Fakultat fir Informatik
Technische Universitat Minchen

A Spatially Adaptive and Massively Parallel Implementation of
the Fault-Tolerant Combination Technique

Michael Johannes Obersteiner

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Tobias Nipkow, Ph.D.

Priifende der Dissertation:
1. Prof. Dr. Hans-Joachim Bungartz
2. Prof. Dr. Dirk Pfliiger

Die Dissertation wurde am 18.06.2021 bei der Technischen Universitiat Miinchen
eingereicht und durch die Fakultit fiir Informatik am 28.10.2021 angenommen.

In loving memory of my dad.

Abstract

High-dimensional methods have gained increasing interest in the past decades due to
novel machine learning applications and the growing compute power of modern sys-
tems. One fundamental problem of high dimensional algorithms is the typically expo-
nential growth of the computing time with the number of dimensions. For grid-based
methods this curse of dimensionality can be mitigated by the Sparse Grid Combination
Technique. Unfortunately, even with the reduced complexity of Sparse Grids, many
use cases are still computationally involved. Hence, an HPC implementation of the
Combination Technique is required that runs efficiently on modern and future super-
computers. Furthermore, the method should be fault-tolerant due to the higher failure
rates in upcoming exascale clusters.

In this work, we address these challenges by presenting novel techniques to increase
the scalability and robustness of the Combination Technique. In particular, we intro-
duce an asynchronous variant and enhance the existing fault-tolerant implementation.
Furthermore, we discuss how to improve time step sizes to optimize the computational
complexity for time-dependent PDEs. To analyze these new concepts, we show re-
sults for a real-world application from plasma physics. As a second step, we intro-
duce two novel ways for generalizing the Combination Technique to allow for spa-
tial adaptivity. This represents a fundamental change in the Combination Technique
that is constructed based on a combination of regular subgrids. In contrast to this, the
novel adaptive methods respectively generate rectilinear grids and block adaptive grids
that preserve the most important features of the Combination Technique: the black-box
property, their parallel nature, and the error cancellation. We then test these adaptive
techniques for typical Sparse Grid applications such as quadrature, interpolation, un-
certainty quantification, and machine learning. The results indicate that the new meth-
ods can help to tailor the grids towards the application scenarios, thereby reducing the
number of needed grid points. With these improvements, it is now possible to scale the
Combination Technique to larger core numbers with possibly unreliable hardware and
to apply it to a much larger range of applications due to spatially adaptive refinement.

Zusammenfassung

In den letzten Jahrzehnten gewannen hochdimensionale Verfahren immer mehr an Be-
deutung. Ein Grund hierfiir sind neue Anwendungen im Bereich des maschinellen
Lernens sowie die wachsende Rechenleistung moderner Computersysteme. Ein fun-
damentales Problem von hochdimensionalen Algorithmen ist der tiblicherweise expo-
nentielle Zuwachs an Rechenzeit mit der Anzahl der Dimensionen. Dieser Fluch der
Dimension kann jedoch durch die Diinngitter-Kombinationstechnik abgeschwécht wer-
den. Leider bleibt in vielen Féllen der durch Verwendung von Diinngittern verringerte
Rechenaufwand noch immer sehr hoch. Aus diesem Grund benétigt es eine HPC-
Implementierung der Kombinationstechnik, welche auch effizient auf aktuellen und
zukiinftigen Supercomputern verwendet werden kann. Zusétzlich sollte das Verfahren
fehltertolerant sein, um trotz der zunehmenden Fehlerraten zukiinftiger Exascalecom-
puter zuverlassig arbeiten zu konnen.

In dieser Arbeit werden wir uns beiden Aspekten widmen, indem wir neue Tech-
niken vorstellen, welche die Skalierbarkeit und die Robustheit der Kombinationstech-
nik steigern. Wir préasentieren insbesondere eine asynchrone Variante und verbessern
die existierenden Implementierungen zur Fehlertoleranz. Aufierdem zeigen wir, wie
die Zeitschrittweiten auf den einzelnen Komponentengittern bei der Lésung von zeitab-
héngigen Differentialgleichungen optimiert werden kénnen. Die Wirkungsweise und
Effektivitdt dieser neuen Konzepte werden dann anhand von realistischen Anwen-
dnungsszenarien in der Plasmaphysik analysiert. In einem zweiten Schritt stellen wir
zwei neue Moglichkeiten vor, um rdumliche Adaptivitdt in der Kombinationstechnik
zu ermoglichen. Diese Neuerung représentiert einen fundamentalen Paradigmenwech-
sel fiir die Kombinationstechnik, da die urspriingliche Methode auf reguldren Gittern
basiert. Anstelle dessen erzeugen die neuen Methoden rechtwinklige bzw. blockadap-
tive Gitter. Gleichzeitig erhalten die neuen Methoden die wichtigsten Eigenschaften
der Kombinationstechnik: die Blackbox-Eigenschaft, die inherente Parallelitdt und die
Fehlerausloschung. Als ndchsten Schritt demonstrieren wir die Wirkungsweise der
neuen adaptiven Methoden anhand zahlreicher Tests aus der klassischen Numerik,
wie etwa der Quadratur und Interpolation, aus der Uncertainty Quantification und
aus dem maschinellen Lernen. Die Ergebnisse zeigen, dass die neuen Ansétze dabei
helfen kénnen, die Gitter an den jeweiligen Problemfall anzupassen. Mithilfe dieser
Neuerungen an der Kombinationstechnik ist es jetzt moglich, die Implementierungen
bis zu noch grofleren Prozessorzahlen mit moglicherweise fehleranfilliger Hardware
zu skalieren. Zusitzlich ermoglicht die raumliche Adaptivitit ein breiteres Anwen-
dungsspektrum.

vii

Acknowledgments

At this point, I would like to thank all the people that have contributed to this work in
one or the other way and who supported me on this journey.

First of all, I like to thank my supervisor Hans-Joachim Bungartz for his continuous
support throughout my dissertation project. This includes strategic advice for confer-
ences and journals, late night email conversations, discussions of the latest scientific
ideas, and the lively philosophical or political debates at the Halb3 meetings.

Next, I would like to thank my project partners Alfredo Parra, Mario Heene, Theresa
Pollinger, Johannes Rentrop, Rafael Lago, Tilman Dannert, Dirk Pfliiger, Michael Grie-
bel, and Frank Jenko that created a productive and enjoyable working environment for
all of these years. Even in times where we did not succeed with all our ambitions, we
always found new and promising ways to expand our framework for the Combination
Technique.

My work with Sparse Grids would not have been possible without the help of the
Sparse Grid groups in Munich and Stuttgart. They were at all times patient with me and
together we unraveled many of the mysteries of Sparse Grids and beyond. I would like
to specially mention Paul Sarbu, Ionut Farcas, Kilian Rohner, Alfredo Parra, Christoph
Kowitz, and Valeriy Khakhutskyy.

Another major contribution was made by all of my (over 20) students that collabo-
rated with me during their student projects. Without their scientific curiosity and mo-
tivation, many of the new methods in this thesis would have never been investigated.

Moreover, I would like to express my deepest gratitude for my colleagues at the Chair
of Scientific Computing in Computer Science in Garching who not just represented
a never ending source of advice and guidance, but they also managed to created a
relaxing and positive atmosphere. Without them many of the working hours at the
office would have been far less enjoyable. Although it would have been from time to
time more productive to focus solely on my work, I would always prefer to chat in the
coffee room or grab an afternoon snack at the bakery with them.

A special thanks goes to my advisor of my Bachelor’s and Master’s thesis Nikola
Tchipev who made me aware of the beauties of scientific computing and helped me to
develop my scientific curiosity. Without him I would have maybe never even started
this PhD project.

Furthermore, I want to mention Paul Sarbu, Friedrich Menhorn, Johannes Rentrop,
Theresa Pollinger, Tilman Dannert, and of course Hans-Joachim Bungartz for proof-
reading my thesis and contributing to its final state.

Last but not least, I am thankful for my family, my friends, and my girlfriend for
supporting me during all this time. You did not just help me with my work but also
showed me when it is best to stop and enjoy my life. Especially, I want to mention my

1X

Acknowledgments

dad who sadly passed away on 01.06.2021. He supported me in every possible way
throughout my whole live. I'll be forever grateful for that.

Contents

Abstract \4
Zusammenfassung vii
Acknowledgments ix
Contents xi
1 Introduction 1
2 Foundations 5
2.1 Faulttolerancein HPC 5
21.1 Check-pointrestart oL 6

212 Alternativemethods 7

2.1.3 Algorithm-based fault tolerance 8

22 SparseGrids 10
221 NodalBasis 10

222 Hierarchical Basis 12

223 Sparse Grid Construction 15

224 Variations L o 16

225 AdaptiveRefinement. o 0oL 18

2.3 Sparse Grid Combination Technique 18
23.1 Standard Combination Technique 19

2.3.2 Generalizations of the Combination Technique 23

2.3.3 Adaptivity with the Combination Technique 24

2331 Dimensional adaptivity 24

2332 Spatialadaptivity 000 26

234 Fault-Tolerant Combination Technique 27

2.3.5 Time-Dependent PDE simulations with the Combination Technique 27

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs 29
3.1 Frameworkoverview oL 30
3.1.1 Manager workerscheme 30

3.1.2 Scalable implementation of the combinationstep 32

32 PFaulttolerance 34
321 PFaultsimulator 35

3.2.2 Faultdistribution o Lo oL 36

x1i

CONTENTS

3.2.3 Faultdetection 36

324 Faultrecovery 37

3.25 Fault-tolerant algorithm L. 39

3.3 Choosingthetimestep 40
331 CFLcondition 41

332 Uniformtimesteps 42

3.3.3 Individualtimesteps. 42

3.4 Shared-Memory parallelization 45
3.5 Asynchronous Combination Technique 48
3.5.1 Algorithmicidea 48

3.5.2 Mathematical motivation 50

3.6 Numericalexperiments. 52
3.6.1 Application to plasma physics 52

3.6.2 Faulttolerance 54
3.6.2.1 Numerical erroranalysis 55

3.6.22 Scalingresults 59

3.6.3 Asynchronous combination 60
3.6.3.1 Advectionequation 61

3.632 GENE . . o vt i e e e e e e 63

3.6.4 Non-linear Plasmaruns 64

3.65 Summary 69

4 sparseSpACE: Spatial adaptivity for the Combination Technique 71
4.1 Dimension-wiserefinement 72
411 1Dpointsetso o 73

41.2 Generating the combination scheme 73

413 Treerebalancing 78

414 Errorestimation. 80

415 Overall Algorithm 83

42 Split-Extendscheme 86
421 Initialsetup 87

422 Split 88

423 Extend 89

424 Errorestimation. e 92
4241 LinearBasis. 93

4242 Higherordermethods. 97

4243 Splitsin Single Dimensions 98

425 Overallalgorithm 99

4.3 Implementationoverview 101
43.1 Combinationscheme 102

43.2 Implementation of the Combination Technique approaches . .. 102

433 Gridoperations L L o 103
434 Functions 104

43.5 Differentgridtypes. L. 104

xii

CONTENTS

43.6 RefinementContainer
4.3.7 Wrapper for Machine Learning

5 Numerical case studies with the Spatially Adaptive Combination Technique 107

6

5.1 Numerical quadrature and interpolation
51.1 \Visualinspection

512 Convergenceanalysis
5121 Linearbasis.

51.22 Quadratic approximation

5.1.2.3 GaussianQuadrature

5124 Single-dimensional splits

5.1.25 Modifiedbasis

513 Summary

5.2 Uncertainty quantification
5.3 Machine Learning with Sparse Grid density estimation
53.1 Algorithmoverview
5.3.2 C(lassificationresults
53.2.1 Standard Combination Technique

53.2.2 Spatially adaptive Combination Technique

533 Summary

Conclusion and Outlook

List of Figures

List of Tables

Bibliography

A

Technical Specifications of compute clusters

Al HazelHen
A2 SuperMUC-NG
A3 CoolMUC-2LinuxCluster

Parameter Files
B.1 Linearandlocal GENETruns o v v v v v,
B.2 Non-linear and global GENEruns

107

155

159

163

173
173
173
174

175
175
177

xiii

1 Introduction

Over the past decades, computer systems have undergone a tremendous increase in
computing power that changed science fundamentally. Previously unfeasible compu-
tations are now in reach and long forgotten methods such as neural networks are gain-
ing enormous popularity. As a consequence, mathematical modeling, simulations, and
machine learning approaches are now applied in almost every discipline. For many
applications this is due to the new possibility to perform more accurate calculations
and to reach higher dimensions. For example, in machine learning tasks it is common
that hundreds of features are available which form extremely high-dimensional feature
spaces.

However, such high-dimensional problems come with completely new challenges as
the cost of discretizing a high-dimensional space grows exponentially with the number
of dimensions d. This effect is known as the expression curse of dimensionality which was
coined by Bellmann in [11] in the context of dynamic programming. This exponential
growth is so critical that not even the increasing compute power of modern systems
can compensate for it. As a consequence, new methods were invented that deal with
such high dimensionalities.

Sparse Grids represent one of these new approaches that can scale to much larger
number of dimensions by a cost-efficient discretization scheme. The main advantage of
Sparse Grids is that they reduce the growth rate of the point numbers. In particular, the
number of points only increase exponentially with O(Nlog(N)?~!) instead of O(N9)
where N is the number of points per dimension in a regular grid. This allows to tackle
much larger dimensionalities with grid-based techniques.

One especially interesting variation of Sparse Grids is the Sparse Grid Combination
Technique. Instead of working on a Sparse Grid explicitly, this method splits the cal-
culation into various independent and cheap subproblems on regular but anisotropic
grids. These subproblem can then be solved in parallel with arbitrary full grid solvers.
In addition, it is rather simple to implement, which is probably the main reason why it
is a frequent choice in Sparse Grid literature.

The application spectrum of the Combination Technique ranges from classical nu-
merical tasks such as quadrature, interpolation, and (time-dependent) partial differen-
tial equations (PDEs) to more recent application areas like uncertainty quantification
and grid-based machine learning techniques. Especially, for time-dependent PDEs the
method offers a high potential for parallelization and reducing the required number of
grid points, but it also comes with certain challenges as regular synchronous combina-
tion steps are introduced.

This was the starting point for the project EXAHD [97, 72] which was funded by
the Germand Research Foundation (DFG) as part of its Priority Programme Software

1 Introduction

for Exascale Computing (SPPEXA). This collaborative project between the University of
Bonn, the University of Stuttgart, the Max-Planck Institute for Plasma Physics, the Max-
Planck Computing and Data Facility, and the Technical University of Munich focused
on one high-dimensional case study in plasma physics, namely microturbulence sim-
ulations in nuclear fusion reactors. These five-dimensional simulations are still highly
limited by current computing systems due to the extremely large numbers of grids
points. With the help of current and future supercomputers, the Combination Tech-
nique could provide more accurate predictions for the stability of the plasma and im-
prove the design and development of new fusion reactors.

For this purpose, a new framework was created to run plasma physics simulations
at the extreme scale. This effort revealed completely new challenges from high perfor-
mance computing for the Combination Technique. First, the recombination step needs
to be perform very efficiently and is required to scale up to millions of cores. Second,
the long simulation times result in a large risk of failing components. The framework
should therefore be fault-tolerant. Last, the numerical convergence of the method needs
to be shown for real-world and non-linear test cases.

However, there are also challenges from the Combination Technique itself. Due to
the regular structure of the grids that are generated by the method, it is not possible to
spatially adapt the grid to the application at hand. This prevents spatial adaptivity and
limits the efficiency of the method for localized problem. Hence, a spatially adaptive
Combination Technique is required to increase the performance and to apply it to a
wider range of applications.

In this work, we tackle both of these problems. We will demonstrate how to improve
the implementations of the recombination by using optimal time-steps and an asyn-
chronous communication. Furthermore, we refine the existing implementations for the
Fault-Tolerant Combination Technique and apply and analyze it for more realistic sce-
narios. In addition, we apply the Combination Technique to non-linear plasma physics
runs and discuss the current shortcomings and opportunities with these simulations.

In a second step, we outline two novel generalizations of the Combination Technique
that allow for spatially adaptivity. One of the core concepts of the standard Combina-
tion Technique is that it exploits the regular grid structure of the component grids to
guarantee an efficient error cancellation. This concept does not allow for an efficient
spatially adaptive refinement. Hence, the novel spatially adaptive methods do not fol-
low this principle. In contrast to this, they create arbitrary rectilinear grids by refin-
ing each dimension individually or form block-adaptive grids with an octree-like split-
ting of the domain, respectively. At the same time, the refinement procedures preserve
the important error cancellation property of the Combination Technique, the black-box
property, and its inherent parallel nature. We then apply these new approaches to a
wide variety of applications to show that these fundamental concepts can be applied
to various localized problems. We therefore consider more general applications in this
part and not the specialized PDE simulations from plasma physics.

The remainder of this work is structured as follows. In Chapter 2 we summarize
the theoretical foundations. This includes an overview of fault tolerance, followed by
a description of Sparse Grids, the Combination Technique and its application to time-

dependent PDEs. We will focus on the high performance computing (HPC) aspects of
fault tolerance and give a brief overview of the different techniques that have been
developed in the past decades. We also introduce the different variations of Sparse
Grids and the Combination Technique including spatial and dimension adaptivity.

Thereafter, we discuss in Chapter 3 the algorithmic and implementation details of our
Combination Technique framework for time-dependent PDEs. Here, we first summa-
rize the previous developments and focus then on the novel aspects in respect to fault
tolerance. Next, we cover a new analysis for the selection of appropriate time steps
which optimize the computational complexity. Moreover, we show a shared-memory
implementation of the combination step and an asynchronous variant of the Combina-
tion Technique that reduces the communication overhead. The chapter is concluded by
an evaluation of the novel techniques for numerical simulations. This also involves an
overview of the main application code GENE from plasma physics.

In Chapter 4 we outline the two novel spatially adaptive variants of the Combina-
tion Technique. First, we introduce the dimension-wise spatial refinement, which uses
rectilinear grids in the Combination Technique. Next, the Split-Extend method is de-
scribed, which allows for block-adaptive refinement with the Combination Technique.
In addition, we describe the implementation aspects of the newly created framework
for the spatially adaptive Combination Technique.

This more theoretical chapter will be followed by multiple numerical case studies in
Chapter 5 that demonstrate the effectiveness of the novel adaptive schemes. To show
their broad applicability, we present results for the basic numerical applications quadra-
ture and interpolation as well as for uncertainty quantification and density estimation.

Finally, we conclude this work in Chapter 6. After a summary of the main results, we
highlight the new insights that we obtained. Furthermore, we describe where we see
the highest potential for future work on spatial adaptivity and HPC optimizations for
the Combination Technique.

2 Foundations

This chapter gives a detailed overview of the background of this work. First, we briefly
summarize the main aspects of fault tolerance for high performance computing (HPC) in
Section 2.1. Here, we start with an explanation of checkpoint-restart which is one of the
oldest and most popular methods in fault tolerance. This method saves the program
state to a persistent memory in order to be able to restore lost information after a fault
occurs. However, this method does not scale to arbitrary process numbers due to the
slow memory access. We therefore cover common alternatives of the method. One of
these approaches is algorithm-based fault tolerance where the specific properties of the
applied algorithm are used to get a cheap possibility to restore or at least tolerate lost
data. An example of such an algorithm class are hierarchical methods that utilize the
hierarchical structure for recovering from faults.

In Section 2.2, we summarize the basics of Sparse Grids which represent one promis-
ing candidate of these hierarchical methods. In addition, Sparse Grids provide an ef-
ticient discretization scheme for high-dimensional problems that usually suffer from
the curse of dimensionality. We show in detail their advantage compared to classical full
grids and the construction of the hierarchical basis. We also discuss variations of the
standard approach such as adaptivity and the usage of higher order basis functions.
These adaptations can further enhance the efficiency for certain problem classes.

Last, Section 2.3 covers the Sparse Grid Combination Technique which is a commonly
used alternative to an explicit Sparse Grid implementation. This section gives a detailed
overview of the error cancellation, which is the fundamental concept behind the Com-
bination Technique. Furthermore, the different generalizations are shown that allow for
adding adaptivity and fault tolerance. The latter, is achieved by utilizing the hierarchi-
cal nature of the method to recover from faults. Finally, we outline the key aspects for
the application of the Combination Technique to time-dependent PDEs which repre-
sents one of our main use cases. Here, we mainly focus on the recombination approach
that combines the solution in regular combination intervals.

2.1 Fault tolerance in HPC

Modern HPC systems focus more and more on parallel computation across millions
of computing units. An example from the current top 500 list ! is the new supercom-
puter Fugaku with 7,299,072 cores. This development has caused an increasing interest
for fault tolerance in the high performance community. A reason for this is that the
growing complexity of modern processor architectures and the increasing number of

'https:/ /www.top500.0rg/

2 Foundations

components in compute clusters result in more and more complex systems. This com-
plexity comes with an increasing potential for failing components and therefore erro-
neous results of the computations. In addtion, the mean time between failures decreases
linearly with the number of components of a system [27, section 1.3.2.1], which is an
imminent threat for large-scale computations on future exascale computers. As a con-
squence, current supercomputers already face several failure events per day [102]. This
trend is expected to continue and first estimates suggest that the upcoming exascale
clusters could fail as often as every 30 minutes [113]. In the following we will give a
brief overview of the fault tolerance approaches. This section mainly follows [27].

A failure event can have different causes. It might arise due to a hardware failure
such as a process or network failure or it might be caused by a component of the sys-
tem that produces erroneous results. In literature one often differentiates between faults
that are detected automatically by the system (hard faults) and errors that stay unde-
tected (soft faults or silent data corruption). For the latter, specific routines have to be
applied to find the failing component and to recover a correct system state. We will
not discuss the different sources or variants of the errors but the means of how to react
to general failure events and how to resolve them. In the following, a fault or failure
event refers to an erroneous system state due to a failing component or an incorrect
computation.

2.1.1 Check-point restart

One of the first and most widely used approaches to add additional fault tolerance is
the coordinated checkpoint-restart concept [27, section 1.2.2]. This technique saves rele-
vant data of the application state at a synchronization point to a checkpoint in persistent
memory and restarts from this checkpoint if a fault occurs afterwards. This approach
is rather easy to implement but it introduces certain problems. First, we have to know
which data is necessary to restart an application. Second, writing and reading of data is
slow due to the huge gap between the memory bandwidth and the peak performance
of the processing units. Third, the coordinated checkpoints introduce a synchroniza-
tion barrier that might cause idling of processes and a high load on the memory bus.
Last, we have to select an appropriate interval between checkpoints. If a checkpoint
is written too often, it introduces a severe overhead if no faults occur. However, if the
checkpoint interval is too large, it is very costly to recompute the lost computation.

Fortunately, there are techniques to determine the optimal checkpoint interval. In
case we know the mean-time-between-failure M of a system and the time it takes to write
a checkpoint W, Young [120] determined with a rather simplistic first-order model the
optimal checkpoint interval of vV2W M. A more realistic evaluation that also includes
a restart time was made in [23]. Although we can often approximate such an interval
in practice, it might not be feasible to use checkpoint restart due to the slow memory
access.

An alternative to the original checkpoint-restart approach is uncoordinated checkpoint-
ing [27, section 1.2.3]. In this method, the processes write checkpoints independently
without coordination. As a consequence, the overhead of synchronization is removed,

2.1 Fault tolerance in HPC

but it is more complicated to find a consistent state at which the computation can be
restarted due to the absence of a common synchronization point. A solution to this is
message logging that can be used to track the sent messages and replay them if nec-
essary. Hence, it is possible to restart single processes and replay the lost messages
without restarting the whole application.

We have now discussed coordinated checkpointing, which introduces undesired syn-
chronization, and uncoordinated checkpointing, which adds additional overhead due to
message logging. In hierarchical checkpointing [27, section 1.2.4] both methods are com-
bined by grouping processes to get the best of both worlds. We can then perform co-
ordinated checkpointing inside the group and uncoordinated checkpointing between
groups. The reasoning is that coordinated checkpointing can be fast for certain pro-
cess groups, such as groups on the same node. This avoids excessive message logging
without adding significant overhead.

Instead of switching the checkpointing algorithm, it is also possible to switch the
target memory where the checkpoint is saved. This approach is called multi-level check-
pointing [80, 9]. Here, we try to avoid as much as possible writing to the parallel file
system, but instead use the faster maybe non-persistent memory alternatives. The idea
behind this is the assumption that the most frequent errors only affect small parts of the
system and it might be still possible to recover data from less reliable memory sources.
As a consequence, different checkpointing intervals are defined that are shorter for
faster but less reliable memory destinations, such as the local memory of a node, and
larger for more resilient but slow memory destinations, such as the parallel file system.

Unfortunately, all of these improvements can mainly mitigate the overhead of check-
point-restart but can not completely remove the necessity to access the slow parallel file
system. As a consequence, the method might not be applicable in the future with an
ever increasing number of processing units. Thus, a variety of different approaches
emerged that try to further improve the robustness of the codes. In the following, we
will give an overview of alternative methods for adding fault tolerance.

2.1.2 Alternative methods

Many of the fault-tolerant alternatives to checkpoint-restart aim to add fault tolerance
in a more or less transparent way for the application programmer. As a consequence,
the application code can stay mostly unchanged. We will shortly describe the most
important concepts in this area that involve harware-level fault tolerance, replication, and
proactive fault tolerance. In the next section, we then discuss algorithm-based fault tolerance
that targets specific algorithms of applications and provides resilient variants that can
tolerate certain failures with typically low overhead.

Hardware-level fault tolerance A common approach to add robustness to a system
is to tackle faults directly at the hardware level [41]. Here, Error Correcting Codes (ECC),
Cyclic Redundancy Checks (CRC) and Raid systems are used to be able to detect and
correct faults. These transparent correction techniques correct the system state without
the application ever noticing that a fault occurred. Unfortunately, it is in general not

2 Foundations

possible to detect and correct all error sources, such as certain hardware faults, with
these methods. Hence, further methods are required.

Replication In replication [27, section 1.4.2], we just replicate components to be able
to tolerate failures in single components. It is possible to either replicate the whole
computation on different processors or to replicate each process individually during a
parallel execution. As long as not all replicated components fail, we can still obtain the
correct result with such an approach. However, it is obvious that such an approach also
reduces the efficiency drastically due to the redundant computation.

Proactive fault tolerance Proactive fault tolerance [27, section 1.4.1] tries to detect a
failure event before it happens. This can be done by monitoring the compute cluster and
by looking for irregular behavior of some of the processors. With such an approach it
is often possible to detect a fault in advance and to transfer the computation to another
healthy node. This avoids restoring the process state after a failure. However, it is not
guaranteed that such a system can detect all kinds of error sources. An example for
proactive fault-tolerance with MPI can be found in [20].

2.1.3 Algorithm-based fault tolerance

We have seen so far that different approaches require different levels of insight into the
application. In general, we can obtain a more efficient method the more it is tailored
to the application. We can show this in the context of checkpoint-restart. It is possible to
tackle this problem at the hardware level. In this case, the whole data from the com-
plete hardware state needs to be stored in a consistent memory in order to be able to
restore the current state. If we apply checkpointing on the system level, we might need
to store the corresponding processes with all the relevant data needed by the operating
system. On the application level, we can instead only checkpoint the relevant data that
is necessary to restart the computation. We can see that by moving to the application
level, we can reduce the data that needs to be stored. Unfortunately, the implemen-
tation is more intrusive the further we go towards the application level. In the worst
case, every application needs to be adjusted if we apply checkpointing on the applica-
tion level, while an implementation on the system level is applicable to all applications
without any modification. Hence, we can say that it is usually more efficient to create a
specialized fault-tolerant method, but it also increases the implementation effort.

This conclusion inspired the creation of algorithm-based fault tolerance (ABFT) [27, sec-
tion 1.5]. Here, resilient algorithms are created, such as fault tolerant numerical meth-
ods. This has the advantage that the algorithms can be used in many different appli-
cations, while it is still possible to apply fine-grained optimizations to the algorithm at
hand which keeps the overhead low. Hence, such approaches can be very efficient and
are useful as a building block for several applications. Algorithm-based fault tolerance
covers a wide variety of approaches that can be usually classified in one or several of

2.1 Fault tolerance in HPC

the following categories: error detection, error oblivious, and error correction (or error
aware) [41].

Error detection algorithms can be based on checks of algorithm-specific invariants,
such as positivity, symmetry, or mass-conservation. Another approach is to add check-
sums to the data. These methods mainly target faults that are not directly detected by
the hardware or the operating system, such as silent data corruption. One example
for a checksum-based approach is that row and column checksums are still valid after
matrix additions. It is even possible to construct them so that they can be used after
a matrix multiplication [61]. Another checksum approach for a sparse preconditioned
conjugate gradient can be found in [109].

Error-oblivious algorithms converge to the correct solution even if an error occurs
and parts of the computations are lost or corrupted. The main idea is that the algo-
rithms do not need to notice that an error occurred as they can inherently tolerate data
loss. Hence, these methods do not need specific recovery methods. Common examples
are iterative solvers, such as CG, that can usually still converge if the intermediate re-
sults are changed or lost?. For a guaranteed convergence it might be required that faults
happen at a sufficiently low frequency so that the algorithm has the opportunity to con-
verge to the correct result at some point. Usually these methods need more compute
steps to converge if faults occur, which might introduce substantial overhead. Con-
sequently, these methods are often combined with an error correction step to reduce
the overhead or guarantee convergence. For more details on soft error vulnerability of
iterative linear algebra solvers we refer to [14].

Error correction algorithms are able to recover from a fault but they need a specific
error recovery routine. This routine is usually called after an error was successfully
detected. In this class of algorithms, the lost data is reconstructed in some way. An
overview of such algorithms for the conjugate gradient method is presented in [88].
They compare different approaches to reconstruct lost data, which reduces the over-
head due to additional iterative steps. Another common approach is to utilize a hier-
archical representations of the data such as in multi-grid solvers or in the hierarchical
basis representation of Sparse Grids. If a component in the hierarchy is lost, we can
often use some redundant information from different levels to reconstruct the lost data
to some degree or to find a solution with similar accuracy. An example would be the
Fault-Tolerant Combination Technique [49, 50, 48] that is explained in Section 2.3.4. In this
method, it is possible to solve an optimization problem to reduce the error that is intro-
duced to the numerical scheme due to the lost computation. With such a lossy recovery
approach it is still possible to get a good result without the need to recompute in most
cases. The algorithmic details of the method are discussed in Section 2.3.4.

For a general overview on current fault-tolerant algorithm design we refer to [41] and
to [99] for more information on the hardware aspects.

*Of course lost data needs to be replaced by new starting values.

2 Foundations

2.2 Sparse Grids

In this section we summarize the core concepts of Sparse Grids. The theory is mainly
based on [17] if not stated otherwise. We also recommend [36] and [96] for a more dense
introduction to Sparse Grids.

The term Sparse Grid was first coined by Zenger in [121]. Similar ideas were, how-
ever, already used in the work of Smolyak in the context of numerical quadrature [112].
The main idea of Sparse Grids is to overcome or at least mitigate the curse of dimension-
ality by applying an a-priori optimization of the grid structure. This is motivated by
experiences from numerical quadrature where it can be shown that quadrature rules
typically introduce two error sources: a grid-dependent error and a problem-dependend
error [17, pages 20-21]. The general Sparse Grid construction aims to reduce the grid-
dependent error.

An overview of the basic ideas is given in Sections 2.2.1 to 2.2.3. Here we first il-
lustrate the curse of dimensionality of standard tensor product grids that have O(N9)
points. By switching to a hierarchical basis, it is possible to group grid points into sub-
spaces. This subspace property is then utilized to formulate an optimization problem
that results in the final Sparse Grid construction. Depending on the norm used for the
optimization this reduces the number of points to O(Nlog(N)?~1) (Ly or L., norm) or
even (’)(]\7) (Lg norm) [17, page 27 and 31]. Thereafter, we show common variations
of Sparse Grids in Section 2.2.4 that typically aim at increasing approximation orders.
It is however also possible to reduce the problem-dependent error with Sparse Grid al-
gorithms. In these cases adaptive refinement is applied which will be discussed in
Section 2.2.5.

2.2.1 Nodal Basis

Basis functions are a crucial element when it comes to discretizing a function on a grid.
We assume in the following that the grid is constructed by 2° & 1 points depending on
if we include boundary points or neglect them by assuming a zero boundary condition.
Here, ¢ represents the respective level of the grid. For simplicity we assume the domain
D = [0,1] and the equispaced points, i.e. z,; = i/2° fori € I, and Z, = [1,2° — 1]
without boundary points and Z; = [0, 2¢] for grids with boundary points. Then, a basis
) ;(x) is assigned to each point x;. In the following we will demonstrate the nodal
basis using the linear hat function

®(z) = max(0,1 — |z]). (2.1)

Further basis functions are discussed in Section 2.2.4. By scaling and shifting the basic
hat function, we obtain the point centered versions

Oy (x) = B2 —). (2.2)

10

2.2 Sparse Grids

0.30

0.25 P
/|
/7 N\
0.20
y ¢ ™
0.151 /, \\
/ \
0.10 \
\
0.05 \
\

0.00 -4 AN

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.1: Linear interpolation of the function u(z) = z(1—z) (dotted line) and the contribution
of the individual hat functions with the nodal basis. The heights ¢, ; are depicted by
solid black lines.

In Fig. 2.2 (left) one can see the basis functions for different levels. For discretizing
the function u on the grid, we construct

ue(x) = Byi(x) - (2.3)

€Ly

with ¢;; = u(xy;). This is nothing else than the linear interpolation of u via the data
points (x¢;,u(x¢;)). Figure 2.1 shows this process for interpolating the function u(x) =
z(1—x).

In higher dimensions the d-dimensional grid is defined via a tensor product of one-
dimensional grids. Here, a level vector £ = ({1, ...,{q) is used to specify that the grid
has 2% 4 1 points in dimension k and Tpi = (Toyiys---Ta,y) ik € Ly, k € [d]. The hat
functions can be generalized in a similar way using the tensor product

d
O i(x) = [Lo (2r). (2.4)
k=1

Again discretizing a function on this grid is just a d-linear interpolation using the data
points (x4, u(xe;)) and the basis functions ®, ;(x). The resulting function u, can be
written as

up(@) = Y Byi(x)cp; (2.5)

1€Ty

with Z, = HZ=1 Ty, and cg; = u(xg ;).

In this representation we can observe the curse of dimensionality by looking at the
number of indices in the index set Z,, i.e. N = |Z,|. For a d-dimensional isotropic
grid with N points per dimension the grid consists of N = N¢ points. At the same
time linear basis functions are known to provide an error ¢ of O(N~2) [17, page 18]°.

3This corresponds to the Lo and Lo error. For the L error derivation, we refer to [17].

11

2 Foundations

Figure 2.2: Comparison of nodal basis (left) and hierarchical basis (right) for different levels.
Basis functions that are assigned to boundary points are depicted with dotted lines.

If we now write the error in terms of N, we result at the relations ¢ € O(N -2/ 4) and
N € O(e~%?). This illustrates that we need more and more points in higher dimensions
for obtaining the same error. As a result, it is infeasible to use standard tensor grids for
high dimensionality.

Another important aspect of the nodal basis is the function space

Ve = span{®y ;|i € Zp} (2.6)

that is formed by the basis functions ®, ;. In the next section, we will show that we can
create a hierarchical representation of this space.

2.2.2 Hierarchical Basis

In the nodal basis, we constructed a set of basis functions specific to the chosen level.
The idea of the hierarchical basis is to consider the full hierarchy of levels and reuse
basis functions and coefficients from previous levels. Consequently, the hierarchical
increments are defined which represent the change to the previous level. A hierarchical
basis of level ¢ always includes all increments of level [< ¢. Figure 2.2 (right) shows
the hierarchical basis functions for the different levels and compares them to the nodal
basis (left).

In the hierarchical representation the function w is discretized via

12

2.2 Sparse Grids

0.05 0.05

0.00 0.00 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.3: Left: Linear interpolation of the function u(x) = z(1 —x) (dotted line) and the contri-
bution of the individual hat functions with the hierarchical basis. The surplus values
aq,; are depicted by solid black lines. Right: Hat functions of the hierarchical basis
scaled by the respective surplus o, ; (black lines).

¢
ue() =Y Y @) - o (2.7)

=1 jezh

with Z' = {i € Zyli odd V [= 1}. The surplus values o, ; have to be computed by
solving the interpolation problem defined by the basis functions ®; ;(x) and the inter-
polation points (z;;, u(z;;)). In general, this is done by solving the system Ao = b with
AecRNXN 4. = D tin)(Tfmy), b € RN b, = U(Tf(my) and N = 2! + 1. Here, f de-
fines a suited bijective mapping between the scalar indices (m or n) and the index pairs
(1,4) from Eq. (2.7). Solving this equation requires in general cubic complexity O(N?).
Fortunately, for the hat function the surplus can be computed in linear complexity by
subtraction of parent values (p; and p,) via

1 1

ap; = u(x;) — §(pz +pr) = u(xy;) — §(u($l,z‘—1) +u(zyi41))- (2.8)

It should be noted that x;;,; and ;41 are neighbors of z;; in the full grid of level [
but usually not in the full grid of level /. An example for the interpolation of function
u(z) = z(1 — z) can be found in Fig. 2.3. This special interpolation problem, where we
calculate the surplus values «; ; based on the function values u(x;;), is also referred to
as hierarchization.

These concepts are generalized to higher dimensions via the tensor product. Conse-
quently, the d-linear interpolation of a d-dimensional function u is defined by

wl(m)= Y > () o (2.9)
LeTioy k] €17
with ZP = [, Z}.
Hierarchization requires, in the general case, again to solve a linear system of equa-
tions of the form Ao = bwith A e RV*N 4, = Py (T pm)), b € RN, b, = U(T (1))
and N = Hizl 2!k + 1 with a suited bijective mapping f of the scalar indices (m and n)

13

2 Foundations

A (1, 3) (2,3) (3, 3)
. 0 0 e o e o
. 0 0 e o « o
. . . « o ° o
. . . * o * o
(1, 2) (2,2) (3, 2)
. . . o o o o
. . 0 o o e o
(1,1) (2,1) (3, 1)
. . . e o e o

I

Figure 2.4: Two-dimensional examples of the increment spaces W; that contribute to the nodal
space V(3 3). Boundary points are depicted without filling.

to (7,) from Eq. (2.9). For the linear hat basis there is again a possibility to reduce the
cubic complexity (O(N?)) of solving the linear system. A naive approach is to general-
ize the stencil from Eq. (2.8) to

apq = Z <—%> u(wy ;). (2.10)

i—1<i<i+1

This involves computation in the order of O(3¢N). It is, however, possible to further
reduce these computations with the unidirectional principle [8, 15]. Here, we apply d
consecutive one-dimensional hierarchizations to calculate the hierarchization which re-
duces the cost to O(dN). A two-dimensional example would be
O, (i1 i) = W(EL (i1 ,00)) — %(U(xl,(il—l,z'g)) + U@y (i1 4 1,i2)))-

1 (2.11)

(i1 ,in) = (i1 in) — 5(041,(1‘1,1‘2—1) + Q4 (i1 ia+1))-

The hierarchical increments form — similar to the nodal basis — the hierarchical incre-
ment space

W = span{®, ;|i € 7}'}. (2.12)
By summing up increment spaces the nodal space is recovered by
Ve = ®rend 1<eWi- (2.13)

14

2.2 Sparse Grids

A (1, 3) (2, 3) (3, 3)

.
0
.
.

(1,2) (2, 2) (3, 2)
. . .
0 0 0

(1,1) (2,1) (3, 1)
. . . « o « o

h

Figure 2.5: Subspace selection for the L; and L, optimal Sparse Grid V3. The excluded sub-
spaces from the corresponding full grid are marked in light grey. Boundary points
are depicted without filling.

Hence, the hierarchical representation is equivalent to the nodal representation. This is
also visualized in Fig. 2.4. In the next section, we will use the hierarchical representation
to show the Sparse Grid formalization.

2.2.3 Sparse Grid Construction

In the previous section, we defined the construction of a hierarchical basis with the help
of increment spaces. In the Sparse Grid literature these hierarchical increment spaces
are often referred to as subspaces. The Sparse Grid construction aims at restricting the
grid to the subspaces that result in the best approximation quality for a specified cost
budget. It can be shown via continuous or discrete optimization that this is equivalent
to optimize a certain cost-benefit ratio [17, pages 21- 25]. The cost is defined via the
number of grid points and the benefit is norm-dependent. For the L, and Lo, error
norms the optimal subspace choice for a level ¢ Sparse Grid is

VP =@ <e4d—1 Wi (2.14)
This corresponds to only selecting subspaces of the d-dimensional simplex of level vec-

tors with ||l||; < ¢+ d — 1. In the two-dimensional case this corresponds to a triangle
(see Fig. 2.5). The resulting grid can be seen in Fig. 2.6.

15

2 Foundations

Figure 2.6: Two-dimensional Sparse Grid V3. Boundary points are depicted without filling.

If we want to discretize a d-dimensional function « on a Sparse Grid, we get

ui= Y > P (2.15)

Ul <é+d—1 iezh

Here, the surplus values can be derived in the same way as in Section 2.2.2 but we only
consider the Sparse Grid points.
The number of points in the Sparse Grid V;® can be calculated by

N= > [Z]'| € O(Nloga(N)* 1) (2.16)
2|1 <l+d—1

with N = 2¢ — 1. At the same time, the Ly and L., errors for the linear hat basis
only slightly increase to O(N~2loga(N)41) [17, page 30]. If we again relate the error
to N, weget N € O (e*%|logze|%(d*1)) [17, page 41]. This shows that the curse of
dimensionality can be mitigated with Sparse Grids. However, there is still a logarithmic
dependency that gets problematic for very high dimensional cases. In addition, there
is a dimension-dependent constant which has to be considered.

In case we are interested in the energy norm Lg, it can be shown that an alterna-
tive subspace selection with fewer points is optimal. With this selection we obtain
N € O(N) points and an L error of O(N~!) [17, pages 30, 41]. This is an interest-
ing observation as this implies that the curse of dimensionality is broken for such cases.
However, it should be noted that there is again a dimension-dependent constant in-
volved which does not show up in the complexity.

2.2.4 Variations

There exist many variations of Sparse Grids which optimize the approximation order
or reduce the number of points. In this context mainly two questions arise: where to
place the points and which basis functions to use.

The first question involves the aspects of whether or not boundary points should be
added and in which way the points are distributed throughout the domain. The former

16

2.2 Sparse Grids

Figure 2.7: Two-dimensional Sparse Grid V3 with Chebyshev points. Boundary points are de-
picted without filling.

is highly problem dependent. Whenever we can assume zero boundary conditions, it
is common to just remove boundary points. If this is not possible, one tries to reduce
the number of boundary points by assigning the boundary points to a suited level. In
our case we usally assign these points to level 1, but there are generalized schemes
that can insert them at an arbitrary level®. An overview is given in [116, chapter 2.4.1]
where also the impact of the insertion level on the overall point numbers is discussed.
Another approach is to select the basis functions so that they extrapolate towards the
boundaries. In this way boundary points can be omitted. An example is the modified
linear basis function [96] that linearly extrapolates towards the domain boundary. Sim-
ilar approaches can also be applied to higher order basis functions such as b-splines
[116].

The second aspect is the point distribution which is especially important if we de-
cide to go for higher order basis functions. It is well known from numerical inter-
polation and quadrature that equidistant points create instabilities such as the Runge
phenomenon. It is therefore common to use Chebyshev (see Fig. 2.7) or Gauss points
in these cases [77, 39] which are clustered towards the domain boundaries. Here, an
important aspect is whether the level hierarchy provides nested points which can be
problematic in case of Gauss-Legendre points. Another prominant point distribution
are Leja points [75] that can be used to avoid an exponential increase in point numbers
with higher levels and to reduce the interpolation error by minimizing the Lebesgue
constant. In addition they are nested.

The choice of the right basis function is again problem-dependent. If the function to
approximate with the Sparse Grid shows high differentiability, high order polynomial
basis functions or global basis functions are suited. Examples are b-splines [116] or
piecewise polynomials [15, 17, 16]. Depending on the problem it might also be appro-
priate to use a discontinous basis [118] or wavelets [43].

All of the approaches so far aim at minimizing the grid-dependent error. Although
they might use some information of the problem at hand to choose an appropriate grid,

4Only for the spatially adaptive variants we sometimes add the boundary points to level 0.

17

2 Foundations

they do not specifically tailor the grid to the problem function. This can be done with
adaptive refinement which is discussed in the next section.

2.2.5 Adaptive Refinement

Sparse Grids mainly tackle the grid-dependent error, but it was quickly noticed that this
limits the number of target applications significantly. In some scenarios certain sub-
regions of the domain might require a high number of points to obtain reasonable ac-
curacy. For other scenarios the required smoothness (see Section 2.2) might even be
violated in certain regions of the domain. For these cases adaptive refinement can help
to reduce the number of points and preserve the Sparse Grid properties.

In adaptive refinement [96] the recursive pattern of constructing a Sparse Grid is
used. When we go from level / to level / + 1 we add for each point exactly 2d children
nodes which are placed in between the point and each of his neighboring points for
every dimension®. These points are therefore also sometimes referred to as parents of
the respective children points. It should be noted that this assignment is not unique. In
fact each point has up to 2d parents. This recursive property is then used during grid
refinement. Whenever we want to add points in a certain region, we just refine points
without children in this region. By adding the respective (up to) 2d children, we obtain
a spatially-refined Sparse Grid (see Fig. 2.8). This process can be repeated iteratively to
refine the grid further.

But how can we determine which points or areas we should refine? In many cases
automatic grid refinement based on error estimates is applied. Here, one calculates an
error estimate for each point in the grid that has no children. Thereafter, points with
the highest errors are refined. Common examples for error estimators are the surplus
values (surplus refinement) or the volumes of the hierarchical basis functions scaled by
their respective surplus (volume refinement).

During the refinement procedure it can happen that not all parents of a point are
present in the grid. This might be a problem as the surplus calculation (see Section 2.2.2)
is usually based on stencil calculations involving the parents. In this case, one either
solves the linear system of equations directly, which might be very costly, or one recur-
sively adds the respective parent points to the grid, which might significantly increase
the number of points.

2.3 Sparse Grid Combination Technique

The Sparse Grid Combination Technique [44] splits a single Sparse Grid computation into
several subproblems solved on anisotropic but cheap full grids. Here, a full grid with
level vector £ refers to a full tensor product grid that contains all subspaces £ < £.
By combining several of these full grid solutions, we obtain a solution equivalent to a
Sparse Grid solution (see also Section 2.3.1) which uses exactly the same grid points.

>This holds only for inner points. For boundary points fewer children exist as there are no neighbors to
the exterior of the domain.

18

2.3 Sparse Grid Combination Technique

1.0
°
° . °
0.8 ®
° . °
0.6 ¢
< e o o e o o o
0.4 ° e
e o o o °
0.2
° .
0.0

0.0 0.2 0.4 0.6 0.8 1.0
X1

Figure 2.8: Two-dimensional spatially-refined Sparse Grid. The points that were obtained from
refining point (0.25, 0.25) and point (0.5, 0.875) are highlighted in blue. Boundary
points are depicted without filling.

