF algorithm of Article III, which is a novel single level
variance reduction technique for rare event estimation. Before we consider our novel
approaches, we recap the relevant methods which form the basis of our approaches.

2.2. Sampling-based methods

We give a brief introduction to Monte Carlo Sampling, Importance Sampling, Se-
quential Importance Sampling, and Subset Simulation as well as to the multilevel
algorithms Multilevel Monte Carlo and Multilevel Subset Simulation. As seen in the
introduction, there are more sampling-based methods. However, these approaches
are not discussed in detail as they are not relevant for our novel approaches. Since
SIS, MLSIS, SuS, and MLSuS require a Markov Chain Monte Carlo algorithm, we
will also introduce the Metropolis–Hastings sampler of [53, 85].

2.2.1. Single level methods

We note that the following estimators are defined with respect to the exact LSF G.
By substituting G with Gh, the estimators for the approximate probability of failure
Pf,h are obtained.

Monte Carlo Sampling

An easy implementable and unbiased estimator is obtained by crude Monte Carlo
Sampling [41, 61, 105]. Using J ∈ N samples {u(j)}Jj=1, which are independently
distributed according to φn, the MCS estimator of the expectation in (2.1) is

P̂MCS
f :=

1

J

J∑

j=1

I(G(u(j)) ≤ 0).

By [105, Example 4.1], the coefficient of variation δ
P̂

MCS
f

of the MCS estimator is

given by

δ
P̂

MCS
f

:=
StD[P̂MCS

f ]

E[P̂MCS
f ]

=

√
1− Pf

PfJ
, (2.2)

where StD denotes the standard deviation. We note that the coefficient of variation
is also a measure for the relative error of the MCS estimator [105]. From (2.2), it
follows that a large number of samples is required to achieve a small coefficient of
variation when Pf is small. This makes MCS infeasible if the evaluation of G is

6



cost demanding. Indeed, the MCS estimator forms a starting point and points to
the main idea of sampling-based methods. The goal of these methods is to reduce
the variance of MCS. Hence, they are termed variance reduction techniques. They
achieve this through generating samples which are in the failure domain or, at
least, in its proximity. We emphasize that the generation of failure samples is the
main motivation of sampling-based methods to achieve an efficient estimator of the
probability of failure. The following algorithms differ in the way failure samples are
generated.

Importance Sampling

The disadvantage of crude MCS is that only a small fraction of the samples is
contained in the failure domain and, thus, computational costs are wasted for many
non-failure samples. In Importance Sampling [1, 105], we assume that a certain
IS density pIS : Rn → [0,∞[ is available, which admits larger values in the failure
domain than φn. Thus, the integral in (2.1) is expressed in terms of the IS density
pIS, which gives

Pf =

∫

u∈Rn
I(G(u) ≤ 0)w(u)pIS(u)du = E

p
IS [I(G(U) ≤ 0)w(U)], (2.3)

where w(u) := φn(u)/p
IS(u) denotes the importance weight. Again, MCS is applied

to the expectation in (2.3), which yields the IS estimator

P̂ IS
f :=

1

J

J∑

j=1

I(G(u(j)) ≤ 0)w(u(j)),

where the samples {u(j)}Jj=1 are independently distributed according to the IS density

pIS. The choice of pIS is crucial and influences the efficiency of the IS estimator. If
the support of pIS contains the failure domain A, P̂ IS

f is an unbiased estimator for
the probability of failure. By [94], the optimal importance sampling density popt is
given by

popt(u) :=
1

Pf

I(G(u) ≤ 0)φn(u). (2.4)

Indeed, popt leads to a zero-variance estimator and one sample of popt is sufficient to
estimate Pf exactly. However, as Pf and the failure domain are a priori inaccessible,
popt is not applicable. A feasible choice for the IS density is discussed in [5], where
the authors propose to apply the input distribution centred at the MLFP. Alterna-
tively, the authors of [34] employ a surrogate model as an approximation to the LSF
to approximate the optimal IS density. In this dissertation, we consider SIS as a
sequential approach to derive an approximation of the optimal IS density.

Sequential Importance Sampling

In Sequential Importance Sampling [94], the optimal IS density popt is succesively
approximated by a sequence of IS densities. This sequence is determined by an
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approximation of the indicator function in (2.4). We denote by Φ : R→ [0, 1] the
cumulative distribution function (CDF) of the univariate standard normal distribution.
The CDF approximates the indicator function by

I(G(u) ≤ 0) = lim
σ↓0

Φ

(
−G(u)

σ

)
, for G(u) ̸= 0.

A visualization of this approximation is given in Figure 1 of Article I. Alternative
to the Gaussian CDF, the authors of [115] employ the standard logistic function to
approximate the indicator function and to determine a parametric family of densities
in cross-entropy-based IS. In Article III and in Chapter 6, we will see a novel smooth
approximation of the indicator function, which arises in the application of the EnKF
to rare event estimation.
To define a smooth transition to the optimal IS density, we denote by {σk}NT

k=0 a
finite sequence of temperatures, which satisfies ∞ = σ0 > σ1 > · · · > σNT

> 0. The
number NT determines the number of temperatures and the number of IS densities.
The sequence of IS densities is defined by

pSIS0 (u) := φn(u), (2.5)

pSISk (u) :=
1

P SIS
k

Φ

(
−G(u)

σk

)
φn(u), for k = 1, . . . , NT ,

where P SIS
k are normalizing constants, which are not directly available. However, this

yields no problem for SIS as we see in the following. To determine the SIS estimator
for the probability of failure, we use the fact that Pf can be expressed by

Pf = P SIS
0

P SIS
1

P SIS
0

P SIS
2

P SIS
1

. . .
P SIS
NT

P SIS
NT−1

Pf

P SIS
NT

, (2.6)

where P SIS
0 = 1 follows from (2.5). As shown in [26, 94], the fraction Sk := P SIS

k /P SIS
k−1

can be estimated by IS. It holds that

P SIS
k =

∫

u∈Rn
Φ (−G(u)/σk)φn(u)du = P SIS

k−1

∫

u∈Rn

Φ (−G(u)/σk)
Φ (−G(u)/σk−1)

pSISk−1(u)du

= P SIS
k−1

∫

u∈Rn
wk(u)p

SIS
k−1(u)du, (2.7)

where wk are the importance weights, which are proportional to the ratios of two
subsequent densities

w1(u) = Φ(−G(u)/σ1), wk(u) =
Φ (−G(u)/σk)
Φ (−G(u)/σk−1)

, for k > 1. (2.8)

From (2.7), it follows that the ratio of two subsequent normalizing constants is given
by Sk = E

p
SIS
k−1

[wk(U)]. This expectation is estimated by a sample mean similar to the

expectations in (2.1) and (2.3). Using J samples {u(j)k−1}Jj=1, which are distributed

according to pSISk−1, we obtain the estimator

Ŝk :=
1

J

J∑

j=1

wk(u
(j)
k−1). (2.9)
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The final factor Pf/P
SIS
NT

in (2.6) is determined by the importance weight of the

optimal IS density popt with respect to the density pSISNT
, which gives the estimator

P̂f

P SIS
NT

:=
1

J

J∑

j=1

I(G(u
(j)
NT

) ≤ 0)

Φ(−G(u(j)NT
)/σNT

)
, (2.10)

where the samples {u(j)NT
}Jj=1 are distributed according to pSISNT

. Multiplying the
estimators in (2.9) and (2.10) yields the SIS estimator of the probability of failure

P̂ SIS
f :=

P̂f

P SIS
NT

NT∏

k=1

Ŝk.

Having derived the SIS estimator, we discuss now the adaptive procedure of determin-
ing the temperatures σk. We choose these temperatures in a way that two consecutive
densities pSISk−1 and pSISk are not too different. This discrepancy is measured in terms
of the coefficient of variation of the importance weights wk in (2.8). With the user
specified target coefficient of variation δtarget > 0, we determine σk adaptively by

σk = argmin
σ∈(0,σk−1)

(
δwk
− δtarget

)2
, where δwk

:=
StD

p
SIS
k−1

[wk(U)]

E
p
SIS
k−1

[wk(U)]
.

Requiring that the coefficient of variation is equal to δtarget is equivalent to requiring
that the effective sample size is equal to a target value [70, Section 3.4]. Tempering
is finished, if the discrepancy between the current density pSISk and the optimal IS
density popt is small. Again, the discrepancy is measured in terms of the coefficient
of variation of the weights

wopt,k(u) :=
I(G(u) ≤ 0)

Φ(−G(u)/σk)
.

If δwopt,k
≤ δtarget, the final tempering level k = NT is reached. We note that δwopt,k

has to be estimated in each tempering step using the samples {u(j)k }Jj=1. If δtarget
is small, a large number of tempering updates is performed and the coefficient of
variation of the SIS estimator is small.

It is crucial that the samples in (2.9) are distributed according to the density pSISk−1.
In each tempering update, we apply a resample-move scheme to update the samples
{u(j)k−1}Jj=1, which are distributed approximately according to the density pSISk−1, to

samples {u(j)k }Jj=1, which are distributed approximately according to the density

pSISk . The resampling is performed based on the weights wk in (2.8) and the samples

are moved by an MCMC algorithm. The initial samples {u(j)0 }Jj=1 are distributed
according to the standard normal density φn. We note that due to the adaptive

choice of σk, the samples {u(j)k }Jj=1 are only distributed approximately according to

pSISk and the SIS estimator is biased [9].
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Subset Simulation

Subset Simulation [4, 6] is commonly not described as a technique to approximate
the optimal IS density. However, we explain SuS in this way to display similarities
and differences to SIS as in [94, Section 2.6]. In SuS, the optimal IS density
is approximated by a sequence of densities which have compact supports. These
densities are defined as the optimal IS densities with respect to a more probable failure
criterion. Therefore, the failure event {G(U(ω)) ≤ 0} is sequentially approximated
by the event {G(U(ω)) ≤ ck}, where ∞ = c0 > c1 > · · · > cNT

= 0. The sequence

{ck}NT
k=1 is adaptively chosen such that the sequence of domains Bk := {ω ∈ Ω :

G(U(ω)) ≤ ck} satisfies
P(Bk | Bk−1) = ĉ ∈ (0, 1), for all k = 1, . . . , NT−1,

where P(Bk | Bk−1) = P(Bk ∩ Bk−1)/P(Bk−1) is the conditional probability of the
event ω ∈ Bk given that ω ∈ Bk−1 if P(Bk−1) > 0. The parameter ĉ is chosen larger
than Pf and such that ĉ · J ∈ N, typically ĉ = 0.1. We note that B0 = Ω, while BNT

is the failure domain. Based on the definition of Bk, it follows that the sequence of
domains B0, B1, . . . , BNT

is nested, i.e., Bk ⊂ Bk−1 for k = 1, . . . , NT . The sequence
of IS densities in SuS is given by

pSuSk (u) :=
1

P SuS
k

I(G(u) ≤ ck)φn(u),

where P SuS
k is chosen such that pSuSk is a PDF. We observe that pSuSNT

is the optimal

IS density. The density pSuSk is equal to the density of conditioning U to the failure
domain Bk, which we denote by φn(· | Bk). To determine the values ck, the densities

φn(· | Bk) are approximated by the collection of samples {u(j)k }Jj=1. Similar to SIS,

an MCMC algorithm is applied to transfer the samples {u(j)k−1}Jj=1 into the samples

{u(j)k }Jj=1. The value ck is determined such that the portion of samples satisfying

G(u
(j)
k−1) ≤ ck is equal to ĉ. The samples which satisfy this condition are chosen as

seeds in the MCMC algorithm. Thus, unlike SIS, no resampling step is required in SuS.
Due to the nestedness of the domains Bk, the seeds are distributed approximately
according to the target density φn(· | Bk); hence, no burn-in is applied in the
MCMC run. We note that the seeds are only distributed approximately according to
φn(· | Bk), since ck is chosen adaptively based on the samples {u(j)k−1}Jj=1 [12].
The number of update steps is equal to NT =

⌈
log1/ĉ(ĉ/Pf )

⌉
+1, where ⌈·⌉ denotes

the ceiling function. Due to the nestedness, the probability of failure Pf can be
expressed as the product of conditional probabilities

Pf = P(B1)

NT∏

k=2

P(Bk | Bk−1). (2.11)

The probabilities P(B1) and P(Bk | Bk−1), for k = 2, . . . , NT − 1, are estimated by ĉ,
while the conditional probability P(BNT

| BNT−1) is estimated by

P̂BNT
|BNT−1

:=
1

J

J∑

j=1

I
(
G
(
u
(j)
NT−1

)
≤ 0
)
. (2.12)
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Combining (2.11) and (2.12) yields the SuS estimator

P̂ SuS
f := ĉNT−1P̂BNT

|BNT−1
,

which is a biased estimator of the probability of failure as shown in [4].

Remark 2.2. We remark on the similarities and differences of SIS and SuS. Both
methods can be described as a sequential approximation of the optimal IS density.
The number of tempering steps is determined by δtarget in SIS and by ĉ in SuS. Due
to the adaptive choices of σk and ck, both methods yield a biased estimate [9] and
the samples are only distributed approximately according to the target densities. To
generate samples from these target densities, an MCMC algorithm is applied in each
step of SIS and SuS. Unlike SIS, resampling is not required in SuS. The support
of pSISk is the whole parametric domain, while the support of pSuSk = φn(· | Bk) is
compact. Both methods satisfy the nestedness property, i.e., the support of pk is a
subset of the support of pk−1.

Markov chain Monte Carlo

We have seen that SIS and SuS require a Markov chain Monte Carlo algorithm to
generate samples from the target densities. In the following, we discuss the famous
Metropolis–Hastings sampler [53, 85]. The goal is to transfer samples {u(j)k−1}Jj=1,
which are distributed according to the density pk−1, into samples from pk. We denote
by Jseeds ∈ N the number of seeds and by Jburn ∈ N the burn-in length. The number
of seeds is chosen such that Jseeds := ŝ · J , where ŝ ∈ (0, 1] is chosen such that
1/ŝ ∈ N. Thus, Jseeds is the number of simulated Markov chains and Jburn + 1/ŝ are
their lengths.
We denote by {u(ji)k−1}

Jseeds
i=1 the set of seeds. In SIS, the seeds are determined by

multinomial resampling with respect to the importance weights wk given in (2.8). We
note that the authors of [44] study the convergence behaviour of various resampling
schemes. In SuS, a natural choice is ŝ = ĉ and to choose the samples which lie in the
subsequent failure domain Bk as seeds.

Starting from a seed u0 ∈ {u(ji)k−1}
Jseeds
i=1 , a proposal u ∈ Rn is generated according

to the proposal density q(· | u0) : Rn → [0,∞). If q does not depend on the seed
u0, we speak of an independent proposal density. The proposal is accepted with the
probability determined by the acceptance function α : Rn×Rn → [0, 1]. For SIS [94],
the acceptance function is given by

αSIS(u0, u) := min

{
1,

Φ (−G(u)/σk)φn(u)q(u0 | u)
Φ (−G(u0)/σk)φn(u0)q(u | u0)

}
. (2.13)

For SuS [92], the acceptance function reads as

αSuS(u0, u) := min

{
1, I(G(u) ≤ ck)

φn(u)q(u0 | u)
φn(u0)q(u | u0)

}
.

If u is accepted, it is attached to the Markov chain. In the next step, u is considered
as the seed. If u is not accepted, u0 is attached to the chain and u0 is again considered
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as the seed in the next iteration. This procedure is applied Jburn +1/ŝ times for each
seed. At the end, the first Jburn states of each Markov chain are rejected. Due to
the choice of the acceptance function, which determines the transition kernel of the
Markov chain, the simulated Markov chain is stationary with respect to the target
density pSISk and pSuSk , respectively. If in addition the Markov chain is ergodic, the
generated states will be distributed according to the target density after sufficiently
many steps [103, Chapter 7].
We note that the proposal density has a high influence in the performance of

the MCMC algorithm. If the proposal density leads to a small acceptance rate,
many samples are rejected, while a large acceptance rate is an indicator for strongly
dependent states. In Chapter 3, we consider the vMFN distribution model as a
novel independent proposal density, which achieves high acceptance rates even in
high-dimensions.

Remark 2.3. We remark that the application of an MCMC algorithm usually requires
expertise in tuning the relevant parameters and the proposal density. Our novel EnKF
estimator proposed in Article III does not require an MCMC algorithm. From this
perspective, the EnKF is easier to apply since less parameters have to be tuned.

2.2.2. Multilevel methods

For the multilevel methods, we consider the case that the evaluation of G requires
the solution of a PDE, and we assume that an approximate LSF Ghℓ

is given on the
discretization levels ℓ = 1, . . . , L. The first level ℓ = 1 represents the smallest and
the final level ℓ = L ∈ N represents the highest discretization level, which employs
the finest FE mesh size. Commonly, the sequence of FE mesh sizes is defined by
hℓ = 2−ℓ for ℓ = 1, . . . , L. The approximating sequence of the LSFs is denoted by
Ghℓ

for ℓ = 1, . . . , L. For smaller h, the approximation Gh is more accurate but the
evaluation is more cost intensive. For piecewise linear FEs, the cost of evaluating Gh

is ideally

Cost(Gh) = O(h−d),

where d ∈ N is the dimension of the computational domain. The overall goal of mul-
tilevel methods is the reduction of high-level LSF evaluations to save computational
costs while keeping the achieved accuracy fixed.

Multilevel Monte Carlo

Since the probability of failure can be expressed as an expectation, the telescopic
sum approach of [47, 54] can be applied. The probability of failure with respect to
the final discretization level L can be expressed as

Pf,hL
= Eφn

[I(Gh1
(U) ≤ 0)] +

L∑

ℓ=2

Eφn
[I(Ghℓ

(U) ≤ 0)]− Eφn
[I(Ghℓ−1

(U) ≤ 0)].

12



Since the difference between the function values of Ghℓ−1
and Ghℓ

is small, the
variance of the estimator of the subproblem

Qℓ := Eφn
[I(Ghℓ

(U) ≤ 0)]− Eφn
[I(Ghℓ−1

(U) ≤ 0)] = Pf,hℓ
− Pf,hℓ−1

is small and, usually, a small number of samples is required to estimate Qℓ accurately.
As the variance of the estimators Qℓ and the computational costs of Ghℓ

are different,
we consider a level dependent number of samples Jℓ ∈ N. The Multilevel Monte
Carlo estimator for the probability of failure is given by

P̂MLMC
f,hL

:=
1

J1

J1∑

j=1

I(Gh1
(u

(j)
1 ) ≤ 0)

+
L∑

ℓ=2

1

Jℓ

Jℓ∑

j=1

I(Ghℓ
(u

(j)
ℓ ) ≤ 0)− I(Ghℓ−1

(u
(j)
ℓ ) ≤ 0),

where the samples {u(j)ℓ }
Jℓ
j=1 are independently distributed according to φn for ℓ =

1, . . . , L. The number of samples Jℓ has to be chosen such that the variance of the
estimators Qℓ and the overall computational costs are minimized. The authors of [36]
study the variance of the MLMC estimator and derive optimal values for Jℓ.

Remark 2.4. Since Qℓ is the difference of possible small approximate failure probabil-
ities Pf,hℓ

and Pf,hℓ−1
, Qℓ might be small as well. Thus, for small failure probabilities,

the MLMC estimator suffers from the same issues as the MCS estimator since a
large number of samples is required to estimate Qℓ accurately.

Multilevel subset simulation

For the following, we assume, for simplicity, that the number of tempering steps NT is
the same as the number of discretization levels L. Thus, one level update represents
one tempering update. In Multilevel Subset Simulation, the sequence of domains
is defined as Bℓ := {ω ∈ Ω : Ghℓ

(U(ω)) ≤ cℓ}, where ∞ = c0 > c1 > · · · > cL = 0.
Therefore, the sequence of domains is in general not nested, i.e., Bℓ ̸⊂ Bℓ−1 since
the domains are defined with respect to different LSFs Ghℓ

. Thus, we cannot use
the formula derived in (2.11) to express the probability of failure. The authors
of [114] derive a similar formula for general non-nested domains. They show that
the probability of failure can be expressed as

Pf,hL
= P(B1)

L∏

ℓ=2

P(Bℓ | Bℓ−1)

P(Bℓ−1 | Bℓ)
. (2.14)

As in SuS, the parameter values cℓ are chosen adaptively such that the numerator
P(Bℓ | Bℓ−1) is equal to ĉ for ℓ = 1, . . . , L − 1, where B0 = Ω. However, the
denominators in (2.14) need to be estimated. We note that the denominators would
be equal to one, if the domains Bℓ were nested. To generate failure samples, we

apply an MCMC algorithm to shift the samples {u(j)ℓ−1}Jj=1, which are distributed

according to φn(· | Bℓ−1), into samples {u(j)ℓ }Jj=1, which are distributed according to
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φn(· | Bℓ). To reduce correlations of the estimators for P(Bℓ | Bℓ−1) and P(Bℓ−1 | Bℓ),
the authors of [114] apply a second MCMC run in each iteration to determine the
estimators with a different collection of samples. With the generated samples, the
conditional probability P(Bℓ−1 | Bℓ) is estimated by

P̂Bℓ−1|Bℓ
=

1

J

J∑

j=1

I
(
Ghℓ−1

(u
(j)
ℓ ) ≤ cℓ−1

)
. (2.15)

Combining (2.14) and (2.15) yields the MLSuS estimator

P̂MLSuS
f,hL

:=
ĉL−1P̂BNL

|BNL−1∏L
ℓ=2 P̂Bℓ−1|Bℓ

,

where the final estimator P̂BNL
|BNL−1

is given by

P̂BNL
|BNL−1

=
1

J

J∑

j=1

I
(
GhL

(u
(j)
L−1) ≤ 0

)
,

where the samples {u(j)L−1}Jj=1 are distributed according to φn(· | BL−1). We note
that due to the non-nestedness of the domains Bℓ, the samples which are chosen as
seeds in the MCMC step are no longer distributed according to the target density.
Thus, burn-in is employed, which increases the computational costs.

Remark 2.5. We note that the nestedness issue of MLSuS is our main motivation
to implement the MLSIS estimator, which is explained in detail in Chapter 4. In
MLSIS, the support of the employed densities is the whole parametric domain, which
ensures nestedness automatically.

2.3. The first order reliability method

In contrast to the sampling-based methods, the first order reliability method is
an approximation method. In FORM [28, 52], the LSF is approximated by its
linearization at the most likely failure point, which we denote by uMLFP. As the
name suggests, the MLFP is the failure point which admits the largest value with
respect to φn or, equivalently, which has the smallest distance to the origin. Thus,
the MLFP is a solution of the minimization problem

uMLFP = argmin
u∈Rn

1

2
∥u∥22, such that G(u) = 0. (2.16)

The FORM estimate PFORM
f is equal to the probability mass of the failure domain

with respect to the linearization of G. The linearization of G at the MLFP is

Glin(u) = ∇uG(u
MLFP)T (u− uMLFP).

If G(0) > 0, the FORM estimate is given by

PFORM
f = P(Glin(U) ≤ 0) = Φ(−∥uMLFP∥2),
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where Φ is the CDF of the univariate standard normal distribution. If G(0) < 0,
we get PFORM

f = 1 − Φ(−∥uMLFP∥2). The approximate FORM estimate PFORM
f,h is

determined with respect to the approximate MLFP uMLFP
h , which is the solution

of (2.16) with respect to Gh. Figure 1 visualizes the FORM estimate and the MLFP
for an artificial example.

Figure 1: The FORM approximation of the probability of failure. The dark blue
area shows the failure domain A. The light blue area shows the failure
domain with respect to the linearization Glin at uMLFP.

We note that the crucial part is the determination of the MLFP. Since the parametric
dimension n might be large and the LSF G highly nonlinear, the optimization
problem in (2.16) is not trivially solvable. However, efficient algorithms [78] have
been developed to determine (approximately) the MLFP. One of these is the Hasofer–
Lind–Rackwitz–Fiessler algorithm [99]. In general, FORM is less cost intensive but
less accurate than the sampling-based methods in Section 2.2. However, due to
the exponential decrease of the Gaussian measure, PFORM

f is usually accurate for
small failure probabilities since the probability mass of the failure domain is mostly
concentrated around the MLFP. We note that this is only valid for unimodal failure
domains. For multi-modal failure domains, the FORM estimate is biased since it
is an approximation of the probability mass of a single failure mode. Alternatively,
the authors of [29] propose to determine for each failure mode an individual design
point, which is the MLFP restricted to a single failure mode.
For the theoretical parts of Article II and III, we will use two properties of the

FORM estimate which are related to the exact probability of failure. First, if
the failure domain is a convex set, the FORM estimate is an upper bound for the
probability of failure, i.e., Pf ≤ PFORM

f . This property can be observed from Figure 1.

If the failure domain A is convex, A is a subset of Alin := {u ∈ Rn : Glin(u) ≤ 0}. For
our provided error bound in Theorem 2.12 of Article II, we require that the failure
domains A and Ah are convex. However, we derive another error bound related to the
FORM probability estimate in Proposition 2.11 of Article II, which does not require
convexity. Secondly, if the LSF is affine linear, the FORM estimate is equal to the
probability of failure, i.e., PFORM

f = Pf . In Theorem 4.7 of Article III, we derive the
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limiting properties of the EnKF particles for the affine linear case. In Theorem 3.2 of
Article II, we state an error bound for the relative error of the probability of failure
if the LSF is affine linear.
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3. Model problems

In this chapter, we define the LSFs which are discussed in the numerical experiments
of Article I, II and III. We distinguish between low- and high-dimensional parameter
spaces. In the low-dimensional settings, the LSF is analytically given and the
probability of failure can be determined cheaply by MCS. In contrast, in the high-
dimensional settings, only an approximation of the exact LSF is available and a
reference estimate for the exact probability is determined on a high discretization
level.

3.1. Low-dimensional parameter space

We begin with three LSFs which consist of a two-dimensional parameter space, i.e.,
U : Ω→ R2 is a two-variate Gaussian random vector. These LSFs are analytically
given and do not require the solution of an ordinary differential equation (ODE) or
PDE. The respective failure domains have different shapes and different numbers of
failure modes. The LSFs are considered in Article III, which applies the EnKF to
rare event estimation.

Convex limit-state function

In [65], the following convex LSF is proposed

G(1)(U(ω)) = 0.1(U1(ω)− U2(ω))
2 − 1√

2
(U1(ω) + U2(ω)) + 2.5. (3.1)

The probability of failure is equal to Pf ≈ 4.21 · 10−3 and the failure domain is
convex and consists of a single mode [94]. Figure 2 of Article III illustrates the failure
domain.

Parabolic limit-state function

In [29], the following parabolic LSF is proposed

G(2)(U(ω)) = 5− U2(ω)−
1

2
(U1(ω)− 0.1)2. (3.2)

The probability of failure is equal to Pf ≈ 3.01 · 10−3 and the failure domain is
concave and consists of two distinct areas with high probability mass [94]. Figure 4
of Article III illustrates the failure domain.

Series system reliability problem

In the third example, we consider a series system reliability problem given in [117],
which is defined by the LSF

G(3)(U(ω)) = min





0.1(U1(ω)− U2(ω))
2 − (U1(ω) + U2(ω))/

√
2 + 3

0.1(U1(ω)− U2(ω))
2 + (U1(ω) + U2(ω))/

√
2 + 3

U1(ω)− U2(ω) + 7/
√
2

U2(ω)− U1(ω) + 7/
√
2




. (3.3)
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The probability of failure is equal to Pf ≈ 2.2 · 10−3 and the failure domain consists
of four distinct modes [94]. Figure 6 of Article III illustrates the failure domain.

The following two LSFs require the solution of an ODE or PDE. The exact LSF is
given; however, we apply discretization schemes to determine an approximation of the
LSF to test the novel error bounds in Article II, which considers the approximation
error of the probability of failure. Moreover, we provide the orders of convergence of
the discretization schemes with respect to h since these orders are relevant for the
error bounds.

ODE, 1-dimensional parameter space

In this example, the LSF depends on the solution of an ODE with a one-dimensional
Gaussian random parameter. We seek the solution y : [0, 1]× Ω→ R such that for
P-almost every (a.e.) ω ∈ Ω

∂y(t, ω)

∂t
= −U(ω)y(t, ω), t ∈ (0, 1), with initial condition y(0, ω) = 1, (3.4)

where U ∼ N(0, 1) is a standard normal random variable. The exact solution of (3.4)
is y(t, ω) = exp(−U(ω)t). The solution y(·, ω) leads to failure if it is lager than
ymax = 40 at t = 1. Thus, the LSF is expressed as

G(4)(U(ω)) = 40− exp(−U(ω)). (3.5)

The exact probability of failure is equal to Pf = Φ(− log(ymax)) ≈ 1.13 · 10−4 and

the MLFP is uMLFP = − log(ymax). We use the explicit Euler scheme and the Crank–
Nicolson scheme to determine an approximation yh. By [73, Section 6.3], the explicit
Euler scheme is convergent of order one, i.e., |y(t, ω)− yh(t, ω)| = O(h) for a fixed
ω ∈ Ω. The Crank–Nicolson scheme is convergent of order O(h2) [73, Chapter 9].

PDE, 2-dimensional parameter space

The following example is based on an elliptic boundary value problem. This problem
is also considered in [37, 43]. On the unit interval D = (0, 1), we seek a solution
y : D × Ω→ R such that for P-a.e. ω ∈ Ω

− ∂

∂x

(
exp

(
U1(ω)

3
− 3

)
∂

∂x
y(x, ω)

)
= 1− x, for x ∈ (0, 1),

such that y(0, ω) = 0 and y(1, ω) = U2(ω),

where U1 and U2 are independent and standard normally distributed. The solution
of this problem is

y(x, ω) = U2(ω)x+ exp (−U1(ω)/3 + 3) (x3/6− x2/2 + x/3).

We define failure as the event that y(·, ω) is smaller than ymin = −1/3 at x̂ = 1/3.
Thus, the LSF is expressed as

G(5)(U(ω)) = y(1/3, ω) + 1/3. (3.6)
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The probability of failure is equal to Pf ≈ 1.71 · 10−4. The failure domain is convex
and consists of a single failure mode as shown in Section 5.2 of Article II. We apply
FEs with either piecewise linear or piecewise quadratic basis functions. For linear
basis functions, the FE error of the point evaluation is of order O(h2), while for
quadratic basis functions, the error is of order O(h3) [32, Theorem 1.1].

3.2. High-dimensional parameter space

We consider two settings with a high-dimensional parameter space. The first setting
is the elliptic diffusion equation, which is the required problem setting of the provided
error bounds in Article II. Therefore, we introduce this setting in a general form
before we concretely state the considered LSFs. The second setting is the flow cell in
a two-dimensional computational domain, which is considered in Article I. In both
settings, a random diffusion coefficient is employed, which is approximated by its
truncated Karhunen–Loève (KL) expansion [63, 79].

3.2.1. Elliptic diffusion equation

Before we explicitly state the LSFs, we discuss the general problem setting of the
elliptic diffusion equation, which is discussed in detail in [38, Chapter 6]. We consider
a computational domain D ⊂ Rd, d = 1, 2, 3, which is open, bounded, convex and
polygonal. Given is a real-valued random field a : D × Ω → R and a real-valued
function f ∈ L2(D). We seek a random field y : D × Ω → R such that for P-a.e.
ω ∈ Ω

−∇x · (a(x, ω)∇xy(x, ω)) = f(x) ∀x ∈ D, (3.7)

y(x, ω) = 0 ∀x ∈ ∂D. (3.8)

Since a might be non-differentiable, a solution to this strong formulation might not
exist. Therefore, we consider the pathwise variational formulation of (3.7), (3.8).
For V := H1

0 (D), we seek y(·, ω) ∈ V such that for P-a.e. ω ∈ Ω

∫

D

a(x, ω)∇xy(x, ω) · ∇xv(x)dx =

∫

D

f(x)v(x)dx ∀v ∈ V. (3.9)

For the discretization parameter h > 0, we define the discretized pathwise variational
formulation. In the finite-dimensional vector space Vh ⊂ V , we seek yh ∈ Vh such
that for P-a.e. ω ∈ Ω

∫

D

a(x, ω)∇xyh(x, ω) · ∇xvh(x)dx =

∫

D

f(x)vh(x)dx ∀vh ∈ Vh. (3.10)

By [80, Theorem 9.9], existence and uniqueness of a solution for (3.9) and (3.10)
is ensured if a(·, ω) ∈ L∞(D) for P-a.e. ω ∈ Ω and a(x, ω) is pathwise elliptic and
bounded, i.e., there exists random variables amin, amax : Ω → R such that for P-a.e.
ω ∈ Ω

0 < amin(ω) ≤ a(x, ω) ≤ amax(ω) <∞, for a.e. x ∈ D. (3.11)
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Indeed, our provided error bounds in Article II require a stricter assumption. We
require that the diffusion coefficient a(x, ω) is uniformly elliptic and bounded, i.e.,
amin, amax > 0 in (3.11) are independent of ω ∈ Ω. For the pathwise case, we
conjecture in Remark 2.13 of Article II that a similar error bound holds.
The stochastic dependence of the solution y is given by the diffusion coefficient

a(x, ω). To satisfy the Gaussian assumption in Chapter 2, we require that a(x, ω) is
a measurable function of an n-variate standard Gaussian random vector U : Ω→ Rn.
In the following examples, a(x, ω) is approximated by its truncated KL expansion
an(x, ω), which implicitly depends on U .
In the numerical experiments of the contributed articles, the diffusion coefficient

a(x, ω) = exp(Z(x, ω)) is a log-normal random field, i.e., Z(x, ω) is a Gaussian
random field with constant mean µZ and variance ζ2Z . The covariance function of
Z is c(x1, x2) = ζ2Z exp (−∥x1 − x2∥1/λ) for x1, x2 ∈ D, where λ > 0 denotes the
correlation length. We note that log-normal random fields are only pathwise elliptic
and bounded. Thus, the assumptions of the error bounds in Article II are not
satisfied. However, our conjecture given in Remark 2.13 of Article II is observed
in the numerical experiments. The dependence on the n-variate Gaussian random
variable U is given by truncating the KL expansion of the random field Z after the
n leading KL terms, which gives the truncated KL expansion

Zn(x, ω) = µZ + ζZ

n∑

i=1

√
νiθi(x)Ui(ω),

where (νi, θi) are the KL eigenpairs and {Ui}ni=1 are independent standard nor-
mal Gaussian random variables. The determination of the eigenpairs is given in
[46, Section 2.3.3]. The discretized diffusion coefficient is denoted as an(x, ω) :=
exp(Zn(x, ω)). Due to the truncation, an(x, ω) is a smooth function with respect
to x and the outcomes U(ω). We note that in the numerical experiments of the
contributed articles, the truncation order n is fixed, i.e., the limit n → ∞ is not
considered.
Having considered the relation between the PDE solution and the Gaussian random

variable U , we can now define the LSF. The solution y and the LSF G are related
via a linear and bounded operator F : H1

0 (D)→ R such that

G(U(ω)) = ymax −Fy(·, ω),
where ymax ∈ R is a threshold. Hence, failure is defined as the event that Fy(·, ω) ≥
ymax. In a similar way, we define the approximate LSF by

Gh(U(ω)) = ymax −Fhyh(·, ω),
where Fh : Vh → R is the induced observation operator. For instance, if the solution
y(·, ω) is continuous, F can be chosen as the point evaluation of y at x̂ ∈ D.
In Article I and III, we consider (3.7) and (3.8) in the unit interval D = (0, 1) ⊂ R

with f(x) = 1 for all x ∈ D. The boundary conditions are mixed with y(0, ω) = 0
and yx(1, ω) = 0 for P-a.e. ω ∈ Ω. We define failure as the event that the solution
y(·, ω) is larger than ymax = 0.535 at x̂ = 1. Thus, our sixth LSF is given by

G(6)(U(ω)) := 0.535− y(1, ω) ≤ 0. (3.12)
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We apply piecewise linear, continuous FEs with mesh size h > 0 to derive the
approximate LSF Gh. By [32, Theorem 1.1], the PDE discretization error behaves
as O(h2). By MCS, we estimate a reference for the exact probability of failure. On
the grid with mesh size h = 1/512, we generate J = 2 · 108 independent samples of
U and estimate the probability of failure as Pf ≈ 1.68 · 10−4.
In Article II, we consider an LSF which is proposed in [111]. We define f(x) = 0

for all x ∈ D and we consider the boundary conditions y(0, ω) = 1 and y(1, ω) = 0.
By the Sobolev embedding theorem [51, Theorem 6.48], the solution y(·, ω) is
continuously differentiable and the evaluation of yx(·, ω) is well-defined. Failure is
defined as the event that the flow rate

q(x, ω) := −an(x, ω)
∂y(x, ω)

∂x

is larger than a threshold qmax at x̂ = 1. Thus, the LSF is defined as

G(7)(U(ω)) = qmax − q(1, ω). (3.13)

Again, piecewise linear, continuous FEs are employed with mesh size h > 0. By
[110, Section 1.6], the PDE discretization order behaves as O(h). In Article II,
we consider λ1 = 0.3 and λ2 = 0.1 and set the truncation order to n1 = 10 and
n2 = 50. A reference for the probability of failure is obtained by the average of 100
SIS simulations with J = 104 samples per level on a grid with mesh size h = 2−12.
For λ1, we set qmax,1 = 1.7 and obtain Pf ≈ 3.38 · 10−4. For λ2, we set qmax,2 = 1.5

and obtain Pf ≈ 7.18 · 10−5.

3.2.2. 2D flow cell

The following LSF is considered in Article I and in [114, Section 6.1]. The LSF is
based on the travel time of a radioactive particle within a two-dimensional flow cell
D = (0, 1)× (0, 1). The LSF describes, in a simplified way, the rare event arising in
planning a radioactive waste repository, which is described in the introduction. For
more details on dynamics in porous media, we refer to [7]. We seek the hydrostatic
pressure y : D × Ω→ R and the Darcy velocity q : D × Ω→ R2 such that for P-a.e.
ω ∈ Ω

q(x, ω) = −a(x, ω)∇xy(x, ω) for x ∈ D,
∇x · q(x, ω) = 0 for x ∈ D.

Moreover, y and q satisfy the boundary conditions

ν⃗ · q(x, ω) = 0 for x ∈ (0, 1)× {0, 1},
y(x, ω) = 1 for x ∈ {0} × (0, 1),

y(x, ω) = 0 for x ∈ {1} × (0, 1),

for P-a.e. ω ∈ Ω, where ν⃗ ∈ R2 denotes the direction of the outer normal on the
boundary. The diffusion coefficient a(x, ω) describes the hydraulic conductivity of
the porous medium. As in Section 3.2.1, a(x, ω) = exp(Z(x, ω)) is modelled as a
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log-normal random field. The mean µZ and variance ζZ of Z are constant. We
obtain Z by the truncated eigendecomposition of the covariance function c(x1, x2) =
ζ2Z exp (−∥x1 − x2∥1/λ), where x1, x2 ∈ R2.
As motivated in the introduction, pollution of groundwater through a radioactive

particle is a failure event. Thus, the travel time of the particles is crucial since short
travel times lead to many radioactive particles. We assume that the particle path
starts at x0 = (0, 0.5)T . The travel time is the time a particle requires to move from
x0 to any other point on the boundary ∂D. We define failure as the event that the
travel time is smaller than the threshold τmin = 0.03. The travel time is determined
by the velocity of the particle, which is equal to the Darcy velocity q(x, ω) divided by
the porosity p(x, ω). In this experiment, we assume, for simplicity, that p(x, ω) = 1
is constant. Thus, we determine the particle path x(t, ω) ∈ R2 by solving the ODE

∂

∂t
x(t, ω) = q(x(t, ω), ω), x(0, ω) = x0.

With x(t, ω), the travel time is determined by

τ(ω) = argmin
t>0

x(t, ω) ∈ ∂D.

Thus, the LSF is given by

G(8)(U(ω)) = τ(ω)− 0.03. (3.14)

Since the exact solutions for y and q are not available, we employ lowest order
Raviart–Thomas mixed FEs [101] to discretize the Darcy velocity q, while piecewise
constant elements are employed to discretize the pressure y. The computational
domain D is discretized by 2 · 1/h2 uniform triangles, where h denotes the length of
the legs of the triangles. After determining yh and qh, we apply the explicit Euler
scheme to determine the approximate particle path as

xh(t+∆t, ω) = xh(t, ω) + ∆tqh(xh(t, ω), ω), where ∆t =
h

2∥qh(xh(t, ω), ω)∥2
.

