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Abstract
Physical interaction is becoming a required feature in modern robotic applications. The addi-

tion of new technologies such as robotic skins provides feedback that allows physical inter-

action for robots with the environment and human co-workers. However, the large amounts

of information that robot skin supply come with the challenge of interpreting and extracting

meaningful insights for feedback control. This thesis provides methods and algorithms to

extract meaningful information from multi-modal tactile feedback to enable whole-body inter-

action control. This work contributes to the formulation of operational tasks from distributed

force sensing for body compliance behaviors in fixed and floating base robots. The interac-

tive tasks formulated in this thesis are compatible with task fusion methods with strict or soft

prioritization for whole-body control.

With the additional geometric information provided by robot skin, this thesis developed the

pressure-driven body compliance modality that amplifies the contact forces when concen-

trated in a small area. This work also presents formulations to use additional sensing modali-

ties aside from contact force as feedback to produce virtual interactions with the environment.

The virtual interaction tasks developed in this work generate virtual-repulsive fields from sen-

sor measurements to impose whole-body compliant behaviors. Two examples of virtual in-

teractions using proximity and temperature sensors are presented. The different modalities

of direct and virtual interaction provide contextual information that can help to generate com-

bined body behaviors. A modality for robot nociception using pressure-driven compliance to

detect potentially harmful interactions and generate reaction reflexes is introduced. With the

proximity-based collision-avoidance modality, a behavior to detect local minima that keep a

robot from fulfilling an end-effector task without touching the environment is realized. The

robot behavior is adapted to apply contact forces in the environment to modify it to fulfill the

end effector tasks, keeping the interaction forces within a set range.

This thesis provides formulations for direct and virtual interactions using plantar skin to en-

hance the capabilities of biped balance and walking control. Furthermore, this work presents

the formulations to compute the significant metrics for balance and walking from plantar tac-

tile feedback and methods for closed-loop control. A method to use plantar tactile information

is introduced to construct the supporting polygon and use it to define constraints for ZMP

(Zero Moment Point) and DCM (Divergent Component of Motion) tracking controllers. The

geometry of the supporting polygon is also used in this work to adapt the walking motions

online to continuously walk over partial footholds without the need for exploratory motions.

We used the proximity sensing modality to develop preemptive foot compliance control to

adapt the foot orientation before foot landing in the single support phase of the walking cycle.

This modality of foot compliance suppresses 80% of the impact forces when walking over

flat terrain and improves walking over uneven terrain. The contributions in this thesis were

extensively evaluated in three experimental platforms, including two full-size humanoid robots

running two different walking controllers and software frameworks.
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1. Introduction

Humanoid robots are complex systems developed to operate in environments and condi-

tions originally intended for human beings [9, 10, 11, 12, 13, 14]. The target of humanoid

robots is to cooperate with human partners in labor and to alleviate them in tasks that are

either dangerous, exhausting, or monotonous. Such a challenge demands the incorpora-

tion of different state-of-the-art technologies together into the robot’s design to increase its

capabilities. These contributions enhance the capabilities of all their different components.

From mechanical high-powered actuation to multi-modal perception systems and real-time

control, new advances emerge every decade to improve the performance and broaden the

span of applications for humanoid robots. Within these new technologies, tactile sensors and

robot skins have helped improve physical interaction between robots and the environment,

including human beings [15, 16, 5].

This thesis presents different methods to exploit multi-modal tactile information for physical

interaction and bipedal locomotion. The spatial distribution of multiple types of sensors that

state-of-the-art robot skins incorporate, increases the capabilities for interaction by providing

additional information that the classic force-torque sensor approaches miss. But the addition

of thousands of sensors in the system comes with a series of challenges to interpret the

meaningful components of large amounts of tactile information. This work will break down

the formulations to exploit tactile information, which includes measurements of direct contact

forces and additional modalities that do not involve physical contact but provide awareness

of the conditions of the environment around the robot. Furthermore, a framework to combine

different types of interactions in whole-body behaviors is presented and validated in several

experimental scenarios involving both fixed base and floating base robots, including full-size

humanoid robots.

The formulations to handle both types of interactions will be expanded to include plantar

skin into biped balance and locomotion control. Plantar skin enhanced the capabilities of

walking controllers by providing feedback for walking over uneven terrain and small footholds.