These full grids are also referred to as component grids in the context of the Combina-
tion Technique.

This approach has several advantages compared to a classical Sparse Grid approach.
First, one can use existing full grid solvers (black-box property), which reduces the
implementation overhead significantly. Second, each component grid can be computed
in parallel as they share no dependencies. However, there is no free lunch. Since these
grids share some redundant points, the overall computation is typically higher than
with pure Sparse Grids. Fortunately, in cases were point evaluations can be reused,
this effect can often be neglected. In addition, this redundancy offers the possibility to
create a fault tolerant scheme, that is resilient to failing component grids.

In the next sections, we first outline the basic concepts of the standard Combination
Technique in Section 2.3.1 which aims to represent a standard Sparse Grid by a combi-
nation of full grids. Then, we demonstrate how to generalize this idea in Section 2.3.2
to flexible sets of component grids. This will open the possibility to enable adaptiv-
ity to the combination technique which will be discussed in Section 2.3.3. Finally, the
Fault-Tolerant Combination Technique is discussed in Section 2.3.4.

2.3.1 Standard Combination Technique

In the standard Combination Technique, we aim to represent a Sparse Grid solution on
many anisotropic full grids. The main issue here is to include the same subspaces in
the computation. If we look back at Fig. 2.5, we see that a level ¢ Sparse Grid contains
exactly the subspaces with level vector ||£||; < ¢+ (d—1). This can be done by including
all full grids with [|€||; = ¢ + (d — 1). Since each full grid with level vector £ contains
all subspaces I < £, many subspaces are contained multiple times in such a scheme.
Hence, just adding the contributions would result in an incorrect result. We therefore
need to subtract these redundant subspaces again. In two dimensions this results in the

19

2 Foundations

(1,2) 2,2

73

LTI

»
>

h

Figure 2.9: Standard Combination technique for the computation of u5. Green grids are added
while orange grids are subtracted. As a result each point of the Sparse Grid Fig. 2.6
is accounted for exactly once. Boundary points are depicted without filling.

scheme [44]

up = Z Uup — Z 1y (2.17)

llelli=e+1 llell=¢

for computing the combination solution uj of a two-dimensional function u. Here, it
can be seen that we need to subtract the full grids on the diagonal with ||£||; = ¢. This
is visualized in Fig. 2.9.

For higher dimensions this is generalized — similarly to the inclusion-exclusion prin-
ciple - by

— d—1
uf = Z(—l)q() 3 u (2.18)
q=0 1

eEIg,q

withZy, = {€ € Ng||| €] = ¢ +d — 1 — g}

The obvious question now is if this combination is identical to the Sparse Grid solu-
tion. In case the wuy are derived from an exact interpolation of v and a suited hierarchical
basis is used, it can be shown that they are in fact identical. A rigorous proof can be
found in [116, section 4.3.1].

However, sometimes the u, are obtained by a discretization that involve mesh width
dependent error terms. A typical example is the discretization of a PDE on a grid.
In these cases, it can be shown that the errors in the Combination Technique have an

20

2.3 Sparse Grid Combination Technique

equivalent error complexity as Sparse Grids if the error splitting assumption holds [44].
We will demonstrate this in the following.

The error splitting assumption defines an Anova-like error splitting of the point-wise
discretization error:

d d d

w—upg =Y Crlhe,) fi(he,) + Y Chjlhey: he;) folhay, hay)
k=1

k=1 j=1
+ ...+ Cl,...,d<h€17 R 7h€d)fd(h£17 Ceey h@d>

(2.19)

where the constants C; < k are bounded by a positive constant x € R* and hy = 27
The functions fj, represent the error decay or convergence rate with respect to the mesh
width and should go to zero for small mesh widths. In two dimensions this can be
written as

U— Up = Cl(hfl)fl (h’fl) + CQ(hZQ)fl(hfz) + 01,2(h£17hé2)f2(h£17 hfg)' (220)

The error of the combination can then be calculated by

U—u; = u-— Z Up — ZW

llefli=¢+1 || €||1=¢
= Z (ufUK)f Z (u—ue)
[1€]|1=¢+1 1e]|1=¢
= > (Ci(l) fi(he,) + Colhe,) fr(hey) + Cra(hey, hay) f2(he, hay))
le]|1=¢+1 22
= > (Cu(hey) fr(hey) + Calhey) fr(he,) + Cra(hey s hey) f2(ey s hey))
llell=¢
= C1(he) fi(he) + Ca(he) fr(he) + > (Cralhe,, huy) fahey s hey))
llefl1=¢+1
- Z (CI,Q(hfuhfz)fQ(hflahfz))'
ll€]j1=¢

Here, we use the fact that the first summation has exactly one term more than the sec-
ond summation. In addition, one-dimensional error terms with the same mesh width
cancel except for the error terms with finest mesh width A, of level /.

The critical part is now which error decay f;, we assume. From Eq. (2.21) it becomes
obvious that the error cancellation of the one-dimensional terms C(hy,) f1(he,) is the
main selling point of the combination technique. An optimal application therefore con-
centrates most of the error in the one-dimensional terms. Hence, a fast error decay
of mixed terms is favourable. Note that for Sparse Grids we assume bounded mixed
derivatives which is not the same requirement. In [44] an error decay of fi(h1, ..., hx) =
h? -...-hi is assumed. In cases with such an error decay, the equation simplifies to

21

2 Foundations

u—uj= Ci(h)27 " + Co(h)27 %+) (Cralhe, hey)27 - 2722))

ll€]l1=£+1
B Z (Cl,Z(helath)Q_%l .2—%2)
l|e]|1=¢
= C1(hg)27% + Co(hg)27 % + Z (Cra(hy, , by,)27 20ED) o)
lle|li=¢+1

— > (Cralhe, hey)27%)
llell=¢

<27 <n + %fﬁ + (- 1)»@) € 0(274) = O(N*loga(N))

with N = 2¢ (see also Section 2.2). We obtained the same error rate for Sparse Grids with
linear hat functions (see Section 2.2.3). The solutions are therefore often considered to
be equivalent yet not identical. A three-dimensional example of the error cancellation
is outlined in [44].

It has to be noted that the error splitting with quadratic error decay per dimension is
not generally proven for arbitrary PDEs so far. Hence, the convergence of the Combina-
tion Technique is not guaranteed for arbitrary PDEs and as we will see in Section 3.6.4
especially non-linear PDEs still pose problems. Nonetheless, there are already for some
special cases convergence proofs. In [18] and [19] Bungartz et al proved the convergence
of the Combination Technique for Laplace’s equation for sufficiently smooth boundary
conditions.

A variation of the standard Combination Technique is the truncated Combination
Technique which introduces a minimum level 2™ that defines, for each dimension, a
lower limit for the level vector £. In this case, the set of level vectors in Eq. (2.18) is
changed to Ig;nn ={Le NJ||e —emn|; =+d—1—q,€>£""}. Sometimes it is also
required to add individual target level / for each dimension. In such cases, a maximum
level £m%* is defined for each dimension. The construction of the index set is a bit more
complicated in this case. One possibility is to first define £ = min({n € £"** — Emin) In >

0} and £ = max(£"®* — ¢, £"). This results in the index set Ie "= Ud ! Iemm with

I = {£ € NJ[l|e — ™|y = {+d —1— ¢ 7" < £ < ™0 41,4 < emaX}. This
index set is a slight modification of the one proposed in [51]. Our definition sets the
dimensions with £ = ¢ constant in the scheme and only creates a combination
scheme with the remaining dimensions.

Setting minimal and maximal levels is often necessary for the solution of PDEs. Here,
certain Physical phenomena might only be visible with a specific minimum resolution
£M0 or the solution might be unstable for low resolutions. In addition, a specific maxi-
mum level £ might be sufficient for the required accuracy targets.

In cases where we have a constant distance ¢ between £%% and £™1, i.e. { = min (£ —
7Y = max(£max — gmin) it js common to define the aforementioned scheme by the pa-
rameters ¢ and 7 = £™" — 1. The resulting index set is then I] = Ug;é 17, with

22

2.3 Sparse Grid Combination Technique

I7,=1{te NA\VE € [d] : b, > 7, ||€]l1 = ||7][1 + £+ d — 1 — q}. We will use this notation
in Section 4.2.

In [71] they use a similar approach but instead of a minimum level they define a
scalar coarsening parameter s that defines how far away the combination is from the
full grid with level £. Here, they do not differentiate between dimensions which makes
it a bit less flexible.

The Combination Technique is, however, not restricted to the standard schemes, but
can deal with a wide range of possible level sets. In the next section, we will discuss
the required properties of the index set and how to derive the combination coefficients.

2.3.2 Generalizations of the Combination Technique

The general Combination Technique is based on the generalized Sparse Grid construc-
tion [40]. Here, we do not construct the combination scheme based on the a priori op-
timized set of subspaces that we derived in the Sparse Grid construction. The general
Combination Technique can then be written as

us = Z Ce - Up (2.23)
el

where 7 is the index set of used level vectors and ¢, € Z is the scalar combination
coefficient. However, not all index sets result in a valid Sparse Grid construction. For
this purpose Gerstner and Griebel formulated the admissibility criterion. It states that
each entry in 7 needs to satisfy

LETAN >IN — £ —e, €T for 1 <k <d, (2.24)

where e;, denotes the k-th unit vector. Such an index set is also often called downward
closed. Based on this index set, the combination coefficients can be calculated by

ce= Y (-plith, (2.25)

£<i<+1,iel

An observation from Eq. (2.25) is that ¢, = 0 if all £ with £ < [< £+ 1 are contained
in the index set Z. These level vectors £ are therefore often excluded from Z for brevity
(see for example the standard Combination Technique in Section 2.3.1).

Another technique to optimize the Combination Technique is the optimized Combina-
tion Technique [57] which aims at optimizing the combination coefficients c,. In this tech-
nique the restriction of ¢, € Z is lifted and instead a continuous optimization problem
with ¢, € R is solved. This optimization problem has to include specific error norms
of the problem. This technique was successfully applied to eigenproblems [33, 70] and
regression [32].

The flexibility of the generalized Combination Technique offers possibilities to adapt
the index set Z to the problem such as in adaptive Sparse Grids. In the next section, we
will discuss such strategies.

23

2 Foundations

2.3.3 Adaptivity with the Combination Technique

The regular grid structure and the fixed index set of the standard Combination Tech-
nique make it hard to apply adaptivity. Consequently, adaptive versions mainly con-
centrate on generalizations of the Combination Technique such as the generalized index
set Z from the previous section. This directly leads to dimension adaptivity where we
adapt the subspace selection and thereby the index set to the problem at hand. By gen-
eralizing the component grids themselves it is even possible to achieve spatial adaptiv-
ity. In the following, common adaptive techniques from the literature are discussed.

2.3.3.1 Dimensional adaptivity

Several approaches for dimension-adaptive algorithms were investigated in the past
[40, 56]. The dimension-adaptive version of the Combination Technique by Gerstner
and Griebel [40] is widely applied throughout Sparse Grid literature (see for example
[30, 34, 35]). The main benefit of the method is its rather easy implementation. They
use the generalized index set construction from Section 2.3.2 and define a method how
to adaptively add subspaces to this index set Z. The combination coefficients can then
be calculated for example via Eq. (2.25).

Algorithm 1 Dimension adaptive algorithm for the integration of function f with the
Combination Technique [40].

procedure DIM_ADAPTIVE_COMBI(a, b, tolerance, f) > Output: integral
£=(1,...,1)
0O=0
A={¢}
integral = Qg
€= €y

while € > tolerance do
refine £ = argmax,c 4 €¢
A=A\(L)
0O=0U{¢}
€E=€— €y
for k € [d] do
=14 + er
if-e,cOVE, =1forall g =1..d then
A=AU{L}
€ = Zeflgjgz(—l)”e_j‘h@j
integral = integral + €p
e=¢€+ €y
end if
end for
end while
end procedure

24

2.3 Sparse Grid Combination Technique

I

>
>

A

Figure 2.10: Left: Example of a dimension adaptive combination scheme. In this case we started
with a combination of level £ = 3 and refined the grid (3,1). Right: Corresponding
Sparse Grid for the combination.

In their method, they differentiate between an old and an active index set. In each
step one of the active indices £ in the the active index set is chosen for refinement. In
this refinement procedure, forward neighbors £ = £ + e, might be added to the active
index set and £ is moved to the old index set. Forward neighbors £ are only added if
for all ¢ € [d] the backward neighbor l— e, is in the old index set or qu = 1. This rule
guarantees that the index set fulfills the admissibility criterion (see Eq. (2.24)).

The selection process of the subspace that is refined is guided by an error estimator.
Here, for each subspace a local error estimate is calculated. Typically the subspace with
largest estimated error is then selected for refinement. By summing up all local errors
in the active index set of the scheme, they obtain the global error estimate which is used
for deciding when to stop the adaptation process. Instead of the pure error estimate, it
is also possible to guide the subspace selection by a combination of an error estimate
and a cost measure. This is typically more efficient as otherwise the most anisotropic
grids are usually preferred by the adaptation.

An example of the algorithm can be seen in Algorithm 1 where the integral of a
function f in the domain D = szl[ak, bi] is calculated. Here, @, denotes the integral
approximation of the component grid ¢, e the global error estimate, and ¢, the local
error estimate for component grid £. In Fig. 2.10 a dimension-adaptive combination
scheme and the corresponding Sparse Grid are shown.

There exist also other variants of this algorithm for adding new subspaces. For ex-
ample in [29] the authors do not add all applicable forward-neighbors of the active grid
with maximal error estimate but instead look at all grids that could be possible added
to the index set and calculate for each of these grids an error based on the existing
backward-neighbors.

25

2 Foundations

The cost and error estimates are typically problem-dependent and have to be ad-
justed to the application to achieve good results. For this reason many modifications
have been developed. Examples are sensitivity-based approaches for uncertainty quan-
tification [30] or applications in machine learning that calculate the benefit directly
based on the error reduction of the underlying regression problem [34, 35].

2.3.3.2 Spatial adaptivity

Spatial adaptivity with the Combination Technique is rather complicated due to the
regular tensor-product nature of the component grids. It is therefore not easily possible
to add points at specific regions. A common remedy to this problem is to define a
graded grid [46] that concentrates grid points at specific regions. These rectilinear grids
define the point hierarchies not in an equidistant fashion but increase the point densities
in selected regions. Unfortunately, this grading has to be typically defined a priori and
the tensor-product construction limits the applicability of the method. An example of a
rectilinear grid can be seen in Fig. 4.1 in Section 4.1.

Due to the current limitations with spatial adaptivity, we have developed two new
approaches that are summarized in Chapter 4. They preserve the black-box property
of the Combination Technique and are based on rectilinear or block-adaptive grids,
respectively. First, in Section 4.1 we show a novel approach that builds on the idea of
the graded grids and can adapt itself to the problem at hand by automatically finding
efficient one-dimensional grid structures that fit to the problem. Second, we outline in
Section 4.2 a refinement algorithm that utilizes the idea of block-adaptivity. In block-
adaptive refinement algorithms the domain is first split into different subregions and
then regular subgrids of varying resolutions are generated for each of these regions.
These subgrids are then combined to form the global grid. This is a technique that is
common in PDE simulations. We used this concept and defined a novel block-adaptive
Combination Technique in Section 4.2.

Another approach to spatial adaptivity was described in [83] which is similar to a
mix of a recursive block-adaptivity and the dimension-adaptive algorithm. In this pa-
per, the authors define a hierarchy of cells that are generated by the Combination Tech-
nique. By refining the cells, these grid structures are adaptively refined. The refinement
algorithm for the cells is similar to the dimension adaptive algorithm by Gerstner and
Griebel [40] but is applied on a cell level and not on a component grid level. As a
consequence, the method has no component grid representation as the cell hierarchies
differ across the domain. This generalization offers the flexibility to adapt the Combi-
nation Technique dimensionally and spatially to the problem. However, the black-box
property of the Combination Technique is lost due to the nonexistence of component
grids. Instead the cell hierarchies have to be integrated into the application which might
require specialized interpolation. Another disadvantage is that the method is only de-
fined for two dimensions. It is therefore necessary to generalize this idea first and to
check if the bookkeeping overhead of the individual cell hierarchies pays off. For these
reasons this approach provides only limited benefit over a direct Sparse Grid imple-
mentation.

26

2.3 Sparse Grid Combination Technique

2.3.4 Fault-Tolerant Combination Technique

In current HPC systems failure during computations might occur which leads to miss-
ing or incorrect results. A fault tolerant numerical scheme should be able to deal with
the loss or corruption of certain data. Due to the inherent redundancy across the com-
ponent grids, the Combination Technique has a high potential to tolerate such faults.
The Fault-Tolerant Combination Technique (FTCT) was therefore proposed for the ExaHD
project and was first implemented and formalized by Harding [49, 50, 48]. These ideas
were later applied to a wide range of applications and implemented in an HPC frame-
work [6, 7, 5]. In the ExaHD project a competing HPC implementation was developed
which is described in Section 3.2.

The main idea of the FTCT is to modify the combination scheme so that all failed
component grids uy € F are excluded where F defines the set of failed component
grids. This boils down to removing the affected level vectors from the index set Z =
Z \ F. This, however, might violate the admissibility criterion (see Eq. (2.24)), i.e. the
set Z might not be downward closed. Creating valid combination coefficients with
Eq. (2.25) is therefore not possible anymore.

Instead, the general coefficient problem (GCP) is solved. In the GCP [48] we try to min-
imize [u — uS| with uf = 3", 7 Goug so that 3 5., 57 ¢; € {0, 1}, ¢; € Z. This is done by
minimizing the upper bound for the combination error. This results in an optimization
problem that was shown to be a variant of the 0-1 binary integer programming problem
[48]. Hence, the problem is in general NP complete [67].

To reduce the computation cost, Harding simplified the optimization problem by
looking at the number of layers or hyperplanes the Combination Technique computes.
In the normal case, we compute all component grids with level vector ||£4||; = (+d—1—¢q
for ¢ € [0,d — 1]. We have hence d layers of component grids that we compute. By
extending this range to two additional lower layers we end up with d + 2 layers (¢ €
[0,d 4 1]). In addition, the algorithm allows to recompute any component grid with
€)1 < ¢+ d — 3 which have at most a quarter of the points compared to points in
the highest layer. As a result, only missing component grids of the second layer with
|€]1 = ¢+ d — 2 can violate the admissibility criterion. This limits the number of
possible solutions for the coefficients in the GCP which makes it feasible to compute
the solution. Hence, this approach offers a good trade-off between solving the GCP
and the cost of recomputing solutions. In our framework (see Section 3.2), we also
followed this approach.

2.3.5 Time-Dependent PDE simulations with the Combination Technique

We have seen in Section 2.3.1 that the solution of the Sparse Grid Combination Tech-
nique for PDEs represents additional challenges due to the discretization error intro-
duced in each component grid. This is, however, not the only difference when we want
to apply the Combination Technique to PDE simulations. In many cases, the PDEs of
interest are time-dependent, i.e. the grid solution changes over time. This problem
can be tackled in two ways: treating the time as another dimension in the Sparse Grid

27

2 Foundations

representation or the recombination approach where we combine the grid results at de-
fined times. In our project, we opted for the recombination approach but examples for
treating the time and even model parameters as additional dimensions can be found in
[104].

If we combine the grid values at defined times, we introduce another parameter to
the simulation that needs to be tuned: the combination interval. We could either com-
bine every time step, after a certain amount of time steps, at specific synchronization
points, or even only once in the end. We will discuss this issue in the context of Plasma
Physics simulations in Chapter 3. In general, the intuition is that longer combination
intervals allow the component grids to drift further apart due to an accumulation of
different time and spatial errors, whereas small combination intervals typically intro-
duce a large overhead for the combination and decrease the potential for parallelization
as the computation needs to be synchronized at the combination points.

Another important issue is how to combine the different grids efficiently. A thor-
ough analysis and efficient implementation of this combination step was one of the
main achievements of Mario Heenes PhD which is summarized in [51]. The first con-
sideration was how to combine grids to get the Sparse Grid solution of all component
grids. A theoretical analysis [51, section 2.7.1] revealed that the most efficient way to
combine the grids is in the hierarchical basis. This means that each component grid
gets hierarchized, followed by a summation of surplusses accross the component grids
multiplied by the respective combination coefficients. This can be written as

uy = Z ce - Z Z Dyi- gy (2.26)

LeT ||U[1<l+d-1iez)

where ay ; is the surplus value for the component grid £ at the hierarchical basis of
subspace I and index ¢. Since a component grid only contains subspaces I < £, we set
agy; = 0forl > £. Accordingly, the Sparse Grid representation

up= Y > By (2.27)

2l <e+d—14ez)

is obtained where ay; = > 75y Ce - @14 Note that uf # uj as discussed in Sec-
tion 2.3.1.

Once the Sparse Grid representation is calculated the information needs to be prop-
agated back to the component grids. This propagation can be easily done by setting all
surplus values of a component grid £ to ay; = ag 4 for £ > 1 6,

As a last step, the new values at the component grids are dehierarchized by con-
verting them back to the nodal basis and are then used as the initial condition for the
calculation of the next time slice. This process is repeated until we reach the end of the
simulation.

SSurplus values of subspaces I with £ < I are not contained in the component grid £.

28

3 DisCoTec: A fault-tolerant HPC
framework for time-dependent PDEs

In this chapter, we outline the main characteristics and features of our HPC implemen-
tation of the Combination Technique for time-dependent PDEs (see Section 2.3). The
Combination Technique is well suited for such an implementation for two reasons: the
embarrassing parallel computation of the component grids and the black-box property.
The former allows us to distribute different component grids to different computing
units without the need for synchronization. The black-box property makes it possible
to design a solver-independent framework that can be applied to any high-dimensional
PDE.

These considerations led to the development of an HPC framework in the project
EXAHD [97, 72], a subproject of the priority program SPPEXA. The code was formally
designed as a submodule of SGT* and is now a seperate git repositroy named Dis-
CoTec!. The basic algorithms and code structure were created in the course of Mario
Heenes PhD project [51] and are summatized in Section 3.1. The framework also adds
functionality for fault tolerance by implementing the FTCT (Section 2.3.4) which was
developped in close collaboration of Mario Heene [51] and Alfredo Parra [89]. The
framework is written in C++ and is parallelized using the Message Passing Interface
(MPI) [31].

As an addition to the already existing code base, we have developed several algorith-
mic and theoretical improvements for the Combination Technique. First, in Section 3.2
we describe implementation details for the FTCT within DisCoTec. This includes a
brief recap of the previously implemented features and a more detailed overview of
the novel features such as fault distributions and a sophisticated fault recovery with
MPI communicator restructuring with the use of spare ranks [86].

Second, we give in Section 3.3 a theoretical analysis that shows that by using optimal
time steps for each component grid, the curse of dimensionality can be overcome in
theory. This results in a complexity reduction from O(N2log(N)?~1) to O(N?) which
makes the Combination Technique independent of the problem dimension d for the
simulation of PDEs. However, the dimension still influences the constant factors which
limits the feasible dimensions in practice. We also implemented this time-stepping tech-
nique for our application code GENE.

Thereafter, we describe in Section 3.4 a newly added hybrid parallelization that com-
bines the existing MPI implementation with a shared memory parallelization in Dis—
CoTec. This implementation focuses on the compute intense parts of the combination
steps, namely the hierarchization and dehierarchization. We outline the benefits and

'https://github.com/SGpp/DisCoTec

29

https://github.com/SGpp/DisCoTec

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

the current problems of such an approach in terms of the scaling properties and the
resulting runtime. The main advantage is, however, that this implementation allows to
couple solvers to DisCoTec which use an OpenMP [87] parallelization.

In Section 3.5, we show an asynchronous version of the combination technique that
continues the computation during the combination step. After the combination has fin-
ished, the combination result is applied as a correction to the ongoing calculations. With
this scheme it is possible to achieve an overlap between communication and computa-
tion which makes the method more efficient for large scale simulations and situations
where frequent recombination is required.

Finally, we show the numerical results in Section 3.6. Here, we introduce in Sec-
tion 3.6.1 our main target application from plasma physics, which represent a real-
world application scenario for the Combination Technique. In particular, we look at
the application code GENE which offers multiple operation modes and can simulate
various fusion reactors. We apply the Combination Technique to linear as well as non-
linear simulations, which involves several modifications and adjustments to the HPC
framework and to GENE. Thereafter, we will show convergence studies and a detailed
error analysis of our newly added features. We demonstrate the effectiveness of our im-
plementation with linear simulations and also show recent results with the non-linear
plasma simulations in Section 3.6.4 that show existing shortcomings of the method for
turbulent scenarios.

3.1 Framework overview

We have already mentioned the two main reasons for creating an HPC framework for
the combination technque: the independent computation of the component grids and
the black-box property. It is, however, far from trivial to integrate the Combination
Technique for time-dependent PDEs into an efficient HPC framework as it is required
to recombine the grids at regular intervals (see Section 2.3.5). This recombination in-
troduces synchronization points at which the different component grid solutions need
to be exchanged. Hence, two main challenges arise for an HPC implementation: op-
timizing the load balancing to avoid idling processors at the synchronization points
and reducing the communication overhead of the combination step. In Section 3.1.1,
we outline the main design of DisCoTec which enables an efficient coordination of
the computation including load balancing. The considerations concerning an efficient
communication strategy during the combination step are described in Section 3.1.2.

3.1.1 Manager worker scheme

The main programming paradigm used in DisCoTec is the manager worker pattern.
Here, a dedicated manager process coordinates the execution of the Combination Tech-
nique by distributing work packages to several worker processes. The workers are
divided into process groups which work together on a common task. In our case a task
is the computation of a component grid for the specified time-dependent PDE. For each

30

3.1 Framework overview

process group the manager controls the workflow and coordinates the synchronization
between the groups as the Combination Technique requires frequent recombination.

As a result, the workers act according to a defined finite state machine (see Fig. 3.1).
Initially all workers enter the waiting state and wait for the manager to indicate which
action needs to be performed. The action is then selected based on a signal that is
sent by the manager. Consequently the workers can enter either the RUN FIRST, RUN
NEXT, COMBINE, EVAL, RECOVER, and RECOMPUTE state. The RUN FIRST signal spec-
ifies a concrete component grid that should be computed by the group. In particular,
the grid needs to be initialized, added to the list of owned tasks, and then processed
by the solver. In contrast to this, the RUN NEXT command does not specify an individ-
ual component grid but initiates the execution of all tasks owned by the process group.
RUN FIRST is therefore only used in the initial distribution phase where the tasks are
distributed one after the other to the process groups, while RUN NEXT is used after
each combination to restart the execution. The COMBINE signal starts a combination
step between all process groups that adds up the individual solutions to form a global
Sparse Grid and then projects it back to the component grids. A more detailed descrip-
tion of this step is given in Section 3.1.2. The EVAL action triggers an evaluation of the
Sparse Grid solution which is then written to a checkpoint. Typically not a Sparse Grid
data structure but an interpolation onto a full grid is used for such a checkpoint. The
RECOVER and RECOMPUTE signals are used in case a failure occurred during the exe-
cution. These routines implement the fault recovery of the FTCT. Section 3.2 explains
this process in more detail. After the workers finished the computation of a state, they
enter the READY state to inform the manager that they have finished their work. In case
a process failure was detected in their process group, they immediately switch from the
READY state to the recovery routine. Otherwise, the workers return to the WAIT state.
To avoid a one-to-all communication pattern where the manager needs to send signals
to all workers, each process group has a dedicated master process that receives the sig-
nals and then broadcasts it to the other members of the group. This heavily reduces the
number of communications for the manager in practice.

In addition to the coordination of the workflows, the manager process is responsible
for the efficient load-balance of the tasks. For this purpose, we use two common load
balancing techniques. First, we estimate the runtime of each tasks. Second, we apply
a suited task scheduling that accounts for inaccuracies in the runtime estimates. The
runtime estimation can be done in various flavours, starting from the pure counting of
the degrees of freedom, to a data-driven model based on a polynomial least-squares
fit [52] or a machine learning approach such as neural networks [98]. We then sort the
tasks according to a decreasing runtime estimate and apply dynamic task scheduling,
i.e. we distribute the first g tasks to the g process groups and then each process groups
requests a new tasks once it finishes the computation. This approach is common in
many parallel programming implementations such as OpenMP and originates from
the bin packing problem. For more details we refer to [51, section 3.2].

31

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

combine| recover

Recompute

Figure 3.1: Finite state machine that describes the different steps in DisCoTec.

3.1.2 Scalable implementation of the combination step

The combination step represents the most critical part in an HPC implementation of the
Combination Technique. Since the method requires frequent recombination for time-
dependent PDEs (see Section 2.3.5), synchronization points are introduced. In addition,
global communication of all grid values is required during the combination step. The
aim of a scalable implementation should therefore reduce the data that needs to be com-
municated between processes and optimize the communication patterns. In [55] (see
also [51]) two key components were investigated: the data exchange pattern between
process groups and the domain decomposition of grids within a process group.

For the data exchange pattern two main schemes were considered: the Sparse Grid
Reduce and the Subspace Reduce. In the Sparse Grid Reduce every process group builds
up a full Sparse Grid representation and sums up the local contributions. Thereafter,
these local Sparse Grid representations are combined between the process groups via
a global reduce. In this way, only a single global communication is necessary, but the
communication volume is large. In the Subspace Reduce pattern, all subspaces are re-
duced independently. Hence, an iterative communication scheme is applied were each
process group iterates through all subspaces of the Sparse Grid and then performs a
global reduction for each subspaces. Of course, a process group only contributes to the
reduction operations of corresponding subspace that are contained in one of the com-
ponent grids owned by the group. As a result, each process group only communicates
the necessary amount of data, but the number of communications is proportional to the
number of subspaces which increases the latency. The Subspace Reduce can be further
improved by optimizing the ordering in which the subspaces are combined (see [51,

32

3.1 Framework overview

section 2.7]). The results of [51, chapter 2] indicate that the Sparse Grid Reduce is better
suited for the load balancing scheme in DisCoTec and it is expected to perform decent
while being easy to maintain. Hence, we decided to only consider Sparse Grid Reduce in
this work.

The domain decomposition of the component grids within the process groups is
another crucial aspect. This is not just relevant for the global reduction of the sub-
spaces but also for the hierarchization and subsequent dehierarchization as the black
box solver is usually implemented for the nodal basis. Moreover, different decompo-
sitions for the nodal and the hierarchical basis are possible. Here, a standard domain
decomposition of the PDE solver was assumed which splits the domain into p € N¢
processors, i.e. a cartesian grid decomposition with p; subregions in dimension k. The
total number of processors of a process group is therefore assumed to be p = H‘,le D
Since the global combination is performed in the hierarchical basis, the most important
aspect is the domain decomposition of the hierarchical surplus values for the compo-
nent grids and the Sparse Grid representation.

Mario Heene et al considered two approaches (see [55] and [51, chapter 3]): a domain
decomposition according to subspaces and a geometric decomposition of points equal
to the nodal decomposition. In the subspace decomposition, a process gets assigned
a set of subspaces and stores them completely, whereas in the geometric decomposi-
tion a process stores all surplus values associated to points of the geometric area that
falls into his local subarea of the cartesian decomposition. Again the subspace-oriented
decomposition introduces a large amount of communication, whereas the geometric
approach has a small amount of communication for hierarchization/dehierarchization
and is even communication-free for the reduction into the distributed Sparse Grid if it
is also geometrically distributed. In addition, the geometric approach fits perfectly to
the Sparse Grid reduce reduction which was chosen for the DisCoTec implementation.
Especially, if all process groups apply the same domain decomposition, all processes of
a process group only communicate with the processes of the other groups that are re-
sponsible for the same domain region. This facilitates the communication pattern and
therefore reduces the communication overhead. Unfortunately, this restricts the parallel
efficiency of the black box solvers as for some anisotropic grids the domain decomposi-
tion might be suboptimal for parallelization. Therefore, a version with varying process
group sizes was investigated in collaboration with Martin Molzer in [79]. However, in
this work we will restrict ourselves to fixed process group sizes for all component grids
as this approach offered sufficient performance for our use cases. Considering all these
aspects, we decided to use a geometric decomposition in DisCoTec.

The complete combination step is summarized in Algorithm 2. First, all process
groups g compute in parallel the hierarchization of the nodal grid values H(u}) for all
of the component grids £ € Z,, they own. This results in the hierarchized grid values u/
(Line 4). The hierarchization (see Section 2.2.2) is implemented via a cache-efficient and
parallel version of the unidirectional principle. We refer to [8, 62, 63, 54] or [51, section
3.3.1] for more details on the unidirectional principle and its parallel implementation.

Next, the hierarchical surplus values of all local component grids are combined into

33

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

Algorithm 2 The Combination Technique in Parallel

1: procedure PARALLEL_.COMBINATION(G, 14, ...,Zg)
2 for g € [G] do in parallel
3 for £ €Z,do
4: ult = H(uf) > local hierarchization
5: end for
6 u =3 per Co ull > local combination
7 end for
8 ut = 25:1 u®9 > global combination
9: for g € [G] do in parallel
10: for { €1, do
11: ull = Py(uc) > project back onto component grids
12: ug = D(u}) > local dehierarchization
13: end for

14: end for
15: end procedure

a local Sparse Grid representation u“9 (Line 6). After that, the global combination is
performed using the Sparse Grid Reduce where the local Sparse Grid representations are
summed up to get the final Sparse Grid values u¢. Thereafter, all process groups project
the surplus values (Pg) of the Sparse Grid back onto the component grid £ by copying
all surplus values of subspaces I < £ (Line 11). Then the hierarchized values are dehier-
archized by applying the inverse function of the hierarchization D(u}) (Line 12). The
dehierarchization is implemented similar to the hierarchization step. In particular, it
has the same data access pattern as the hierarchization ? and for the computation of the
nodal values the subtraction of the parent values has to be only switched to an addition.

3.2 Fault tolerance

In Section 2.1, we have described the main concepts of fault tolerance and outlined the
imminent problem for future compute clusters that will face system failures on a regular
basis. As a result, it will be hard to maintain maximum availability of the system for
long simulation runs since subsystems might fail frequently. Thus, we need robust HPC
codes that can tolerate failing components if we want to operate at large scales.

In Section 2.3.4, we have seen such a fault-tolerant approach of the Combination
Technique. The FTCT can recover from faults that occur during the calculation of com-
ponent grids by changing the combination scheme so that only fault-free computations
are included. The resilience of the FTCT can be further enhanced by adding some
means of fault tolerance to the solver that process the component grids to reduce the
number of failing grids in practice. An example for such an approach can be seen in [45]
where a fault tolerant implementation for eliptic PDEs is presented which is based on

’The only difference is that the hierarchical tree is traversed top to bottom instead bottom to top.

34

3.2 Fault tolerance

space-filling curves and data copies. In addition, a robust MPI implementation called
libspina [72] was integrated into GENE in the context of the EXAHD project. With this
addition, the GENE code is able to recover the application in cases of failure events. We
can therefore expect that in practice component grid failures will be rare and are mainly
caused by faults that can not be handled directly by the component grids.

In this section, we want to describe the technical details of our implementation of
the FTCT in DisCoTec and will not go into the details on how to avoid component
grid failures at the solver level. The core components of the FTCT were already imple-
mented in close collaboration between Mario Heene and Alfredo Parra in the course of
their PhD projects [51, 89]. As a first step, they analyzed the convergence of the FTCT
in [90] for plasma physics. Here, the FTCT was not coupled to DisCoTec but all cal-
culations were performed off-line, i.e. there was a post-processing step that performed
a single combination with and without simulated faults. They then tested a massively
parallel implementation within DisCoTec in [53] for hard faults with an advection-
diffusion equation. Finally, they added functionality to detect and recover from soft
faults to the code in [59].

We extended these implementations in [86] by introducing efficient handling of failed
MPI ranks. Here, we added a restructuring of the MPI communicators and introduced
fault distributions to simulate realistic scenarios. In addition, the new implementation
was tested with a real-world application from plasma physics which was coupled with
DisCoTec to allow for arbitrary recombination runs. The results can be found in Sec-
tion 3.6.2.

In the following we cover the main aspects of the fault-tolerant implementation. First,
we introduce in Section 3.2.1 the fault simulator that enables us to simulate failure
events that might occur during the execution of the code. Next, Section 3.2.2 shows the
possibilities in DisCoTec how to decide which process should fail and at which point.
This includes predefined static failure assignments and realistic fault-distribution based
on statistical parameters. We will then look at how to detect such a failure in Sec-
tion 3.2.3 so that the program can react accordingly. Thereafter, Section 3.2.4 covers
means of recovering from the faults and restoring a valid system state. This includes
the restructuring of MPI communicators and exclusion of failed ranks. Finally, Sec-
tion 3.2.5 summarizes the whole algorithm and compares it to the normal execution.

3.2.1 Fault simulator

The implementation of a fault-tolerant code makes it necessary to test the functional-
ities in a realistic fault scenario. It is therefore necessary that we have a simulation
environment to create such failures and analyze the reaction of our code. Usually, one
would implement such a simulator with the help of the fault-tolerant MPI implementa-
tion ULEM (User Level Failure Mitigation) [12]. Unfortunately, ULFM was not available
on the compute clusters at the point of our studies. For this purpose, a fault simula-
tion layer was implemented in the course of a Master’s thesis [117]. This fault layer
offers the functionalities of ULFM by implementing the ULEM interfaces and routines
for handling faults. It also ensures that MPI communicators can be restored in presence

35

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

of faults. It is designed as a wrapper to normal MPI functions and can be used for any
operation that should be fault tolerant. This is especially useful for blocking collective
operations that cannot complete when an MPI rank is failing. If an ULFM implemen-
tation is available, the existing fault layer can be replaced by ULFM with minor code
changes.

Another important feature of the fault simulator is the Ki11l_me functionality that
”kills” the calling MPI rank. Of course, we cannot completely kill the rank if we want to
use classical MPI. Instead, the rank enters a loop where it only contributes to necessary
MPI communications and idles otherwise.

See [117] or [51, section 4.3] for further details on the implementation.

3.2.2 Fault distribution

We have now all tools at hand to simulate faults in our framework and to test its fault
tolerance capabilities. If we want to analyze the realistic fault tolerance behavior of
our function, we have to simulate the faults in a realistic manner. To achieve this, we
have to consider the statistical effects of faults and account for the probabilistic nature
of the occurrence of faults. For this purpose it is common to insert faults according to a
probability distribution that matches closely the real-life observations. In [107] a large
scale study showed that a Weibull distribution best models the time-between failures.
The Weibull distribution is defined by

EAK) = & (t>k_1 (/)" @3.1)
f&N k) = Y\ € :
and t > 0. k denotes the shape and A the scale parameter. These parameters can be
adjusted to fit the simulation to a real world scenario. Here)\ is a measure of the mean
time between a failure E[f(¢; A\, k)] = AI'(1 + 1/k). We can therefore adjust this pa-
rameter to account for different settings with different Mean Time Between Failures. As
proposed in [48], we inject faults by drawing values from the Weibull distribution for
each of the MPI ranks. In particular, this means that each MPI rank draws a value from
the distribution at the beginning of the simulation which marks its kill time. After the
computation of a task and before the combination step, the rank checks if the elapsed
time since the start of the simulation exceeds this kill time in the DecideToKill func-
tion. In case it does, the rank calls the Ki1l1 _me function.

Of course, we can also statically define which cores should fail at which point of the
simulation. This has the advantage that the failure scenarios can be better reproduced
and it is possible to simulate specific fault scenarios. However, it is not suited to get
accurate predictions for real-world situations.

3.2.3 Fault detection

So far, we have seen how to insert faults into our framework with the fault simulation
layer. As a next step, the framework needs to detects such an error. This process is
called fault detection. Here, we differentiate between soft faults and hard faults.

36

3.2 Fault tolerance

A soft fault or silent data corruption is an error that is not detected by the hardware
or the operating system. It is therefore very important that the application can actively
detect these faults to avoid data corruption and false results. Sources for these errors
can be multifarious and range from malfunctioning hardware to cosmic rays that cause
bitflips.

For hard faults, the hardware or operating system receives an error signal that can
be forwarded to the application. This makes the detection process significantly easier.
Typical problems here are to determine which resources failed and how to restore a
fault-free MPI communicator. This process is usually supported by a fault-tolerant im-
plementations of MPI such as ULEM. Sources of hard faults are typically failing hard-
ware or software components.

In DisCoTec hard faults are detected via the simulated ULFM environment. Each
ULFM command can return a specific error flag if an error was detected during its exe-
cution. The program can then react to the failure. For soft faults it is a lot harder since
we do not get notified by the underlying system. Fortunately, the Combination Tech-
nique offers some redundancy as component grids share points with other component
grids. The idea for a soft fault detection is now to compare the function values at these
points and to find outliers. If a grid is significantly off for at least one grid point, it
can be considered to be corrupted. For more information on the available detection
algorithms we refer to [59, 90, 89].

In both cases, the manager process detects these errors before the start of the combi-
nation step and initiates the fault recovery routine. Here, the manager first informs all
process group masters about the affected ranks which broadcast this information to the
other processes of the group. Each process can then determine if his group is affected
and reacts accordingly. The recovery process will be explained in the next section.

3.2.4 Fault recovery

Once we have discovered a fault, we need to consider countermeasures to restore the
correct result of the computation and to guarantee a consistent and valid system state.
This procedure does not differ between soft and hard faults and we therefore only use
the term fault in the following.

The first thing that needs to be considered after a fault is detected is to find the af-
fected component grids. Those are typically all grids that belong to the process groups
in which the faults occurred. For a soft fault we could also only consider the specific
erroneous grids, but the chances are high that other grids of the same group are also
affected and therefore we are neglecting all computed results of the group. Since soft
faults are expected to be very rare, this should not waste resources in practice.

After we have found the faulty component grids, we try to remove all their contri-
butions in the combination scheme as we cannot use partial results in the Combination
Technique. Here, we follow the scheme presented in Section 2.3.4 where we solve the
adjusted GCP that was proposed by Harding in [48]. This results in a new combination
scheme that contains typically no affected grids. In case such a combination scheme is
not found, it is allowed to recompute component grids that have a level vector £ with

37

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

€1 < ¢+ d— 3. These grids have significantly less points than the large component
grids of the first layer. Thus, it only produces little overhead to allow these recompu-
tations. It should be noted that in practice it is rarely necessary to recompute unless
we have few process groups with a large number of tasks which then causes a high
proportion of the overall grids to fail.

With this combination scheme that contains no affected grid, we can perform the
combination and can then continue with the computation of the next time steps of the
PDE. For these next time steps, we regenerate the original combination scheme and
interpolate the missing grid values of the discarded grids from the combined Sparse
Grid representation just as in the regular combination step. The only difference is that
the missing hierarchical subspaces of the global Sparse Grid are filled up with zeros
which is identical to a linear interpolation of the missing values.

In addition to these numerical considerations, we need to restore a valid system state.
As the error detection found some malfunctioning or failed ranks, we want to remove
them from the MPI communicators. This can be done via the ULFM interface of our
fault simulation layer. Here we just remove the erroneous ranks from the global com-
municator.

The question now is what to do with the remaining ranks of the process groups that
have not failed. Since all process groups have a fixed size that cannot be changed, the
easy solution would be to just remove the whole group any time a fault occurs. Such
an approach obviously wastes resources and should be avoided. Hence, we define the
remaining ranks of the faulty groups as spare ranks and the ranks of healthy groups
as active ranks (see Fig. 3.2). Next, we introduced two MPI communicators: one spare
communicator containing spares and active ranks and one world communicator only
containing the active ones. The active processes are assigned to the respective world
communicator via MPI_Split. In case further errors happen, we can use these spares
to replace failed ranks. In such a case, they are exchanged with the faulty rank of the
world communicator, thereby restoring the process groups (see Fig. 3.3). In particular,
we assign the identical rank number to the spare rank so that the spare exactly replaces
the corresponding failed ranks. As a consequence, this exchange is made transparent
for the application. Thus, there is no need to adjust the application if such an exchange
takes place. It would also be possible to add some sparse ranks right from the beginning
to avoid the initial discarding of a process group after the first error. We decided against
this option as this would also waste resources in cases where no faults occur.

Another important aspect is the load distribution if a process group gets lost in the
process of the recovery. In such a case the manager just redistributes the grids that were
assigned to the lost group in a round robin fashion. The initially assigned grids are
kept unchanged to avoid excessive transferring of tasks and their data between process
groups. If this load balancing shows significant unbalance, one could also decide to
redistribute all tasks and restart everything by interpolating from the combined Sparse
Grid. In our test cases this was not necessary.

38

3.2 Fault tolerance

S

Figure 3.2: In this figure, group 4 fails due to a fault in the first rank and the remaining three
ranks are stored as spare processes. The process group can not be recovered as there
are no spare ranks to restore a group of size 4.

Figure 3.3: A failing rank in process group three is replaced by one of the spare ranks. As a
consequence, the process group can be recovered and continues computation.

3.2.5 Fault-tolerant algorithm

In the previous sections we have discussed the individual components of our imple-
mentation for the FTCT. We now show in Algorithm 3 how these components are inte-
grated into the overall procedure. The inputs to this algorithm are the dimensionality
of the problem d, the minimum and maximum level 2™ and £™2% the number of com-
bination steps V., the timeframe that should be simulated in between combinations ¢,
and the number of process groups G.

In the algorithm, we first start with initializing the combination scheme and distribut-
ing the component grids — referred to as tasks — according to a load balancing scheme.
Then, we set the initial condition for all tasks and the killing time for each processor
in case we want to simulate a realistic fault scenario. After the initialization process,
we enter the computation loop. Here, all process groups compute in parallel the so-
lutions for their component grids. Next, each process decides whether he should fail
in DECIDE_TO_KILL(). This process measures the elapsed time and checks if it exceeds
his kill time (see Section 3.2.2) and proceeds accordingly. Once the computations are
completed, the manager notifies all groups in case a fault occurred. In such a scenario,
the recovery method is started that potentially shrinks the number of process groups
and reassigns tasks. With these modifications, the parallel combination step from Sec-
tion 3.1.2 is started. The only difference to the original procedure is here that the com-
bination coefficients ¢, could be changed due to the updated combination scheme that
results from solving the GCP (see Section 2.3.4). The original coefficients are however

39

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

Algorithm 3 Parallel implementation of the FTCT

procedure PERFORM_FTCT(d, £™, £7%%, N, N, G)
{ = min({n € £7 — £70) | > 0} and £ = max(£P2% — ¢, g0

1:

2:

3 Iemm = UdJr1 Iz and compute cg > Initialize combination scheme
4 Zy,....Ig = LOAD,BALANCING(Ifmm, G) v Distribute tasks among G groups
5: Set initial conditions ug = u(t = 0) for £ € Ifmin and kill time
6
7
8
9

forn € [N.| do > Perform N, combination steps
for g € [G] do in parallel
forf{ c7,do

: ug = SOLVE(ug, t;) > Compute a simulation time of ¢, with the solver
10: DECIDE_TO_KILL() > Decide if process should die
11: end for
12: end for
13: if faults detected then
14: G,1i,. ..,I = RECOVER(G, 14, ...,Zq)
15: else
16: é,il,...,ié=G,Il,...,IG
17: end if
18: PARALLEL_COMBINATION(G, T4, . .., Z5) > see Algorithm 2

19: end for
20: end procedure

restored immediately after the combination. After this step we continue with the next
computation step. The algorithm terminates once the maximum number of combina-
tion steps is reached.