Thus, the travel time τh(ω) ∈ [0,∞) is given by

τh(ω) = argmin
t>0

xh(t, ω) ∈ ∂D.

The reference solution of the probability of failure is Pf ≈ 4.67 · 10−7 and is the

estimated mean probability of failure over 100 realizations of SuS with J = 104

samples per level, mesh size h = 1/128, ĉ = 0.1, and adaptive conditional sampling
as the MCMC method without burn-in. We briefly discuss aCS in Section 4.3 as an
MCMC algorithm which performs well even in high dimensions.
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4. Multilevel Sequential Importance Sampling

In this chapter, we derive the Multilevel Sequential Importance Sampling algorithm
of Article I, which is the combination of the SIS algorithm in [94] and the multilevel
approach of the MLS2MC algorithm in [70]. Therein, the level updating idea of [66] is
employed, which is also known as bridging. We note that this multilevel approach is
different to the telescoping sum approach of [47, 54]. The MLSIS algorithm extends
the collection of multilevel methods for rare event estimation. The motivation of the
MLSIS algorithm is the nestedness issue of MLSuS, which leads to additional costs as
we have observed in Section 2.2.2. However, MLSuS still requires less computational
costs than SuS as observed in [114]. In MLSIS, nestedness is automatically satisfied
since the support of the MLSIS densities is the whole parametric domain.
In the following, we discuss the MLSIS algorithm, which consists of a smart

heuristic of level and tempering updates. Moreover, we discuss the vMFN distribution
model as an independent proposal density in the MCMC algorithm. Indeed, this is
another contribution of Article I. This chapter is concluded with the discussion of
the numerical experiments of Article I, where the performance of MLSIS is compared
with SIS, SuS and MLSuS.

4.1. MLSIS densities

We consider the sequence of discretization levels ℓ = 1, . . . , L. On each discretization
level, an approximate LSF Ghℓ

is given, where hℓ > 0 is the discretization parameter,
e.g. FE mesh size. The goal of MLSIS is the estimation of the probability of failure
Pf,hL

= P(GhL
(U) ≤ 0) with respect to the finest discretization level L. We note

that Pf,hL
yields an approximation of the exact probability of failure Pf that is

determined with respect to the exact LSF G. The approximation error of Pf,hL
is

studied in Chapter 5.
As in SIS [94], MLSIS is based on an approximation of the optimal IS density at

level L, which is given by

popt,L(u) :=
1

Pf,hL

I(GhL
(u) ≤ 0)φn(u). (4.1)

In MLSIS, we approximate the indicator function in (4.1) by the approximate LSF
Ghℓ

and the CDF of the univariate normal distribution, which yields

I(GhL
(u) ≤ 0) = lim

hℓ↓hL

lim
σ↓0

Φ

(
−Ghℓ

(u)

σ

)
, for GhL

(u) ̸= 0. (4.2)

From (4.2), we observe that the optimal IS density is reached in a twofold sequential
way. In the MLSIS algorithm, we sequentially decrease the temperature σ and
decrease the mesh size hℓ. As in SIS, we denote by {σk}NT

k=0 the sequence of tempera-
tures, which satisfies ∞ = σ0 > σ1 > · · · > σNT

> 0. In the tempering update from
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σk−1 to σk, for k = 2, . . . , NT , we consider the densities

pMLSIS
k−1,ℓ (u) :=

1

PMLSIS
k−1,ℓ

Φ

(
−Ghℓ

(u)

σk−1

)
φn(u),

pMLSIS
k,ℓ (u) :=

1

PMLSIS
k,ℓ

Φ

(
−Ghℓ

(u)

σk

)
φn(u),

where PMLSIS
k−1,ℓ and PMLSIS

k,ℓ are normalizing constants. The starting density pMLSIS
0,1 (u) =

φn(u) is the PDF of the n-variate standard normal distribution on the coarsest level
ℓ = 1. The determination of the sequence of temperatures {σk}NT

k=1 is similar to
SIS. Given the temperature σk−1 and the target coefficient of variation δtarget, the
temperature σk is determined adaptively by

σk = argmin
σ∈(0,σk−1)

(
δwk,ℓ

− δtarget
)2
, where δwk,ℓ

:=
StD

p
MLSIS
k−1,ℓ

[wk,ℓ(U)]

E
p
MLSIS
k−1,ℓ

[wk,ℓ(U)]

and the weights are given by

w1,1(u) = Φ(−Gh1
(u)/σ1), wk,ℓ(u) =

Φ(−Ghℓ
(u)/σk)

Φ(−Ghℓ
(u)/σk−1)

, for k > 1.

As in SIS, the densities pMLSIS
k,ℓ are approximated by a collection of samples {u(j)k,ℓ}Jj=1.

During the tempering update, the samples {u(j)k−1,ℓ}Jj=1 are transformed to the samples

{u(j)k,ℓ}Jj=1 with an MCMC algorithm. The acceptance function given in (2.13) is

adjusted by replacing G with Ghℓ
. With the samples {u(j)k−1,ℓ}Jj=1, the fraction

Sk,ℓ := PMLSIS
k,ℓ /PMLSIS

k−1,ℓ of two consecutive normalizing constants is estimated by the
sample mean

Ŝk,ℓ :=
1

J

J∑

j=1

wk,ℓ(u
(j)
k−1,ℓ). (4.3)

Having considered the tempering updates, we discuss now the level update. For the
level update from level ℓ to level ℓ+ 1, for ℓ = 1, . . . , L− 1, the MLSIS densities of
these levels are given by

pMLSIS
k,ℓ (u) :=

1

PMLSIS
k,ℓ

Φ

(
−Ghℓ

(u)

σk

)
φn(u), (4.4)

pMLSIS
k,ℓ+1 (u) :=

1

PMLSIS
k,ℓ+1

Φ

(
−
Ghℓ+1

(u)

σk

)
φn(u). (4.5)

We note that a level update can only be carried out after the first temperature σ1
has been determined. The level update from ℓ to ℓ + 1 is performed in NBℓ

> 0
bridging steps. During these bridging steps, tempering is not performed. We denote
the sequence of bridging temperatures by 0 = β0 < β1 < · · · < βNBℓ

= 1 to define the
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bridging densities between pMLSIS
k,ℓ and pMLSIS

k,ℓ+1 . According to [66, 70], these bridging
densities are given by

pMLSIS
k,ℓ,t (u) :=

1

PMLSIS
k,ℓ,t

Φ

(
−
Ghℓ+1

(u)

σk

)βt

Φ

(
−Ghℓ

(u)

σk

)1−βt

φn(u),

for t = 0, . . . , NBℓ
, where PMLSIS

k,ℓ,t are normalizing constants. We observe that pMLSIS
k,ℓ,0

yields the MLSIS density on the level ℓ, which is given in (4.4), while pMLSIS
k,ℓ,Nbℓ

yields

the MLSIS density on the level ℓ+1, which is given in (4.5). The determination of the

bridging temperatures {βt}
NBℓ
t=1 is similar to the determination of the temperatures

{σk}NT
k=1. Given the bridging temperature βt−1, the bridging temperature βt is

determined adaptively by

βt = argmin
β∈(βt−1,1]

(
δwk,ℓ,t

− δtarget
)2
, where δwk,ℓ,t

:=
StD

p
MLSIS
k,ℓ,t−1

[wk,ℓ,t(U)]

E
p
MLSIS
k,ℓ,t−1

[wk,ℓ,t(U)]

and the weights are given by

wk,ℓ,t(u) =
Φ(−Ghℓ+1

(u)/σk)
βtΦ(−Ghℓ

(u)/σk)
1−βt

Φ(−Ghℓ+1
(u)/σk)

βt−1Φ(−Ghℓ
(u)/σk)

1−βt−1
. (4.6)

During the bridging update, the samples {u(j)k,ℓ,t−1}Jj=1 are transformed to the samples

{u(j)k,ℓ,t}Jj=1 with an MCMC algorithm. To apply the MCMC algorithm of Section 2.2.1
to a bridging update, the acceptance function in (2.13) has to be replaced by
αMLSIS(u0, u) = min{1, αB(u0, u)}, where

αB(u0, u) :=
Φ(−Ghℓ+1

(u)/σk)
βtΦ(−Ghℓ

(u)/σk)
1−βtφn(u)q(u0 | u)

Φ(−Ghℓ+1
(u0)/σk)

βtΦ(−Ghℓ
(u0)/σk)

1−βtφn(u0)q(u | u0)
. (4.7)

With the samples {u(j)k,ℓ,t−1}Jj=1, the fraction Sk,ℓ,t := PMLSIS
k,ℓ,t /PMLSIS

k,ℓ,t−1 of two consecutive
normalizing constants is estimated by the sample mean

Ŝk,ℓ,t :=
1

J

J∑

j=1

wk,ℓ,t(u
(j)
k,ℓ,t−1).

Thus, the estimator of the fraction Sℓ+1
k,ℓ := PMLSIS

k,ℓ+1 /PMLSIS
k,ℓ is given by

Ŝℓ+1
k,ℓ :=

NBℓ∏

t=1

Ŝk,ℓ,t. (4.8)

The MLSIS estimator for the probability of failure is given by the combination of the
estimators in (4.3) and (4.8). Starting from the initial density pMLSIS

0,1 (0) = φn(u),

we transform samples of φn(u) into samples of the final density pMLSIS
NT ,L . The way

from the starting density to the final density is determined by the multilevel update
scheme, which is described in the next section. An example of this scheme is shown
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in Figure 2. To state the MLSIS estimator, we denote by (k, ℓk), for k = 1, . . . , NT ,
the indices of tempering updates defined on the level ℓk. Moreover, we denote by
(kℓ, ℓ), for ℓ = 1, . . . L− 1, the indices of level updates defined on the temperature kℓ.
Thus, the MLSIS estimator is given by

P̂MLSIS
f,hL

:=

(
NT∏

k=1

Ŝk,ℓk

)(
L−1∏

ℓ=1

Ŝℓ+1
kℓ,ℓ

)(
1

J

J∑

j=1

I(GhL
(u

(j)
NT ,L) ≤ 0)

Φ(−GhL
(u

(j)
NT ,L)/σNT

)

)
, (4.9)

where the samples {u(j)NT ,L}Jj=1 are distributed approximately according to pMLSIS
NT ,L and

the sum in (4.9) represents the last tempering step from pMLSIS
NT ,L to the optimal IS

density popt,L, which is given in (4.1). As in SIS, the generated samples {u(j)k,ℓ,t}Jj=1

are only distributed approximately according to the target densities pMLSIS
k,ℓ,t due to

the adaptive choice of σk and βt [9]. Thus the MLSIS estimator is biased.

1 2 3 4 5 6
discretization level

10 3

10 2

10 1

100
adaptive scheme

SIS
MLSIS

Figure 2: Example path of the multilevel update scheme of MLSIS and the tempering
updates of SIS.

4.2. Multilevel update scheme

In this section, we discuss the heuristic of the multilevel update scheme, which has
been developed in [70]. The scheme achieves that many tempering updates are
performed on a low discretization level.
The scheme starts with the initial temperature σ0 = ∞ and initial level ℓ = 1.

The initial samples {u(j)0,1}Jj=1 are distributed according to φn. The first iteration of
MLSIS is always a tempering update, where the first temperature σ1 is determined.
In the subsequent step, we determine if tempering or a level update is performed.
Since the goal of multilevel methods is the reduction of high-level LSF evaluations,
we update the level if the discrepancy between evaluations of two consecutive levels
is too large. Therefore, we randomly select without replacement a small subset of
samples {u(ji)k,ℓ }

Jsmall
i=1 with Jsmall < J and we update the level for this subset through

one bridging step. In the numerical experiments of Article I, we set Jsmall = 0.1 · J .
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The discrepancy of the levels is measured by the coefficient of variation δ
w

Jsmall
k,ℓ+1

of

the weights

wJsmall
k,ℓ+1 (u

(ji)
k,ℓ ) =

Φ(−Ghℓ+1
(u

(ji)
k,ℓ )/σk)

Φ(−Ghℓ
(u

(ji)
k,ℓ )/σk)

, for i = 1, . . . , Jsmall. (4.10)

In the case that δ
w

Jsmall
k,ℓ+1

> δtarget, we perform a level update since the discrepancy

between the levels is high. In the other case, i.e., δ
w

Jsmall
k,ℓ+1

≤ δtarget, we perform

tempering. We note that we always perform a level update if tempering has already
finished. Moreover, tempering is always performed after a level update, if tempering
has not already finished. To decide if tempering is finished, the coefficient of variation
δwopt,k,ℓ

of the weights

wopt,k,ℓ(u) =
I(Ghℓ

(u))

Φ(−Ghℓ
(u)/σk)

has to be calculated after each tempering and level update with respect to the
samples {u(j)k,ℓ}Jj=1. If δwopt,k,ℓ

≤ δtarget, tempering is finished. The MLSIS iteration is
finished if tempering is finished and the final discretization level ℓ = L is reached.
The MLSIS algorithm is visualized in a diagrammatic representation in Figure 3 and
a pseudo-code is shown in Algorithm 3.2 of Article I.

Tempering finished?

Final level reached or
previous step level update?

First iteration?

Tempering finished
+ final level reached?

Perform Tempering Perform level update

No

MLSIS finished

No

No
NoYes

Yes

Yes

Yes

Yes

No

Figure 3: Diagrammic representation of the MLSIS algorithm.

Remark 4.1. If the LSF depends on a random field that is approximated by a
truncated Karhunen–Loève expansion, the authors of [114] propose a level dependent
parameter dimension for the MLSuS estimator. This is due to the fact that highly
oscillating KL terms cannot be accurately discretized on coarse grids, which leads
to inaccurate evaluations. Employing a level dependent parameter dimension in
the MLSIS algorithm reduces the discrepancy of LSF evaluations of two consecutive
discretization levels, i.e., the coefficient of variation of the weights wJsmall

k,ℓ+1 given
in (4.10) is smaller. This leads to more tempering updates on coarse grids, which
decreases the overall computational costs.
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To employ the level dependent parameter dimension for the MLSIS algorithm, we have
to adjust the procedure of a level update. We denote the input dimensions by nℓ ∈ N
on the level ℓ = 1, . . . , L. To evaluate the weights in (4.6), the evaluations of Ghℓ

and
Ghℓ+1

are required for the state u ∈ Rnℓ . Therefore, we denote by ∆nℓ := nℓ+1 − nℓ

the difference of the input dimensions and we generate ψ ∈ R∆nℓ from the ∆nℓ-
variate standard normal distribution. Then, we define ũ = (uT , ψT )T ∈ Rnℓ+1 and
we evaluate Ghℓ

for u and Ghℓ+1
for ũ. For the evaluation of the acceptance function

in (4.7), we apply the same procedure for u0 and u.

4.3. MCMC with von Mises–Fisher–Nakagami distribution

In this section, we discuss the von Mises–Fisher–Nakagami distribution model as an
independent proposal density in the MCMC algorithm. We note that random walk
samplers, such as the random walk Metropolis–Hastings algorithm [53, 85], suffer
from the curse of dimensionality. This is reflected by a small acceptance rate in
high dimensions. In [92], the authors propose adaptive conditional sampling as an
alternative method. The aCS method is a dependent MCMC algorithm, i.e., the
proposal density depends on the current state of the Markov chain. In detail, the
proposal density of aCS is given by q(u | u0) = φn(u | ρu0, (1− ρ)2Idn), i.e., the PDF
of the normal distribution with mean vector ρu0 and covariance matrix (1− ρ)2Idn.
During the aCS iterations, the parameter ρ ∈ [0, 1] is adaptively adjusted to ensure
an acceptance rate around 44%, which has been suggested as an optimal rate by [104].
Due to the choice of the proposal density, aCS can be viewed as an adaptive version
of the preconditioned Crank–Nicolson algorithm [24]. Contrary, in an independent
MCMC algorithm, the proposal density does not depend on the current state u0.
Thus, the simulated states are less correlated and the final estimator of the probability
of failure has usually a lower variance. According to [20, 94], we choose a parametric
distribution model as the proposal density. Therefore, the parameters of the model
have to be fitted in advance to give an approximation of the target density.
An example of a distribution model is the Gaussian model and the Gaussian

mixture model [42, Section 1]. However, Gaussian densities suffer from the curse of
dimensionality, since the Gaussian measure is concentrated around the hypersphere
with norm equal to

√
n in high dimensions [64, 93]. Therefore, we propose the vMFN

distribution model as an alternative proposal density in Article I. This distribution
model is proposed in [93] as a parametric model within cross-entropy-based IS. To
apply this parametric model, we represent the parameter vector u ∈ Rn in its polar
coordinate representation u = r · u⃗, where r = ∥u∥2 denotes the norm of u and
u⃗ = u/∥u∥2 ∈ Rn its normalized direction. In the vMFN distribution model, the
direction u⃗ and radius r are sampled from different distribution models such that the
vMFN distribution model is not affected by the concentration of measure issue in
high dimensions. Given the direction u⃗ and radius r, the vMFN distribution model
is defined as

pvMFN(r, u⃗ | µ, κ, χ, γ) = pN(r | χ, γ) · pvMF(u⃗ | µ, κ).

The vMF distribution [123] pvMF(· | µ, κ) defines the distribution of the direction on
the n-dimensional hypersphere Sn−1 := {u ∈ Rn : ∥u∥2 = 1}, where µ ∈ Sn−1 is a
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mean direction and κ ≥ 0 characterizes the concentration around µ. The Nakagami
distribution [88] pN(· | χ, γ) specifies the distribution of the radius, where χ ≥ 0.5
is a shape parameter and γ > 0 a spread parameter. In Figure 2 of Article I an
illustration of pN and pvMF is shown for certain parameter values.
To apply the vMFN distribution model as a proposal density in the MLSIS

algorithm, the parameters µ, κ, χ and γ have to be fitted in advance by maximizing
the weighted log-likelihood. For µ and γ, explicit expressions are available as shown
in [93]. However, for κ and χ, we use approximations as derived in [13, 123].

Remark 4.2. For multi-modal failure domains, we propose to apply the vMFN
mixture distribution model to capture the domains of the distinct failure regions. For
M > 1 individual mixture components, the vMFN mixture distribution reads as

pvMFN(r, u⃗ | µ,κ,χ,γ) =
M∑

m=1

πmpvMFN(r, u⃗ | µm, κm, χm, γm),

where the weights πm represent the probability of each mode and
∑M

m=1 πm = 1.

For the vMFN mixture distribution model, the samples have to be assigned to the
modes. Therefore, the required parameters of the vMFN mixture model are estimated
iteratively by the expectation-maximization algorithm [83]. We note that the number
of parameters of the vMFN mixture distribution model scales as O(n). This yields
computational benefits compared to the Gaussian mixture model, which requires
O(n2) parameters as discussed in [93].

4.4. Numerical experiments

In numerical experiments, we compare the performance of MLSIS with SIS, SuS and
MLSuS in terms of the required computational costs and the achieved relative root
mean square error (relRMSE), which is defined as

relRMSE :=

(
E[(P̂f,hL

− Pf,hL
)2]
)1/2

Pf,hL

, (4.11)

where P̂f,hL
is the estimated probability of failure on the finest level L. We assume

that the computational costs of one evaluation of Ghℓ
are given by

Cost(Ghℓ
) = 2−d(L−ℓ),

where d is the dimension of the computational domain D. Thus, one evaluation
of GhL

requires one unit of computational costs. We consider the LSF G(6) given

in (3.12) and the LSF G(8) given in (3.14). We remind that the LSF G(6) requires
the solution of the elliptic diffusion equation in the unit interval in 1D space given
in (3.7) and we define failure as the event that the solution y(x, ω) is larger than

ymax = 0.535 at x̂ = 1. The LSF G(8) considers the flow cell in 2D space and we
define failure as the event that the travel time τ(ω) of a radioactive particle is smaller
than τmin = 0.03. We apply SIS and MLSIS with varying number of samples J and
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with different target coefficients of variations δtarget. Moreover, we consider aCS and
the vMFN distribution model in the MCMC algorithm. SuS and MLSuS are also
applied with a varying number of samples J and with ĉ = 0.1 and ĉ = 0.25. For SuS
and MLSuS, we consider aCS as the MCMC algorithm.
For the LSF G(6), we observe in Figure 5 of Article I that SIS and MLSIS yield a

similar relRMSE. However, MLSIS requires around 61% less computational costs than
SIS for a fixed level of accuracy. Moreover, we observe that the vMFN distribution
model in the MCMC algorithm leads to a smaller relRMSE than aCS. Figure 6
of Article I shows that MLSIS with the vMFN distribution model requires less
computational costs than MLSuS with aCS for a fixed level of accuracy. However, the
performance of MLSIS with aCS is similar to the performance of MLSuS with aCS.
Indeed, MLSuS performs slightly better. Thus, we conclude for this experiment that
sampling from the vMFN distribution model yields benefits compared to aCS and
the performance of MLSIS is similar to the performance of MLSuS if both methods
are applied with the same MCMC algorithm.
In the second experiment, we consider the LSF G(8). In Figure 9 of Article I,

we observe that SIS and MLSIS reach the same level of accuracy. As in the first
experiment, MLSIS requires less computational costs than SIS and the vMFN
distribution model yields a smaller relRMSE than aCS. From Figure 10 of Article I,
we observe that MLSIS requires less computational costs than MLSuS for a fixed level
of accuracy. This holds true for both MCMC algorithms. For the second experiment,
we conclude that MLSIS yields a better performance than MLSuS.
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5. Error analysis for probabilities of rare events

This chapter is devoted to the error analysis given in Article II. We consider LSFs
which require the solution of an elliptic PDE with stochastic diffusion coefficient.
This problem setting is already discussed in Section 3.2.1.

The discretization of the PDE leads to an error in the evaluation of the LSF. This
error leads to an approximation error of the probability of rare events. We note that
PDE based LSFs arise frequently in rare event estimation and multilevel methods [36,
114, 119] have been developed as efficient estimators. However, these articles mostly
deal with the sampling error. The approximation error has been considered so far
only in [36]. Therein, the authors derive an upper bound of the absolute error, which
scales as the PDE discretization error. The authors apply this bound to determine
the optimal number of samples per level for the Multilevel Monte Carlo estimator.
However, a systematic error analysis of the induced approximation error has been
missing. Article II closes this gap, where we use the results of [36] as a starting point.
Indeed, our motivation is the derivation of an upper bound of the relative error of
the probability of failure.
We start with the relevant assumptions which we require to perform the error

analysis. Thereafter, we discuss the main statements of Article II and outline the
proof. In the proof, we observe an interesting connection to results from PDE based
optimal control [100, 116]. Finally, we discuss the numerical experiments which are
performed in Article II.

5.1. Relevant assumptions

In the following, we describe the problem setting and the relevant assumptions of
Article II to perform the error analysis. The analysis is performed for LSFs which
require the solution of an elliptic PDE with stochastic diffusion coefficient a(x, ω)
and Dirichlet boundary condition. This is the problem setting of Section 3.2.1.
To apply the results from optimal control, we require that the solution y of the

weak formulation (3.9) satisfies y(·, ω) ∈ H2(D) ∩ H1
0 (D). The regularity of the

solution y is based on the properties of the computational domain D, the diffusion
coefficient a and the right hand side f .

Assumption 5.1 (Assumption 2.3 of Article II). We assume that

(i) the computational domain D is open, bounded, convex and polygonal,

(ii) amin(ω) ≥ 0 for P-a.e. ω ∈ Ω and 1/amin ∈ Lp(Ω) for all p ∈ (0,∞),

(iii) a ∈ Lp(Ω, C1(D̄)) for all p ∈ (0,∞), i.e., the realisations a(·, ω) are continu-
ously differentiable,

(iv) f ∈ L2(D).

Under the above assumption, [113, Theorem 2.1] shows that y(·, ω) ∈ H2(D)∩H1
0 (D)

is satisfied if d = 2. If d = 3 and D is convex, the authors state in [113, Remark
5.2 (c)] that the same property holds. If Assumption 5.1 (i) is replaced by requiring
that D is open, bounded, and has a C2 boundary, y(·, ω) ∈ H2(D) ∩H1

0 (D) is also
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satisfied by [19, Theorem 3.4]. We note that Assumption 5.1 (ii) is automatically
satisfied for uniformly elliptic and bounded diffusion coefficients.
As in the previous chapters, we require that the LSF depends on the outcomes of

an n-variate Gaussian random vector U . As seen in Section 3.2.1, this dependence is
usually achieved by the truncated KL expansion of the stochastic diffusion coefficient.
The following assumption is more general.

Assumption 5.2 (Assumption 2.4 of Article II). (i) The diffusion coefficient
a(x, ω) is a measurable function of an n-variate random vector U : Ω → Rn,
where U follows the n-variate independent standard normal distribution. This
means, there is a function â : D×Rn → R with a(x, ω) = â(x, U(ω)) for P-a.e.
ω ∈ Ω.

(ii) The diffusion coefficient a(x, ω) is three times continuously differentiable with
respect to outcomes u ∈ Rn of U for all x ∈ D.

Assumption 5.2 (ii) is another regularity assumption which we require to apply the
optimal control results of [100, 116].
The main goal of Article II is the derivation of an error bound for the approximation

error of the probability of failure, which behaves as the PDE discretization error.
For the latter, we assume that the approximation error of the LSFs G(U(ω)) =
ymax−Fy(·, ω) and Gh(U(ω)) = ymax−Fhyh(·, ω) is uniformly bounded and behaves
has O(hs).

Assumption 5.3 (Assumption 2.5 of Article II). The operator F is linear and
bounded and there exists constants CFE > 0 and s > 0 independent of h such that
the discretization error with respect to the solution of (3.9) and (3.10) satisfies for
P-a.e. ω ∈ Ω

|G(U(ω))−Gh(U(ω))| = |Fy(·, ω)−Fhyh(·, ω)| ≤ CFEh
s. (5.1)

Since we require the uniform bound in (5.1), the diffusion coefficient has to be
uniformly elliptic and bounded. Thus, our provided error bounds are not directly
applicable for log-normal diffusion coefficients, since these are only pathwise elliptic
and bounded. However, in Remark 2.13 of Article II, we outline an approach to
handle the pathwise case – see also Remark 5.10.
Another assumption for the main statements is the requirement that the CDFs

of the random variables G(U) and Gh(U) are Lipschitz continuous. We note that
Assumption 5.3 and 5.4 are also relevant for the bound of the absolute error in [36,
Lemma 3.4 M1], which forms our starting point.

Assumption 5.4 (Assumption 2.6 of Article II). The CDFs of the random variables
G(U) and Gh(U) are local Lipschitz continuous with Lipschitz constants CL > 0 and
CL,h > 0, i.e., for a, b with a < b it holds

P[G(U) ∈]a, b]] = P[G(U) ≤ b]− P[G(U) ≤ a] ≤ CL|a− b|,
P[Gh(U) ∈]a, b]] = P[Gh(U) ≤ b]− P[Gh(U) ≤ a] ≤ CL,h|a− b|.
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As discussed in Section 2.3, the FORM estimate is an upper bound of the probability
of failure if the failure domain is convex. In the proof outline, we will see that the
limit-state surface of a convex failure domain can be translated to the limit-state
surface of the linearized failure domain. The convexity assumption is summarized in
the following assumption.

Assumption 5.5 (Assumption 2.9 of Article II). The failure domains A and Ah are
unbounded, convex sets.

The next assumption states that the gradients ∇uG and ∇uGh are not degenerated
at the limit-state surface. Moreover, we require that the direction from a point
u ∈ ∂A to its nearest neighbour uh ∈ ∂Ah is not orthogonal to ∇uG(u).

Assumption 5.6 (Assumption 2.10 of Article II). For all h > 0 there exists
νh > 0 such that for almost every u ∈ ∂A it holds ∇uG(u) ̸= 0, ∇uGh(u) ̸= 0
and | cos (∢ (u− uh,∇uG(u))) | ≥ νh, where uh ∈ ∂Ah is the point that has minimal
distance to u and ∢(·, ·) denotes the angle between two vectors.

5.2. Error bounds

In the following, we state the main results of Article II. Proposition 5.7 shows that
the relative error of the FORM estimates behaves as the PDE discretization error.
We note that this proposition does not require convexity of the failure domains.
Thus, this proposition is in general more applicable since a priori knowledge of the
geometric properties of the failure domains is not required.

Proposition 5.7 (Proposition 2.11 of Article II). Let a(x, ω) be a uniformly elliptic
and bounded diffusion coefficient and let Assumptions 5.1, 5.2, 5.3, 5.4, and 5.6 hold.
Then for h > 0 sufficiently small, the relative error of the FORM estimates is upper
bounded by

|PFORM
f − PFORM

f,h |
PFORM
f

≤ ĈFORMhs. (5.2)

In contrast to the above proposition, Theorem 5.8 requires convexity of the failure
domains. In this case, the absolute error of the probability of failure behaves as the
PDE discretization error multiplied by the FORM estimate.

Theorem 5.8 (Theorem 2.12 of Article II). Let a(x, ω) be a uniformly elliptic and
bounded diffusion coefficient and let Assumptions 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 hold.
Then for h > 0 sufficiently small, the error of the exact and approximate probability
of failure is upper bounded by

|Pf − Pf,h| ≤ ĈhsPFORM
f,h . (5.3)

As we show in Article II, the constants ĈFORM > 0 in (5.2) and Ĉ > 0 in (5.3),
respectively, depend on CFE, h, n, ∥uMLFP∥2, and ∥uMLFP

h ∥2.
We note that Proposition 5.7 and Theorem 5.8 require the problem setting of

Subsection 3.2.1, i.e., the LSF depends on the solution of an elliptic diffusion equation.
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The following theorem holds for general affine linear LSFs of the form G(U) = aTU+b,
where a ∈ Rn, b > 0 and U ∼ N(0, Idn). For affine linear LSFs, we show that the
relative error of the probability of failure behaves as the PDE discretization error,
where the derived constant Ĉ linear in (5.4) depends on b, a, CFE and h.

Theorem 5.9 (Theorem 3.2 of Article II). Let Assumptions 5.3 and 5.4 hold and
G(U) = aTU + b be an affine linear LSF. The discretization parameter is chosen
such that −b+ CFEh

s < 0. Then, the relative approximation error of the probability
of failure is bounded by

|Pf − Pf,h|
Pf

≤ Ĉ linearhs. (5.4)

Remark 5.10. We remark that the above statements require that the approximation
error of the LSF is uniformly bounded. This requirement is in general not satisfied
for diffusion coefficients which are only pathwise elliptic and bounded. For instance,
log-normal diffusion coefficients are among this class. In Remark 2.13 of Article II,
we conjecture that similar error bounds hold for the pathwise case. We claim that the
random variable U can be restricted to a bounded domain BR := {u ∈ Rn : ∥u∥2 ≤ R}
and the random variable CFE(ω) is uniformly bounded within BR. Thus, the analysis
is performed after restricting U to BR. This approach can be seen as truncating the
tails of U , which yields a uniformly elliptic and bounded diffusion coefficient.

5.3. Proof outline

In the following, we give an outline of the proofs of the above statements. This
outline is based on the steps (P1)–(P5) of Article II. The complete proofs are given
in Article II. We visualize the steps of the proof by considering an artificial example.
Figure 4 shows an illustration of an exact and approximate failure domain A and
Ah, respectively, which are defined on a two-dimensional parameter space. We note
that there is no mathematical model behind the LSF.

(a) Exact failure domain (b) Approximate failure domain

Figure 4: The left plot shows the exact failure domain A and the right plot shows
the approximate failure domain Ah of the artificial LSFs G and Gh.

In (P1), we show that the absolute error |Pf −Pf,h| behaves as hs, which is the result
of [36, Lemma 3.4 M1]. For this result, we require Assumption 5.3 and 5.4. We start
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by showing that the absolute error of the probability of failure is upper bounded by
the Gaussian measure of the symmetric difference A△Ah. This result is expressed as

|Pf − Pf,h| ≤ P ({G(U) ≤ 0} ∩ {Gh(U) > 0}) + P ({G(U) > 0} ∩ {Gh(U) ≤ 0})
= P (A△Ah) .

Figure 5: Symmetric difference of the failure domains.

The symmetric difference is visualized in Figure 5. We observe that the absolute error
is based on the Gaussian measure of the collection of states u ∈ Rn, where the sign of
G and Gh differs. By Assumption 5.3, this is only possible if G(U) ∈]−CFEh

s, CFEh
s]

and we conclude

|Pf − Pf,h| ≤ P (G(U) ∈]− CFEh
s, CFEh

s]) ≤ 2CLCFEh
s, (5.5)

where the final inequality follows from the Lipschitz continuity of the CDF of G(U)
given in Assumption 5.4. This concludes (P1).
In (P2), we show that CL behaves as the probability of failure Pf if G is affine linear.

Indeed, this proves Theorem 5.9. We assume that the LSF is given by G(U) = aTU+b,
where a ∈ Rn and b > 0 such that −b + CFEh

s < 0. Under this assumption, we
upper bound the local Lipschitz constant in the intervals G(U) ∈]− CFEh

s, 0] and
G(U) ∈ [0, CFEh

s] separately. In the first interval, we show that

CL ≤
(
b

ζ2
+

1

b
+

1

bζ2
+

1

b3

)
Pf , (5.6)

where ζ2 := ∥a∥22. For the second interval, we derive a similar result. Under the
assumption that −b+ CFEh

s < 0, we show that the local Lipschitz constant in the
second interval is upper bounded by

CL ≤
(
b+

1

b

)(
1

ζ2
+

1

(b− CFEh
s)2

)
exp

(
2bCFEh

s − C2
FEh

2s

2ζ2

)
Pf . (5.7)

Indeed, (5.6) and (5.7) require that U is a Gaussian random variable. Combining (5.6)
and (5.7) yields an upper bound of the form 2CLCFE ≤ C2 (b, ζ, h

s, CFE)Pf . Plugging
this expression into (5.5) concludes (P2) and proves Theorem 5.9.
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In (P1), we have observed that the symmetric difference has a significant role in
the error analysis. The symmetric difference can be expressed by the distances of
the limit-state surfaces ∂A and ∂Ah. In (P3), we prove that the distance of ∂A and
∂Ah behaves as hs. Indeed, we show that for all u ∈ ∂A it holds

dist(u, ∂Ah) ≤ C3h
s. (5.8)

In (P3), we apply an a priori error bound which has been developed in [116] for
optimal control problems. In particular, for u∗ ∈ ∂A, we investigate the optimal
control problem

min
u∈Rn

Jρ(u) :=
1

2
G(u)2 +

ρ

2
∥u− u∗∥22, (5.9)

where ρ > 0 is a regularizing parameter. Indeed, the point u∗ is a stable solution
of (5.9). By [116, Theorem 3.4.1 and 3.4.2], there exists ûh in a neighbourhood of
u∗, where ûh is a stable solution of the discretized optimal control problem

min
u∈Rn

Jh,ρ(u) :=
1

2
Gh(u)

2 +
ρ

2
∥u− u∗∥22.

Moreover, with Assumption 5.6, we derive that ∥u∗ − ûh∥2 = O(hs). Considering
the limit ρ → 0, we conclude that ûh → ∂Ah which shows (P3), i.e., the distance
of the exact and approximate limit-state surface is upper bounded by C3h

s. This
statement is visualized in Figure 6.

Figure 6: The distance between the exact and approximate limit-state surface behaves
as C3h

s.

With (P3), we prove Proposition 5.7. We denote by b := ∥uMLFP∥2 and bh :=
∥uMLFP

h ∥2 the distance of the MLFPs to the origin. From (P3), we derive that the
distance of the MLFPs behaves as |b − bh| ≤ C3h

s. By definition, it holds that
PFORM
f = P(U1 ≤ −b) and PFORM

f,h = P(U1 ≤ −bh), where U1 is a univariate standard
normal random variable. Thus, we can show that the absolute error of the FORM
estimate is upper bounded by

|PFORM
f − PFORM

f,h | ≤ P (U1 ∈]− b− C3h
s,−b+ C3h

s]) . (5.10)
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We define the affine linear LSF G̃(U1) = U1 + b. We assume that G̃ satisfies

Assumption 5.3 with C̃FE = C3. Applying (P2) to G̃ yields

P
(
G̃(U1) ∈]− C3h

s, C3h
s]
)
≤ C2(bh, 1, h

s, C3)h
sPFORM

f . (5.11)

Since the right hand side of (5.10) is equal to the left hand side of (5.11), we conclude
the proof of Proposition 5.7.
In (P4), we require the upper bound (5.8) of (P3). For convex failure domains, we

prove that the Gaussian measure of the symmetric difference A△Ah behaves as the
Gaussian measure of an interval in 1D. In particular, we derive the bound

P (A△Ah) ≤ C4P (U1 ∈]− bh − C3h
s,−bh + C3h

s]) , (5.12)

where U1 ∼ N(0, 1) and bh = ∥uMLFP
h ∥2. This bound follows from a geometrical

consideration, which is visualized in Figure 7.

Figure 7: Translation of the difference of the failure domains to an interval in 1D.

In (P5), we define the affine linear LSF G̃h(U1) = U1 + bh. We assume that G̃h

satisfies Assumption 5.3 with C̃FE = C3. Applying (P2) to G̃h yields

P
(
G̃h(U1) ∈]− C3h

s, C3h
s]
)
≤ C2(bh, 1, h

s, C3)h
sPFORM

f,h . (5.13)

Finally, combining (5.12) and (5.13) concludes the proof of Theorem 5.8.

5.4. Numerical experiments

In numerical experiments, we investigate the convergence behaviour of the probability
of failure for several LSFs. In particular, we consider the LSFs G(4), G(5), and G(7),
which are defined in Chapter 2. Indeed, these LSFs do not satisfy all assumptions of
Proposition 5.7 and Theorem 5.8, since the bound in Assumption 5.3 does not hold
uniformly for P-a.e. ω ∈ Ω. However, as noted in Remark 5.10, we expect a similar
behaviour of the error bounds in this case.
The LSF G(4) given in (3.5) requires the solution of an ODE in 1D physical space,

while the parametric space is one-dimensional. Failure occurs if the solution y(t, ω)
is larger than ymax = 40 at t = 1. The explicit Euler and the Crank–Nicolson
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discretization schemes are applied to generate approximate LSFs. All quantities
of interest can be calculated analytically and no sampling error is involved. We
observe in Figure 5 of Article II that the distance ∥uMLFP−uMLFP

h ∥2 behaves as O(h)
for the explicit Euler and O(h2) for the Crank-Nicolson scheme. Since the failure
domains are half-rays, the distance of the MLFPs is equal to the distance of the
failure domains and it holds that Pf = PFORM

f . Thus, we expect by Proposition 5.7
and Theorem 5.8 that the relative error of the probability of failure also behaves
as O(h) and O(h2), respectively. In Figure 5 of Article II, we observe that this
conjecture indeed holds.
The LSF G(5) given in (3.6) requires the solution of an elliptic PDE in the unit

interval D = (0, 1) ⊂ R. Failure occurs if the solution y(x, ω) is smaller than

ymin = −1/3 at x̂ = 1/3. We note that the setting of G(5) is not as the setting
described in Section 3.2.1, since the boundary condition is not of Dirichlet form.
However, we expect that our provided error bounds also hold in this setting. Again,
all quantities can be calculated analytically, and, in Section 5.2 of Article II, we show
that the failure domains are convex. FEs are employed with either piecewise linear
or quadratic shape functions. The linear shape functions lead to a discretization
error of order O(h2), while quadratic shape functions lead to O(h3). In Figure 7 of
Article II, we observe that the relative error of the FORM estimates scales as the
FE discretization error. The same holds true for the error bound in Theorem 5.8.
The LSF G(7) given in (3.13) requires the solution of an elliptic PDE with log-

normal diffusion coefficient. Failure occurs if the flow rare q(x, ω) is larger than
qmax,1 = 1.7 at x̂ = 1. In another setting, we consider qmax,2 = 1.5. We consider
two different correlation lengths, λ1 = 0.3 and λ2 = 0.1. In the first case, the
KL expansion is truncated after n1 = 10 leading KL terms, while in the second
case, the KL expansion is truncated after n2 = 50 leading KL terms. For both
cases, FEs are employed with piecewise linear shape functions. The probability
of failure is estimated as the average of 100 SIS simulations with 104 samples per
level. We apply sampling from the vMFN distribution model in the MCMC step
as discussed in Section 4.3. In Figure 8 and Figure 9 of Article II, we observe for
both correlation lengths that the relative error of the FORM estimates and the error
bound in Theorem 5.8 behave as the expected convergence order O(h). We note
that the LSF requires the evaluation of the derivative of the PDE solution. Thus,
the PDE discretization error is of order O(h) [110, Section 1.6]. For λ2 = 0.1, we
observe a preasymptotic behaviour. For large h, the error bounds have a plateau
behaviour since Pf,h is much larger than Pf . For h ≈ 2 · 10−2, we observe a very

small error since Pf,h is approximately Pf . For h < 10−2, we observe the expected
convergence order O(h).
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6. The ensemble Kalman filter for rare event
estimation

In this chapter, we discuss the ensemble Kalman filter for rare event estimation,
which is the topic of Article III. Before we begin with the mathematical formulation,
we give a brief overview on the development of the EnKF. The EnKF builds on
the Kalman filter [62], which has been developed for data assimilation problems.
The Kalman filter is exact if the dynamic and observation operator are linear and
the distributions of the noise and initial state are Gaussian. The extended Kalman
filter [71, Section 4.2.2] has been proposed for nonlinear dynamics and observations.
Therein, the derivative of the dynamic is required. In the EnKF [39], the derivative
is approximated via an ensemble of particles, which makes the EnKF applicable
for a broad range of problems. Compared to other sampling-based methods, the
main advantage of the EnKF is its simple implementation since the EnKF does
not require an MCMC algorithm. In recent years, the EnKF has been developed
for inverse problems [57, 106]. Thereby, the EnKF is applied to generate samples
from the posterior distribution. However, the generated samples are not distributed
according to the posterior distribution if the underlying model is nonlinear. According
to [37], the samples are distributed according to a so-called analysis variable, which
distribution is in general different to the posterior distribution. Due to this fact,
we combine the EnKF with an Importance Sampling approach to estimate the
probability of failure.
In more detail, we reformulate the rare event problem as an inverse problem and

apply the EnKF algorithm of [106] to generate samples from the optimal IS density,
i.e., failure samples. Since the generated samples are not distributed according to the
optimal IS density, according to [37], we fit a distribution model with the generated
samples and estimate the probability of failure by IS. This yields an unbiased
estimator of the probability of failure if the support of the fitted distribution contains
the failure domain.
If the LSF is affine linear, we prove, under certain assumptions, that the mean

of the EnKF particles converges to a convex combination of the MLFP and the
mean of the optimal IS density. Due to this property, we motivate the EnKF as an
algorithm to generate samples which are in proximity of the MLFP and approximate
the curvature of the limit-state surface.