Extensive experimentation was performed to assess and validate the formulations in two

different robots that run two different walking controllers.

1.1. Motivations and Challenges

Robot skins are distributed sensing systems made up of a series of tactile sensing elements

commonly known as taxels, and the communication and interfacing channels with a robot.

These systems provide large amounts of information when stimuli are applied to a set of

taxels. The larger the stimulated area, the wider the stream of tactile information generated.

Within all the information generated by skin systems, there are different components with
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different meanings. For example, it contains noise, geometric information, vibrations, harmful

interactions, safe interactions, other sensing modalities such as proximity or temperature, etc.

Although the size of the data stream can be regulated by different sensing paradigms and

sensor calibration, physical interaction must be kept safe for all, the robot, the environment,

and the operators/coworkers, and useful for control purposes. In this context, the usage

of tactile information opens the first challenge: How to extract meaningful information from

the torrent of data to generate feasible (computational and dynamically consistent) reaction

motions from the tactile stimuli?

In large-scale systems, for example, a full-size humanoid robot with whole-body skin, travers-

ing all the sensing modalities of all the taxels may not be feasible in every control cycle.

Therefore, a strategy to identify the useful taxels for one interaction is required to lower the

computation effort. At the same time, these useful stimuli contribute to computing the resul-

tant forces applied to the link. This problem presents a second challenge to address when

working with tactile information on: How to survey large groups of taxels that cover every link

of a robot without exceeding the computational capacities of an embedded system?

Most skin systems provide pressure sensing which measures directly the contact force. Fur-

thermore, multi-modal skin systems as [1] provide additional modalities which have no direct

meaning as external forces in the dynamic model of the robot. This problem brings on an-

other challenge: How to use additional sensing modalities to generate dynamically consistent

reaction motions?

With feedback from several sensing modalities, a robot can have reactive motions with dif-

ferent priorities among them. How to combine interactions of different sources together into

combined behaviors? brings another challenge for this thesis. Furthermore, what are the

constraints required to combine these interactions in practices?

Skin provides tactile information immediately when the contract starts. Furthermore, if the

skin provides proximity sensing, the geometry of the contact can be estimated before the

physical interaction. This feature is particularly beneficial for balancing and walking. The

available geometric information directly at the foot landing can help define the reaction move-

ments to keep balance and adjust the walking motions to achieve stable walking. However,

extracting meaningful information for balance and walking from all the skin information and

how to use them in the different phases of walking? are complex challenges.

1.2. Contribution

This work contributes to providing the control algorithms needed for robots to efficiently exploit

multi-modal tactile information for both whole-body physical interaction and biped locomotion.

Focusing on the control problems related to the usage of such sensory information, the details

about how the tactile information is generated are kept out of the scope of this work. The
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formulations are intended to be used by any robot with standard sensors (e.g. IMU, force-

torque, joint encoders) and any type of robot skin that provides multi-modal information and

spatial calibration.

1.2.1. Contributions to whole-body physical interaction

Whole-body physical interaction

The contributions of this thesis advance the state-of-the-art on whole-body compliance pro-

viding formulations for interaction tasks based on tactile information. This extends the for-

mulations for body compliance introduced by previous works at the Institute for Cognitive

Systems to handle multiple large areas of interaction simultaneously and floating base dy-

namics. The execution of multiple tasks requires the implementation of a strict hierarchical

whole-body controller, which was adapted using null space projectors for floating base robots

in this thesis.

Multi-modal physical and virtual interaction

This thesis contributes to the formulations to generate body reactions to sensing modalities

other than contact force. This covers the generation of virtual forces from other sensor signals

and the task formulation for them.

The specific sensing modalities this thesis examines are:

• Proximity to objects sensing is used to prevent collisions with the environment by creating

a repulsive field that will push away all the robot links from the environment and other links.

This modality is also used to predict the geometry of the contact area before the actual

contact happens. This feature turned out highly valuable for walking control.

• Pressure distribution sensing is used to enable a new modality of body compliance which

modifies the body admittance reaction inversely proportional to the size of the contact

area. It combines the contact force measurement of the taxels with the geometric informa-

tion of its spacial distribution. With this modality, highly concentrated forces produce faster

compliant reactions, and distributed pressure interactions produce slow reactions.