3.3 Choosing the time step

For time-dependent PDEs the selection of the right time step is a crucial element. Often
the time step is governed by the discretization of the domain and not by accuracy con-
cerns. Here, the mesh width in the different dimensions typically limits the time step
size of a grid. Since the mesh-widths in the component grids vary significantly from
very isotropic to anisotropic grids, it might be better to apply an individual time step
on each component grid instead of the common approach to choose one fixed time step
for all component grids.

In this chapter, we summarize the results that were obtained in collaboration with
Thomas Bellebaum as part of his Bachelor’s thesis [10]. Our analysis matches the results
of Lastdrager et al. [73] who showed that for a 2D time-dependent advection problems
the complexity of the Combination Technique can be reduced to O(N?) by choosing
appropriate time steps on each component grid. They also considered the resulting
approximation error, while we focus on the computation complexity for a fixed level ¢

40

3.3 Choosing the time step

but extend the analysis to arbitrary dimensions. The reason for this is that we assume
that the stability is the primary concern for selecting the time step. We summarize the
main aspects and refer to [10] for further details. Some formulas differ slightly from the
original paper due to a different definition of the standard Combination Technique in
[10] but the complexities remain unchanged.

3.3.1 CFL condition

A famous criterion for the stability of a PDE in respect to the mesh width is the Courant-
Friedrichs-Lewy (CFL) condition [22] developed by Courant, Friedrich and Lewy back
in 1928. They defined the mathematical/physical domain of dependence and the numerical
domain of dependence. Only if the mathematical/physical domain of dependence lies within
the numerical domain of dependence a numerical scheme can converge. To better under-
stand this important finding, we have to explain the terms in more detail. On the one
hand the mathematical/physical domain of dependence can be seen as the region that im-
pacts a certain point of our PDE solution. On the other hand, the numerical domain of
dependence is the region that can influence a certain point through the numerical scheme,
i.e. from where changes can be propagated to the respective point. An example would
be a first order explicit scheme where information propagates from one point to the
adjacent points. In this case, the information flow of the PDE (mathematical/physical do-
main of dependence) is not allowed to move faster in each dimension than the mesh size.
Therefore, the time step has to be adjusted accordingly.

A mathematical expression for one dimension would be

Atfo]

< .
A <C (3.2)

where At is the time step size, Az the mesh width, v the speed of the information flow
in the PDE and C the CFL number. The CFL number expresses how far information
travels in the numerical scheme for one time step. In the example mentioned above, it
would be C = 1.

For higher-dimensional cases the CFL condition can be generalized for example by

At|vg ‘
Z Aor (33)

where v, is the information flow in the direction of dimension k and Az}, the respec-
tive mesh width in this dimension. There exist also other generalizations for higher
dimensions but we will restrict our analysis to this formalization [10].

It should be noted that the CFL condition is not sufficient for a numerical solution to
converge to the exact solution but it is a necessary prerequisite. In the following, we
will solely focus on the CFL condition.

41

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

3.3.2 Uniform time steps

We have now described a criterion for the selection of the time step size. Next, we
need to analyze the complexity for the computation of a time-dependent PDE with the
Combination Technique if we choose a uniform time step across all component grids.

Since this time step has to satisfy all the stability criteria for each component grid, we
have to select the most restrictive, i.e. the smallest time step. We therefore have

At = min _¢ = min ¢ = ¢ (34)

d d d
€T3 IAL;IE,L eer b Il maxeer SO0 g 20

where 7 denotes the index set of the level vectors used in our scheme. For each level
vector £ the mesh width is defined by Az, = 27%. If we consider a standard Com-
bination Technique of level /, it is obvious that the most restrictive time step has to
belong to one grid of the hyperplane with ||£||; = ¢+ d — 1. Another observation is that
max|jo|, —¢+d—1 2% = 2° +2(d — 1) € O(2%), i.e. the most anisotropic grids have the
most restrictive time step. Since the information speed v is assumed to be bounded and
C is a constant, we obtain At € O(27). As a result, the number of time steps is O(2°) if
we assume a fixed simulation length.

The overall complexity is the number of grid points times the number of simulation
steps which evaluates to O(2¢ - 2¢¢) = O(N?log(N)) (see also Section 2.2 for definition
of N and the number of Sparse Grid points). Again, we neglect constant factors that
depend on the dimension d in this complexity consideration.

3.3.3 Individual time steps

In the last section, we have seen that the most anisotropic grids require the strictest
time steps according to the CFL condition. However, most component grids could use
a much larger time step. Therefore, instead of choosing a common time step for each
component grid, we can use an individual time step for each component grid. As we
assume that the CFL condition is more restrictive than the accuracy requirements, we
set the time step of each grid to the maximum allowed time step size

¢ T = ¢ (3.5)

At = PR i o
Dhel Amy k=1 [Uk[2%

Now, we approximate the number of grid points of a component grid by 2/¢l* which
is not exact but only off by a constant. This is similar to the approach in [36]. Since each
grid needs to calculate O((At)~!) time steps, we can approximate the overall computa-
tion cost by

ollell 9llelly 'Zd— |ug, |26
2R T 2 c ‘ (3:6)

el el

42

3.3 Choosing the time step

For the standard Combination Technique with I = {£ € RY¢ < ||€|s < £ +d —1}3
this further evaluates to

S 20l - Ty [vg 2%
C
q=0 ||€||1=0+d—1—¢q
1 d—1 d
_ 2€+d 1—q Z Z ’W’Qek
¢ q=0 ||£||1—£+d—1—q k=1
d—1

Al-
(!

ol+d—1— qz |Uk;| Z 9%k

q=0 k=1 ||£||17K+d—1—q
1 d—1
=5 ol+d—l=g Z vk Z om > 1 (3.7)
q=0 m=1 1€]|1=0+d—1—gNlr=m
d—1
1 ol+d—1—g mfl+d—1—qg—m—1
=) o e
q=0
d—1

l—q—1
z::ﬁ:qul €+d 1—q (—g—2 z+d—2
-G Z|“k| Z 2 2

=0

—
05||U||1 Z22e+d 1—2¢ Z <Z+d 2)

According to [10, 36], we can find an upper bound to the inner part of the equa-
tion which we substitute by the function f,(z). By rewriting this function as the n-th
derivative with n = d — 2, it is possible to get a simplified formula via

3Here we exclude level vectors £ that have a coefficient cg = 0

43

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

gzq:lx (z+d 2)
2+d—21 (d—2) 1 S td2 -
@) =\ &

z=0

(d—2)
z+d—2

d—2 1 \d2h)
k) 1—x))

d—2—k
(d 2)! >d 2k xd_z_k)(d_2_k>!(1im>)

SO (L)

k=0

(3.8)

A
=
[| =
N
/_\/—\/—\/_—\N
ng8
&

Now, we set again = 0.5 which results in

d—2
05)=>" (d ; 2) = 2¢-1, (3.9)

k=0

If we subsitute this back into the Eq. (3.7), we get

d—
|v]1 222Z+d 1- 2qz <Z+d 2)
C
q=0
it

&.
,_.

E

< " p2thd1-20 gt (3.10)

““ﬁ
= o

’U” 22Z+2d—2—2q c 0(22d22€) _ 0(226) _ O(NQ)‘

Q
Il
o

As a consequence, the overall complexity for computing the solution of a time-depen-
dent PDE with individual time steps is O(N?) which is a clear improvement compared
to the O(N%log(N)?~') complexity of the uniform time stepping. Even more surprising
is that all dimension-dependent terms disappear and hence the solution with the Com-
bination Technique overcomes completely the curse of dimensionality. However, since
the dimension still appears in the constant factors, there is still a limit for the feasible
dimension in practice. In addition, we do not consider the accuracy of the computa-
tion here as we assume that fulfilling the CFL condition already guarantees sufficient

44

3.4 Shared-Memory parallelization

accuracy. In cases where the target accuracy demands a stricter time step, the isotropic
grids might require smaller time steps which then reduces the benefit of individual time
stepping.

Another important aspect is the synchronization at the combination step. Since every
grid has an individual time step, it is not guaranteed that every grid will calculate a so-
lution at the synchronization point. A simple but effective method is to shorten the last
time step if we would exceed the global synchronization point. This does not change
the overall complexity as long as the global combination interval is long enough. For
use cases where the combination interval is larger than the maximum of all individual
time steps, the overhead of this approach is less than 100% as every component grid
will at most take twice as many steps as usual. Hence, the overall complexity is un-
affected. If we, however, choose the global combination interval to be as short as the
minimum time step of the most anisotropic grids, we again result in a uniform time
stepping scheme.

3.4 Shared-Memory parallelization

The original parallelization concept of DisCoTec was based solely on MPI. This paral-
lelization does not differentiate between ranks on the same node or ranks on different
nodes. However, many HPC solvers nowadays rely on a hybrid parallelization scheme
that combines MPI with a shared-memory parallelization to increase the performance.
Hence, we implemented for DisCoTec a new hybrid mode that adds OpenMP [87]
support to the existing MPI version. This work is part of a collaboration with Sven
Hingst for his Bachelor’s thesis [58]. In the following, we summarize our main find-
ings.

For the shared-memory parallelization, we focus on the most compute intense parts
of DisCoTec, namely the hierarchization und the dehierarchization. The paralleliza-
tion of these methods is quite simple as they are based on the unidirectional princi-
ple [8, 15]. The structure of the hierarchization is therefore as follows. In an outer loop
we iterate over all dimensions. Here, we have a strong dependency between the itera-
tions and cannot compute them in parallel. The next inner loop iterates over the d — 1
dimensional slice of the grid that excludes the current (de)hierarchization dimension.
At each position of this slice, a one-dimensional (de)hierarchization routine is started
which is completely independent of the others. As usually the number of these one-
dimensional computations is large, we can easily parallelize them with a PARALLEL
FOR in OpenMP. The general principle is the same for hierarchization and dehierar-
chization. In order to enable a thread-safe implementation, we needed to adjust some
of the datastructures and carefully design the in and outputs of the parallel for. For
more information on these adjustments and for additional tests we refer to [58]. All
tests that we present next were performed on the CoolMUC-2 linux cluster system (see
Appendix A.3).

First, we compared the hybrid parallelization mode to the MPI-only version with the
hierarchization routine for different process group sizes and different thread numbers.

45

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

The results (see Fig. 3.4) show that if we carefully select the right amount of OpenMP
threads, we can surpass the MPI-only version. This is mainly due to the efficient calcu-
lation of the independent subproblems during the hierarchization steps. Consequently,
the shared memory parallelization helps to reduce some of the overhead that the MPI
abstraction introduces on a single node. For the dehierarchization similar observations
were made.

-© OMP nprocs=1, nthreads=14
—#> OMP nprocs=2, nthreads=14
- OMP nprocs=4, nthreads=14

OMP nprocs=8, nthreads=14

é’ —> OMP nprocs={1, 2,4, 8}

k=t MPI nprocs=8

Q -& MPI nprocs=16

é 1,000 s —He> MPI nprocs=32
B MPI nprocs=64

Number of processors

Figure 3.4: Comparision of the performance of the hierarchization with or without shared mem-
ory parallelization for different configurations [58].

However, not all steps of the Combination Technique could be sped up with the hy-
brid scheme. As the communication with MPI is now reduced to a lower amount of
MPI ranks per node?, the communication volume of the global reduction step during
the combination increases and the number of communication partners decreases. This
is caused by the fact that only MPI ranks communicate and with the hybrid paralleliza-
tion, we reduce the MPI ranks but keep the same amount of data per node. Hence,
the amount of data that is communicated per MPI rank in the global reduction grows.
This should not be a problem if the fewer communications can still utilize the bandwith
efficiently. However, we observed a severe impact on the CooIMUC-2 system. One pos-
sible explanation might be that the bandwidth can only be fully utilized if enough MPI
communications take place. We therefore tried to use threaded MPI implementations
and asynchronous communications and split the communication volume similar to the
MPI-only version. All in all these measures could improve the performance and the
best results were achieved with an intel-specific MPI_THREAD _SPLIT mode. Unfor-
tunately, not even this variant could fully reach the MPI-only version for all test cases
(see Fig. 3.5) . The reason for this effect seems not to be in the algorithm itself but in the
current development state of threaded MPI and cluster-specific properties for the com-
munication. We therefore expect this to be improved for future clusters and upcoming
MPI implementations.

Itis no surprise that this reduced efficiency of the global reduce also affects the overall
performance of the complete combination step in DisCoTec. A comparison to an MPI-

4Usually 1 or 1 per NUMA domain.

46

3.4 Shared-Memory parallelization

10, r
0-000 I i 1 [->omp nprocs=1, nthreads=14

—#> OMP nprocs=2, nthreads=14
= OMP nprocs=4, nthreads=14
OMP nprocs=8, nthreads=14

g ~> OMP nprocs={1,2, 4,8}

E= MPI nprocs=8

g -& MPI nprocs=16

= o> MPI nprocs=32
1,000 g MPI nprocs=64

1 2 4 8 16
Number of processors

Figure 3.5: Comparision of the performance of the global reduction for an MPI-only imple-
mentation and a hybrid approach with multithread MPI_ALLREDUCE and MPI_-
THREAD_SPLIT enabled [58].

only version for a specific test case can be seen in Fig. 3.6. Again, the MPI-only versions
tend to perform better for certain configurations.

-© OMP nprocs=1, nthreads=14
—%> OMP nprocs=2, nthreads=14
- OMP nprocs=4, nthreads=14
OMP nprocs=8, nthreads=14
—> OMP nprocs={1,2,4,8}
MPI nprocs=8
-& MPI nprocs=16
o> MPI nprocs=32
» MPI nprocs=64

—
o

Time in s

3.16

1 2 4 8 16
Number of processors

Figure 3.6: Comparision of performance the combination with high minimum level, with or
without shared memory parallelization [58].

To put it in a nutshell, we see that an hybrid parallelization with OPENMP can be
beneficial for the (de)hierarchization but current limitations with threaded MPI can im-
pact the performance of the global reduce. As a consequence the overall performance is
often best with an MPI-only implementation. However, the most compute intense part
of a simulation with Di sCoTec is not the combination step but the coupled PDE solver.
Usually the combination takes orders of magnitude less time. Therefore, the possibil-
ity to offer hybrid parallelization can be very valuable if a solver supports and benefits
from it. In addition, future advances in threaded MPI should mitigate the current short-
comings. Moreover, for other test cases or scenarios the results could be different and

47

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

further results in [58] suggest that for lower minimum levels the hybrid variant can
already outperform the MPI-only implementations.

3.5 Asynchronous Combination Technique

We have seen that one of the main challenges in implementing the Combination Tech-
nique on distributed systems is the overhead that arises due to the global communi-
cation in the combination step. Here, we usually have to synchronize all ranks and
perform a global reduction. This creates several problems. First, all calculations have
to stop and wait until every process group has finished its computation. This effect
can be reduced by efficient load balancing but it will never completely solve this issue
due to the large amount of computation per component grid which can usually not be
distributed perfectly to the process groups. Second, we have to wait until the communi-
cation has finished before each rank can proceed with the calculation. This issue is even
more relevant for an HPC framework that targets exascale. The reason for that is that
with larger process counts the communication time typically increases. Furthermore,
the gap between the communication and computation speed has steadily grown over
the past decades. A future-proof algorithm should therefore avoid any synchronous
global communication.

To solve these issues, we have created a first algorithmic variant of the Combination
Technique that offers asynchronous communication. This is achieved by delaying the
application of the combination results. More precisely, we continue computing the PDE
of our component grids after an asynchronous combination is started. Once we are at
the next combination step, we check if the past combination has finished and calculate
the changes it would have caused to the original component grid at the time of the last
combination. We then apply these changes in a correction step to the current state of
the grid. This is of course not exact and will introduce additional errors. This sections
extends the preliminary work that was made in a collaboration with Shreyas Shenoy
during his Master’s thesis [110].

In the following, we will first describe the algorithmic idea in more detail and will
then show some mathematical motivation for the approach.

3.5.1 Algorithmic idea

For the description of the algorithmic idea we need some definitions. First, we will
consider the solver to be an iterative method ¥ (u}) = @' that updates the grid val-
ues u' at the current combination step ¢ and returns the updated grid values for the
next combination step ¢ 4+ 1. In addition, we perform the combination routine ~ that
generates the new input for the next solver computation based on the grid values of
all component grids, i.e. x({a}|€ € I},£) = u}, at combination step ¢. This includes
already the projection of the grid values from the Sparse Grid to the respective full grid
£. Consequently, the update that is applied to the grid values due to the combination at

combination step ¢ is A,; = uj — .

48

3.5 Asynchronous Combination Technique

Algorithm 4 The Combination Technique in Parallel

1: procedure ASYNCHRONOUS_COMBI(G, Ty, . . ., Zg, @i}, combisteps)
2 for ¢t € [combisteps| do
3 for g € [G] do in parallel
4 for £ €Z,do
5: ant = H(ih) > local hierarchization
6 end for
7 urt =3 e o up’ > local combination
8 end for
9: ust = Zngl u®9! > asynchronous global combination
10: if t # combisteps then > continue without waiting for combination result
11: for g € [G] do in parallel
12: for £ €1,do
13: oyt = W(ah) > apply solver until next combination step
14: end for
15: end for
16: end if
17: WAIT() > wait for combination result u¢*
18: for g € [G] do in parallel
19: for { € 1Z,do
20: uIZ’t = Pe(ut) > project back onto component grids
21: ub = D(uﬁ’t) > local dehierarchization
22; Ay =g . ah > compute delta
23: @ttt = O 4+ Ay > apply delta
24: end for ‘ " Y
25: end for

26: end for
27: end procedure

With these definitions, we can now define the algorithm (see Algorithm 4). Whenever
we reach a combination step ¢, we start asynchronously the combination s with the
solution @'*!. Then instead of waiting for the results we continue the computation and
compute ¥(a}) = 01, We then wait for the combination results u),. Now, we can
compute the difference value A, = ul, — @}, and apply this delta to the solution to
approximate the correct solution, ie. """ + A, ~ a'*! = W(u). This approximated
value is then used for the next asynchronous combination.

The key differences of the asynchronous approach is that we can now overlap the
communication with the computation of the next parallel solves. In general, we could
extend this and compute as long as we need if the communication takes even longer.
However, we will see next that the further we proceed the more the resulting approx-
imation quality will suffer. Another difference is that we need to store the grid values
ub, i, and 0! instead of only a single copy of the grid. This theoretically triples

49

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

the memory consumption for the component grid but compared to the overall Sparse
Grid representation u®' — that each process group stores — this additional memory con-
sumption is usually still small. The reason for that is that with multiple process groups
the number of grids that each group owns decreases but the size of the Sparse Grid is
similar to the size of all component grids together which stays constant.

3.5.2 Mathematical motivation

In the previous section, we described an asynchronous version of the Combination
Technique. In this approach we proceed with the solver step during the communi-
cation to overlap communication with computation. After the communication has fin-
ished, the combined values are applied to the computation in an correction step that
approximates the results of the standard Combination Technique.

The question is now what error this approximation introduces. We can analyze this
with the Taylor series. Instead of the correct input to our solver u}, we used @, with
Ay = uly — ab. We can now look at the series expansion for the desired value ¥ (u}) =

(ah + A,;) which results in the first order approximation

U(up) = U(ah + A,) W(ih) + T (uty Dy (3.11)

The approach shown in the last section uses the rather strong approximation that the
Jacobian matrix Jy (¢ of u! is the identity matrix, i.e. Jyty = I. In this case, the
equation is simplified to

W(up) = W(ap + Ayy) = U(ip) + Ay = 0 + Ay (3.12)

This is exactly the formula that we apply in our algorithm. It should be noted that the
remainder term from the truncated Taylor expansion scales quadratically with A,;.

From this mathematical analysis it follows that the approximation is better the smaller
A,z and the better the Jacobian matrix is approximated by the identity. The former is
true if the component grids are close together and do not diverge from each other,
which is also often a requirement for the recombination approach to ensure conver-
gence. The approximation quality of the identity matrix for the Jacobian is depending
on the time step and the PDE itself.

As an example for this approximation quality, we can look at the 1D advection equa-
tion

Ot + vzou =0 (3.13)

with velocity v,. This equation can be discretized e.g. via the finite-difference scheme
using a first-order backward-difference to

0= (@' (z) — uf)/A¢ + va(u' () — u'(z — Ag)) /As

3.14
() () = @1 (2) = () — Ao (u! () — (@ — An))/As (3.14)

50

3.5 Asynchronous Combination Technique

with time step size A; and spatial discretization width A,. This computation is equiva-
lent to one step of the solver ¥(u) in case we recombine every time step. If we now look
at the Jacobian .J, we can see that it contains the diagonal values J; ; = 1 —v,A/A, i €
[N] and the off-diagonal values J;;—1 = v,A¢/A;,i € [2,N] and is elsewhere zero.
Therefore, as long as v;A;/A, is small we can expect the Jacobian to be close to the
identity. The concrete formulas will change depending on the PDE and the discretiza-
tion scheme but we can get a general idea from this analysis. Whenever the changes
between the combination steps on a component grid are expected to be small, then the
Jacobian will be close to the identity and the approximation quality will be good. More-
over, smaller time steps are in general more favorable for the asynchronous method as
they reduce these changes.

In simulation where we do not combine every time step but after a few time steps, the
derivation above will change and more grid values will have an influence on a certain
point. This will create additional non-zeros in J and will decrease the approximation
quality if we use the identity. Depending on the concrete PDE and the combination
interval, we could therefore try to find better approximations and use a more suited
asynchronous step. For this purpose, we need to adjust the delta of our algorithm ac-
cordingly, i.e. adjust our approximation of .J in W (i}, + Ayy) ~ U(ip) + j\y(ut)Auz . One
thing that should be considered here is that the more carefully we mimic the original
function the more costly it usually gets. In the worst-case, we can just reapply the solver
to the combined value and discard v,™* = ¥(£) which would not lead to any perfor-
mance gain. Hence, we should go midway and construct a rather cheap approximation
with higher quality if the identity matrix does not deliver reasonable results.

For the special case of linear PDEs, we can always formulate the solver step as u!*! =
Aut. For k time steps in between combinations, this would result in ¥(u!) = u!*F =
AFyt. Hence, the Jacobian would be Jy(uty = AF. Here we can directly see that the better
we approximate the Jacobian, the closer we move towards the original solution. The
real Jacobian in this case would return the exact solution ¥ (a}, + Ay) = Ak (ah,+ Ay) =

This approach shows also similarities to the well-known predictor-corrector meth-
ods. We can see 7,"" as an predictor that is corrected by J A, In theory, also more

advanced approaches could be used here which compute a cheap correction step.

Instead of approximating .J, we could also approximate \I/(Auz). This idea would
give identical results for linear PDEs since here it holds that Ja}, + J Au; = U(ap) +
‘I’(Au;) = oyt 4 ‘I’(Au;) = ¥(up). For non-linear PDEs it could however change the
approximation quality.

To put it in a nutshell, we have seen that there is some mathematical reasoning be-
hind the asynchronous scheme. In general, it can be shown that for small component
grid changes in between the combination steps and with small corrections from the
combined result the algorithm should deliver a good approximation. However, the
asynchronous method might also increase the errors significantly if this is not fulfilled.
In Section 3.6.3 we show results for some practical examples.

51

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

3.6 Numerical experiments

So far, we have discussed improvements from the algorithmic and the implementa-
tion perspective of the Combination Technique in DisCoTec. In this section, we will
demonstrate the effectiveness of these novel techniques with numerical simulations.
For this purpose, we will first introduce in Section 3.6.1 our main application code
GENE from plasma physics that simulates microinstabilities in a fusion reactor. These
tive-dimensional simulations are computationally involved and scientifically relevant
which makes them a perfect use case for DisCoTec. Therefore, we test all our novel
approaches with GENE. In Section 3.6.2, we then show the results for the new fault-
tolerant implementation with realistic fault scenarios. Here, we analyze the introduced
errors as well as the scaling properties of the FTCT. Next, we discuss in Section 3.6.3
the results for the asynchronous variant of the Combination Technique. This involves
test cases with a simplified advection equation and first results with GENE simulations.
Thereafter, we present in Section 3.6.4 results for global and non-linear plasma physics
simulations that represent the most challenging simulation mode in GENE. Finally, we
summarize our findings shortly in Section 3.6.5.

3.6.1 Application to plasma physics

In general, there are three states of matter for materials on earth: solid, liquid or gaseous.
The state in which we find any substance is usually determined by its temperature and
the pressure that acts on it. With increasing temperatures and decreasing pressure any
substance transforms from solid to liquid and then to a gaseous state. If we continue
this process, we will reach at some point a state where the electrons are stripped off the
atoms resulting in positively charged ions and electrons. This state is called plasma and
sometimes referred to as the fourth state of matter.

Plasma physics studies this state in more detail and tries to find methods to utilize
the potential of the plasma for generating new and green energy sources. The reasoning
behind this is that the sun generates most of its energy from nuclear fusion, which can
be performed in a plasma state. Due to the immense energy that is generated with nu-
clear fusion, we could overcome our energy problems easily. At the same time nuclear
fusion offers a possible clean and C'O;-free energy source. It is therefore interesting for
achieving the climate goals of the upcoming decades. Unfortunately, nuclear fusion is
still far away from a production use case as scientist still face severe problems in main-
taining the plasma and generating a positive energy output. We therefore need further
research and scientific breakthroughs in the design and operation of fusion reactors to
reach this energy goal. The following overview of plasma physics and the application
code GENE is mainly based on the overview given in [69].

One of the main challenges of a fusion reactor is to reach the necessary temperatures
for a plasma and achieve a confinement for a sufficiently long time to reach nuclear
fusion. This can only be reached via strong magnetic fields that force the ions and
electrons on gyration trajectories. The ions are deuterium and tritium, two naturally
existing hydrogen isotopes, which are heated up to multiple hundred thousands de-

52

3.6 Numerical experiments

grees Kelvin to create helium and energy. Current fusion reactors are based on either a
tokamak or a stellarator design. In tokamak reactors a torus design is used and particles
circulate across it. To prevent particle drifts, the particles are not just flying in circles
but also perform poloidal turns, i.e. they fly in spirals through the torus shape. This
is reached by the combination of a toroidal magnetic field and the magnetic field that
is produced by inducing a large toroidal current in the plasma. This induction forces a
pulsed operation of a Tokamak. To avoid a pulsed operation, in the Stellarator design
the twisted magnetic field is reached only by external magnets.

A problem for current fusion reactors are microinstabilities that transport particles
and heat out of the plasma. To study these effects and analyze means to reduce these
instabilities, numerical experiments are performed as real experiments are very costly
or even impossible with current reactors. Thus, microinstabilities cannot be sufficiently
studied through experiments. In this work, we will consider the HPC code GENE® [66,
42] to simulate these microinstabilities.

GENE uses a kinetic approach to simulate the plasma in both tokamaks or stellerators.
In this approach not just the spatial coordinate x but also the velocity v is explicitly dis-
cretized which leads to a 6D full grid for the distribution function which can be viewed
after normalization as a probability of a certain particle being at a certain position with a
specific velocity. In particular, the 6D collision-free Vlasov equation can be used which
is defined by

%HJ-%HJS (E(g)+% XB(g))-%
where s is the species with distribution function g; and charge ¢;. E(g) and B(g) are
respectively the electric and magnetic field [69, section 2.2.3]. Since the fields are de-
pending on the distribution function g, the Vlasov equation is non-linear.

Interestingly, microinstabilities happen on a much larger spatial and time scale than
other effects simulated by the Vlasov equation such as gyration. To study these microin-
stabilities with the Vlasov equations directly, would therefore waste valuable resources
or would even be infeasible. Therefore, GENE relies on a gyrokinetic approach where an
averaging over a gyration of the particles leads to the reduction to a 2D velocity space.
As a result, larger time scales can be studied and the simulation grid is reduced to five
dimensions z,y, 2, v)| and p as the velocity is now only discretized according the veloc-
ity parallel to the magnetic field lines v and the magnetic moment p. In addition, the
spatial dimensions r = (z,y, z) are aligned with the magnetic field lines to enable a fast
and efficient computation of the numerical results. The resulting gyrokinetic equation
(see [69, section 2.3.1] or [24, section 2.1.3]) is

0)))
Agf_+_f. 99s Ny 9s + 1 99s
o

3t or 1 Gy
Furthermore, GENE splits the magnetic fields and distributions in a background and
fluctuation part. This process is called Jf splitting and allows to only simulate the
fluctuation (see [69, section 2.3.1] or [24, section 2.1.3]).

=0 (3.15)

— 0. (3.16)

Shttps://genecode.org/

53

https://genecode.org/

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

In a simplified form the equation solved in GENE can be seen as

% = L(g9) +N(g) (3.17)
with a linear operator £(g) and non-linear operator N (g) [69, section 2.4.2]. Due to this
separation, it is possible to run GENE in two basic modes: linear and non-linear. In the
linear mode the non-linear operator is neglected. Linear simulations can be useful for
eigenvalue studies or preliminary simulations. The non-linear simulations represent
the core functionality and are the most interesting simulations from a physical point.
However, non-linear simulations introduce significantly larger computational costs.

Another important mode in GENE is the local and global (or non-local) mode for the
x dimension [69, section 2.4.2]. In the local mode only a small subarea (flux-tube) of
the x dimension is calculated and a periodic boundary is introduced. This allows for
a Fourier transform along this dimension for local simulations. Another Fourier trans-
form is applied to the y dimension in both modes which utilizes the periodic boundaries
along the y axis.

In GENE, the 5D full grid with dimensions T,Y,2,0), and p is solved for each species
5 [24, section 3.1.1]. As the gyrokinetic equation is time-dependent, we need to solve
the equation for multiple time steps. In our test cases, only the Runge-Kutta 4 scheme
is used, but also other time stepping schemes are available in GENE [69, section 2.4.2].
The code is designed for HPC and offers a grid-based domain decomposition which
tits well to the parallelization scheme of DisCoTec. The only issue is that full grids in
DisCoTec require 2% + 1 points in dimension k, but GENE requires that each processor
in the grid has the same number of coordinates in each dimension. Since 2 + 1 is
typically hard to split into equal parts and is in fact often even a prime number, we
instead only compute 2 points in each dimension and fill the missing point with a
boundary condition. More information on this process can be found in [69, chapter 4].

The coupling of GENE to DisCoTec requires an adapter which was written in the
context of the dissertation of Mario Heene [51] and Alfredo Parra [89]. This adapter
mainly exchanges grid values between GENE and DisCoTec and adds the missing
points according to the boundary conditions. The framework was also extended to
handle complex numbers which arise due to the use of Fourier transforms in GENE. See
more details in [51] for the treatment of complex numbers in DisCoTec. This GENE
adapter was extended in this dissertation to also support non-linear problems. In addi-
tion, the fault tolerance mechanisms (see Section 3.2) were added to be able to test the
resilience of DisCoTec with a real application scenario.

For a more detailed overview of GENE including further simulation modes, we refer
to [66, 42, 25, 24, 69] .

3.6.2 Fault tolerance

In this section, we report the results with our implementation of the FTCT. These re-
sults were also published in [86]. For all our test cases with fault tolerance, we used the
linear and local configuration of GENE with the parameters file listed in Appendix B.1.

54

3.6 Numerical experiments

Test case | A | B

0 = Uy, by, Loy by, L) 3,1,7,7,7) | 3,1,8,8,8)
O = (g, by, Lz by, L) (3,1,5,5,5) | (3,1,6,6,6)
steps 6000 6000
timestep At (= combination interval) 0.005 0.005
Weibull shape k 0.7 0.7
parallelization (14, ny, n., N ny) (1,1,1,8,16) | (1,1,1,8,16)
process groups 4 4

Table 3.1: Parameters for the two test cases A and B.

This means that we do not fully simulate the x domain but only a subarea of it. In
addition the non-linear part of the PDE is neglected. As a result, the GENE simulation
resembles an iterative solver as the exponential increase due to the dominating eigen-
value converges over time if the distribution is normalized. As part of this thesis, we
analyzed for this setup the numerical convergence and the scaling for large scale HPC
applications. All tests presented in this section were performed on the Hazel Hen clus-
ter (see Appendix A.1).

3.6.2.1 Numerical error analysis

For the numerical error analysis we will look at two test cases (see Table 3.1). In both
test cases we use a 3D combination scheme where only the z, v and w dimension are
combined. The = dimension is set constant to 9 points with level 3, the y dimension to
1 point with level 1 and only a single specie is simulated. The reason for the constant
dimensions in = and y are that 9 points are necessary but also sufficient in x for local
simulations and the y frequencies are independent of each other and are therefore sim-
ulated individually for local and linear runs. We combine after every time step and use
uniform time steps (see Section 3.3.2). The test cases differ only in their minimum and
maximum levels. Both schemes result in 10 component grids that are split up between
4 process groups. In each process group we use a process grid with 8 ranks in v and
16 in p direction resulting in 128 ranks per group. In total this sums up to 512 ranks
plus one manager rank. The additional GENE parameters that we used can be found in
Appendix B.1.

For these simulations we want to measure the additional error due to the application
of the FTCT. We therefore inject faults according to the Weibull distribution (see Sec-
tion 3.2.2). Here, we fixed the shape parameter & to 0.7 and varied the scale parameter A
between 10° and 107. For each X value, 30 test cases were simulated to capture the sta-
tistical effects and the distribution of the introduced errors. The manager checks before
each combination step if a fault has occurred and enables a recovery if necessary. As a
result, we observed up to 117 fault events. Here, we measure the number of iterations

55

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

o > > A=107 . ®

S 0.050H* * A=10°

b=t e o)\=10

L‘é‘ 0.048H ~ No faults ¢ o

8 []

S 0.046 * o °s é

B >>*k*~k * ® s. ¢

N * *

W 0.0441 Z ;**. o >
f'.»‘#“f ””” R R
0 10 20 30 40 50 60

Number of faults
Figure 3.7: L error of the FTCT depending on the number of faults for test case A.

in which a fault occurs. In case multiple ranks fail in the same iteration, this is counted
as a single fault event.

For the error analysis, we use the L, error e between the absolute values of a fault-free
reference full grid of level et = (3,1,8,8,8) and the respective combination solution
Upmax_pmin (z) of the simulation with faults after the 6000 time steps. In particular, both
solutions are interpolated at the grid points of the reference grid for the comparison.
This can be formalized via

2
€ = Z (’Ug(xerefﬂ;)‘ - ’uzmax7£min (.Terefﬂz)‘) . (318)

V€T et

As suggested by [51, chapter 5.2.2], we use the absolute values of the function u since
the complex nature of the GENE values would generate large errors for values with
phase shift. However, phase shifts are irrelevant for the physical interpretation in this
scenario and they are therefore not considered in the error calculation. In addition,
the absolute values of the values are not relevant and are frequently rescaled during
the simulation. Thus, we normalize each vector output of u before applying the vector
norm in Eq. (3.18).

The resulting error values can be seen in Figs. 3.7 and 3.8. It is easy to see that in
general there is a trend that the more faults occur the larger the error is compared to
a non-faulty result. At the same time, the more faults we observe the more the error
values fluctuate. The reason for this is that the final outcome is not just determined
by the number of faults but also by the time the faults occur. In Fig. 3.9 we show
exemplary for test case B with high A how the timing of the last fault affects the final
error. There is a clear dependency that the later an error occurs the more distorted is the
result. An explanation for this is that the whole simulation can be seen as an iterative
process that converges towards the solution. If an error occurs at a later point, it affects
the final solution more strongly. Early distortions due to faults can be smoothed out
by the iterative process. For small X\ values with a high number of faults this strong
dependency of the last failing iteration was not observed which is probably related to

56

3.6 Numerical experiments

0.014 — : ,
© > > A=107 °
Q:) 0.013H » * A =106]
% ® e \=10
T 012K __0 No faults | e o° |
;‘ ° .0. °
< 0.011} o & |
5 e °°
o * * o o
z 0.010f+ o o e@ V@ o]
™ * * [] °
=

0,009:*%—————-,—————-, ————————————————— E

0 20 40 60 80 100 120

Number of faults

Figure 3.8: L, error of the FTCT depending on the number of faults for test case B.

0.00915
0.00914)-| > » A=107] g
0.00913}
0.00912} >
0.00911
0.00910} »
0.00909 - >
0.00908 b b b1 »
0.00907

Lo error to reference

0 1000 2000 3000 4000 5000 6000 7000
Last failing iteration

Ly error to reference

1

0.0104

0.0102}

0.0100
0.0098
0.0096
0.0094
0.0092

0.0090

* x A=10°] : .
*
o
#*
*
A%

. R

0 1000 2000 3000 4000 5000 6000
Last failing iteration

7000

Figure 3.9: Ly-error of the FTCT for different runs of test case B compared to the last iteration
with process error for A = 106 (bottom) and A = 107 (top) .

EE combine
B recovery

[solve
[write checkpoint
10!
103}
=
o
Z02)
=
=
=
o~
10M
10()

Figure 3.10: Runtimes for the most expensive steps of the FTCT. We plot the maximum time a
process spends in total for each step.

the fact that with such a high number of faults there is with high probability a fault

57

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

A fcwg Jmaz fmin €avg Emazx Emin Ae (0/0)
107 1.43 6 0 0.0431 0.0454 0.0429 0.480%

10° 675 19 3 0.0437 0.0460 0.0429 1.91%
10° 355 50 19 0.0463 0.0508 0.04339 7.955%

Table 3.2: table
Statistical results of the error of the FTCT for different X in test case A. f represents the
number of faults, e the Ly error to the reference and Ae the average increase in the
error compared to a simulation without faults.

A favg fmax fmzn €avg Cmax €min Ae (0/0)
107 2.55 6 0 0.00908 0.00915 0.00908 0.0882%

10° 135 26 7 0.00945 0.0103 0.00908 4.09%
10° 703 117 50 0.0109 0.0135 0.00960 20.2%

Table 3.3: table
Statistical results of the error of the FTCT for different A in test case B.

close to the end of the simulation. Hence, most of the simulations have faults at the
end.

Another observation is that in general the magnitude of the errors compared to a
non-faulty simulation (dashed-line) is rather small even for very large fault numbers.
In Tables 3.2 and 3.3, we show a more detailed statistical evaluation for both test cases.
Here we see for each variant of)\ the average, maximum and minimum number of
faults and errors. In addition we added the average increase in the error compared
to the base line of the non-faulty simulation. Here, we can clearly see that for both
test cases with low fault numbers the error increase is negligible. For large number of
faults the errors increase noticeable but considering that here up to, respectively, 10% or
20% of all ranks fail, the average increase is still pretty low with values up to 20.2%. It
should be noted that this is the increase in the error and not in the function values and
that the errors are in the range of 1072 — 5 - 10~ 2. Moreover, a fault has the effect that
up to a third of all component grids are incomplete and have to be removed from the
respective combination. Considering this, the error increases are very low. The results
for test case B are in general more accurate as higher discretization levels are used. It
should be noted that in practice the number of faults will be rather small and therefore
the error increase will be insignificant for this application.

If we look exemplary at the compute time of the different parts of the algorithm for
test case B in Fig. 3.10, we see that the simulation time for this setup is dominated by
the computation withing the solver. Here, the combine step takes around a sixth of the
time to solve the PDE and the recovery step is even two magnitudes faster. We also
plotted the time for the generation of a single checkpoint file which is about five times
larger than a single computation step. This means that if we would checkpoint every

58

3.6 Numerical experiments

®—8 solve no fault <4< combine no fault F—k recover fault ®—8 solve no fault <= combine no fault *—k recover fault
@9 solve fault = combine fault @9 solve fault = combine fault

10° 10°

—
S

—_ —
S) o
T =

i) =
g Q
£ : : = ‘\4\2_\
2 E
g = 107 : :
= =
=0 &<
10? 1
— 10 ~ ‘
10! L L l\‘ 100L h h h | h
1024 2048 4096 8192 16384 32768 1024 2048 1096 8192 16384 32768
Number of cores Number of cores

Figure 3.11: Strong scaling results for the different steps of the FTCT. On the left we show the
runtime for a single run and on the right the average of three runs.

iteration, we would have a recovery time which whould be around 500 times larger and
which would dominate the complete runtime. Our method is therefore much cheaper.

To conclude this section, we can say that our implementation of the FTCT can tolerate
massively faulty system where large fractions of the whole system fail. Furthermore,
the computational overhead is almost negligible at around 1% and the introduced er-
rors are in practice insignificant.

3.6.2.2 Scaling results

In addition to the convergence tests, we tested our implementation of the FTCT with
a large scale setup. Here, we used the same linear GENE test case as before (see Ap-
pendix B.1) but increased the problem size. For that we used £™" = (9,1,4,4,4) and
£7% = (9,1, 13,13,13) for a 3D combination scheme with 185 combination grids. Since
we are only interested in the runtimes of the different components, we fixed the num-
ber of time steps to 300. The process group size was fixed to 1024 and the number of
process groups was doubled until we reached 32k cores. For this setting we simulated
both fault-free (as a base-line) and faulty scenarios. For the faulty scenarios only a sin-
gle fault was injected in one of the process groups. For the fault-tolerant execution we
start at 4k cores and the fault-free baseline starts at 1k cores. This difference for the
FTCT is a result of a slightly higher memory footprint and the requirement for having
multiple process groups as always one group fails.

In Fig. 3.11 we show the scaling results. We compare the times for the solve, the
combination and the recovery between the faulty and fault-free version. We can clearly
see that the solving time scales very similarly for the faulty execution compared to the
fault-free version. We observed only slight increases in the runtime. This increase is
caused by the loss of a process group after a failure is detected. Since for larger process
counts the loss of a single group is less relevant, the overhead decreases with large
core counts. Another source for the overhead is that we need to calculate additional
very coarse component grids for the FTCT (see Section 2.3.4). However, this overhead

59

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

seems to be very small due to the very similar runtimes for large core counts. Those
observations are very promising as the main target of our framework is exascale and
therefore the number of process groups is expected to be very large.

Another important part of our algorithm is the combination step. For this routine the
observations are similar. We see slight increases in the runtime with the faulty version
but similar scaling. In this case, the increase comes from the loss of a process group
and in addition from the fact that we have to communicate all subspaces in the FTCT
and cannot avoid communicating the subspaces that are specific to a single component
grid. The reason for that is that we need to be able to have a valid checkpoint for these
subspaces in case we need to recompute a grid. This checkpoint should be stored on
all process groups to avoid communication during recovery. Therefore, the complete
subspace information needs to be communicated between all groups during the com-
bination step.

For runs with a failing rank, we need to find a fault-free combination scheme, recom-
pute some cheap grids if necessary and restore the communicators. This is done in the
recovery step. We can see that the recovery time can fluctuate for specific cases. A rea-
son for that is that the optimization routine for finding a fault-free combination scheme
produces different results in different scenarios and the load balancing varies due to
its dynamic and non-deterministic nature. Especially the number of grids that need to
be recomputed can significantly influence the recovery time. However, if we look at
the average runtime of three independent runs, the recovery times seem to scale well,
which is mainly caused by the fact that with more process groups less of the 185 grids
fail. Hence, recomputation costs decrease and it becomes more easy to find a valid com-
bination scheme. Overall, the recovery time is about two to three orders of magnitude
lower than the solving time which makes it negligible for the complete runtime of the
simulations. Furthermore, real scenarios would run for far more time steps and have
usually only very few failure events.

If we look at concrete numbers, we obtained a parallel efficiency of 93.61% compared
to the runtime at 4k processor with faults or 76.97% if we compare it to the fault-free run
with 1k processors. The solving overhead at 32k cores is 10.93% and the overhead for
the combination time 21.37%. It should be noted again that the impact on the runtime
should be far less in realistic scenarios where failure events are rare and usually up to
millions of time steps are computed. Therefore, the overhead should further decrease
and the parallel efficiency should be even higher.

3.6.3 Asynchronous combination

In this section, we summarize our results with the asynchronous Combination Tech-
nique (see Section 3.5). Here, we investigated the convergence and additional errors
that are introduced by the method due to the approximation in the correction step. We
compare all results to the standard Combination Technique that we will refer to as syn-
chronous Combination Technique. We also discuss different variants how to approxi-
mate the Jacobian such as the identity matrix and a diagonal approximation. First, we

60

3.6 Numerical experiments

will look at an advection problem in Section 3.6.3.1 and will then analyze the method
in Section 3.6.3.2 for GENE.
3.6.3.1 Advection equation

As a first test case for the asynchronous Combination Technique, we consider an easy
toy problem of a 2D advection problem

01t + Vz0,u + vydyu = 0 (3.19)
with periodic boundary conditions and initial values
u(t =0,z,y) = uo(%y) — ¢~ 100((z—0.5)*+(y—0.5)%) (3.20)

on the unit square domain D = [0, 1]2. We set v, = v, = 1 and discretized the simula-
tion via backward differences which results in

t T t ot _
1 ag) = i)~ A (1D TEE D) |) Gy =)

A, v A,

For this PDE the diagonal entries of the Jacobian are represented by J; ; = 1—Av, /A, —
Ay /A, which are identical for all values of i. For the asynchronous algorithm, we
investigated two different approximations for the Jacobian matrix: the identity matrix
J = Tand J = diag(J) = I - Jy. In cases where we compute not just one but n time
steps in between combinations, we use for the latter case the approximation J = I - J3or
i.e. we take the matrix from a single time step and raise it to the power of n.

We compare the results of the synchronous and the asynchronous Combination Tech-
nique to the analytic solution

u(t =0,z,y) = uo(xvy) — ¢~ 100((2-0.5)*+(5—0.5)%) (3.21)

withZ = (x —t-A;) modlandy = (y —t-A;) mod 1. Here, we apply the modulo
operation for real numbers to mimic the periodic flow.

With this example we can now easily compare the different convergence of the syn-
chronous and the asynchronous combination with identity matrix (async identity) and
the diagonal Jacobian approximation (async diag). We simulated 100 steps with A; =
10~* and varied the target level. In Fig. 3.12 we show the L2 error of the different runs
which is calculated by projecting the Sparse Grid solution to the target full grid of level
£ = (12,12) and computing the L, vector norm of the difference between the computed
solution and the analytic values °.

The first observation is that the identity approximation performs significantly better
than the diagonal approximation of the Jacobian matrix. This is especially the case for
larger values of /™?*. A reason for this is that the values Jy o get smaller the smaller A,

We also tried different norms such as the L; and Lo which showed similar results with no qualitative
difference.