6.1. The EnKF algorithm

We begin with the reformulation of the rare event problem as an inverse problem. We
apply the rectified linear unit (ReLU) to the outcome of G and define the auxiliary

LSF G̃ : Rn → R by

G̃(u) := max{0, G(u)}.

Thus, the optimal IS density is rewritten as

popt(u) =
1

Pf

I(G̃(u) = 0)φn(u). (6.1)
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The goal is to apply the EnKF algorithm of [106] to generate samples from the
optimal IS density, i.e., failure samples. We note that the algorithm of [106] is
motivated by the SMC algorithm for Bayesian inverse problems [9, 31, 60]. To
consider the rare event problem as an inverse problem, we define the artificial data
as y† = 0 and we seek u† ∈ Rn such that

y† = G̃(u†) + η, (6.2)

where η is observational noise which is distributed according to N(0, 1). In this
way, (6.2) has the form of a Bayesian inverse problem. Following the Bayesian
perspective in [25, 112], we model (u, y) as a realisation from a jointly varying
random variable (U, Y ). In this Bayesian viewpoint, the optimal IS density popt is the
posterior density, the indicator function represents the likelihood function, φn is the
prior density, and Pf the evidence. This relationship is also observed in [115]. Under
mild assumptions on the forward model, noise distribution and prior distribution,
the inverse problem (6.2) is well-posed [69, 112].
In the EnKF, the optimal IS density is approximated in an adaptive sequential

manner similar to SIS. We define the sequence of EnKF densities by

pEnKF
0 (u) := φn(u),

pEnKF
k (u) :=

1

PEnKF
k

exp

(
− 1

2σk
G̃(u)2

)
φn(u), for k = 1, . . . , NT ,

where PEnKF
k is a normalizing constant. The sequence ∞ = σ0 > σ1 > · · · > σNT

> 0
defines the sequence of temperatures. For σk = 0, the optimal IS density (6.1) is
obtained. In Figure 1 of Article III, the approximation of the indicator function by
the EnKF and SIS densities is shown. We observe that the EnKF densities are equal
to the indicator function for {G ≤ 0}, while the SIS densities are symmetric around
{G = 0}. By the sequential definition of pEnKF

k , it holds that

pEnKF
k (u) =

PEnKF
k−1

PEnKF
k

exp

(
−1

2

(
1

σk
− 1

σk−1

)
G̃(u)2

)
pEnKF
k−1 (u).

Thus, we set ∆σk := 1/σk − 1/σk−1 as the step size of the EnKF update. We note
that in [106] a constant step size ∆σk = ∆σ is employed. However, we employ
an adaptive procedure similar to SIS to reduce the number of update steps. This
approach is also applied in [58]. With the target coefficient of variation δtarget, we
determine σk adaptively by

σk = argmin
σ∈(0,σk−1)

(
δwk
− δtarget

)2
, where δwk

:=
StD

p
EnKF
k−1

[wk(U)]

E
p
EnKF
k−1

[wk(U)]

and the weights are given by

w1(u) = exp

(
− 1

2σ1
G̃(u)2

)
,

wk(u) = exp

(
−1

2

(
1

σk
− 1

σk−1

)
G̃(u)2

)
, for k > 1.
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Each density pEnKF
k is approximated by an ensemble of equally weighted particles

uk = {u(j)k }Jj=1. In one EnKF update step, the ensemble uk−1 is updated to the
ensemble uk via

u
(j)
k = u

(j)
k−1 + Cup(uk−1)

(
Cpp(uk−1) +

1

∆σk

)−1 (
y
(j)
k − G̃(u

(j)
k−1)

)
,

for j = 1, . . . , J , where the data y† is perturbed by additive Gaussian noise ξ
(j)
k ∼

N(0,∆σ−1
k ), i.e.,

y
(j)
k = y† + ξ

(j)
k . (6.3)

The empirical cross-covariances Cpp ∈ R and Cup ∈ Rn are given by

Cpp(uk−1) :=
1

J

J∑

j=1

(
G̃(u

(j)
k−1)−G

)(
G̃(u

(j)
k−1)−G

)
,

Cup(uk−1) :=
1

J

J∑

j=1

(
G̃(u

(j)
k−1)−G

)(
u
(j)
k−1 − u

)
,

where the quantities u ∈ Rn and G ∈ R are the empirical means

u :=
1

J

J∑

j=1

u
(j)
k−1, G :=

1

J

J∑

j=1

G̃(u
(j)
k−1).

The EnKF stops if the coefficient of variation δwopt,k
is smaller than δtarget. At the

kth iteration, the weights wopt,k are defined by

wopt,k(u) := I(G̃(u) = 0) exp

(
1

σk
G̃(u)2

)
.

We estimate δwopt,k
after each EnKF update with the ensemble uk. If δwopt,k

≤ δtarget,
the iteration stops and we set NT := k as the number of EnKF updates.
Since G̃ is always nonlinear, the EnKF does not generate samples which are dis-

tributed according to the EnKF densities pEnKF
k . By [37], the samples are distributed

according to the so-called analysis variable, whose distribution differs from the one
of the EnKF densities. Thus, we cannot use the generated samples to estimate the
fractions PEnKF

k /PEnKF
k−1 as in SIS. However, we motivate the EnKF as an algorithm to

generate samples which are in proximity of the MLFP and approximate the curvature
of the limit-state surface. In Theorem 6.3, we prove that this property holds if
the LSF G is affine linear. With the generated samples uNT

, we fit a distribution

model and generate J samples {û(j)}Jj=1, which are distributed according to the fitted
density p̂. Finally, we apply IS to estimate Pf by

P̂EnKF
f :=

1

J

J∑

j=1

I(G(û(j)) ≤ 0)
φn(û

(j))

p̂(û(j))
. (6.4)
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We note that this procedure is similar to [68, Algorithm 3.1]. By the properties of
IS, the EnKF estimator is unbiased if the support of p̂ contains the failure domain
A. In Article III, we consider the Gaussian mixture model [42, Section 1] and the
vMFN distribution model [93] for p̂. The EnKF algorithm for rare event estimation
is shown in Algorithm 1 of Article III. In the numerical experiments of Article III, we
observe that the EnKF estimator is skewed. This is due to the fact that the likelihood
weights in (6.4) might be large in infrequent simulation runs due to the choice of the
parametric model of p̂, which leads to infrequent outliers. This observation in also
discussed in [90, Section 9.3].

6.2. Theoretical properties

In the following, we prove theoretical properties of the EnKF if the LSF G is affine
linear. Our starting points are the investigated properties of the EnKF for inverse
problems. The authors of [57] show that the EnKF particles stay within the subspace
spanned by the initial ensemble. This property is also known as the subspace property
and also holds true for the EnKF for rare event estimation since we apply the EnKF
to the inverse problem (6.2). The continuous-time limit ∆σk → 0 is studied in [11,
106, 107], which yields a coupled system of stochastic differential equations. Based
on these results, we derive the continuous-time limit of the EnKF for rare event
estimation in Theorem 6.2. In [17, 43, 55], the mean and covariance of the EnKF
particles are studied for an infinite ensemble in the linear Gaussian setting. In
Theorem 6.3, we prove that the mean of the EnKF particles converges to a convex
combination of the MLFP and the mean of the optimal IS density for σk → 0.
For the remainder of this chapter, we assume that the EnKF is applied without

noise, i.e., ξ
(j)
k = 0 in (6.3), for j = 1, . . . , J and k = 1, . . . , NT . Moreover, we

add the limit-state surface {G = 0} to the safe domain. Thus, failure is defined
as the event that G < 0. This does not influence the probability of failure since
the limit-state surface is a set with Lebesgue measure equal to zero. For the noise
free case, it is useful to consider safe and failure particles separately. This is due to
the fact that failure particles do not move and remain failure particles. Moreover,
safe particles remain safe particles for all iteration as we see in Theorem 6.2. As
another assumption, we require that the LSF is affine linear and the initial particles
are independently standard Gaussian distributed. All assumptions are stated in the
following assumption, which is also given in Article III.

Assumption 6.1 (Assumption 4.3 of Article III). We assume that

(i) G(u) = aTu+ b with a = (1, 0, . . . , 0)T ∈ Rn and b > 0,

(ii) the initial particles {u(j)0 }Jj=1 are independently standard Gaussian distributed,

(iii) the EnKF is applied without noise, i.e., y
(j)
k = y†.

We note that the assumption a = (1, 0, . . . , 0)T ∈ Rn holds without loss of generality
by the rotation invariance of the Gaussian measure.
In Theorem 6.2, we consider the continuous-time limit ∆σk → 0 of the EnKF

update. We show that this limit yields a coupled system of SDEs. This result is
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based on the derived continuous-time limit in [106]. We note that the SDE is written
in terms of the derivative with respect to the time t. This is the usual notation for
stating SDEs. The time t and the temperature σ are related via t = 1/σ. Thus, the
limit σ → 0 refers to the infinite time limit t→∞.

Theorem 6.2 (Theorem 4.1 of Article III). Let Assumption 6.1 hold. Denote by

S = {k ∈ [J ] : G(u(k)) ≥ 0} and F = {k ∈ [J ] : G(u(k)) < 0} the index sets of the
safe and failure particles. Then, the safe particles satisfy the flow

du(j)

dt
= −Cuu(u)Du

(
1

2
G(u(j))2

)
+
G(u(j))

J

∑

k∈F
G(u(k))(u(k) − ū), (6.5)

while failure particles do not move. The matrix Cuu ∈ Rn×n denotes the empirical
covariance matrix of the ensemble {u(j)}Jj=1.

From the first summand in (6.5), we observe that the particles move in the direction
of the negative gradient of G. Thus, this term pulls the particles to the limit-
state surface. From the second summand in (6.5), we observe that the direction

G(u(k))(u(k) − ū) points away from the limit-state surface if the mean u is in the

safe domain since G(u(k)) < 0 for k ∈ F . Indeed, in the proof of Theorem 6.3,
we observe that the safe particles will always move to the limit-state surface, i.e.,
the first summand in (6.5) dominates the flow. If a particle reaches the limit-state

surface, it remains there since G(u(j)) = 0 and, thus, (6.5) is equal to zero.

Proof outline of Theorem 6.2. By [106], the particle flow satisfies the SDE

du(j)

dt
=

1

J

J∑

k=1

⟨G̃(u(k))−G,−G̃(u(j))⟩(u(k) − u), (6.6)

where we have used that the EnKF is applied without noise. By splitting the sum
in (6.6) into the safe and failure particles and rearranging the terms yields the

SDE (6.5) for safe particles. For failure particles, it holds that G̃(u(j)) = 0. Thus,
we obtain from (6.6) that these particles do not move.

The next theorem states that for t→∞ and J →∞, the ensemble mean converges to
a convex combination of the MLFP and the mean of the optimal IS density. The mean
of the optimal IS density is denoted by uopt ∈ Rn. We consider an infinite ensemble
{u(j)}∞j=1 and we denote by U(t) the random variable which is distributed according
to the particle density of this infinite ensemble. We denote the mean of the particles
as m(t) := E[U(t)] and the covariance as C(t) := Cov[U(t)]. Moreover, we split the
infinite ensemble into safe and failure particles. We denote by US(t) the random
variable which is distributed according to the particle density of the safe particles
{u(j) : G(u(j)) ≥ 0}, while UF (t) denotes the random variable which is distributed

according to the particle density of the failure particles {u(j) : G(u(j)) < 0}. Since
failure particles remain failure particles and safe particles remain safe particles, it
holds that P(U(t) = US(t)) = (1− Pf ) and P(U(t) = UF (t)) = Pf .
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Theorem 6.3 (Theorem 4.7 of Article III). Let Assumption 6.1 hold. For the large
particle limit J →∞, the ensemble mean satisfies

lim
t→∞

m(t) = (1− Pf )u
MLFP + Pfu

opt.

From Theorem 6.3, we observe that the mean of the particles is in proximity of the
MLFP and the safe particles are on the limit-state surface. For nonlinear LSFs, we
expect a similar behaviour. We expect that the mean of the particles is in proximity
of the MLFP and the safe particles move to the limit-state surface and remain
there. Moreover, we expect that the covariance of the safe particles stays constant in
direction parallel to the limit-state surface and decreases in direction perpendicular
to the limit-state surface. Thus, the safe particles approximate the curvature and
the shape of the limit-state surface.

Proof outline of Theorem 6.3. By splitting the ensemble in safe and failure particles,
the mean m(t) can be written as

m(t) = (1− Pf )mS(t) + PfmF (t).

Thus, it is sufficient to prove that limt→∞mF (t) = uopt and limt→∞mS(t) = uMLFP.
Since failure particles do not move, it holds that mF (t) := E[UF (t)] = uopt for all
t ≥ 0, which concludes the first part.
In the next step, we show in Lemma 4.8 of Article III that the mean of the safe

particles mS(t) := E[US(t)] satisfies

dmS(t)

dt
= −G(mS(t))

(
C(t)− Pf

(
1−m(t)(uopt + b)

))
, (6.7)

where we use the fact that safe particles move only in direction perpendicular to
the limit-state surface by the linearity of G. Thus, we can consider the dynamic for
n = 1. To conclude the proof, we show with Lemma 4.10 of Article III that

C(t)− Pf

(
1−m(t)(uopt + b)

)
> 0, for all t ≥ 0.

This implies that the right hand side of (6.7) is always negative as long as G(mS(t)) >
0. Thus, the mean of the safe particles mS(t) moves to the MLFP uMLFP = −b, i.e.,
limt→∞mS(t) = uMLFP, which concludes the proof.

6.3. The EnKF for multi-modal failure domains

In the previous section, we have seen that the EnKF particles move to a single
mean value. Thus, the EnKF algorithm of Section 6.1 is not useful to generate
samples of separated failure modes. In [33, 77, 109], the authors propose to fit a
GM distribution in each EnKF update step and to update the particles belonging
to each mixture term separately. However, we propose the approach of [102] as a
localization technique to determine localized covariance matrices. Therein, Cpp and
Cup are localized for each particle of the ensemble. This is achieved by the weight
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matrix W ∈ RJ×J , which represents the distances of the particles. The entries of the
weight matrix are given by

Wi,j = exp

(
− 1

2ζ
∥u(i)k−1 − u

(j)
k−1∥22

)
, for i, j = 1, . . . , J, (6.8)

where ζ > 0 is a parameter chosen by the user. From (6.8), we observe that the

entries ofW can be interpreted as the value of the PDF φn(u
(i)
k−1 | u

(j)
k−1, ζ ·Idn), which

is the Gaussian density with mean vector u
(j)
k−1 and covariance matrix ζ · Idn. With

this insight, we propose a novel algorithm, where the covariance matrix is chosen
adaptively. We propose to split the ensemble uk−1 into M clusters and we determine
for each cluster the empirical covariance matrix Cm ∈ Rn×n for m = 1, . . . ,M . For

the particle u
(j)
k−1 belonging to the cluster m, we determine the jth column of the

weight matrix by

Wi,j = exp

(
−1

2
∥C−1/2

m (u
(i)
k−1 − u

(j)
k−1)∥22

)
, for i = 1, . . . , J.

After calculating all entries of W , it is normalized such that each column sums up to
one. The normalized weight matrix is denoted by W . The localized means are

u
(j)
loc =

J∑

i=1

W i,ju
(i)
k−1, G

(j)
loc =

J∑

i=1

W i,jG̃(u
(i)
k−1).

With these localized means, we determine the localized cross-covariances by

Cloc,pp(u
(j)
k−1) =

J∑

i=1

W i,j

(
G̃(u

(i)
k−1)−G

(j)
loc

)(
G̃(u

(i)
k−1)−G

(j)
loc

)
,

Cloc,up(u
(j)
k−1) =

J∑

i=1

W i,j

(
G̃(u

(i)
k−1)−G

(j)
loc

)(
u
(i)
k−1 − u

(j)
loc

)
.

With the localized covariances, one update of the EnKF algorithm for multi-modal
failure domains is given by

u
(j)
k = u

(j)
k−1 + Cloc,up(u

(j)
k−1)

(
Cloc,pp(u

(j)
k−1) +

1

∆σk

)−1 (
y
(j)
k − G̃(u

(j)
k−1)

)
. (6.9)

We note that for equal weights W i,j = 1/J for i, j = 1, . . . , J , the usual EnKF
algorithm of Section 6.1 is obtained. Since each particle moves according to localized
mean and localized covariances, which are based on their nearest neighbourhood, the
EnKF update (6.9) enables that particles move to separate failure modes.

6.4. Numerical experiments

In numerical experiments, we compare the performance of the EnKF with SIS in
terms of the required computational costs and the achieved relative root mean
square error, which is defined in (4.11). Since all LSFs are considered on a single
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discretization level, one LSF evaluation represents one unit of computational cost.
Both methods are applied with a varying number of samples J and with different
target coefficients of variations δtarget. The EnKF is always employed with noise,
which yields a more robust algorithm since failure particles and particles on the
limit-state surface are moving.
We consider four LSFs which are defined in Chapter 3. The first three LSFs

are G(1), G(2), and G(3), which are analytically given and are defined for a two-
dimensional parameter space. Therefore, we can visualize how the particles are
evolving during the iterations. The fourth example is the LSF G(6) (3.12), which
requires the solution of an elliptic diffusion equation in 1D space with log-normal
diffusion coefficient. We remind that we define failure as the event that the solution
y(x, ω) is larger than ymax = 0.535 at x̂ = 1. We set n = 150 as the truncation order
of the KL expansion.
For the first LSF G(1) (3.1), we observe in Figure 2 of Article III that the EnKF

particles are more spread along the limit-state surface than the SIS particles. We
expect this behaviour of the EnKF particles by the proof of Theorem 6.3, where
we show that the variance of the particles in direction parallel to the limit-state
surface does not change. In Figure 3 of Article III, we compare the performance of
the methods. We observe that the EnKF requires less computational costs than SIS
for a fixed level of accuracy. Indeed, the achieved relRMSE by the EnKF does not
vary considerably if δtarget increases. For SIS, we observe that the error increases as
δtarget increases.

The second LSF G(2) (3.2) leads to a failure domain with two distinct failure
modes. Thus, we apply the EnKF with the multi-modal strategy of Section 6.3
with ζ = 2 in (6.8). In Figure 5 of Article III, we see that the EnKF requires less
computational costs than SIS for a fixed level of accuracy. However, a larger target
coefficient of variation yields a larger error for the EnKF.
The third experiment investigates the LSF G(3) (3.3). The respective failure

domain consists of four distinct failure modes. The EnKF is applied for different
values for ζ. In Figure 6 of Article III, we observe that for small ζ, the ensemble
splits more clearly into the four failure modes. However, for very small ζ, the
ensemble is too concentrated. Therefore, we choose ζ = 0.25 and investigate the
performance more particularly. In Figure 7 of Article III, we observe that SIS requires
less computational costs than the EnKF for a fixed level of accuracy. As another
multi-modal strategy, we consider the adaptive strategy discussed in Section 6.3. In
Figure 8 of Article III, we observe that for δtarget = 5.00, the EnKF requires less
computational costs than SIS for a fixed level of accuracy.
In the fourth experiment, the EnKF is applied to G(6) (3.12), which depends on

a high-dimensional parameter space. For this LSF, we expect a unimodal failure
domain. In Figure 9 of Article III, we observe that the performance of the EnKF is
similar as in the first experiment. The reached relRMSE stays nearly constant while
varying δtarget. Again, the EnKF requires less computational costs than SIS for a
fixed level of accuracy.
We conclude that the EnKF yields a better performance as SIS for unimodal

failure domains. For multi-modal failure domains, the multi-modal strategy of the
EnKF requires a careful choice of its algorithmic parameters.
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7. Conclusion and outlook

In this chapter, we briefly summarize the contributions of this dissertation and we
give an outlook of possible directions for future research.
We have introduced the problem setting of rare event estimation and we have

discussed several sampling based methods, which have been developed to estimate
the probability of rare events. Among them are Monte Carlo Sampling, Importance
Sampling, Sequential Importance Sampling, and Subset Simulation. Furthermore,
we have introduced Multilevel Monte Carlo and Multilevel Subset Simulation, which
enable usage of coarse grid limit-state function evaluations. These methods are
applicable for LSFs which require the solution of a partial differential equation. In
addition, we have considered the first order reliability method as a deterministic
approximation method.
Based on SIS, we have developed Multilevel Sequential Importance Sampling as a

novel multilevel algorithm for computing rare event probabilities. MLSIS combines the
tempering approach of SIS with the multilevel approach of the Multilevel Sequential2

Monte Carlo algorithm given in [70]. The MLSIS estimator overcomes the nestedness
issue of MLSuS since the support of the employed densities is the whole parametric
domain. In numerical experiments, we have observed that MLSIS requires less
computational costs than SIS for a fixed level of accuracy and the performance
of MLSIS is similar to the performance of MLSuS. Moreover, sampling from the
von Mises–Fisher–Nakagami distribution model increases the accuracy for a fixed
computational budget compared to adaptive conditional sampling.
We note that the bridging approach of the MLSIS estimator yields a flexible way

of combining general LSF approximations. Thus, a future research direction could be
the implementation of the MLSIS estimator for general multifidelity approximations.
In addition to the MLSIS estimator, we have implemented the ensemble Kalman

filter as a novel single level variance reduction technique for rare event estimation.
Thereby, we formulate the rare event problem as an inverse problem and apply the
EnKF algorithm of [57, 106] to generate failure samples. After the EnKF iteration
is finished, we fit a distribution model with the generated samples and apply IS to
estimate the probability of failure. In addition to describing algorithmic properties,
we derive theoretical properties of the EnKF tailored to rare event estimation. For
affine linear LSFs, we derive the continuous-time limit of the EnKF update if the
EnKF is applied without noise. If in addition an infinite ensemble size is considered,
we show that the mean of the EnKF particles converges to a convex combination of
the most likely failure point and the mean of the optimal IS density. In numerical
experiments, we have observed that the EnKF requires less computational costs than
SIS for a fixed level of accuracy if the failure domain is unimodal. For multi-modal
failure domains, the EnKF requires a careful choice of its algorithmic parameters to
achieve a similar performance as SIS.
This dissertation can be used as a starting point to derive further theoretical

properties of the EnKF tailored to rare event estimation. Indeed, the theoretical
investigation for nonlinear LSFs is missing. Moreover, we have only considered
the case that the EnKF is applied without noise. As the EnKF is more robust in
numerical experiments if it is applied with noise, the theoretical properties of the
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noisy EnKF would be of higher importance. Motivated by the MLSIS algorithm,
another research direction is the combination of the EnKF with a multilevel approach
to enable usage of coarse grid LSF evaluations in PDE settings. Another direction
of future research is the investigation of different reformulations of the rare event
problem. In the present dissertation, we have applied the rectified linear unit to the
original LSF to obtain an inverse problem formulation. Besides the ReLU function,
one could consider alternative functions and study theoretical properties with respect
to these alternative formulations.
Besides MLSIS and the EnKF, another part of this dissertation is the analysis of

the approximation error of the probability of failure. If the LSF requires the solution
of a PDE which relies on a uniformly elliptic and bounded diffusion coefficient, we
derive, under further assumptions, that the absolute error of the probability of failure
behaves as the PDE discretization error multiplied by the FORM estimate. One of
these further assumptions is the convexity of the failure domains. For general failure
domains, we show that the relative error of the FORM estimate behaves as the PDE
discretization error. In numerical experiments, we have observed that our derived
error bounds hold in settings, where the diffusion coefficient is only pathwise elliptic
and bounded.
This dissertation opens several possible ways about future research directions

concerning the approximation error of the probability of failure. One of these is the
derivation of a proof that our derived error bounds hold if the diffusion coefficient is
only pathwise elliptic and bounded. Moreover, in the given error analysis, we have
considered the case that the dimension of the input random variable is fixed and finite.
However, if the stochastic input is a random field, there is another contribution to
the approximation error which stems from truncating the Karhunen–Loève expansion
of the input random field. Thus, the investigation of the approximation error which
is induced by truncating the KL expansion is another research direction. In this
case, we expect that the error bound of the probability of failure behaves as the
truncation error of the KL expansion. Finally, the derived error bounds could be
used to construct efficient multilevel methods as in [36], which would combine the
approaches of Article I and III.
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List of abbreviations

aCS adaptive conditional sampling

a.e. almost every

CDF cumulative distribution function

EnKF ensemble Kalman filter

FE Finite Element

FORM first order reliability method

IS Importance Sampling

KL Karhunen–Loève

LSF limit-state function

MCMC Markov chain Monte Carlo

MCS Monte Carlo Sampling

MLFP most likely failure point

MLMC Multilevel Monte Carlo

MLSIS Multilevel Sequential Importance Sampling

MLS2MC Multilevel Sequential2 Monte Carlo

MLSuS Multilevel Subset Simulation

ODE ordinary differential equation

PDE partial differential equation

PDF probability density function

relRMSE relative root mean square error

ReLU rectified linear unit

SDE stochastic differential equation

SIS Sequential Importance Sampling

SMC Sequential Monte Carlo

SORM second order reliability method

StD standard deviation

SuS Subset Simulation

vMFN von Mises–Fisher–Nakagami
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A. Core Article: Multilevel sequential importance
sampling for rare event estimation

Summary

In this article, we develop Multilevel Sequential Importance Sampling (MLSIS)
as a novel sampling-based estimator for the probability of rare events. We focus
on limit-state functions (LSFs) which require the solution of a partial differential
equation. These LSFs are expensive to handle, which often makes the estimation
of failure events by simple Monte Carlo methods computationally intractable. Our
novel estimator is based on Sequential Importance Sampling (SIS) [94] and combines
the evaluation of LSFs with different discretization accuracies, e.g. a finite element
mesh size. We employ the two-fold adaptive algorithm of [70], which ensures that
we obtain an estimate based on the desired discretization accuracy. In the MLSIS
algorithm, we sequentially enhance the approximation of the optimal Importance
Sampling density. On the one hand, we increase the discretization level. On the other
hand, we apply tempering to increase the approximation of the indicator function,
which is part of the optimal Importance Sampling density.
Our estimator overcomes the nestedness problem associated with the Multilevel
Subset Simulation (MLSuS) estimator, which has been developed in [114]. MLSIS
automatically satisfies nestedness since the support of the employed densities is
the whole parametric domain. As suggested in [114] for MLSuS, we employ a level
dependent parameter dimension for the MLSIS estimator to decrease the discrepancy
of two consecutive discretization levels. This yields computational benefits since
more tempering updates are performed on coarse levels.
Another contribution of this article is a novel Markov chain Monte Carlo (MCMC)
kernel based on independent proposals from an adaptively constructed von Mises–
Fisher–Nakagami (vMFN) distribution. The vMFN distribution model yields benefits
compared with a Gaussian mixture model, since the vMFN distribution model is
applicable even in high-dimensional parametric spaces. In numerical experiments,
we compare the performance of MLSIS with SIS, SuS and MLSuS. We observe
that MLSIS requires less computational costs than SIS for a fixed level of accuracy,
while the performance of MLSIS is similar to the performance of MLSuS. Moreover,
sampling from the vMFN distribution model decreases the variance of the MLSIS
estimator compared to adaptive conditional sampling.
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MULTILEVEL SEQUENTIAL IMPORTANCE SAMPLING FOR
RARE EVENT ESTIMATION∗

F. WAGNER† , J. LATZ‡ , I. PAPAIOANNOU§ , AND E. ULLMANN†

Abstract. The estimation of the probability of rare events is an important task in reliability
and risk assessment. We consider failure events that are expressed in terms of a limit state function,
which depends on the solution of a partial differential equation (PDE). Since numerical evaluations
of PDEs are computationally expensive, estimating such probabilities of failure by Monte Carlo
sampling is intractable. We develop a novel estimator based on a sequential importance sampler
using discretizations of PDE-based limit state functions with different accuracies. A twofold adaptive
algorithm ensures that we obtain an estimate based on the desired discretization accuracy. Moreover,
we suggest and study the choice of the Markov chain Monte Carlo kernel for use with sequential
importance sampling. Instead of the popular adaptive conditional sampling method, we propose a
new algorithm that uses independent proposals from an adaptively constructed von Mises–Fisher–
Nakagami distribution.

Key words. reliability analysis, importance sampling, multilevel Monte Carlo, subset simula-
tion, Markov chain Monte Carlo

AMS subject classifications. 35R60, 65C40, 65C60, 65N30
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1. Introduction. Estimating the probability of rare events is crucial in relia-
bility analysis and risk management and arises in applications in many fields. For
instance, the authors in [3] examine rare events arising in financial risk settings while
[41] studies the probability of collision between space debris and satellites. In plan-
ning a radioactive waste repository [12, 43], one is interested in the probability that
radioactive particles leave the repository and pollute the groundwater in a long time
horizon. The particle flow can be simulated by a finite element (FEM) [10] approxima-
tion of the groundwater flow and transport equation. Since the subsurface properties
of the whole domain of interest are uncertain or only measurable at finitely many
points, the soil is modelled as a random field. The particle transport has to be simu-
lated for various realizations of the random field to estimate the probability that the
radioactive particles come back to the human environment, which is a rare event.

All applications have in common that the probabilities of the events are small
(< 10−4) and the limit state function (LSF) underlies a computationally demanding
model which depends on the discretization of the domain. If the discretization level
is high, i.e., the mesh size is small, the FEM approximation is accurate but also cost
intensive. These issues complicate the estimation of the probability of failure.

Before we introduce our novel approach, we give a brief overview of existing algo-
rithms. On the one hand, there are deterministic approximation methods, such as the
first and second order reliability methods (FORM, SORM) [39], which aim at approx-
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imating the domain of parameters which lead to failure events. On the other hand,
there are sampling based methods, which approximate the probability of failure events.
Unlike approximation methods, sampling approaches are based on sample estimates
and are usually more robust in terms of the complexity of the LSF. Since our novel
approach is a sampling method, we focus on this category and give a larger overview.

Monte Carlo sampling [21, 52] can be easily applied to estimate the probability
of failure and yields an unbiased estimator. However, due to the mentioned issues of
rare event settings, the Monte Carlo estimator becomes intractable, since hardly any
sample contributes to the rare event and each sample requires a cost intensive function
evaluation. Therefore, variance reduction techniques have been developed to reduce
the number of samples for obtaining an accurate estimate. For instance, the idea of
multilevel splitting [8, 27] and subset simulation (SuS) [4, 5] is to decompose the rare
event into a sequence of nested events. This enables expressing the probability of the
rare event as a product of conditional probabilities of more frequent events. These
methods require sampling from a sequence of probability density functions which is
achieved with Markov chain Monte Carlo (MCMC) methods [44, 54].

Importance sampling (IS) methods employ an alternative sampling density, which
if chosen properly can reduce considerably the variance of the standard Monte Carlo
estimator [31]. The optimal choice of the sampling density is the density of the in-
put variables conditional on the failure domain. However, direct sampling from the
optimal density is not feasible, because the location of the failure domain is unknown
prior to performing the simulation. As in multilevel splitting or SuS, a sequential ap-
proach can be applied to approximate the optimal IS density in a sequential manner.
This leads to sequential importance sampling (SIS) [45, 47] or sequential Monte Carlo
(SMC) [14] for the estimation of rare events. In our novel approach, we consider
an adaptive methodology similar to adaptive SMC [7, 19, 30]. Another approach to
estimate the optimal sampling density sequentially is the cross-entropy method [23],
where the sampling density minimizes the Kullback–Leibler divergence to the opti-
mal density within a family of parametrized densities. IS can also be applied to a
hyperplane that is perpendicular to an important direction, a method known as line
sampling [16, 35, 49].

The previous algorithms have the drawback that all evaluations have to be per-
formed with respect to the same LSF. The evaluation of the LSF could require the
solution of a discretized PDE, which depends on the mesh size of the computational
domain. Since computational costs increase with decreasing mesh size, we wish to
construct a method wherein the discretized PDE is solved on fine meshes only for
very few realizations. Therefore, we apply a multilevel approach that uses a hierarchy
of discretization levels. The authors in [20] use the telescoping sum approach of [26]
to estimate the probability of failure. Applying the multilevel idea to the previously
described methods gives multilevel subset simulation (MLSuS) [53] and multilevel se-
quential Monte Carlo [6, 17]. Moreover, a multifidelity approach combined with the
cross-entropy method is investigated in [48]. Furthermore, the work in [37] devel-
ops the multilevel sequential 2 Monte Carlo (MLS2MC) estimator, which is a twofold
sequential algorithm for Bayesian inverse problems.

In this paper, we consider SuS and SIS as well as their multilevel versions. In more
detail, an MCMC algorithm [13, 28] is applied within SuS to gradually shift samples
into consecutive domains, which are defined by the sequence of nested events. By
the nestedness property [44], the simulated Markov chains do not require a burn-in
period, since seeds are already distributed approximately according to the target dis-
tribution. Therefore, SuS is an efficient but slightly biased estimator [4]. The MLSuS
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method, given in [53], employs a hierarchy of discretization levels and enables the us-
age of coarse grid function evaluations. MLSuS saves significant computational costs
compared to SuS if the failure domains between discretization levels are still nested.
However, nestedness is no longer guaranteed in the multilevel setting since the se-
quence of consecutive domains is based on LSFs with different accuracies. Therefore,
a second MCMC step has to be performed. Additionally, a burn-in period is proposed
since seeds are no longer distributed (approximately) according to the target distri-
bution. Both issues increase the computational costs of the MLSuS estimator and
thus decrease its efficiency. However, a level dependent parameter dimension can be
applied to reduce variances between two accuracy levels of the LSF and approximately
satisfy the nestedness property.

The nestedness issue of MLSuS is our main motivation to implement the MLS2MC
algorithm for rare event estimation. Nestedness is not an issue for MLS2MC; the
method samples a sequence of nonzero densities with IS and chooses each IS density
to be close to each target density in the sequence. The idea of the MLS2MC method
is combined with the SIS approach and yields a multilevel sequential importance sam-
pling (MLSIS) estimator for rare events. Note that both MLSIS as well as MLSuS
are not based on the telescoping sum approach. To achieve an even more efficient
algorithm, we apply the level dependent parameter dimension approach of [53]. Like
SIS, the MLSIS method requires an MCMC algorithm to shift samples into consec-
utive target distributions. We consider an independent MCMC sampler that uses
the von Mises–Fisher Nakagami (vMFN) distribution model fitted with the available
weighted samples at each sampling level as the proposal distribution. The vMFN
distribution is applied in [46] as a parametrized family of probability distributions for
the cross-entropy method, which yields an efficient algorithm even in high dimensions.
Employing the vMFN distribution as a proposal density is another main contribution
of our work.

The paper is structured as follows. In section 2, the problem setting of estimating
the probability of failure is defined and SIS as well as SuS are explained. The MLSIS
estimator is described in section 3. In section 4, two MCMC algorithms are studied
which are applied within SIS and MLSIS. In section 5, the studied estimators are
applied to one- and two-dimensional test problems and the MLSIS estimator is com-
pared with SIS as well as SuS and MLSuS. In section 6, a summary of the discussion
and an outlook are given.

2. Background.

2.1. Problem setting. Consider the probability space (Ω,F ,P) and a random
variable U : Ω → Rn. By [18, 29] it is assumed, without loss of generality, that U
is distributed according to the n-variate standard normal distribution with density
function ϕn. If a non-Gaussian random variable Ũ is used, an isoprobabilistic trans-
formation U = T (Ũ) is applied. Failure is defined in terms of an LSF G : Rn → R
such that G(U(ω)) ≤ 0 for ω ∈ Ω. In many applications, the LSF G is not analytically
given. We can only evaluate an approximation G`, where ` represents the discretiza-
tion level. Increasing ` leads to a more accurate approximation. In the numerical
examples presented in this paper, G` requires the solution of a PDE and ` specifies
the mesh size of an FEM approximation. The probability of failure is defined as the
measure of the failure domain A := {ω ∈ Ω : G(U(ω)) ≤ 0}, which is expressed as

Pf := P[A] = P[G(U) ≤ 0] =

∫

G(u)≤0

ϕn(u)du.(2.1)
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Using G` instead of G in (2.1) gives the approximation Pf,`, which includes numerical
errors due to approximating the exact LSF G. Convergence is expected for increasing
the level `, i.e., decreasing the finite element mesh size.

The probability of failure can be estimated by crude Monte Carlo sampling [21].
By evaluating G` on the discretization level ` for N ∈ N independent samples dis-
tributed according to ϕn, we obtain the (single-level) Monte Carlo estimator P̂MC

f,` for
Pf,`

P̂MC
f,` =

1

N

N∑

k=1

I (G`(uk) ≤ 0) ,(2.2)

where I denotes the indicator function; i.e., I(true) = 1 and I(false) = 0. P̂MC
f,` is an

unbiased estimator and easy to implement. Since the coefficient of variation of P̂MC
f,`

is inversely proportional to the probability of failure Pf,` (see [47]), a large number
of samples is required if Pf,` is small and a small coefficient of variation should be
achieved. Hence, huge computational costs are required if G` is a cost demanding
evaluation. This makes crude Monte Carlo sampling impractical for the estimation of
rare failure probabilities.

2.2. Subset simulation and multilevel subset simulation. SuS and MLSuS
are alternative approaches where the failure probability is estimated by a product of
conditional probabilities. Consider the sequence of domains B0, B1, . . . , BS , where
BS = A is the failure domain. In both approaches, the sequence is constructed such
that

P[Bj | Bj−1] = p̂0 ∈ (0, 1),(2.3)

while p̂0 is chosen to ensure that samples of Bj can be easily generated from samples of
Bj−1 [4]. In SuS, the sequence of domains is nested, i.e., Bj ⊂ Bj−1 for j = 1, . . . , S,
since the discretization level is fixed. Hence, the SuS estimator is given as

P̂ SuS
f,` := P̂B1

S∏

j=2

P̂Bj |Bj−1
,

where P̂Bj |Bj−1
is an estimator for P[Bj | Bj−1]. It has been shown in [47] that SuS is

a special case of SIS, where the IS densities pj,` are chosen as the optimal IS density
with respect to the domain Bj . In MLSuS [53], the sequence of domains is no longer
nested since the domains Bj are defined for different LSFs G`, in the case of a level
update. To overcome this problem, the conditional probability P[Bj−1 | Bj ] has to be
estimated. This leads to the MLSuS estimator

P̂MLSuS
f,` := P̂B1

S∏

j=2

P̂Bj |Bj−1

P̂Bj−1|Bj

.(2.4)

Moreover, samples which are taken as seeds in the MCMC step are not distributed
according to the target distribution. Therefore, a burn-in is required. Both issues
lead to increasing computational costs. Note that if the domains Bj for j = 1, . . . , S
were nested, then the denominator in (2.4) is equal to one and no estimator for
the denominator is required. To increase the denominator in (2.4), the authors in
[53] apply a level dependent parameter dimension. This reduces the variance of two
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consecutive levels and makes the MLSuS algorithm more robust. In section 3.3 of this
work, we consider a level dependent parameter dimension for the MLSIS algorithm
to reduce the variance of consecutive levels.