• Temperature sensing is used to generate repulsive forces to increase the distance to po-

tentially harmful hot surfaces. This enables another nociceptive flexion reflex to prevent

the touch of surfaces that can melt the robot covers and wiring.
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Robot nociception

This thesis took inspiration from the nociceptive modalities in human skin and the reflexes it

triggers to enable robot nociception from tactile information. The multi modal information is

used to make changes in the priority of tasks to adapt the robot behavior according to the

interactions. The robot nociception presented in this work cancels the execution of purpose

tasks if they produce harmful interactions.

Intentional contact

Combined modalities of interactions are used to enable an active exploratory behavior for

robots in this work. This thesis explores priority switching rules for safety tasks to increase

the executability of purpose tasks by exerting intentional contacts in the environment to modify

it to achieve tasks in tight environments.

1.2.2. Contributions to biped balance and locomotion
This thesis extends the formulations of the direct and virtual interactions to plantar tactile

feedback for biped balance and walking control.

Balance with plantar tactile feedback

This thesis also contributes algorithms to exploit the multiple sensing modalities of robot skin

for biped balance and walking. The methods to extract tactile information proposed in the first

part are adapted to measure the important metrics used as feedback in balance and walking

controllers for bipedal robots. These metrics include the ZMP (Zero Moment Point), CMP

(Centroidal Moment Pivot), GRF (Ground Reaction Force), and DCM (Divergent Component

of Motion). These metrics are commonly measured using ankle force-torque sensors. This

thesis shows that skin sensors can provide an alternative solution when the ankle of a robot

cannot allocate one of these sensors.

The geometric insights of the tactile information are used in this work to approximate the

shape of the contact geometry. This information provides an accurate description of the

supporting region immediately after foot landing at walking. This thesis developed algorithms

to construct the supporting polygon and its important reference points with tactile information.

For example, the contact area size, the centroid of the supporting polygon, the bounding box,

and the simplified inscribed smaller order polygons.

This thesis performed an extensive experimental evaluation of the plantar tactile information in

classic balance control techniques. However, these techniques make some assumptions on

the contact geometry because ankle sensors cannot provide an actual measurement of the

supporting polygon (e.g., full static contact of the sole with the ground). Thus, these methods

were generalized to use the real contact information in the definition of the constraints for the

controllers.
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Walking with plantar tactile feedback

In this work, the tactile information was used to develop a method that uses contact infor-

mation to define a step replanning strategy when the contact area is too small. The step

replanning strategy considers the size of the obstacle to re-define the new footstep location

clearing the whole area of the obstacle. This approach can identify certain conditions that

ankle sensors cannot because the interaction forces are in equilibrium.

Another improvement to the walking motion generation introduced in this work is the online

modification of the walking motion plans from plantar tactile information. The centroid of

the supporting polygon is used to redefine the waypoints for the DCM trajectory to generate

dynamically consistent trajectories to step over partial footholds, down to one-third of the

sole area. As a result of this method, a waling controller designed for full sole contacts on

flat ground can successfully walk continuously over partial footholds without the need for

exploratory motions or fast ankle reactions.

Using plantar proximity sensing, this thesis developed a preemptive foot compliance modality

to complement the classic ankle strategies for terrain adaptation. The preemptive foot com-

pliance modifies the foot orientation during the swing trajectory to maximize the contact area

and minimize the impact force at foot landing. This modality improves the performance of

walking controllers even on flat ground by artificially damping the foot swing motion a few

millimeters from the ground.

Tactile mountable shoes

From the experimental works of this thesis, a practical apparatus to mount plantar skin on

biped robots was developed: mountable tactile shoes.

The plantar tactile formulations for bipedal robot balance and locomotion were extensively

tested on two different robots: The HRP-2Kai humanoid robot from Kawada industries and

the REEM-C humanoid robot from PAL Robotics. The plantar tactile sensors were fixed to the

feet of these humanoid robots using mountable shoes. This thesis developed tactile shoes

as an apparatus to easily and fast mount plantar skin on robots without modifying the foot

mechanical design or affecting the robot’s capabilities. With this approach, mounting and

removing plantar skin on a full-size humanoid robot takes about five minutes and it requires

only the foot external geometry to prepare.
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1.3. Thesis Outline

This thesis will be presented as follows:

Chapter 2 will introduce the related works that help develop the contributions of the thesis. It

will also present the biological inspirations for physical interaction, including plantar sensation

that helped to develop the formulations written in this work. The experimental platforms used

to evaluate the contributions of this thesis will be introduced in Section 2.3.