61

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

combination interval 1 combination interval 8 combination interval 50
101" 1071 1071
21072 21072 2102
[[[
<)) iy)) g))
—f— async identity —f— async identity —f— async identity
103 async diag 1073 async diag 10-3 async diag
—%— sync —%— sync —*— sync
4 6 8 10 12 4 6 8 10 12 4 6 8 10 12

gmax gmax gmax

Figure 3.12: Asynchronous recombination errors for 100 steps with A, = 10~* of a 2D advec-
tion example with €,,,;, = (3,3) and varying £™** = ({™**, (™*¥) for combination
interval 1(left), 8 (middle) and 50 (right).

gmax — 4 gmax = g gmax = 12
1.55x 107! —t+— async identity
-1 7 2x1072 async diag
1.545 x 107t 102 S sync
5 1.54x 107! 5 —+— async identity 5]
2 o
= 5 async diag]
o} 1 9]
31.535x 10 . . o “ sync o
1.53x10-1 —+— async |d.ent1ty 10-2 10-3
async diag
1.525x 107! —< sync WX _ E—
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
combination interval combination interval combination interval

Figure 3.13: Asynchronous recombination errors for 100 steps with A; = 10~* of a 2D advection
example for varying combination interval with £,,,;,, = (3, 3) and different £™** =
(gmax_gmax) We show the results for £m2* = 4 (left), {™** = 8 (middle) and ¢™** =
12 (right).

which is directly coupled to the level. As a consequence, the test cases with high lev-
els damp the correction due to the combination. This apparently results in large error
increases. This result is surprising as an diagonal approximation of the Jacobian seems
to be better suited than the identity matrix. An explanation for this phenomenon could
be that the sum of all entries of a row of the Jacobian sums up to 1,i.e. 377, J; j = 1.
In addition, the nonzero entries for a combination interval of 1 are located at the posi-
tions of the backward neighbours of a grid point and if we compute several steps, the
largest contributions come from backward neighbours and the close vicinity of the sur-
rounding points. That means if points within a close range have similar grid values the
identity approximation is rather good. Since the combination mainly affects lower sub-
spaces — the largest subspaces are exclusive to single component grids and are therefore
unchanged —, it is clear that the changes to A : are of low frequency and should there-
fore not change too fast. At higher levels such changes should however be larger as the
bigger number of different discretized grids tends to cause larger corrections. A reason
for this is that the single grids diverge further from each other in such cases. This is also
an explanation why the errors increase for larger ¢™2*.

Another observation is that for all combination intervals the errors of the asynchro-
nous combination with the identity matrix are almost identical to the synchronous com-

62

3.6 Numerical experiments

bination with only slight error increases. Furthermore, this difference increases only
slowly with the maximum level and the combination interval. Therefore, most of the
time the asynchronous error and the synchronous error curve are not distinguishable.
Only at a combination interval 50 and ¢y,,x = 12 we can see a slight difference. This can
also be seen if we directly compare different combination intervals with constant /™.
This is shown in Fig. 3.13 for different maximum levels. Here, mainly for higher levels
the errors increase for larger combination intervals. For /™** = 4 the error mainly stays
constant except for a small fluctuation at a combination interval of 8. This very small
drop is unexpected and might just be related to a random error cancellation of the spa-
tial and temporal error of the combination with the asynchronous approximation error.
For combination interval 100 there is no difference as here only a single combination
is performed and therefore the synchronous and asynchronous version behave exactly
the same.

Our observations for the identity matrix match exactly the mathematical analysis of
Section 3.5.2 where we have seen that the approximation quality of the Jacobian matrix
is mainly influenced by the term v, A /A, for a 1D advection equation. With increasing
level ¢™#*, A, gets smaller and therefore the error rises. Also for larger combination
intervals the Jacobian further deviates from the identity matrix which further increases
the error. As the advection example is a linear PDE, the approximation quality of the
Jacobian is the only error source.

3.6.3.2 GENE

In addition to the very simple advection equation, we also performed several test cases
with GENE. Similar to the fault tolerant test case, we used linear runs with the parame-
ter file from Appendix B.1 and simulated 6000 time steps until the solution converged
to the dominating eigenvalue. We again performed several runs with varying combi-
nation intervals — measured in number of timesteps — and used two different minimum
and maximum levels. More information is listed in Table 3.4. Due to the superiority of
the approximation quality with the identity matrix (see Section 3.6.3.1), we focused on
this version of the asynchronous algorithm for the GENE runs. All tests in this section
were performed on the SuperMUC-NG cluster (see Appendix A.2).

The results are shown in Fig. 3.14 where we calculated the errors in the same way
as in Section 3.6.2. Here, we see that in general the errors rise with the combination
interval. Furthermore, for some combination intervals the errors rise drastically which
is a sign that the combination does not work and seems to become unstable. These situ-
ations usually happen in the mid-range of the combination intervals. We also observed
that this range is larger for the asynchronous combination technique, i.e. it can be ap-
plied in fewer cases than the synchronous version. However, for stable simulations the
errors of the synchronous and asynchronous combination are comparable.

From our numerical results we can follow that in cases where the Combination Tech-
nique is stable the asynchronous Combination Technique with an identity matrix ap-
proximation for the Jacobian performs very good with very little additional error. How-
ever, if the Combination Technique tends to become unstable for certain combination

63

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

Test case | A | B

0 = (U, by, Ls, by, L) 3,1,8,8,8) | (3,1,8,8,8)
O = (ly, by, Lz, Ly, L) 3,1,555) | 3,1,6,6,6)
steps 6000 6000
timestep At 0.005 0.005
parallelization (n,, ny, n., Moy s n,) | (1,1,1,8,16) | (1,1,1,8,16)
process groups 4 4

Table 3.4: Parameters for the two GENE test cases A and B with the asynchronous Combination

Technique.
© 1001 i——— —— asynchronous o 10°4 f—— asynchronous
o synchronous 2 synchronous
g o
L 2
o I
T]
a a 1014
2 10714 2
o]
2 S
g \y, —— g 'r/
i ™ i
d 10729 4
100 10! 102 10 100 10! 102 10
Number of steps betweem combi Number of steps betweem combi

Figure 3.14: Asynchronous recombination errors with GENE for the test cases (see Table 3.4) A
(left) and B (right). Here we vary the combination intervals and compare the results
to the full grid reference with £ = (3, 1,8, 8, 8).

intervals, the asynchronous mode can reduce this stability region due to the additional
errors that are introduced. A thorough analysis of the PDE at hand is therefore required
to check whether the asynchronous Combination Technique remains stable.

3.6.4 Non-linear Plasma runs

In the previous sections, we only used linear GENE simulations which neglect the non-
linear part V' (g) of the PDE

J

= =L +N). (3.22)
As a second step of the EXAHD project, we investigated the non-linear and global runs
of GENE to test our implementation of the Combination Technique. For these cases we
used the parameters that are listed in Appendix B.2. In all of the runs we make use of
individual time steps which means that there is not a fixed number of steps but a fixed

64

3.6 Numerical experiments

100

A W NKHFHO

80 A

40 A

20 A

0 20 40 60 80 100 120 140
simulation time

Figure 3.15: Non-linear recombination run with ¢,,;, = (8,5,3,4,3) and {4, = (10,5,5,4,3)
resulting in 5 component grids. The selected recombination interval is 2.

3000000

2000000 A

A W N KHFHO

1000000 +

-1000000 -

-2000000 A

0 2 4 6 8 10
simulation time

Figure 3.16: An unstable non-linear recombination run with ¢,,;, = (8,5,3,4,3) and {;as =

(10,5, 5,4, 3) resulting in 5 component grids. The selected recombination interval
is 0.2.

65

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

100
80
60
g 401
o \
20
01 — 0
1
-20 1 — 2
— 3
-40 — 4
0 25 50 75 100 125 150 175

simulation time

Figure 3.17: A very long non-linear recombination run that is unstable. Here we use ¢,,;, =
(8,5,3,4,3) and 4,00 = (10,5, 5,4, 3) resulting in 5 component grids and a recom-
bination interval of 2.

simulation time” between combinations for each component grid. As a consequence,
the number of time steps is set very high so that a GENE run always simulates until the
next combination step. If a time step would exceed this checkpoint time, it is adjusted
accordingly and the simulation is stopped afterwards. In the following, we will sum-
marize our findings. Additional information on the non-linear tests can be found in the
final project report [72].

In our analysis, we will mainly consider the main quantity of interest ().s and its
time-average in the non-linear phase. Our evaluation of the time-average and the sta-
tistical error bounds follow the methods described in [114]. All tests in this section were
performed on the SuperMUC-NG cluster (see Appendix A.2).

In general, we observed two different scenarios for the time-evolution of Q.s. On the
one hand, for large combination intervals® of around 2 the simulation was stable and
the time evolution looks as expected (Fig. 3.15). Here, we first observe the exponential
phase where the value of Q.s grows exponentially. At a simulation time of around
20, we can see that the simulation enters a stationary phase with seemingly random
fluctuations which are caused by the non-linearities.

Unfortunately, we faced severe instabilities for short combination intervals < 0.2
(Fig. 3.16) and also for very long simulation periods with larger combination intervals

"This should not be confused with the runtime. The simulation time is the simulated time that passes in
the GENE simulation.
$This interval results in approximately 7000 steps per component grid between combinations.

66

3.6 Numerical experiments

: 2
n,ions

700

500

500

300

200

100
100

—-200 —100 0 100 200
X / Pret

Figure 3.18: An x-z slice of an unstable non-linear recombination run with ¢,,;, = (8,5,3,4,3)
and 4,4, = (10, 5,5, 4, 3) and combination interval 2. On the left we show the initial
situation in an stable state and on the right the situation when the instability kicks
in.

(Fig. 3.17). Also simulations with more component grids showed these instabilities. In
general, the more frequent we combine and the more grids we combine the less stable
the simulation gets. This is a clear sign that the combination introduces significant er-
rors or even violates the physical models. Up to now, it is not clear what exactly is the
cause of this behavior. By investigating the instabilities for very long runs, we noticed
that sometimes close to the boundary of the x-z slices large values arise which are un-
physical. An example can be seen in Fig. 3.18. Here, we plot the state at the beginning
and a snapshot at the time when the instability kicks in. We can clearly see that the
values at around x=-200 start to increase and explode over time which causes the in-
stability. Unfortunately, we do not know if this is a problem of the implementation in
GENE or DisCoTec or if this is a generic problem with the Combination Technique.

By looking at other Combination Technique literature with non-linear PDEs [71], we
could find similar problems with the Navier-Stokes equations. Here, similarly to our
case instabilities appeared after long intervals. In this case, it could be solved by adapt-
ing the Combination Technique to be divergence-free. Sadly, this is not directly ap-
plicable to GENE as the code with Jf splitting is not divergence-free. However, this
indicates that our observations could be an inherent problem of the way we apply the
Combination Technique and not an implementation problem.

Nevertheless, we can analyze the performance for the stable runs by combining the
averaged ()s value in the non-linear phase. This is one of the main quantities of inter-
ests for global, non-linear GENE runs. We therefore compared the combination results
to the reference values of a fully resolved full grid with the target resolution £7*. In

67

3 DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs

description £ ce avg. Qs recombination avg. Qs independent
component grid 0 | (9,5,4,4,3) 1 28.69 (+- 0.11) 23.75 (+- 0.59)
componentgrid1 | (8,5,5,4,3) 1 29.53 (+- 0.12) 30.89 (+-0.60)
component grid 2 | (10,5,3,4,3) 1 28.18 (+- 1.00) 28.79 (+- 0.74)
component grid3 | (9,5,3,4,3) -1 28.41 (+- 0.80) 29.96 (+- 0.57)
component grid4 | (8,5,4,4,3) -1 29.60 (+- 0.66) 29.53 (+- 0.64)
combination - - 28.38 23.854990282
target run (10,5,5,4,3) - - 27.32 (+- 0.61)

Table 3.5: Recombination in x and z with £,,;, = (8,5,3,4,3) and ¢,,.. = (10,5,5,4,3). We
show results for the averaged ., values with recombination and for an indepen-
dent simulation. In addition the statistical errors are shown. This is compared to the
combined values and the result of an target level run with a full grid of £ = /4.

description V4 ce avg. Qs recombination avg. ().s independent
component grid0 | (9,5,5,4,3) 1 24.87 (+- 0.35) 26.35 (+- 0.81)
component grid 1 | (10,5,4,4,3) 1 24.95 (+- 0.65) 27.35 (+- 0.82)
component grid 2 | (11,5,3,4,3) 1 24.85(+- 0.89) 30.14 (+- 0.95)
component grid3 | (9,5,4,4,3) -1 24.86(+- 0.30) 23.75 (+- 0.59)
component grid 4 | (10,5,3,4,3) -1 24.91 (+- 0.32) 28.79 (+- 0.74)
combination - - 24.90 31.30
target run (11,5,5,4,3) - - 28.26 (+- 0.85)

Table 3.6: Recombination in x and z with £,,;,, = (9,5,3,4,3) and ¢,,.. = (11,5,5,4,3). We
show results for the averaged ().; values with recombination and for an indepen-
dent simulation. In addition the statistical errors are shown. This is compared to the
combined values and the result of an target level run with a full grid of £ = /,,,4,.

description £ ce avg. Qs recombination avg. Qs independent
component grid0 | (8,5,3,6,3) 1 28.77(+- 0.97) 32.51 (+- 0.78)
component grid 1 | (10,5,3,4,3) 1 27.75 (+- 0.94) 28.79(+- 0.74)
componentgrid2 | (9,5,3,5,3) 1 28.15 (+- 0.82) 29.04 (+- 0.53)
component grid3 | (8,5,3,5,3) -1 28.78 (+- 1.00) 31.74 (+- 0.55)
component grid4 | (9,5,3,4,3) -1 27.96 (+- 0.82) 29.96 (+- 0.57)
combination - - 27.93 28.63
target run (10,5,3,6,3) - - 27.67 (+- 0.94)

Table 3.7: Recombination in x and v with £,,;, = (8,5,3,4,3) and £,,,. = (10,5,4,6,3). We
show results for the averaged)., values with recombination and for an indepen-
dent simulation. In addition the statistical errors are shown. This is compared to the
combined values and the result of an target level run with a full grid of £ = /.4,

68

3.6 Numerical experiments

Tables 3.5 to 3.7 the results for three different experiments are listed. We varied the com-
bined dimensions and the minimum and maximum levels but stayed at 5 component
grids to remain stable. In all of these experiments, the combined .5 value is closer to
the target value if we apply recombination. This is a first indication that recombination
does also work for non-linear GENE simulation as long as they remain stable. Due to the
large statistical errors that arise in the averaging process, we cannot be completely sure
if these results are just lucky shots. However, since all results point towards this con-
clusion, we can follow that it is at least likely that the recombination works for these
situations and that it is superior to a single combination of independent component
grids without frequent recombination steps. Hence, recombination with DisCoTec
provides an error reduction for such cases while having similar cost.

To conclude this section, we can say that non-linear simulations introduce still prob-
lems for the Combination Technique. We observed instabilities especially for small
combination intervals and large number of component grids. These instabilities need
to be further examined in future research to enable a robust simulation of non-linear
PDEs with the Combination Technique. Fortunately, the stable test cases seem to work
well with our implementation which indicates that there is a potential to solve such
problems with the Combination Technique.

3.6.5 Summary

In the last sections, we have presented our numerical results with the novel additions
to DisCoTec. We have shown tests with realistic plasma physics simulations in GENE
that demonstrate the applicability of our implementation. We demonstrated that our
version of the FTCT can handle large numbers of faults with negligible cost and results
close to the fault-free simulation. This indicates that our implementation is suited even
in faulty environments with frequent failure events. In addition, the asynchronous ver-
sion of the Combination Technique can perform similarly to the synchronous Combina-
tion Technique for many cases. Moreover, the asynchronous mode of the Combination
Technique allows for a much more efficient combination step which is currently the
bottleneck of the complete algorithm. Thus, we have set the ground work for future
exascale computations where massively parallel and robust frameworks are required
to handle millions of potentially unreliable processing units.

Furthermore, we tested non-linear plasma simulation. Here, we observed mixed re-
sults. On the one hand, the simulations showed sometimes instabilities, especially for
large simulation times, frequent recombinations or large index sets. On the other hand,
we achieved good combination results for the most important quantities of interest
with the stable simulations. This indicates that there are still unsolved problems that
arise with non-linear simulations for the Combination Technique. More research has
to be conducted to analyse these effects and to improve the robustness of the Combi-
nation Technique. If these problems can be solved, it would open up completely new
possibilities with a much broader spectrum of possible PDE applications.

69

4 sparseSpACE: Spatial adaptivity for the
Combination Technique

We have seen in Section 2.3 that the standard Combination Technique uses regular full
grids. As a consequence, spatial adaptivity is not possible as this would violate the
regular structure of the component grids. Hence, it is not possible to carefully tailor
the grids to the application for problems that show for example complex localized be-
havior. An adaptive variant needs to lift this restriction to regular grids and should at
the same time preserve the main properties of the Combination Technique: the error
cancellation (see Section 2.3.1), the parallel execution of the component grids, and the
black-box property. The latter means that we can separate the grid generation from the
computation on the respective grid. As a result, black-box solvers can be applied to a
given grid and the results can be combined externally. This allows for a broad applica-
bility of the Combination Technique and is in fact the main selling-point in comparison
to an explicit Sparse Grid discretization. This property was also the main reason for the
creation of the HPC framework in Chapter 3.

There were already first attempts (see Section 2.3.3.2) to generalize and modify the
Combination Technique to achieve better performance for problems that need spatial
adaptivity. These attempts either define a priori graded grids that cluster points in re-
gions of interest or define a cell hierarchy that abolishes the notion of component grids.
The former is in general infeasible as the important regions might not be known a priori
or might even change during the simulation. It is therefore necessary to find automat-
ically an appropriate adaptation. The latter methods violate the black-box property as
no component grids are available that can be distributed to black-box solvers. As a con-
sequence, many applications would therefore need to be completely reimplemented for
such an adaptive Combination Technique within these cell hierarchies. Such a Combi-
nation Technique offers therefore no real benefit over classical Sparse Grid approaches
which are already quite mature.

In this chapter we describe in detail our newly developed spatially adaptive gener-
alizations for the Combination Technique: the dimension-wise refinement [85] in Sec-
tion 4.1 and the Split-Extend method [84] in Section 4.2. In this work, we extends the
already published versions for both algorithms. After introducing the theoretical and
algorithmic details of the two approaches, we present in Section 4.3 the implementation
details. All algorithms presented in this chapter were implemented in the Python-based
framework sparseSpACE!. We will discuss the general software architecture as well
as the application-specific adaptations. In Chapter 5 we then show numerical results
for the adaptive methods.

'https:/ / github.com/obersteiner/sparseSpACE

71

4 sparseSpACE: Spatial adaptivity for the Combination Technique

A (1, 3)

(1,2)

I

(3,1)

Figure 4.1: Spatially adaptive Combination Technique with rectilinear grids.

4.1 Dimension-wise refinement

The dimension-wise refinement [85] is an easy and comfortable option to get a spatially
adaptive Combination Technique. In contrast to the Split-Extend method (Section 4.2),
the dimension-wise refinement does not apply operations on d-dimensional subregions
of the domain. Instead, we are applying spatial refinement on each dimension individ-
ually. For this we define a 1D point set for each dimension and refine it individually.
Based on these refined point sets, we generate a combination scheme that contains recti-
linear grids (see Fig. 4.1), i.e. grids that are constructed by tensor product construction
from irregular spaced one-dimensional grid structures. Since all refinements that are
used in this scheme are one-dimensional, common approaches for 1D problems can be
utilized. This restriction to one-dimensional refinements is less flexible than the Split-
Extend scheme but it can be quite effective especially if only few dimensions and/or
only subregions of each dimensions need extensive refinement. In addition, it is usu-
ally very easy to integrate rectilinear grids in many applications and often such grids
are already supported by the solver.

In the next sections, we will see how to construct the combination scheme that is
shown in Fig. 4.1. We first summarize the concept of the 1D point sets in Section 4.1.1.
Here, we focus on the initial construction of the sets and their refinement. After that we
demonstrate in Section 4.1.2 how to use these point sets to obtain a valid combination
scheme. This involves creating an appropriate index set for the combination, i.e. which
component grids with corresponding level vectors £ should be used in the combina-
tion scheme, as well as the actual grid structure of the individual component grids. We
are then looking at a technique to improve the 1d point sets via tree balancing in Sec-
tion 4.1.3. This technique restructures the levels in the Sparse Grid which can help to
target the important regions of the domain more effectively. Thereafter, we describe in

72

4.1 Dimension-wise refinement

Section 4.1.4 the surplus-based error estimate that guides the adaptive process. Finally,
we summarize the complete algorithm in Section 4.1.5.

4.1.1 1D point sets

The dimension-wise refinement is based on 1D point sets P* and their levels L* in the
point hierarchy for each dimension k& € [d]. We assume both sets to be identically sorted
so that point Pf has level Lf. By refining these point sets individually we can adapt the
algorithm to the specific use case. Hence, the algorithm incorporates both ideas from
spatial adaptivity and dimension adaptivity as we spatially refine single dimensions.

In our algorithm, we first initialize these sets with the regular point distribution of
the starting level ¢, i.e. Pf = ay + j - hy with by, = 27% . (b, — a;) where a and b
define the rectangular domain D = [a, b]. As an example, we would have for a starting
level of / = 2, a = 0, and b = 1, for each dimension £ the point distributions PF =
{0,0.25,0.5,0.75,1} and L* = {0,2,1,2,0} or P* = {0.25,0.5,0.75} and L* = {2,1,2}
depending if we add or omit boundary points. A visualization with boundary points
can be seen in Fig. 4.2 (top left). In general, arbitrary starting configurations and level
constructions could be used as long as one can define a tree structure of the points.

With these point sets we can now form point hierarchies by constructing binary trees
that always connect points to their direct hierarchical parent, i.e. the hierarchical parent
from the last level (see also Section 2.2.2). This is visualized in Fig. 4.2 (bottom left) for
the previous example.

We can now use these point hierarchies to refine leaves. For this we calculate for each
leaf the contribution to the solution and add their respective children if this contribution
is high enough. This contribution is estimated by an error estimator that approximates
for each leaf the potential error reduction that can be expected by refining it. If the
chosen error estimate differentiates between the two possible children, only the most
promising one of the children could be added. Otherwise both children are added. In
Fig. 4.2 an example is shown were we refine a single point and add both of its children.
A more detailed explanation of the error estimator is discussed in Section 4.1.4.

We have seen now how to initialize and how to refine the 1D point sets. The next sec-
tion describes how these point hierarchies are used to create a consistent combination
scheme that incorporates the adaptive idea efficiently.

4.1.2 Generating the combination scheme

The normal combination technique is based on an index set 7 that defines regular grids
which are constructed for each level vectors £ € 7. The index set is typically defined by
an initial level £ and can be adaptively refined with the dimension adaptive algorithm.
For the dimension-wise spatially adaptive scheme, we have so far only the 1D point
sets. As a next step, we need to derive a corresponding index set and show how to map
the points to the corresponding grids.

In this section, we want to generalize the construction of a combination scheme ac-
cording to the one-dimensional point sets P and L*. This is done in a two-step ap-

73

4 sparseSpACE: Spatial adaptivity for the Combination Technique

S A S 2. I A A A A A A

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X
0 1
X
0 1
1
® ®
st 8
2
90 02 04 06 08 10

%.O 0.2 0.4 0.6 0.8 1.0

Figure 4.2: Visualization of the 1D refinement process. We show exemplary the starting con-
figuration and a refinement step for dimension 1. Left: At the top we illustrate the
starting configuration for the dimensions P! (black dots) and L' (blue) and at the
bottom the respective tree hierarchy. Right: P! (black dots) and L' (blue) at the top
and the tree hierarchy at the bottom after a single refinement of the leaf 21 = 0.25.

proach: we first construct an appropriate index set Z and then construct for each com-
ponent grid £ the specific one-dimensional point sets P*# that define its 1D point sets.
The actual grid structure is then build via tensor product from these 1D point sets P*+*.

For the index set we use an approach that is very close to the classical index set of
the Combination Technique. For this we will look at the maximum level £7%* that we
reach with our point hierarchy in each dimension, i.e. £** = max(L*) for dimension
k. We then define the index set according to the maximum level across all dimensions
max(£™%) but restrict it in the way that the maximum level in a dimension can only
be reached when all other level vector entries are 1. In this way, we basically cut of
the standard index set for dimensions that have a lower maximum level. The resulting
index set is

T ={l e NY||I||; < max(I™™)+d—1,1; < P>V (I; = P*¥AVE € [d]/i: 1, = 1)}. (4.1)

It should be noted that the following construction is not limited to this definition of
Z. In fact, our approach is compatible with any downward-closed index set and can
therefore also be combined with any dimension-adaptive approach.

Based on this index set, we can now look at possibilities to construct P*£ for each
£ € I. Here, it is important to first think about what such a mapping should guaran-
tee so that we get a valid Combination Technique. An adaptive combination should
ensure the error cancellation and represent an actual adaptive Sparse Grid. A valid
combination scheme should therefore fulfill at least

PRt C PRI for i,j e keld,j>i (4.2)

and

74

4.1 Dimension-wise refinement

Prt = PRI for 4.5 € T,k € [d], i) = jp. (4.3)

In this definition, Eq. (4.2) enforces that by increasing the level vector of a component
grid, only new points can be added to a point set but no points can be lost. The second
condition in Eq. (4.3) requires that a point set P* is only dependent on the value of ¢
of the level vector £ and is not influenced by any other entry from another dimension.
This second condition is required for the error cancellation as otherwise the grids that
cancel the 1D errors in the combination would not have the same 1D point distribu-
tions. It should be noted that the first equation is only meaningful for nested grids.
For combinations with non-nested grids a similar condition could be formulated that
guarantees a growing point set. Such a growing point set should always be designed
so that the approximation quality increases with higher levels 2. Another useful but
not necessary requirement is that a point is never added before any of his ancestors.
If Egs. (4.2) and (4.3) hold, this requirement can always be fulfilled by adjusting the
point levels and therefore the point hierarchy. The standard Combination Technique of
course fulfills these criteria.

We will now discuss three possible strategies for a valid combination scheme with
our dimension-wise refinement.

Strategy 1 The easiest and straight-forward solution would be to add all points Pf
when L? </, i.e. cut the point hierarchy at level ;. This results in

P = (PF e PR|LE < 4. (4.4)

One problem of this strategy (see Fig. 4.3) is that we introduce full grid-like struc-
tures in areas where the point hierarchy is low. As a result the leaves in this region are
included in almost all component grids. An example would be if we have a tree were
the maximum level is 4 but there exists a leaf at level 2 in dimension £. This leaf would
be included in all component grids with [;, > 2 and therefore there is little variation in
this region between different component grids for dimension k. This causes an almost
full grid structure of level 2 in this region. We therefore have to delay the addition of
new descendants in regions with low maximum depth in the tree. We will see such an
approach in the next strategy.

Strategy 2 In this strategy we build on the experience from the last strategy and define
a point-specific delay cé?. This delay has the consequence that a point is added at cf
levels after its own level, i.e. only if Lf < I — c? . We define this delay based on
how far a point is “behind the maximum level”. Of course a point has a fixed level
but the subtree rooted at the point has a maximum level that can be compared to the
maximum level in the respective dimension. We therefore define the maximum level of
all descendants of a point Pf by D}“ and for the delay cg? = P — Df. For points that
do not have any descendants, we set D;‘? = Lé?. As a result, we get

2An example would be an increasing number of Gaussian quadrature points.

75

4 sparseSpACE: Spatial adaptivity for the Combination Technique

1.0 1.0
08 | 08 |1 A .
0.6 |- 06 [
L . D :
0.4 |: 0.4 | i

) 0.0 & S EEE S : 0.0 Lidoiiiziii | :

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X1 X1 X1

Figure 4.3: Comparison of the three different approaches (Egs. (4.4) to (4.6)) for generating a
valid combination scheme to reach a relative error tolerance of 10~* for fewpvar (s€€
Chapter 5), v = 0.9 (see Section 4.2.5), and d = 2. Left: Strategy 1 with 4349 points.
Middle:Strategy 2 with 6145 points. Right: Strategy 3 with 1075 points which was
selected for all further test cases.

Pt = (P} e P*LE <1, -} (4.5)

Another interpretation of this delay is that we rise artificially the level of certain points
so that they are only added to the component grids with a higher level.

Let us consider an example. If we look at the midpoint of the first dimension in the
refinement step in Fig. 4.4 (left), we would have D} = 4 (for the grid point at x; = 0.5)
as it has an descendant of level four (e.g. at 1 = 0.3125). Another example in the same
figure would be D} = 2 (at z1 = 0.75 in the first dimension) as this point does not have
any further descendants and as a consequence his own level is used. The delays for the
points would be therefore ¢} = 0 and ¢} = 2 as the maximum level is 4.

This method efficiently eliminates full grid structure but it also removes too many
points. This can be seen in Fig. 4.3 where interactions that are usually expected between
the dimensions are missing in a large area of the domain. The reasons for this is that
the delays cé‘? between different dimensions add up. So if we have a delay of 6]1 = 2 for
some j in dimension 1 and c? = 1 for some j in dimension 2, then the interaction, i.e.
grids where a point & with both z; = le and zp = P; would exist, is actually delayed
by 3. If this delay is too big, then this interaction is removed completely.

It should be noted that this method can construct grids with very low numbers of
points which might be useful in situation where the interactions between the dimen-
sions are not so essential for the accuracy. In our experiments with quadrature and
interpolation, we observed fast convergence at low point numbers with this strategy.
However, with increasing unbalance of the refinement trees the convergence is usually
stagnating at some point and no further progress can be made. We therefore conclude
that the interactions are indeed essential for many applications and need to be consid-
ered for constructing an efficient mapping. We therefore address this issue in the next
strategy.

76

4.1 Dimension-wise refinement

I

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4: Example for Strategy 1 Eq. (4.4) applied to the final refinement (left) of Fig. 4.5. We
show P* and L* (blue) for each dimension z;, and the combination scheme (right).
Strategy 2 would be the same as Strategy 3 from Fig. 4.5 for this refinement. Green
component grids are added and orange ones are subtracted.

Strategy 3 In the previous strategies, we have seen that is essential to use a delay for
the points from the tree refinement if we want to obtain Sparse Grid structures. At the
same time, we have seen that such a delay has to be carefully chosen so that important
interactions between dimensions are preserved. We therefore constructed a scheme
were the previous delay c;? is reduced to 52‘? € [Océ“] As we have outlined before, the
delays between dimensions add up. Hence, the new delay has to consider also the other
dimensions and distribute the delays in a balanced fashion. The approach we chose is

PM = (PFe PHIF <y, ~’” A(LE < DE v i = o)y (4.6)
with 2
& = max({m € Njg(cj — (m —1),k) + Y g(¢j —i,d) < ¢} U{0}),
=0
= Z h(z,s),and (4.7)

Wz, s) 1 if max(c®) >z
T,8) =
0 otherwise

Here, the first clause of Eq. (4.6) L]C <y — l uses the modified delay ¢ c while the
second clause (L;C < Df Vi = lma") makes sure that leaves from the reflnement trees
are only added in component grids with maximum level in the respective dimension,
i.e. for our case where all other levels are 1. This is reasonable as leaves, which represent
the highest resolution in an area, are not meant to interact with other dimensions in a
Sparse Grid. The calculation of é;‘? is outlined in Eq. (4.7). Here we try to find a delay
m that distributes all delays across all dimensions in a balanced fashion. In our case,
we distribute the delays cé? in a round-robin approach. If we want to use a delay of

77

4 sparseSpACE: Spatial adaptivity for the Combination Technique

m, we therefore have to distribute first m — 1 times delays to all relevant dimensions
and in the last round it suffices if we only distribute delays until dimension k. Here, a
dimension s counts as relevant if it has a sufficiently high maximum delay max(c®). This
idea is incorporated in the two helper functions g and h. g(z,n) sums up all relevant
dimensions s € [n], i.e. all dimensions with h(x, s) = 1. h(x, s) checks if the dimensions
s is relevant by comparing its maximum delay to x. This threshold z is reduced by 1 for
each of the m rounds in which we distribute delays. Out of all possible m values, we
then chose the maximum value for é? that guarantees that the total summation does
not exceed c"f.

Let us now look again at an example. In the refinement shown in Fig. 4.4 (left), we
have max(c!) = 2 and max(c?) = 1. For the point P¢ (at z; = 0.75), we have the
delay ¢} = 2. Consequently, two “delays” are available that can be distributed across
the dimensions. In this case, this results in ¢} = 2 since it is the only dimension with a
c;? value > 2 and the second delay is first distributed to dimension one. Similarly, the
point P2 (at x5 = 0.75) with ¢ = 1, gets assigned & = 0 since the only available delay
is first assigned to dimension one.

In Fig. 4.3 we compare the refinements for all strategies with the same function that
achieve a relative integral error of 10~%. One can clearly see that Strateqy 3 performs
best since it produces common Sparse Grid structures. Stategy 1 creates a full grid in the
upper right corner while Strategy 2 puts almost no points in that regions as it removes
too many points. The benefit of Strategy 3 is also reflected in the point numbers that are
needed to reach the tolerance which is by far the lowest for Strategy 3. This difference
further increases with higher refinement levels.

A detailed example for the refinement process of Strategy 3 can be found in Fig. 4.5.
Here we show for different refinement steps the point sets P* with their levels L* and
the resulting combination schemes and Sparse Grids. The corresponding final refine-
ment step with Strategy 1 can be seen in Fig. 4.4. At this stage Strategy 2 and Strategy 3
are still identical due to the fact that only for deep refinement trees, points are affected
by the reduction of the delay to Ef. At the beginning only for leaves the delay is reduced
but for leaves the second clause of Eq. (4.6) ensures a maximum delay.

4.1.3 Tree rebalancing

We have described in the last section how to map a point set P* with its corresponding
point hierarchy — represented as trees — to the points of a component grid P**.

By adaptively refining this tree structure, we often observed a strong unbalance in
the tree. This is of course related to the fact that if certain regions require excessive
refinement the tree will grow more in those regions than in others. We have seen be-
fore that such an unbalance has to be treated carefully in order to preserve the Sparse
Grid structure and obtain good results. An optimal mapping, however, requires a com-
pletely balanced tree as here the full potential of the Sparse Grid construction can be
utilized.

Instead of only optimizing the mapping of P* to P**, we therefore introduced tree
rebalancing to minimize the unbalance in the tree. Here, we make use of the existing

78

4.1 Dimension-wise refinement

Start Step 1
o +z X# +2 0) kﬁo +3 +2 +3 X} +2 00%
0}#0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
o X% 0] 2
0 | 0]
0#0 0 2+2 0.4 + 0.6 +20-8 1#0 Oh 0.2+Z 0.4 + 0.6 +20.8 10.#0

(1,2)

73

= (1,1) (3,1)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.5: Three refinement steps of the dimension-wise spatial refinement. At each step we
show P¥ and L* (blue) for each dimension x;, the combination scheme, and the
resulting sparse grid. Green component grids are added and orange ones are sub-
tracted.

79

4 sparseSpACE: Spatial adaptivity for the Combination Technique

tree balancing strategies know from binary search trees. Algorithm 5 shows our ap-
proach, where we recursively restructure the tree if a too strong unbalance is observed.
We assume that the tree is linked via pointers and for each node n we can address its
left and right children via n.left and n.right. In the algorithm, we look at each recursive
call at the subtree rooted in r and compare the number of points in the hierarchy start-
ing from the right child |right_desc(r)| and left child |left_desc(r)|. Ideally, both children
would have an equal number of points as ancestors. Unfortunately, this is usually not
the case. Consequently, we test whether switching the right child or left child to the
root improves the balancing and apply the restructuring if needed. Of course, this re-
structuring also requires some changes in the pointer structure of the binary tree which
are outlined in Algorithm 5. To avoid rebalancing back and forth in consecutive refine-
ments, we introduced a safety factor s that slightly delays a rebalancing operation by
requiring a larger unbalance. In our test cases we used s = 0.1.

In Fig. 4.6 we show an example of this rebalancing strategy. Here, the unbalanced
refinement tree can be completely balanced by applying a single rebalancing operation
at the root. In the figure we also indicate in red how the point location associated with
subspace ! = (1,1) is moved.

The complexity of the tree rebalancing procedure is O(Zizl | P*|) as we call the pro-
cedure recursively for every point in the 1D point sets and each call can be performed
in constant time.

4.1.4 Error estimation

In the last sections we have seen how to generate from 1D point sets P* component
grids and how to optimize this mapping with tree rebalancing. The last part that is
missing for an efficient adaptive algorithm is the calculation of error estimates that
guide the adaptive process. These error estimates need to be localized to help us find
points in the 1D point sets that need to be refined. We denote the error estimate for
point Pf by e?. This error estimate is based on multiple estimates coming from each

of the component grids. These component grid specific error estimates e?’z are then
combined according to

e? = ch . ef’l . (4.8)

e

In this formula, we use the combination of component grid specific error estimates,
which are all positive, to get to the final error estimate. This combination might be
counterintuitive as we do not know the actual sign of the errors. In reality the combina-
tion could amplify or cancel the errors in various ways. However, moving the absolute
value inside the summation to get an upper bound would result in ever growing errors
due to the growing number of component grids with higher refinement levels. There-
fore, the error estimates would not converge. The combination of error is therefore a
way to avoid this problem. Another motivation for this error combination is the er-

80

4.1 Dimension-wise refinement

Algorithm 5 Pseudocode for the recursive tree rebalancing starting from root r
procedure REBALANCE(r) > Output: Rebalanced tree with root r new
total_desc = |right_desc(r)| + |left_desc(r)|
if total_desc = 0 then
returnr
end if
ratio_left = |left_desc(r)| / total _desc
ratio_right = 1 - ratio_left
if ratio_left > ratio_right then
ratio_left_child = |left_desc(r.left)| / total_desc
if |ratio_left_child - 0.5] + s < |ratio_left - 0.5| then
rnew = r.left > Rebalance to Left
rleft = r new.right
rnew.right=r
else
rnew =r
end if
else
ratio_right_child = |right_desc(r.right)| / total_desc
if |ratio_right_child - 0.5| + s < |ratio_right - 0.5| then
r-new = r.right > Rebalance to Right
rleft = r new.left
rnewleft=r

else
rnew =r
end if
end if
r_new.left = REBALANCE(r_new.left) > Recursive call on left child
r_new.right = REBALANCE(r_new.right) > Recursive call on right child

return r new
end procedure

81

4 sparseSpACE: Spatial adaptivity for the Combination Technique

X
0 1
X
0 1
1
1
v o
32 3
2
3
d0° 02 04 06 08 10

%.O 0.2 0.4 0.6 0.8 1.0

1.0 1.0
0.8 0.8
° .
0.6 0.6
>’2‘ e o 0 o . o . >‘2‘ . . .
0.4 . 0.4 .
. . ° e o o 0O . ° .
0.2 . 0.2 .
. ° . . .
. .
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X1 X1

Figure 4.6: Rebalancing of the refinement trees and resulting Sparse Grid. Left: Initial re-
finement tree (equal for both dimensions) with clear unbalance and corresponding
Sparse Grid below. Right: Refinement tree after rebalancing (for both dimensions)
and corresponding Sparse Grid below. We have marked the point in the subspace
with level vector I = (1, 1) in red and without filling for both situations.

ror cancellation of the Combination Technique (Section 2.3.1) which is similar to our
procedure.

The question is now how we calculate the component grid specificc errors eg? . For
this we make use of the well-known surplus error estimate which uses the hierarchi-
cal surplus (see Section 2.2.2). The surplus value is suited as an error estimate as it
approximates the recent changes in the function value and therefore a point’s contribu-
tion. In addition, the surplus value is a measure for the second derivative [36]. Since
we need only error estimates for 1D point sets, we use the 1D counterpart of the sur-
plus, i.e. we only execute the first hierarchization step with the unidirectional principle
for the respective dimension. By summing up these 1D surplus values along all other
dimensions we get a projection into 1D.

82

4.1 Dimension-wise refinement

In Algorithm 6, we oultine the complete error calculation for dimension k. We first
iterate over all 1D slices in dimension %k, i.e. we fix all other dimensions and iterate
through dimension k and repeat this process for every combination in the other dimen-
sions. For each of the slices the 1D hierarchization is performed by solving Ao = y

with the matrix A;; = gb?ier(Pf’e). Here we evaluate the 1D hierarchical basis functions
phier (see Section 2.2.2) associated to point Pl-k £ with level Lf’z at the points Pf’e and

calculate the function values y, = f(x) with z;, = Pf’l and the other components of
x set to the fixed coordinates of the 1D slice from the other dimensions. The resulting
surplus values « are then used as error estimates. It should be noted that the matrix A
is not inverted but instead we solve a linear system of equations via Gaussian elimina-
tion. As the matrix stays constant we can also decrease the complexity of the repeated
solve by computing the LU decomposition (or a similar decomposition) of A. For the
linear hat basis this system of equations can even be solved in linear time by using the
hierarchization shown in Section 2.2.2.

One important observation is that the leaves of P* are only contained in grids with
highest resolution in dimension k. Since we only need error estimates for these leaves,
we need to map the surplus values to the leaves. This is done by using the surplus «;
for point Pf’e if it is a local leave in P** and split it equally between all of his ancestors
in the point hierarchy P* that are leaves. We also multiply the surplus by the volume
of the partially hierarchized basis function associated to point . This ensures that we
do not refine too excessively towards less and less relevant basis function with a small
support.

The overall complexity of the error estimation for a component grid £ is therefore
O(N*.d+ Zg:1 | P¥|) as we need to compute the error estimates for all d dimensions and
each calculation is done via the 1D hierarchization of the linear hat basis (O(N*)) and
thereafter these error estimates are applied to each point set P*. Here, N* = [[{_, n;,
denotes the number of points in the component grid £ with n, = | P

4.1.5 Overall Algorithm

We have now seen all the components of the dimension-wise refinement. The only
thing that is left is to combine these components to get the overall refinement proce-
dure. This procedure is shown in Algorithm 7. First, we initialize the combination
scheme and then we enter the while loop that calculates the combination result. In
this loop, we first iterate over all component grids, generate for the level vector £ the
corresponding 1D point sets, apply the application-specific operation on the resulting
grid, and combine it to get the result. We also calculate for each of the component grids
the dimension specific errors (see also Algorithm 6). In the next step we calculate the
global error € by either comparing to a reference solution or using the error estimates
from Section 4.1.4. If this error is below a pre-defined tolerance or if the maximum
number of points is exceeded, we terminate the procedure. Otherwise the refinement
process is started.

83

4 sparseSpACE: Spatial adaptivity for the Combination Technique

Algorithm 6 Calculation of the error estimates for the dimension k& of the component

grid £ with n, = |P*#|.

procedure CALC_ERRORS(P, ..., P44 L1¢ . L4t k. £) > Output: e-f, .. ekt

build Matrix A
initialize o and €** with 0
fors=1toddo

if s # k then
Ng = N
else
ne =1
end if
end for

fori e [[%_,[s] do
fors=1todand s # k do

7 = B
end for
for j = 1ton; do
xz = Pf’e
bj = f(z*)
end for
a+=A"1b
end for

for j = 1ton; do
if PJM is local leaf then

ke
volume =2~ s

fors=1todand s # k do

volume *= 2%
end for

for leaf in leaves(Pf’e, k) do

ke

€leqs += volume * [a, | /|leaves(

end for
end if
end for
end procedure

> iterate over all dimensions except for k

> iterate through dimension £ and fill vector b

> solve system for hierarchization

> sum up error values

£ m
M k)|

84

4.1 Dimension-wise refinement

Algorithm 7 Pseudocode for the spatially adaptive algorithm for integrating f in the
domain defined by a and b. We pass a reference solution to calculate exact errors.

1: procedure DIMENSION_WISE_COMBI(a, b, tolerance, reference, f, max_points)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

> Output: integral

initialize combiScheme of level ¢ = 2
while true do

result =0
for combiGrid in combiScheme do
l = combiGrid.levelvector
pit . pit L1 L% = GET_.COMBIGRID(P', ..., P* L' ... L% 1)
> generate tensor product grid and calculate integral
result += grid.OPERATION(f, P1#, ..., P%*) . combiGrid.coefficient

fork=1toddo > calculate errors estimates for every dimension
CALC_ERRORS(PM, ... P3t LVt L4t [0)
end for
end for

error = |(integral-reference) /reference|
if error < tolerance or number_of_points ; max_evaluations then
break
end if
v=0.5 > refining
max_error = refinement.GET_MAX_ERROR()
fork=1toddo
P* L* = REFINE_LEAVES(P*, L*, max_error -v)
end for
fork=1toddo > tree rebalancing
root; = GET_ROOT(P¥, L*)
rooty = REBALANCE(rooty)
P* L* = UPDATE_LEVELS(rooty,)
end for

end while

28: end procedure

85

4 sparseSpACE: Spatial adaptivity for the Combination Technique

In the refinement procedure, we first refine the leaves in the 1D point sets that have
a local error e? > 7y - "% with the maximum local error €"** = maxjc[q) (maxje[nk} ef)

Afterwards the rebalancing strategy (see Section 4.1.3) rebalances the tree if necessary.
The overall complexity of the whole algorithm for the n-th iteration is

d
k=1

d d

+3 ’Pk,(n)‘ +3 ‘pk,m)
£ET(M) c41=0 k=1 k=1
where N4 and P*(") are the number of grid point in grid / and the 1D point sets in
this iteration, respectively. The first summation covers the complexity of the grid opera-
tion® and the error calculation with the hierarchization using linear hat basis functions.
These operations are applied to every component grid. The last two terms are from the
rebalancing and refinement procedures which are only called once every refinement

step. Since usually d - N&() > $°4_ ’Pk’(")

od- Y Nt

eI =0

, this can be further simplified to

This is optimal as it is the same complexity that is already needed for iterating through
all points for every component grid. Of course we might need several refinement steps
until we reach the maximum number of points or fall below the tolerance. In theory,
we can reuse computation to reduce the cost for such a use case but the solver would
also need to support such an adaptive refinement. This is the reason why we usually
reevaluate everything for every refinement step.

To conclude this section, we can say that we have presented a novel dimension-wise
spatially adaptive refinement procedure that uses adaptively refined 1D point sets to
construct a valid combination scheme. The resulting rectilinear grids can be processed
in a black-box manner with suited solvers. In addition, the computational complexity
per time step is linear in the number of grid points which is an optimal complexity for
such an approach.

4.2 Split-Extend scheme

In this section we will give a detailed description of the Split-Extend scheme [84]. The
approach is characterized by a combination of two refinement operations that can be
applied on d-dimensional — usually rectangular — subregions of the domain: the Split
and the Extend operation. After each refinement step, a consistent combination scheme
is formed that creates component grids covering the whole domain. These grids are
block-adaptive, i.e. grids that are formed of blocks of regular grids (see Fig. 4.7). Suited
black-box solvers can then be used for the computation on these grids. Block-adaptive

*We assume here O(N, l(n) - d) which holds for many operations such as integration

86

4.2 Split-Extend scheme

I

(1,1)

h

Figure 4.7: Initial Split for standard Combination Technique with £ = 2 and 7 = 0. Each of the
subareas resemble a Combination Technique with £ = 2 and 7 = —1. We show the
local level ¢; for each subregion in blue.

grids are for example common in PDE calculations and were also implemented for
GENE [65].