2.3. Importance sampling. IS is a variance reduction technique [2, 52], where
the integral in (2.1) is calculated with respect to a certain IS density p`. If p` takes on
large values in the failure domain, many samples following p` represent failure events.
Therefore, fewer samples are required to estimate the probability of failure accurately.
By [45] the failure probability Pf,` is expressed as

Pf,` =

∫

Rn

I (G`(u) ≤ 0)w`(u)p`(u)du = Ep` [I (G`(u) ≤ 0)w`(u)],

where the importance weight is defined as w`(u) := ϕn(u)/p`(u). Again, crude Monte
Carlo sampling is applied, which yields the estimator

P̂ IS
f,` =

1

N

N∑

k=1

I (G`(uk) ≤ 0)w`(uk),

where the samples {uk}Nk=1 are distributed according to the IS density p`. P̂
IS
f,` is an

unbiased estimator for Pf,` if the support of p` contains the failure domain A` :=
{ω ∈ Ω : G`(U(ω)) ≤ 0}. The optimal IS density is given by

popt,`(u) :=
1

Pf,`
I(G`(u) ≤ 0)ϕn(u),(2.5)

which leads to a zero-variance estimator. Since Pf,` and A` are unknown, popt,`

cannot be used in practice. In contrast, SIS achieves an approximation of popt,` by
approximating the optimal IS distribution in a sequential manner while starting from
a known prior density p0.

2.4. Sequential importance sampling. According to [47], the sequence of
IS densities is determined from a smooth approximation of the indicator function.
The cumulative distribution function (cdf) of the standard normal distribution is one
possibility to approximate the indicator function. For G`(u) 6= 0 we achieve pointwise
convergence

I(G`(u) ≤ 0) = lim
σ↓0

Φ

(
−G`(u)

σ

)
,

while for G`(u) = 0 and ∀σ > 0 it holds that Φ (−G`(u)/σ) = 1/2 6= I(G`(u) ≤ 0),
as visualized in Figure 1. Further approximation functions are examined in [36] with
an additional sensitivity analysis.

With the preceding consideration, the sequence of IS densities {pj,` : j = 0, . . . , NT }
is defined as

pj,`(u) :=
1

Pj,`
Φ

(
−G`(u)

σj

)
ϕn(u) =

1

Pj,`
ηj,`(u) for j = 1, . . . , NT ,

p0(u) := ϕn(u),

where ∞ > σ1 > · · · > σNT
> 0 represent a strictly decreasing sequence of tempera-

tures or bandwidths and Pj,` is a normalizing constant such that pj,` is a well-defined
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4 2 0 2 4
G (u)

0.0

0.2

0.4

0.6

0.8

1.0
approximation of the indicator function

= 2
= 1
= 0.5
= 0.25

indicator function

Fig. 1. Approximation of the indicator function I(G`(u) ≤ 0) by the cdf of the standard normal
distribution Φ(−G`(u)/σ).

density function. The denomination “temperatures” and their use is motivated by
the temperature of the Boltzmann distribution [25, Chapter VIII]. The number NT
of tempering steps is a priori unknown and specifies the number of tempering steps to
approximate the optimal IS density sufficiently accurately. Applying the IS approach,
Pj,` is determined by sampling from the density pj−1,`

Pj,` =

∫

Rn

ηj,`(u)du = Pj−1,`

∫

Rn

wj,`(u)pj−1,`(u)du = Pj−1,`Epj−1,`
[wj,`(u)],(2.6)

where wj,`(u) := ηj,`(u)/ηj−1,`(u). Hence, the fraction of consecutive normalizing
constants Sj,` = Pj,`/Pj−1,` is estimated by

Ŝj,` := Êpj−1,`
[wj,`(u)] =

1

N

N∑

k=1

wj,`(uk),(2.7)

where the samples {uk}Nk=1 are distributed according to pj−1,`. Using the definition
of ηj,` and ηj−1,`, the weights wj,`(uk) for k = 1, . . . , N are given by

wj,`(uk) =
Φ (−G`(uk)/σj)

Φ (−G`(uk)/σj−1)
for j > 1,(2.8)

w1,`(uk) = Φ(−G`(uk)/σ1).

To obtain an accurate estimator Ŝj,`, the parameters σj are adaptively determined
such that consecutive densities differ only slightly. This goal is achieved by requiring
that the coefficient of variation of the weights wj,` is close to the target value δtarget,
which is specified by the user. This leads to the following minimization problem:

σj = argmin
σ∈(0,σj−1)

∥∥δwj,`
− δtarget

∥∥2

2
,(2.9)

where δwj,`
is the coefficient of variation of the weights (2.8). This adaptive procedure

is similar to the adaptive tempering in [7, 37] and is equivalent to requiring that
the effective sample size takes a target value [37]. Note that the solution of the
minimization problem in (2.9) does not require further evaluations of the LSF. Hence,
its costs are negligible compared to the overall computational costs. The tempering
iteration is finished if the coefficient of variation δwopt,`

of the weights with respect to
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the optimal IS density

wopt,`(uk) := I(G`(uk) ≤ 0)
ϕn(uk)

ηj,`(uk)
(2.10)

is smaller than δtarget and, hence, the optimal IS density is approximated sufficiently
well. According to [47], the SIS estimator of the probability of failure is defined as
follows:

P̂ SIS
f,` =



NT∏

j=1

Ŝj,`


 1

N

N∑

k=1

wopt,`(uk),(2.11)

where the weights wopt,` are defined in (2.10) with j = NT . The sum over the weights
wopt,`(uk) in (2.11) represents the last tempering step from the IS density pNT ,` to
the optimal IS density popt,` given in (2.5). It corresponds to the estimator of the
ratio Pf,`/PNT ,` since Pf,` is the normalizing constant of the optimal IS density.

During the iteration, MCMC sampling is applied to transfer samples distributed
according to pj−1,` to samples distributed according to pj,` for j = 1, . . . , NT . Section
4 explains MCMC sampling in more detail. Algorithm 2.1 summarizes the procedure
of one tempering step for sampling from pj,` and estimating Sj,` starting from samples
from pj−1,`.

Algorithm 2.1 Tempering algorithm (N samples from pj−1,`, σj−1, δtarget, G`).

1: determine σj from the optimization problem (2.9)
2: evaluate the weights wj,` as in (2.8) for the current set of samples

3: evaluate the estimator Ŝj,` as in (2.7)
4: resample the samples of pj−1,` based on their weights wj,`
5: move the samples with MCMC to generate N samples from the density pj,`
6: return N samples from pj,`, σj , Ŝj,`

Remark 2.1. We remark that nestedness, which is a prerequisite for SuS, is not
an issue for SIS. This is because the intermediate sampling densities are smooth
approximations of the optimal IS density and they all have supports in the whole
outcome space. The proximity of two consecutive densities is ensured by (2.9). This
property of SIS motivates the development of MLSIS in the following section. We
note that MLSuS does not satisfy nestedness, which leads to the denominators in the
estimator (2.4).

3. Multilevel sequential importance sampling. SIS and SuS have the draw-
back that all PDE solves are performed with the same discretization accuracy. This
can lead to huge computational costs if the discretization level is high or the num-
ber of required tempering steps is large. Simply decreasing the level ` can lead to a
bias in the estimated probability of failure, since the accuracy of the LSF decreases if
the discretization level decreases. Therefore, the work in [37] develops the MLS2MC
method, where computations are performed on a sequence of increasing discretization
levels while achieving an improvement in terms of computational costs. Originally,
this method has been developed for Bayesian inverse problems [15]. In this section,
we show how we can reformulate the MLS2MC method as an MLSIS estimator for
the probability of failure.
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3.1. Bridging. Consider the sequence of discretization levels ` ∈ {1, . . . , L},
where ` = 1, represents the smallest and ` = L ∈ N the highest discretization level, i.e.,
finest element mesh size. Throughout this paper, it is assumed that the computational
costs of evaluating G` are given by

Cost` = O(2−d(L−`)),(3.1)

where d ∈ N is the dimension of the computational domain. In order to use a hierarchy
of discretization levels, bridging is applied to transfer samples following a distribution
on a coarse grid to samples following a distribution on the next finer grid. The level
update is defined as proposed in [34]. The density pj,` of the coarse grid is transformed
to the density pj,`+1 of the next finer grid by the sequence

ptj,`(u) :=
1

P tj,`
Φ

(
−G`+1(u)

σj

)βt

Φ

(
−G`(u)

σj

)1−βt

ϕn(u)(3.2)

for t = 0, . . . , NB`
, where 0 = β0 < β1 < · · · < βNB`

= 1, i.e., p0
j,` = pj,` and p

NB`

j,` =
pj,`+1. The number NB`

∈ N of intermediate bridging densities is a priori unknown.
As in (2.6), the quantity P tj,` in (3.2) can be calculated using samples distributed

according to pt−1
j,` . Similarly, the fraction of consecutive normalizing constants Stj,` =

P tj,`/P
t−1
j,` is estimated by

Ŝtj,` := Êpt−1
j,`

[wtj,`(u)] =
1

N

N∑

k=1

wtj,`(uk),(3.3)

where the samples {uk}Nk=1 are distributed according to pt−1
j,` and the weights are

given by

wtj,`(uk) :=
Φ (−G`+1(uk)/σj)

βt Φ (−G`(uk)/σj)
1−βt

Φ (−G`+1(uk)/σj)
βt−1 Φ (−G`(uk)/σj)

1−βt−1
(3.4)

for k = 1, . . . , N . The bridging temperatures βt are adaptively determined by solving
the minimization problem

βt = argmin
β∈(βt−1,1]

∥∥δwt
j,`
− δtarget‖22,(3.5)

where δwt
j,`

is the coefficient of variation of the weights. As in [37], we set the target

coefficient of variation within the bridging steps to the same value as in the tempering
steps. Within one level update, the bridging sequence is finished if βt = 1 holds. Note
that each level update requires a sequence of bridging densities and tempering is
not performed during level updates. As in the tempering steps, MCMC sampling is
applied to transfer samples between two consecutive bridging densities. By combining
all estimators Ŝ of the tempering and bridging sequences given in (2.7) and (3.3),
respectively, the MLSIS estimator for the probability of failure is given as

P̂MLSIS
f =



NT∏

j=1

L∏

`=1

NB∏̀

t=1

Ŝtj,`


 1

N

N∑

k=1

wopt,L(uk),(3.6)

where the weights wopt,L are defined in (2.10) with j = NT and represent the last
tempering step from the IS density pNT ,L to the optimal IS density popt,L given in
(2.5). Algorithm 3.1 summarizes the procedure of one level update.
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Algorithm 3.1 Bridging algorithm (N samples from pj,`, σj , δtarget, G`, G`+1).

1: t← 0
2: βt ← 0
3: while βt < 1 do
4: t← t+ 1
5: determine βt from the optimization problem (3.5)
6: evaluate the weights wtj,` as in (3.4) for the current set of samples

7: evaluate the estimator Ŝtj,` as in (3.3)

8: resample the samples of pt−1
j,` based on their weights wtj,`

9: move the samples with MCMC to generate N samples from the density ptj,`
10: end while
11: return N samples from pj,`+1, Ŝtj,`

3.2. Update scheme. The crucial part of the MLSIS method is to combine
the adaptive tempering and bridging sequences and to provide a heuristic idea when
to perform bridging or tempering. Initially, the samples {uk}Nk=1 are distributed
according to the n-variate standard normal distribution ϕn, i.e., σ0 =∞. The LSF is
evaluated on the smallest discretization level ` = 1. Tempering is always performed
in the first step in order to determine σ1 to approximate the indicator function. The
tempering finishes if the coefficient of variation δwopt,`

of the weights with respect to
the optimal IS density (2.10) is smaller than δtarget. The bridging finishes if the highest
discretization level ` = L is reached. The combination of tempering and bridging
determines the costs and accuracy of the method. The authors in [37] analyze the
efficiency of different decision schemes, which leads to the following approach. The
scheme should perform as many tempering steps as possible on small discretization
levels while level updates are performed if the discrepancy between evaluations of two
consecutive levels is too large. To measure this occurrence, a small subset of samples
{ujk}Ns

k=1 with Ns < N is randomly selected without replacement. A level update is
performed for this subset through one bridging step and the resulting coefficient of
variation δwNs of the weights

wNs

j,` (ujk) =
Φ (−G`+1(ujk)/σj)

Φ (−G`(ujk)/σj)
for k = 1, . . . , Ns

is estimated. Depending on the estimated value δwNs , two cases occur:
(1) either δwNs > δtarget, bridging is performed since the accuracy is small, i.e.,

the difference between levels is high,
(2) or δwNs ≤ δtarget, tempering is performed since the accuracy is high, i.e., the

difference between levels is small.
If case (1) occurs, the evaluations with respect to G`+1 can be stored and reused
in the bridging step and invested costs are not wasted. Whereas in case (2), these
evaluations are no longer required and invested costs are wasted. Calculating δwNs

for the sample subset is redundant if tempering has already finished. Then, bridging
is always performed to reach the final discretization level. Moreover, as proposed in
[37], tempering is performed after each level update, if the tempering has not already
finished. In this case, calculating δwNs is redundant, too. Note that δwopt,`

has to be
calculated after each tempering and level update, to decide if tempering is finished.
Finally, the MLSIS method is finished if both tempering and bridging are finished.
The procedure is described in Algorithm 3.2.
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Algorithm 3.2 MLSIS algorithm (N , n, L, δtarget, Ns, G`).

1: Generate N samples from the n-variate standard normal distribution ϕn
2: `← 1
3: Perform Tempering
4: while Tempering is not finished or Bridging is not finished do
5: if Tempering is finished then
6: Perform Bridging
7: `← `+ 1
8: else if Bridging is finished or last step was a Bridging step then
9: Perform Tempering

10: else
11: Perform Bridging in one step with a random subset of Ns samples
12: Calculate δwNs

13: if δwNs < δtarget then
14: Perform Tempering
15: else
16: Perform Bridging
17: `← `+ 1
18: end if
19: end if
20: Calculate δwopt,`

21: if δwopt,`
≤ δtarget then

22: Tempering is finished
23: end if
24: if ` = L then
25: Bridging is finished
26: end if
27: end while
28: return Probability of failure estimate

Remark 3.1. We note that, according to [37], the finest discretization level L can
be chosen adaptively based on the coefficient of variation δwNs between two consec-
utive discretization levels. Bridging is finished if δwNs is smaller than a given bound
which is much smaller than δtarget.

3.3. Level dependent dimension. As mentioned in section 2.2, the nestedness
problem of MLSuS motivates [53] to study a level dependent parameter dimension.
This approach can also be applied in MLSIS to reduce variances between level up-
dates and, hence, increase the number of tempering updates on coarse grids. For this
purpose, it is assumed that the LSF G depends on a random field that is approxi-
mated by a truncated Karhunen-Loève (KL) expansion. This setting occurs in many
relevant applications as well as in numerical experiments presented in section 5. Since
high order KL terms are highly oscillating, they cannot be accurately discretized on
coarse grids, which leads to noisy evaluations and higher variances. By reducing the
number of KL terms on coarse grids, the variance between consecutive LSF evalua-
tions is reduced. Therefore, the coefficient of variation δwNs is smaller and case (2)
in section 3.2 is more likely. Hence, more tempering steps are performed on small
discretization levels, which decreases the computational costs for MLSIS.
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4. Markov chain Monte Carlo. The goal of SIS and MLSIS is to transform
samples from the prior density p0 = ϕn into samples of the optimal IS density popt.
Thereby, a sequence of densities is defined which converges to the optimal one. MCMC
is applied to transform samples into consecutive densities of the tempering and bridg-
ing steps.

Consider the tempering step from pj−1,` to pj,`. The samples {uk}Nk=1 are dis-
tributed as pj−1,` and have to be transformed into samples that are distributed as
pj,`. To define the number of seeds of the MCMC algorithm, we choose a parameter

c ∈ (0, 1] such that
1

c
∈ N and c ·N ∈ N.(4.1)

Then, Nc := c ·N seeds are randomly selected with replacement from the set {uk}Nk=1

according to their weights {wj,`(uk)}Nk=1 given in (2.8). The set of seeds is denoted

by {ukj}Nc
j=1. In this procedure, which corresponds to multinomial resampling, sam-

ples with high weights are copied multiple times and samples with low weights are
discarded. There are also other resampling methods, such as stratified resampling or
systematic resampling, which can be applied. A study on their convergence behavior
is given in [22]. The burn-in length is denoted by Nb ∈ N. Starting with the seed

u0 ∈ {ukj}Nc
j=1, a Markov chain of length Nb + 1/c is simulated that has pj,` as its

stationary distribution. The first Nb states are rejected after the simulation. Algo-
rithm 4.1 states the MCMC procedure that employs the Metropolis–Hastings sampler
[28, 40]. During the algorithm, a proposal ū is generated according to the proposal
density q. Moreover, the acceptance function α : Rn × Rn → [0,∞) is given by

αT (u0, ū) :=
Φ (−G(ū)/σj)ϕn(ū)q(u0 | ū)

Φ (−G(u0)/σj)ϕn(u0)q(ū | u0)
,

which is the ratio of the target density pj,` with respect to the current state of the
chain u0 and candidate ū. For a bridging step, the seeds are selected from samples
distributed according to ptj,` and the target density is pt+1

j,` . The weights are given by

{wt+1
j,` (uk)}Nk=1 (see (3.4)), and the acceptance function α must be replaced by

αB(u0, ū) =
Φ (−G`+1(ū)/σj)

βt+1 Φ (−G`(ū)/σj)
1−βt+1 ϕn(ū)q(u0 | ū)

Φ (−G`+1(u0)/σj)
βt+1 Φ (−G`(u0)/σj)

1−βt+1 ϕn(u0)q(ū | u0)
.

Remark 4.1. Since consecutive densities within SIS and MLSIS are constructed
in a way that they are not too different and samples are weighted according to the
target distribution, the burn-in length can be small or even negligible within SIS and
MLSIS [47]. Note that for SuS and MLSuS, the N · p̂0 samples with the lowest LSF
values are selected as seeds.

4.1. Adaptive conditional sampling. The random walk Metropolis–Hastings
algorithm [28, 40] is a classical MCMC algorithm. However, random walk samplers
suffer from the curse of dimensionality, i.e., the acceptance rate is small in high-
dimensions (see [44]). Since high-dimensional parameter spaces are considered in the
numerical experiments in section 5, adaptive conditional sampling (aCS) is proposed,
where the chain correlation is adapted to ensure a high acceptance rate. aCS is a
dependent MCMC algorithm, i.e., the proposal density depends on the current seed
u0. More formally, the proposal q is defined as the conditional multivariate normal
density with mean vector ρu0 and covariance matrix Σ = (1− ρ2)In with In denoting
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Algorithm 4.1 MCMC algorithm (u0, q(· | ·), α(·, ·), c, Nb).
1: Chain = ∅
2: while i ≤ Nb + 1/c do
3: Generate a candidate ū from the proposal density q(· | u0)
4: Evaluate α(u0, ū)
5: Accept the candidate ū with probability min{1, α(u0, ū)}
6: if ū is accepted then
7: u0 ← ū
8: end if
9: Chain← Chain ∪ u0

10: i← i+ 1
11: end while
12: Discard the first Nb elements of Chain
13: return Chain

the identity matrix. During the iterations, ρ ∈ [0, 1] is adaptively adjusted such that
the acceptance rate is around 44% [51]. This value leads to an optimal value in
terms of the minimum autocorrelation criterion. By the structure of the proposal, the
acceptance functions read as

αT (u0, ū) =
Φ (−G(ū)/σj)

Φ (−G(u0)/σj)
,

αB(u0, ū) =
Φ (−G`+1(ū)/σj)

βt+1 Φ (−G`(ū)/σj)
1−βt+1

Φ (−G`+1(u0)/σj)
βt+1 Φ (−G`(u0)/σj)

1−βt+1
.

A more detailed description of the algorithm with the adaptive adjustment of the
correlation parameter is given in [44]. The aCS algorithm can be viewed as an adap-
tive version of the preconditioned Crank–Nicolson sampler [13] tailored to application
within SIS.

4.2. Independent sampler with von Mises–Fisher Nakagami proposal
distribution. Since aCS is a dependent MCMC algorithm, the states of the chains
are correlated, which can lead to a higher variance of the estimated ratio of normal-
izing constants Ŝj,` and Ŝtj,` given in (2.7) and (3.3), respectively. Hence, this leads
to a higher variance of the estimated probability of failure (3.6). An independent
MCMC algorithm overcomes this problem through using a proposal density that does
not depend on the current state. The dependence on the current state enters in the
acceptance probability. If the proposal density is chosen close to the target density,
the acceptance probability will be close to one and the samples will be approximately
independent. In the context of SIS and MLSIS, the available samples and corre-
sponding weights of each previous density can be used to fit a distribution model to
be used as the proposal density in the MCMC step [11, 47]. For instance, Gauss-
ian mixture models can be used as a proposal density [47]. A drawback of Gaussian
densities in high dimensions is the concentration of measure around the hypersphere
with norm equal to

√
n (see [32, 46]). Therefore, only the direction of the samples

is of importance. Furthermore, the Gaussian mixture model with K densities has
Kn(n+ 3)/2+(K−1) parameters, which have to be estimated. Both issues motivate
the vMFN distribution. Therein, the direction is sampled from the von Mises–Fisher
(vMF) distribution [55] while the radius is sampled from the Nakagami distribution
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Fig. 2. Illustration of the Nakagami distribution (left) and von Mises–Fisher distribution (right)
in two dimensions. The parameters are defined as ν = (0.6, 0.75)T , κ = 11, s = 12, and γ = 8.

(see [42]). The vMFN mixture model has only K(n+ 3) + (K − 1) parameters, which
scales linearly in the dimension n. Note that for the Gaussian mixture, the number
of parameters of the distribution model scales quadratically in the dimension n. To
apply the vMFN distribution as the proposal density in Algorithm 4.1, the parameters
of the distribution model have to be fitted in advance.

It is assumed that all samples u ∈ Rn are given in their polar coordinate repre-
sentation u = r · a, where r = ‖u‖2 ∈ R+ is the norm of u and a = u/‖u‖2 ∈ Rn its
direction. For u = r · a the vMFN distribution is defined as the product of the von
Mises–Fisher and the Nakagami distribution, that is,

fvMFN(r, a | ν, κ, s, γ) = fN(r | s, γ) · fvMF(a | ν, κ).

The vMF distribution fvMF defines the distribution of the direction on the n-dimen-
sional hypersphere Sn−1 := {x ∈ Rn : ‖x‖2 = 1} and is given by

fvMF(a | ν, κ) =
κn/2−1

(2π)n/2In/2−1(κ)
exp(κνTa),

where ν ∈ Sn−1 is a mean direction and κ ≥ 0 characterizes the concentration around
ν. In/2−1 denotes the modified Bessel function of the first kind and order n/2− 1 [1,
Chapter 9]. On the contrary, the Nakagami distribution fN specifies the distribution
of the radius and is defined by

fN(r | s, γ) :=
2ss

Γ(s)γs
r2s−1 exp

(
− s
γ
r2

)
,

where Γ(s) is the Gamma function, s ≥ 0.5 is a shape parameter, and γ > 0 a spread
parameter. Figure 2 shows an illustration of fN and fvMF for certain parameter values.

Remark 4.2. We have defined the vMFN distribution for the radius and direction
(r, a) on [0,∞)×Sn−1. However, we actually approximate a distribution on Rn, which
defines the distribution of u = r · a ∈ Rn. By [33, Theorem 1.101], the distribution of
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u ∈ Rn, which is the product distribution of r and a, is given as

fU (u) =

∫ ∞

0

fN(r | s, γ)fvMF

(u
r

∣∣∣ν, κ
) 1

rn
dr,

∝
∫ ∞

0

r2s−1−n exp

(
− s
γ
r2 +

κνTu

r

)
dr.

Since we can easily separate u into r and a, we usually work with fvMFN rather than
fU .

To define the vMFN distribution as a proposal density for Algorithm 4.1, the
parameters ν, κ, s, and γ have to be fitted using the current set of samples {uk =
rk ·ak}Nk=1 and their weights {wk}Nk=1, which are given by (2.8) or (3.4) for a tempering
or bridging step, respectively. The parameters are determined by maximizing the
weighted log-likelihood

max
ν,κ,s,γ

N∑

k=1

wk ln(fvMFN(rk, ak | ν, κ, s, γ)).

Differentiating this expression with respect to the parameters and setting the deriva-
tives equal to zero yields the optimal parameters for the fitting [46]. However, for the
concentration κ and shape parameter s we use an approximation since the derivatives
require the solutions of nonlinear equations which arise from the Gamma function
and modified Bessel function [9, 55]. The fitted mean direction ν̂ and concentration
κ̂ are given by

ν̂ =

∑N
k=1 wk · ak

‖∑N
k=1 wk · ak‖2

, κ̂ =
χ · n− χ3

1− χ2
, where χ = min

{
‖∑N

k=1 wk · ak‖2∑N
k=1 wk

, 0.95

}
.

(4.2)

The upper bound of 0.95 in (4.2) is chosen to ensure numerical stability of the algo-
rithm. If χ converges to 1, the vMFN distribution would converge to a point density
[46]. Moreover for the Nakagami distribution, the fitted spread γ̂ and shape parameter
ŝ are given by

γ̂ =

∑N
k=1 wk · r2

k∑N
k=1 wk

, ŝ =
γ̂2

ν4 − γ̂2
, where ν4 =

∑N
k=1 wk · r4

k∑N
k=1 wk

.

To apply Algorithm 4.1 with respect to the vMFN distribution, the proposal q(· | u0)
is replaced by fvMFN(·, ·, ν̂, κ̂, ŝ, γ̂) with the fitted parameters.

Remark 4.3. If a mixture of vMFN distributions is considered with K > 1 indi-
vidual vMFN densities, the vMFN mixture distribution reads as

fvMFNM(r, a | ν,κ, s,γ) =
K∑

j=1

πjfvMFN(r, a | νj , κj , sj , γj),

where the weights πj represent the probability of each mode and
∑K
j=1 πj = 1. In this

case, the assignments of the samples to the modes is unknown and this assignment has
to be estimated in addition. Therefore, the required parameters cannot be estimated
in one iteration. For instance, the Expectation-Maximization algorithm [38] can be
applied to estimate the parameters iteratively. The resulting formulas are given in
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[46]. The usage of mixtures is motivated by multimodal failure domains. In the
numerical experiments in section 5 only K = 1 is considered.

4.3. MCMC for a level dependent dimension. In the case that MLSIS
or MLSuS are applied with a level dependent parameter dimension, the procedure
of a level update has to be adjusted. Consider the level update from level ` to
` + 1 and assume that the corresponding LSFs are defined as G` : Rn` → R and
G`+1 : Rn`+1 → R, respectively, where n` < n`+1. Before the first MCMC step
of the level update is carried out, the weights w1

j,`(uk) for k = 1, . . . , N (see (3.4))
have to be evaluated. However, these evaluations require the evaluation of G`+1 with
respect to the current samples {uk}Nk=1, which are defined on Rn` . In the beginning
of MLSIS or MLSuS the samples uk are initialized from the standard normal density
ϕn1

. Therefore, it is natural to sample the missing dimensions ∆n`+1 = n`+1−n` from
the standard normal distribution ϕ∆n`+1

. Hence, for each k = 1, . . . , N we sample
∆n`+1 independent standard normal random variables ψk ∈ R∆n`+1 and stack uk and
ψk together, i.e., ũk = [uk, ψk] ∈ Rn`+1 . In order to evaluate the weights w1

j,`(uk),
the LSF G`+1 is evaluated for ũk and G` for uk. The seeds for the MCMC step are
chosen based on these weights. Subsequently, Algorithm 4.1 is performed. Within the
MCMC algorithm, a proposal ū ∈ Rn`+1 is sampled from q(· | u0), which is suitable
for the evaluations of G`+1. For the LSF G` the first n` entries of ū are taken as
input.

5. Numerical experiments. In the following examples, all probability of fail-
ure estimates are obtained with respect to the same, finest discretization level, i.e.,
the multilevel methods iterate until this level is reached and the single-level methods
are based on this level. Therefore, the obtained errors involve only sampling errors
while discretization errors are not included.

5.1. 1D diffusion equation. We begin with Example 2 in [53], which considers
the diffusion equation in the one-dimensional domain D = [0, 1]. In particular, the
corresponding stochastic differential equation is given by

− ∂

∂x

(
a(x, ω)

∂

∂x
v(x, ω)

)
= 1 for 0 ≤ x ≤ 1,(5.1)

such that v(0, ω) = 0 and v′(1, ω) = 0

for almost every (a.e.) ω ∈ Ω. Failure is defined as the event that the solution v
is larger than 0.535 at x = 1, i.e., G(ω) := 0.535 − v(1, ω) ≤ 0. The solution v is
approximated by a piecewise linear, continuous FEM approximation vh on a uniform
grid with mesh size h > 0. Hence, the approximated LSF is given by G`(ω) =
0.535− vh`

(1, ω), where ` ∈ N defines the discretization level. By crude Monte Carlo
sampling (2.2) with N = 107 samples on a grid with mesh size h = 1/512, the
probability of failure is estimated to be Pf = 1.524 · 10−4. In the following, this value
is referred to as the reference solution. Figure 3 shows the mean of 105 realizations
of solutions vh(·, ω) plus/minus the standard deviation for h = 1/512. Additionally,
the respective histogram of their LSF values is presented. We see that very few
realizations are larger than 0.535 at x = 1.

The coefficient function a(x, ω) = exp(Z(x, ω)) in (5.1) is a log-normal random
field with constant mean function E[a(x, ·)] = 1 and standard deviation Std[a(x, ·)] =
0.1. That is, Z is a Gaussian random field with constant mean function µZ =
log(E[a(x, ·)]) − ζ2

Z/2 and variance ζ2
Z = log

(
(Std[a(x, ·)]2 + E[a(x, ·)]2)/E[a(x, ·)]2

)
.
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Fig. 3. Mean over 105 realizations of solutions vh(·, ω) plus/minus the standard deviation
(left). Fit of the respective LSF values Gh(ω) for h = 1/512 (right). Note that the probabilities are
shown on a log-scale.

Moreover, Z has an exponential type covariance function which is given by c(x, y) =
ζ2
Z exp(−|x− y|/λ), where λ = 0.01 denotes the correlation length. The infinite-

dimensional log-normal random field a is discretized by the truncated KL expansion,
of Z

Z(x, ω) = µZ + ζZ

M∑

m=1

√
νmθm(x)Um(ω),

where (νm, θm) are the KL eigenpairs and {Um}Mm=1 are independent standard normal
Gaussian random variables. The eigenpairs can be analytically calculated as explained
in [24, Section 2.3.3].

The probability of failure is estimated by SIS, MLSIS, SuS, and MLSuS. For
all methods, the estimation is performed for N = 250, 500, 1000, 2000 samples and
Ns = 0.1 · N samples are considered for the small sample subset to decide if either
bridging or tempering is performed in the update scheme of section 3.2. For each
parameter setting, the estimation is repeated 100 times. For the multilevel methods,
the sequence of mesh sizes is h` = 2−`−1 for ` = 1, . . . , 8, i.e., the coarsest mesh size
is h1 = 1/4 and the finest h8 = 1/512. If a level dependent dimension is considered,
the parameter dimensions of the KL expansions are n1 = 10, n2 = 20, n3 = 40,
n4 = 80, and n5 = n6 = n7 = n8 = 150 as proposed in [53]. For a fixed parameter
dimension, the dimension is n = 150 for all discretization levels. This captures 87%
of the variability of log(a) [53]. SIS and MLSIS are performed for target coefficient
of variations δtarget = 0.25 and δtarget = 0.50, which is considered in (2.9), (3.5). aCS
and the independent sampler with the vMFN distribution and one mixture term are
considered as the MCMC methods without a burn-in. The parameter c to define
the number of seeds of the MCMC algorithm in (4.1) is c = 0.1 or c = 1. For SuS
and MLSuS, aCS is considered as the MCMC method without a burn-in and the
parameter p̂0 in (2.3) is p̂0 = 0.1 or p̂0 = 0.25.

5.1.1. Results. Figure 4 shows the estimated mean probability of failure by
SIS and MLSIS plus/minus its standard deviation. The estimates of the means are
in accordance with the reference solution for all settings. As expected, the bias and
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Fig. 4. Estimated probability of failure by SIS and MLSIS averaged over 100 runs for
250, 500, 1000, and 2000 samples and δtarget ∈ {0.25, 0.50}. The colored areas show the standard
deviation of the estimates. The black lines show the reference estimate by Monte Carlo sampling.
First row: aCS, c = 1.0; second row: aCS, c = 0.1; third row: vMFN, c = 1.0; fourth row: vMFN,
c = 0.1; first column: SIS; second column: MLSIS with level dependent dimension; third column:
MLSIS without level dependent dimension.

standard deviation decrease with an increasing number of samples. Furthermore,
the standard deviation is smaller for a smaller target coefficient of variation. We
observe that sampling from the vMFN distribution with independent MCMC yields
a smaller bias and smaller standard deviation than applying aCS. Additionally, we
observe that c = 0.1 yields also a smaller standard deviation than c = 1. Comparing
the MLSIS results with the SIS results for δtarget = 0.50, we see that SIS reaches a
smaller standard deviation. For δtarget = 0.25 the results are similar. For MLSIS
and δtarget = 0.50, a level dependent parameter dimension leads to a higher standard
deviation than a fixed parameter dimension. However, for δtarget = 0.25, the results
are similar. We summarize that δtarget = 0.25 yields for all settings a similar bias
and standard deviation. Only the MCMC algorithm has a larger influence on the
standard deviation in this setting.

Figure 5 shows the relative root mean square error (RMSE) on the horizontal axis
and the computational costs on the vertical axis of the SIS and MLSIS estimators.
The relative RMSE is defined as

relRMSE :=

(
E
[(
P̂f − Pf

)2]) 1
2

Pf
,

where P̂f denotes the estimated probability of failure. The costs are calculated based
on the formula given in (3.1) for L = 8 and d = 1. SIS and MLSIS yield a similar range
of the relative RMSE but the computational costs are lower for MLSIS. Comparing the
computational costs shown in Figure 5, we can save around 61% of the computational
costs if we apply MLSIS for the estimation. This shows the achievement of the main
goal of the MLSIS algorithm, that is, to save computational costs by employing a
hierarchy of discretization levels. Furthermore, we observe that sampling from the
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Fig. 5. Computational costs and relative RMSE of SIS and MLSIS averaged over 100 runs
for 250, 500, 1000, and 2000 samples and δtarget ∈ {0.25, 0.50}. First column: aCS, c = 0.1; second
column: vMFN, c = 0.1.

vMFN distribution yields a lower relative RMSE than applying aCS. In the case of
δtarget = 0.25, a level dependent dimension yields a smaller relative RMSE and lower
computational costs than a fixed parameter dimension. This was expected since
variances between level updates are smaller and, therefore, more tempering steps
are performed on coarse levels. However, MLSIS with a level dependent dimension,
δtarget = 0.50, and sampling from the vMFN distribution yields a higher relative
RMSE than applying a fixed parameter dimension for the same computational cost.

Figure 6 shows the relative RMSE and computational costs of SIS, MLSIS, SuS,
and MLSuS. We observe that SuS yields the same relative RMSE as SIS with aCS.
However, SuS requires less computational costs. If we consider SIS with vMFN, the
relative RMSE is smaller compared to SuS but the computational costs are higher
for SIS. For the multilevel methods with a level dependent dimension, we observe
that MLSuS and MLSIS with aCS yield a similar relative RMSE but MLSIS requires
more computational costs. However, the savings with MLSuS are smaller compared
to the single-level estimators. MLSIS with vMFN and δtarget = 0.25 yields a much
smaller relative RMSE than all other estimators and computational costs can be saved
compared to MLSuS. Theses results are similar to the multilevel methods without a
level dependent dimension. In this case, we can observe that MLSuS with p̂0 = 0.1
yields a large relative RMSE which is due to the nestedness issue of MLSuS.

5.2. 2D flow cell. We consider the 2D application in [53, section 6.1], which is a
simplified setting of the rare event arising in planning a radioactive waste repository
(see section 1). The probability of failure is based on the travel time of a particle
within a 2D flow cell. Therein, the following PDE system has to be satisfied in the
unit square domain D = (0, 1)× (0, 1):

q(x, ω) = −a(x, ω)∇v(x, ω) for x ∈ D,
∇ · q(x, ω) = 0 for x ∈ D

for a.e. ω ∈ Ω, where q is the Darcy velocity, v is the hydrostatic pressure, and a is the
permeability of the porous medium, which is modelled as a log-normal random field.
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Fig. 6. Computational costs and relative RMSE of SIS, MLSIS, SuS, and MLSuS averaged
over 100 runs for 250, 500, 1000, and 2000 samples. SIS and MLSIS are considered with aCS and
vMFN, c = 0.1, and δtarget ∈ {0.25, 0.50}. SuS and MLSuS are considered with aCS and p̂0 = 0.1
or p̂0 = 0.25. First column: single level; second column: multilevel with level dependent dimension;
third column: multilevel without level dependent dimension.

More precisely, log(a) is a Gaussian random field with mean µZ = 0 and constant
variance ζ2

Z = 1. Moreover, Z has an exponential type covariance function

c(x, y) = ζ2
Z exp

(
−‖x− y‖1

λ

)
,

where λ = 0.5 denotes the correlation length. Again, the random field Z is discretized
by its KL expansion. The PDE system is coupled with the following boundary con-
ditions:

ν · q(x, ω) = 0 for x ∈ (0, 1)× {0, 1},(5.2)

v(x, ω) = 1 for x ∈ {0} × (0, 1),(5.3)

v(x, ω) = 0 for x ∈ {1} × (0, 1)(5.4)

for a.e. ω ∈ Ω, where ν denotes the derivative with respect to the normal direction
on the boundary. Equation (5.2) imposes that there is no flow across the horizontal
boundaries and (5.3), (5.4) impose that there is inflow at the western boundary and
outflow at the eastern boundary, respectively. The Darcy velocity q is discretized by
lowest order Raviart–Thomas mixed FEs (see [50]). The pressure v is discretized by
piecewise constant elements. The grid is determined by the mesh size h and consists
of 2 · 1/h2 uniform triangles.

The failure event is based on the time that a particle requires to travel from
the initial point x0 = (0, 0.5)T to any other point on the boundary ∂D. Given the
Darcy velocity qh`

(x, ω), the particle path x(t, ω) has to satisfy the following ordinary
differential equation:

∂

∂t
x(t, ω) = qh`

(x(t, ω), ω), x(0, ω) = x0.
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We approximate the particle path with the forward Euler discretization

xh`
(t+ ∆t, ω) = x(t, ω) + ∆tqh`

(x(t, ω), ω), where ∆t =
h`

2‖qh`
(x(t, ω), ω)‖2

.

The travel time τh`
(ω) ∈ [0,∞) is defined as

τh`
(ω) = argmin

t>0
xh`

(t, ω) ∈ ∂D.

The approximation of the particle path is different to the procedure in [53] and,
therefore, the estimated probability of failures differs slightly. Failure is defined as
the event that τh`

is smaller than the threshold τ0 = 0.03. Hence, the respective
LSF is defined as G`(ω) := τh`

(ω) − τ0. The reference solution of the probability
of failure is 4.6730 · 10−7 and is the estimated mean probability of failure over 100
realizations of SuS with N = 104 samples, mesh size h = 1/128, p̂0 = 0.1, and aCS as
the MCMC method without burn-in. We note that SuS is a biased estimator and the
relative bias scales as O(1/N) while the coefficient of variation scales as O(1/

√
N) [4].

The coefficient of variation of the 100 probability of failure estimates is roughly 15%.
Hence, we expect that the relative bias of the reference estimate is of order 10−2.

Figure 7 shows a realization of a nonfailure event and of a failure event. The
figure displays the permeability a and the respective solutions of the Darcy velocity
qh for h = 1/128 and shows the particle paths which start at x0 and their respective
travel times.

The probability of failure is estimated by SIS, MLSIS, SuS, and MLSuS. For all
methods, the estimation is performed for N = 250, 500, 1000 samples and Ns = 0.1 ·N
samples are considered for the small sample subset to decide if either bridging or
tempering is performed in the update scheme of section 3.2. For each parameter
setting, the estimation is repeated 100 times. For the multilevel methods, the sequence
of mesh sizes is h` = 2−`−1 for ` = 1, . . . , 6, i.e., the coarsest mesh size is h1 = 1/4
and the finest h6 = 1/128. The multilevel methods are applied with a level dependent
dimension, where the parameter dimensions of the KL expansions are n1 = 10, n2 =
20, n3 = 40, n4 = 80, and n5 = n6 = 150. SIS and MLSIS are performed for target
coefficient of variations equal to 0.50 and 1.00. aCS and the vMFN distributions are
considered as the MCMC methods without a burn-in. The parameter c to define the
number of seeds of the MCMC algorithm in (4.1) is c = 0.1. For SuS and MLSuS,
aCS is considered as the MCMC method without a burn-in and the parameter p̂0 in
(2.3) is p̂0 = 0.1 or p̂0 = 0.25.

5.2.1. Results. Figure 8 shows the estimated mean probability of failure cal-
culated by SIS and MLSIS plus/minus its standard deviation. The estimates of the
means are in accordance with the reference solution and the bias and standard de-
viation decrease with an increasing number of samples. The standard deviation is
smaller for a smaller target coefficient of variation. As for the 1D problem, we ob-
serve that applying the independent sampler with the vMFN distribution yields a
smaller standard deviation than applying aCS.

Figure 9 shows the relative RMSE on the horizontal axis and the computational
costs on the vertical axis for the SIS and MLSIS estimator. The costs are calculated
based on the formula given in (3.1) for L = 6 and d = 2. Again, SIS and MLSIS yield
the same range of the relative RMSE but the computational costs are lower for MLSIS.
Considering the computational costs shown in Figure 9, we can save around 61% of
the computational costs if we apply MLSIS for the estimation. This is the same level
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Fig. 7. Realization of the permeability a(·, ω) and the respective solution of the Darcy velocity
qh(·, ω) and the particle path x(t, ω) for h = 1/128.

of savings as in the 1D problem. However in the 2D problem, fewer level updates have
to be performed than in the 1D problem setting. We expect that even more compu-
tational costs can be saved with MLSIS if we increase the highest discretization level.

Figure 10 shows the relative RMSE and computational costs of SIS, MLSIS, SuS,
and MLSuS. We observe that SuS yields the same relative RMSE as SIS with aCS.
However, SuS requires less computational cost. If we consider SIS with vMFN, the
relative RMSE is smaller compared to SuS but the computational cost is higher for SIS.
For the multilevel methods, we observe that MLSIS with δtarget = 1.00 yields a smaller
relative RMSE and requires less computational cost than MLSuS. This observation
holds for both MCMC algorithms. In the 1D problem, we only observe that MLSIS
with sampling from the vMFN distribution yields a more efficient estimator than
MLSuS. For SuS and MLSuS, p̂0 = 0.25 yields higher computational cost and a
slightly smaller relative RMSE than p̂0 = 0.1 since more intermediate failure domains
are considered for p̂0 = 0.25.

6. Conclusion and outlook. Motivated by the nestedness issue of multilevel
subset simulation, we implement multilevel sequential importance sampling to es-
timate the probability of rare events. We assume that the underlying limit state
function depends on a discretization parameter `. MLSIS samples a sequence of non-
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Fig. 8. Estimated probability of failure by SIS and MLSIS averaged over 100 runs for 250, 500,
and 1000 samples and δtarget ∈ {0.50, 1.00}. The colored areas show the standard deviation of the
estimates. The black lines show the reference estimate by Monte Carlo sampling. First row: aCS,
c = 0.1; second row: vMFN, c = 0.1; first column: SIS; second column: MLSIS with level dependent
dimension.
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Fig. 9. Computational costs and relative RMSE of SIS and MLSIS averaged over 100 runs for
250, 500, and 1000 samples and δtarget ∈ {0.50, 1.00}. First column: aCS, c = 0.1; second column:
vMFN, c = 0.1.

zero density functions that are adaptively chosen such that each pair of subsequent
densities are only slightly different. Therefore, nestedness is not an issue for MLSIS.
We combine the smoothing approach of the indicator function in [47] and the multi-
level idea in [37]. This yields a twofold adaptive algorithm which combines tempering
and bridging sequences in a clever way to reduce computational costs. Moreover, we
apply the level dependent dimension approach of [53] to reduce variances between
consecutive accuracy levels of the limit state function. This leads to more tempering
updates on coarse levels and reduces computational costs. Another contribution of
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Fig. 10. Computational costs and relative RMSE of SIS, MLSIS, SuS, and MLSuS averaged
over 100 runs for 250, 500, and 1000 samples. SIS and MLSIS are considered with aCS and vMFN,
c = 0.1, and δtarget ∈ {0.50, 1.00}. SuS and MLSuS are considered with aCS and p̂0 = 0.1 or
p̂0 = 0.25. First column: single level; second column: multilevel with level dependent dimension.

our work is the vMFN distribution as a proposal density in an independent MCMC
algorithm. This leads to an efficient MCMC algorithm even in high dimensions.

In numerical experiments in 1D and 2D space, we show for our experiments that
MLSIS has a lower computational cost than SIS at any given error tolerance. For
both experiments, MLSIS with the vMFN distribution leads to lower computational
cost than multilevel subset simulation for the same accuracy. However, MLSIS with
adaptive conditional sampling leads only for the 2D experiment to lower computa-
tional cost than multilevel subset simulation for the same accuracy. The results also
show that applying the vMFN distribution as a proposal density in the MCMC algo-
rithm reduces the bias and coefficient of variation of the MLSIS estimator compared
to applying adaptive conditional sampling as the MCMC algorithm.

The bridging approach can also handle more general assumptions on the approxi-
mation sequence of the limit state function. For instance, the approximation sequence
can arise within a multifidelity setting. Therein, bridging is applied to transfer sam-
ples between a low fidelity model and a high fidelity model.

Instead of using SIS to shift samples to the failure region, we plan to apply the
ensemble Kalman filter for inverse problems as a particle based estimator for the
probability of failure. In this case, the reliability problem is formulated as an inverse
problem.
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B. Core Article: Error analysis for probabilities of rare
events with approximate models

Summary

In this article, we derive novel error bounds for the approximation error of the
probability of rare events in settings, where the limit-state function (LSF) requires
the solution of an elliptic partial differential equation (PDE) with stochastic diffusion
coefficient. The discretization error associated with the PDE and its impact on the
overall error of the probability of failure has not been studied to date.
The existing work of [36] considers the absolute approximation error of rare event
probabilities. The authors of [36] show that the absolute error behaves as the PDE
discretization error. Since rare event probabilities are usually very small, the absolute
error is not of high relevance. In contrast, our analysis gives an upper bound for the
relative error if the LSF is affine linear in the stochastic parameters. In the non-affine
case, we use a linearization based on the first order reliability method (FORM). This
enables to handle LSFs which require the solution of an elliptic PDE with a stochastic
diffusion coefficient. We show that the relative error of the FORM estimates behaves
as the PDE discretization error. Moreover, in the case that the failure domain is
convex, we derive an upper bound for the absolute error of the probability of failure,
which behaves as the discretization accuracy of the PDE multiplied by the FORM
estimate. For all error bounds, we require that the diffusion coefficient is uniformly
bounded.
We split the proof into five parts. First, we show that the absolute error is bounded
by the PDE discretization error multiplied by the local Lipschitz constant associated
with the cumulative distribution function of the LSF. This result is similar to the
result of [36, Lemma 3.4 M1]. In the next step, we show that for affine linear LSFs,
the upper bound of the local Lipschitz constant depends linearly on the probability
of rare events, which gives an upper bound for the relative error. If the LSF is
based on the solution of an elliptic PDE with stochastic diffusion coefficient, we show
that the distance of the exact and approximate failure domains behaves as the PDE
discretization error. Next, we show that the Gaussian measure of the symmetric
difference of the failure domains can be bounded by the Gaussian measure of an
interval in 1D. Finally, we linearize the LSF at the most likely failure point and
apply the upper bound of the linear case which yields our derived error bound.

Statement of individual contribution

Elisabeth Ullmann and Jonas Latz assigned me with the task of analysing the
approximation error of the probability of failure with respect to the PDE discretization
error. The goal was the derivation of an error bound of the relative error, which
behaves as the PDE discretization error.
In a discussion with Elisabeth Ullman and Jonas Latz, we have observed an interesting
connection of the FORM minimization problem to optimal control problems. In
another discussion with Daniel Walter, we got further insights about a-priori error
estimates for optimal control.
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ERROR ANALYSIS FOR PROBABILITIES OF RARE EVENTS1

WITH APPROXIMATE MODELS ∗2

F. WAGNER†† , J. LATZ‡‡ , I. PAPAIOANNOU§ , AND E. ULLMANN†3

Abstract. The estimation of the probability of rare events is an important task in reliability4
and risk assessment. We consider failure events that are expressed in terms of a limit-state function,5
which depends on the solution of a partial differential equation (PDE). In many applications, the6
PDE cannot be solved analytically. We can only evaluate an approximation of the exact PDE7
solution. Therefore, the probability of rare events is estimated with respect to an approximation8
of the limit-state function. This leads to an approximation error in the estimate of the probability9
of rare events. Indeed, we prove an error bound for the approximation error of the probability of10
failure, which behaves like the discretization accuracy of the PDE multiplied by an approximation of11
the probability of failure, the first order reliability method (FORM) estimate. This bound requires12
convexity of the failure domain. For non-convex failure domains, we prove an error bound for the13
relative error of the FORM estimate. Hence, we derive a relationship between the required accuracy14
of the probability of rare events estimate and the PDE discretization level. This relationship can be15
used to guide practicable reliability analyses and, for instance, multilevel methods.16

Key words. Uncertainty quantification, stochastic finite elements, error analysis, reliability17
analysis18

AMS subject classifications. 35R60, 41A25, 65N1519

1. Introduction. The distinction of safe and failure events is a crucial topic20

in reliability analysis and risk management. The occurrence of failure events cannot21

always be avoided; therefore, the estimation of the probability of such occurrences is22

of high significance. Indeed, failure probabilities are usually small; hence, the denom-23

ination probability of rare events is commonly used. The failure event can be defined24

in terms of a limit-state function (LSF). The LSF is a function of a set of uncertain25

parameters and the failure event is defined by the collection of parameter values for26

which the LSF takes non-positive values.27

In this work, we consider settings where the LSF is based on the solution of an elliptic28

partial differential equation (PDE) with random diffusion coefficient. These situations29

frequently arise in engineering risk settings. For example, the authors in [5, 22] con-30

sider radioactive waste repositories. Therein, the departure of radioactive particles31

and their travel paths through the subsurface are of high relevance. The goal is to32

determine the probability that radioactive particles come back to the human environ-33

ment. Since the exact subsurface properties and exact travel paths of the particles are34

unknown, the hydraulic conductivity of the soil is modelled as a random field while35

the particle flow is simulated by a finite element method (FEM) approximation of the36

groundwater flow and transport equation.37

The application of discretization schemes, such as Finite Differences [20], Finite Vol-38
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Deutsche Forschungsgemeinschaft (DFG) and Technische Universität München (TUM) through the
TUM International Graduate School of Science and Engineering (IGSSE) within the project 10.02
BAYES.
†Department of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748 Garch-

ing (fabian.wagner@ma.tum.de, elisabeth.ullmann@ma.tum.de).
‡Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilber-

force Road, Cambridge CB3 0WA (jl2160@cam.ac.uk).
§Engineering Risk Analysis Group, Technical University of Munich, Theresienstraße 90, 80333

Munich (iason.papaioannou@tum.de).

1

This manuscript is for review purposes only.



2 F. WAGNER, J. LATZ, I. PAPAIOANNOU, E. ULLMANN

umes [11] or FEM [3], introduce a PDE discretization error in the evaluation of the39

LSF. Consequently, this leads to an approximation error of the probability of rare40

events. The accuracy of the approximation depends on the discretization size of the41

spatial or temporal domain. In previous years, many methods have been developed for42

rare event estimation, which are based on a sequence of discretization levels with in-43

creasing accuracy. Examples are Multilevel Subset Simulation [31], Multilevel Monte44

Carlo [8], Multilevel Sequential Importance Sampling [33] or a multifidelity approach45

in [25]. However, only the sampling error of the methods has been considered so far.46

In contrast, we do not consider the sampling error and focus on the PDE discretiza-47

tion error.48

There is a large amount of literature available, which derive error bounds for the49

PDE discretization error. However, there are few publications which consider the50

induced approximation error of rare event probabilities. The authors in [8] derive an51

upper bound for the absolute approximation error of the probability of failure which52

behaves as the PDE discretization error. However, the absolute error is of limited53

interest since failure probabilities are usually small. This manuscript closes this gap54

for LSFs which are based on elliptic PDEs. Indeed, the work of [8] forms the starting55

point for our contributions.56

We derive an error bound for the probability of rare events which behaves as the PDE57

discretization error multiplied by the first order reliability method (FORM) [17, 19]58

estimate. The FORM estimate is determined by the minimum distance of the failure59

domain to the origin of an independent standard Gaussian input space. If the failure60

domain is a convex set, the FORM estimate is an upper bound for the probability of61

the rare event. We use this condition as an assumption for the derived error bound.62

Indeed, if the FORM estimate is equal to the probability of failure, our error bound63

gives an upper bound for the relative error. An example for this case is an LSF which64

is affine linear with respect to Gaussian stochastic parameters. Moreover, we provide65

an error bound of the relative error with respect to the FORM estimates. This bound66

is more generally applicable since convexity of the failure domains is not required.67

The manuscript is structured as follows. In Section 2, we present the main theorem,68

underlying setting and relevant assumptions. The proof of the theorem is given in the69

subsequent sections. First, we show that the absolute error is bounded by the PDE70

discretization error multiplied by the local Lipschitz constant associated with the cu-71

mulative distribution function (CDF) of the LSF. In Section 3, we show that for affine72

linear LSFs, the upper bound of the local Lipschitz constant depends linearly on the73

probability of failure. This gives an upper bound for the relative error. If the LSF is74

based on the solution of an elliptic PDE with stochastic diffusion coefficient, we show75

in Section 4 that the distance of the exact and approximate failure domains behaves76

as the PDE discretization error. Thereafter, we show that the Gaussian measure of77

the symmetric difference of the failure domains can be bounded by the Gaussian mea-78

sure of an interval in 1D if the failure domains are convex. Using this fact, the LSF79

is linearized around the most likely failure point (MLFP) and the results for affine80

linear LSFs are applied. This proves the main theorem. In Section 5, we consider81

three numerical examples, two in low dimensions with analytical solutions, and one82

high-dimensional example.83

2. Problem Setting and Main Result. Even though many of our results are84

applicable to more general settings, we focus in this work on failure events that are85

based on the solution of an elliptic PDE with random diffusion coefficient and Dirichlet86

boundary conditions. In the following subsections, we first introduce this setting more87

This manuscript is for review purposes only.
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particularly. Then, we briefly describe the FORM approach to the estimation of rare88

event probabilities. The FORM estimate is part of the error bound that forms the89

main result of this work and that we summarise in Section 2.3.90

2.1. Elliptic PDE, failure events, and their approximation. Let (Ω,A,P)91

be a probability space and D ⊂ Rd, d = 1, 2, 3, be an open, bounded, convex, polyg-92

onal domain. The given quantities are a real-valued random field a : D×Ω→ R and93

a real valued function f ∈ L2(D). We seek a random field y : D × Ω→ R, such that94

for P-almost every (a.e.) ω ∈ Ω it holds95

−∇x · (a(x, ω)∇xy(x, ω)) = f(x) ∀x ∈ D,(2.1)96

y(x, ω) = 0 ∀x ∈ ∂D.(2.2)9798

In practice, we employ a FEM discretization to solve (2.1). Thus, we consider the99

weak or variational form of the PDE. A random field y : D × Ω → R satisfies the100

pathwise variational formulation, if for a fixed ω ∈ Ω it holds that y(·, ω) ∈ V and101

∫

D

a(x, ω)∇xy(x, ω) · ∇xv(x)dx =

∫

D

f(x)v(x)dx ∀v ∈ V,(2.3)102
103

where V := H1
0 (D). Let h > 0 denote a discretization parameter, typically the mesh104

size. We define the discretized pathwise variational formulation for yh ∈ Vh as105

∫

D

a(x, ω)∇xyh(x, ω) · ∇xvh(x)dx =

∫

D

f(x)vh(x)dx ∀vh ∈ Vh.(2.4)106
107

Here, Vh ⊂ V is a finite dimensional vector space. In this manuscript, we consider108

two types of diffusion coefficients.109

Definition 2.1 (Ellipticity and boundedness of the diffusion coefficient).110

(I) The diffusion coefficient a is uniformly elliptic and bounded if there exists111

amin, amax > 0 such that for P-a.e. ω ∈ Ω112

0 < amin ≤ a(x, ω) ≤ amax <∞, for a.e. x ∈ D.(2.5)113114

(II) The diffusion coefficient a is pathwise elliptic and bounded if there exists real-115

valued random variables amin, amax : Ω→ R such that for P-a.e. ω ∈ Ω116

0 < amin(ω) ≤ a(x, ω) ≤ amax(ω) <∞, for a.e. x ∈ D,(2.6)117118

where amin(ω) := min
x∈D

a(x, ω) and amax(ω) := max
x∈D

a(x, ω).119

Remark 2.2. We note that our proved error bounds in Proposition 2.11 and The-120

orem 2.12 require that the approximation error of an observation operator acting on121

y and yh is uniformly bounded; see Assumption 2.5. This assumption is in general122

violated for diffusion coefficients which are only pathwise elliptic and bounded, i.e.,123

they do not satisfy (2.5). Therefore, Proposition 2.11 and Theorem 2.12 are only valid124

for uniformly elliptic and bounded diffusion coefficients. In Remark 2.7 and 2.13, we125

will discuss in which way our derived error bounds are useful for diffusion coefficients126

which only satisfy (2.6).127

Under Assumption 2.3, existence and uniqueness of a solution for (2.3) and (2.4)128

is ensured by [21, Theorem 9.9]. Moreover, under Assumption 2.3 and for d = 2,129

the authors of [30, Theorem 2.1] show that the solution y of (2.3) satisfies y(·, ω) ∈130

H2(D)∩H1
0 (D), which we require in the proof of Theorem 4.2. For d = 3, the authors131

state in [30, Remark 5.2 (c)] that the same property holds if D is convex.132

This manuscript is for review purposes only.
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Assumption 2.3 (Regularity of the diffusion coefficient). We assume that133

(i) the computational domain D is open, bounded, convex and polygonal,134

(ii) amin(ω) ≥ 0 for P-a.e. ω ∈ Ω and 1/amin ∈ Lp(Ω) for all p ∈ (0,∞),135

(iii) a ∈ Lp(Ω, C1(D̄)) for all p ∈ (0,∞), i.e., the realisations a(·, ω) are continu-136

ously differentiable,137

(iv) f ∈ L2(D).138

We note that Assumption 2.3 (ii) is automatically satisfied for uniformly elliptic and139

bounded diffusion coefficients. Moreover, y(·, ω) ∈ H2(D) ∩H1
0 (D) is still ensured if140

Assumption 2.3 (i) is replaced by requiring that D is open, bounded and has a C2141

boundary [4, Theorem 3.4].142

Having considered the spatial regularity of the diffusion coefficient, we specify the143

parametric regularity of a in the following assumption. Moreover, we require that a144

depends on a Gaussian random variable.145

Assumption 2.4 (Parametric form and parametric regularity of the diffusion co-146

efficient).147

(i) The diffusion coefficient a(x, ω) is a measurable function of an n-variate ran-148

dom vector U : Ω→ Rn, where U follows the n-variate independent standard149

normal distribution. This means, there is a function â : D × Rn → R with150

a(x, ω) = â(x, U(ω)) for P-a.e. ω ∈ Ω.151

(ii) The diffusion coefficient a(x, ω) is three times continuously differentiable with152

respect to outcomes u ∈ Rn of U for all x ∈ D.153

Assumption 2.4 (i) implies that a(x, ω) can be viewed as a function in space depend-154

ing on an n-dimensional parameter given by the outcomes u ∈ Rn of U . Thus, a can155

be viewed as finite dimensional noise [21, Definition 9.38]. We note that Assump-156

tion 2.4 (i) is not a strong restriction. Under mild assumptions, a non-Gaussian ran-157

dom variable Ũ can be transformed via an isoprobabilistic transformation U = T (Ũ)158

to a Gaussian random variable U . For instance, if Ũ can be modelled by a Gaussian159

copula, the Nataf transform [6] can be applied to express it as a function of a standard160

normal random variable. If the conditional distributions of Ũk+1 given Ũ1, . . . , Ũk are161

known for k = 1, . . . , n− 1, the Rosenblatt transform can be applied [18].162

Based on the elliptic PDE, we now define the LSF, the failure event, the failure163

probability, and their approximations. Failure is defined in terms of an LSF G : Rn →164

R such that G(U(ω)) ≤ 0 for ω ∈ Ω. Furthermore, we assume that the LSF G and165

the PDE solution y are related via a linear and bounded operator F : V → R166

G(U(ω)) := ymax −Fy(·, ω),(2.7)167168

where ymax ∈ R is a constant. Analogously, we define the discretized LSF Gh : Rn →169

R as170

Gh(U(ω)) := ymax −Fhyh(·, ω),(2.8)171172

where Fh : Vh → R is the induced discretization of F . With the operator F , we define173

the dual problem, where we seek the solution z(·, ω) ∈ H1
0 (D) such that174

∫

D

a(x, ω)∇xz(x, ω) · ∇xv(x)dx = F(v) ∀v ∈ H1
0 (D).(2.9)175

176

Since F is linear and bounded, existence and uniqueness of a solution of the dual177

problem (2.9) is ensured by the Lax–Milgram theorem [10, Section 6.2.1]. By As-178

sumption 2.3, it follows that z(·, ω) ∈ H2(D)∩H1
0 (D), which we require in the proof179

of Theorem 4.2.180
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Our analysis is performed for the probability of failure. This quantity is defined181

as the probability mass of the failure domain A := {u ∈ Rn : G(u) ≤ 0}, which is182

expressed as183

Pf := P[A] = P[G(U) ≤ 0] =

∫

u∈Rn

I(G(u) ≤ 0)ϕn(u)du,(2.10)184
185

where I denotes the indicator function; i.e., I(true) = 1 and I(false) = 0. The186

function ϕn : Rn → R denotes the probability density function (PDF) of the n-variate187

independent standard normal distribution, which we denote by N(0, Idn). Replacing188

G by Gh in (2.10) gives the approximation189

Pf,h := P[Ah] = P[Gh(U) ≤ 0] =

∫

u∈Rn

I(Gh(u) ≤ 0)ϕn(u)du,(2.11)190
191

where Ah = {u ∈ Rn : Gh(u) ≤ 0}. Since Pf,h includes numerical errors due to192

approximating the exact LSF G, we cannot expect equality of Pf and Pf,h. The main193

contribution of this work is the derivation of an upper bound for the error194

(2.12) |Pf − Pf,h| ≤ P[A4Ah],195

where

A4Ah := (A \Ah) ∪ (Ah \A) = {u ∈ Rn : either u ∈ A or u ∈ Ah}

is the symmetric difference of A and Ah. This upper bound behaves as a certain196

approximation to the rare event probability with the approximate model multiplied197

with the discretization error of |Fy − Fhyh|. For the latter, we assume the following198

approximation property.199

Assumption 2.5 (Approximation error of the LSF). The operator F is linear and200

bounded and there exists constants CFE > 0 and s > 0 independent of h, such that201

the discretization error with respect to the solution of (2.3) and (2.4) satisfies for202

P-a.e. ω ∈ Ω203

|G(U(ω))−Gh(U(ω))| = |Fy(·, ω)−Fhyh(·, ω)| ≤ CFEh
s.(2.13)204205

Moreover, we require Lipschitz continuity of the CDFs of the random variables G(U)206

and Gh(U).207

Assumption 2.6 (Regularity of the CDFs of G(U), Gh(U)). The CDFs of the208

random variables G(U) and Gh(U) are local Lipschitz continuous with Lipschitz con-209

stants CL > 0 and CL,h > 0, i.e., for a, b with a < b it holds210

P[G(U) ∈]a, b]] = P[G(U) ≤ b]− P[G(U) ≤ a] ≤ CL|a− b|,211

P[Gh(U) ∈]a, b]] = P[Gh(U) ≤ b]− P[Gh(U) ≤ a] ≤ CL,h|a− b|.212213

Remark 2.7. Note that the uniform bound in (2.13) might not be valid for dif-214

fusion coefficients which are only pathwise elliptic and bounded, i.e., are of type (II)215

in Definition 2.1. In this case, CFE is a random variable and depends on ω ∈ Ω such216

that217

|G(U(ω))−Gh(U(ω))| = |Fy(·, ω)−Fhyh(·, ω)| ≤ CFE(ω)hs.218219
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One idea to handle such cases is the restriction of the random variable U to a bounded220

domain BR = {u ∈ Rn : ‖u‖2 ≤ R}, where R > 0. Thus, the random variable221

CFE(ω) is bounded uniformly within {ω ∈ Ω : U(ω) ∈ BR}. This idea can be seen222

as truncating the tails of the n-variate normal distribution. For log-normal random223

fields, the truncation yields a uniformly elliptic and bounded diffusion coefficient which224

satisfies (2.13). In Remark 2.13, we further discuss this idea and investigate our225

provided error bounds for pathwise elliptic and bounded diffusion coefficients.226

In fact, the following example considers a case, where CFE depends on ω ∈ Ω. The227

diffusion coefficient aII is a log-normal random field and, thus, not uniformly elliptic228

and bounded.229

Example 2.8. We consider the model problem (2.1) and (2.2) with D = (0, 1),230

f(x) = 0 for all x ∈ D and boundary conditions y(0, ω) = 1 and y(1, ω) = 0. A231

similar problem is considered in [29]. We consider two examples for the diffusion232

coefficient233

aI(x, ω) := 2 + tanh(Z(x, ω)), aII(x, ω) := exp(Z(x, ω)).234235

In both examples, Z is a Gaussian random field. We note that aI is uniformly elliptic236

and bounded, i.e. (2.5) is satisfied, since 1 ≤ aI(x, ω) ≤ 3 for P-a.e. ω ∈ Ω and237

all x ∈ D. The authors of [12] employ a similar random field model to describe a238

geotechnical material parameter. The diffusion coefficient aII is only pathwise elliptic239

and bounded, i.e. (2.6) is satisfied. We assume that Z has constant mean µZ and240

constant variance σ2
Z , while the covariance function is of exponential type. It is well241

known that the exponential covariance kernel c(x, y) := exp(‖x − y‖1/λ) produces242

realisations which are not continuously differentiable [27, Chapter 4]. The parameter243

λ denotes the correlation length. The random field Z can be approximated via its244

truncated Karhunen–Loève expansion (KLE)245

Z(x, ω) ≈ Zn(x, ω) := µZ + σZ

n∑

m=1

√
νmzm(x)Um(ω),246

247

where (νm, zm) are the KL eigenpairs of the correlation operator. For the exponential248

covariance kernel, a derivation of the eigenpairs is given in [14, Section 2.3.3]. We249

note that the approximation error introduced by the truncation of the KLE is not250

part of our analysis and the truncation order n is fixed.251

The random variables {Um}nm=1 are independent and standard normally distributed.252

Since we consider finitely many KL terms and the eigenfunctions zm(·) are smooth,253

the realisations aI,n(·, ω) := 2 + tanh(Zn(·, ω)) and aII,n(·, ω) := exp(Zn(·, ω)) are254

sufficiently smooth and Assumptions 2.3 and 2.4 are satisfied. By the Sobolev embed-255

ding theorem [16, Theorem 6.48], the solution y(·, ω) is continuously differentiable.256

Failure occurs if the flow rate257

q(x, ω) := −aI/II,n(x, ω)
∂y(x, ω)

∂x
(2.14)258

259

is larger than qmax at x = 1. Hence, the operator F is given as the point evaluation260

of the flow rate q at x = 1, which yields the LSF G(U(ω)) = qmax − q(1, ω). Linear261

FEs are applied to derive a discretization. By [28, Section 1.6], it follows that262

‖y(·, ω)− yh(·, ω)‖W 1,∞ ≤ C‖y(·, ω)‖W 2,∞h.263264
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For the diffusion coefficient aI, C‖y(·, ω)‖W 2,∞ ≤ CFE can be uniformly bounded265

and Assumption 2.5 is satisfied for s = 1. However, for the diffusion coefficient aII,266

CFE(ω) = C‖y(·, ω)‖W 2,∞ is a random variable. In Section 5.3, we consider again this267

example with the log-normal diffusion coefficient aII.268

2.2. FORM probability of failure. We derive an upper bound for the error269

given in (2.12) which depends on the PDE discretization error and on an approxi-270

mation of the probability of failure. This approximation will be given by the FORM271

estimate of the probability of failure; see [17, 19] for details. We now briefly introduce272

the FORM method.273

We define the MLFP uMLFP ∈ Rn as the solution of the minimization problem274

min
u∈Rn

1

2
‖u‖22, such that G(u) = 0.275

276

Hence, uMLFP is the element of the set {G = 0} that has smallest distance to the277

origin and, thus, maximizes the Gaussian density ϕn. Accordingly, we denote the278

MLFP with respect to the discretization Gh as uMLFP
h . We require that G(0) > 0279

and Gh(0) > 0, since we are generally interested in estimating failure probabilities280

which are in the tail of the densities. Using the MLFPs, we obtain an estimate for281

the probability of failure via282

PFORM
f = Φ(−‖uMLFP‖2) and PFORM

f,h = Φ
(
−‖uMLFP

h ‖2
)
,283284

where Φ is the CDF of the one-dimensional standard normal distribution. The FORM285

estimate is equal to the probability mass of the half-space which is defined through286

the hyperplane at the MLFP with direction perpendicular to the surface of the failure287

domain. Thus, the FORM estimate is an upper bound for the probability of failure,288

if the failure domain is convex. We use the convexity of the failure domains as an289

assumption on the LSF for Theorem 2.12. We state the convexity assumption in290

Assumption 2.9. In Assumption 2.10, we state an assumption on the gradient of the291

LSF, which is relevant for the proof of Theorem 4.2.292

Assumption 2.9 (Geometry of the failure domains). The failure domains A and293

Ah are unbounded, convex sets.294

Assumption 2.10 (Non-degeneracy of ∇uG and ∇uGh at the limit-state surface).295

For all h > 0 there exists νh > 0 such that for almost every u ∈ ∂A it holds296

∇uG(u) 6= 0, ∇uGh(u) 6= 0 and | cos (^ (u− uh,∇uG(u))) | ≥ νh, where uh ∈ ∂Ah is297

the point that has minimal distance to u and ^(·, ·) denotes the angle between two298

vectors.299

Assumption 2.10 states that the direction from a point u ∈ ∂A to its nearest neighbour300

uh ∈ ∂Ah is not orthogonal to the gradient ∇uG(u).301

2.3. Error bound for the probability of failure. The following proposition302

and theorem are the main statements of this manuscript. Proposition 2.11 states303

an error bound of the relative error with respect to the FORM estimates PFORM
f304

and PFORM
f,h . This bound is applicable in the general case where the geometries of the305

failure domains are unknown. In particular, the convexity of the failure domains is not306

required. In Theorem 2.12, we require convexity of the failure domains. Hence, the307

situation is more restrictive as compared with Proposition 2.11. In this case, we derive308

an error bound of the absolute error |Pf−Pf,h| in dependence of the discretized FORM309

estimate PFORM
f,h . Subsequent to Theorem 2.12, we give a remark which discusses310
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the error bounds if the approximation error of G and Gh in Assumption 2.5 is not311

uniformly bounded. This remark builds on Remark 2.2 and 2.7.312

Proposition 2.11. Let a(x, ω) be a uniformly elliptic and bounded diffusion co-313

efficient and let Assumptions 2.3, 2.4, 2.5, 2.6, and 2.10 hold. Then for h > 0314

sufficiently small, the relative error of the FORM estimates is upper bounded by315

|PFORM
f − PFORM

f,h |
PFORM
f

≤ ĈFORMhs.(2.15)316

317

Theorem 2.12. Let a(x, ω) be a uniformly elliptic and bounded diffusion coef-318

ficient and let Assumptions 2.3, 2.4, 2.5, 2.6, 2.9 and 2.10 hold. Then for h > 0319

sufficiently small, the error of the exact and approximate probability of failure is up-320

per bounded by321

|Pf − Pf,h| ≤ ĈhsPFORM
f,h .(2.16)322323

We note that the constants ĈFORM > 0 and Ĉ > 0 in (2.15) and (2.16), respec-324

tively, depend on CFE, h, n, ‖uMLFP‖2, and ‖uMLFP
h ‖2. We will discuss the behaviour325

of ĈFORM and Ĉ with respect to their dependencies in the following sections. The326

outline of the proof of Theorem 2.12 is as follows:327

(P1) For the absolute error, we derive the bound328

|Pf − Pf,h| ≤ C1h
s,329330

where C1 depends on the local Lipschitz constant CL of the CDF of G(U).331

(P2) Under the assumption that G is affine linear with respect to U , we derive332

an upper bound for the local Lipschitz constant of the CDF of G(U) which333

depends linearly on Pf . This yields an upper bound for the relative error334

|Pf − Pf,h|/Pf ≤ C2h
s.335336

(P3) For LSFs of the form (2.7) and (2.8), we prove that the distance between the337

exact limit-state surface ∂A := {u ∈ Rn : G(u) = 0} and its approximation338

∂Ah := {u ∈ Rn : Gh(u) = 0} has order O(hs) of convergence for h > 0339

sufficiently small, i.e., for all u ∈ ∂A it holds340

dist(u, ∂Ah) ≤ C3h
s.341342

(P4) Under the assumption that dist(u, ∂Ah) ≤ C3h
s, we derive an upper bound343

for the Gaussian measure of the symmetric difference A4Ah in the form344

P[A4Ah] ≤ C4P[U1 ∈]− bh − C3h
s,−bh + C3h

s]],345346

where U1 is distributed according to N(0, 1) and bh := ‖uMLFP
h ‖2.347

(P5) We define the affine linear function G̃ := U1+bh and apply the derived bound348

of the linear case (P2) to G̃ to prove (2.16).349

In the following sections, we provide full details of the steps (P1)–(P5). The proof of350

Proposition 2.11 requires (P1)–(P3) and a similar form of (P5) but does not require351

the upper bound of the Gaussian measure of A4Ah in (P4). Indeed, convexity of the352

failure domain is only required to prove (P4).353
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Remark 2.13. Given the idea from Remark 2.5, we conjecture that a similar error354

bound as in (2.16) also holds in the case of pathwise ellipticity. Given an error355

tolerance ε > 0, we choose R such that P[U 6∈ BR] ≤ ε/2 and we bound the random356

variable CFE(ω) in BR. We propose to choose ε � Pf to ensure that the truncated357

tails do not contain a large probability mass of the failure domain. We define the358

quantities P εf := P[G(U) ≤ 0 ∩ U ∈ BR] and P εf,h := P[Gh(U) ≤ 0 ∩ U ∈ BR]. By the359

triangle inequality it holds that360

|Pf − Pf,h| ≤ |Pf − P εf |+ |P εf − P εf,h|+ |Pf,h − P εf,h| ≤ |P εf − P εf,h|+ ε.361362

Thus, the restriction to BR leads to an ε-error for the absolute error of the probability363

of failure estimates. The proof of Theorem 2.12 can be used as a starting point to364

derive a similar error bound for the absolute error |P εf − P εf,h|. The same idea can365

be used to derive an error bound for the relative error with respect to the FORM366

estimates in Proposition 2.11 in the case of pathwise ellipticity. However, providing367

a complete proof of these bounds is out of the scope of this paper. We note that ε368

and R are chosen with respect to the probability of failure Pf and do not depend on369

CFE(ω). Choosing a small ε, requires a large radius R and a large upper bound for370

CFE(ω) within BR. If the user specified error tolerance ε is chosen, the upper bound371

of CFE(ω) is constant for the whole analysis and does not blow up.372

We conclude that the error bounds are useful also in cases where the diffusion co-373

efficient is only pathwise elliptic and bounded, i.e., satisfies (2.6). In the numerical374

experiments, we will only consider such settings. Indeed, the numerical results give375

evidence for our conjecture.376

Remark 2.14. We note that the approximation property of the LSF given in As-377

sumption 2.5 determines the approximation property of the probability of failure. If378

the approximation error of the LSF behaves in a more general form, (P1) and (P2)379

can be directly applied to show that the approximation error of the probability of380

failure behaves in the same manner. However, (P3) is only applicable for LSFs stem-381

ming from an elliptic PDE and satisfying the regularity assumptions. Indeed, if it382

is possible to show that (P3) holds for more general approximation properties of the383

LSF, then (P4) and (P5) are directly applicable.384

In Section 5.1, we consider an LSF which involves an ordinary differential equation385

(ODE). For this example, we show that the distance of the failure domains behaves386

as the convergence order of the applied time stepping scheme. Thus, (P3) is also valid387

and our error bounds are applicable in this setting.388

2.4. Absolute error bound. Under Assumption 2.5 and 2.6, we prove that389

the upper bound for the absolute error of the probability of failure behaves as the390

approximation error of the LSF, which proves (P1). This result and proof technique391

are similar to [8, Lemma 3.4]. Considering equations (2.10) and (2.11), the approxi-392

mation error is based on the symmetric difference A4Ah. The following lemma gives393

an upper bound for the absolute error.394

Lemma 2.15. Let Assumptions 2.5 and 2.6 hold. Then, the absolute approxima-395

tion error of the probability of failure is bounded in the following way:396

|Pf − Pf,h| ≤ P[G(U) ∈]− CFEh
s, CFEh

s]](2.17)397

≤ 2CLCFEh
s =: C1h

s.(2.18)398399
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Proof. Inserting the definitions of Pf and Pf,h given in (2.10) and (2.11) in the400

left hand side of (2.17) we get401

|Pf − Pf,h| =
∣∣∣∣
∫

Rn

(I(G(u) ≤ 0)− I(Gh(u) ≤ 0))ϕn(u)du

∣∣∣∣402

=

∣∣∣∣
∫

Rn

(I(G(u) ≤ 0 ∧Gh(u) > 0)− I(G(u) > 0 ∧Gh(u) ≤ 0))ϕn(u)du

∣∣∣∣403

≤ P[{G(U) ≤ 0} ∩ {Gh(U) > 0}] + P[{G(U) > 0} ∩ {Gh(U) ≤ 0}](2.19)404

= P[A4Ah],405406

where (2.19) follows from the triangle inequality. Using Assumption 2.5, we know407

that the case (G(u) ≤ 0 ∧ Gh(u) > 0) only occurs if G(u) ∈] − CFEh
s, 0] ∩ Gh(u) ∈408

]0, CFEh
s]. Similarly, the case (Gh(u) ≤ 0 ∧ G(u) > 0) only occurs if Gh(u) ∈409

] − CFEh
s, 0] and G(u) ∈]0, CFEh

s]. Therefore, the absolute approximation error is410

bounded by411

|Pf − Pf,h| ≤P[G(U) ∈]− CFEh
s, 0] ∩Gh(U) ∈]0, CFEh

s]]412

+ P[Gh(U) ∈]− CFEh
s, 0] ∩G(U) ∈]0, CFEh

s]].413414

Applying the multiplication rule P[B1 ∩B2] = P[B1 | B2]P[B2] for B1, B2 ∈ A we get415

that416

|Pf − Pf,h| ≤ P[Gh(U) ∈]0, CFEh
s] | G(U) ∈]− CFEh

s, 0]] · P[G(U) ∈]− CFEh
s, 0]]417

+ P[Gh(U) ∈]− CFEh
s, 0] | G(U) ∈]0, CFEh

s]] · P[G(U) ∈]0, CFEh
s]]418

≤ P [G(U) ∈]− CFEh
s, CFEh

s]] ,419420

where the last step follows from the fact that probabilities are always bounded by421

one. This proves inequality (2.17). To prove (2.18), we use the assumption on the422

local Lipschitz continuity of P[G(U) ≤ ·]423

P[G(U) ∈]− CFEh
s, CFEh

s]] ≤ 2CLCFEh
s.424425

Remark 2.16. By switching the roles of G by Gh in Lemma 2.15, we obtain426

|Pf − Pf,h| ≤ P[Gh(U) ∈]− CFEh
s, CFEh

s]] ≤ 2CL,hCFEh
s.427428

3. Affine linear limit-state function. The next step of the proofs of Propo-429

sition 2.11 and Theorem 2.12 is (P2). Here, we need to find an upper bound for the430

local Lipschitz constant CL of Assumption 2.6 around the limit-state surface ∂A for431

the case where G is affine linear with respect to U .432

Assumption 3.1. The LSF G : Rn → R is affine linear in the Gaussian random433

variable U , i.e., G(U) = αTU +β where α ∈ Rn, β > 0 and U ∼ N(0, Idn). Therefore,434

the probability of failure is435

Pf = P[G(U) ≤ 0] = P[αTU ≤ −β] =

∫ −β

−∞

1√
2π‖α‖22

exp

(
− u2

2‖α‖22

)
du = FW (−β),436

437

where W := αTU is distributed according to N(0, ‖α‖22) and FW (·) is the CDF of W .438