The Split operation can split a subregion in an octree-like fashion, i.e. the domain
is split in one or multiple dimensions, which results in multiple smaller disjoint subre-
gions. This operation allows for more fine-grained refinement as it allows the algorithm
to focus on specific subregions tailored to the application. Depending on the configura-
tion and the needs of the application, each call to the operation can split the subregion
in single or multiple dimensions.

The Extend operation does not modify the boundaries of a subregion but it increases
the Sparse Grid level of the subregion. This is implemented with the use of local levels
which are assigned to each subregion. The Extend operation simply increases the local
level of a specified subregion by one. As a result, the number of Sparse Grid points
inside the subregion will grow.

In the next sections, we give a detailed explanation and motivation for both opera-
tions. To formalize the mathematical description, we assign each subregion a unique
identifier 2 which could be for example the boundaries of its subdomain. In addition,
we outline how to generate a consistent combination scheme after applying these oper-
ations. Thereafter, we look at how to estimate errors that guide the adaptation process.
At this point, we mainly focus on numerical quadrature, but a possible adaptation for
other applications is straight-forward. Finally, we describe the structure of the overall
algorithm that is used in our implementation.

4.2.1 Initial setup

For the initial configuration of the algorithm, we will start with a standard Combina-
tion Technique of level ¢ = 2. If we look closely at Fig. 4.7, we can see that the scheme
can also be seen as a union of 2¢ subregions where each subregion forms a truncated

87

4 sparseSpACE: Spatial adaptivity for the Combination Technique

combination scheme (see Section 2.3.1) with ¢/ = 2 and 7 = —1. This observation gives
an important insight: there is no difference between applying the individual point pat-
tern to 2¢ subregions separately or to increase the minimum level by 1 and apply it to
the complete domain. In our case, the point pattern within the subregions is that of a
Combination Technique with ¢ = 2 and 7 = —1, but the overall structure originates
from the Combination Technique with / = 2 and 7 = 0, which is the standard Com-
bination Technique of level 2. This equality of splitting the domain and increasing the
minimum level is actually a general pattern. Adding 1 to the minimal level is equal
to using the current point pattern in a region 2 and applying it to each subregion of an
octree-like split of the region ¢. This concept is important for the Split operation. The
initial Split into 2 subregions is the starting point for the Split-Extend algorithm.

In addition to this Split, we define for each subregion ¢ a local level ¢;. This local level
describes the local size of the combination scheme and is initialized to ¢; = 2 for the
initial subregions as we start with a regular Combination Technique with level ¢ = 2.

4.2.2 Split

In the previous section, we outlined the initial setup for the Split-Extend method. We
create initially 2¢ subregions 4 with local level /; = 2 and 7 = —1. We have also
seen that increasing the parameter T by 1 is equal to splitting a region % equally into
24 regions and replicating the previous point pattern of region ¢ in each of the new
subregions.

This concept is used in the Split operation. We, however, never actually increase the
7 value but keep it at —1. Instead we create a separate combination for each of the
newly created subregions j € children(z) by using the replication idea. We address the
parent cell ¢ later by parent(j) = <. In Fig. 4.8, we show two refinement steps. Here,
we select always one subregion for refinement and then split it in an octree-like fashion
into its 22 = 4 children. Then we apply the combination scheme from the parent on
each of these children. By repeating this process, we can target more and more fine-
grained where we want to add points. It is important to see that all local levels /; = ¢;
for j € children(z) stay unchanged and are inherited from the parent subarea <.

Instead of splitting all dimensions at the same time, it is of course also possible to
perform the split only in a single dimensions which creates 2 children. This resembles
a Combination Technique where we increase 7 only in the respective dimension & by 1,
but again we are instead replicating the existing combination pattern in both children.
An example is shown in Fig. 4.9 where only dimension z; is split. Especially for high
dimensions this is interesting as adding 2¢ children is not feasible for such cases. In
addition, this strategy benefits from use cases where some dimensions need less refine-
ment. However, the more flexible the refinement gets, the more dependent we are on
a good error estimate as otherwise suboptimal decisions can lead to inefficient refine-
ments.

We have seen that the Split Operation can efficiently refine towards certain regions of
the domain by performing octree-like splitting in singe dimensions or multiple. How-
ever, since the local levels /; stay constant the combination scheme does not change.

88

4.2 Split-Extend scheme

(1,2)
= (1,1) (2, = = (2,1)
2 2
2 22
I h A
1.0 1.0 1.0
0.8 0.8 0.8
[2 [2
0.6 0.6 0.6
>f<‘4 o g Py o >f<‘4 Py Py Py Py
® 20 26
04 0.4 2 2 0.4 2 >
® 20 e
b . . o - L o P S, 2
0.2 0.2 0.2
2 2 2 e 2
0.0 0.0 0.0 O
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
X1 X1 X1

Figure 4.8: Two refinement steps with the Split operation: Starting from the initial setup (left),
we perform two Split operations (middle and right). In the first step we refine the
lower left area. Then out of the 4 new subareas the upper right one is selected for
the next Split operation. We show the respective combination scheme on the top and
the resulting Sparse Grid on the bottom. Local levels are inherited from the parent
area and are shown in blue.

This has the effect that we are moving further towards a full grid structure since we
are effectively increasing 7 but not ¢. This process just replicates patches of the original
Sparse Grid. The Split method is therefore only interesting to narrow down the location
where we want to refine but not as a full refinement procedure. Additionally, we have
to modify the local level ¢; which will be done by the Extend operation.

4.2.3 Extend

We have seen now how to refine subareas to get the refinement more and more localized
with the Split operation. In this section we will introduce the second operation Extend.
With the Extend operation we do not change the boundaries of subareas but increase
the local levels /; by one. This can be seen in Fig. 4.10 where we refine twice the lower
left subregion.

By increasing local levels, the different subregions do not fit anymore to one global
combination scheme with fixed level ¢. We therefore have to find the maximum local
level and use this for the global combination scheme, i.e. ¢ = max;crefinement £s- With
this combination scheme, we are obtaining level vectors £ according to the new index
set Zy.

89

4 sparseSpACE: Spatial adaptivity for the Combination Technique

Figure 4.9: The Split operation in single dimensions: We show one split in dimension z;. We
show the respective combination scheme and the local levels in blue.

However, since not all subareas match this level, we cannot just apply the component
grid level vector £ to every region. Instead each of the subareas get its own coarsened
level vector £; < £ to adjust it to the potentially lower local level /;. This process of
reducing the level vector is therefore referred to as coarsening which is defined by a
mapping function my : N? x N — N¢ with fe(£,4;) = £;. With this local level vector £;,
we then create the respective local grid for the calculation in this subarea. By fusing all
grids from all subareas, we then get the final component grids.

The question is now how to define such a mapping f. One of these procedures m;
is shown in Fig. 4.10 where f;(¥, ¢;) recursively coarsen the level vector n = ¢ — ¢;
times by reducing in each step the maximum entry of the level vector by 1. In case
there are multiple possible maximum entries, we reduce first the one with the smallest
dimension number. If we end up with an invalid level vector that contains negative
entries, we just map it to the level vector 0 and will ignore the respective result later
(see next paragraph). The set of all not ignored level vectors will be denoted by Ig CI.
This in fact specifies a sur]ectlve mapping of level vectors £ € 7, to level vectors £ € Z,,,
ie. mj : I, — I,, and m} surjective. This mapping is surjective as every level vector
AS Ty, has a respective level vector £ € 7, where the maximum entry of £ was increased
n = ¢ — {; times. In other words: if we consider a local level ¢; < [, we can add to any
level vector in the index set Z, the value n = ¢ — /; to an arbitrary component — in our
case the maximal component — and result in a level vector which is part of the index set
I,. Hence, the mapping via coarsening is surjective. This mapping also guarantees that
the combination coefficient is correct, i.e. cg = cy,. This is important as this allows us to
fuse the subarea to one big combination grid that still supports the black box property.

One problem of this approach is that since the mapping is surjective, we can hit some
level vectors multiple times. This would lead to situations were points are accounted
for too often or points are subtracted too often. We therefore only sum up the results

90

4.2 Split-Extend scheme

(1,2) (1,3) il 4|

(1,2) (2, 2)
2 | 2

(2’ l) - <
3 2

7}
=
-

1.0 1.0 1.0
0.8 0.8 0.8
2 L 2 2 2 2 L 2
0.6 0.6 0.6
>(<‘l Py o g o P Py Py >f<‘4 o
b L
0.4 0.4 0.4 N b
L
b 2 [2]] 2 P e @ e @ 2
0.2 0.2 0.2 L
b o L
b L
0.0 O 0.0 0.0 O
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
X1 X1 X1

Figure 4.10: Two refinement steps with the Extend operation: Starting from the initial setup
(left), we perform two Extend operations (middle and right). In both steps we in-
crease the level in the lower left subarea. We show the respective combination
scheme on the top and the resulting Sparse Grid on the bottom. Local levels are
shown in blue. The areas with points marked in red are not considered for refine-
ment.

for these regions at the first occurance of a local level vector £;. Otherwise, we ignore
the contribution of this subarea in the final combination. This is visualized in Fig. 4.10
by the red marked points which define the affected subareas for which the local result
is discarded. Areas for which the level vector was mapped to an invalid value are
also always discarded and are filled up with points of level vector 0. This allows us to
perform operations on the global grid but only combine the necessary information. We
do not even need to compute the respective values for the red points if the respective
operation on the grid does not require a grid that spans the complete domain. In such
a case, we can just generate the component grids without the respective points.

It should be noted that the equations Eqgs. (4.2) and (4.3) are not satisfied globally
between subregions. The reason for this is that we are more or less building a separate
Sparse Grid for each subregion. But even in each subregion it is not necessarily satisfied
with the shown mapping. This does not create any problems as the level vectors that
violate the condition are excluded from the final combination. If there is an application
where it would be necessary to fulfil this condition or where we always want to include
all grid values of every grid in the final combi, we have created another mapping m? :
Zy — 1y, UZ,. Here, we do not decrease the maximum element of the level vector but

use m3 (£, ¢;) = £ with £ = maz(0, ¢ — {WJ). This is basically a round-robin

91

4 sparseSpACE: Spatial adaptivity for the Combination Technique

(1,2) (1, 3) il 4|
. . 2,3
(1,2) (2,2) 2n 2
24 2 4} 2
(2,1) = < , (3, 2)

/7]
=
-

3 2 2| =z

1.0 1.0 1.0
D L L
0.8 0.8 0.8
2 L 2 2 L 2 2 L 2
0.6 0.6 § ! 06 ¢ 1
< Py Py < o o o Y < SPUPUPPAPEPEPY o o o
P L
0.4 0.4 J 0.4 o)
L
P 2 [2 b - [2 P e e e @ 2
0.2 0.2 02 1
b [L] L
P L
0.0 o 0.0 ¢ 0.0)
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
X1 X1 X1

Figure 4.11: Two refinement steps of an Extend operation that avoids removing of points: Start-
ing from the initial setup (left), we perform two Extend operations (middle and
right). In both steps we increase the level in the lower left subarea. We show the
respective combination scheme on the top and the resulting Sparse Grid on the
bottom. Local levels are shown in blue. No points have to be removed but point
numbers can grow in regions that are not refined.

distribution of the n = ¢ — ¢; coarsenings where we discard coarsenings that would
decrease the level vector below 0. This has the downside that we are not guaranteed to
achieve a maximum coarsening which can increase point numbers in regions that are
not affected by an Extend operation. However, we now satisfy locally Egs. (4.2) and (4.3)
as the coarsening of a the k-th component of a level vector is independent of the other
dimensions and by increasing ¢}, we cannot decrease /5. An example of this mapping
is shown in Fig. 4.11. We can see that in contrast to Fig. 4.10 new points are introduced
in regions with unchanged local levels. However, the benefit is that we do not need to
exclude points from the results any more.

We have now described how to create a consistent combination scheme in the pres-
ence of varying local levels. At this point, the only missing part for an adaptive algo-
rithm is the estimation of the benefits that we get by refining a certain area and which
operation we should chose. This is explained in the next section.

4.2.4 Error estimation

In the last sections, we have seen which refinement operations we can perform on a
subarea. This section discusses the logical next step which is the topic of how to find

92

4.2 Split-Extend scheme

the subarea that we like to refine and which operation we would like to apply to it. We
will only discuss error estimates for integration but similar definitions for other appli-
cations can be obtained if the integral value is for example swapped with the function
approximation in a subarea. In these cases, we can make use of surplus values instead
of integrals or use a suited norm on the subtraction of such function approximations
from different refinement states. But now to the quadrature-specific errors.

First we will define a subarea-specific error estimate ¢; that will show the potential
benefit for refining the subarea. Here, we will always use the comparison of the current
integral approximation I®" to the previous one I9! for subarea 4 which is defined by

e = I = I}, (4.9)

This estimate shows the most recent change which is a good heuristic for the future
trend of the convergence. In other words, we try to estimate the future changes by
looking at the previous change of the integral.

In the following, we will analyze how this integral approximation I is calculated. We
will use the notation ¢(f, %, ¢;) which calculates the quadrature of the function f with
the local Sparse Grid level /; in the subarea 7. This quadrature includes already the
whole combination of component grid integrals. It can be defined as

q(f,i,6:) = e > f(@) - wg (4.10)

£eZ, xepoints(m(£,4;),1)

where m(¥, ¢;) denotes the mapping function that coarsens the level vector £ (see Sec-
tion 4.2.3), points(£,4) the points generated with level vector £ for region 4, f(x) the
function value at point , and w,, the quadrature weight for point . For a subarea ¢
with local level ¢;, we therefore define I}V = ¢(f,4,¢;) as the current integral value.
The number of function evaluations used in this quadrature is defined as ny, ;.

The old integral approximation I9 is a bit more tricky. Here, we need to consider
which operation happened last that generated the current state of the subarea. For
treating this problem we differentiate between the different basis functions that we use.
We will first outline the main ideas for the linear basis. This includes how to choose the
next operation once we have found the subarea we want to refine. Thereafter, we will
describe the changes for higher order basis functions. Last, we will also describe how to
adapt the error estimates so that we can perform Split operations in single dimensions.

4.2.4.1 Linear Basis

For the linear basis, we have various options to calculate the old integral approxima-
tion. In case the last operation was an Extend, we simple define Ifld’ X =q(f,1,0;—1)as
only the local level increased. If the last operation was a Split, this is more complicated
since we do not have a corresponding previous quadrature for the specified region but
only for the parent area parent(z). Hence, we have to map the approximation of the
parent region to the specific subarea. We will describe three different variants for such

93

4 sparseSpACE: Spatial adaptivity for the Combination Technique

a mapping in the following. The first approach is to filter the integral contributions of
the parent region that contribute to the subarea <. For the linear basis this translates to

[P =N, > wy f(@) = Tl(q(f, parent(d), £;),5) (411
Lel, xepoints(m(£,L;),parent(i))
xcarea()

where we introduce II(¢(f, parent(z), ¢;),) which filters out the integral contributions
of ¢(f, parent(z), £;) (see Eq. (4.10)) that fall into the subregion 3. area(%) returns the sub-
domain of the subregion i, i.e. [a;, b;] for the rectangular subarea with lower boundaries
a; and upper boundaries b;. We also use the modified weights w}, that adjust the weight
for point x if z lies on the border between subareas. In this case the weight is split
equally between those subareas, i.e. w} = wg/|{j € children(parent(i))|x € area(j)}|.

Another option for the calculation of the old integral approximation after a split is to
evaluate a surrogate f of f based on the previous state before the Split and evaluated
the integral based on this surrogate. To make this process more explicit, we use f =
I'(f,1,¢;). As a result we get

I9ld,sp,2 _ q(f’ i, gi) — q(F(f, parent(’i), fi), i, fi). (4.12)

(2

For the linear basis such a surrogate would be a d-linear interpolation of f based on the
previous grid points of the parent. This surrogate f can then be evaluated at the new
grid points of the child just as the regular function. Hence, the quadrature approxima-
tion for the previous contribution is then ¢(f,i,05).
A less efficient alternative would be

I; dsp3 _ q(parent(¢), ¢;)/|children(parent(z))|. (4.13)
In this variant, all children have the same parent integral approximation value which
could hide different contributions of the different subareas to the parent integral. If one
of the subareas for example contributes to 90% of the parent integral, it is not optimal
to just split the integral equally between all children. In this case the error estimate will
not correctly indicate that one of the subareas has a higher impact.

Our results showed that the combination of both Ifld’SP’l and Ifld’SP’Z resulted in the
best refinement. In particular we used min(|/ fld’SP’l — IV |1 fld’Sp’2 —I7°"|) which is just
the minimum of both associated errors. The reason for that is that both terms tend to
overestimate the errors in different cases. The first term can for example better estimate
the error for constant subregions of the parent region, while the second term performs
better when the function is close to the d-linear surrogate.

With these error estimates, we have now a tool to detect the most promising subre-
gion by selecting the regions with highest error estimate. But the next question is which
operation we should perform for the selected subregion. We therefore have to estimate
the potential gain that we can expect from a Split and an Extend operation. One intuitive
approach is to select a splitting depth ¢ that defines how often we recursively split the

94

4.2 Split-Extend scheme

subareas before applying an Extend operation. If we for example select 6 = 2, then we
can split an initial subarea and its (potential) children, but children of the children can
only be extended. A value of § = 0 means that we are not allowing any Split operations.
The reasoning behind this splitting depth is that we first want to narrow down the re-
finement area and then increase the level where needed. This approach can be quite
effective but it also has the problem that the optimal depth § might vary throughout
the domain and it is another parameter that needs to be optimized first. Trying various
parameters might not be feasible for some applications. In our test cases, we found
that typically the best depth is in the region ¢ € [0, 4] depending on how localized the
function is.

Due to the aforementioned problems, we also created an automated system that
chooses the operation by estimating the benefit of the different operations. To get a
fair comparison, we need to start for a subregion ¢ at a common reference state. From
this reference state, we have to be able to get to the current state of < by applying an
Extend and a Split operation. We therefore use the reference region parent(z) with local
level /; — 1. By performing a Split and an Extend in arbitrary order, we get to the current
state 2 and ¢;. This idea can be seen in Fig. 4.12. It should be noted that such a reference
state always exists as we initially split the domain and we start with a level of 2.

We can now define the benefit of doing each operation. For this we measure how
close we come to the final state with the Extend or the Split operation starting from the
reference state. We use relative errors as the higher degree variants later have different
target integrals for the Split and Extend operation *.

If we apply a Split operation to the reference state, we result in the current subarea
but with a decreased local level. We therefore define the integral after the Split by
q(f,%,4; — 1). This gives us the error estimate

s _ a8, 6) —g(f 0,6 — 1)
¢ q(f,4,0;)

In case we apply the Extend operation to the reference state, we obtain the same level
as the current subarea but are still at the parent region. Hence, we can use for the

error of the Extend all previous approaches to we compare the region % to its parent

region. Here it is possible to use the approaches with I; 195P1/2/3 £6m one of the three

described approaches before or alternatively the scheme for high degree methods that
we will describe later. A key aspect is here that we do not just want to take the integral
at the parent region with local level /; which comes from refining the reference state once
with an Extend, but we want to look at refining it £ € N times. The reason for that is that
the increase in the number of points is typically more drastically with an Split than with
an Extend. Even if we adjust the estimate by dividing through the number of points,
the first refined points will always achieve a bigger absolute benefit than later ones.
We therefore have to do multiple Extend operations to match the number of points as
closely as possible to get a fair comparison. Consequently, we have the options

(4.14)

“For the linear basis one can also neglect the division.

95

4 sparseSpACE: Spatial adaptivity for the Combination Technique

Extend

Split l split |

Extend

Figure 4.12: Visualization of the reference state for the automatic refinement (top left) that can

96

be transformed to current state (bottom right) by applying an Extend and Split op-
eration to the respective region. Any of the lower left final subareas could be the
currently considered region i. We therefore also show the Extend operation for all
of these regions.

4.2 Split-Extend scheme

q(f,i,05) — IP9P

Ex 1
X — _ 415
q(f7 1, el) ()
with)
PR = T (q(f, parent(i), £; — 1 + k), 9),
zold,sp,k,2 . .
I = q(I'(f, parent(z),l; — 1+ k),4,¢;),0r
~91d,sp,k, 3

1

(2

= q(f, parent(¢), ¢; — 1 + k)/|children(parent(z))|.

. . . ~old,sp,k,1 ~old,sp,k,2 .
Again, we use a combination of I f P and T f P2 where we select the integral

approximation that produces the lower error. For £ we choose the smallest £ value that
tulfills

3 - #points(II(q(f,l; — 1 + k, parent(s)), %)) > ng,—14

with #points counting the used point values. This has shown to be a good heuristic
which generates usually the largest number & with

#points(IL; (I; — 1 + k, parent(3))) = n$* < n;® = ng,_1,4.

Finally, we choose the optimal operation that has a lower adjusted error a. These
operation-specific errors are

af* = e - (n§* — nh) (4.16)
for the Extend operation and
aif = &P - (P — nief) (4.17)

for the Split operation, where nﬁef = Ty, 1,parent(d)-

All of these error estimates stay constant and are only recomputed whenever the
global combination scheme changes due to an increase in the global level ¢ (see Sec-
tion 4.2.3) or whenever the local level /; of a subarea % is changed.

4.2.4.2 Higher order methods

So far all estimates were designed with a linear basis in mind. The interpolation option
for the surrogate f could be adjusted to higher orders but can not match the quadrature
degree in all cases, such as for Gaussian quadrature. We therefore have to adjust the
error estimators.

We will first consider the general error estimate for each subarea. If the last operation
has been a Split operation, we sum up all integral contributions from all children of the
parent and compare this sum to the parent value. This error estimate is then equally
split among all children. The error estimate in these cases is therefore

e — ‘Q(fv parent(z'), K'L) - Ejechildren(parent(i)) Q(f,j, K’L)’ (4 18)
v |children(parent(z))| ' '

97

4 sparseSpACE: Spatial adaptivity for the Combination Technique

In case the last operation has been an extend, we proceed as before with

In addition, we have to change the error estimates for the automated selection of the
operations. For the benefit of the Extend operation, we use

Q(f, parent(i)7 Eparent(i) -1+ k) - Zjechildren(parent(i)) Q(f,j, gparent(i) -1+ k)
#children(parent(z)) - > jcchildren(parent(i)) q(f, 3, Cparent(s) — 1 + k)

+ ‘Q(Lﬂ 2 Eparent(i) -1+ k) - Q(f7 2 E'L) :

Ex
€

(4.20)
Here, we select the local levels from the parent node that were used before the last Split
was performed as the current state could have gone through many Extend operations
already. Since high degree methods, such as Gaussian quadrature, are often not nested,
we would waste valuable function evaluations by using the local level ¢;. This is prob-
lematic as the error estimation should not add new function evaluations. We therefore
have to avoid such evaluations by all means. The first term stays constant if Extend
operations are applied to the region ¢ while the last term measures how far away we
are with the reference from the current state with current local level ¢;. k is this time
selected slightly more conservative as the smallest k that fulfills

2 - #points(Lparent(s) — 1 + k, parent(2)) > ng,—1 4.

For the Split operation we also change the error estimate by using the parent level.
This results in the error estimate

Eip _ q(f’ 2 E’L) - Q(fvza Eparent(i) -]‘) (421)

a(f.%,4)
with nfp = Nlpemii)— Lyt Another change is that we do not subtract nief for the calcu-
lation of « if the high degree methods do not reuse the points from the reference. An
example of such a method would be again the Gaussian quadrature.

4.2.4.3 Splits in Single Dimensions

So far we have seen how to choose a subarea for refinement and what operation to
apply. If we select the Split operation, there is, however, the possibility to only split
in certain dimensions. For this we need another error estimate that can be activated
if necessary. This work is based on a collaboration with Vivian Haller as part of his
Bachelor’s thesis [47].

Before we can define the error estimate, we need some definitions. In addition to the
relation parent and children, we add the term twin. A twin in dimension k is the cell
which is the direct neighbour in dimension & that originates from the same parent, i.e.

98

4.2 Split-Extend scheme

Jj = twin(i) = parent(z) = parent(j). If we only Split in single dimensions, a parent
only has 2 children. We can then define the twin error in dimension k as

;"™ = |q(f, parent(i), &) — (q(f,4,6:) + q(f, twin(i), £;))] . (4.22)

These error estimates stay constant and are only recalculated for the new twins in
dimension k once a single-dimensional Split in dimension k is performed. This is also
the reason why all local levels in the equation are equal. All twin errors from other di-
mensions k # k are inherited from the parent if a single-dimensional Split is performed
in dimension k. The only change is that the inherited error estimates are equally Split

between the children, i.e. Vk € [d], k # k : """ = 0.5- eg:f:r’f(i). For efficiency reasons,
it is also possible to select multiple dimensions at once for this Split if the error esti-
mates are close. Initially, we calculate for all 2¢ subareas i all twin errors by calculating
all 277! parent integrals explicitly. This gives us right from the start the possibility to
decide which dimension we should split first.

With these error estimates, we can now decide which subareas need to be refined and
which operation should be performed on this subarea. The next section will present the

whole workflow of the Split-Extend method.

4.2.5 Overall algorithm

In Algorithm 8, we show the complete procedure for computing a d-dimensional nu-
merical integral of a function f in the domain [a, b] with the Split-Extend method. After
initializing the combination scheme (see Section 4.2.1), we iterate over all component
grids. For each of the component grids, we go through all subareas and compute the
integral contribution of the subarea. Here, m (see Section 4.2.3) is mapping the level
vector £ to £ according to the local level of the subarea. The resulting integral values
are combined together and summed up for all subareas. We then stop the refinement if
the final integral is close enough to the reference solution or if a maximum number of
points is exceeded. Close enough is defined in respect to the analytic integral error or via
the global error estimate € =), gnement € that sums up all local errors. This global
error € is then be compared against a pre-defined tolerance. If none of these stopping
criteria are fulfilled, we continue the computation by refining new subareas.

The refinement procedure starts by selecting the areas with maximum local error
estimate ¢; (see Section 4.2.4). In our case, we first determin the maximum error e™®* =
MaX;crefinement €5 and refine all subareas with ¢; > v - €**. In our experiments with
the Split-Extend method, we set v = 0.9. The chosen subareas are then refined. If we
select the depth based refinement, the number of previous Split operations determines
if a subregion is Split further or if we perform an Extend. Otherwise the automated
process is used as described in Section 4.2.4 and we choose the operation that has the
lower o value. For a Split operation we can first select the dimensions that should be
split (see Section 4.2.4.3) or refine every dimension equally. All children inherit the
local level from their parent. In contrast to this, the Extend increases the local level and
adjusts the global combination scheme if the new local level /; exceeds the global level

99

4 sparseSpACE: Spatial adaptivity for the Combination Technique

Algorithm 8 Pseudocode for the Split-Extend method

1: procedure SPLIT_EXTEND_COMBI(a, b, tol, ref, f, max_points) > Output: integral
> Initialization

2: l=2, Tglobal = —1
3: generate combination_scheme using l,iopq1 and Tyiopal
4: create 2¢ children 7 with [; = 2 and 7; = —1 as initial subareas
5: while true do
6: integral = 0
7: for combiGrid in combination_scheme do
8: for ¢ in refinement.NEW_AREAS() do
9: £ = combiGrid.level _vector
10: £=m(L,l;)
11: if £ not negative and not duplicate then
12: integral += grid INTEGRATE(f, 4, £, a;, b;) -cq
13: end if
14: end for
15: end for
16: € = |(integral-reference) /ref]|
17: if € < tol or number_of_points > max_points then
18: break
19: end if
20: v=09
21: subareas = refinement.GET_AREAS_WITH_MAX_BENEFIT()
22: for ¢ in subareas do > Refinement procedure
23: ag¥, ¥ = GET_OPERATION_ERRORS(%)
24: if of* > o' then > Split: split ¢ in selected dimensions
25: dimensions = GET_DIMENSIONS_FOR_SPLITTING(%)
26: children = SPLIT(¢, dimensions)
27: for j in children do
28: fj =/;
29: end for
30: else > Extend: increase local level
31: Jj = EXTEND(z)
32: lj = li +1
33: if /; > (then
34: combi_scheme = UPDATE_SCHEME(/;, combi_scheme)
35: L=/
36: end if
37: end if
38: end for

39: end while
40: end procedure

100

4.3 Implementation overview

¢. This process is repeated until either the maximum number of points is exceeded or
the tolerance is reached.

The complexity of the algorithm is dominated by the grid integration as all error
estimations are based on cached integrals or are computed by integrating a constant
number of integrals with a less or equal number of points compared to the subarea
integral. All other operations only iterate through the subareas which are far less than
the number of total points. The resulting complexity at refinement step n is therefore

@ Z Z #points(¢;,1)

el o(n) i€refinement

where ¢(™ is the global level at iteration n. This linear complexity per step is optimal.
In addition, it is only necessary to recalculate the integrals for new subareas that have
been added by the refinement procedure. In this case, we do not set the integral to 0 at
the beginning of the while loop and subtract the integral contributions of the removed
subareas after the refinement procedure. Only if the global level ¢ changes it might
be necessary to recalculate all integral values for all subareas. Hence, the refinement
steps are usually less costly than with the dimension-wise scheme as most parts of the
calculation can be reused. However, reusing old values might depend on the chosen
application. For application with global dependencies between points, it is usually not
possible to reuse values in regions that have not changed.

4.3 Implementation overview

In this section, we present the main aspects of our implementation for the previously
explained spatially adaptive methods. As there were no suited frameworks available, a
new Python-based framework spars eSpACE® was created which allows for fast proto-
typing. sparseSpACE is designed to test new application areas for the spatially adap-
tive combination schemes presented in Sections 4.1 and 4.2 and allows to compare them
to the standard Combination Technique. The framework supports arbitrary operations
on the generated grids that can be implemented via black box solvers which operate
directly on the component grids. In addition, various strategies to map the grid points
to the domain can be selected such as equidistant grids or Gaussian quadrature points.
These features guarantee a high flexibility of the framework for prototyping new ap-
plications and testing them with the different variants of the Combination Technique.
The framework offers multiple tutorials for the different application scenarios and uses
continuous integration to ensure code quality. In the following we will describe in more
detail the design of sparseSpACE.

*https:/ /github.com/obersteiner /sparseSpACE

101

4 sparseSpACE: Spatial adaptivity for the Combination Technique

DimAdaptiveCombi SpatiallyAdaptiveCellScheme |

object <—| StandardCombi

SpatiallyAdaptivBase SpatiallyAdaptiveExtendScheme |

SpatiallyAdaptiveSingleDimensions2 |

Figure 4.13: Class hierarchy of the different Combination Technique approaches generated with
doxygen [3].

4.3.1 Combination scheme

One of the key elements of the Combination Technique is the combination scheme. This
combination scheme represents the used index set Z that includes the level vectors,
and the combination coefficients ¢, for £ € Z. Therefore, the class CombiScheme was
implemented that offers the creation of a combination scheme for a fixed £™%* and £™".
For a default Combination Technique of level ¢, we have gmin — 1 and gmax — ¢ . 1.
Another feature of the class is that it offers the adaptation of the index set according to
the dimension-adaptive algorithm (see Section 2.3.3.1). Here, active and old index sets
are generated and updated during the adaptation. A getter function returns the index
set Z and the combination coefficients ¢, of the current combination scheme.

4.3.2 Implementation of the Combination Technique approaches

In sparseSpACE we want to offer a wide variety of versions for the Combination Tech-
nique to compare and test their applicability for several applications. To facilitate the
implementation, we implemented a base class StandardCombi from which all adap-
tive approaches inherit (see Fig. 4.13). The base class implements common interfaces
such as a getter function for the number of points used in the combination or their
position. It also allows to compute the standard Combination Technique with a se-
lected operation such as numerical quadrature. The standard Combination Technique
uses a fixed level and generates via the CombiScheme the corresponding combination
scheme. The StandardCombi class also implements most of the plotting routines that
are used in this thesis. By overwriting specific getters the plotting can be customized
for child classes.

The child classes are split into the dimension-adaptive version DimAdapt iveCombi
and SpatiallyAdaptiveBase. The DimAdaptiveCombi class mainly uses the func-
tionalities of the StandardComb1i but it updates the combination scheme according to
the scheme described in Section 2.3.3.1. For stopping the adaptive process a tolerance
or a maximum number of evaluations is passed. SpatiallyAdaptiveBase serves as
a base class for all the implemented spatially adaptive strategies. It incorporates the

102

4.3 Implementation overview

general workflow of adapting the refinement structures and offers a new method to
start an spatially adaptive execution of the Combination Technique. This class is de-
signed quite flexible so that different spatially adaptive schemes can be implemented
as child classes using the Strategy pattern.

For the different spatially adaptive implementations, we offer the SpatiallyAdap-
tiveCellScheme, the SpatiallyAdaptiveExtendScheme, and the Spatially-—
AdaptiveSingleDimension2. The SpatiallyAdaptiveCellScheme class im-
plements our own version of the previously reported spatially adaptive Combination
Technique from [83] (see Section 2.3.3.2). Here we split the domain into cells and apply
on each cell a separate quadrature or interpolation. As this scheme does not have any
component grids, each cell has to manage its own combination scheme including its
ancestor cells. The adaptation process is slightly different than in [83] as it incorporates
for each cell the scheme from Gerstner and Griebel [40] outlined in Section 2.3.3.1. Since
these combination schemes are local, the approach achieves spatial adaptivity. During
the adaptive process, we interpolate parent cells to get an error estimate for quadrature
and interpolation. Since we have no component grids, this aproach does not support
any other operations apart from interpolation and quadrature. For more details see [83]
and the implementation in sparseSpACE.

SpatiallyAdaptiveSingleDimension2 implements the dimension-wise refine-
ment (see Section 4.1) that performs the Combination Technique on rectilinear grids. It
generates according to the 1D point sets for each level vector the respective points of the
rectilinear grid. These grids are then passed to the operation. The refinement is guided
by the errors estimates which are calculated with the hierarchical surplus values. Here
the operation transfers the calculated point values to start the error estimation. Due
to the flexibility of the surplus calculation and the easy interface with rectilinear grids,
this is the approach which can be extended most easily to new applications.

SpatiallyAdaptiveExtendScheme represents the Split-Extend scheme from Sec-
tion 4.2. Here we offer the splitting of the domain, and the increase of the local levels
via the Split and Extend operations. The implementation generates for each subarea its
own level vector and applies the specified operation to it. In case the black box solver
needs a grid that covers the complete domain, it is possible to aggregate all points from
all subareas and to apply the operations once on the complete grid. The operation
is also used to calculate the error estimates. These estimates a currently fixed for the
quadrature operation but it is possible to extend the scheme to add further operations.

4.3.3 Grid operations

So far, we have seen the modules that are responsible for the creation of the combination
scheme and the (adaptive) component grids. The GridOperation represents the next
logical step as it defines the operation that is performed on the grids. Here we have
already implemented a variety of operations such as Integration, Interpolation,
Uncertainty Quantification,DensityEstimation and PDESolve.

Again, we utilize the Strateqy pattern with the base class GridOperation that speci-
ties the interfaces that need to be implemented to allow the use of the different combina-

103

4 sparseSpACE: Spatial adaptivity for the Combination Technique

tion types. These operations need to support the respective grids that are constructed
by the used Combination Technique approach. Thus, the operations needs to be ad-
justed for every (adaptive) combination variant that we want to use. In particular, the
operation needs to implement the evaluation of a regular grid for the standard and
dimension-adaptive Combination Technique. For the dimension-wise refinement we
need to be able to process rectilinear grids and for the Split-Extend scheme we require
either an operation that operates on regular subareas or that is able to process block-
adaptive grids. Additionally, each operation needs to specify means of calculating local
error estimates if default ones are not sufficient or not available. These error estimates
can be based on surplus values or application-related such as misclassification rates in
an Machine Learning scenario.

In this section we have only focused on the main implementation ideas. For more
details on the different operations and the interfaces to implement them, we refer to the
description of the numerical results in Chapter 5 and the code base®.

4.3.4 Functions

The Function class is used for integrating and interpolating functions. Here, a base
class implements the general interface and functionalities such as caching function val-
ues to avoid recalculation. Via Strategy pattern arbitrary functions can be implemented
that only need to implement an evaluation method that returns the function value for
a given input. An analytic integral solution can be added to allow the framework to
exactly calculate the quadrature errors. If this analytic solution is not implemented, the
error estimates are used to measure the global error.

In general all function evaluations are calculated single-threaded but it is possible to
start any parallel job inside the evaluation method. In this case it is necessary to either
wait for the job to finish or pre-calculate all necessary function values at the beginning
of a computation step. The caching will then avoid recalculation. It is also possible to
enhance the evaluation speed by implementing a vectorized evaluation that calculates
function values for multiple evaluation points at once.

The framework supports already various functions such as the Gentz test functions [38]
and was successfully coupled to complex solvers such as Vadere’ [68] and Larsim?® [78]
for Uncertainty Quantification calculations.

4.3.5 Different grid types

In general the Combination Technique only specifies level vectors for each component
grid but not a specific mapping of points or even the point numbers that correspond to
a certain level. We therefore need a class that defines how to map levels to actual point
numbers and positions. The Grid class offers this functionality.

Shttps:/ / github.com/obersteiner /sparseSpACE
"http:/ /www.vadere.org/
8h’c’cps: / /www.larsim.info

104

4.3 Implementation overview

Here, we use once again a Strategy pattern. The base class represents the interface
that is used by the adaptive algorithms. The grid returns the number of points, the po-
sitions and quadrature weights that are associated with a level vector. Additionally, the
grids can be configured to include or exclude boundary points or use a modified basis.
It therefore provides several helper functions for the adaptive algorithms. Examples
for implemented grids are equidistant grids, such as the TrapezoidalGridor Simp-
sonGrid, and other nested or non-nested grids, such as Le jaGrid, ClenshawCur-
tisGrid, BSplineGrid, LagrangeGrid and GaussLegendreGrid. These grids
are typically named according to the quadrature rule they are associated with. How-
ever, they can also be used in conjunction with other operations.

It is also possible to define point positions from outside by passing point sets and
levels. This is used in the GlobalGrids which are only relevant for the dimension-
wise refinement. Examples are the GlobalTrapezoidalGrid or the GlobalSimp—
sonGrid that we will see later in Chapter 5.

4.3.6 Refinement Container

The refinement information of the spatially adaptive methods is encapsulated inside
of a RefinementContainer to allow for implementing different data structures for
accessing this data. This refinement information is specific to the used algorithm and
stores a collection of RefinementObject instances. Currently we store the objects in
a list but different data structures such as trees or hash maps are possible. The container
can therefore easily be exchanged with new data structures that give faster access times
or more efficient data layouts if the algorithm requires this.

The RefinementObject stores the essential information that is needed for each
individual refinement step of the spatially adaptive algorithms. For SpatiallyAdap-
tiveCellScheme it saves for each cell the boundaries, parent infos and further infor-
mation to generate the cell hierarchies. In the SpatiallyAdaptiveExtendScheme
a refinement object saves the local level and the subarea domain. Finally, for Spa-
tiallySingleDimension2 the refinement container stores all point sets with their
levels. In addition to the custom information each RefinementOb ject stores the local
error estimate that is used for deciding which objects to refine. It also offers a refine-
ment method to automatically generate refined objects. This can be a split into further
objects or an update of a information such as the local level.

4.3.7 Wrapper for Machine Learning

In addition to the base functionalities, we added in the course of [82] a wrapper for
the framework that offers a clear Machine Learning interface to the framework. This
wrapper uses the DensityEstimation operation to calculate the density of a given
data set. Based on this density either classification or clustering can be performed.

For classification a dataset is split according to their class assignments and a separate
density is created for each class. As a consequence, multiple instances of the framework

105

4 sparseSpACE: Spatial adaptivity for the Combination Technique

are created. A new data point is classified by first evaluating all densities of the different
classes and then it is assigned to the class with maximal density.

For clustering the density estimation is used to cut edges in a k-nearest neighbor
graph. Edges who cross areas of low densities are removed from the graph. The re-
maining connected components represent the found clusters. This results in a good
reconstruction of clusters.

In this section, we only gave a brief overview of the implementation of the Machine
Learning wrapper. The algorithmic and mathematical details will be explained in Sec-
tion 5.3.1. Further details on the implementation can be found in [82].

106

5 Numerical case studies with the Spatially
Adaptive Combination Technique

In the previous chapter, we have seen how to generate and refine a spatially adaptive
Combination Technique. As a next step, we need to test these methods for various
settings to analyze the benefit of the new approaches. For this purpose, we performed
several case studies in different application scenarios that are commonly used with the
Combination Technique. We introduce each application area briefly and present results
for the methods that are most suited for the specific use case.

In particular, we will look at classical numerical tasks such as quadrature and in-
terpolation in Section 5.1. We also investigate the influence of different basis functions
and quadrature rules. Thereafter, we will quickly summarize our results for uncertainty
quantification which makes extensive use of quadrature operations to calculate statisti-
cal properties of a model function. Then, we will look at machine learning applications.
Here, we will focus on Sparse Grid density estimation which can be used for both su-
pervised and unsupervised learning. We introduce different modes how to perform
this density estimation and analyze the results for different classification scenarios.

5.1 Numerical quadrature and interpolation

In numerical quadrature and interpolation we use input-output pairs ((z, f(x)) for &
X C D) of an (unknown) function to either compute a numerical integral or to estimate
function values at arbitrary points within the domain D.

In general the quadrature problem ¢(f) is defined by

dlf) = Y we 1@~ [fla)de &)
BeX zeD
with quadrature weights w, for point . The result of the quadrature is the integral
approximation for f.
The interpolation problem is defined by

s(@) =) ag - Pa(x) ~ f(),VE € X : (&) = f(), (5.2)
reX

with basis functions ®;(x) associated with points & and their scaling az. The result is
the surrogate s(x) that can be evaluated at arbitrary points z € R%.

For both methods we require the function evaluations f(x) at the points € X.
For high dimensions these methods quickly run into the curse of dimensionality as they

107

5 Numerical case studies with the Spatially Adaptive Combination Technique

usually sample these points on regular grids. Here, high dimensional grids are often
constructed via a tensor product structure of one-dimensional grids.

We will look at rectangular domains D = [a, b] with the domain boundaries a and b.
Since we apply the combination technique, both problems are slightly transformed to

~S e Y wa- f@) ~ / _ f(a)ia (5.3)

0T BEX,

and

= cer Y az-Pa(w)~ f(x),VLEIVE € Xy s(Z) = f(Z), (54)

el xEX,

where X, represents the set of grid points from component grid £. This could be a reg-

ular grid for the standard and dimension-adaptive combination, a rectilinear grid for

the dimension-wise refinement, or a block-adaptive grid for the Split-Extend scheme.
We will consider the following test functions:

J —d—1
fcorner(w) = (1 + Z ki - xz)
=1

1074

fprod(af) = H?:1(k;2 + ($z —pi)2)

s () = 0, for x > p
d z .
scont e Xz ki iTi - otherwise

fcont(w) =e Sy kil —pil

fgauss(w) =e Zg:l ki-(xi—p)?

fexpvar() 1 + 1/d Hxl/d

The first five functions are common test funtions in high dimensional numerics that
were published in the Gentz test functions package [38] and the last one is taken from
[39, 81] where the authors used it to analyze a function with exponential variation. For
all of these methods an analytic solution is available which makes it easy to investigate
the convergence properties for our novel approaches and compare them to existing
methods. Parts of the results shown in this section were already published in [84] and
[85].

108

1.0
0.8
0.6
<
0.4

0.2

0.0

o~
x

1.0

0.8

0.6

0.4

0.2

0.0

5.1 Numerical quadrature and interpolation

Figure 5.1: Plot of the continuous and discontinuous Gentz function.

Dom

0.0

0.2

04 06 08 1.0
X1

Figure 5.2: Resulting Sparse Grid of the Dimension-wise Spatially Adaptive Combination Tech-
nique for feont (left) with k; = 104, p; = 0.5, and 1873 points, and fqiscont (right) with
ki =i, p; = 0.2, and 139 points. We refined up to a relative error tolerance of 102

with the linear hat basis and enabled tree rebalancing.

1.0
0.8
0.6
<
0.4

0.2

0.0

IR TTR TR 0

IR BRIk 0Y)

IR R VR {00}

IR DR IVR 0Y)

0.4

o~
X

1.0

0.8

0.6

0.4

0.2

0.0

2 2 2

2 2 2 2

3 3 2 2

5~ 3 2 2
00 02 04 06 08 10

X1

Figure 5.3: Resulting Sparse Grid of the Split-Extend method for f.,,: (left) with k; = 10i, p; =
0.5, and 545 points, and fg;scont (right) with k; = 4, p; = 0.2, and 157 points. In both
cases we refine up to a tolerance of 1072 and use a linear basis with Newton-Cotes
grid and the automated selection of Extend and Split operations. The local level of

each subarea is shown in blue.

109

5 Numerical case studies with the Spatially Adaptive Combination Technique

5.1.1 Visual inspection

Before we go into a more detailed convergence analysis, we will look visually at the
refinement of the different adaptive approaches and discuss the point sets they use for
two exemplary test functions (see Fig. 5.1). We can see that the dimension-wise as well
as the Split-Extend method can adapt themselves to the function at hand. It is clearly
visible that the points are concentrated at the most important areas.

We have chosen these two test functions to show the key differences for the two
methods. For the continuous function a large part of the x and y axis are relevant
for the correct representation of the function while for the discontinuous case only the
are between 0 and 0.2 for both dimensions is most relevant. As a consequence the
dimension-wise method performs better for the discontinuous case as the relevant 1D
regions for each dimension are directly influencing the performance. In the worst case
a dimension would need equal refinement along the whole dimension which would
eliminate any benefit for spatial refinement in this dimension. For the continuous func-
tion this can be partly seen as here large areas within each dimensions are relevant.
For a correct representation only the 1D intervals close to the boundaries are irrelevant.
Therefore, the points concentrate towards the center but are still covering a large area.

In contrast to that the Split-Extend methods performance is not depending on the im-
portant 1D intervals but on the actual d-dimensional subarea of the domain that needs
extensive refinement. Since both functions are close to 0 on most parts of the domain,
it performs well for both scenarios. It should be noted that the Split-Extend scheme in
this case needs to perform a high number of Split operation to get to a sufficiently small
region that can be used to efficiently represent the function. This is not a problem but
actually shows that the important regions are very localized. There is only one slight
problem with the continuous function. Since the important regions are on the bound-
aries between different subareas (at 0.5 in each dimension), we have to perform more
Split operations to get a sufficient fine-grained refinement. This effect is less predomi-
nant if the important regions are for example in the corner of the domain.

As both methods were refined until a relative error threshold of 0.01 was reached, we
can directly compare point numbers to investigate the effectiveness of the two methods.
Here, we see that for the continuous case the Split-Extend method performs better as it
can refine in the 2D space and not just via 1D refinements. In contrast to this, for the
discontinuous case the 1D refinements are more efficient as the 1D splits perform very
well here. This is probably caused by the fact that the dimension-wise method does not
need to increase the truncation parameter which results in a more efficient Sparse Grid
approximation. This effect is, however, usually more predominant for rather smooth
functions as we will see in the next section.