The shift parameter β is assumed to be positive which yields that G(0) > 0. Moreover,439

we require that −β + CFEh
s < 0 since the lower and upper bounds in (3.1) are440

only defined for negative inputs and we evaluate these bounds at w = −β + CFEh
s.441

Together with Assumptions 2.5, 2.6 and 3.1, we prove statement (P2).442
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Theorem 3.2. Let Assumptions 2.5, 2.6 and 3.1 hold and −β+CFEh
s < 0. Then443

the relative approximation error of the probability of failure is bounded by444

|Pf − Pf,h|
Pf

≤ C2(β, σ, hs, CFE) · hs,445
446

where σ2 = ‖α‖22.447

By Assumption 3.1, the probability of failure is directly given in terms of the CDF448

FW . The goal is to derive an upper bound for the local Lipschitz constant CL in449

Assumption 2.6, which depends linearly on the probability of failure. By Lemma 2.15,450

this is equivalent to deriving an upper bound for the local Lipschitz constant of FW (·)451

in the interval ] − β − CFEh
s,−β + CFEh

s]. We distinguish two cases in the proof.452

First, we assume that the approximation Gh is one-sided, i.e., G(U) ≤ Gh(U) almost453

surely. Secondly, we consider the non-one-sided case.454

3.1. One-sided approximation.455

Assumption 3.3. The approximation Gh of the LSF is one-sided with respect to456

the exact LSF G, that means457

G(u) ≤ Gh(u),458459

for all u ∈ Rn and h > 0.460

Under Assumption 3.3, it follows that Pf,h ≤ Pf and P[Gh(U) ∈]−CFEh
s, 0] | G(U) ∈461

]0, CFEh
s]] = 0. Hence, the bound for the absolute approximation error in Lemma 2.15462

simplifies to463

|Pf − Pf,h| ≤ P[G(U) ∈]− CFEh
s, 0]] ≤ CLCFEh

s.464465

Therefore, it suffices to derive an upper bound for the local Lipschitz constant of466

FW (·) within the interval ] − β − CFEh
s,−β]. Observe that the derivative of the467

CDF FW (w) with respect to w is the PDF of the normal distribution with mean 0468

and variance σ2, denoted by ϕW (w) = exp
(
−w2/(2σ2)

)
/
√

2πσ2, which is strictly469

increasing for w ∈] − ∞, 0[. Therefore, the local Lipschitz constant of FW on the470

interval ]−β−CFEh
s,−β] is given by ϕW (−β). The goal is to derive an upper bound471

for CL in the form CLCFE ≤ C2Pf for C2 > 0. In order to derive this result, we472

consider the following bounds for the CDF.473

Proposition 3.4. An upper and lower bound for the CDF FW (·) on the interval474

w ∈]−∞, 0[ are given by475

Fl(w) := −
σ exp

(
− w2

2σ2

)

√
2π

w

w2 + 1
≤ FW (w) ≤ −

σ exp
(
− w2

2σ2

)

w
√

2π
=: Fu(w).(3.1)476

477

The derivation of these bounds is given in [15].478

With these bounds, we derive an upper bound for the local Lipschitz constant CL479

having the desired form.480

Lemma 3.5. Under Assumptions 2.6, 3.1 and 3.3, it holds that the local Lipschitz481

constant CL within the interval [−β − CFEh
s,−β] is bounded by482

CL ≤
(
β

σ2
+

1

β
+

1

βσ2
+

1

β3

)
Pf .483

484
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Proof. 1. The derivative of Fu is given by485

F ′u(w) =
exp

(
− w2

2σ2

)

√
2πσ

+
σ exp

(
− w2

2σ2

)

w2
√

2π
=

exp
(
− w2

2σ2

)

√
2πσ

(
1 +

σ2

w2

)
.486

487

Hence, the derivative F ′u is also an upper bound for the PDF ϕW (w). Moreover,488

F ′u(w) is an increasing function for w < 0 since489

F ′′u (w) =
−w exp

(
− w2

2σ2

)

√
2πσ3

−
exp

(
− w2

2σ2

)

w
√

2πσ
−

2σ exp
(
− w2

2σ2

)

w3
√

2π
> 0, for all w < 0.490

491

Therefore, the derivative F ′u at w = −β gives us an upper bound for the local Lipschitz492

constant CL.493

2. F ′u can be written in terms of Fu:494

F ′u(−β) = −
σ exp

(
− β2

2σ2

)

β
√

2π

(
− β

σ2
− 1

β

)
= Fu(−β)

(
β

σ2
+

1

β

)
.(3.2)495

496

Since Fu is an upper bound for FW , we know that Fu(−β) ≥ FW (−β) = Pf . Since497

Fl is a lower bound for FW , we know that Fl(−β) ≤ Pf . Combining these two498

statements, we get499

1 ≤ Fu(−β)

Pf
≤ Fu(−β)

Fl(−β)
=
β2 + 1

β2
,(3.3)500

501

which yields Fu(−β) ≤
(
1 + 1/β2

)
Pf .502

Given (3.2) and (3.3), we conclude that503

CL = ϕW (−β) ≤ F ′u(−β) = Fu(−β)

(
β

σ2
+

1

β

)
≤
(
β

σ2
+

1

β
+

1

βσ2
+

1

β3

)
Pf .504

505

Combining the statements of Lemma 2.15 and Lemma 3.5, we conclude the proof of506

Theorem 3.2 with the constant507

C2,1(β, σ) :=

(
β

σ2
+

1

β
+

1

βσ2
+

1

β3

)
CFE.(3.4)508

509

Remark 3.6 (Sharper bounds). Applying the bounds of [1, 7.1.13], we can derive510

the following sharper upper and lower bounds of FW (w) for w ∈]−∞, 0]511

√
2

π

exp
(
− w2

2σ2

)

√
4 + w2/σ2 − w/σ

≤ FW (w) ≤
√

2

π

exp
(
− w2

2σ2

)

√
2 + w2/σ2 − w/σ

.(3.5)512

513

Using (3.5), we derive a sharper bound for the Lipschitz constant CL of the form514

CLCFE ≤
(√

4 + β2/σ2 + β/σ√
2 + β2/σ2 + β/σ

)(
β

σ2
+

β/
√

2 + β2/σ2 + σ

σ2
√

2 + β2/σ2 + βσ

)
CFEPf515

=: Ĉ2,1(β, σ)Pf .516517

The proof works in a similar way as the proof of Lemma 3.5.518
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Figure 1 shows the constants C2,1 and Ĉ2,1 for varying β and σ2 ∈ {0.1, 1.0, 10.0} and519

CFE = 1. The x-axis shows the probability of failure Pf = FW (−β). We observe that520

the constants are large for small variances σ2. Since Fu(0) is not defined and Fl(0) = 0,521

the constant C2,1 explodes to +∞ for large probability of failures, i.e., β → 0 while522

Ĉ2,1 yields a small constant in this case. In both plots, we infer that the variance σ2523

has the main influence on the behaviour of the constants. The probability of failure524

has only a small influence. For the FORM estimate, the variance of the linearized525

LSF is the square of the norm of the gradient at the MLFP.526

10 10 10 8 10 6 10 4 10 2

probability of failure

100

101

102

bo
un

d 
fo

r L
ip

sc
hi

tz
 c

on
st

an
t

constant C2, 1
2 = 0.1
2 = 1.0
2 = 10.0

10 10 10 8 10 6 10 4 10 2

probability of failure

100

101

102 constant C2, 1

Fig. 1. On the left: behaviour of C2,1 for varying β and σ2 ∈ {0.1, 1.0, 10.0}, where we
assume that G(U) is distributed according to N(β, σ2) and CFE = 1. On the right: behaviour of

Ĉ2,1 for varying β and σ2 ∈ {0.1, 1.0, 10.0}. The x-axis shows the respective probability of failure
Pf = FW (−β) which lies in the interval [10−10, 1/2].

3.2. Non-one-sided approximation. In general, we do not know if the LSF527

is one-sided, i.e., if G(u) ≤ Gh(u) for all u ∈ Rn. Hence, we are required to bound528

the local Lipschitz constant in Assumption 2.6 within the interval [−β−CFEh
s,−β+529

CFEh
s]. Due to the fact that the bounds in (3.1) are not defined for w ≥ 0, h must be530

chosen sufficiently small such that −β+CFEh
s < 0. Since we have already derived an531

upper bound for the local Lipschitz constant within the first half [−β − CFEh
s,−β],532

we derive an upper bound for the second half [−β,−β + CFEh
s]. In this case, the533

local Lipschitz constant can be expressed by the derivative of the CDF ϕW (z) at534

z = −β + CFEh
s. Applying the same steps as for the one-sided case, yields the535

following bound536

CLCFE ≤ F ′u(−β + CFEh
s)CFE537

≤
(
β +

1

β

)(
1

σ2
+

1

(β − CFEhs)2

)
exp

(
2βCFEh

s − C2
FEh

2s

2σ2

)
CFEPf538

=: C2,2(β, σ, hs, CFE)Pf .(3.6)539540

Unfortunately, C2,2 depends on the error bound CFEh
s of the LSF approximation.541

We observe that C2,2 converges to C2,1 for h→ 0. We illustrate this in the following.542
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Figure 2 displays the constant C2,2/CFE while varying the step size h. We divide by543

CFE to eliminate the linear dependence in C2,2. The order of convergence is either544

s = 1 or s = 2. Moreover, different values for CFE are considered. The variance is545

σ2 = 1 and β = 4. This yields a probability of failure of order 10−5. We observe that546

the constant C2,2/CFE is large for large values of CFE. For the convergence order547

s = 1, the step size h should be smaller than 10−2 to ensure a small constant even for548

large CFE. For s = 2, the step size should be smaller than 10−1.
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CFE = 1.0
CFE = 10
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100

101

102

103

104 convergence order h2

Fig. 2. On the left: behaviour of C2,2/CFE for varying the step size h and CFE ∈ {0.1, 1.0, 10.0}.
The convergence order is s = 1. On the right: behaviour of C2,2/CFE for varying the step size h
and CFE ∈ {0.1, 1.0, 10.0}. The convergence order is s = 2. In both plots, σ2 = 1 and β = 4.

549

Remark 3.7. Following the same steps to derive the constant C2,2, one could also550

derive a constant Ĉ2,2 which is based on the sharper CDF bounds (3.5). This constant551

also depends on CFEh
s.552

Finally, we note that the result above allows us to prove Theorem 3.2. Combining553

the constants in (3.4) and (3.6), we obtain the asserted inequality with554

C2(β, σ, hs, CFE) := C2,1(β, σ) + C2,2(β, σ, hs, CFE).555556

4. Error Analysis with Optimal Control and FORM. In this section, we557

prove statements (P3)–(P5) which will conclude the proofs of Proposition 2.11 and558

Theorem 2.12. In the affine linear case, we know that the error of the LSF in As-559

sumption 2.5 is directly related to the distance between the exact and approximate560

limit-state surface. However, this direct relation is not obvious in a more general561

setting.562

In the subsequent step, we derive an upper bound for the distance between the ex-563

act and approximate limit-state surface ∂A and ∂Ah, respectively, in the case where564

the LSF satisfies the assumptions of Proposition 2.11 and Theorem 2.12. This up-565

per bound is based on results from optimal control theory. Finally, we estimate the566

Gaussian measure of the symmetric difference of the failure domains A and Ah by the567

FORM approximation PFORM
f,h .568
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4.1. Theoretical results from optimal control. We will formulate item (P3)569

in Theorem 4.2. For the proof of this result, we require several concepts from the570

theory of optimal control. We discuss those results below; based on the works [26, 32].571

We commence with the unconstrained optimal control problem. It is given by572

min
u∈Rn

J(u) :=
1

2
‖Ĝ(u)− g‖22 +

α

2
‖u− u‖22,(4.1)573

574

where u ∈ Rn is the unknown parameter and Ĝ : Rn → Rnm is the observation575

operator. The observation operator Ĝ(u) = By(·, u) implicitly depends on the solution576

y(·, u) ∈ V = H1
0 (D) of the weak formulation of an elliptic PDE577

∫

D

a(x, u)∇xy(x, u) · ∇xv(x)dx =

∫

D

f(x)v(x)dx ∀v ∈ V,(4.2)578
579

where u ∈ Rn is a fixed parameter, f ∈ L2(D), and D ⊂ Rd, d = 1, 2, 3, is an open,580

bounded, convex polygonal domain. The function a(x, ·) : Rn → R is assumed to581

be three times continuously differentiable for all x ∈ D and a(·, u) ∈ L∞(D) for all582

u ∈ Rn. The discretized unconstrained optimal control problem is denoted as583

min
u∈Rn

Jh(u) :=
1

2
‖Ĝh(u)− g‖22 +

α

2
‖u− u‖22,(4.3)584

585

where Ĝh(u) = Bhyh(·, u) is the discretized observation operator. Additionally, we586

assume that B and Bh are linear and bounded with respect to y and yh, respectively.587

The parameters α ≥ 0 and u are regularizing parameters, while g ∈ Rnm is a given588

vector of, e.g., measurements.589

In the following, we derive the necessary and sufficient optimality conditions590

for (4.1). The first-order necessary optimality condition is given as591

∇uJ(u) = 0 ⇐⇒ (DĜ(u))T Ĝ(u) + αu = (DĜ(u))T g + αu,592593

where DĜ is the Jacobian of the observation operator Ĝ with respect to u. The594

second-order optimality condition is satisfied, if some coercivity parameter γ > 0595

exists, with596

zT∇2
uJ(u∗)z ≥ γ‖z‖22 ∀z ∈ Rn,597598

where ∇2
uJ(u∗) denotes the Hessian of J with respect to u. We call u∗ ∈ Rn a stable599

solution of (4.1), if it satisfies both, the first and second-order optimality conditions.600

Theorem 4.1. Let Assumption 2.3, 2.4 (ii) and 2.5 hold for the weak formula-601

tion (4.2) and the operator B. Let u∗ ∈ Rn be a stable solution of (4.1) such that602

∇2
uJ(u) is coercive with parameter γ > 0. Then for h > 0 sufficiently small, there603

exists a stable solution u∗h ∈ Rn of the discrete problem (4.3) such that the following604

a priori error estimate holds605

‖u∗ − u∗h‖2 ≤
1

γ
‖∇uJ(u∗)−∇uJh(u∗)‖2.606

607

Proof. The proof is given in [32, Theorem 3.4.1 and 3.4.2].608
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4.2. Back to rare event estimation. We now apply Theorem 4.1 to prove609

statement (P3).610

Theorem 4.2. Let Assumptions 2.3, 2.4 (ii), 2.5 and 2.10 hold. Then for all611

u ∈ ∂A it holds that612

dist(u, ∂Ah) ≤ C3(h) · hs,613614

for h > 0 sufficiently small.615

Proof. We apply Theorem 4.1 to an appropriate optimal control problem with616

α > 0 to show that for u∗ ∈ ∂A exists a ûh ∈ Rn such that the distance between these617

points behaves as O(hs). Then, we consider the limit α→ 0.618

Let u∗ ∈ ∂A be a point on the exact limit-state surface, i.e., G(u∗) = 0. We investigate619

the following optimal control problem620

min
u∈Rn

Jα(u) :=
1

2
G(u)2 +

α

2
‖u− u∗‖22,(4.4)621

622

where we set g = 0 and α > 0. For α = 0, there is no stable solution since for623

all u ∈ ∂A it holds that J0(u) = 0. Hence, the second order sufficient condition is624

violated. For α > 0, the gradient and Hessian matrix of Jα are given as625

∇uJα(u) = G(u)∇uG(u) + α(u− u∗),626

∇2
uJα(u) = G(u)∇2

uG(u) +∇uG(u)(∇uG(u))T + αI.627628

The point u∗ is the unique global minimizer of (4.4) since Jα(u∗) = 0 and Jα(u) > 0629

for all u ∈ Rn \ {u∗}. Hence, u∗ is a stable solution. For the discretization parameter630

h > 0, we define the discretized version of (4.4) as631

min
u∈Rn

Jh,α(u) :=
1

2
Gh(u)2 +

α

2
‖u− u∗‖22.(4.5)632

633

By Theorem 4.1, there exists a point ûh in a neighborhood of u∗ such that ûh is a634

stable solution of (4.5). Thus, we know that ∇uJh,α(ûh) = 0, which yields635

Gh(ûh)∇uGh(ûh) + α(ûh − u∗) = 0.636637

If Gh(ûh) = 0 we get that ûh = u∗ and the claim is proved. Now, we consider the case638

Gh(ûh) 6= 0 and we denote u∗h ∈ ∂Ah as the point on ∂Ah that has minimal distance639

to the point u∗. Moreover, we define the set of points640

E := {p ∈ Rn : | cos (^(p,∇uG(u∗))) | ≥ | cos (^(u∗ − ûh,∇uG(u∗))) |} ,641642

where ^(a, b) := arccos
(
aT b/(‖a‖2‖b‖2)

)
, for a, b ∈ Rn. The set E contains all643

directions p ∈ Rn, which admit a smaller or equal angle with ∇uG(u∗) than the644

direction pointing from u∗ to ûh. For all p ∈ E, we conclude that645

pT∇2
uJα(u∗)p = pT∇uG(u∗)(∇uG(u∗))T p+ α‖p‖22646

≥
(
cos2 (^(u∗ − ûh,∇uG(u∗))) ‖∇uG(u∗)‖22 + α

)
‖p‖22.647648

Thus, the Hessian matrix ∇2
uJα(u∗) is coercive for all p ∈ E with parameter649

γ = cos2 (^(u∗ − ûh,∇uG(u∗))) ‖∇uG(u∗)‖22 + α.650651
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Since u∗ − û ∈ E, we can perform the proof of Theorem 4.1 only for directions p ∈ E652

which yields that653

‖u∗ − ûh‖2 ≤
‖∇uJα(u∗)−∇uJh,α(u∗)‖2

cos2 (^(u∗ − ûh,∇uG(u∗))) ‖∇uG(u∗)‖22 + α
654

≤ ‖∇uGh(u∗)‖2
cos2 (^(u∗ − ûh,∇uG(u∗))) ‖∇uG(u∗)‖22 + α

CFEh
s,655

656

since it holds ‖∇uJh,α(u∗)‖2 = |Gh(u∗)|‖∇uGh(u∗)‖2 ≤ CFEh
s‖∇uGh(u∗)‖2 and657

∇uJα(u∗) = 0. Applying the limit, α → 0 we conclude that Gh(ûh) → 0 and, thus,658

ûh → u∗h ∈ ∂Ah. By Assumption 2.10, it holds that cos2 (^ (u∗ − u∗h,∇uG(u∗))) ≥ ν2h659

and we conclude that660

‖u∗ − u∗h‖ ≤
‖∇uGh(u∗)‖2
ν2h‖∇uG(u∗)‖22

CFEh
s.661

662

Since this holds true for all u∗ ∈ ∂A, we define663

C3(h) := CFE · sup
u∈∂A

‖∇uGh(u)‖2
ν2h‖∇uG(u)‖22

664

665

and the desired statement is proved.666

Remark 4.3. For the limit h → 0, it holds that Gh(u) → G(u) for all u ∈ Rn.667

Therefore, the limit-state surface ∂Ah converges to ∂A and uh → u. Hence, it holds668

| cos (^(u− uh,∇uG(u))) | → 1, where uh ∈ ∂Ah is the point on ∂Ah that has smallest669

distance to u ∈ ∂A. Thus, νh → 1, as h → 0. If in addition ∇uGh(u) converges670

uniformly to ∇uG(u), it yields that671

lim
h→0

C3(h) = CFE · sup
u∈∂A

1/‖∇uG(u)‖2.672

673

With (P1)–(P3), we can now give the proof of Proposition 2.11.674

Proof of Proposition 2.11. We denote the distances of the MLFPs to the origin as675

b = ‖uMLFP‖2 and bh = ‖uMLFP
h ‖2. By definition, we know that PFORM

f = Φ(−b) =676

P[U1 ≤ −b], where U1 is a one-dimensional random variable distributed according to677

N(0, 1). Similar, PFORM
f,h = Φ(−bh) = P[U1 ≤ −bh]. From Theorem 4.2, we know678

that the distance between ∂A and ∂Ah is bounded from above by C3(h)hs. Thus,679

|b− bh| ≤ C3(h)hs. This yields that the absolute error |PFORM
f −PFORM

f,h | is bounded680

from above by681

|PFORM
f − PFORM

f,h | = |P[U1 ≤ −b]− P[U1 ≤ −bh]|(4.6)682

≤ P[U1 ∈]− b− C3(h)hs,−b+ C3(h)hs]],(4.7)683684

where we apply similar steps as in the proof of Lemma 2.15. The probability term685

in (4.7) is equal to P[G̃(U1) ∈] − C3(h)hs, C3(h)hs]] where the LSF G̃(U1) := U1 + b686

satisfies (2.13) in Assumption 2.5 with CFE = C3(h). By definition it holds PFORM
f =687

P[G̃(U1) ≤ 0]. Since G̃ is affine linear, we apply Theorem 3.2 to the LSF G̃ with σ = 1688

and β = b which yields689

P[G̃(U1) ∈]− C3(h)hs, C3(h)hs]] ≤ C2(b, 1, hs, C3(h))hsPFORM
f .(4.8)690691

Finally, combining (4.7) and (4.8) we conclude that692

|PFORM
f − PFORM

f,h | ≤ C2(b, 1, hs, C3(h))hsPFORM
f =: ĈFORMhsPFORM

f .693694
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The proof of Theorem 2.12 works in a similar way as the proof of Proposition 2.11.695

However, the inequalities in (4.6) and (4.7) do not hold directly for the absolute error696

|Pf −Pf,h|, which is upper bounded by the Gaussian measure of the set S := A4Ah.697

The following theorem provides an upper bound of the Gaussian measure of S which698

is similar to (4.7). In this theorem, the convexity of the failure domains is required,699

i.e., we assume that Assumption 2.9 holds. We switch the roles of Pf and Pf,h, which700

yields that the derived error bound depends on PFORM
f,h and not on PFORM

f .701

Theorem 4.4. Let Assumption 2.4 (i) and 2.9 hold. Moreover, we assume that702

for all uh ∈ ∂Ah it holds that703

dist(uh, ∂A) ≤ C̃hs.(4.9)704705

The distance between the origin and ∂Ah is denoted as bh. Then, an upper bound for706

the Gaussian measure of the symmetric difference of A and Ah is given by707

P[U ∈ A4Ah] ≤ C4(n)P[U1 ∈]− bh − C̃hs,−bh + C̃hs]],708709

where U1 is distributed according to N(0, 1). The constant C4 is given by710

C4(n) = 1 + π1/2 Γ((n+ 1)/2)

Γ(n/2)
,711

712

where Γ(·) is the Gamma function.713

Proof. For n = 1, the statement directly follows from assumption (4.9) with714

C4(n) = 1. Consider n > 1. By the rotation invariance of the Gaussian measure715

P[U ∈ ·] = N(0, Idn), we assume, without loss of generality, that the point with716

smallest distance to the origin is given by b∗h = (0, . . . , 0,−bh)T ∈ Rn, thus, uMLFP
h =717

b∗h. We denote the sets of interest by D1 := A4Ah and D2 := {u ∈ Rn : un ∈718

]− bh − C̃hs,−bh + C̃hs]}.719

First, we consider the closed ball around the origin BR := {u ∈ Rn : ‖u‖ ≤ R} and720

we show that P[U ∈ D1 ∩BR] ≤ C4(n)P[U ∈ D2 ∩BR]. Afterwards, we consider the721

limit R→∞.

Fig. 3. Illustration of the limit-state surfaces ∂A and ∂Ah in 2D. The illustrations shows that
the Gaussian measure of A4Ah can be translated to a Gaussian measure at the MLFP uMLFP

h .

722
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For R ≤ bh, it follows that D1 ∩ BR = ∅, and the statement is valid. Therefore,723

we consider R > bh. First, we determine the scaling factor of the n − 1 dimensional724

Lebesgue measure of the transformation of a convex curve to a hyperplane. Therefore,725

we consider the sets E1 = BR ∩ ∂Ah and E2 = BR ∩ {u ∈ Rn : un = −bh}. Note that726

E2 is an n− 1-dimensional ball centred in b∗h. We visualize this in Figure 3. We call727

the radius of this ball r :=
√
R2 − b2h. Thus, the n−1-dimensional Lebesgue measure728

of E2 is equal to the volume of the ball Br in n− 1 dimensions, which is given by729

λn−1(E2) =
π(n−1)/2rn−1

Γ((n+ 1)/2)
.730

731

By the convexity of Ah, we conclude that an upper bound for the n− 1 dimensional732

Lebesgue measure of E1 is given by the surface measure of the set BR ∩ {u ∈ Rn :733

un ≤ −bh}. This surface measure is bounded from above by the sum of the volume of734

the ball Br in n− 1 dimensions and 1/2 of the surface of the ball Br in n dimensions735

which yields736

λn−1(E1) ≤ π(n−1)/2rn−1

Γ((n+ 1)/2)
+
πn/2rn−1

Γ(n/2)
.737

738

Hence, the fraction of the two n− 1 dimensional Lebesgue measures is bounded by739

λn−1(E1)

λn−1(E2)
≤ 1 + π1/2 Γ((n+ 1)/2)

Γ(n/2)
= C4(n).(4.10)740

741

The formulas for the volume and surface of a ball in n dimensions are given in [23,742

5.19(iii)]. Inequality (4.10) bounds the scaling factor of the length of the curve E1743

with respect to the hyperplane E2. Applying this result, we can transform the set D1744

into D2. The probability of interest is given by745

P[U ∈ D1 ∩BR] =

∫

u∈Rn

I(u ∈ D1 ∩BR)ϕn(u)du746

=
1

(2π)n/2

∫

BR

I(u ∈ D1) exp

(
−‖u‖

2
2

2

)
du747

=
1

(2π)n/2

∫ r=R

r=0

∫

Sn−1(r)

I(u ∈ D1) exp

(
−r

2

2

)
dsdr,748

749

where Sn−1(r) = {u ∈ Rn : ‖u‖2 = r} is the surface of Br. Since the distance of A750

and Ah is always smaller than C̃hs, the n − 1 dimensional Lebesgue measure of the751

intersection D1 ∩ Sn−1(r) is smaller or equal than the n − 1 dimensional Lebesgue752

measure of the intersection D2∩Sn−1(r). Hence, since the standard Gaussian density753

is constant on Sn−1(r) for all r ≥ 0 and applying the transformation of D1 to D2 it754

follows that755

P[U ∈ D1 ∩BR] ≤ C4(n)
1

(2π)n/2

∫ r=R

r=0

∫

Sn−1(r)

I(u ∈ D2) exp

(
−r

2

2

)
dsdr756

= C4(n)P[U ∈ D2 ∩BR]757

≤ C4(n)P[U ∈ D2]758

= C4(n)P[U1 ∈]− bh − C̃hs,−bh + C̃hs]].759760
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Taking the limit R → ∞ we get the desired statement, due to the continuity of761

measures.762

Remark 4.5. Unfortunately, taking the limit n → ∞ yields C4(n) → ∞. Thus,763

this result does not easily generalise with respect to infinite-dimensional settings.764

However, the growth of C4(n) is O(n1/2) as visualised in Figure 4. Hence, even in765

high dimensions, the constant is reasonably small.766
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100

101

102
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104

C 4
(n

)

C4(n)
(n1/2)

Fig. 4. Behaviour of C4(n) for varying the stochastic dimension n.

Having collected the proofs for (P1)–(P4), we can now give the proof of (P5)767

which proves Theorem 2.12.768

Proof of Theorem 2.12. We apply similar steps as in the proof of Proposition 2.11,769

but we switch the roles of Pf and Pf,h. By Theorem 4.2 and applying Theorem 4.4770

with C̃ = C3(h), we know that the absolute error of the probability of failure is771

bounded by772

|Pf − Pf,h| ≤ C4(n)P[U1 ∈]− bh − C3(h)hs,−bh + C3(h)hs]].(4.11)773774

Defining the LSF G̃h(U1) := U1 + bh and assuming that G̃ satisfies (2.13) in Assump-775

tion 2.5 with C̃FE = C3(h) yields776

P[G̃h(U1) ∈]− C3(h)hs, C3(h)hs]] ≤ C2(bh, 1, h
s, C3(h))hsPFORM

f,h .(4.12)777778

Finally, combining (4.11) and (4.12) we conclude the proof of Theorem 2.12 with779

|Pf − Pf,h| ≤ C2(bh, 1, h
s, C3(h)) · C4(n)hsPFORM

f,h =: ĈhsPFORM
f,h .780781

Remark 4.6. We note that the assumptions on the regularity of the diffusion782

coefficient, as given in Assumption 2.3 and 2.4, are only relevant to prove Theorem 4.1783

and 4.2, respectively. If the approximation error bound of the LSF behaves in another784

manner as in Assumption 2.5 and if it is possible to show that the distance between785

∂A and ∂Ah behaves in the same manner, then the error bounds in Proposition 2.11786

and Theorem 2.12 hold for this error bound.787

5. Numerical Experiments. We now illustrate our results in several numer-788

ical experiments. We start with a one-dimensional parameter space example where789

the LSF involves an ODE, not a PDE. Then, we consider rare events that depend on790
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elliptic PDEs with stochastic spaces of different dimensions. In all experiments, the791

approximation error of G and Gh is not uniformly bounded as required in Assump-792

tion 2.5. We consider these settings to test the conjecture in Remark 2.13. Indeed,793

our provided error bounds in Proposition 2.11 and Theorem 2.12 are also observed794

in these non-uniform cases. In the first experiment, we observe that the distances of795

the failure surfaces behave as the discretization error. Following Remark 2.14, this796

behaviour enables to consider only (P4) and (P5) and we expect that the provided797

error bounds hold in this setting.798

5.1. ODE, 1-dimensional parameter space. In the following example, which799

is also considered in [31], the LSF depends on the solution of an ODE with a one-800

dimensional Gaussian random parameter. Hence, this example does not actually801

depend on an elliptic PDE. We study it, since we can compute all quantities of interest802

analytically.803

Let y : [0, 1]× Ω→ R such that for P-a.e. ω ∈ Ω, we have804

∂y(t, ω)

∂t
= −U(ω)y(t, ω), t ∈ (0, 1), with initial condition y(0, ω) = 1,805

806

where U ∼ N(0, 1) is a stochastic parameter. The exact solution to this ODE is given807

by y(t, ω) = exp(−U(ω)t) – a log-normal stochastic process. Failure is defined as the808

event that the solution y(·, ω) is larger than ymax = 40 at t = 1, which can be written in809

terms of the LSF G(u) = ymax−exp(−u) ≤ 0. Hence, failure occurs if u ≤ − log(ymax)810

and the exact probability of failure is equal to Pf = Φ(− log(ymax)) ≈ 1.13 · 10−4.811

The MLFP is given by uMLFP = − log(ymax).812

Using the explicit Euler scheme to solve the ODE numerically, we derive the ap-813

proximate solution yh(t = 1, ω) = (1 − U(ω)h)1/h, where h > 0 is the time step814

size. The explicit Euler scheme is convergent of order one, see [20, Section 6.3], i.e.,815

|y(t, ω) − yh(t, ω)| = O(h) for a fixed ω ∈ Ω. The approximate LSF is Gh(u) =816

ymax − (1 − uh)1/h. Hence, failure occurs if u ≤ (1 − yhmax)/h and the approximate817

probability of failure is equal to Pf,h = Φ((1− yhmax)/h). The approximate MLFP is818

given by uMLFP
h = (1− yhmax)/h.819

Since the space of the stochastic parameter space is one-dimensional and the exact and820

approximate failure domains are half-rays, it holds Pf = PFORM
f and Pf,h = PFORM

f,h .821

Thus, the error bound of Proposition 2.11 and Theorem 2.12 yield a bound for the822

relative error |Pf −Pf,h|/Pf . As mentioned, the setting of this example is different to823

the setting of Proposition 2.11 and Theorem 2.12. Moreover, the approximation error824

of the LSF is not uniformly bounded. Figure 5 shows that the distance of the failure825

domains scales as O(h). Thus, we expect that the relative error of the probability of826

failure approximations has order O(h) of convergence for h > 0 sufficiently small.827

As a second time stepping method, we consider the Crank–Nicolson scheme as given828

in [20, Chapter 9]. Applying the discretization rule, we get the approximate solution829

ỹh(t = 1, ω) =

(
1− hU(ω)/2

1 + hU(ω)/2

)1/h

.830
831

Hence, the approximate probability of failure is given by P̃f,h = Φ(2h−1(1−yhmax)/(1+832

yhmax)). Since the Crank–Nicolson scheme is convergent of order 2, we expect that the833

relative error of the probability of failure approximations has order O(h2) of conver-834

gence for h > 0 sufficiently small.835

Figure 5 shows the approximate probability of failure by the explicit Euler and the836
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Crank–Nicolson scheme for the step sizes h` = 1/2`, for ` = 0, . . . , 9. We observe that837

the approximations computed with both these methods approach the exact proba-838

bility of failure as h decreases. Moreover, we observe that the distance between the839

exact and approximate MLFPs converges in the same order as the PDE discretization840

error. Hence, the statement of Theorem 4.2 is also valid and we conclude that Propo-841

sition 2.11 and Theorem 2.12 are also applicable for this setting. On the right plot, we842

observe that the relative error of the explicit Euler approximations has order O(h) of843

convergence while the relative error of the Crank–Nicolson approximations has order844

O(h2) of convergence. These are exactly the bounds which we get from theoretical845

discussions. For large h, we observe a plateau behaviour for the explicit Euler scheme.846

This is due to the fact that the Euler approximation Pf,h is much smaller than Pf847

for large h. Hence, the relative error is nearly equal to one for large time step sizes848

h, until the convergence sets in.849
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Fig. 5. On the left: approximate probability of failure by the explicit Euler and Crank–Nicolson
scheme for varying the time step size h. The black line shows the exact probability of failure. In
the middle: distance between the exact and approximate MLFPs. The black lines show the order of
convergence. On the right: relative error of the approximations with respect to the exact probability
of failure.

5.2. 2-Dimensional parameter space. The following example considers an850

LSF which depends on a two-dimensional stochastic parameter and is also considered851

in [9, 13]. In this case, the FORM estimate is not equal to the exact probability852

of failure. However, we can still derive analytical expressions for the exact and ap-853

proximate LSF as well as for the exact and approximate limit-state surfaces. On the854

domain D = (0, 1), we seek a solution y : D×Ω→ R that solves the following elliptic855

boundary value problem856

− ∂

∂x

(
exp

(
U1(ω)

3
− 3

)
∂

∂x
y(x, ω)

)
= 1− x, for x ∈ (0, 1),(5.1)857

such that y(0, ω) = 0 and y(1, ω) = U2(ω)(5.2)858859
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for P-a.e. ω ∈ Ω. The random variables U1 and U2 are independent and standard860

normally distributed. The exact solution of this problem is861

y(x, ω) = U2(ω)x+ exp (−U1(ω)/3 + 3) (x3/6− x2/2 + x/3).862863

Failure is defined as the event that the solution y(·, ω) is smaller than ymax = −1/3864

at x̂ = 1/3. Hence, we express the LSF as G(U1(ω), U2(ω)) = y(1/3, ω)− ymax.865

Applying linear FEs with mesh size parameter h > 0, we compute the approximate866

solution to (5.1) and (5.2) which we denote by yh : D × Ω → R. Accordingly, the867

approximate LSF is given by Gh(U1(ω), U2(ω)) = yh(1/3, ω)− ymax.
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U
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Limit-state surface of linear FEM approximations

Fig. 6. On the left: the black line shows the exact limit-state surface and the black cross
denotes the exact MLFP. The red lines show the approximate limit-state surfaces given by the linear
FE discretization for different choices of the mesh size h. The red crosses denote the approximate
MLFPs. On the right: zoom-in of the left plot near the MLFPs.

868
Figure 6 shows the exact limit-state surface and the limit-state surfaces given by the869

linear FE approximations. We observe that the exact as well as the approximate870

failure domains are convex. Indeed, the exact limit-state surface can be expressed as871

a function in terms of the first coordinate u1 by872

u2(u1) = 1/x̂
(
−1/3−

(
x̂3/6− x̂2/2 + x̂/3

)
exp(−u1/3 + 3)

)
.873874

Thus, it holds ∂A = {(u1, u2(u1)) : u1 ∈ R}. Since −u′′2(u1) > 0, we conclude that875

−u2(u1) is a convex function. Since the failure domain A has the same geometric876

properties as the epigraph of −u2(u1), we conclude that A is convex. In a similar way,877

we can prove that Ah is convex. For more details on convex analysis we refer to [2].878

Figure 6 also shows that the distances between the exact and approximate surfaces879

decrease for decreasing mesh size h. Since the limit-state surface is not a straight880

line, the FORM estimates of the probability of failure are not equal to the true ones,881

i.e., Pf 6= PFORM
f and Pf,h 6= PFORM

f,h . The quantities Pf and Pf,h are calculated882

by integrating numerically the standard normal PDF within the failure domain. We883

obtain the values Pf ≈ 1.71 · 10−4 and PFORM
f ≈ 2.08 · 10−4.884
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Following the theoretical discussions, we expect that885

|Pf − Pf,h| ≤ ĈhsPFORM
f,h ,886887

for h > 0 sufficiently small and Ĉ given in the proof of Theorem 2.12. The order of888

convergence s is equal to the order of convergence of the FE discretization. The point889

evaluation of a linear FE approximation introduces an error of order two, since by [7,890

Theorem 1.1] it holds that the L∞-error is bounded by891

‖y(·, ω)− yh(·, ω)‖L∞ ≤ C‖y(·, ω)‖W 2,∞h2,892893

for a fixed ω ∈ Ω. Hence, we expect that the error bounds in Proposition 2.11 and894

Theorem 2.12 hold for s = 2.895

As another discretization, we apply FEs with quadratic basis functions. In this case,896

the L∞-error of the exact and FE solution converges with orderO(h3); see [7, Theorem897

1.1]. Hence, we expect that the error bounds in Proposition 2.11 and Theorem 2.12898

hold for s = 3.899

Figure 7 shows the error of the probability of failure by linear and quadratic FEs for the900

mesh sizes h` = 1/2`, for ` = 1, . . . , 9. We observe that the approximate probability901

of failure Pf,h converges to the exact probability of failure Pf for both discretizations.902

Similarly, PFORM
f,h converges to PFORM

f . The true relative error |Pf −Pf,h|/Pf as well903

as the relative error of the FORM estimates |PFORM
f − PFORM

f,h |/PFORM
f behaves as904

the discretization error of the FEM approximations. Moreover, the error bound in905

Theorem 2.12 behaves as the discretization error.906

10 2 10 1

mesh size h

10 8

10 6

10 4

10 2

100

re
la

tiv
e 

er
ro

r

true relative error |Pf Pf, h|/Pf

linear FEMs
quadratic FEMs

(h2)
(h3)

10 2 10 1

mesh size h

10 8

10 6

10 4

10 2

100

FORM relative error |PFORM
f PFORM

f, h |/PFORM
f

10 2 10 1

mesh size h

10 8

10 6

10 4

10 2

100

error bound |Pf Pf, h|/PFORM
f, h

Fig. 7. On the left: relative error of the approximate probability of failure Pf,h with respect
to the exact probability of failure Pf . In the middle: relative error of the approximate FORM

estimate PFORM
f,h with respect to the exact FORM estimate PFORM

f . On the right: bound of the

error |Pf − Pf,h|. The black lines show the order of convergence.