5.1.2 Convergence analysis

We have seen that at least visually the refinement seems to work as expected. The next
step is to look at the actual convergence plots and verify our visual analysis. Here,
we consider different basis functions starting with linear approximations. We will then

110

5.1 Numerical quadrature and interpolation

consider higher order approximations such as Simpson and Gaussian quadrature. In
addition we will discuss the modified linear basis with its benefits for higher dimen-
sional cases and the single-dimensional Split operation of the Split-Extend scheme. We
show results for numerical integration and also discuss interpolation for the linear ba-
sis. We restrict ourselves to five-dimensional test cases since they represent a suffi-
ciently complicated problem class that cannot be efficiently tackled with full grid meth-
ods.

5.1.2.1 Linear basis

In the first test case, we look at the linear hat basis that is frequently used in classical
Sparse Grid literature. We present results for numerical quadrature as well as interpo-
lation.

Quadrature First, we will look at the quadrature results. In figure Fig. 5.4 we show
the evolution of the relative quadrature error with increasing function evaluations for
the six different test functions in 5D. One can see the results for the standard Com-
bination Technique (blue) with /i, = 1, two variants of the classical spatially adap-
tive Sparse Grid quadrature with surplus or volume-based refinement that are imple-
mented with an explicitly Sparse Grid discretization! in sG** (light and dark green),
the dimension-wise spatially adaptive Combination Technique with and without rebal-
ancing (red and purple), and the Split-Extend method with fixed depth and automatic
adaptation (brown and cyan). We use boundary points for all test cases except for the
function feont as here the function values at the boundary are negligible small.

In general, the standard Combination Technique performs the worst due to its inabil-
ity to adapt to the concrete test functions which benefit from an adaptive increase of
points in specific areas of the domain. Only for fexpvar the Split-Extend method achieves
worse results than the standard Combination Technique.

The dimension-wise refinement seems to perform especially well with the rebalance
variant. This variant persistently outperforms the method without rebalancing. More-
over, the method seems to perform especially well for rather smooth functions such as
fexpvar- Unfortunately the rebalancing method shows a more erratic convergence which
is probably caused by the rebalancing operations. A rebalancing operation offers the
possibility to refine more efficiently in future refinements but also disturbs the current
refinement.

For the Split-Extend method, we observed that the automatic selection of Split and
Extend operations can usually perform similarly as an explicit selection of a splitting
depth §. Furthermore, the method seems to perform especially well for functions that
are very localized and are therefore not so smooth. The reason for this observation is
that the Split operation restricts the negative effect of non-smooth regions to a small
subarea. Hence, large portions of the domain can converge rather quickly and require
consequently less grid points.

IThese variants therefore do not use the Combination Technique.

111

5 Numerical case studies with the Spatially Adaptive Combination Technique

— Standard Combi Imin=1 —— Dimension-wise refinement rebalance
Sparse Grid Linear Basis —— Split-Extend depth=0
—— Sparse Grid Linear Basis volume refinement Split-Extend auto

—— Dimension-wise refinement

102 108
5 ’V\ 5
s 10 5 10!
T ©
= c
= 10—2 = —1
2 [T | g
k& l 5
[(7]
o o
1074 10-3
10* 106 10* 106
Number of function evaluations Number of function evaluations
(a) fcorneT, 623/ kz =1 (b) fprod/ 5=3/ k1=102, p1=099
1 108
104 4
: I 5 0
5 ' S
g ' g
g \ g ™
E £10°!
g W E
&) & V\/ o V:'
dfv Qqﬁ) 1073
1072
102 10* 106 10 106
Number of function evaluations Number of function evaluations
(@ feont, 6=4, ki=101, p;=0.5 (d) faiscont, =3, ki=i, p;=0.2
10
5 5 107!
5 10t 5
© ©
o 1072
E10! E
2 2
- 51073
21073 2
10
104 109 10* 100
Number of function evaluations Number of function evaluations
(e) fgauss/ 6:3/ kzzloolf pz=099 (f) fezp'unﬂ‘r 0=0

Figure 5.4: Relative quadrature error for the six test functions with d = 5 for the linear basis with
trapezoidal quadrature. We compare the new dimension-wise refinement versions
to the standard Combination Technique, explicit Sparse Grid implementations, and
the Split-Extend scheme.

112

5.1 Numerical quadrature and interpolation

These observations show that the dimension-wise scheme and the Split-Extend me-
thod complement each other since they perform well in opposite use cases. This can
also be detected via the splitting depth ¢. For functions with an optimal splitting depth
> 3, the Split-Extend method easily outperforms the dimension-wise scheme. In cases
were splitting does not improve the performance the dimension-wise scheme has the
upper hand. This is not surprising as the spatial adaptivity of the Split-Extend scheme
is a result of the Split operations. With few Splits the method provides only rather coarse
refinement.

If we look at the classical spatial adaptivity with SG**, we can see that it performs
better than the standard Combination Technique. Surprisingly, in all of our test cases
either the Split-Extend or the dimension-wise method can significantly outperform the
pure Sparse Grid approach. This is a surprise as the spatially adaptive schemes with
the Combination Technique offer less flexibility compared to the pure Sparse Grid im-
plementation. It seems that either this flexibility can mislead the refinement or that the
rebalancing and splitting can improve the Sparse Grid representation in our test cases.

Overall, we can see that with a suited spatially adaptive refinement, we can gain
around two orders of accuracy for the integral calculation with the same amount of
function evaluations in comparison to a standard Combination Technique.

Interpolation Next, we will look at the interpolation results for the same test cases.
We interpolated the functions on the regular grid [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9]°.
The interpolation error is then calculated for the Ly and L, norm via

1 : :
h = gy L U@ - f@) and e = malf@) - f@)

where f(x) is the evaluation of the generated adaptive Combination Technique model
at the point « that is constructed by the linear interpolation of the function evaluations
with the linear hat basis.

In Fig. 5.5 we show the interpolation errors for the standard Combination Tech-
nique (with £,;, = 1), the classical adaptive Sparse Grid approach with sG**, and
the dimension-wise scheme with and without rebalancing.

First of all, we can see that the results are qualitatively the same for both norms. This
indicates that not just the maximum error but also the accumulated errors across the
domain behave similarly with all schemes. This is beneficial as for different applications
different norms might be relevant.

If we look at the convergence of the single approaches, we can see that — similarly to
the quadrature results — the adaptive approaches perform significantly better than the
standard Combination Technique. Furthermore, the rebalancing variant again outper-
forms the standard dimension-wise refinement significantly. Interestingly, the dimen-
sion-wise scheme with rebalancing clearly surpasses in all test cases the adaptive Sparse
Grid approach. This holds even for f.ont where the quadrature results performed simi-
larly. This indicates that the dimension-wise approach delivers very good interpolation

113

5 Numerical case studies with the Spatially Adaptive Combination Technique

—— Ly error Standard Combi Imin=1 - L error sparse grid volume refinement
----- L error Standard Combi Imin=1 ——— Ly error Dimension-wise refinement

Lo error sparse grid ~~ ——een L error Dimension-wise refinement

L error sparse grid ——— Ly error Dimension-wise refinement rebalance
—— L error sparse grid volume refinement ~ ----- L error Dimension-wise refinement rebalance

1071]
8]
§ 10
o S
§ 10734 5
i 510
3 <3
5] 7]
£ 10 2 E 104_
10* 109 104 106
Number of function evaluations Number of function evaluations
(a) fcorner/ 6:3/ kl =1 (b) fp’rod/ 6:3, k‘1=101, p,=099
10°
10!
-1 II\'
5 10 5 100 o St
o @ e '
107 5 ol
3 B s
[o
107 5
£ £
—4
10 107‘3
102 10* 106 10* 106
Number of function evaluations Number of function evaluations
(C) fcontl (;:4/ k7«=107’l p1=05 (d) fdiscont/ 6=3/ kizil p1=02
10°
-1
§ § 10
o 6]
5 5 10—2
=]
o [<}
o o
2 210
< <
10+
104 109 10* 100
Number of function evaluations Number of function evaluations
(e) fgauSS/ 6:31 IcZ:lOOz, p12099 (f) fexpvar

Figure 5.5: Interpolation errors for the six test functions with d = 5 and the linear basis. The
L, errors are represented by dotted lines and the L, errors by straight lines. We
compare the new dimension-wise refinement versions to the standard Combination
Technique and pure Sparse Grid implementations.

114

5.1 Numerical quadrature and interpolation

results and seems to refine efficiently in the correct regions. Again, we see a more erratic
convergence for the rebalancing approach.

An outlier to these observations is fgiscont- Here, the errors do not seem to converge
at all. This turned out to be a result of the chosen interpolation points, since 0.2 is ex-
actly at the position of the discontinuous step. The linear model is therefore heavily
disturbed at this point as the grids do not have an evaluation point here. This results
in an almost constant error term that can not be reduced due to the refinement. Conse-
quently, the errors do not decrease which can be observed in the error plot. Similarly,
the classical adaptive Sparse Grid approaches do not converge and might even get un-
stable which can be seen with the classical surplus refinement (light green).

Our tests show that the conclusions from the interpolation results are in general sim-
ilar to the quadrature results. We will therefore consider only quadrature in the follow-
ing part.

5.1.2.2 Quadratic approximation

So far, we have seen the convergence results for the linear hat basis. In many cases we
can profit from higher order basis functions to get higher accuracies with lower function
evaluations. We will first look at second order approximations. In this case, Simpson’s
rule is used to calculate the integrals. Again, we compare the standard Combination
Technique, the dimension-wise scheme and the Split-Extend method (only with auto-
matic refinement). It should be noted that here we use boundary points for fcont.

In addition, we use a balanced version of the dimension-wise refinement that always
adds the second child to a node in the 1D point hierarchy of a component grid if it is
missing. The resulting binary tree has therefore the specific structure that every node
has either two or zero children. The only exception to this are the nodes at level 0 that
have always only one child. If a component grid lacks one of these children, the balanc-
ing just adds the respective point. The reason why we have to add these points with
the balanced approach is that the resulting 1D point sets have a guaranteed point num-
ber that is odd, which is a requirement for Simpson’s quadrature. Furthermore, the
quadrature results are often better with the balanced approach as normally only posi-
tive quadrature weights appear?. This balancing routine is different to the rebalancing
procedure (see Section 4.1.3) which tries to balance the depth in the global refinement
hierarchies and not to fix the number of ancestors in the individual component grids.

In general, for the smooth functions the standard Combination Technique performs
better with the quadratic approximation compared to the linear basis from before. Also
the dimension-wise scheme seems to profit from the higher degree. This can be seen
especially with Jexpvar- In contrast to this, the Split-Extend scheme seems not to achieve
better results compared to the linear basis. This indicates that the Split-Extend method
mainly benefits from the Split operations, which are independent of the basis functions,
and not from the increased approximation order of the basis functions.

2Only the rebalancing approach can cause negative weights as the support points of the parabolas might
become non-equidistant.

115

5 Numerical case studies with the Spatially Adaptive Combination Technique

=== Simpson Grid (Standard Combi) Imin=1

—— Dimension-wise Simpson Grid (Balanced)

—— Dimension-wise Simpson Grid (Balanced + Rebalancing)
Split-Extend Simpson (automatic)

102
103
5 5
g 10 @ 102
© ©
o o 1
2 g 10°
R 5
< 10™ 10!
2 210
10-2 N 1072
103 104 10° 103 104 10°
Number of function evaluations Number of function evaluations
(a) fcorner/ 5:3/ k’L =1 (b) fprod, 623, k‘i=10’i, pi=0.99
104
S s
E E 102
I o
o o
1 1
o o
£ £
v o 10°
2 2
=} =]
© @©
& g
102 \
103 10* 10° 103 104 10°
Number of function evaluations Number of function evaluations
(©) feont, 6=4, k;=104, p;=0.5 () faiscont, 6=3, ki=i, pi=0.2
5 1°
[} (]
T 1o ©
[[}
2 2
£ £
2107 2
=} =]
i o
[[}
€ 10-3 o
103 104 10° 103 104 10°
Number of function evaluations Number of function evaluations
(e) fgaussr 6:3/ kZZIOOZ/ pz:099 (f) fe:l:pvar

Figure 5.6: Relative quadrature error for the six test functions with d = 5 for quadratic basis
with simpson quadrature. We compare the new dimension-wise refinement versions
to the standard Combination Technique, pure Sparse Grid implementations and the
Split-Extend scheme from [84].

116

5.1 Numerical quadrature and interpolation

Surprisingly, the rebalancing method seems to be rather unstable for higher order
basis functions and either fluctuates a lot or even diverges. A reason for this might be
that without rebalancing the spacing between the points of each parabola in Simpson’s
rule is always equidistant, i.e. the three support points lie one an equidistant subpart
of the grid. In case we perform a rebalancing of the point levels, this property is lost.
We therefore assume that the resulting quadrature weights tend to decrease the perfor-
mance which can be due to an increased condition number caused by negative weights.

The general observations are however similar to the linear basis. Again we can bene-
fit from spatial adaptivity and the dimension-wise scheme performs best for smoother
functions while the Split-Extend method performs better for the non-smooth functions.

Another observation is that especially for the dimension-wise method the functions
that are not twice continuously differentiable perform bad with the Simpson rule. This
was expected as higher order can usually not be reached if the function is not suffi-
ciently differentiable. An example for this phenomenon is fgiscont- fcont represents an
exception to this rule. The reason for the good convergence here is that the function
is only not differentiable whenever x; = 0.5 for any dimension i. Since we however
always split the parabolas at 0.5 this is not a problem as the subintervals for which we
use the quadratic approximation are always twice differentiable®. This does not hold
necessarily for the rebalancing approach which might cause the fluctuations.

To put it in a nutshell, we can see that especially the dimension-wise scheme benefits
from a second order approximation, while the Split-Extend scheme mostly achieves
the high accuracy through the Split operations and not because of the higher order
approximations.

5.1.2.3 Gaussian Quadrature

In addition to the trapezoidal and simpson quadrature, we tested the Gaussian quadra-
ture for our adaptive approaches. Here, we can only use the Split-Extend scheme as the
adaptive refinement of the 1D point hierarchies would not be possible with a classical
Gaussian quadrature scheme. In each subarea of the Split-Extend scheme, a separate
Gauss quadrature with corresponding local level is performed. Again we look at the
same six test functions.

In Fig. 5.7 we show our results. We compare the Split-Extend scheme with prede-
tined depth (blue) and automatic refinement (green) and the standard Combination
Technique with £™" € {1,2} (purple and brown). In addition, we show the sum of all
error estimates that act as a measurement for the global error. This sum can be com-
pared to the actual error to assess the quality of our approximation.

For the smooth function Jexpvar the adaptive process performs worse than the stan-
dard Combination Technique, while for the other functions, which are less smooth and
more localized, the adaptive process usually works better. The former is caused by the
(initial) Split operations that reduce the number of grid points per subarea and there-
fore reduce the reachable polynomial degree. This limits the efficiency significantly.

%A parabola always covers the interval of three adjacent points in our one-dimensional point sets. Since
the point with position 0.5 has always an odd index, it is always at the boundary of these intervals.

117

5 Numerical case studies with the Spatially Adaptive Combination Technique

—— Extend-Split depth=6 ~ ----- Extend-Split auto surplusses
***** Extend-Split depth=¢ surplusses —— Standard Combi Imin=1
—— Extend-Split auto —— Standard Combi Imin=2

10_1 10()
S 102 8
50 S
51073 &
] 3
c =
g1 g1
& &
2107 ©
10-3
1076
10* 10° 106 10* 10° 106
Number of function evaluations Number of function evaluations
(a) fcorner/ 6:1/ ki =1 (b) prod, (5:1, kl=10z, pz=099
—\/,\ 10!
. 108 N
o 9 ()
= 10 s 10°
g 10! g
= =
g g
= (2
H 10° k- 10-!
« &
107!
102 = . J 1072 - .
101 10° 100 107 104 10° 106
Number of function evaluations Number of function evaluations
(o) fcontr 0=1, k;=10¢, pi=0.5 (d) fdiscont/ 0=3, ki=i, p;=0.2
1072
_ 107! _
o o
s 5943
s 1073 ud
&0 &0
2 32
£ =S
g7 gV
K] k]
Q [}
& 07 & 105
10* 10° 106 10 10° 106
Number of function evaluations Number of function evaluations
(e) fgaussz 6:21]{,‘121002, pi:O-99 (f) fe:cpvarr 0=0

Figure 5.7: Convergence tests for the six test functions with d = 5 for Gauss-Legendre quadra-
ture. The dotted lines represent the error estimate that is given by the summation of
all surplus estimates ¢; for the respective adaptive algorithm.

118

5.1 Numerical quadrature and interpolation

The latter observation is especially dominant for the non-differential functions (feont
and fgiscont) and the very localized function fgauss. This indicates that the high quadra-
ture degree cannot be reached due to the missing differentiability or that we are still in
a preconvergence state. Here, the Split operation can improve the results by narrowing
down the refinement areas and by refining separately in the differentiable subareas. Of
course the refinement can not exactly find the non-differentiable steps but it can at least
reduce their influence by limiting their impact to small subregions. This is interesting if
the non-differentiable regions and discontinuities are very localized. We can therefore
reach fast convergence in the remaining subareas.

If we compare the automatic refinement with the pre-defined depth, we can see that
in some cases they are very similar while in others the automatic refinement clearly
performs worse. Consequently, the automatic refinement needs to be further optimized
to be a real alternative to finding the optimal splitting depth 6.

The error estimates for the global error seem to be in some cases very inaccurate at
low evaluation numbers but follow the trend of the real error for higher numbers. Un-
fortunately, the estimates usually significantly overestimate the error and can therefore
not directly approximate the real error for the general use case. This is not a problem
for the refinement procedure itself which only needs a relative error estimate, but this
behavior makes it more difficult to decide when to stop the refinement. It will require
further research to improve this global error estimate in order to use it as a robust error
approximation.

To conclude this analysis, we can say that especially for functions that usually per-
form bad with standard gaussian quadrature, we can significantly increase the per-
formance with the Split-Extend scheme. Here, the Split operation helps to limit the
influence of non-differentiable subareas and can help to find regions faster that need
intensive refinement. In cases where the standard Gauss quadrature performs well the
Split operation reduces the overall degree which decreases the performance. We should
therefore only use the adaptive method for cases that cannot be tackled with the stan-
dard approach.

5.1.2.4 Single-dimensional splits

We have also implemented the single-dimensional Split operation that we described in
Section 4.2. In this variant, the main difference is that an area is not divided into 2¢
equally sized subareas but that it is only split in any number & of dimensions resulting
in 2% children. In the extreme case we only split in one dimension resulting in 2 children
areas.

In Fig. 5.8 we show for the six test functions the results with and without this single-
dimensional split and compare it to the standard Combination Technique. We can
see that in general both variants for the Split perform similar. Sometimes the single-
dimensional Split performs better and sometimes slightly worse. This indicates that
either we do not profit from single-dimensional Split operations or that our test func-
tions do not show enough variations between the dimensions so that we do not profit
from a separate treatment of the dimensions.

119

5 Numerical case studies with the Spatially Adaptive Combination Technique

Split-Extend Trapezoidal Grid

Split-Extend Trapezoidal Grid (single dim)

- Trapezoidal Grid (Standard Combi) Imin=1

S 10! BN S 102 T e T
= Y = -
[} ~, (]
T o B
8 10 g 101
2 2
£ £
[N (]
_E 10 2 10°
o fo
[} [}
=102 .
1071
103 104 10° 103 104 10°
Number of function evaluations Number of function evaluations
() fcor'ner/ ki =1 (b) fprod/]{?1:101, p1:099
5 \Y s IS
9} b < o N
® > © 10°
e o
o S o
9] . Q
2 =
£ S S
N -1
_g 101 g 10
=} =]
© @©
E K9]
<102
103 104 10° 103 104 10°
Number of function evaluations Number of function evaluations
(c) fcont/ kZZIOz, pl:05 (d) fdiscont/ ki:i/ pz:02
1034 ~]
5 102 NS 5 N
= h = o
= 10 e
I e ™
o 0 o .
g 10 Q \
£ £
210! $10°t ~
i i
g 1072 k) RN
4 o D
103
103 104 10° 103 104 10°
Number of function evaluations Number of function evaluations
(e) fgauss/ klzl()ozl pi=0.99 (f) feacpvar

Figure 5.8: Relative quadrature error for the six test functions with d = 5 for linear basis with

120

trapezoidal quadrature. We compare the standard Split of the Split-Extend method
to single-dimensional Split operations. The standard Combination Technique is
given as a reference.

5.1 Numerical quadrature and interpolation

It should be noted that the single-dimensional Split performs usually more refine-
ment steps in total which increases the runtime when function evaluations are rather
cheap. We should therefore avoid them if it does not provide a better approximation
with fewer point evaluations.

Hence, we conclude that single-dimensional Split operations should only be used if
the function shows significantly different characteristics between the dimensions. In
case the dimensions are too similar, we usually do not improve the approximation
enough to compensate for the increased number of refinement steps and could even
end up with a worse representation. An improved error estimator that results in better
single-dimensional Split operations might change this situation and could increase the
performance and robustness of the method.

5.1.2.5 Modified basis

So far, we have mainly seen basis functions that are used when we either have points
on the boundary or the boundary has a predefined value (usually 0). In cases where the
boundary values are unknown and where we do not want to spent points on the bound-
ary, a special type of basis functions is often used: the modified basis [96]. We will look
at the linear modified basis which linearly extrapolates towards the boundary. For this
purpose, we build the linear interpolation function between each of the two outermost
points in each direction and their corresponding inner neighbour. This function is then
extrapolated towards the respective boundary. If only one point is present in level 1, we
use the constant function ®(z) = 1 as basis. This modification only changes the basis
functions of the two outermost points and their direct neighbours in 1D. All other basis
functions in the nodal basis remain unchanged. Via tensor product this basis definition
then generalizes to higher dimensions. The surplus calculation is adjusted to the modi-
tied basis. More details on the surplus calculation and the concept of the modified basis
can be found in [96].

With the modified basis, we adapted the original six test functions so that the local
phenomena are not localized in the corners. The reason for that is that only for very
large levels points are placed close to the corners. Hence, the results are bad for these
cases and the adaptive process cannot find a suitable refinement due to the missing
corner points. In addition, we removed the results for fcont as it does not require ex-
trapolation due to a boundary value very close to 0, and we also removed fp10q as it
delivered results similar to fgauss. Furthermore, some slight adjustments to the shape
of the functions were made to increase their smoothness.

In Fig. 5.9 we show our results for the four test functions. We look at the (rebalanced)
dimension-wise scheme with the modified basis (dark and light green) and compare
it to the regular linear basis with boundary points (red and purple). We also compare
these results to the standard Combination Technique with the modified basis (yellow).

We can see that for smooth function representations, such as fcomer and Jexpvar, We
can improve our results with the modified basis. Especially for fexpvar we achieve a
significant boost of up to two orders for the standard Combination Technique in com-
parison to the normal linear basis with rebalancing.

121

5 Numerical case studies with the Spatially Adaptive Combination Technique

Trapezoidal Grid(modified basis) (Standard Combi) Imin=1
—— Trapezoidal Grid
—— Trapezoidal Grid (Rebalancing)
—— Trapezoidal Grid (Rebalancing, modified basis)
—— Trapezoidal Grid (modified basis)

10?
5 10t 5 10!
<4 o
= =
[} (] o
T 100 B A
o o - f\ o
3 351 \
£ £10
g 107 g
% g107
102]
« 10 = 10-3
1073
10! 102 103 104 10° 10t 102 103 104 10°
Number of function evaluations Number of function evaluations
(a) fco'r‘ner,]ﬁ:Z (b) fdiscont/ ki:i/ p1:05
5 5107
£ £
[(]
I ©102
o o
2 g
£ €
-3
E 210
=} =]
s o
[[
o o« 104
10! 102 103 104 10° 10t 102 103 104 10°
Number of function evaluations Number of function evaluations
(C) fgauss, k1=IOZ/ p2=075 (d) fezpvar

Figure 5.9: Relative quadrature error for four test functions with d = 5 for the modified linear
basis. We compare the new dimension-wise refinement versions to the standard
Combination Technique, and the standard linear hat basis with boundary points.

122

5.1 Numerical quadrature and interpolation

The adaptive refinement also seems to work well for the rather smooth functions and
fails for fgiscont and fgauss- In these cases the normal linear basis performs usually better
and less erratic. If we look at the rebalancing variant, we see a mixed picture. For the
test cases where the modified basis works well, we usually have a similar or better per-
formance with the rebalancing option. However, in the other cases rebalancing might
increase the errors further.

In conclusion, we can say that a higher smoothness is required with the modified ba-
sis compared to a regular basis with boundary points. However, the absence of bound-
ary points has the potential to significantly decreases the number of function evalu-
ations if these requirements are met. Hence, the modified basis should be preferred
for all functions with sufficient smoothness. This holds especially for higher dimen-
sions where boundary points become increasingly costly (see for example [116, chapter
2.4.1]).

5.1.3 Summary

We have seen that the spatially adaptive approaches for the Combination Technique
can perform significantly better than the standard Combination Technique and can
even outperform pure Sparse Grid implementations for the linear basis. In general,
the dimension-wise refinement performs better for smoother functions and functions
for which only a small spatial area per dimension needs extensive refinement. The
Split-Extend method works best for functions that are not smooth or that are even not
continuously differentiable. Here the Split operation helps to restrict the influence of
such problematic regions which leads to a faster convergence in the remaining parts of
the domain. Both methods therefore complement each other and could be used in con-
junction. In fact, one could Split the domain and then apply a single dimension-wise
refinement in each subarea. Such a method could combine both benefits but would also
increase the need for a robust and efficient error estimate that guides the refinement and
decides which operations to apply.

We have also seen that our adaptive approaches do not just work with the linear hat
basis but can also be successfully adapted to higher order basis functions. Here, the
regular structure with the Split-Extend method even allows for Gaussian quadrature in
subregions. Again, we can outperform the standard Combination Technique for these
higher order basis functions for sufficiently localized functions. This also holds for the
modified basis which is a widely used variant that allows to remove boundary points
which significantly decreases the grid point numbers in high dimensions.

In our analysis, we have only looked at the number of function evaluations and not at
the time to compute the result. It is clear that for the used test functions the evaluations
were not the most time consuming part of the computation but the actual adaptive re-
finement procedure. We therefore can not assume to always be faster if the number
of function evaluations is lower. This especially holds if many refinement steps are
necessary. However, in many real-world applications these function evaluations are
extremely costly. Thus, they represent the most time-consuming part for such a quadra-
ture or interpolation problem. Consequently, we can save a lot of computing time or

123

5 Numerical case studies with the Spatially Adaptive Combination Technique

increase the accuracy significantly with the adaptive approaches due to the reduction
in point evaluations.

It should be noted that we have mainly looked at very localized functions that have
for example peaks at the corner or at the center of the domain. Hence, the results are
not representative for all functions. This was intentional as we wanted to show the
possibility to use the Combination Technique in such complicated cases for which the
standard Combination Technique clearly fails. For smooth functions the schemes usu-
ally perform similarly to the classical Combination Technique* or can even be mislead
in certain cases which can sometimes result in a lower efficiency. This is, however, a
problem that is common to spatial adaptivity. However, for larger dimensionalities it
might also be useful to apply the adaptive approach to smooth functions as the ap-
proaches are able to generate intermediate grids between two regular Sparse Grids of
different levels. This might be beneficial if the next level already contains too many
points.

The presented results are not all tests that we have been conducted so far. In [101] we
have analysed more advanced extrapolation approaches — similar to Romberg’s me-
thod [103] — for the dimension-wise refinement. Here, we could show that we can
outperform the linear basis in multiple cases. We have also tried to increase the order
of the dimension-wise scheme by using the method from [64] that can generate stable
high order quadrature rules for arbitrary point distributions by reducing the maximal
possible degree until the quadrature weights are positive. First results with this method
showed for many test cases erratic behavior which might be caused by the fact that
adding points in suboptimal regions might even decrease the quadrature degree. As
a consequence, this often leads to stagnating or even increasing errors at high point
numbers. Another option to increase the order of the dimension-wise scheme would be
to utilize the piecewise Gauss quadrature from [16]. Such an approach would however
prohibit the use of rebalancing operations as this conflicts with the optimized grid point
placement.

Outside of the Sparse Grid community mainly randomized approaches, such as (quasi)
Monte Carlo methods, are used to solve high-dimensional integrals. These approaches
usually guarantee a convergence rate that is independent of the dimensionality of the
problem. This is especially interesting for very high dimensional cases as the Com-
bination Technique can not reach arbitrary high dimensions®. Another alternative is
Bayesian quadrature that uses Gaussian processes for integrating the target function. A
review of Bayesian quadrature methods can be found in [26]. For high-dimensional in-
terpolation mainly irregular grids are used due to the curse of dimensionality. Examples
are distance-based methods, such as nearest neighbor interpolation, the use of spe-
cialized basis function that are centered at arbitrary data points, such as radial-basis
functions [21], or probabilistic approaches, such as Gaussian process regression [100].

4Of course some additional overhead is introduced due to the refinement procedure.
5The Combination Technique works usually best for dimensions smaller than 10-20 unless an efficient
dimension reduction, e.g. with the dimension adaptive scheme, can be achieved.

124

5.2 Uncertainty quantification

For both use cases Gaussian processes represent an alternative to find an adaptive re-
finement by estimating the regions with highest uncertainty.

To put it in a nutshell, the spatially-adaptive variants of the Combination Technique
represent an efficient alternative to existing methods in quadrature and interpolation.
In particular, they can improve on existing Sparse Grid techniques for localized prob-
lems.

5.2 Uncertainty quantification

In this section, we give a short overview of uncertainty quantification (UQ) and summa-
rize our results with sparseSpACE. For a more detailed description of the mathemati-
cal foundations and algorithms in this field we refer to [111] and [74].

In UQ the main goal is to determine the uncertainty of a model with respect to a set
of uncertain or stochastic parameters. Here, we usually differentiate between deter-
ministic parameters x and stochastic parameters y. An exemplary model evaluation
would be u(x, y). Sources for uncertainty in the parameter choice arise for example in
input parameters that are real-world measurements with certain measurement errors,
or model parameters that are fitted to match real world experiments.

The target of UQ is now to get the statistical properties of u for specific values of «
with respect to the stochastic parameters y. This could be the expectation, the variance,
or the sensitivity with respect to changes in certain stochastic parameters. In our case,
we assume a certain probability density distribution ¢ that defines the random distri-
bution of the stochastic parameters y. Popular examples are the normal distribution or
the uniform distribution.

There are different methods to calculate these statistical quantities. One approach is
to approximate the function u(z, y) via an analytic function and calculate the statistical
properties exactly for this approximation. One specific incarnation of this idea is the
polynomial chaos expansion [119] that uses the approximation

00 M
u(w,y) = Z ’llm(iB)(I)m(y) ~ Z am(m)q)m(y) = &(m,y) (55)
m=0 m=0

with scalar-valued function 1, (x), orthogonal and normalized polynomials ®,,(y), i.e.
(®i(y), ®;(y))g = dij, and a fixed truncation M. This orthogonal property allows us to
calculate

i () = /)P)0y = (.9,), (5.6)

in the domain of the stochastic parameters D. Once all of these integrals have been
calculated the expectation is just 4y(x) and the variance Z%zl T ()2

Hence, the main task of uncertainty quantification with the chaos expansion is to
solve a quadrature formula to determine the coefficients u,,(x). We can therefore di-
rectly use the methods from the last section and apply them to uncertainty quantifica-
tion. Furthermore, it follows that the findings from the last section also automatically

apply to uncertainty quantification.

125

5 Numerical case studies with the Spatially Adaptive Combination Technique

We have conducted several experiments in close collaboration with students in [60,
76, 115] which showed that the Sparse Grids and the spatially adaptive Combination
Technique can be applied for these use cases. However, for many of the tested UQ ex-
periments the quadrature problem is not localized enough so that the state of the art
methods such as Gaussian quadrature techniques or the (quasi) Monte Carlo methods
perform usually better. This is in accordance with the conclusion of the last section
that showed that only for localized functions a spatially adaptive Combination Tech-
nique outperforms the standard approaches. The main use case of our spatially adap-
tive methods with uncertainty quantification are therefore high-dimensional localized
problems that cannot be tackled easily with current approaches.

However, the adaptive process and the adaptively generated grids can give valuable
insights in the structure of the problem even without a superior quadrature accuracy.
For example, by looking at the refinements of the dimension-wise scheme, the impor-
tant dimensions and subregions of a dimension can be determined. This can be valu-
able beyond the mere quadrature calculation.

This overview is only a summary of the results from our test cases with UQ that we
presented for the sake of completeness. We will however not go into further details in
this dissertation as the majority of the work was done by the respective students. For
further information on the test cases and the results, we refer to the respective student
works that show results for classical toy problems including a predator-prey model
[60], a pedestrian and crowd dynamics simulator [76] and an application in hydrology
[115].

5.3 Machine Learning with Sparse Grid density estimation

A typical objective of machine learning is to approximate a function based on given
data points and certain objectives. It is common to differentiate the methods between
supervised and unsupervised learning techniques. For supervised learning we assume
that the function values are known at the given data points, while for unsupervised
learning no function values are provided.

A use case for supervised learning is classification where each data point x; is as-
signed to a specific class ¢; — sometimes also referred to as a label. The classification
task is then to find a function expression that closely fits the data points to the given
labels and which generalizes well to unseen data points. The latter part is the most
important aspect as the main use case for classification is to apply the learned model
to classify new data points for which usually no labels are available. Famous examples
to define a classifier are support vector machines — potentially using kernel functions —,
k-nearest neighbors, Bayes classifiers, decision trees, and neural networks.

For unsupervised learning a classical use case is clustering. Here, we try to cluster
the data points according to how ”similar” they are. An optimal definition of similarity
is however rather complicated and usually application-dependent. Data points that are
similar form a cluster. An example would be to find customers with similar interests
based on previous purchases. Well-known classes of clustering algorithms are centroid-

126

5.3 Machine Learning with Sparse Grid density estimation

based methods, agglomerative clustering, hierarchical clustering, and density-based
methods.

In this section, we will consider Sparse Grid Density Estimation [95] which is a Sparse
Grid variant of density estimation. Based on the computed density, we will then show
how to perform classification and clustering. But first we will outline the idea of den-
sity estimation and show how to compute the density function. This section and the re-
sults are based on joint works with several students. In particular, Lukas Schulte [108]
implemented the density estimation with the standard Combination Technique, Cora
Moser [82] extended this implementation and applied it to clustering and classification,
and Markus Fabry [28] added spatial adaptivity to the density estimation. Further den-
sity estimation experiments with the Combination Technique in SG** can be found
in [105, 106]. Moreover, in [105, section 4.3] the possible performance gain is described
that can be achieved when switching from an explicit Sparse Grid structure to the Com-
bination Technique.

For information on how to apply the Combination Technique to regression tasks we
refer to [37, 34, 35].

5.3.1 Algorithm overview

In density estimation, we want to find a density function that represents the given data
well. One can think of it as a probability distribution from which the data points were
sampled. However, the integral of a density is not necessarily normalized to 1. A com-
mon method in Sparse Grid Density Estimation is to start from a maximal overfitted
estimate f(x) that puts delta functions on the respective data points and sets the rest
to 0. Then, spline smoothing is applied to generalize the density and achieve better
results at unseen points. This results in the density representation [95]

A~

f= argrnin/ (u(x) — fe(x))*dz + M| Lul|?>. (5.7)
ueV D

The first term of the equation fits the density u(x) as close as possible to the data

points and the second term ||Lul|?, is used for regularization and uses the Laplace

operator L for smoothing. The parameter A > 0 defines the trade-off between both

terms of the equation. This equation can be transformed (see [95]) to the linear equation

(R+AC)a=b (5.8)

with matrices R,C € RM*Y where N is the number of Sparse Grid points. Here,
we use R;; = [, ¢i(x)pj(x)dx which is the scalar product between basis function
i and j, Cijj = [, Loi(x)Loj(x)dx as regularization term, and the right hand side
bi =, €[] ¢i(x;) which is the only data dependent term. In case we want to scale
different data points differently, we can also include coefficients ¢ to adjust the right
hand side b; = }_ ¢y ¢i(x;) - ¢;. This factor is usually tied to the label ¢; of a data
point and is applied if we want to have a binary classification where one class has neg-
ative factors and one has positive factors [28]. The resulting density will then change

127

5 Numerical case studies with the Spatially Adaptive Combination Technique

the sign according to the dominant class in a particular region. It should be noted that
the integral computations for R;; can be calculated very fast analytically [105, appendix
Al

Since the computation of C is usually quite involved, we will instead use the identity
matrix /. The reasoning behind this and the comparisons between different regulariza-
tion matrices can be found in [13, 96, 93]. As a result we get

(R+M)a=hb (5.9)

which is the final formula that we will use in this chapter for the calculation of the
density f = Zie[N a;¢;(x). Here, the ae vector is used as weight for the basis functions,
which describes the final density function on the grid. Algorithm 9 summarizes this
approach.

Algorithm 9 Pseudocode for the density estimation on a component grid

1: procedure DENSITY_ESTIMATION(evaluation_points, data, label_coefficients, d, £)
> Output: evaluations y ({ f(x)|x € evluation_points})

2: N = GET_.NUMBER_OF_POINTS(¥)
3: initialization of basis functions ¢;, i € [N]
4: M = SIZE_OF(data)
5: fori € [N] do > Compute Matrix R and right hand side b
6: for j € [N] do
7: Rij = [, ¢i(x)d;(x)dx
8: end for
9: b, =0
10: for j € [M] do
11: x = data;
12: b; += ¢;(x)-label _coefficients;
13: end for
14: end for
15: a=(R+X)"1b > Calculate density function f
16: & = NORMALIZE(x)
17: for p € evaluation_points do > Evaluate f at evaluation_points
18: yp=0
19: fori € [N] do > Evaluate basis functions at point p
20: Yp += ¢i(p) - &
21 end for

22: end for
23: end procedure

To avoid calculating a linear system which costs up to O(NN?) operations, we can also
just use the diagonal part of R, i.e. R = diag(R), which effectively reduces the complex-
ity to linear. This novel approach that we will discuss in this section is similar to the
mass-lumping approaches in PDE calculations where the mass matrix is diagonalized

128

5.3 Machine Learning with Sparse Grid density estimation

to reduce the computational costs. We will therefore name this approach mass-lumping.
It should be noted that in the combination technique N is typically not too large and
therefore it is often still affordable to solve the full system with the standard approach.
Since the matrix is guaranteed to be symmetric and positive definite, it can also be
solved with the conjugate gradient method which can further boost the performance.

We can then evaluate the density at arbitrary evaluation points. This is often needed
for machine learning algorithms where we want to gain new information on previously
unseen points. We therefore evaluate for each evaluation point p all hat functions ®;
weighted by their respective o;; component to get the density value. We can utilize the
limited support of the basis functions to avoid iterating through all basis functions and
instead only evaluate those that are non-zero at point p. This can reduce the complexity
significantly.

If we look closely at Algorithm 9, we can see that we do not directly use the o val-
ues. The reason for this is that we later want to combine different densities on different
grids. As the magnitude of the densities is grid dependent, we first have to normalize
the densities to be able to combine the results. This normalization routine scales o by the
integral of the density. For this scaling we use two different approaches depending if
we use negative label coefficients or not. If all label coefficients are positive®, we use the
Zie[N] max(0,a;)-w;

Zie[N] Wi
tions ®;. We clip negative values at 0 as negative values in this case are only artifacts
of the calculation as the density should be positive. We then compute the normalized

value by o = % - a. In case we use a binary classification with label coefficients < 0,
we also first adjust the o value so that the overall integral is 0. The reason for that is
that sometimes the positive and sometimes the negative values can slightly dominate
the density which will lead to chaotic behavior if we combine different densities. We

2ig[N] XiWi

scaling factor s = with the quadrature weights w; of the basis func-

therefore compute the integral I = . Here, we do not clip as negative val-

Zie[N] Wi
ues arise due to the binary density. This integral is then subtracted from o« resulting in
a® = a — I. We then compute the scaling factor and & as before with this modified
; 0,0)-w; - . . - .
a*, ie s = Licy max(0.a)w and & = ! . a*. This normalized & is then used for the

2ie[N] Wi s
evaluation of the density.

Of course, we save the computed & vector in case we need to evaluate the density
again at a later point. Hence, the linear system is only evaluated once for a specific
grid. Unfortunately, if we adaptively refine the grids, the density has to be recalculated
whenever the component grids change. The reason for this is that R and b change
whenever the basis functions change. If we work in the hierarchical basis, one can
typically formulate these adaptive refinements as low-rank updates to the matrix R.
As a result it is possible to perform an adaptive step more efficiently. This low-rank
update will not be considered in this work but for more information on this we refer to
[105].

Since we use the Combination Technique, we have to evaluate the density for each
of the component grids. We then use these approximations on the different grids and

®In our case this means that they are all 1.

129

5 Numerical case studies with the Spatially Adaptive Combination Technique

combine them according to the combination coefficients ¢, (see Section 2.3.2) to get the
tinal density representation. The process of evaluating the combined density is outlined
in Algorithm 10. It should be noted that for this combination the normalization routine
explained before, which scales and potentially shifts the o vector, is needed to allow
the combination of the different densities from the different component grids. Without
these normalizations single grids can dominate which can potentially flip the density to
the negative side if these grids are subtracted. Of course, such effects completely falsify
the results and should therefore be avoided.

Algorithm 10 Pseudocode for the density estimation with the Combination Technique

1: procedure DENSITY_ESTIMATION_COMBI(evaluation_points, data, coefficients, §, Z)
> Output: evaluations of density y

2 y=0

3 forf € 7 do

4 yt = DENSITY_ESTIMATION(evaluation_points, data, coefficients, 9, £)
5: Yy +=cy- ye
6 end for

7: end procedure

We can now use this definition to create a Sparse Grid classifier according to the
scheme presented in [93, 92]. First, we split the dataset according to the class labels.
Then we independently learn the density of the data points related to each label. In
Fig. 5.10, we show an example of the individual densities for each class of a classifi-
cation dataset including the combination that leads to these densities. If we want to
classify a new point, the density for each class is evaluated and the maximum value
determines the label of the data point. This process is summarized in Algorithm 11
where we use training data with known class labels and test data for which we want to
predict the label. We also pass the index set 7 for the Combination Technique and the
list of classes. T" denotes the number of training samples. In this approach, the SPLIT_-
DATASET method just returns the training samples of the respective class and label 1 as
we only do a single-class density estimation.

For a binary classification, it is also common to modify the approach by creating only
one density for which the sign of the density determines the class label. For multi-
class classification this can be utilized in a one-vs-others approach [28] where we create a
binary density for each class. Here, we aggregate all samples of other classes in one arti-
ficial class that is compared to the respective class. As a result, the density is positive in
regions where the corresponding class is dominant and negative in regions with more
data points from other classes. In our implementation this is realized with a modified
behavior of the SPLIT_DATASET method. This method returns all training samples but it
adjusts the label coefficients array so that it is 1 for samples from the respective class k
and —% for all other classes. We do not chose —1 for the other classes as the
number of points between classes changes. As a consequence the density would have
an unbalance towards the positive or negative side. Adjusting the label factors accord-

130

5.3 Machine Learning with Sparse Grid density estimation

ingly helps to reduce this effect. In addition, we normalize the « vector as explained
before in this one-vs-others approach by subtracting the integral I, of the computed den-
sity on each component grid £ and normalizing the integral of the positive part of the
density. Hence, the integral has a perfect balance between positive and negative re-
gions and is comparable to all other component grids. We can see an example of the
one-vs-others approach in Fig. 5.11 where we show the densities for each class.

In addition, this approach allows us to define a novel application-specific error esti-
mator [28] for the adaptive combination technique. Since we can just evaluate the den-
sity at each training point after the density estimation is finished, we can check which
points result in a positive and which in a negative density. If we compare the signs of
these results to the actual label of the data points, we can define which data points are
misclassified. We can then just check for each leaf in our 1D point arrays P* and for all
dimensions k € [d] how many sample points are misclassified in their support. In this
case, the support of a point is determined by the one-dimensional hat basis functions
that are defined by our 1D point arrays P* with level L*. This means that for example
a misclassified data point p = (0.1,0.7) counts once for the leaf in dimension 1 with a
support that contains 0.1 and once for the respective leaf in dimension 2 with a support
that contains 0.7. The final error estimate for each leaf is then the sum of all such mis-
classified data points in its support times the width of the support. Multiplying by the
width avoids too strong refinement in certain dimensions as with increasing level the
width decreases exponentially. As a consequence, this procedure creates for a broader
and more balanced refinement across all dimensions.

Algorithm 11 Classification with Sparse Grid Density Estimation
1: procedure CLASSIFICATION(trainingdata, testdata, 9, Z, classes)

> Output: class_assignments
2 for c € classes do > Perform training and evaluate densities for each class
3 trainingdata_c, coefficients = SPLIT_DATASET(trainingdata, c)
4: y° = DENSITY_ESTIMATION_COMBI(testdata, trainingdata_c, coefficients, J, Z)
5: end for
6
7
8
9

fori € [T] do > Assign classes based on maximum density value
class_assignments; = argmax
end for
: end procedure

¢
ceclasses Yi

For the clustering application (see Algorithm 12), we rely on the k-nearest neighbors
algorithm to build a graph between every data point and its k closest neighbors [94].
Here, we use the already existing implementation in scikit-learn’[91]. Based on this
graph, we use the density estimation to cut edges that cross or lie in low density regions.
For this purpose, we define a threshold relative to the maximum density and compare
it to the density at the midpoint of an edge. If the density is below the threshold, we
remove the edge. This is applied to all edges. On the remaining graph a connected

"https://scikit-learn.org/

131

https://scikit-learn.org/

5 Numerical case studies with the Spatially Adaptive Combination Technique

Input_Set

2.0 (1,3) (2, 3)

.

10 < (2,2) (3,2)

:

0.0 (3,1) (4,1)

1

Figure 5.10: The plots show an exemplary density estimation for the Gaussian Quantiles dataset

132

(top) using an independent density for each class as a 3D (left) and a contour plot
(middle). We show the three densities that are calculated for the three different
classes. In addition, the individual results on the component grids are shown on
the right for each class.

5.3 Machine Learning with Sparse Grid density estimation

Input_Set
4 1ass_0
lass_1
lass_2
R e O
1 . ¥ o 80
- o gt "
A b,
-1 CRERE e
Y 3 ".
)
3 -2 -1

(1,4)

10

5 L3 @3
e | [
-

' = : (22) (3,2)

o

.. ..,. -
10 | e e
(3,1) (4,1)
200 100 [l s 5 6
A
14 -
(3,1) (4,1)

Figure 5.11: The plots show an exemplary density estimation using the one-vs-others approach
for the Gaussian Quantiles dataset (top). We show the three densities that are calcu-
lated for the three different classes as a 3D plot (left), a contour plot (middle), and
the individual densities on the component grids (right). For each class the density
is negative in regions where the samples from other classes dominate.

133

5 Numerical case studies with the Spatially Adaptive Combination Technique

component search is performed to detect clusters. This procedure is based on the work
in [94, 122].