5.3. High-dimensional parameter space. In the following, we consider Ex-907

ample 2.8 of Section 2 for which it is not possible to calculate analytic expressions908

of the exact and approximate PDE solutions y and yh, respectively. Moreover, the909
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limit-state surfaces A and Ah cannot be expressed explicitly. Therefore, we estimate910

Pf and Pf,h with Sequential Importance Sampling (SIS) [24].911

On the domain D = (0, 1), we seek a solution y : D × Ω→ R which solves912

− ∂

∂x

(
a(x, ω)

∂

∂x
y(x, ω)

)
= 0, for x ∈ (0, 1),(5.3)913

such that y(0, ω) = 1 and y(1, ω) = 0,914915

for P-a.e. ω ∈ Ω. The random field a(x, ω) = exp(Z(x, ω)) is a log-normal random916

field and the underlying Gaussian field Z(x, ω) has constant mean µZ = 0.1 and vari-917

ance σ2
Z = 0.04. The covariance function of Z is c(x1, x2) = σ2

z exp (−‖x1 − x2‖1/λ),918

with correlation length λ = 0.3. The random field Z is approximated via its trun-919

cated KLE with n = 10 leading terms, which captures around 93% of the variabil-920

ity of the random field. Failure is defined as the event that the flow rate q(·, ω),921

given in (2.14), is larger than qmax = 1.7 at x̂ = 1. Hence, we express the LSF as922

G(U(ω)) = qmax − q(1, ω).923

Linear FEs are applied with mesh size parameter h > 0 to obtain the approximate924

solution yh : D × Ω → R of (5.3). Accordingly, the approximate LSF is given by925

Gh(U(ω)) = qmax − qh(1, ω). As discussed in Example 2.8, linear FEs yield a PDE926

discretization error of order one. Since the approximation error of the LSF is not927

uniformly bounded, Proposition 2.11 and Theorem 2.12 are not directly applicable.928

However, as noted in Remark 2.13, we expect that our error bounds also hold for929

s = 1.930

The references Pf and Pf,h are obtained by averaging over 100 SIS simulations with931

104 samples, target coefficient of variation equal to 0.25 and using Markov Chain932

Monte Carlo (MCMC) with sampling from the von Mises–Fisher–Nakagami distribu-933

tion. No burn-in is applied within the MCMC sampling and 10% of the samples are934

chosen as seeds of the simulated Markov chains via multinomial resampling. Details935

are given in [33]. We note that the coefficient of variation of the 100 probability of936

failure estimates is 10−2. Hence, we expect that the sampling bias is negligible. The937

reference probability of failure is estimated as Pf ≈ 3.38 · 10−4 on a mesh with dis-938

cretization size h = 2−12. Similar, the reference FORM estimate PFORM
f ≈ 4.66 ·10−4939

is obtained by FORM with mesh size h = 2−12. The reference Pf,h and PFORM
f,h are940

obtained on a sequence of mesh sizes h` = 1/2` for ` = 1, . . . , 11.941

The upper left plot of Figure 8 shows the reference probability of failure Pf , approxi-942

mations Pf,h and FORM estimates PFORM
f,h . We observe that PFORM

f,h is always larger943

than Pf,h for a fixed mesh size h. This is a necessary condition for convex failure944

domains. However, we cannot show that the failure domains are indeed convex and945

unbounded. The upper right plot shows that the relative error |Pf − Pf,h|/Pf be-946

haves as the discretization error of the LSF. The same holds true for the relative error947

with respect to the FORM estimates, which is illustrated in the lower left plot. We948

expected this behaviour by Proposition 2.11. Moreover, the lower right plot shows949

the convergence of our error bound in Theorem 2.12. We also observe that the error950

bound gives an order one approximation which we have expected by Theorem 2.12.951

5.3.1. 50-dimensional parameter space. We consider the problem setting952

of (5.3) with correlation length λ = 0.1. A smaller correlation length requires a larger953

number of leading KLE terms to acquire a similar resolution of the random field.954

Therefore, we consider n = 50 leading KLE terms, which captures around 96% of955

the variability of the random field. We adjust the threshold qmax = 1.5 to achieve a956
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Fig. 8. Upper left: reference probability of failure Pf , approximations Pf,h and FORM esti-

mates PFORM
f,h . Upper right: relative error of the approximations Pf,h with respect to the reference

probability Pf . Lower left: relative error of the approximate FORM estimate PFORM
f,h with respect

to the reference PFORM
f . Lower right: derived bound of the error |Pf − Pf,h|. The dashed black

lines show the order of convergence. The red areas show the standard deviations of the estimates.

similar order of the probability of failure. As in the previous example, the references957

for the probability of failure are obtained by SIS and the settings as described above.958

The reference probability of failure is estimated as Pf = 7.18 · 10−5 on a mesh with959

discretization size h = 2−12. The reference FORM estimate PFORM
f = 1.52 · 10−4 is960

obtained on the same discretization level. The reference Pf,h and PFORM
f,h are obtained961

on a sequence of mesh sizes h` = 1/2` for ` = 1, . . . , 11.962

The upper left plot of Figure 9 shows that PFORM
f,h is always larger than Pf,h for a963

fixed mesh size h. The upper right plot shows that the relative error |Pf − Pf,h|/Pf964

has order O(h) of convergence for small discretization sizes h. For large h, we observe965

a plateau behaviour and then a fast decay until it converges with the expected order.966

The relative error with respect to the FORM estimates, which is illustrated in the967

lower left plot, has order O(h) of convergence and, hence, is the same as the conver-968

gence property of the LSF. Moreover, the lower right plot shows the convergence of our969

error bound. We also observe that the error bound gives an order one approximation970

for small h. This is exactly the order of convergence we expect from Proposition 2.11971

and Theorem 2.12.972

6. Conclusion and Outlook. In this manuscript, we have considered the ap-973

proximation error of the probability of failure, which is induced through the approx-974

imation error of the LSF. We assume that the LSF depends on the evaluation of an975

elliptic PDE with stochastic diffusion parameter and Dirichlet boundary condition.976

We have shown in Theorem 2.12 under certain assumptions, that the approximation977

error of the probability of failure behaves as the PDE discretization error multiplied978

by the FORM estimate of the probability of failure. Moreover, we have shown in979

Proposition 2.11 that the relative error of the FORM estimates behaves as the PDE980

discretization error. If the LSF is affine linear with respect to the stochastic param-981
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Fig. 9. Upper left: reference probability of failure Pf , approximations Pf,h and FORM esti-

mates PFORM
f,h . Upper right: relative error of the approximations Pf,h with respect to the reference

probability Pf . Lower left: relative error of the approximate FORM estimate PFORM
f,h with respect

to the reference PFORM
f . Lower right: derived bound of the error |Pf − Pf,h|. The dashed black

lines show the order of convergence. The red areas show the standard deviations of the estimates.

eter, the derived error bound gives an upper bound for the relative approximation982

error of the probability of failure.983

Our provided error bounds are only applicable for uniformly elliptic and bounded dif-984

fusion coefficients. We outline an idea to treat pathwise elliptic and bounded diffusion985

coefficients. However, we have not provided a complete proof. In several numerical986

experiments, we observe that our provided error bounds also hold true for pathwise987

elliptic and bounded diffusion coefficients. In these experiments, we have shown that988

the approximation error of the probability of failure indeed behaves as the derived989

error bound given in Theorem 2.12. The same holds true for the bound of the relative990

error of the FORM estimates given in Proposition 2.11.991

The manuscript can be used as a starting point to derive an error bound, which is992

applicable for a broader range of LSFs. The derivation of an error bound for the993

relative error, which does not consist of the FORM estimate, is still of high interest.994
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C. Article: The ensemble Kalman filter for rare event
estimation

Summary

In this article, we study the ensemble Kalman filter (EnKF) as a novel sampling-based
method to estimate the probability of rare events. The starting point of the EnKF
algorithm is the work of [57, 106], where the EnKF is applied to inverse problems. To
apply the EnKF to rare event estimation, we reformulate the rare event problem as an
inverse problem and apply the EnKF to generate failure samples. With the generated
samples, we fit a distribution model and estimate the probability of the rare event
with importance sampling. We show that the resulting EnKF densities yield a novel
way to approximate the optimal importance sampling density. We suggest a novel
adaptive algorithm to apply the EnKF to multi-modal failure domains. Therefore,
we combine the approach of [102] with a clustering approach to determine adaptively
the localization parameter.
Another contribution of this article is the analysis of the continuous-time limit of

the EnKF update tailored to rare event estimation. Under the assumptions that the
EnKF is applied without noise and the limit-state function is affine linear, we derive
the continuous-time limit of the EnKF update. We show that the mean of the EnKF
particles converges to a convex combination of the most likely failure point and the
mean of the optimal importance sampling density. Moreover, we show that the safe
particles move to the limit-state surface and remain there. Thus, the covariance
of the safe particles in direction perpendicular to the limit-state surface shrinks to
zero, which is also known as ensemble collapse. Contrary, the covariance of the safe
particles in direction parallel to the limit-state surface remains constant.
In numerical experiments, we compare the performance of the EnKF with Sequen-

tial Importance Sampling (SIS). We observe that for unimodal failure domains, the
EnKF requires less computational costs than SIS for a fixed level of accuracy. For
multi-modal failure domains, the performance of the EnKF is similar with SIS. How-
ever, the application of SIS to multi-modal failure domains is more straightforward,
while the application of the EnKF should be considered carefully.
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The ensemble Kalman filter for rare event estimation
F. Wagner, I. Papaioannou, E. Ullmann
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Abstract

We present a novel sampling-based method for estimating probabilities of rare
or failure events. Our approach is founded on the Ensemble Kalman filter (EnKF)
for inverse problems. Therefore, we reformulate the rare event problem as an in-
verse problem and apply the EnKF to generate failure samples. To estimate the
probability of failure, we use the final EnKF samples to fit a distribution model
and apply Importance Sampling with respect to the fitted distribution. This leads
to an unbiased estimator if the density of the fitted distribution admits positive
values within the whole failure domain. To handle multi-modal failure domains, we
localise the covariance matrices in the EnKF update step around each particle and
fit a mixture distribution model in the Importance Sampling step. For affine linear
limit-state functions, we investigate the continuous-time limit and large time prop-
erties of the EnKF update. We prove that the mean of the particles converges to
a convex combination of the most likely failure point and the mean of the optimal
Importance Sampling density if the EnKF is applied without noise. We provide
numerical experiments to compare the performance of the EnKF with Sequential
Importance Sampling.

Keywords: Reliability analysis, importance sampling, ensemble Kalman filter, in-
verse problems

1 Introduction
Estimating the probability of failure is a frequent and crucial task in reliability analysis
and risk management [2, 36]. Failure of a system is determined by the outcome of a
limit-state function (LSF). By convention, if the outcome is larger than zero, the given
state keeps the system in a safe mode. For a negative outcome, the state leads to failure.
The probability of failure is defined as the probability mass of all failure states. Since
failure probabilities are likely to be small, estimation of the failure probability requires
the simulation of rare events.
Often, the evaluation of the LSF requires the evaluation of a computational expensive
model, a partial differential equation, which makes crude Monte Carlo sampling [16, 45]
prohibitive. Variance reduction techniques like Subset Simulation (SuS) [3, 4], Sequential
Importance Sampling (SIS) [42, 54] or the cross-entropy based Importance Sampling (IS)
method [29, 41, 56] have been developed to reduce computational costs while preserving
an accurate estimate. In line sampling [8, 28, 43], sampling is performed on a hyperplane
perpendicular to an important direction. Alternative to sampling methods, approximation
methods, like the first and second order reliability method [35] (FORM/SORM), deter-
mine the most likely failure point (MLFP) and approximate the surface of the failure
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domain. In our novel approach, we investigate the Ensemble Kalman filter (EnKF) for
inverse problems proposed by [24, 46] and apply it to rare event estimation. The EnKF
is a sampling-based method.
The Kalman filter [26] has been originally proposed for data assimilation problems. If
the observation operator and dynamic are linear, and the initial and noise distribution
are Gaussian, the Kalman filter is exact. The Extended Kalman filter [32, Section 4.2.2]
is applied for nonlinear dynamics. In this case, the dynamic is approximated via its
linearization and the Kalman update is applied. However, this requires derivative infor-
mation, which might be costly to obtain. The EnKF [15] approximates the derivative
via an ensemble of particles. Thus, the EnKF does not require derivative information.
However, the EnKF is only asymptotically exact if the dynamic is linear. To apply the
EnKF to systems with multimodal distributions, the authors of [13, 33, 48] propose to fit
a GM distribution in each EnKF update step and to update the particles belonging to
each mixture term separately.
Compared to SIS and SuS, the EnKF has several advantages which are our motivation to
implement the EnKF for rare event estimation. The EnKF is easier to implement since
a Markov chain Monte Carlo (MCMC) [20] algorithm is not required. Thus, the EnKF
contains fewer hyperparameters which have to be tuned. Moreover, it requires no burn-in
and no tuning for the optimal acceptance rate has to be performed. Since the EnKF par-
ticles are equally weighted, no computational costs are wasted for degenerated samples
with very small weights or for rejected samples. Moreover, the EnKF is applicable for
high-dimensional problems.
In recent years, several theoretical properties of the EnKF have been studied. In [24],
it is shown that the EnKF satisfies the subspace property, i.e., the particles stay for all
iterations within the subspace spanned by the initial ensemble. The authors of [6, 46, 47]
investigate the continuous time limit of the EnKF update step, which results in a cou-
pled system of stochastic differential equations (SDEs). For a fixed ensemble size, linear
system, and considering the limit t→∞, the ensemble collapses to its mean value. The
authors of [18, 21] study the mean and covariance of the EnKF particles for an infinite
ensemble in the linear Gaussian setting. The distribution of the EnKF particles is equal
to the posterior distribution for t = 1 in the continuous time limit [18]. The limit t→∞
yields again ensemble collapse. In the nonlinear case, the work of [14] shows that the
distribution of the ensemble particles does not converge to the posterior distribution even
for an infinite ensemble. Instead, the particles approximate the distribution of a so-called
analysis variable.
To apply the EnKF algorithm for rare event simulation, we formulate the rare event prob-
lem as an inverse problem via an auxiliary LSF. The auxiliary LSF is the concatenation
of the rectified linear unit (ReLU) and the original LSF. We apply the EnKF for inverse
problems to this reformulation. Since the distribution of the analysis variable differs from
the posterior distribution in general, we fit a distribution model with the final EnKF par-
ticles and apply IS with respect to the fitted distribution to estimate the probability of
failure. This procedure is similar to [29, Algorithm 3.1]. In particular, we apply the Gaus-
sian mixture (GM) and the von Mises–Fisher–Nakagami mixture (vMFNM) distribution
model, which have also been used in the context of the cross-entropy method [41]. Due to
the properties of IS, we achieve an unbiased estimator for the probability of failure if the
density of the fitted distribution admits positive values within the whole failure domain.
Additionally, we apply an adaptive approach to determine the sequence of discretization
steps. This approach is similar to adaptive Sequential Monte Carlo [5] and is already
applied to the EnKF in [23]. We demonstrate that the sequence of the resulting EnKF
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densities is a piecewise smooth approximation of the discontinuous optimal IS density.
Since the EnKF particles always approximate the distribution of one single mode, we apply
a multi-modal strategy to handle multi-modal failure domains. In our work, we consider
the approach of [44], where the means and covariance matrices of the EnKF update are
localised around each particle. Therefore, the particles evolve individually (within their
nearest neighbourhood) to distinct failure modes. The approach of [44] requires the choice
of a localization parameter, which we avoid through employing a clustering algorithm.
Moreover, we translate some of the already observed theoretical properties for the EnKF
to the rare event setting. We derive the continuous time limit of the particle dynamic for
affine linear LSFs. If the EnKF is applied without noise in the data space, we prove that
the ensemble mean converges to a convex combination of the MLFP and of the mean of
the optimal IS density.
The manuscript is structured as follows. Section 2 reviews the general setting of rare
event estimation and introduces an equivalent formulation as an inverse problem. There-
after, Bayesian inverse problems (BIPs) and the EnKF for inverse problems are discussed.
Section 3 contains the formulation of the EnKF for estimating the probability of failure.
Section 4 shows theoretical properties of the EnKF for affine linear LSFs. The proofs are
given in the Appendix A. In Section 5, the EnKF is applied to numerical experiments
and its performance is compared with SIS. We end this manuscript with a conclusion in
Section 6.

2 Problem Setting
We start by defining failure events and the probability of failure. We discuss the standard
formulation and introduce an alternative formulation that draws an analogy to BIPs. We
introduce BIPs and the well-known Bayes’ theorem. Moreover, we discuss the EnKF for
inverse problems and its theoretical properties.

2.1 Rare event estimation
The following notation is based on [40, 42]. It is common to define failure events via an
LSF that distinguishes safe and failure states. Let (Ω,A,P) be a probability space. Given
is an LSF G : Rd → R, which models the performance of a system. Importantly, the LSF
often depends on a computationally intensive numerical model of the system. The state
u ∈ Rd leads to failure if G(u) ≤ 0; otherwise, u is a safe state.
The input state u ∈ Rd is a realization of an Rd-valued random variable U : Ω→ Rd. We
will sometimes use the equivalent definition of a failure event by {ω ∈ Ω : G(U(ω)) ≤ 0} to
emphasize that the outcome of the LSF depends on an event ω ∈ Ω. The random variable
U is distributed according to the probability density function (pdf) µ0 : Rd → [0,∞[.
The goal is to estimate the probability mass of the states u ∈ Rd, or equivalently, of
events ω ∈ Ω, which lead to failure. This probability is called probability of failure and is
denoted by Pf . Indeed, the probability of failure is given by

Pf := P ({ω ∈ Ω : G(U(ω)) ≤ 0}) =
∫

u∈Rd
I(G(u) ≤ 0)µ0(u)du, (2.1)

where I denotes the indicator function. Since the failure domain {u ∈ Rd : G(u) ≤ 0} is
a priori unknown, estimating Pf accurately is a nontrivial task.
In IS [1, 45], the integral in (2.1) is expressed as an expectation with respect to an IS
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density p : Rd → R

Pf =
∫

u∈Rd
I(G(u) ≤ 0)w(u)p(u)du = Ep[I(G(u) ≤ 0)w(u)],

where w(u) := µ0(u)/p(u) is the importance weight. Using J samples {u(j)}Jj=1 which are
distributed according to p, the IS estimator for Pf is given by

P̂ IS
f := 1

J

J∑

j=1
I(G(u(j)) ≤ 0)w(u(j)). (2.2)

If the support of p contains the intersection of the support of µ0 and the failure do-
main, (2.2) gives an unbiased estimator for Pf . The optimal IS density is

popt(u) := 1
Pf
I(G(u) ≤ 0)µ0(u), (2.3)

which leads to a zero-variance estimator. Sampling-based methods like SuS [3, 4] or SIS
[42, 54] aim to generate samples from the optimal IS density. This viewpoint can be
interpreted as seeking states u ∈ Rd which result in G(u) ≤ 0. It is possible to define this
task as an inverse problem. In inverse problems, the goal is to identify the inputs of a
model, whose outcome produces a set of given data y†. To define an equivalent inverse
problem, we apply the ReLU function to the outcome of G and define the auxiliary LSF
G̃ : Rd → R as

G̃(u) := max{0, G(u)}. (2.4)

With G̃ and the data y† = 0, we reformulate the rare event problem as an inverse problem.
We seek all u ∈ Rd such that

G̃(u) = 0. (2.5)

The overall goal of this manuscript is to apply the EnKF to generate samples from the
failure domain and estimate the probability of failure with IS. Since inverse problems of
the form (2.5) are ill-posed, we discuss BIPs in the following section.

Remark 2.1. An alternative Bayesian interpretation of the rare event simulation prob-
lem is obtained through observation of equation (2.3). The optimal IS density popt can be
interpreted as a posterior density, where the indicator function I(G(u) ≤ 0) is the like-
lihood function, µ0 is the prior density, and Pf is the evidence. This observation is also
discussed in [52]. However, this interpretation does not allow application of the EnKF
algorithm, which is developed for standard BIPs with equality-type information. The lat-
ter implies that the model outcome is compared to the data with an equality sign. The
likelihood I(G(u) ≤ 0) provides inequality-type information.

2.2 Bayesian inverse problems
We consider a forward model G : Rd → Rm, which maps the input to the output space.
Given is the data y† ∈ Rm. The goal in an inverse problem with noisy observations is to
find a state u† ∈ Rd such that

y† = G(u†) + η, (2.6)
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where η is the observational noise and is assumed to be distributed as N(0,Γ), where Γ is a
symmetric positive definite covariance matrix. Since the classical inverse problem (2.6) is
ill-posed, (u, y) are modelled as realisations from a jointly varying random variable (U, Y )
[7, 49]. With this Bayesian viewpoint and under mild assumptions on the forward model,
noise distribution and prior distribution [30, 49], the inverse problem is well-posed and
the solution is the posterior density µy† . By virtue of Bayes’ theorem [7, Theorem 14],
the posterior density is given by

µy†(u) = 1
Z(y†) exp

(
−Ψ

(
u; y†

))
µ0(u),

where µ0 is the prior density and Ψ is a potential, defined as Ψ
(
u; y†

)
:= 1/2‖y†−G(u)‖2

Γ,
where ‖·‖Γ := ‖Γ−1/2·‖2. The term exp

(
−Ψ

(
u; y†

))
is the likelihood function and returns

the density of the data given a parameter state. The normalizing constant is given by

Z(y†) :=
∫

Rd
exp

(
−Ψ

(
u; y†

))
µ0(u)du > 0.

For linear models G(u) = Au with A ∈ Rm×d and a Gaussian prior µ0 ∼ N(0,Γ0), [49,
Theorem 2.4] shows that the posterior mean m ∈ Rd and posterior covariance C ∈ Rd×d

are given by

m =
(
ATΓ−1A+ Γ−1

0

)−1
ATΓ−1y, C =

(
ATΓ−1A+ Γ−1

0

)−1
. (2.7)

Similar to rare event estimation, sampling-based methods like Sequential Monte Carlo
[9, 12] have been developed to shift samples from the prior density µ0 to the posterior
density µy† . The EnKF for inverse problems [46] is another sampling-based method.

2.3 EnKF for inverse problems
In this section, we use the notation and derivation of [46], which is motivated by Sequential
Monte Carlo. In the EnKF for inverse problems, the posterior is reached in a sequential
manner. Starting from the prior density µ0, the sequence of densities is defined by

µn(u) ∝ exp
(
−nh2 ‖y

† − G(u)‖2
Γ

)
µ0(u), for n = 1, . . . , N,

where h := 1/N and N is the user-defined number of steps to reach the posterior density.
It immediately follows that µN = µy† is the posterior density. By the sequential definition,
it holds that

µn+1(u) ∝ exp
(
−h2‖y

† − G(u)‖2
Γ

)
µn(u), for n = 0, . . . , N − 1.

Remark 2.2. The n-th step is equivalent to the solution of the inverse problem (2.6)
where the noise η is distributed according to N(0, (nh)−1Γ). If nh > 1, i.e. n > N , the
noise covariance is down-scaled.

The sequence of densities µn is approximated via an ensemble of equally weighted particles.
The initial ensemble u0 = {u(j)

0 }Jj=1 is distributed according to the prior density µ0. In
one step of the EnKF, an ensemble of J ∈ N samples un = {u(j)

n }Jj=1, which is distributed
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(approximately) according to the density µn, is transformed into the ensemble un+1 =
{u(j)

n+1}Jj=1, which is distributed (approximately) as µn+1. Formally, the ensemble un is
updated via

u
(j)
n+1 = u(j)

n + Cup(un)
(
Cpp(un) + 1

h
Γ
)−1 (

y
(j)
n+1 − G(u(j)

n )
)
, (2.8)

for j = 1, . . . , J , where y(j)
n+1 is the data y† perturbed by an additive Gaussian noise

y
(j)
n+1 = y† + ξ

(j)
n+1, (2.9)

and ξ(j)
n+1 ∼ N(0, h−1Γ) represents the observational noise scaled by the step size h−1. The

matrices Cpp ∈ Rm×m and Cup ∈ Rd×m are the empirical covariance and cross-covariance
matrices and are given by

Cpp(un) = 1
J

J∑

j=1

(
G(u(j)

n )− G
)
⊗
(
G(u(j)

n )− G
)
, (2.10)

Cup(un) = 1
J

J∑

j=1

(
u(j)
n − u

)
⊗
(
G(u(j)

n )− G
)
, (2.11)

where ⊗ denotes the outer product of two vectors and u, G are the empirical means

u = 1
J

J∑

j=1
u(j)
n , G = 1

J

J∑

j=1
G(u(j)

n ).

The authors of [46] show that in the continuous time limit h→ 0, the update (2.8) leads
to the following SDE

du(j)

dt = Cup(u)Γ−1
(
y† − G(u(j))

)
+ Cup(u)Γ−1/2 dW (j)

dt (2.12)

= 1
J

J∑

k=1

〈
G(u(k))− G, y† − G(u(j)) + Γ1/2 dW (j)

dt

〉

Γ

(
u(k) − u

)
,

where W (j) is a Brownian motion [37], which represents the observational noise. If we
consider the noise free case, i.e. y(j)

n+1 = y†, and assume that the forward model G is linear,
i.e. G(u) = Au for A ∈ Rm×d, it holds that

du(j)

dt = −Cuu(u)DuΨ(u(j); y†) = −Cuu(u)
(
ATΓ−1Au(j) − ATΓ−1y†

)
, (2.13)

where Cuu(u) is the empirical covariance matrix of the ensemble u. Equation (2.13)
implies that the samples move in the direction of the negative gradient of the data misfit.
The multiplication with Cuu(u) can be interpreted as a pre-conditioner of the particle
dynamic [18]. In Section 4, we will show that a similar expression holds true for the
setting of rare event estimation if we consider G = G̃ as defined in (2.4).
The authors in [18] show for the linear case and the mean field limit J → ∞ that the
mean m(t) and covariance C(t) of the EnKF particles satisfy the following differential
equations

d
dtm(t) = −C(t)

(
ATΓ−1Am(t)− ATΓ−1y†

)
,

d
dtC(t) = −C(t)ATΓ−1AC(t),
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which lead to the solutions

m(t) =
(
ATΓ−1At+ Γ−1

0

)−1
ATΓ−1y†, C(t) =

(
ATΓ−1At+ Γ−1

0

)−1
.

Thus for t = 1, it holds that the mean and covariance of the EnKF ensemble is equal to
the posterior mean and posterior covariance (2.7). However, for t → ∞, the covariance
C(t) converges to zero, which gives ensemble collapse. Therefore, the EnKF for inverse
problems gives samples of the posterior for t = 1. For t → ∞, the EnKF can be seen
as an optimization method instead as a sampling method [18, 46]. If G is nonlinear, the
work of [14] shows that the EnKF gives approximate samples from the analysis variable

Ua := U + Cov(U,G(U) + η)Cov(G(U) + η)−1(y† − G(U)− η). (2.14)

We note that the distribution of Ua is in general different from the posterior distribution.
Moreover, Ua represents a single EnKF update. Thus, for the continuous time limit and
the limit t → ∞, the analysis variable cannot be used to derive the limit of the mean
m(t), since the EnKF applies infinitely many update steps.

Remark 2.3. The authors of [18] show that the EnKF can be adjusted in a way that the
covariance of the ensemble does not collapse for t→∞. Instead, the posterior is reached
for t→∞. In their approach, the noise is not added in the data space as in equation (2.9).
Instead, it is added in the input space. However, for rare event estimation, the noise η and
noise covariance Γ are artificial. Therefore, it is useful to consider t > 1 for the EnKF
approach in [46], which constitutes a downscaling of the noise as noted in Remark 2.2. We
will use a stopping criterion to determine when the downscaling of the noise is sufficient.

3 EnKF for rare event estimation
In the following, we apply the EnKF approach of [46] to the forward model G = G̃. With
G̃, the EnKF generates failure samples. To reduce the number of iterations, we apply
the adaptive approach of [23], which is similar to the adaptive approach of SIS given in
[42]. Since the EnKF does not provide samples from the posterior distribution but gives
approximate samples from the analysis variable Ua, we apply an IS strategy to estimate
the probability of failure. Additionally, we discuss an approach to handle multi-modal
failure domains.

3.1 EnKF with adaptive step size
We consider the case that the output space of the LSF G is one-dimensional. This is the
usual setting in rare event estimation and simplifies the following considerations. However,
the EnKF for rare event estimation can be also applied to a general output space Rm.
By [11, 22], we assume, without loss of generality, that the underlying random variable
U : Ω → Rd is a d-variate standard normally distributed random variable. Thus, we
assume that the prior µ0(u) = ϕd(u) is the d-variate standard Gaussian density.
Translating the rare event setting into the Bayesian framework results in the data y† = 0
and the auxiliary LSF G̃(u) = max{0, G(u)}, as mentioned in Section 2.1. Now, we can
define the rare event problem as an inverse problem. The goal is to find u† ∈ Rd such
that

0 = G̃(u†) + η, (3.1)
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where η ∼ N(0,Γ) is observational noise and Γ > 0. We note that the noise is artificial
and we do not know Γ. However, it turns out that Γ is not relevant for the EnKF with
adaptive step size and the desired noise level is specified by the user. The posterior density
of the inverse problem (3.1) is given by

µy†(u) ∝ exp
(
− 1

2ΓG̃(u)2
)
ϕd(u). (3.2)

Remark 3.1. Since the auxiliary LSF G̃ is always nonlinear, even if the original LSF is
linear, the approximation of the derivative by the particles is not exact and the posterior is
non-Gaussian. Thus by [14], the EnKF generates approximate samples from the analysis
variable Ua (2.14) which differs from the posterior density µy† (3.2).

Compared with the SIS approach of [42], we can see that (3.2) is an alternative way to
define a piecewise smooth approximation of the optimal IS density popt in (2.3). In the
same manner as in [23, 42], we determine the sequence of the EnKF densities adaptively.
We define a sequence of temperatures σn with ∞ = σ0 > σ1 > σ2 > · · · > σN > 0, where
N is the number of a priori unknown EnKF iterations. The sequence of densities in the
EnKF is given by

µn(u) ∝ exp
(
− 1

2σnΓG̃(u)2
)
ϕd(u). (3.3)

By the sequential definition of the EnKF it holds that

µn+1(u) ∝ exp
(
− 1

2Γ

(
1

σn+1
− 1
σn

)
G̃(u)2

)
µn(u).

By defining tn = 1/σn, the temperatures σn can be viewed as a time discretization of
the SDE (2.12). Considering the limit σn → 0 in (3.3), or tn → ∞, leads to pointwise
convergence of the EnKF densities to the optimal IS density since

lim
σn→0

exp
(
− 1

2σnΓG̃(u)2
)

= I(G(u) ≤ 0).

This behaviour is illustrated in Figure 1. We note that the limit σn → 0 implies a
complete downscaling of the noise Γ, which results in a classical ill-posed inverse problem.
The approximation of the indicator function by SIS [42] is given by

lim
σn→0

Φ
(
−G(u)

σn

)
= I(G(u) ≤ 0), for G(u) 6= 0,

where Φ(·) is the cumulative distribution function of the one-dimensional standard normal
distribution. Figure 1 shows that the approximation by the EnKF is equal to the indicator
function for G(u) ≤ 0, while the SIS approximation is symmetric around G(u) = 0.
Similar to [42], we use the coefficient of variation of the likelihood weights of two sub-
sequent densities to determine the sequence σn. Therefore, we use a user specific target
coefficient of variation δtarget. Given the temperature σn, we determine σn+1 by

σn+1 = argmin
σ∈(0,σn)

1
2
(
δwn+1 − δtarget

)2
, (3.4)
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Figure 1: Approximation of the indicator function I(G(u) ≤ 0) by the EnKF and SIS.

where δwn+1 is the coefficient of variation of the likelihood weights wn+1 = {w(j)
n+1}Jj=1 of

the consecutive EnKF densities µn and µn+1. These weights are given by

w
(j)
n+1 = exp

(
− 1

2Γ

(
1

σn+1
− 1
σn

)
G̃(u(j)

n )2
)
, for j = 1, . . . , J.

Through this adaptive procedure, it is not necessary to specify the variance Γ of the
observational noise. Therefore, we assume, without loss of generality, that Γ = 1.
With the new temperature σn+1, we define the step size of the EnKF as hn+1 = 1/σn+1−
1/σn. Hence in one step of the EnKF, the ensemble un is updated by

u
(j)
n+1 = u(j)

n + Cup(un)
(
Cpp(un) + 1

hn+1

)−1 (
ξ

(j)
n+1 − G̃(u(j)

n )
)
, (3.5)

for j = 1, . . . , J , where ξ(j)
n+1 ∼ N(0, h−1

n+1) is an additive scaled noise in the output space.
The matrices Cpp(un) and Cup(un) are determined by (2.10) and (2.11), respectively, using
G̃ instead of G. Since the output space is one-dimensional, it holds that Cpp(un) ∈ R
and Cup(un) ∈ Rd. Hence, (3.5) does not require the solution of a linear system and the
computational costs of one EnKF step behaves as O(d · J).
As in SIS [42], we use the target coefficient of variation δtarget as the stopping criterion
of the EnKF iteration. In particular, the EnKF stops if the coefficient of variation of the
likelihood weights with respect to the optimal IS density and the current EnKF density
is less than δtarget. These likelihood weights are given by

w
(j)
opt = I

(
G̃(u(j)

n ) = 0
)

exp
( 1

2σn
G̃(u(j)

n )2
)
, for j = 1, . . . , J. (3.6)

The EnKF iteration stops if δwopt ≤ δtarget. By the indicator function and G̃, the weights
w

(j)
opt are either zero or one and, therefore, the stopping criterion can be easily interpreted

by the effective sample size [31, Section 3.4]. This implies that a certain percentage of the
particles have to belong to the failure domain to stop the EnKF iteration. This percentage
depends on δtarget. If δtarget is small, then a high percentage of the particles has to belong
to the failure domain. For instance, if δtarget = 0.25, then around 94% of the particles has
to be in the failure domain. For δtarget = 3, around 10% of the particles has to be in the
failure domain. We investigate different values for δtarget in the numerical experiments.
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Remark 3.2. We note that SIS applies an MCMC algorithm to shift samples between
one density and its consecutive density. Therefore, the generated samples are distributed
according to the target densities and the probability of failure can be directly estimated
using these samples. However, the EnKF generates approximate samples from the analysis
variable [14]. Therefore, we do not use these samples to estimate the probability of failure
directly. Instead, we use a single IS step after the EnKF iteration is finished, which yields
an unbiased estimator for the probability of failure.

3.2 Estimation of the probability of failure
Once the EnKF iteration is finished, the final ensemble is denoted by uN and the final
EnKF density is given by

µN(u) ∝ exp
(
− 1

2σN
G̃(u)2

)
µ0(u).

We follow [29, Algorithm 3.1] to construct an accurate and unbiased estimator for the
probability of failure. Their approach is based on IS. Therefore, we fit a certain dis-
tribution model with the final ensemble uN . Consequently, we generate the ensemble
û = {û(j)}Jj=1 from the fitted distribution and estimate the probability of failure by

P̂f = 1
J

J∑

j=1
I(G(û(j)) ≤ 0)ϕd(û

(j))
p(û(j)) , (3.7)

where p(·) is the pdf of the fitted distribution. In particular, we consider the GM [17,
Section 1] and the vMFNM distribution model [41]. Indeed, the vMFNM performs well
in high-dimension while the performance of the GM deteriorates with increase of the
dimension.
The GM is defined by the sum of K Gaussian distributions, where each of them is defined
by a mean vector mk and a covariance matrix Ck yielding the pdf ϕ(· | mk, Ck). Thus,
the density of the GM distribution is given by

pGM(u) =
K∑

k=1
πkϕ(u | mk, Ck), (3.8)

where πk ≥ 0 is the weight of the kth mixture component with ∑K
k=1 πk = 1. The

parameters of the GM are determined by maximum likelihood estimation using the final
EnKF ensemble uN. For K > 1 mixture components, the parameters of the GM are not
analytically given and the expectation-maximization (EM) algorithm is applied. We refer
to [34] for a detailed explanation of the EM algorithm.
The vMFNM distribution is based on the polar decomposition u = r · a, where r = ‖u‖2
and a = u/r. For a single mixture component, the pdf of the vMFN distribution is given
by

pvMFN(r, a | ν, κ, s, γ) = pN(r | s, γ) · pvMF(a | ν, κ),

where pN is the density of the Nakagami distribution and pvMF is the pdf of the von
Mises–Fisher distribution. The Nakagami [38] distribution determines the distribution of
the radius r and depends on a shape parameter s and spread parameter γ. The vMF
distribution [56] determines the distribution of the direction a and depends on the mean
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direction ν and concentration parameter κ. Similar to (3.8), the vMFNM distribution is
defined by

pvMFNM(r, a) =
K∑

k=1
πkpvMFN(r, a | νk, κk, sk, γk).

The parameters of the vMFNM distribution are determined by maximum likelihood es-
timation and the EM algorithm. Algorithm 1 shows the complete algorithm to estimate
the probability of failure with the EnKF.

Algorithm 1: EnKF for rare event estimation
1: generate the initial ensemble u0 by sampling J independent samples from ϕd(u)
2: evaluate the auxiliary LSF G̃ for the current ensemble u0
3: σ0 ←∞, n← 0
4: while EnKF is not finished do
5: determine σn+1 from the optimization problem (3.4)
6: define the current step size hn+1 = 1/σn+1 − 1/σn
7: calculate Cpp(un) and Cup(un) based on (2.10),(2.11)
8: generate J independent samples ξ(j)

n+1 ∼ N
(
0, h−1

n+1

)

9: update the ensemble un to un+1 based on (3.5)
10: evaluate the auxiliary LSF G̃ for the current ensemble un+1
11: determine the coefficient of variation δwopt based on (3.6)
12: if δwopt < δtarget then
13: EnKF is finished
14: end if
15: n← n+ 1
16: end while
17: fit a distribution model based on the final ensemble un
18: generate J samples û from the fitted distribution
19: estimate the probability of failure P̂f based on (3.7)
20: return P̂f

We have now defined the procedure of estimating the probability of failure via the EnKF.
As we have seen, the GM and vMFNM distributions are able to capture mixture distri-
butions. However, the EnKF in its current form is not able to generate samples from a
mixture, since the samples are always concentrated around a single mean value.

3.3 Multi-modal EnKF
In this section, we investigate the approach of [44] such that the EnKF is able to generate
samples from a multi-modal failure domain. This property is necessary for rare event
estimation since it is possible that the failure domain consists of various distinct modes.
To achieve the multi-modal property, the empirical covariance and cross-covariance ma-
trices Cpp, Cup are localised for each particle of the ensemble. Therefore, we calculate a
weight matrix W ∈ RJ×J , which represents the distances of the particles. The entries of
the weight matrix are given by

Wi,j = exp
(
− 1

2α‖u
(i)
n − u(j)

n ‖2
2

)
, for i, j = 1, . . . , J, (3.9)
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where α > 0 is a parameter chosen by the user. In addition, the weight matrix is nor-
malised such that each column sums up to one. A large value of α leads to higher weights
for the neighbouring particles. For small α, the weights are only large for the nearest
neighbours, which yields more localised covariance matrices and the particles move slowly
since the particles do not interact with their neighbours [44].

Remark 3.3. We note that (3.9) is the value of the pdf ϕd(u(i)
n | u(j)

n , α · Idd), i.e., the
Gaussian density with mean vector u(j)

n and covariance matrix α · Idd, where Idd ∈ Rd×d

denotes the identity matrix.

To avoid the selection of the parameter α, we propose the following adaptive approach. We
first apply a distribution-based clustering through fitting a mixture distribution model.
Either of the two distribution models discussed in Section 3.2 can be used for this purpose.
The ensemble un is thus split into K clusters. For each cluster k = 1, . . . , K, we determine
the empirical covariance matrix Ck by using all particles which belong to the cluster k.
Finally, for the particle u(j)

n which belongs to the cluster k, the jth column of the weight
matrix is determined by

Wi,j = exp
(
−1

2‖C
−1/2
k (u(i)

n − u(j)
n )‖2

2

)
, for i = 1, . . . , J. (3.10)

Remark 3.4. Alternative to this adaptive procedure, the parameter α in (3.9) can be cho-
sen as α ∝ d. This approach could be applied in high-dimensional problems to address the
curse of dimensionality of the Euclidean norm. This is due to the fact that the Euclidean
distance of the points u1 = (0, . . . , 0) ∈ Rd and u2 = (ε, . . . , ε)T ∈ Rd satisfies

‖u1 − u2‖2
2 = dε2.