Algorithm 12 Clustering with Sparse Grid Density Estimation
1: procedure CLASSIFICATION(data, 6, Z,k, threshold)

> Output: cluster_assignments

2 edges = K. NEAREST_NEIGHBOURS(data) > build k-nearest neighbour graph
3: midpoints = GET_MID_POINTS(edges) > get midpoints for edges
4: y = DENSITY_ESTIMATION_COMBI(midpoints, data, ¢, 7) > evaluate density
5 edges_filt = {edges;|y; > threshold } > filter edges
6: clusters = CONNECTED_COMPONENT_SEARCH(data, edges_filt) > find clusters
7: end procedure

5.3.2 Classification results

For the evaluation of the spatially adaptive Combination Technique, we will focus on
the results with classification, as they are easier to quantify by the rate of correct classi-
tied samples. However, the results should also apply to clustering applications as both
applications use density estimation as a core component. For people interested in first
clustering results, we refer to [82].

We will look at the Classification and Gaussian Quantiles datasets which we generate
using scikit-learn [91]. An example of these datasets with 1000 samples can be found
in Fig. 5.12. In all our test cases, we generate 10000 samples split into 4 classes. For
the Classification dataset each of these classes contains 1 cluster. The exact calls to the
scikit-learn library are

1 make_classification (n_samples=10000, n_features=dim, n_redundant=0,
2 n_clusters_per_class=1, n_information=2, n_classes=4)
3 make_gaussian_quantiles (n_samples=10000, n_features=dim, n_classes=4)

These datasets are perfectly suited for the comparison of our implementation as we
can generate arbitrary numbers of samples with arbitrary dimensions dim and the prob-
lems are usually complicated enough so that a low Sparse Grid level does not suffice to
achieve the maximum classification rate. We can therefore study how the classification
rate converges if we apply the density estimation with the different variants of our im-
plementation. In Table 5.1, we give an overview of all the different test cases that we
will discuss in the following.

5.3.2.1 Standard Combination Technique

We will first compare the different algorithmic modes for the standard Combination
Technique, namely, constructing a single density function for each class independently

134

Input_Set

5.3 Machine Learning with Sparse Grid density estimation

Input_Set

e class 0 4
o class_1
e class 2

e class_0
o class_1
e class 2

)

Figure 5.12: A 2D example of the Classification (left) and the Gaussian Quantiles (right) datasets

with 4 classes. The different classes are highlighted in different colors.

Type (Fixed) parameters Dataset Figures

di | Classification Fig. 5.13

Standard Combi- 1, 1k, 000 Gaussian Quantiles | Fig. 5.14

nation Technique . Classification Fig. 5.15

dim, ml, 000, A Gaussian Quantiles | Fig. 5.16

ml=0, k=-1, dim, 0v0, Cla§sy‘tcatzon. F¥g. 517

. Gaussian Quantiles | Fig. 5.18
Spatially Adap- T — :

. - . Classification Fig. 5.19
tive Combination | ml=1, k=-1, dim, ovo, y § - -

. Gaussian Quantiles | Fig. 5.20
Technique e .

ml=0 k=1 dim. ovo Classification Fig. 5.21

— S QA OO YT Caussian Quantiles | Fig. 5.22

Table 5.1: Overview of the different results for the standard Combination Technique and the
Spatially Adaptive Combination Technique. We list the investigated parameters (ovo
= one-vs-others, ml = mass-lumping) and indicate whether they are fixed to a specific
value or varied in the respective figure. A value k¥ = —1 indicates that the refinement
starts at level 2 and is continuously refined from there, while k¥ = 1 indicates that we
reset the adaptive grid to a regular Sparse Grid once it diverges too much from the
standard Sparse Grid. For more information on v we refer to Section 4.1.5.

or the one-vs-others approach and the mass-lumping approach or a full matrix construc-
tion of R. In the following test cases, we first set A = 0 and consider later the influence
of the regularization parameter.

Different modes First we show in Fig. 5.13 results with varying dimensions for differ-
ent Classification datasets. We can see that in general all approaches improve the classifi-

135

5 Numerical case studies with the Spatially Adaptive Combination Technique

Figure 5.13: The plots show our results with the Classification dataset for varying dimensions. It
displays how the classification rate depends on the number of grid points used
in the standard Combination Technique. We compare different algorithmic ap-

136

o
=]
@

classification rate
o
©
N

o
©
S

0.751

0.701

classification rate

0.50

0.454

dim =2

o
©
>

o
©
IS

——
—
—+

standard ml=1 ovo=0
standard ml=0 ovo=0
standard ml=1 ovo=1
standard ml=0 ovo=1

102

grid points

dim =5

10°

0.65

0.60

0.55

— =

——
-
—+

standard ml=1 ovo=0
standard ml=0 ovo=0
standard ml=1 ovo=1
standard ml=0 ovo=1

"
102

grid points

:
103

classification rate

classification rate

o
©
S

o
N
©

o
N
o

o
N
N

0.721

o
©
o

o
©
«

o
©
S

o
N
o

o
N
=)

o
o
vl

dim =3

standard ml=1 ovo=0
standard ml=0 ovo=0
standard ml=1 ovo=1
standard ml=0 ovo=1

102

——
—
—+

grid points

dim =10

10°

——
-
—+

standard ml=1 ovo=0
standard ml=0 ovo=0
standard ml=1 ovo=1
standard ml=0 ovo=1

:
102

:
103

grid points

:
104

proaches with mass-lumping(ml) or not and with one-vs-others(ovo) or not.

5.3 Machine Learning with Sparse Grid density estimation

dim =2 dim =3

—e— standard ml=1 ovo=0
| —r— standard ml=0 ovo=0
—*— standard ml=1 ovo=1
—— standard ml=0 ovo=1

0.9{ —®— standard mi=1 ovo=0
—r— standard ml=0 ovo=0
—*— standard ml=1 ovo=1
—— standard ml=0 ovo=1

e
N

0.8

o
o

0.7 1

0.6 -

classification rate
classification rate
o
o

N
IS

0.5 A

e
w

0.4

10? 103 10? 10%
grid points grid points
dim=5 dim = 10
—e— standard ml=1 ovo=0 0.31 1 —e— standard ml=1 ovo=0
0.451 < standard ml=0 ovo=0 —r— standard ml=0 ovo=0
—*— standard mi=1 ovo=1 0.301 —*— standard mi=1 ovo=1
—— standard ml=0 ovo=1 ’ —— standard ml=0 ovo=1

0.40

0.35 1

classification rate
classification rate

0.301

V/—‘ 0.26 1

10? 10° 10? 10° 104
grid points grid points

0.251

Figure 5.14: The plots show our results with the Gaussian Quantiles dataset for varying dimen-
sions. It displays how the classification rate depends on the number of grid points
used in the standard Combination Technique. We compare different algorithmic
approaches with mass-lumping(ml) or not and with one-vs-others(ovo) or not.

cation rate with increasing grid point numbers 8. It can also be noticed that sometimes
the mass-lumping approaches are better and sometimes worse. Interestingly, this cor-
relates with whether one-vs-others is used or not. On the one hand, for cases without
one-vs-others, mass-lumping usuallly decreases the classification rate. On the other hand,
for cases with one-vs-others, the mass-lumping approaches sometimes slightly improve
the performance. Overall the approach without mass-lumping and without one-vs-others
seems to be the best choice across all dimensions.

Next, we will look at the same configuration but with the Gaussian Quantile datasets
in Fig. 5.14. Here, the situation is similar. In general, mass-lumping performs worse
(unless for 10 dimensions) and the best performance is reached without one-vs-others
and with the full matrix generation, i.e. without mass-lumping. This is rather consis-
tent through all dimensions. One explanation might be the circular shape of each class
which is in general complicated for the Sparse Grid representation. If we now also
remove the entries in the matrix which are not on the diagonal, we also remove the

81t should be noted that the test data was chosen so that the accuracy at the starting level was not too
high so that an increasing classification rate was observed. In some cases the generated test cases was
so easy to classify that already the starting level was sufficient. In such cases the data was generated
anew.

137

5 Numerical case studies with the Spatially Adaptive Combination Technique

interactions between the basis functions. However, for this circular structure these in-
teractions are vital as they show large mixed derivatives. Another observation is that
the approaches are usually closer together for low dimensional problems and diverge
more from each other for higher dimensions. It is therefore more crucial to chose the
appropriate variant in high-dimensional scenarios. For 10 dimensions the achieved
classification rates are rather low and perform close to 25% which is for the 4 class
classification the baseline for a random choice. This might explain the outlier where
the version with one-vs-others and with mass-lumping performs for some configurations
best.

These observations show that the general configuration of the density estimation de-
pends on the dataset. Datasets that require large interactions between the dimensions,
due to for example circular shapes, perform better without mass-lumping while for other
datasets mass-lumping might even boost the performance or at least give similar results.
The latter case is surprising as the mass-lumping version is an approximation with sig-
nificantly smaller cost due to the linear complexity for each component grid. The one-
vs-others version usually performs worse for low grid point numbers but can achieve
good results at high grid point numbers. The one-vs-others approach can therefore be
especially suited for complicated cases that require high discretization levels. It should
be noted that the one-vs-others approach significantly increases the computational cost
as the full dataset is involved in the computation of the density and not just the samples
of the respective class. This is especially relevant for classification scenarios with a high
number of classes. We should therefore only use it if it reaches a higher classification
rate.

Regularization parameter So far we have only looked at test cases without the reg-
ularization term, i.e. A = 0. We have also analyzed the effect of the regularization
parameter A on the classification result. First of all, if mass lumping is activated the A
value is irrelevant as the matrix is already a diagonal matrix with identical entries as we
use the nodal basis and consequently all hats in the component grid have an identical
value for the inner product. Thus, the lambda value only scales the density up or down
and therefore does not affect the classification result. For this reason, we only show
different \ values if mass-lumping is deactivated.

For the Classification dataset the results (see Fig. 5.15) without one-vs-others indicate
that usually the lower the A values the better the results. Interestingly, the higher the A
value the more the results converge towards the version with mass-lumping. This is not
surprising if we remember what the mass-lumping approach does. In this version we set
every entry in the R matrix to zero except for the diagonals that stay unmodified. The
A value is always added to the diagonal. As a consequence, if the diagonal becomes
very large due to this addition, the influence of the off-diagonal entries decreases. We
can therefore see the mass-lumping as a version with a maximal A value. For higher
dimensions the same A values have a larger impact which is due to the fact that the
matrix entries in R are getting exponentially smaller with the dimension. Similarly,

138

5.3 Machine Learning with Sparse Grid density estimation

dim =2 ovo =0 dim=2ovo=1

0891 _o— standard mi=11=0.0
0.88 1 0.88{ —r standard mi=0A=0.0
—*— standard ml=0 A=0.01
0.87 1 —— standard mi=0A=0.1
2 0.86 o =< standard ml=0 A=1.0
g © 0.86 1
c c
2 o
= 0.84 = 0.85 1
2 2
a 7 0.84
@ @
£ 0.82 standard ml=1 A=0.0 ©
© © 0.83 1
—r— standard ml=0 A=0.0
—~— standard ml=0 A=0.01 0.82
0.80 .
—— standard ml=0 A=0.1
—>¢ standard ml=0 A=1.0 0.81
10? 10% 10? 10%
grid points grid points
dim =3 0ovo=0 dim=3o0vo=1
0841 —e— standard ml=1 A=0.0 0.82
0.83 —r— standard ml=0 A=0.0
. —*— standard ml=0 A=0.01 0.80 1
0.82 —— standard mI=0 A=0.1 :
o= -4 standard ml=0 A=1.0]
e C 0.784
5081 s
=] =]
S S 0.76 1
= 0.804 =
a @
< £ 0.741 —e— standard mi=1 A=0.0
©0.794 © —0 A=
—r— standard ml=0 A=0.0
i —*— standard mi=0 A=0.01
0.78 0.72
. —— standard mI=0 A=0.1
| —¢~ standard ml=0 A=1.0
0.77 1 T T 0.70 T T
10? 10° 10? 10°
grid points grid points
dim=50vo =10 dim=50vo=1
0.751
0.754
0.701
0.74
Q Q
© © 0.651
c 0.731 c
2 2
=] =]
S 0.721 5 0.601
= =
& &
S 0.71 —e— standard ml=1 A=0.0 S 0.55 —e— standard ml=1 A=0.0
—r— standard ml=0 A=0.0 —— standard ml=0 A=0.0
0.70 1 —*— standard ml=0 A=0.01 0.501 —*— standard m|=0 A=0.01
—— standard ml=0 A=0.1 | —— standard ml=0 A=0.1
0.69 —>¢ standard ml=0 A=1.0 —>¢ standard ml=0 A=1.0
T T 0.45 T T
102 10° 102 10°
grid points grid points
dim=100ovo =0 dim=10ovo =1
0.90 1
0.911
0.85
o 0-901 o 0.801
8 8
c 0.89 c 0.751
2 2
g g 0.701
£ 0.88 e
a @ |
2 0.871 —e— standard ml=1A=0.0 2 0.65 —e— standard ml=1A=0.0
: —r— standard ml=0 A=0.0 0.60 - —r— standard ml=0 A=0.0
0.86 —+— standard ml=0 A=0.01 ! —+— standard ml=0 A=0.01
. —— standard ml=0 A=0.1 0.55 —— standard ml=0 A=0.1
—¢- standard ml=0 A=1.0 —¢~ standard ml=0 A=1.0
0851, . - 0.50 4, . .
102 10° 10* 10? 10° 10*
grid points grid points

Figure 5.15: The plot shows the results with the Classification dataset for varying dimensions.

Here we analyze how the classification rate depends on the number of grid points
used in the standard Combination Technique. We compare different A values with
mass-lumping(ml) or not and with activated or deactivated one-vs-others(ovo). For
the test case with dimension 10 and ovo=0, all curves with a non-zero \ value and
the mass-lumping version are below the purple curve.

139

5 Numerical case studies with the Spatially Adaptive Combination Technique

Figure 5.16: The plot shows the results with the Gaussian Quantiles dataset for varying dimen-
sions. Here we analyze how the classification rate depends on the number of grid
points used in the standard Combination Technique. We compare different A values
with mass-lumping(ml) or not and with activated or deactivated one-vs-others(ovo).
For the test case with dimension 10 and ovo=0, all curves with a non-zero \ value

140

classification rate

classification rate

classification rate

classification rate

dim =2 ovo =0

0.9

0.8 1

0.7 1

standard ml=1 A=0.0
standard ml=0 A=0.0

0.6

0.5 A standard ml=0 A=0.1

standard ml=0 A=1.0

standard ml=0 A=0.01

102 10°

grid points

dim = 3 ovo =0

standard ml=1 A=0.0
standard ml=0 A=0.0
standard ml=0 A=0.01
standard ml=0 A=0.1
standard ml=0 A=1.0

0.7 1

44

0.6

0.5 1

0.4
10? 103
grid points
dim=5o0vo=0
—e— standard ml=1 A=0.0
0.450 1 —« standard ml=0A=0.0
—*— standard ml=0 A=0.01
04259 1 standard mi=0 A=0.1
0.400 1 —¢~ standard ml=0 A=1.0
0.375 4
0.350 1
0.325 1
0.300 4 hl’”/——/—__d*
0275 * ¥
102 10°
grid points
dim=100ovo =0
029579 _o— standard mi=1 A=0.0
0.290 —r— standard ml=0 A=0.0
. —*— standard m|=0 A=0.01
0.285 1 —— standard mI=0 A=0.1
: —¢~ standard ml=0 A=1.0
0.280 4
0.275 4
0.270 4
°* /
0.2601 w >
102 10% 104
grid points

classification rate

classification rate

classification rate

classification rate

dim=2ovo=1

0.9
0.8
0.7
0.6
standard ml=1 A=0.0
051 —¢— standard ml=0 A=0.0
—*— standard m|=0 A=0.01
0.4 —— standard mi=0 A=0.1
—¢- standard ml=0 A=1.0
10? 10°
grid points
dim=3o0ovo=1
—e— standard ml=1 A=0.0
0.7 { —r standard ml=0 A=0.0
—*— standard mi=0 A=0.01
—— standard mI=0 A=0.1
0.6 —>¢- standard ml=0 A=1.0
0.5
0.4
0.39
102 103
grid points
dim=50vo=1
0364 —* standard ml=1 A=0.0
—r— standard ml=0 A=0.0
—*— standard ml=0 A=0.01
0.341 —— standard ml=0 A=0.1
—¢ standard ml=0 A=1.0
0.321
0.30
0.28
0.26
10? 10°
grid points
dim=10ovo=1
0.314{ —@— standard ml=1A=0.0
—— standard ml=0 A=0.0
0.301 —*— standard ml=0 A=0.01
! —— standard mi=0 A=0.1
—¢- standard ml=0 A=1.0
0.291
0.28
0.27 1
0.26

10% 104

grid points

and the mass-lumping version are below the purple curve.

5.3 Machine Learning with Sparse Grid density estimation

for decreasing A values the curves converge towards the combination results without
mass-lumping and with A = 0.

If we use the one-vs-others variant, the lambda value seems to not make a big differ-
ence as all variants are pretty close together (see Fig. 5.15 on the right).

The Gaussian Quantiles dataset shows a similar behavior. In Fig. 5.16 one can see
that usually the variant without mass-lumping performs best. This is very similar with
and without one-vs-others. The only exception is the case with dimension 10 and with
one-vs-others which could be an outlier as explained before.

5.3.2.2 Spatially adaptive Combination Technique

In the last section we have analyzed our implementation of the classification with the
Sparse Grid density estimation using the standard Combination Technique. The key
component of our framework is, however, the spatially adaptive Combination Tech-
nique. For this reason, we also implemented the density estimation for the dimension-
wise scheme. As the density on a grid is grid-dependent and changes with the basis
functions, we can not assume anymore that the results of the Combination Technique
are the same as a classical Sparse Grid approximation. It is therefore an interesting test
case to analyze the Combination Technique. This is especially interesting for adaptive
processes as the adaptive process also transforms the density and not just increases the
resolution. Furthermore, classical effects of machine learning such as overfitting can
appear. Consequently, the refinement is critical and a good error estimate is necessary.
In addition, the v € [0, 1] parameter (see also Section 4.1.5) that decides how broad we
refine is more relevant here. A v value of 1 only refines the points with highest error
estimate, while a low y value allows for a broader refinement that includes regions with
a lower error estimate. We will again consider the Classification and Gaussian Quantiles
datasets at different dimensions. We will only look at test cases with A = 0 as those
cases resulted in the best classification rates for the standard Combination Technique.
For the one-vs-others approach we use the novel error estimator based on the misclassi-
fication rate, while we use the standard surplus-based error measure if one-vs-others is
deactivated.

In Figs. 5.17 to 5.20, we show the results for the two datasets with and without one-vs-
others and with and without mass-lumping. In all cases the adaptive refinement starts at
a standard grid of level 2. We can see that in comparison to the standard Combination
Technique, we get an increased performance especially for test cases with mass-lumping
(see Figs. 5.19 and 5.20). This indicates that the adaptivity can decrease the gap between
the performance of the mass-lumping approach and the full matrix approximation that
we observed for the standard Combination Technique. Also for one-vs-others we usually
achieve an improvement (see right columns of Figs. 5.17 to 5.20). This is an indication
that the novel error estimator based on the misclassification rate in the one-vs-others
approach works nicely. If we use neither mass-lumping nor one-vs-others, we, however,
only achieve for some configurations improvements over the standard Combination
Technique.

141

5 Numerical case studies with the Spatially Adaptive Combination Technique

dim=2ml=00ovo=0k=-1 dim=2ml=0ovo=1k=-1

0.90 .
0.901
0.88 4 0.88
2 2
© 0.86 0.86 -
s s
S v S
0841))2& g /
£ W HRY) —e— standard £ 0.841 H standard
& 0.82+ ¥ 1y —v- adaptive y=0.01 E [—- adaptive y=0.01
© \ \ / -k~ adaptive y=0.1 v 0821 '| : -k~ adaptive y=0.1
0.80 1 H %’ —+- adaptive y=0.5 . ‘| : —- adaptive y=0.5
078 H X -~ adaptive y=0.9 ‘l /;< -~ adaptive y=0.9
: e ~»- adaptive y=1.0 0.80 1 -»- adaptive y=1.0
X
10? 10% 10? 10%
grid points grid points
dim=3ml=00ovo=0k=-1 dim=3ml=00vo=1k=-1
0.84
0.82 1
0.821
0.80 1
2 2
< 0.80 < 0.781
° °
=1 =1
S S
£ 0.78 4 Y standard £ 0.76 1 standard
& N, x Il” K —¥- adaptive y=0.01 & -y~ adaptive y=0.01
© 0.76 4)é’\: ! Il,' / -4~ adaptive y=0.1 Y 0.74 -4~ adaptive y=0.1
\\\‘ ll,’ /)L —- adaptive y=0.5 —+- adaptive y=0.5
“\4'{' , —¢- adaptive y=0.9 0.72 —¢- adaptive y=0.9
0.74 1 Y -~ adaptive y=1.0 -~ adaptive y=1.0
- - - -
10? 10° 10? 10°
grid points grid points
dm=5ml=0ovo=0k=-1 dim=5ml=00vo=1k=-1
0.76 0.751
0.74 1 0.701
2 2
® 0.65 1
c 0.72 c
o o
3 A \. Yow s //// K 0.60
:»; 0.70{ —*— standard W/ »; —e— standard
o —- adaptive y=0.01 W,/ o —- adaptive y=0.01
© —k- adaptive y=0.1 Iy © 0.55 1 —k- adaptive y=0.1
0.681 —- adaptive y=0.5 / —- adaptive y=0.5
~ /
-~ adaptive y=0.9 S / 0.50 4 - adaptive y=0.9
0.66{ —r- adaptive y=1.0 \~~_¥ -y~ adaptive y=1.0
10? 10° 10? 10°
grid points grid points
dim=10ml=00vo=0k=-1 dim =10 ml=0ovo=1k=-1
L e
0.9 *’_______._——-‘-—'-"'ﬁ h 0.90
\
®a AN /
0.85
‘\\\>2§_~ * ’)‘\ N /,X]
\ ~ > =
9081 LN/ X oS e L o 0807
® Yy Sey \ A g
e ARt et \ A e
c CAN N NAANY = 0.75
2 \ \X %\‘\\ 4 »- S
© \ -7 X/) 2]
S 0.7 - N / i g 070
= —e— standard e Y 1 = —e— standard
2 ive y= AN / 2 0.65 4 °
8 -~ adaptive y=0.01 /' \ ’I o 0 ‘0 X -~ adaptive y=0.01
[*] i A o° -/ 1
0.6 1 - adapt!ve y=0.1 ’+, AN ': © 0.60 4 —X- adaptive y=0.1
—- adaptive y=0.5 - N —+- adaptive y=0.5
. - 4
=X~ adaptive y=0.9 e 0.55 -%- adaptive y=0.9
0.5 -3~ adaptive y=1.0 ?‘,’ 0.50 (W —»- adaptive y=1.0
10? 10% 10% 10? 10° 104
grid points grid points

Figure 5.17: The plot shows the adaptive combination results with the Classification dataset for
varying dimensions. We analyze how the classification rate depends on the num-
ber of grid points used in the standard Combination Technique. We compare dif-
ferent y values without mass-lumping(ml) and with activated or deactivated one-vs-
others(ovo). A = 0 for all cases. As a reference the respective result for the standard
Combination Technique is given. All adaptive refinement start with a starting level
of 2.

142

classification rate

classification rate

classification rate

classification rate

5.3 Machine Learning with Sparse Grid density estimation

dim=2ml=00ovo=0k=-1

0.951 —e— standard

—¥- adaptive y=0.01
—A- adaptive y=0.1
0.85- —+- adaptive y=0.5

0.90 1

—»¢- adaptive y=0.9
0.80 1 adaptive y=1.0
0.751
0.701
0.65
060 N\ Tuye”
(i Sl
X
10? 10°
grid points

dim=3ml=00ovo=0k=-1

0.8 1 —- adaptive y=0.01
-k~ adaptive y=0.1
—+- adaptive y=0.5
0.7 1 —»~ adaptive y=0.9
—-»- adaptive y=1.0

o
o

I
wn

0.4 1

—e— standard A5t

grid points

dim=5ml=00ovo=0k=-1

0.551 —e— standard >
-~ adaptive y=0.01 /,’
0.50{ —*~- adaptive y=0.1 J
—+- adaptive y=0.5 /,/
- ive v= /
o 3 mmerts /
-y~ adaptive y=1. /
/’X
0.40 A s -
0354 s ATe--TT {
< N\,
WS <L T -+
0.30 4 AN ST e
SN 7
X
102 103
grid points
dim=10ml=00ovo=0k=-1
0.40 A
—e— standard ;}‘\
0.38{ —r- adaptive y=0.01 /! \‘
-k~ adaptive y=0.1 SN
0.361 —-- adaptive y=0.5 // \
—»~- adaptive y=0.9 / \
0.34 < adaptivey * ; \
—¥- adaptive y=1.0 A X \
% \
0.321 \
0.301
0.281
0.26
102 103 10
grid points

dim=2ml=0ovo=1k=-1

0.9
0.8
E
C 0.7
c
2
]
% 81 standard
E — - adaptive y=0.01
051 —X- adaptive y=0.1
—- adaptive y=0.5
0.4 —¢- adaptive y=0.9
—)»- adaptive y=1.0
10? 103
grid points
dim=3ml=0ovo=1k=-1
0.8 1 —e— standard /M.{.
i s
- adaptive y=0.01 i
0.7 —*- adaptive y=0.1 ‘t‘z/
° —+- adaptive y=0.5
B g6 ¢ adaptive y=0.9
5 adaptive y=1.0
Sos4
2
T
© 0.4
0.3
102 103 104
grid points
dim=5ml=0ovo=1k=-1
0331 —e— standard
0.321 -~ adaptive y=0.01
—A- adaptive y=0.1
o 0311 —+- adaptive y=0.5
© —»¢- adaptive y=0.9
s 0-301 adaptive y=1.0
S 0294
2
o 0.281
5}
0.27 1
0.26
grid points
dim=10ml=00ovo=1k=-1
0.32 4
0.311
@ 0.301
£ X
5 0.29- v
2 R ’
8 L™ Y
£0.284 —* standard
© —¥- adaptive y=0.01
© 0.27{ -A- adaptive y=0.1
—+- adaptive y=0.5
0.26 { —X- adaptive y=0.9
—)»- adaptive y=1.0
0.25 4 , .
102 103 10%
grid points

Figure 5.18: The plot shows the adaptive combination results with the Gaussian Quantiles

dataset for varying dimensions. We analyze how the classification rate depends
on the number of grid points used in the standard Combination Technique. We
compare different v values without mass-lumping(ml) and with activated or deacti-
vated one-vs-others(ovo). A = 0 for all cases. As a reference the respective result for
the standard Combination Technique is given. All adaptive refinement start with a

starting level of 2.

143

5 Numerical case studies with the Spatially Adaptive Combination Technique

dim=2ml=1ovo=0k=-1 dim=2ml=1lovo=1k=-1
0.90 0.90 ')—4
0881 0.88-
° 0.86 °
] £ 0.86
c [
= 0.841 =
2 S
® 0.82 S 0.84
S o i
% standard % 1 ,* standard
& 0.801 -~ adaptive y=0.01 2 0.82 H)‘{ - adaptive y=0.01
v 0784 ' -4~ adaptive y=0.1 © ,?_X -4~ adaptive y=0.1
! v/ —+- adaptive y=0.5 0804 | 7 —- adaptive y=0.5
0.76 \ ’ll -~ adaptive y=0.9 ! '," - adaptive y=0.9
\ " .
—-»- adaptive y=1.0] —-»- adaptive y=1.0
0.74 1 i T T 078 % T T
10? 10% 10? 10%
grid points grid points
dim=3ml=1ovo=0k=-1 dim=3ml=1lovo=1k=-1
0.82 1 A
0.82 - IV
0.80
i3 i3
E 0.80 1 E
c = 0.78
2 S
® ®
:»; 0787 ?(y N/ —e— standard »; 0.76 standard
o ‘\ \\ ,’ Vi \)\/ —¥- adaptive y=0.01 2) —¥ - adaptive y=0.01
© / ©
© 0.76 \‘)r \,"‘// —*- adaptive y=0.1 © 0.741 -4~ adaptive y=0.1
\\‘\\I H —+- adaptive y=0.5 —+- adaptive y=0.5
\ / + —»- adaptive y=0.9 0.721 -~ adaptive y=0.9
0.74 4 >\<’ -~ adaptive y=1.0 ' -~ adaptive y=1.0
T T T T
10? 10° 10? 10°
grid points grid points
dim=5ml=1ovo=0k=-1 dim=5ml=1ovo=1k=-1
0.754
0.76 ,/+
-
A
0.75 X 0.707
< Foal ot SRR A 3
€ 0.74 X / ATl g € 0.65 |
5 CA g 5
% 0.73 2{ ; B
0.60
»; ! standard »; standard
% 0.72 - adaptive y=0.01 4 ,’ - adaptive y=0.01
© -4~ adaptive y=0.1 S 0.55 1 -4~ adaptive y=0.1
0.71 —+- adaptive y=0.5 —- adaptive y=0.5
-~ adaptive y=0.9 0.50 4 - adaptive y=0.9
0.701 —»- adaptive y=1.0 —)»- adaptive y=1.0
10? 10° 10? 10°
grid points grid points
dim=10ml=1ovo=0k=-1 dim=10ml=1ovo=1k=-1
0.9 _
0901 ARPRRITIE-_JRTVONI—F RT3 | | N T
1
0851 ¥7 * y ! a 081
N .
o i /"~ —e— standard ! S 2
E 0.80 ! H -~ adaptive y=0.01 ! //' -
])\Z‘ H -k~ adaptive y=0.1 ! S 2 074
® F _ A s 5]
& 0751 \ ! -+ adapt!ve y=05 {7 »; standard
4 \ ! -~ adaptfve y=0.9 ,4" 2 —y- adaptive y=0.01
T 0.70 “\ ,, -~ adaptive y=1.0 "/ S 06 L —*~- adaptive y=0.1
y 1
v/ \\\ K - —- adaptive y=0.5
0.65 1 _\"_ \ ! ¥ -»¢- adaptive y=0.9
\){ 0.5 \¢ =)= adaptive y=1.0
0.60 L, T T T T T
10? 10% 104 10? 10% 10%
grid points grid points

Figure 5.19: The plot shows the adaptive combination results with the Classification dataset for
varying dimensions. We analyze how the classification rate depends on the number
of grid points used in the standard Combination Technique. We compare different ~
values with mass-lumping(ml) and with activated or deactivated one-vs-others(ovo).
A = Ofor all cases. As a reference the respective result for the standard Combination
Technique is given. All adaptive refinement start with a starting level of 2.

144

5.3 Machine Learning with Sparse Grid density estimation

dm=2ml=1lovo=0k=-1 dim=2ml=1ovo=1k=-1
—e— standard 0.9
0.91 N .
-~ adaptive y=0.01
-k~ adaptive y=0.1 081
© 0.8 —- adaptive y=0.5 °
® —»- adaptive y=0.9 ®
s adaptive y=1.0 H 0.7 1
£ < 0.6 standard
@ @ ‘
H] -y~ adaptive y=0.01
< 0.6] i
0.5 -4~ adaptive y=0.1
—- adaptive y=0.5
0.5 0.4 -~ adaptive y=0.9
_____ =)= adaptive y=1.0
10? 10° 10° 10°
grid points grid points
dim=3ml=1ovo=0k=-1 dim=3ml=1ovo=1k=-1
—e— standard ,}X 0.8 { —— standard
074 -7 adaptive y=0.01 ,/,”)_ — - adaptive y=0.01
-4~ adaptive y=0.1 &l/)\ 0.7 —*- adaptive y=0.1
2 .
° —+- adaptive y=0.5 5_/ ° —+- adaptive y=0.5
® 0.6 —X- adaptive y=0.9 ® 0.6 —»- adaptive y=0.9
5 —-»- adaptive y=1.0 S ’ adaptive y=1.0
£ g 051
5 5
a a
o T
S G 0.4
0.3
104 102 103 104
grid points grid points
dim=5ml=1ovo=0k=-1 dim=5ml=1ovo=1k=-1
—e— standard * 0.341 —e— standard *\
0451 _.. adaptive y=0.01 /) N —y - adaptive y=0.01 > / AN
-~ adaptive y=0.1 /* \ -4~ adaptive y=0.1 ki ')1.— III \\\
o —+- adaptive y=0.5 ,r:,’ “ \\\ ° 0.321 —- adaptive y=0.5 I | / \\
© 0.40 1 -~ adaptive y=0.9 4 \\\ \ © -~ adaptive y=0.9 ?’>< I. / Sy
S —»- adaptive y=1.0 NN ‘\ S —»- adaptive y=1.0 /'Jv \ 1 ,' AN
2 S N s 0.304 \}
] SO ©
& 0.35 1 SANY S
4 PO g
© K ‘¥ © 0.28
0.301 T
0.26
0.25
grid points grid points
dim=10ml=1ovo=0k=-1 dim=10ml=1ovo=1k=-1
0301 >'K —e— standard x GF
I —- adaptive y=0.01 0.311) a4
1" . J 7 /
1 -4 adpte =01 ; Vi
- adaptive y=0.
2 >n§ :’x, - P . v 2 0.29 =>")\~"-">r>< ::) —e— standard
© I 7\ 1 | —¥- adaptive y=0.9 e —— 'S I - danti —0.01
c 0.28- I / ‘} I 2y~ adaptive y=1.0 = W\ I —- adaptive y=0.
S ,' ‘l i N P y=L g 0.28 W -4~ adaptive y=0.1
8 i 807 i ~+- adaptive y=0.5
‘@ 0.271 ,,' H a . H —X- adaptive y=0.9
° L r < 0.26 VAL -~ adaptive y=1.0
}\' i\ ! \; NI 7
0.26 1 0251 v r
» i
0.24 }é<
0.251
10? 10? 10° 104
grid points grid points

Figure 5.20: The plot shows the adaptive combination results with the Gaussian Quantiles
dataset for varying dimensions. We analyze how the classification rate depends
on the number of grid points used in the standard Combination Technique. We
compare different v values with mass-lumping(ml) and with activated or deacti-
vated one-vs-others(ovo). A = 0 for all cases. As a reference the respective result for
the standard Combination Technique is given. All adaptive refinement start with a
starting level of 2.

145

5 Numerical case studies with the Spatially Adaptive Combination Technique

If we look at the different v values, we can see that for very broad refinements with
v < 0.1 we usually achieve classification rates that are close to the standard Combina-
tion Technique. Sometimes we observe slight improvements and in other cases slight
decreases. The reason for that is that a large portion of the points in our 1D point lists
get refined. As a consequence, the resulting grids are close to the component grids in
the standard Combination Technique. The higher the v value the more local we refine.
This has the potential of an increased performance, but it can also lead to a very erratic
behavior that can also cause severe decreases in the classification rate for example with
premature convergence. It seems that by starting from a very coarse grid of level 2, we
often refine not optimally. This can be especially seen for cases without one-vs-others
which use the standard surplus-based error estimator. For cases with the misclassifi-
cation error estimator in the one-vs-others approach, the curves are usually less erratic
and we achieve more consistent improvements through all y ranges. This indicates that
the error estimator is more robust and can also correct the refinement if a non-optimal
decision was made.

These observations with the erratic behavior and non-optimal refinement decision
lead to another refinement strategy. Instead of starting from a fixed starting level we
refine the grid until we exceed the number of grid points of the following Sparse Grid
level I. Then we reset the grid to a standard grid of level [— 1 and restart the refinement
procedure until we exceed the number of points of a Sparse Grid with level [4 1 and
restart with a standard Sparse Grid of level [and so on. This avoids that the refinement
is mislead due to wrong decisions in the beginning since the grids are not allowed to
diverge too far from the grids in the standard Combination Technique.

If we look at the results in Figs. 5.21 and 5.22 , we can see that the results support this
idea. For this scenario, we only show the results for the more erratic and less efficient
cases without mass-lumping. We obtained usually better results for the configuration
without one-vs-others. Moreover, the results are less erratic for higher grid point num-
bers. Thus, the method is in general more robust. Unfortunately, this also limits the
possible gain of the refinement as we can only adapt the grids to a smaller degree.

5.3.3 Summary

Our results have shown that both the standard and the spatially adaptive Combination
Technique can be used for the classification with the density estimation. This was not
clear from the start as the density estimation differs significantly from the basic numer-
ical operations such as interpolation and integration. We have achieved these results
by carefully normalizing the different grids to obtain grid densities that can be com-
bined. Without these normalizations, single grids can dominate, which can deteriorate
the results.

We have shown different ways to tackle the classification by using single densities or
pair-wise binary classifications with the one-vs-others approach. We also introduced a
novel mass-lumping approach that can significantly reduce the complexity per compo-
nent grid from cubic to linear while still resulting in only slightly worse classification
results in many cases.

146

5.3 Machine Learning with Sparse Grid density estimation

dm=2ml=00ovo=0k=1

dim=2ml=0ovo=1k=1

0.89 1 %
0.89
0.88
0.88
° ° 0.87 1
] /
‘E 0.87 / ‘E 0.861
c <
S 0.86 v, S
B L/ § 0851
iﬁ 0.85 h _ standard % —e— standard
8 - -y~ adaptive y=0.01 a 0.84 -~ adaptive y=0.01
C 0.841 YT -k~ adaptive y=0.1 © 0.834 -k~ adaptive y=0.1
1
0.83 ‘1 ,l —+- adaptive y=0.5 | —+- adaptive y=0.5
'lll -~ adaptive y=0.9 0.82 -»~- adaptive y=0.9
0.821 '3 ->- adaptive y=1.0 0.811 —>- adaptive y=1.0
10? 10% 10? 10%
grid points grid points
dim=3ml=00ovo=0k=1 dim=3ml=00ovo=1k=1
0.84
0.821
0.821 0.80
2 2
© 0.801 < 0.781
c c
2 2
=1 =1
S i 8 0.76 4
S 0.78 1 I¥ H standard e —e— standard
& N x //’ l’ -~ adaptive y=0.01 8 -y~ adaptive y=0.01
“ore] XV —A~ adaptive y=0.1 © 0.747 -k~ adaptive y=0.1
. N
~ \ ,l,' e —+- adaptive y=0.5 —4+- adaptive y=0.5
\“*’{ /// —»- adaptive y=0.9 0.721 —»- adaptive y=0.9
0.744 3(%' -~ adaptive y=1.0 -~ adaptive y=1.0
- - - -
10? 10° 10? 10°
grid points grid points
dim=5ml=00ovo=0k=1 dim=5ml=00ovo=1k=1
0.76
0.754
0.74 0.70 1
3 2
® 0.65 1
c 0.724 c
o \ 1]
g “ ’l g 0.60
:»; S A ! —e— standard »; ’ —e— standard
2 0.704 \\X v/ ! v~ adaptive y=0.01 2 v~ adaptive y=0.01
© oo v/ ! —k- adaptive y=0.1 © 0.55 1 —k- adaptive y=0.1
0.68 \5:- " —+- adaptive y=0.5 —+- adaptive y=0.5
: S H -»- adaptive y=0.9 0.50 —-»- adaptive y=0.9
N
+' -~ adaptive y=1.0 -~ adaptive y=1.0
102 10° 102 10°
grid points grid points
dim=10ml=00ov0o=0k=1 dim =10ml=0ovo=1k=1
vy I
0.9 g ST X 0901 ew—smeee===——
N g [S 7
W, >(X sl / 0.85
‘\ N PN)'s /ol /
g 081 LN/ NN / o 0:801
= v, A s H / 2
= ANANER -<J 1 / e
c Y \\ » ~ H ’ c 0.751
2 \ X K S
© 0.7 AN AN / © 0.70
= —e— standard X 7 = —e— standard
- @]
§ —- adaptive y=0.01 ,,’ 2 0.65 ,/ V) —v- adaptive y=0.01
0.6 —- adaptive y=0.1 A “ 0.601 -~ adaptive y=0.1
—+- adaptive y=0.5 - —+- adaptive y=0.5
-X- adaptive y=0.9 7 0.55 2%~ adaptive y=0.9
0.5 ~r adaptivey=1.0 , -~ 0504 “ -»- adaptive y=1.0
102 10% 104 10? 10% 104
grid points grid points

Figure 5.21: The plot shows the adaptive combination results with the Classification dataset for
varying dimensions. We analyze how the classification rate depends on the num-
ber of grid points used in the standard Combination Technique. We compare dif-
ferent y values without mass-lumping(ml) and with activated or deactivated one-vs-
others(ovo). A = 0 for all cases. As a reference the respective result for the standard
Combination Technique is given. The starting level varies throughout the adaptive
process and is always set to the last level [— 1 once the grid points exceed the point
numbers of the standard Combination Technique with level I. 147

5 Numerical case studies with the Spatially Adaptive Combination Technique

Figure 5.22: The plot shows the adaptive combination results with the Gaussian Quantiles
dataset for varying dimensions. We analyze how the classification rate depends
on the number of grid points used in the standard Combination Technique. We
compare different v values without mass-lumping(ml) and with activated or deacti-
vated one-vs-others(ovo). A = 0 for all cases. As a reference the respective result for
the standard Combination Technique is given. The starting level varies throughout
the adaptive process and is always set to the last level [— 1 once the grid points

148

classification rate

classification rate

classification rate

classification rate

dm=2ml=00ovo=0k=1

0.9571 —s— standard
0.90 1 -¥- adaptfve y=0.01
-k~ adaptive y=0.1
0.851 —+- adaptive y=0.5
-~ adaptive y=0.9
0.801 adaptive y=1.0
0.751
0.701
0.65
060] N vmer !
! \ ,/*~\ 1
> X
102 103
grid points
dim=3ml=0ovo=0k=1
—e— standard > s
0.8 —- adaptive y=0.01 ’»)‘:ﬁk’,
-4~ adaptive y=0.1 =27
—+- adaptive y=0.5
0.7 - adaptive y=0.9
adaptive y=1.0
0.6
05 ¥=="""" >><*'5<l
TS TR
RN
-
[X
0.4 1 x
102 103 104
grid points
dim=5ml=00ovo=0k=1
0.450 4
0.425 4
0.400 4
0.375 4
standard
0.350 1
7 NS —v- adaptive y=0.01
0.325 1 \\“*J’: / * / -k~ adaptive y=0.1
el T~ —- adaptive y=0.5
03009 AN ~+ X%~ adaptive y=0.9
N, / .
0.275 1 Y4 -~ adaptive y=1.0
102 103
grid points
dim=5ml=0ovo=0k=1
0.450
0.425 4
0.400
0.3754 >
4
> -=" standard
0.350 4 -
= /)\ / ,' —r- adaptive y=0.01
/
0325 NS m=os / * -4~ adaptive y=0.1
¥ ~~~7’~~~ / —- adaptive y=0.5
03001 \\ 4 -+ —%- adaptive y=0.9
N, / . _
0.275 4 Y4 -~ adaptive y=1.0
102 103
grid points

classification rate

classification rate

classification rate

classification rate

dim=2ml=0ovo=1k=1

] Y N
0.9 2 -
0.8
0.7
0.6 standard

—- adaptive y=0.01
0.51 -4~ adaptive y=0.1
—+- adaptive y=0.5
0.4 —-»- adaptive y=0.9
=)= adaptive y=1.0
10?2 10°
grid points
dm=3ml=00ovo=1k=1
0.8 —s— standard
— - adaptive y=0.01
0.7 1 =4~ adaptive y=0.1
—+- adaptive y=0.5
0.6 —¢- adaptive y=0.9
adaptive y=1.0

0.51
0.4
0.3

102 103 104
grid points
dim=5ml=00ovo=1k=1
—e— standard />§
—v- adaptive y=0.01 "
0301 adap! fve 1% 2B
-4~ adaptive y=0.1 \\
—- adaptive y=0.5) ‘\ /’Jr

0.291 -%- adaptive y=0.9 \\\ L ,/,’/’:/,/

adaptive y=1.0 \ -~

0.28
0.27 1

0.26

102 10°
grid points
dim=5ml=00ovo=1k=1
—e— standard /)6
0301 —r- adaptfve y=0.01 7 \\
—A- adaptive y=0.1 \\
—- adaptive y=0.5) \ /’t\
0.291 -~ adaptive y=0.9 \\\ L /”/:/V
adaptive y=1.0 Y >
g 7/

0.28 A ‘4

0.271

0264 T AT -7

grid points

exceed the point numbers of the standard Combination Technique with level /.

5.3 Machine Learning with Sparse Grid density estimation

The best configuration was usually the one without mass-lumping and without one-vs-
others. Also the usage of the regularization with A > 0 did not increase the performance.
This indicates that the regularization does not help to generalize the learned model for
the Combination Technique. One reason could be that the identity matrix does not
represent a viable alternative for the Laplacian with the Combination Technique. In
particular, we use the nodal basis for the construction of the matrix entries of R, which
is different to the usage in regular Sparse Grids.

Regarding spatial adaptivity, we have seen that the adaptive implementation can in
some cases improve the classification rates or reduce the number of grid points. This
holds especially for configurations with mass-lumping or one-vs-others. By resetting the
refinement to regular sparse grids during the refinement procedure, we can further
increase the robustness of our implementation. However, this also limits the potential
benefit of the refinement since the grids are then closer to the standard grids.

In addition, the selection of the error estimator is crucial and the use of a simple
surplus-based error estimator for the densities seems not to be an optimal choice. This
is obvious as for the classification accuracy it is not necessary to perfectly represent
the density, but to find the borders between classes. This corresponds to resolving
the intersection between the densities accurately. In our implementation the densities
are computed and refined independently. As a consequence, only the one-vs-others ap-
proach can consider misclassifications in the error estimate. Here, we observed more
consistent improvements and a more robust behavior which is desirable. In the future,
it would be beneficial to use a refinement that considers the interplay of the different
densities and which measures the misclassification errors across the densities. This
might significantly increase the performance. Another possibility would be to look at
intersections between the densities and refine in those regions.

It should be noted that in general the adaptive process takes significantly longer to
reach the same grid point numbers. This is caused by a more compute intense imple-
mentation of the non-standard grids and the numerous refinement steps to reach the
final grid. In cases where we significantly reduce the number of points, this can still pay
off, but in most scenarios the training time will increase for constructing the densities.
However, in practice often not the training time but the time to later evaluate the model
is relevant. At this point, the reduced grid point numbers come into play and can cause
a significant performance increase. The shown adaptive strategies therefore do have a
relevant use case even though training might take longer.

From an implementation aspect, we showed that we can utilize the Combination
Technique to get fully decoupled component grid calculations that can easily be par-
allelized. We can even fully decouple the density calculation of the different classes
which adds an additional third parallelization layer to the two-layers of the Combina-
tion Technique itself (see also Chapter 3). This can in the future allow for the calcula-
tion of massive grids with large datasets. The density estimation is especially suited for
large data sets since the most time-consuming part — the solving of the linear equation

149

5 Numerical case studies with the Spatially Adaptive Combination Technique

(R — A])a = b —mainly depends on the number of grid points and not on the number
of samples’.

We have only shown results for two datasets in this section but additional (adaptive)
density estimation, classification, and clustering results with various datasets can be
found in [108, 82, 28]. For more localized datasets that are difficult to resolve with the
standard Combination Technique, the benefit of spatial refinement is also expected to
be higher.

These findings indicate that grid-based approaches for machine learning are a viable
alternative for higher dimensionalities. Of course, we do not achieve everywhere equal
or superior results in comparison to the industry standard. This is also related to a
fundamental difference in the methods. With Sparse Grids we explicitly discretize the
d-dimensional input space on a grid. This grid is optimized to generate an efficient rep-
resentation for the general case and it can be customized via spatial adaptivity. Clas-
sical methods for classification, such as neural networks or support vector machines,
often adaptively generate an approximative function representation and not an explicit
discretization of the space. Here, the adaptive process is usually a result of solving it-
eratively an optimization problem. This can be more efficient for many cases but the
methods often require expert knowledge to set up an efficient architecture or kernel
function. In contrary, the Sparse Grid and the Combination Technique approaches are
universal and can be theoretically applied to all classification problems. It is therefore
not expected that they always achieve similar or superior performance. Furthermore,
Sparse Grids can not scale to extremely high-dimensional problems. In general, we
would recommend them in cases up to approximately 20 dimensions'’ unless an ef-
ficient dimension reduction, such as a dimension adaptive approach, is applied. One
possibility for the future is to combine classical methods and Sparse Grid methods.
A suited architecture could reduce the input dimensions for Sparse Grids to extend
their application spectrum and performance. An example would be a Sparse Grid layer
within neural networks. First experiments with such a scheme show already promising
results and they could further increase the impact of Sparse Grids for machine learning
in the future.

°Only the right hand side is depending linearly on the number of data samples.
0There exist specialized Sparse Grid variants that can scale up to thousands of dimensions. These
application-specific geometry-aware Sparse Grids are discussed in [105].

150

6 Conclusion and Outlook

The Combination Technique has shown to be a promising and efficient method for
high-dimensional problems across many application areas. Its inherent parallel nature
and the efficient discretization of high-dimensional spaces with regular but anisotropic
grids have made it one of the most widely used techniques in Sparse Grid literature. In
this work, we have mainly focused on two aspects of the Combination Technique: an
HPC implementation for time-dependent PDEs and two novel generalizations that sup-
port spatial adaptivity. For both topics we have presented new algorithmic approaches
and showed their benefit with various numerical studies.

In the first part of the dissertation, we have continued the work on an HPC imple-
mentation of the Combination Technique and created the framework DisCoTec that
aims to run massively parallel time-dependent PDE simulations on exascale comput-
ers. For this purpose, we have analyzed some of the main weaknesses and outlined
possible algorithmic approaches to overcome them. First, we created a more resilient
implementation of the FTCT by adding flexible communicator restructering with spare
ranks that allow for simulating realistic scenarios with massively failing environments
for real-world simulations. Results with the plasma physics code GENE have shown
that the error increase is very low even in highly unreliable settings. In addition, the
overhead is negligible. Second, we have shown how to improve the computational
complexity by choosing optimal time steps for each component grid. Third, we have
discussed the novel shared-memory parallelization that increases the performance of
the (de)hierarchization step and that offers the possibility for hybrid parallelization of
the black-box PDE solver. Last, we have developed a novel asynchronous Combination
Technique that uses a non-blocking combination step with a delayed correction step.
This scheme allows to overlap computation with the communication during the com-
bination, which represents the most critical part of the Combination Technique for HPC
as it normally does not scale to large process numbers. All of these additions have been
tested by numerical experiments that showed the effectiveness of the different meth-
ods. Moreover, we investigated as a case study non-linear plasma physics simulations,
which pose the biggest challenge to the Combination Technique due to their turbulent
nature. Here, we observed mixed results with instabilities for frequent recombination
but accurate results for long recombination intervals.

With these additions to DisCoTec, we have moved another step forward towards
an exascale-ready framework. The presented methods offer a higher reliability in en-
vironments with frequent failures. Furthermore, the novel time stepping scheme and
the shared-memory parallelization allow for more efficient execution of the PDE solver.
The asynchronous combination technique offers completely new opportunities due to
the possibility to hide the combination overhead. This allows to scale to much higher

151

6 Conclusion and Outlook

process counts, and it can enable simulations in completely new settings with larger
communication delays between the process groups. In addition, the presented idea for
generating the asynchronous scheme might be transferable to other techniques as well.

In the second part of the dissertation, we have described two novel generalizations
of the Combination Technique that add the possibility for spatial adaptivity and out-
lined their implementation in the framework sparseSpACE. This spatially adaptive
idea represents a fundamental paradigm change as the standard Combination Tech-
nique was constructed to exploit the regular structure of the component grids. The new
adaptive approaches lift this restriction to regular grids while keeping the main bene-
tits of the Combination Technique. On the one hand, the dimension-wise refinement
utilizes rectilinear grids that result from spatially refined one-dimensional grid struc-
tures. We have defined a novel approach to map such refined structures to the different
component grids and guarantee that the combination stays valid. In addition, we pre-
sented a rebalancing structure that adaptively adjusts the level hierarchy to the problem
at hand. On the other hand, the Split-Extend scheme is based on a block-adaptive re-
finement with the Combination Technique. Here, the Split operation recursively refines
the grid in an octree-like fashion and the Extend method increases the local combina-
tion level. To result in a valid combination scheme, we presented an approach that
maps the individual local levels carefully to component grids. Both refinement strate-
gies were then tested extensively with different test cases from numerical quadrature,
interpolation, uncertainty quantification, and machine learning. In these tests we could
show that spatial adaptivity can improve on the standard Combination Technique in
scenarios with non-smooth functions.

With these two spatially adaptive methods, we have managed to add spatial adap-
tivity to the Combination Technique without sacrificing its most important features: the
black-box property, the embarrassingly-parallel evaluation of the component grids, and
the error cancellation. The first property is guaranteed as both methods generate com-
ponent grids that can be passed to black-box solvers. The only requirement is that the
black-box solvers can handle, respectively, graded grids and block-adaptive grids. In
addition, the computations of the individual component grids stay independent of each
other which allows for a maximum of parallelism. Only the refinement steps represent
synchronous points in our algorithms.

In the future, we could use these new achievements to apply to Combination Tech-
nique to huge PDE simulations on exascale computers. In such scenarios, we could test
the Combination Technique with real failure events for different applications. More-
over, the asynchronous combination allows for completely new settings. One example
would be to distribute the computation along different compute clusters with asyn-
chronous recombination. There were already first attempts for such a setting with syn-
chronous combination that however suffer from the big latency between compute clus-
ters. This could be overcome to some extent with the non-blocking combination. Of
course, it is necessary to monitor the introduced errors for further PDEs to guarantee
that the asynchronous combination does not affect convergence. Similarly, we have to
study how the combination of non-linear PDEs can be improved to create a Combina-
tion Technique that is more robust against instabilities.

152

Additionally, the spatial adaptivity can offer completely new application areas that
were previously not feasible due to complicated local phenomena that need extensive
refinement. It is important to test more use cases and to improve on the existing meth-
ods. An important part will be the creation of suited application-specific error estimates
that guide the refinement. Currently, we are already investigation PDEs and further
machine learning applications such as regression. In addition, an HPC implementation
of our methods could test its capabilities for time-dependent PDEs in DisCoTec.

To put it in a nutshell, we have presented novel enhancements to the Combination
Technique that enable a more efficient computation of time-dependent PDEs at the ex-
ascale and that increase the spectrum of possible application scenarios by introducing
spatial adaptivity.

153

List of Figures

2.1 Linear interpolation withnodalbasis 11
2.2 Comparison of nodal and hierarchical basis 12
2.3 Visualization of linear interpolation with the hierarchical basis 13
24 2Dincrementspaces for fullgrids. 14
2.5 2Dincrement spaces foraSparse Grid 15
2.6 Two-dimensional Sparse Grid V5' 16
2.7 Two-dimensional Sparse Grid V5’ with Chebyshev points 17
2.8 2D spatially-refined Sparse Grid. 19
2.9 Standard Combination technique for the computationof u§ 20
2.10 Example of the dimension adaptive Combination Technique 25
3.1 Finite state machine that describes the different stepsin DisCoTec. . . . 32
3.2 Creation of spare ranks after processfault, 39
3.3 Restoring a process group after process fault, 39
3.4 Scaling of the hierarchization step with shared memory parallelization . 46
3.5 Scaling of the global reduction step with shared memory parallelization 47
3.6 Scaling of the combination step with shared memory parallelization . . 47

3.7 Ly error of the FTCT depending on the number of faults for test case A. 56
3.8 Ly error of the FTCT depending on the number of faults for test case B.. 57
3.9 La-error of the FTCT for different runs of test case B compared to the last

iteration with process error for A = 108 (bottom) and A = 107 (top) . . . 57
3.10 Runtimes for the most expensive steps of the FTCT 57
3.11 Strong scaling results for the different steps of the FTCT 59

3.12 Convergence results for the asynchronous recombination for varying levels 62
3.13 Convergence results for the asynchronous recombination for varying com-

binationintervals o 0 o 62
3.14 Convergence results for the asynchronous recombination for varying com-
bination intervals with GENE 64

3.15 Non-linear recombination run with ¢,,,;, = (8,5, 3,4, 3) and ¢4, = (10,5,5,4,3) 65
3.16 An unstable non-linear recombination run with ¢,,,;, = (8,5, 3,4, 3) and

lnaz = (10,5,5,4,3) . o o o o 65
3.17 A very long non-linear recombination run that is unstable. 66
3.18 An x-z slice of an unstable non-linear recombinationrun 67
4.1 Spatially adaptive Combination Technique with rectilinear grids. 72

4.2 Visualization of the 1D refinement process in the dimension-wise scheme 74

155

LIST OF FIGURES

156

4.3

44
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13

51
52

53
54
5.5
5.6
5.7

5.8

59

5.10
511
5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19
5.20

5.21

Comparison of the three approaches for generating a valid combination

scheme 76
Example for the refinement with Strategy 1 77
Three refinement steps of the dimension-wise spatial refinement 79
Rebalancing of the refinement trees and resulting Sparse Grid 82
Initial Split for standard Combination Technique 87
Two refinement steps with the Split operation 89
The Split operation in single dimensions 90
Two refinement steps with the Extend operation 91
Two refinement steps of an Extend operation that avoids removing of points 92
Visualization of the reference state for the automatic refinement 96
Class hierarchy of the different Combination Technique approaches . . . 102
Plot of the continuous and discontinuous Gentz function. 109
Resulting Sparse Grid of the dimension-wise Spatially Adaptive Combi-

nation Technique for feont and fgiscont =« « « « =« « v o v o oo oo 109
Resulting Sparse Grid of the Split-Extend method for feont and fgiscont - - 109
Convergence results with trapezoidal quadrature 112
Convergence results with linear interpolation 114
Convergence results with simpson quadrature 116
Convergence results for the Gauss-Legendre quadrature with the Split-

Extendscheme. 118
Convergence results with single-dimensional Splits 120
Convergence results with the modified linear basis 122
Example plot for density estimation 132
Density estimation with one-vs-others 133
Classification and Gaussian Quantiles dataset 135
Classification results for Classification data set for the standard Combina-

tion Technique 136
Classification results for Gaussian Quantiles data set for the standard Com-

bination Technique 137
Classification results for Classification data set for the standard Combina-

tion Technique with different Avalues 139
Classification results for Gaussian Quantiles data set for the standard Com-

bination Technique with different Avalues 140
Adaptive classification results without mass-lumping for Classification data

Set . . e 142
Adaptive classification results without mass-lumping for Gaussian Quan-

tilessdataset 143
Adaptive classification results with mass-lumping for Classification data set 144
Adaptive classification results with mass-lumping for Gaussian Quantiles

dataset 145
Adaptive classification results without mass-lumping for Classification data

set with different refinementstart 147

LIST OF FIGURES

5.22 Adaptive classification results without mass-lumping for Gaussian Quan-
tiles data set with different refinementstart 148

157

List of Tables

3.1
3.2
3.3
34
3.5
3.6

3.7

51

Parameters for the two testcases AandB.
Statistical results of the error of the FTCT for different X in test case A . .
Statistical results of the error of the FTCT for different A in test case B . .
Parameters for the two GENE test cases A and B with the asynchronous
Combination Technique.
Results of recombination in x and z with £,,,;, = (8,5, 3,4,3) and ;4 =
(10,5,5,4,3) « o oo e
Results of recombination in x and z with £,,,;, = (9,5, 3,4,3) and ;4 =
(11,5,5,4,3) « o oo e e
Results of recombination in x and z with ¢,,,;, = (8,5,3,4,3) and ;4 =
(10,5,4,6,3) « o v e e e

Overview of the different results for the standard Combination Tech-
nique and the Spatially Adaptive Combination Technique. We list the
investigated parameters (ovo = one-vs-others, ml = mass-lumping) and in-
dicate whether they are fixed to a specific value or varied in the respec-
tive figure. A value & = —1 indicates that the refinement starts at level 2
and is continuously refined from there, while £ = 1 indicates that we re-
set the adaptive grid to a regular Sparse Grid once it diverges too much
from the standard Sparse Grid. For more information on y we refer to
Section4.1.5.

A1 Technical description of HazelHen [2]..
A.2 Technical description of the thin nodes of SuperMUC-NG [4].
A.3 Technical description of the CooIMUC-2 linux cluster [1].

55
58
58

64

159

Acronyms

ABFT Algorithm-Based Fault Tolerance.

FTCT Fault-Tolerant Combination Technique.

GCP General Coefficient Problem.
HPC High Performance Computing.
MPI Message Passing Interface.
NUMA Non-Uniform Memory Access.
OpenMP Open Multi-Processing.
PDE Partial Differential Equation.

ULFM User Level Failure Mitigation.

UQ Uncertainty Quantification.

161

Notation

Explanation

Notation

[n] (n € N)

[n1,n2
[a,b] (a,b € R)

[a,b]? (a,b € R)

]
] (n1,n2 € Z)
]

Dimensionality of the problem
Number of points in a grid

p-Norm for vector v, i.e. [|[v], = (3, [vh|)1/P

Usually the level vector of a component grid
Usually the level vector of an increment space
Function space of a full grid with level vector £

Hierarchical increment space for level {
Set of all numbers from 1 to n, i.e. {1,...,n}
Set of all numbers from 1 to n, i.e. {nq,...,n2}
Set of all real numbers in the interval between a and b

Tensor product of interval [a, b], i.e.]_[Cf[a, b]

Number of points per dimension in a full grid, i.e. N = 2/ + 1
Boldface indicates vectors of corresponding dimension d, i.e. v = (vy,

Usually the level of a Sparse Grid or a Combination Technique

163

...,'Ud)

Bibliography

[1] Coolmuc-2. https://doku.lrz.de/display /PUBLIC/CoolMUC-2.
[2] Cray xc40 (hazel hen). https://www.hlrs.de/systems/cray-xc40-hazel-hen/.
[3] Doxygen. https://www.doxygen.nl/index.html.

[4] Supermuc-ng. https://doku.lrz.de/display /PUBLIC /Hardware+of+SuperMUC-
NG.

[5] Md Mohsin Ali, James Southern, Peter E. Strazdins, and Brendan Harding. Ap-
plication level fault recovery: Using Fault-Tolerant Open MPI in a PDE solver. In
Proceedings of the IEEE 28th International Parallel & Distributed Processing Sympo-
sium Workshops (IPDPSW 2014), pages 1169-1178, Phoenix, USA, May 2014.

[6] Md Mohsin Ali, Peter E. Strazdins, Brendan Harding, and Markus Hegland.
Complex scientific applications made fault-tolerant with the sparse grid combi-
nation technique. International Journal of High Performance Computing Applications,
30(3):335-359, 2016.

[7] Md Mohsin Ali, Peter E. Strazdins, Brendan Harding, Markus Hegland, and
Jay W Larson. A fault-tolerant gyrokinetic plasma application using the sparse
grid combination technique. In Proceedings of the 2015 International Conference on
High Performance Computing & Simulation (HPCS 2015), pages 499-507, Amster-
dam, The Netherlands, July 2015.

[8] Robert Balder. Adaptive Verfahren fiir elliptische und parabolische Differentialgleichun-
gen auf diinnen Gittern. Dissertation, Technische Universitdt Miinchen, Miinchen,
1994.

[9] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, and Satoshi Matsuoka. Fti: High performance fault tolerance
interface for hybrid systems. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 11, New York, NY,
USA, 2011. Association for Computing Machinery.

[10] Thomas Bellebaum. Evaluation of different time-synchronization schemes for
the combination technique. Bachelorarbeit, Technical University of Munich, Sep
2018.

165

BIBLIOGRAPHY

[11] R. Bellman, Rand Corporation, and Karreman Mathematics Research Collection.
Dynamic Programming. Rand Corporation research study. Princeton University
Press, 1957.

[12] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack
Dongarra. Post-failure recovery of mpi communication capability: Design and
rationale. The International Journal of High Performance Computing Applications,
27(3):244-254, 2013.

[13] J. Blank and R. Réttger. Data mining mit diinnen gittern. Idp, Fakulty of Infor-
matics, Technical University of Munich, January 2008.

[14] Greg Bronevetsky and Bronis Supinski. Soft error vulnerability of iterative linear
algebra methods. pages 155-164, 01 2008.

[15] Hans-Joachim Bungartz. Finite Elements of Higher Order on Sparse Grids. Habili-
tationsschrift, Fakultét fiir Informatik, Technische Universitdat Miinchen, Aachen,
November 1998.

[16] Hans-Joachim Bungartz and Stefan Dirnstorfer. Multivariate quadrature on
adaptive sparse grids. Computing, 71(1):89-114, Aug 2003.

[17] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica,
13:147-269, 2004.

[18] Hans-Joachim Bungartz, Michael Griebel, Dierk Roschke, and Christoph Zenger.
Pointwise convergence of the combination technique for laplace’s equation. East-
West |. Numer. Math, 2:21-45, 1994.

[19] Hans-Joachim Bungartz, Michael Griebel, Dierk Roschke, and Christoph Zenger.
A proof of convergence for the combination technique for the laplace equation

using tools of symbolic computation. Mathematics and Computers in Simulation,
42(4):595-605, 1996. Sybolic Computation, New Trends and Developments.

[20] Sayantan Chakravorty, Celso L. Mendes, and Laxmikant V. Kalé. Proactive
fault tolerance in mpi applications via task migration. In Yves Robert, Manish
Parashar, Ramamurthy Badrinath, and Viktor K. Prasanna, editors, High Perfor-
mance Computing - HiPC 2006, pages 485-496, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[21] CS Chen, YC Hon, and RA Schaback. Scientific computing with radial basis func-
tions. Department of Mathematics, University of Southern Mississippi, Hattiesburg,
MS, 39406, 2005.

[22] Richard Courant, Kurt Friedrichs, and Hans Lewy. Uber die partiellen differen-
zengleichungen der mathematischen physik. Mathematische annalen, 100(1):32-74,
1928.

166

BIBLIOGRAPHY

[23] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Generation Computer Systems, 2006.

[24] Tilman Dannert. Gyrokinetische Simulation von Plasmaturbulenz mit gefangenen
Teilchen und elektromagnetischen Efekten. PhD thesis, Fakultat fiir Physik, January
2005.

[25] Tilman Dannert and Frank Jenko. Vlasov simulation of kinetic shear alfvén
waves. Computer Physics Communications, 163(2):67 — 78, 2004.

[26] Persi Diaconis. Bayesian numerical analysis. Statistical decision theory and related
topics 1V, 1:163-175, 1988.

[27] Jack Dongarra, Thomas Herault, and Yves Robert. Fault Tolerance Techniques
for High-Performance Computing, pages 3-85. Springer International Publishing,
Cham, 2015.

[28] Markus Fabry. Spatially adaptive density estimation with the sparse grid combi-
nation technique. Masterarbeit, Technical University of Munich, Sep 2020.

[29] IonuT-Gabriel Farcas, Paul Cristian Sarbu, Hans-Joachim Bungartz, Tobias
Neckel, and Benjamin Uekermann. Multilevel adaptive stochastic collocation
with dimensionality reduction. In Jochen Garcke, Dirk Pfltiger, Clayton G. Web-
ster, and Guannan Zhang, editors, Sparse Grids and Applications - Miami 2016,
pages 43-68, Cham, 2018. Springer International Publishing.

[30] Ionut-Gabriel Farcas, Tobias Gorler, Hans-Joachim Bungartz, Frank Jenko, and
Tobias Neckel. Sensitivity-driven adaptive sparse stochastic approximations in
plasma microinstability analysis. Journal of Computational Physics, 410:109394,
2020.

[31] Message Passing Interface Forum. MPI: A Message-passing Interface Standard, Ver-
sion 3.1 ; June 4, 2015. High-Performance Computing Center Stuttgart, University
of Stuttgart, 2015.

[32] Jochen Garcke. Regression with the optimised combination technique. In Proceed-
ings of the 23rd international conference on Machine learning, pages 321-328. ACM
Press, 2006.

[33] Jochen Garcke. An optimised sparse grid combination technique for eigenprob-
lems. PAMM, 7(1):1022301-1022302, 2007.

[34] Jochen Garcke. A dimension adaptive sparse grid combination technique for
machine learning. In Wayne Read, Jay W. Larson, and A.]. Roberts, edi-
tors, Proceedings of the 13th Biennial Computational Techniques and Applications
Conference, CTAC-2006, volume 48 of ANZIAM]., pages C725-C740, Decem-
ber 2007. http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/
article/view/70 [December 27, 2007].

167

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/70
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/70

BIBLIOGRAPHY

[35] Jochen Garcke. A dimension adaptive combination technique using localised
adaptation criteria. In Hans Georg Bock, Xuan Phu Hoang, Rolf Rannacher, and
Johannes P. Schloder, editors, Modeling, Simulation and Optimization of Complex
Processes, pages 115125, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[36] Jochen Garcke. Sparse grids in a nutshell. In Sparse grids and applications, pages
57-80. Springer, 2013.

[37] Jochen Garcke, M. Griebel, and Michael Thess. Data mining with sparse grids.
Computing, 67:225-253, 10 2001.

[38] Alan Genz. A package for testing multiple integration subroutines. Jan 1987.

[39] Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids.
Numerical Algorithms, 18(3):209, Jan 1998.

[40] Thomas Gerstner and Michael Griebel. Dimension—-adaptive tensor—product
quadrature. Computing, 71(1):65-87, Aug 2003.

[41] Luc Giraud, Ulrich Riide, and Linda Stals. Resiliency in Numerical Algorithm
Design for Extreme Scale Simulations (Dagstuhl Seminar 20101). Dagstuhl Re-
ports, 10(3):1-57, 2020.

[42] T. Goerler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, and D. Told.
The global version of the gyrokinetic turbulence code GENE. J. Comput. Phys.,
230:7053-7071, 2011.

[43] Michael Griebel and Jan Hamaekers. A wavelet based sparse grid method for
the electronic schrodinger equation. Proceedings oh the International Congress of
Mathematicians, Vol. 3, 2006-01-01, ISBN 978-3-03719-022-7, pags. 1473-1506, 3, 01
2006.

[44] Michael Griebel, Michael Schneider, and Christoph Zenger. A combination tech-
nique for the solution of sparse grid problems. In Iterative Methods in Lin. Alg.,
pages 263-281, 1992.

[45] Michael Griebel, Marc-Alexander Schweitzer, and Lukas Troska. A fault-tolerant
domain decomposition method based on space-filling curves, 2021.

[46] Michael Griebel and Veronika Thurner. The efficient solution of fluid dynamics
problems by the combination technique. International Journal of Numerical Methods
for Heat & Fluid Flow, 5(3):251-269, March 1995.

[47] Vivian Haller. Evaluation of dimension-wise error estimates using the spatially
adaptive combination technique. Bachelorarbeit, Technical University of Munich,
May 2019.

[48] Brendan Harding et al. Fault tolerant computation with the sparse grid combina-
tion technique. SIAM Journal on Scient. Comp., 37(3):C331-C353, 2015.

168

BIBLIOGRAPHY

[49] Brendan Harding and Markus Hegland. A robust combination technique.
ANZIAM Journal, 54:C394-C411, 2013.

[50] Brendan Harding and Markus Hegland. Robust solutions to PDEs with multiple
grids. In Jochen Garcke and Dirk Pfliiger, editors, Sparse Grids and Applications -
Munich 2012 SE, volume 97 of Lecture Notes in Computational Science and Engineer-
ing, pages 171-193. Springer International Publishing, 2014.

[51] Mario Heene. A massively parallel combination technique for the solution of high-
dimensional PDEs. PhD thesis, University of Stuttgart, 2017.

[52] Mario Heene, Christoph Kowitz, and Dirk Pfliiger. Load balancing for massively
parallel computations with the sparse grid combination technique. In Parallel
Computing: Accelerating Comp. Science and Eng., pages 574-583, 2013.

[53] Mario Heene, Alfredo Parra Hinojosa, Hans-Joachim Bungartz, and Dirk Pfltiger.
A massively-parallel, fault-tolerant solver for high-dimensional pdes. Euro-Par,
2016. Accepted.

[54] Mario Heene and Dirk Pfliiger. Efficient and scalable distributed-memory hi-
erarchization algorithms for the sparse grid combination technique. In Parallel
Computing: On the Road to Exascale, 2016.

[55] Mario Heene and Dirk Pfliiger. Scalable algorithms for the solution of higher-
dimensional pdes. In Software for Exascale Computing-SPPEXA 2013-2015, pages
165-186. Springer, 2016.

[56] Markus Hegland. Adaptive sparse grids. In Proc. of 10th Computational Techniques
and Applications Conference CTAC-2001, volume 44, pages C335-C353, apr 2003.

[57] Markus Hegland, Jochen Garcke, and Vivien Challis. The combination technique
and some generalisations. Linear Algebra Appl., 420(2-3):249-275, 2007.

[58] Sven Hingst. Shared-memory parallelization of a parallel combination technique
framework. Bachelorarbeit, Technical University of Munich, Nov 2019.

[59] Alfredo Parra Hinojosa, Brendan Harding, Markus Hegland, and Hans-Joachim
Bungartz. Handling silent data corruption with the sparse grid combination
technique. In Software for Exascale Computing-SPPEXA 2013-2015, pages 187-208.
Springer, 2016.

[60] Fritz Hofmeier. Applying the spatially adaptive combination technique to uncer-
tainty quantification. Bachelorarbeit, Technical University of Munich, Sep 2019.

[61] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault tolerance for
matrix operations. IEEE Transactions on Computers, C-33(6):518-528, 1984.

169

BIBLIOGRAPHY

[62] Philipp Hupp. Performance of unidirectional hierarchization for component
grids virtually maximized. In ICCS 2014, Procedia Computer Science. Elsevier,
June 2014.

[63] Philipp Hupp and Riko Jacob. A cache-optimal alternative to the unidirectional
hierarchization algorithm. In Jochen Garcke and Dirk Pfliiger, editors, Sparse
Grids and Applications - Stuttgart 2014, pages 103-132, Cham, 2016. Springer Inter-
national Publishing.

[64] Daan Huybrechs. Stable high-order quadrature rules with equidistant points.
Journal of Computational and Applied Mathematics, 231(2):933-947, 2009.

[65] Denis Jarema. Efficient Eulerian Gyrokinetic Simulations with Block-Structured Grids.
Dissertation, Technische Universitiat Miinchen, Miinchen, 2017.

[66] Frank Jenko et al. Electron temperature gradient driven turbulence. Physics of
Plasmas (1994-present), 7(5):1904-1910, 2000.

[67] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85-103.
Springer US, Boston, MA, 1972.

[68] Gerta Koster, Michael Seitz, Franz Treml, Dirk Hartmann, and Wolfram Klein.
On modelling the influence of group formations in a crowd. Contemporary Social
Science, 6(3):397-414, 2011.

[69] Christoph Kowitz. Applying the Sparse Grid Combination Technique in Linear Gy-
rokinetics. Dissertation, Technische Universitit Miinchen, Miinchen, 2016.

[70] Christoph Kowitz and Markus Hegland. An Opticom Method for Computing
Eigenpairs. In Jochen Garcke and Dirk Pfliiger, editors, Sparse Grids and Appli-
cations - Munich 2012 SE, volume 97 of Lecture Notes in Computational Science and
Engineering, pages 239-253. Springer International Publishing, 2014.

[71] Christoph Kranz. Untersuchungen zur Kombinationstechnik bei der numerischen
Stromungssimulation auf versetzten Gittern. Dissertation, TU Miinchen, 2002.

[72] Rafael Lago, Michael Obersteiner, Theresa Pollinger, Johannes Rentrop, Hans-
Joachim Bungartz, Tilman Dannert, Michael Griebel, Frank Jenko, and Dirk
Pfliiger. Exahd: A massively parallel faulttolerant sparse grid approach for high-
dimensional turbulent plasma simulations. In Severin Reiz Hans-Joachim Bun-
gartz, Benjamin Uekermann, Philipp Neumann, and Wolfgang E. Nagel, editors,
Software for Exascale Computing - SPPEXA 2016-2019, number 136 in Lecture Notes
in Computational Science and Engineering, pages 301-329. Springer, Gewerbe-
strasse 11, 6330 Cham, Switzerland, Jul 2020.

[73] Boris Lastdrager, Barry Koren, and Jan Verwer. The sparse-grid combination tech-
nique applied to time-dependent advection problems. Applied Numerical Mathe-
matics, 38(4):377-401, 2001.

170

BIBLIOGRAPHY

[74] Olivier Le Maitre and Omar M Knio. Spectral methods for uncertainty quantifica-
tion: with applications to computational fluid dynamics. Springer Science & Business
Media, 2010.

[75] Franciszek Leja. Sur certaines suites liées aux ensembles plans et leur application
a la représentation conforme. Annales Polonici Mathematici, 4(1):8-13, 1957.

[76] Anastasiya Liatsetskaya. Adaptive quadrature with the combination technique
for uq applications. Bachelorarbeit, Technical University of Munich, Jun 2020.

[77] Meilin Liu, Zhen Gao, and Jan S. Hesthaven. Adaptive sparse grid algorithms
with applications to electromagnetic scattering under uncertainty. Applied Nu-
merical Mathematics, 61(1):24-37, 2011.

[78] K. Ludwig and M. Bremicker. The Water Balance Model LARSIM: Design, Con-
tent and Applications. Technical report, 2006.

[79] Martin Molzer. Implementation of a parallel sparse grid combination technique
for variable process group sizes. Bachelor’s thesis, Jan 2018.

[80] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.
Design, modeling, and evaluation of a scalable multi-level checkpointing system.
In SC "10: Proceedings of the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 1-11, 2010.

[81] William J. Morokoff and Russel E. Caflisch. Quasi-monte carlo integration. Journal
of Computational Physics, 122(2):218-230, 1995.

[82] Cora Charlotte Moser. Machine learning with the sparse grid density estimation
using the combination technique. Bachelorarbeit, Technical University of Mu-
nich, Sep 2020.

[83] J. Noordmans and P. W. Hemker. Application of an adaptive sparse-grid tech-
nique to a model singular perturbation problem. Computing, 65(4):357-378, Dec
2000.

[84] Michael Obersteiner and Hans-Joachim Bungartz. A spatially adaptive sparse
grid combination technique for numerical quadrature. In Sparse Grids and Appli-
cations - Munich 2018, 2019. Accepted for publication.

[85] Michael Obersteiner and Hans-Joachim Bungartz. A generalized spatially adap-
tive sparse grid combination technique with dimension-wise refinement. SIAM
Journal on Scientific Computing, 2020. Accepted for publication.

[86] Michael Obersteiner, Alfredo Parra Hinojosa, Mario Heene, Hans-Joachim Bun-
gartz, and Dirk Pfliiger. A highly scalable, algorithm-based fault-tolerant solver
for gyrokinetic plasma simulations. In Proceedings of the 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, ScalA “17, New York, NY,
USA, 2017. Association for Computing Machinery.

171

BIBLIOGRAPHY

[87] OpenMP Architecture Review Board. OpenMP application program interface
version 5.0, 2018.

[88] Carlos Pachajoa, Markus Levonyak, and Wilfried N. Gansterer. Extending and
evaluating fault-tolerant preconditioned conjugate gradient methods. In 2018
IEEE/ACM 8th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS), pages
49-58, 2018.

[89] Alfredo Parra Hinojosa. Toward Resilient Exascale PDE Solvers Using the Combina-
tion Technique. Dissertation, Technische Universitdt Miinchen, Miinchen, 2017.

[90] Alfredo Parra Hinojosa, Christoph Kowitz, Mario Heene, Dirk Pfliiger, and H-J
Bungartz. Towards a fault-tolerant, scalable implementation of gene. In Recent
Trends in Computational Engineering-CE2014, pages 47-65. Springer, 2015.

[91] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

[92] Benjamin Peherstorfer. Model Order Reduction of Parametrized Systems with
Sparse Grid Learning Techniques. Dissertation, Technische Universitdt Miinchen,
Miinchen, 2013.

[93] Benjamin Peherstorfer, Fabian Franzelin, Dirk Pfliiger, and Hans-Joachim Bun-
gartz. Classification with probability density estimation on sparse grids. In
Jochen Garcke and Dirk Pfliiger, editors, Sparse Grids and Applications - Munich
2012, pages 255-270, Cham, 2014. Springer International Publishing.

[94] Benjamin Peherstorfer, Dirk Pfliiger, and Hans-Joachim Bungartz. Clustering
based on density estimation with sparse grids. In Birte Glimm and Antonio
Kriiger, editors, KI 2012: Advances in Artificial Intelligence, pages 131-142, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[95] Benjamin Peherstorfer, Dirk Pfliige, and Hans-Joachim Bungartz. Density Estima-
tion with Adaptive Sparse Grids for Large Data Sets, pages 443-451.

[96] Dirk Pfltiger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag
Dr. Hut, Munich, Aug 2010.

[97] Dirk Pfliiger, Hans-Joachim Bungartz, Michael Griebel, Frank Jenko, Tilman Dan-
nert, Mario Heene, Christoph Kowitz, Alfredo Parra Hinojosa, and Peter Zaspel.
Exahd: an exa-scalable two-level sparse grid approach for higher-dimensional
problems in plasma physics and beyond. In European Conference on Parallel Pro-
cessing, pages 565-576. Springer, 2014.

[98] Theresa Pollinger and Dirk Pfliiger. Learning-based load balancing for massivel
& & & & y
parallel simulations of hot fusion plasmas. Advances in Parallel Computing 36,
pages 137-146, 2020.

172

BIBLIOGRAPHY

[99] Petar Radojkovic, Manolis Marazakis, Paul Carpenter, Reiley Jeyapaul, Dimitris
Gizopoulos, Martin Schulz, Adria Armejach, Eduard A Ayguade, Frangois Bodin,
Ramon Canal, Franck Cappello, Fabien Chaix, Guillaume Colin De Verdiere,
Said Derradji, Stefano Di Carlo, Christian Engelmann, Ignacio Laguna, Miquel
Moreto, Onur Mutlu, Lazaros Papadopoulos, Olly Perks, Manolis Ploumidis,
Bezhad Salami, Yanos Sazeides, Dimitrios Soudris, Yiannis Sourdis, Per Sten-
strom, Samuel Thibault, Will Toms, and Osman Unsal. Towards Resilient EU
HPC Systems: A Blueprint. Research report, European HPC resilience initiative,
April 2020.

[100] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 11 2005.

[101] Pascal Resch. Adaptive romberg-quadrature for the sparse grid combination
technique. Masterarbeit, Technical University of Munich, Feb 2021.

[102] Yves Robert. An overview of fault-tolerant techniques for HPC. Euro-Par, 2016.

[103] Werner Romberg. Vereinfachte numerische integration. Det Kongelige Norske Vi-
denskabers Selskabs, 28:30-36, 1955.

[104] A. Riittgers and M. Griebel. Multiscale simulation of polymeric fluids using
the sparse grid combination technique. Applied Mathematics and Computation,
319:425-443, 2018. also available as INS Preprint No. 1623.

[105] Kilian Michael Rohner. Learning from Data with Geometry-Aware Sparse Grids. Dis-
sertation, Technische Universitit Miinchen, Miinchen, 2020.

[106] Nico Rosel. Combigrid based dimensional adaptivity for sparse grid density es-
timation and classification. Bachelorarbeit, Technical University of Munich, Apr
20109.

[107] Bianca Schroeder and Garth Gibson. A large-scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and Secure Com-
puting, 7(4):337-350, Oct 2010.

[108] Lukas Schulte. Sparse grid density estimation with the combination technique.
Bachelorarbeit, Technical University of Munich, Mar 2020.

[109] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. Fault
tolerant preconditioned conjugate gradient for sparse linear system solution. In
Proceedings of the 26th ACM International Conference on Supercomputing, ICS "12,
page 69-78, New York, NY, USA, 2012. Association for Computing Machinery.

[110] Shreyas Shenoy. Towards non-blocking combination schemes in the sparse grid
combination technique. Masterarbeit, Technical University of Munich, Feb 2019.

[111] Ralph C Smith. Uncertainty quantification: theory, implementation, and applications,
volume 12. Siam, 2013.

173

BIBLIOGRAPHY

[112] S.Smolyak. Quadrature and interpolation formulas for tensor products of certain
classes of functions. Soviet Mathematics, Doklady, 4:240-243, 1963.

[113] Marc Snir, Robert W. Wisniewski, Jacob A. Abraham, Sarita V. Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, et al.
Addressing failures in exascale computing. International Journal of High Perfor-
mance Computing Applications, 28:129-173, 2014.

[114] Daniel Told, Jonathan Cookmeyer, Florian Muller, Patrick Astfalk, and Frank
Jenko. Comparative study of gyrokinetic, hybrid-kinetic and fully kinetic wave
physics for space plasmas. New Journal of Physics, 18, 05 2016.

[115] Jonas Treplin. Parallel evaluation of adaptive sparse grids with application to
uncertainty quantification of hydrology simulations. Projektarbeit, Techinische
Universitit Miinchen, Dec 2020.

[116] Julian Valentin. B-Splines for Sparse Grids: Algorithms and Application to Higher-
Dimensional Optimization. PhD thesis, 2019.

[117] Johannes Walter. Design and implementation of a fault simulation layer for the
combination technique on hpc systems. Master’s thesis, University of Stuttgart,
2016.

[118] Zixuan Wang, Qi Tang, Wei Guo, and Yingda Cheng. Sparse grid discontinuous
galerkin methods for high-dimensional elliptic equations. Journal of Computational
Physics, 314:244-263, 2016.

[119] Norbert Wiener. The homogeneous chaos. American Journal of Mathematics, 1938.

[120] John W. Young. A first order approximation to the optimum checkpoint interval.
Commun. ACM, 17(9):530-531, September 1974.

[121] Christoph Zenger. Sparse grids. In Wolfgang Hackbusch, editor, Parallel Algo-
rithms for Partial Differential Equations, volume 31 of Notes on Numerical Fluid Me-
chanics, pages 241-251. Vieweg, 1991.

[122] Florian Zipperle. Density-based clustering with periodic adaptive sparse grids.
Bachelor’s thesis, Technical University of Munich, Sep 2014.

174

A Technical Specifications of compute

clusters

A.1 Hazel Hen

Peak performance
Cabinets

Number of nodes

Number of cores per socket
Total number of cores
Processor type

Memory per node
Node-Node interconnect
Power consumption

7420 TFlop/s
41
7712
2.12 =24
185,088

Intel® Xeon® CPU E5-2680 v3 (30M Cache, 2.50 GHz)

128 GB
Aries
3200 KW

Table A.1: Technical description of Hazel Hen [2].

A.2 SuperMUC-NG

Peak performance 26.3 PFlop/s

Islands 8

Number of nodes 6336

Number of cores per node 2-24 =48

Total number of cores 304,128

Processor type Intel Skylake Xeon Platinum 8174
Memory per node 96 GB

Node-Node interconnect OmniPath

Table A.2: Technical description of the thin nodes of SuperMUC-NG [4].

175

A Technical Specifications of compute clusters

A.3 CoolMUC-2 Linux Cluster

Peak performance 1400 TFlop/s
Number of nodes 812

Number of cores per node 2-14=28

Total number of cores 22,736
Processor type Intel Haswell (2.6 GHz)
Memory per node 64 GB
Node-Node interconnect FDR14 Infiniband

Table A.3: Technical description of the CoolMUC-2 linux cluster [1].

176

B Parameter Files

B.1 Linear and local GENE runs

For linear and local GENE runs we used the following parameter file. The entries with $
sign are set according to the specific parallelization and discretization of the component

grid.

¶llelization
n_procs_s = $ps
n_procs.v = $pv
n_procs.w = $pw
n_procs_-x = $px
n_procs.y = $py
n_procs.z = $pz
n_procs_sim = $nprocs
n_parallel_sims = $ngroup
/

&box

n_spec = 1

nx0 = $nx0

nky0 = $nky0

nz0 = $nz0

nv0 = $nv0

nw0 = $nw0
kymin = 0.3000

lv = 3.00

Iw = 9.00
adapt.lx =T

kyO.ind = 1
mu_grid_type = “equidist’
&in_out

diagdir = "./

chptdir = "./~
read_checkpoint = F
write_checkpoint = T
istep_field = 1
istep.mom = -100
istep.nrg = 10

177

B Parameter Files

178

$istep_omega

istep_omega
istep_vsp —500
istep_schpt —500

istep_energy = -500

write_std = T
write_h5 = F
chpt.h5 = F
momentum_flux = F

/

&general

nonlinear = F

comp_type "V’

perf_vec 221111212
!'nblocks = 16
arakawa_zv = T
arakawa_zv_order = 2

hypz_opt = F
timescheme = 'RK4’
dt_max = 0.005

timelim = 10000

ntimesteps = $ntimesteps_combi
calc_dt = F

omega_prec = le—12
underflow_limit = 1le—12

beta = 0.0000000
debye2 = 0.0000000
collision_op = ’'none’
init_.cond = ’alm’

hypz = -1

hypv = 0.2000

perf_tsteps = 20

/

&geometry

magn_geometry = ’s_alpha’
q0 = 1.4000000
shat = 0.7960
trpeps = 0.18000000
major-R = 1.0000000
norm_flux_projection = F
/

&species

name = ‘ions’

omn = 2.2200000

omt = 6.9200000
mass = 1.0000000
temp = 1.0000000
dens = 1.0000000
charge = 1

/

B.2 Non-linear and global GENE runs

B.2 Non-linear and global GENE runs

¶llelization
n_procs_s = $ps
n_procs.v = $pv
n_procs.-w = $pw
n_procs_x = $px
n_procs.y = $py
n_procs-z = $pz
n_procs_sim = $nprocs
n_parallel_sims = $ngroup
/

&box

n_spec = $nspec

nx0 = $nx0

nky0 = $nky0

nz0 = $nz0

nv0 = $nv0

nw0 = $nwO0

kymin = 0.40670792E-01
lv = 4.00

Iw = 16.0

1x = 540.000

x0 = 0.5000
n0_global = 8
mu_grid_type = 'gau_lag’
&in_out

diagdir = "./’
chptdir = 7./~
read_checkpoint = F
write_checkpoint = T
istep_field = 100
istep.mom = 100
istep_nrg = 10
istep_.vsp = 100

179

B Parameter Files

180

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

istep_schpt = 000
/

&general
nonlinear
x_local
comp_type
calc.dt =T

I
o

TV

timelim 27000

ntimesteps = $ntimesteps_combi
simtimelim = $combitime

beta 0.000
debye2 = 0.000
collision_op = ’'none’

init_cond = ’'db’

!number of steps between combinations

!combination interval

'hyperdiffusion parameters = damping of high modes

hyp-x = 0.1

hyp.y = 0.05

hyp_z = 1.000

hyp.v = 0.2000
arakawa_zv = F

/

&nonlocal_x
l_buffer_size = 0.1000
lcoef_krook = 1.000
u_buffer_size = 0.1000
ucoef_krook = 1.000
ck_heat = 0.3500E-01

!rad_bc_type = 2

&geometry

magn_geometry = ’circula
q0 = 1.423
trpeps = 0.000
minor.r = 0.3600
major_.R = 1.000
mag_prof =T

q-coeffs = 0.8680,
rhostar = 0.1786E—02
/

&species

name = ’ions’
prof_type = 3

kappa.T = 6.900

LT _center = 0.5000

’
r

0.000,

2.221

95
96
97
98
9
100
101
102
103
104
105
106
107
108

LT_-width

kappa-n

Ln_center

Ln_width

delta_x_T
delta_x_n

mass
temp
dens
charge
/

0.5000E-01

2.232
0.5000
0.5000E-01

0.3250
0.3250

1.000
1.000
1.000

B.2 Non-linear and global GENE runs

181

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Introduction
	Foundations
	Fault tolerance in HPC
	Check-point restart
	Alternative methods
	Algorithm-based fault tolerance

	Sparse Grids
	Nodal Basis
	Hierarchical Basis
	Sparse Grid Construction
	Variations
	Adaptive Refinement

	Sparse Grid Combination Technique
	Standard Combination Technique
	Generalizations of the Combination Technique
	Adaptivity with the Combination Technique
	Dimensional adaptivity
	Spatial adaptivity

	Fault-Tolerant Combination Technique
	Time-Dependent PDE simulations with the Combination Technique

	DisCoTec: A fault-tolerant HPC framework for time-dependent PDEs
	Framework overview
	Manager worker scheme
	Scalable implementation of the combination step

	Fault tolerance
	Fault simulator
	Fault distribution
	Fault detection
	Fault recovery
	Fault-tolerant algorithm

	Choosing the time step
	CFL condition
	Uniform time steps
	Individual time steps

	Shared-Memory parallelization
	Asynchronous Combination Technique
	Algorithmic idea
	Mathematical motivation

	Numerical experiments
	Application to plasma physics
	Fault tolerance
	Numerical error analysis
	Scaling results

	Asynchronous combination
	Advection equation
	GENE

	Non-linear Plasma runs
	Summary

	sparseSpACE: Spatial adaptivity for the Combination Technique
	Dimension-wise refinement
	1D point sets
	Generating the combination scheme
	Tree rebalancing
	Error estimation
	Overall Algorithm

	Split-Extend scheme
	Initial setup
	Split
	Extend
	Error estimation
	Linear Basis
	Higher order methods
	Splits in Single Dimensions

	Overall algorithm

	Implementation overview
	Combination scheme
	Implementation of the Combination Technique approaches
	Grid operations
	Functions
	Different grid types
	Refinement Container
	Wrapper for Machine Learning

	Numerical case studies with the Spatially Adaptive Combination Technique
	Numerical quadrature and interpolation
	Visual inspection
	Convergence analysis
	Linear basis
	Quadratic approximation
	Gaussian Quadrature
	Single-dimensional splits
	Modified basis

	Summary

	Uncertainty quantification
	Machine Learning with Sparse Grid density estimation
	Algorithm overview
	Classification results
	Standard Combination Technique
	Spatially adaptive Combination Technique

	Summary

	Conclusion and Outlook
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Technical Specifications of compute clusters
	Hazel Hen
	SuperMUC-NG
	CoolMUC-2 Linux Cluster

	Parameter Files
	Linear and local GENE runs
	Non-linear and global GENE runs