With the weight matrix W , we calculate for each particle localised means and covariance
matrices. The localised means for the particle u(j) are given by

u
(j)
loc =

J∑

i=1
Wi,ju

(i)
n , G̃

(j)
loc =

J∑

i=1
Wi,jG̃(u(i)

n ).

With these localised means, we determine the localised covariance matrices by

Cloc,pp(u(j)
n ) =

J∑

i=1
Wi,j

(
G̃(u(i)

n )− G̃
(j)
loc

)
⊗
(
G̃(u(i)

n )− G̃
(j)
loc

)
, (3.11)

Cloc,up(u(j)
n ) =

J∑

i=1
Wi,j

(
u(i)
n − u(j)

loc

)
⊗
(
G̃(u(i)

n )− G̃
(j)
loc

)
. (3.12)

Finally, one iteration of the EnKF with localised covariance matrices is given by

u
(j)
n+1 = u(j)

n + Cloc,up(u(j)
n )

(
Cloc,pp(u(j)

n ) + 1
hn+1

)−1 (
ξ

(j)
n+1 −G(u(j)

n )
)
, (3.13)

for j = 1, . . . , J . After the EnKF iteration is finished, we fit a mixture distribution model
and estimate the probability of failure as in Section 3.2. We summarise the EnKF update
with localised covariances in Algorithm 2.
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Algorithm 2: EnKF update with localised covariances
1: if α is given then
2: for all particles u(j)

n do
3: determine the jth column of the normalized weight matrix by (3.9)
4: end for
5: else
6: split the ensemble un into K clusters
7: for all clusters k do
8: determine all particles which belong to the cluster k
9: determine the empirical covariance matrix Ck

10: for all particles u(j)
n belonging to the cluster k do

11: determine the jth column of the normalized weight matrix by (3.10)
12: end for
13: end for
14: end if
15: for all particles u(j)

n do
16: determine Cloc,pp(u(j)

n ), Cloc,up(u(j)
n ) by (3.11), (3.12)

17: update u(j)
n to u(j+1)

n by (3.13)
18: end for

4 EnKF for affine linear LSFs: theoretical properties
In this section, we derive theoretical properties of the EnKF for rare event estimation. We
consider the case where the LSF G is affine linear, i.e. G(u) = aTu− b, where a ∈ Rd and
b ∈ R. The linearity of G implies that the auxiliary LSF G̃ = max{0, G(u)} is piecewise
linear.
In particular, we derive the continuous time limit h → 0 of the EnKF update (3.5) and
investigate the large particle limit J → ∞ of the resulting SDE. Thereafter, we study
the large time properties t → ∞ to determine the limit of the ensemble mean. We will
always consider the noise free case, i.e., y(j)

n+1 = y†. We do not analyse the analysis variable
in (2.14), since we are particularly interested in the continuous time limit and the large
time properties.
In the next theorem, we derive the continuous time limit h→ 0 of the EnKF update (3.5).
We note that we add the failure surface {G = 0} to the safe domain for the remaining
section. This has no influence on the probability of failure estimate since the failure
surface is a set with Lebesgue measure equal to zero. However, adding {G = 0} to the
safe domain simplifies the following considerations since safe particles remain safe states
and failure particles remain failure states for all t ≥ 0.

Theorem 4.1. Denote by S = {k ∈ [J ] : G(u(k)) ≥ 0} and F = {k ∈ [J ] : G(u(k)) < 0}
the index sets of the safe and failure particles. For the LSF G(u) = aTu − b and for the
noise free case y(j)

n+1 = y†, the safe particles satisfy the flow

du(j)

dt = −Cuu(u)Du

(1
2G(u(j))2

)
+ G(u(j))

J

∑

k∈F
G(u(k))(u(k) − u), (4.1)

while failure particles do not move.

Remark 4.2. The first summand of (4.1) implies that the safe particles move in the
direction where the LSF G decreases. If the mean u is in the safe domain, it follows that
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G(u(k))(u(k) − u) points away from the failure surface since G(u(k)) < 0 for k ∈ F . Thus,
the second term slows down the movement to the failure surface. Indeed, we prove that
the safe particles converge to the surface of the failure domain.

From Theorem 4.1, we observe that initial failure particles do not move in the EnKF
iterations. If initial safe particles reach the failure surface, they will stay at the failure
surface for the remaining time. Thus, initial safe particles follow the dynamic (4.1) and
do not contribute to the second term in (4.1) for all t ≥ 0. If the initial ensemble does not
contain failure particles, the second term in (4.1) is zero for all t ≥ 0 and the dynamic
simplifies. Therefore, we distinguish the cases if initial failure particles are present or not.
In the following, we consider the continuous time limit (4.1) for an infinite ensemble J →
∞. We denote by U(t) the random variable which is distributed according to the particle
density of the EnKF particles {u(j)}∞j=1 at the time point t ≥ 0. Moreover, we denote by
m(t) := E[U(t)] the mean of the ensemble and by C(t) := E[(U(t)−m(t))⊗(U(t)−m(t))]
the covariance matrix of the ensemble. We derive the limit of the ensemble mean under
the following assumptions.

Assumption 4.3. We assume that

(i) G(u) = aTu− b with a = (1, 0, . . . , 0)T ∈ Rd and b < 0,

(ii) the distribution of the input random variable U is d-variate independent standard
normal,

(iii) the EnKF is applied without noise, i.e., y(j)
n+1 = y†.

We note that Assumption 4.3 (i) can be satisfied without loss of generality by rotation
invariance of the standard normal density.

4.1 Mean-field limit: no failure particles
We begin with the case that the initial ensemble does not contain failure particles. Thus,
the second term in (4.1) is zero and the distinction of safe and failure states is not
necessary. We note that this assumption is not valid, if we consider the large particle
limit J → ∞ and a Gaussian initial ensemble, since the initial ensemble will contain
failure states. However, this assumption simplifies the proofs of the statements and it
enables us to obtain insights in the particle dynamic and mean-field limit. We consider
the case that the initial ensemble contains failure samples in Section 4.2.
In the next lemma, we show that the ensemble mean m(t) converges to the MLFP uMLFP ∈
Rd under Assumption 4.3 with the restriction that the initial ensemble contains no failure
particles. The MLFP is the solution of the minimization problem

min
u∈Rd

1
2‖u‖

2
2, such that G(u) = 0.

For general nonlinear problems, the FORM approximation of Pf is given by PFORM
f =

Φ
(
−‖uMLFP‖2

)
if G(0) > 0. If G(0) < 0, PFORM

f = 1− Φ
(
−‖uMLFP‖2

)
. Indeed, PFORM

f

is equal to Pf if the LSF G is affine linear. Assumption 4.3 (i) implies that uMLFP =
(b, 0, . . . , 0)T , G(0) > 0, and ‖uMLFP‖2 = |b|.
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Theorem 4.4. Let Assumption 4.3 hold under the restriction that the initial ensemble
contains no failure particles even for an infinite ensemble. In the large particle limit
J →∞, the ensemble mean satisfies

m1(t) = b

(
1− 1√

2t+ 1

)
, mi(t) = 0, for i = 2, . . . , d,

while the covariance of the ensemble satisfies

C(t) =
(

1/(1 + 2t)
Idd−1

)
. (4.2)

Thus, for the limit t→∞, it holds

lim
t→∞

m(t) = uMLFP.

Corollary 4.5. Let Assumption 4.3 hold under the restriction that the initial ensemble
contains no failure particles even for an infinite ensemble. The relative distance between
uMLFP and the ensemble mean m(t) satisfies

‖m(t)− uMLFP‖2

‖uMLFP‖2
= 1√

2t+ 1
.

Remark 4.6. From equation (4.2), we see that the covariance C(t) implies ensemble
collapse in the first component for t → ∞. However, the ensemble does not collapse to
a single point but it collapses to the surface of the failure domain. Thus, we see that the
particles move only in direction perpendicular to the failure surface, or equivalently, in
direction of a, until all particles are on the failure surface.

4.2 Mean-field limit: with failure particles
In this section, we consider the case that the initial ensemble contains failure particles. To
derive the mean-field equation, we split the ensemble into the safe and failure particles.
We define US(t) as the random variable which is distributed according to the particle
density of the safe particles {u(j) : G(u(j)) ≥ 0}∞j=1 at t ≥ 0. Similar, UF (t) is the random
variable which is distributed according to the particle density of the failure particles
{u(j) : G(u(j)) < 0}∞j=1 at t ≥ 0. We note that the distribution of UF (t) stays constant
with respect to t since failure particles do not move.
Since the portion of failure particles in the initial ensemble is equal to Pf for J →∞, it
holds that P(U(t) = US(t)) = (1−Pf ) and P(U(t) = UF (t)) = Pf . Thus, the mean of the
ensemble is given by

m(t) = E[U(t)] = (1− Pf )E[US(t)] + PfE[UF (t)]
=: (1− Pf )mS(t) + PfmF (t). (4.3)

The mean mF (t) of the failure particles is constant and is equal to the mean of the optimal
IS density, which is given by

mF = E[U | G(U) < 0] = E[U | U1 < b] =
(
−ϕ1(b)

Φ(b) , 0, . . . , 0
)T

=: uopt, (4.4)

where we apply the formula of the mean of a truncated Gaussian [25, Section 10.1].
Indeed, uopt is the mean of a standard Gaussian random variable truncated at U1 < b. The
following theorem states that the ensemble mean m(t) converges to a convex combination
of the MLFP uMLFP and the mean of the optimal IS density uopt under Assumption 4.3.
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Theorem 4.7. Let Assumption 4.3 hold. For the large particle limit J →∞, the ensemble
mean satisfies

lim
t→∞

m(t) = (1− Pf )uMLFP + Pfu
opt. (4.5)

In the following, we point out the structure of the proof of Theorem 4.7, since this gives
important insights to the dynamic of the EnKF particles. The formal proofs are given in
the Appendix A. From (4.3) and (4.4), it is sufficient to show that the mean of the safe
particles mS(t) converges to uMLFP. To prove this statement, we derive the mean field
equation of the particle dynamic (4.1).

Lemma 4.8. Let Assumption 4.3 hold. For the large particle limit J → ∞, the mean
field equation of the safe particles is given by

duS(t)
dt = −C(t)Du

(1
2G(uS(t))2

)
+G(uS(t))Pf

(
(1, 0, . . . , 0)T −m(t)(uopt

1 − b)
)
. (4.6)

Remark 4.9. Since Du

(
1
2G(u)2

)
= (G(u), 0, . . . , 0)T , C(0) = Idd and m(0) = 0, we see

from (4.6) that the dynamic acts only on the first component uS,1(t) of the particles for
t = 0. Moreover, this movement is independent of the other components uS,i(t) for i =
2, . . . , d. Hence, the covariance matrix C(t) and the mean m(t) will only change in their
fist components C1,1(t) and m1(t). Inductively, we conclude that the particle dynamic (4.6)
acts only on the first component uS,1(t) for all t ≥ 0 while all other components uS,i(t)
for i = 2, . . . , d remain constant. We note that this observation is also shown in (4.2) for
the case that no failure particles are present.

The above remark implies that it is sufficient to consider the case d = 1. In this case, the
mean field equation of the safe particles reads as

duS(t)
dt = −C(t)G(uS(t)) +G(uS(t))Pf

(
1−m(t)(uopt − b)

)
,

where C(t) ∈ R is the variance of the ensemble. Thus, the mean mS(t) of the safe particles
satisfies the flow

dmS(t)
dt = −G(mS(t))

(
C(t)− Pf

(
1−m(t)(uopt − b)

))
. (4.7)

To prove Theorem 4.7, we show that the mean of the safe particles converges to uMLFP.
Since mS(t) ≥ uMLFP and G(mS(t)) ≥ 0, it is sufficient to show that

C(t)− Pf
(
1−m(t)(uopt − b)

)
> 0, for all t ≥ 0, (4.8)

as long as mS(t) 6= uMLFP. This guarantees that the dynamic (4.7) is negative and, thus,
mS converges to uMLFP. Since the ensemble contains always the initial failure particles,
we can bound the variance C(t) from below.

Lemma 4.10. We consider d = 1. If mS(t) 6= uMLFP and the safe particles are not
collapsed to a single point, the variance C(t) is bounded from below by

C(t) > (1− Pf )mS(t)2 + Pf (1 + buopt)− ((1− Pf )mS(t) + Pfu
opt)2.
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In the proof of Theorem 4.7, see Appendix A.2, we show with Lemma 4.10 that (4.8) is
valid for all t ≥ 0 as long as mS(t) 6= uMLFP. Together with the fact that dmS(t)/dt = 0
for mS(t) = uMLFP, we conclude that

lim
t→∞

mS(t) = uMLFP,

which implies that (4.5) holds true.

Remark 4.11. We note that the derived theoretical properties only hold true if the EnKF
is applied without noise. In this case, the safe particles converge to the surface of the
failure domain and remain there. However, the EnKF is more robust if noise is added
to the observations. Therefore, we propose to employ the EnKF with noise for practical
applications.

Remark 4.12. Theorem 4.4 and 4.7 give a justification to consider the limit t → ∞ or
σ → 0 even for nonlinear LSFs since we expect that the particles converge to the failure
domain and a high number of particles is in proximity of the MLFP.

Remark 4.13. Since Pf is typically small, we see from Theorem 4.7 that the EnKF can
be applied to estimate uMLFP and to approximate Pf by PFORM

f .

5 Numerical experiments
We consider four numerical experiments to test the performance of the EnKF for rare
event estimation. In all experiments, we compare the results of the EnKF with SIS.
We consider the SIS algorithm given in [54] which applies the vMFNM distribution as
proposal density in the MCMC algorithm. In all experiments, we apply SIS without
burn-in and 10% of the samples are chosen as seeds for the simulated Markov chains via
multinomial resampling. Hence, the simulated Markov chains have length equal to 10.
The EnKF is always applied with noise ξ(j)

n+1 ∼ N(0, h−1
n+1), where hn+1 is the step size

of the EnKF update. We refer to the standard EnKF iteration (3.5) as the EnKF with
global covariances and the multi-modal approach of Section 3.3 as the EnKF with local
covariances.
The performance is measured via the required computational costs and the achieved
relative root mean square error (relRMSE), which is defined as

relRMSE :=

(
E
[
(P̂f − Pf )2

]) 1
2

Pf
,

where P̂f is the estimated probability of failure by the EnKF or SIS. The computational
costs are equal to the number of required LSF evaluations. In all plots, we remove the
probability of failure estimates which are larger than the 99th percentile of the estimates.
This removes outliers1 which might occur during the iterations. We are aware that these
occur due to the choice of the parametric model of the IS density p which leads to large
likelihood weights in (3.7) in very infrequent simulation runs. This observation in also
discussed in [39, Section 9.3]. The percentage of outliers in the EnKF estimates is between

1An estimate x̂ is an outlier if x̂ ≥ x0.75 + 3(x0.75−x0.25), where x0.25 and x0.75 are the 25th and 75th
percentiles. This criterion is based on Tukey’s fences [50, Section 2D] and indicates that an estimate is
far out.
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0.6% − 2.0% for the first three examples and 3.2% for the fourth example. Hence, by
removing particles which are larger than the 99th percentile, not all outliers are removed.
The percentage of outliers in the SIS estimates is smaller than 1%.
We begin with three examples which are also considered in [42]. These examples do
not require expensive forward model evaluations and their inputs are two-dimensional
independent standard normal random variables. Therefore, we can visualize how the
ensemble of particles is evolving during the EnKF iterations and compare them with the
samples generated by SIS. In the fourth example, we consider the diffusion equation in one-
dimensional space with stochastic diffusion coefficient. This example is also considered
in [51, 54] and has a high-dimensional parameter space. The relRMSE and the average
computational cost are estimated with 500 independent simulation runs for the first three
examples and with 100 runs for the fourth example.

5.1 Convex limit-state function
We consider the following convex LSF, which is given in [27],

G(u) = 0.1(u1 − u2)2 − 1√
2

(u1 + u2) + 2.5.

The corresponding probability of failure is 4.21 · 10−3 and the failure domain has a single
mode [42]. We consider J ∈ {250, 500, 1000, 2000, 5000, 10000} as the ensemble sizes and
δtarget ∈ {0.25, 0.50, 1.00, 2.00, 5.00, 10.00} as the target coefficients of variation. Since the
failure domain is unimodal, we apply the EnKF with global covariances. We apply either
the GM or vMFNM distribution model with one mixture component to fit the distribution
of the final EnKF particles. We apply SIS with the vMFNM distribution model with one
mixture component as the proposal density in the MCMC step.
Figure 2 shows the samples of the final iteration of the EnKF and SIS for the convex LSF.
Note that these are not the samples of the fitted distribution after the final step of the
EnKF. We see that a small target coefficient of variation leads to more samples within the
failure domain. This holds true for both, the EnKF and SIS. We observe that the EnKF
samples are more spread along the surface of the failure domain. By Theorem 4.4 this
observation is expected since the covariance of the ensemble stays constant in the direction
parallel to the failure surface. In addition, the mean of the EnKF particles is in proximity
to the MLFP and the mean of the optimal IS density as expected by Theorem 4.7. In
contrast, the SIS samples are centered around a certain mean value and are more similar
to the optimal IS density. For δtarget = 1.00, the EnKF moves more samples into the
failure domain than SIS. Therefore, we expect that for larger δtarget the EnKF performs
better than SIS.
Figure 3 shows the relRMSE on the horizontal axis and the computational costs on the
vertical axis for the convex LSF. We observe that the EnKF reaches a slightly higher
level of accuracy than SIS. For a larger number of samples per level, both methods have
a smaller error. However, δtarget has a smaller influence on the error for the EnKF than
for SIS. For δtarget ∈ {0.25, 0.50, 1.00, 2.00} the error stays constant for the EnKF with
the vMFNM distribution. The error increases only for the two largest target coefficients
of variations. In contrast, the error for SIS increases as δtarget increases. For the EnKF
with GM, the behaviour of the error is similar to SIS. In summary, the EnKF requires
less computational costs than SIS for a fixed level of accuracy, which fits our expectations
from Figure 2.
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Figure 2: Convex LSF: Samples at the end of the iterations of the EnKF and SIS for
δtarget ∈ {0.25, 1.00, 5.00} and for 2000 samples per level. The black lines show the bound-
ary of the failure domain. Left: Samples of the EnKF with global covariances. Right:
Samples of SIS with vMFNM and one mixture component.
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Figure 3: Convex LSF: Computational costs and relRMSE of the EnKF and SIS av-
eraged over 500 runs for J ∈ {250, 500, 1000, 2000, 5000, 10000} samples per level and
δtarget ∈ {0.25, 0.50, 1.00, 2.00, 5.00, 10.00}. Left: EnKF with vMFNM and global covari-
ances; Middle: EnKF with GM and global covariances; Right: SIS with vMFNM. One
mixture component is applied in the EnKF and SIS.
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5.2 Parabolic limit-state function
In [10], the following parabolic LSF is proposed

G(u) = 5− u2 −
1
2(u1 − 0.1)2.

The exact probability of failure is 3.01 ·10−3 [42]. In this case, the failure domain consists
of two distinct areas with high probability mass. Therefore, we apply the EnKF with
local covariances. We set α = 2 and apply two mixture components to fit the GM and
vMFNM distribution model in the final IS step of the EnKF. SIS is applied with the
vMFNM distribution model with two mixture components. Moreover, we do not consider
J = 10000 for the ensemble size. Apart from this, we consider the same settings as for
the convex LSF in the previous section.
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Figure 4: Parabolic LSF: Samples at the end of the iterations of the EnKF with local
covariances and SIS for δtarget ∈ {0.25, 1.00, 5.00} and for 2000 samples per level. Two
mixtures are considered for the distribution models. The black lines show the boundary
of the failure domain. Left: Samples of the EnKF with local covariances and α = 2.
Right: Samples of SIS with vMFNM and two mixtures.

Figure 4 shows the evolved samples of the final iteration of the EnKF and SIS for the
parabolic LSF. We see for both methods that the generated samples concentrate near the
two separated failure modes. However, for the EnKF with δtarget = 5, many samples are
not contained in the failure domain but are in between of the two failure modes. For SIS
with δtarget = 5, the samples are more concentrated around the failure modes. As in the
previous example, we observe that the samples of the EnKF are more spread along the
surface of the failure domain.
Figure 5 shows the relRMSE and the computational costs for the parabolic LSF. Again,
we observe that the EnKF reaches the same level of accuracy as SIS. For a larger number
of samples per level, both methods have a smaller error. For δtarget ∈ {0.25, 0.50, 1.00}
the error of the EnKF is similar while for larger target coefficient of variations the error
is larger for both distribution models. This behaviour is also observed in Figure 4. For
δtarget = 5, the samples do not separate clearly in the two failure modes. For SIS, we
observe that the error decrease for decreasing δtarget, which implies larger computational
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Figure 5: Parabolic LSF: Computational costs and relRMSE of the EnKF and SIS
averaged over 500 runs for J ∈ {250, 500, 1000, 2000, 5000} samples per level and
δtarget ∈ {0.25, 0.50, 1.00, 2.00, 5.00, 10.00}. Left: EnKF with vMFNM and local covari-
ances, α = 2; Middle: EnKF with GM and local covariances, α = 2; Right: SIS with
vMFNM. Two mixture components are applied in the EnKF and SIS.

costs. As for the convex LSF, the EnKF requires less computational costs than SIS for
a fixed level of accuracy. Since α = 2 yields promising results, we do not consider a
parameter study for α, nor do we consider the adaptive approach given in Section 3.3.

5.3 Series system reliability problem
In the third example, we consider a series system reliability problem given in [53], which
is defined by the LSF

G(u) = min





0.1(u1 − u2)2 − (u1 + u2)/
√

2 + 3
0.1(u1 − u2)2 + (u1 + u2)/

√
2 + 3

u1 − u2 + 7/
√

2
u2 − u1 + 7/

√
2




.

The corresponding probability of failure is 2.2 · 10−3 and the failure domain consists of
four distinct modes [42]. We apply SIS with the vMFNM distribution model with four
mixtures components. The EnKF is applied with local covariances and four mixture
components in the final fitting step. For this example, we consider the two approaches
given in Section 3.3 for determining the weight matrix W in (3.9). We start by performing
a parameter study for the parameter α. Thereafter, we consider the adaptive approach
given in Section 3.3, which we reference as the EnKF with adaptive local covariances.
We consider the parameter values α ∈ {0.10, 0.25, 0.50, 0.75, 1.00, 2.00} and apply the
EnKF with local covariances and 2000 samples per level. Figure 6 shows the generated
samples for varying α and δtarget ∈ {1.00, 5.00}. We observe that the samples are more
concentrated for small α. Indeed, for smaller values for α, the samples separate into
four failure modes. For α ≥ 1, nearly all samples are contained in two failure modes.
In summary, for α ∈ {0.25, 0.50, 0.75} we expect good results since the samples capture
well the four modes. For α = 0.10, the samples are too concentrated. Thus, we choose
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Figure 6: Series system LSF: Samples at the end of the iterations of the EnKF with
local covariances for δtarget ∈ {1.00, 5.00}, α ∈ {0.10, 0.25, 0.50, 0.75, 1.00, 2.00} and 2000
samples per level. The black lines show the boundary of the failure domain.
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Figure 7: Series system LSF: Computational costs and relRMSE of the EnKF and SIS
averaged over 500 runs for J ∈ {250, 500, 1000, 2000, 5000} samples per level and δtarget ∈
{0.25, 0.50, 1.00, 2.00, 5.00, 10.00}. Left: EnKF with vMFNM and local covariances, α =
0.25; Middle: EnKF with GM and local covariances, α = 0.25; Right: SIS with vMFNM.
Four mixture components are applied in the EnKF and SIS.
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α = 0.25 and investigate the respective performance in more detail.
Figure 7 shows the performance of the EnKF with α = 0.25. The ensemble size is J ∈
{250, 500, 1000, 2000, 5000} and δtarget ∈ {0.25, 0.50, 1.00, 2.00, 5.00, 10.00} is the target
coefficient of variation. We observe that a larger value for δtarget leads to a smaller error.
This is due to the fact that for small δtarget the EnKF particles are more concentrated and
do not always split into the four failure modes. Therefore, the estimates contain a bias.
In particular for δtarget ∈ {5.00, 10.00}, the EnKF yields a good performance. However,
SIS requires less computational costs for a fixed level of accuracy.
In the following, we consider the adaptive approach of Section 3.3 to determine the weight
matrix W . In particular, we fit the GM or vMFNM distribution model with four mixture
components in each EnKF step to split the particles in a cluster with four components.
Consequently, we calculate the empirical covariance matrix for each cluster and determine
the weight matrix W by (3.10).
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Figure 8: Series system LSF: Computational costs and relRMSE of the EnKF and
SIS averaged over 500 runs for J ∈ {250, 500, 1000, 2000, 5000} samples per level and
δtarget ∈ {0.25, 0.50, 1.00, 2.00, 5.00, 10.00}. Left: EnKF with vMFNM and adaptive local
covariances; Middle: EnKF with GM and adaptive local covariances; Right: SIS with
vMFNM. Four mixture components are applied in the EnKF and SIS.

Figure 8 shows the relRMSE and the computational costs for the EnKF with adaptive
local covariances. We observe a similar behaviour of the error as in Figure 7. A larger value
for δtarget yields a smaller error. However, the EnKF with the vMFNM and δtarget = 5.00
requires less computational costs than SIS for a fixed level of accuracy.
We note that both local covariance approaches require more tempering steps. This is due
to the fact that the particles interact less with their neighbours and, thus, move slower.
This observation is also made in [44].

5.4 1D diffusion equation
The final example considers the diffusion equation in the one-dimensional domain D =
(0, 1). For P-almost every (a.e.) ω ∈ Ω, we seek the weak solution y(·, ω) ∈ H1

0 (D) such
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that for all v ∈ H1
0 (D) it holds

∫

D
a(x, ω) ∂

∂x
y(x, ω) · ∂

∂x
v(x)dx =

∫

D
v(x)dx.

The diffusion coefficient a(x, ω) = exp(Z(x, ω)) is a log-normal random field. It is specified
by its mean function E[a(x, ·)] = 1 and standard deviation Std[a(x, ·)] = 0.1. Thus,
the mean function of Z is µZ = log(E[a(x, ·)]) − σ2

Z/2 and the variance is given by
σ2
Z = log ((Std[a(x, ·)]2 + E[a(x, ·)]2)/E[a(x, ·)]2). Moreover, we assume that Z has an

exponential type covariance function c(x, y) = σ2
Z exp (−‖x− y‖1/λ) with correlation

length λ = 0.01. The truncated Karhunen–Loève (KL) expansion

Zd(x, ω) = µZ + σZ
d∑

m=1

√
νmθm(x)Um(ω)

gives an approximation to the infinite-dimensional random field Z. Thus, we define ad =
exp(Zd) as an approximation for a. The associated solution of the weak form is denoted
by yd. The eigenpairs (νm, θm) can be analytically calculated as explained in [19, Section
2.3.3]. Moreover, U := {Um}dm=1 are independent standard normal Gaussian random
variables. We set d = 150 which captures 87% of the variability of log(a).
In addition, we approximate the solution yd by piecewise linear, continuous finite elements
on a uniform grid with mesh size h = 1/512. The finite element approximation is denoted
by yh. Finally, we call the event ω ∈ Ω a failure event if the solution yh(·, ω) is larger
than 0.535 at x = 1. This gives the LSF

G(U(ω)) := 0.535− yh(x = 1, ω).

By crude Monte Carlo sampling with 2 ·108 samples, the probability of failure is estimated
as Pf = 1.682·10−4. In the following, this value is referred to as the reference solution. We
note that the truncation of the KL expansion and the discretization parameter h induces
an error in G. Thus, the probability of failure Pf is an approximation to the exact one
which requires the exact solution y. Since we always consider a fixed discretization level
and fix the number of KL terms, the error is not present in the estimates. For an error
analysis with respect to the discretization size h, we refer to [55].
The probability of failure is estimated by the EnKF and SIS. The estimation is performed
for J ∈ {250, 500, 1000, 2000} samples per level and target coefficient of variation equal
to δtarget ∈ {0.25, 0.50, 1.00, 2.00, 5.00, 10.00}. For the EnKF, we use the vMFNM as dis-
tribution model with one mixture. Moreover, we apply global covariances since we expect
one single failure mode. The GM distribution is not considered, since it does not perform
well in high dimensions. Similar we apply SIS with sampling from the vMFNM distribu-
tion with one mixture.
Figure 9 shows the relRMSE and the computational costs for the diffusion equation prob-
lem. The EnKF yields the same level of accuracy as SIS. Indeed, the EnKF yields the
smallest error with the largest target coefficient of variation. We note that δtarget = 10
requires only one step to reach the stopping criterion. The surface of the failure domain
might be highly nonlinear. If δtarget is large, the final EnKF particles are more spread,
which yields a better fitting distribution in this particular case and a smaller error. In
contrast, a smaller value for δtarget leads to a smaller error for SIS. This is the complete
opposite observation as for the EnKF. This is due to the fact that for small δtarget, two
consecutive densities in SIS are more similar and the estimation of the probability of fail-
ure is more robust. In summary, we conclude that the EnKF requires less computational
costs for a fixed level of accuracy.
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Figure 9: Diffusion equation: Computational costs and relRMSE of the EnKF and SIS
averaged over 100 runs for J ∈ {250, 500, 1000, 2000} samples per level and δtarget ∈
{0.25, 0.50, 1.00, 2.00, 5.00, 10.00}. Left: EnKF with vMFNM and global covariances;
Right: SIS with vMFNM. One mixture component is applied in the EnKF and SIS.

6 Conclusion and Outlook
We introduce a novel sampling method for estimating small probabilities of failure that
employs the EnKF sampler. The proposed method reformulates the rare event prob-
lem as an inverse problem by concatenating the ReLU function with the LSF. For this
reformulation, the EnKF is applied to generate failure samples in an adaptive manner.
Consequently, a distribution model is fitted with the generated samples and the prob-
ability of failure is estimated with IS. We have shown that the EnKF densities define
an alternative sequence of piecewise smooth approximations of the optimal IS density as
compared to the sequence employed in SIS.
For affine linear LSFs, we have derived the particle dynamic for the continuous time limit
of the EnKF update. Under the assumption that the EnKF is applied without noise, we
have proven that the ensemble mean converges to a convex combination of the most likely
failure point and the mean of the optimal IS density in the large particle and large time
limit.
To handle multi-modal failure domains, we localise the covariance matrices in the EnKF
update around each particle. This localisation can be made adaptively using a clustering
approach.
In numerical experiments, we compare the EnKF with SIS in terms of the relative root
mean square error and the required computational costs. For single modal failure do-
mains, the EnKF requires less computational costs than SIS for a fixed level of accuracy.
However, for multi-modal failure domains, the application of the EnKF is not straight-
forward and SIS yields a better performance in some cases.
For future work, our manuscript can be used as a starting point to analyse the EnKF
for rare events for more general settings. In particular, the analysis for nonlinear LSFs
and the analysis of the mean field limit of the EnKF with noise is still an open question.
Moreover, the combination of the EnKF with a multilevel strategy would be beneficial
for LSFs which can be approximated by a hierarchy of discretization levels. Finally, the
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EnKF algorithm could be potentially extended for estimating the probabilities of failure
associated with multivariate outputs. This approach could be beneficial in cases where
the multiple outputs are based on a single model solve.

A Proofs of Section 4
Proof of Theorem 4.1. The authors of [46] show for the continuous time limit h → 0 of
(3.5) and the noise free case that the particles satisfy the flow

du(j)

dt = 1
J

J∑

k=1
〈G̃(u(k))− G̃,−G̃(u(j))〉(u(k) − u), (A.1)

where we used that y† = 0 and Γ = 1. If G̃(u(j)) = 0, (A.1) implies that

du(j)

dt = 0.

Thus, failure particles do not move. Now we consider the case that G̃(u(j)) = G(u(j)) > 0.
The ensemble mean G̃ can be expressed as

G̃ = 1
J

J∑

k=1
G̃(u(k)) = 1

J

∑

k∈S
G(u(k)) = 1

J

J∑

k=1
G(u(k))− 1

J

∑

k∈F
G(u(k)) = G(u)− C,

since G is affine linear for all u and we define C := 1
J

∑
k∈F G(u(k)) < 0. Splitting up (A.1)

into the safe and failure states and using that G̃(u(k)) = G(u(k)) for k ∈ S and G̃(u(k)) = 0
for k ∈ F , we get

du(j)

dt = 1
J


∑

k∈S
〈G(u(k))−G(u) + C,−G(u(j))〉(u(k) − u) (A.2)

+
∑

k∈F
〈−G(u) + C,−G(u(j))〉(u(k) − u)


 . (A.3)

The sum in (A.2) is equal to
∑

k∈S
〈G(u(k))−G(u),−G(u(j))〉(u(k) − u) +

∑

k∈S
〈C,−G(u(j))〉(u(k) − u) := S1 + S2,

while the sum in (A.3) is equal to
∑

k∈F
〈G(u(k))−G(u),−G(u(j))〉(u(k) − u) +

∑

k∈F
〈C −G(u(k)),−G(u(j))〉(u(k) − u)

:= F1 + F2,

where we have used the linearity of the scalar product. Adding S1 and F1 and multiplying
with 1/J gives

1
J

(S1 + F1) = 1
J

J∑

k=1
〈G(u(k))−G(u),−G(u(j))〉(u(k) − u)

= −Cuu(u)Du

(1
2G(u(j))2

)
, (A.4)
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where we have applied (2.13) since G is affine linear. Adding the remaining parts gives

1
J

(S2 + F2) = 〈C,−G(u(j))〉
J

J∑

k=1
(u(k) − u) + 1

J

∑

k∈F
〈G(u(k)), G(u(j))〉(u(k) − u)

= G(u(j))
J

∑

k∈F
G(u(k))(u(k) − u), (A.5)

since ∑J
k=1

(
u(k) − u

)
= 0. Adding (A.4) and (A.5) gives the desired result.

A.1 Proof of Section 4.1
Proof of Lemma 4.4. We follow the proof of [18, Lemma 3.2] and adjust it to the rare
event setting. The second part of (4.1) is zero for all t ≥ 0 since all initial particles are in
the safe domain and, at the time point a particle reaches the failure surface, it does not
move anymore. Therefore, the dynamic of all particles satisfies for all t ≥ 0

du(j)

dt = −Cuu(u)Du

(1
2G(u(j))2

)
= −Cuu(u)

(
aaTu(j) − ab

)
.

The large particle limit J →∞ leads to the mean field equation at t ≥ 0

du(t)
dt = −C(t)

(
aaTu(t)− ab

)
, (A.6)

where u(t) is a realisation of U(t). With (A.6), we can derive the dynamic of the mean
and covariance matrix. The ensemble mean satisfies

dm(t)
dt = −C(t)

(
aaTm(t)− ab

)
. (A.7)

By defining e(t) = U(t)−m(t), we get

de(t)
dt = −C(t)aaT e(t). (A.8)

For the covariance it holds that C(t) = E[e(t) ⊗ e(t)]. Differentiating C(t) with respect
to t and plugging in (A.8), it follows

dC(t)
dt = E

[
de(t)

dt ⊗ e+ e⊗ de(t)
dt

]
= −2C(t)aaTC(t). (A.9)

From (A.9), it follows for the inverse of the covariance matrix

dC−1(t)
dt = −C−1(t)

(
dC(t)

dt

)
C−1(t) = 2aaT . (A.10)

With the initial condition C(0) = Idd and from (A.10), it follows

C(t) =
(
Idd + 2aaT t

)−1
=
(

1/(1 + 2t)
Idd−1

)
,

where Idd−1 ∈ R(d−1)×(d−1) is the identity matrix. Inserting the expression of the covari-
ance matrix C(t) in (A.7) gives

dm1(t)
dt = b−m1(t)

1 + 2t ,
dmi(t)

dt = 0, for i = 2, . . . , d.
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With the initial condition m(0) = 0, the entries of the mean are given by

m1(t) = b

(
1− 1√

2t+ 1

)
, mi(t) = 0, for i = 2, . . . , d.

Since limt→∞m1(t) = b, we conclude that limt→∞m(t) = uMLFP, which is the desired
result.

A.2 Proofs of Section 4.2
Proof of Lemma 4.8. Theorem 4.1 gives the continuous time limit of the particle dynamic.
We consider the mean field limit J → ∞ for the two parts in (4.1) separately. For the
first part, it holds that

lim
J→∞

−Cuu(u)Du

(1
2G(u(j))2

)
= −C(t)Du

(1
2G(u(j))2

)
.

Now, we consider the second part in (4.1). We split the sum into two parts as

G(u(j))
J

∑

k∈F
G(u(k))(u(k) − u)

= G(u(j)) |F |
J


 1
|F |

∑

k∈F
G(u(k))u(k) − u

|F |
∑

k∈F
G(u(k))


 . (A.11)

At first, we see that limJ→∞ |F |/J = Pf since |F | is the number of failure particles in the
initial ensemble. The limit of the first sum in (A.11) is

lim
J→∞

1
|F |

∑

k∈F
G(u(k))u(k) = E[G(U)U | G(U) < 0]

= E[U1U | U1 < b]− bE[U | U1 < b]. (A.12)

The second tern in (A.12) is equal to −buopt. Since the components of U are independent,
it holds that E[U1U | U1 < b] = (E[U2

1 | U1 < b], 0, . . . , 0)T .
Since Var[U1 | U1 < b] = E[U2

1 | U1 < b]− E[U1 | U < b]2 we conclude that

E[U2
1 | U1 < b] = Var[U1 | U1 < b] + E[U1 | U1 ≤ b]2

= 1− bϕ(b)
Φ(b) −

ϕ2(b)
Φ2(b) +

(
−ϕ(b)

Φ(b)

)2

= 1 + buopt
1 ,

where we used the formula of the mean and variance of a truncated Gaussian [25, Section
10.1]. In summary we get

lim
J→∞

1
|F |

∑

k∈F
G(u(k))u(k) = (1, 0, . . . , 0)T .

For the second sum in (A.11), we get

lim
J→∞

− u

|F |
∑

k∈F
G(u(k)) = −m(t)E[G(U) | G(U) < 0] = −m(t)(uopt

1 − b)
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by linearity of G. In summary we conclude that

lim
J→∞

G(u(j))
J

∑

k∈F
G(u(k))(u(k) − u) = G(u(j))Pf

(
(1, 0, . . . , 0)T −m(t)(uopt

1 − b)
)
.

Together with the first limit, we get for J →∞ that

du(j)

dt = −C(t)Du

(1
2G(u(j))2

)
+G(u(j))Pf

(
(1, 0, . . . , 0)T −m(t)(uopt

1 − b)
)
,

which is the desired result.

Proof of Lemma 4.10. We consider d = 1. For the variance it holds that

C(t) = Var[U(t)] =E[U(t)2]− E[U(t)]2

=(1− Pf )E[U(t)2 | U(t) ≥ b] + PfE[U(t)2 | U(t) < b]
− ((1− Pf )mS(t) + PfmF (t))2 .

Again, we use

E[U(t)2 | U(t) ≥ b] = Var[U(t) | U(t) ≥ b] + E[U(t) | U(t) ≥ b]2 > mS(t)2,

since the variance is always positive as long as US(t) is not collapsed to a single point.
Using that E[U(t)2 | U(t) < b] = 1 + buopt and mF = uopt, we get

C(t) > (1− Pf )mS(t)2 + Pf (1 + buopt)− ((1− Pf )mS(t) + Pfu
opt)2.

Proof of Theorem 4.7. It remains to show that

C(t)− Pf
(
1−m(t)(uopt − b)

)
> 0. (A.13)

We check that this is true if mS(t) > uMLFP. We start by using Lemma 4.10 and splitting
up m(t). Thus,

C(t)− Pf
(
1−m(t)(uopt − b)

)

>(1− Pf )mS(t)2 + Pf (1 + buopt)− ((1− Pf )mS(t) + Pfu
opt)2

− Pf
(
1−

(
(1− Pf )mS(t) + Pfu

opt
)

(uopt − b)
)

=Pf (1− Pf )
(
mS(t)2 +mS(t)(−uopt − b) + buopt

)
:= Pf (1− Pf )f(mS(t)).

The quadratic function f has the roots mS,1 = b and mS,2 = uopt. Moreover, it holds
that f ′(b) > 0 since b > uopt. It follows that f(mS(t)) > 0 for mS(t) > b. Together with
Pf (1− Pf ) > 0, (A.13) holds for all t ≥ 0 and, thus,

lim
t→∞

mS(t) = uMLFP.
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