Chapter 3 will present the formulations for physical and virtual interactions that make uses

of multi-modal distributed sensing. It provides the fundamentals of the operational space

formulation that set the basis for the formulation of the interaction tasks. Then, it will introduce

the methods for physical and virtual interaction, including experimental validations for every

sensing modality and combinations of them in a number of whole-body behaviors.

Chapter 4 will extend the formulations for physical and virtual interaction for biped balance

and locomotion. It will start by summarizing the fundamentals of bipedal robot walking and

balance control that set the basis for the contributions of this thesis using plantar skin. Then,

the methods to compute the significant metrics for balance from plantar tactile information

will be presented. Furthermore, these formulations are used to provide additional feedback

in balance and walking controllers that improve the performance in flat ground and enables

walking over uneven terrain and partial footholds. Extensive experimental evaluation will be

presented to validate the performance of the formulations in two different full-sized biped

humanoid robots.

Finally, Chapter 5 will present the discussion of the results in this thesis and an outlook of the

contributions to the field of robotics.

6



2. Related Works, Biological Inspiration and
Experimental Platforms

Physical interaction is paramount in the new applications of robotics. When robots started

leaving the manufacturing cells with perfectly modeled environments, the awareness of phys-

ical interaction other than at the end effectors became a necessity. This problem has been

addressed by different approaches ranging from back-drivable actuator design to torque-

controlled robots and complex perception systems to achieve different levels of safe inter-

actions of robots with the environment, operators, and other robots. Within the new technolo-

gies that enable new types of interaction with robotic systems, skin systems provide a series

of sensing modalities over the whole body that are highly valuable for control purposes. This

chapter presents the biological inspirations for the addition of skin to robotic systems for

different purposes and the related works done in robotics for safe physical interactions in

manipulation and locomotion.

This chapter is divided in four sections. Section 2.1 covers related works in robot whole-body

interactions including the advances in tactile based interaction methods. Section 2.2 covers

the related works in interactions required for bipedal robot balance and locomotion. It will also

introduce the biological inspirations for plantar tactile feedback control that will be presented

in Chapter 4. Section 2.3 will give a brief introduction to the robotic experimental platforms

used in this thesis. Finally, Section 2.4 will summarize the ideas presented in this chapter.

2.1. Whole-Body Physical Interactions in Robotics

2.1.1. Physical interactions between humans and robots
In recent years, many new robot applications have emerged for tasks where, until now, it was

not possible to have a robot. The main reasons are safety [17], reliability [18], or simply

because the available technology could not make it feasible before. Many of these new

applications require tasks where a robot must physically interact with people and dynamically

changing environments [19], for example, medical robotics [20, 21], nursery robots [22], robot-

assisted manufacture [23], home assistance robotics [24, 9, 25] and social interaction [26,

27].

Interaction with humans in unstructured environments, require robots to have a reliable way

to perceive the surrounding objects to prevent collisions. In addition, a robot must avoid

collisions with its own body and most importantly, when human beings are present, it must

behave compliantly to external stimuli during the process, [28, 29, 11]. As a strategy to

handle these interactions, force-torque control methods have emerged to soften the rigid

body structure of a robotic arm as in [30], and [31]. A remarkable example of this approach

is the KUKA lightweight arm [32] which incorporates high-resolution torque sensors in every
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joint of a 7 DoF arm. This design allows an accurate estimation of the robot state at the effort

level which facilitates the distinction between the actuation torques and the torques produced

by external interactions on the whole body. Therefore, despite requiring complex mechanical

designs, the joint torque sensor approach is gaining popularity for service robots as [13]. As

a result, indirect detection of the collisions with the environment is possible, and different

reactions can be triggered depending on the intensity of the contact forces [33]. However,

this kind of implementation requires precise modeling, complex control laws, and high-cost

sensors and actuators.

Another approach to achieve safe physical interaction on robots is through hardware-compliant

actuators using spring-based joints and soft materials in the design. The series elastic ac-

tuators [34] are a clear example of this approach. Adding an elastic coupling between the

actuator and the interface provides the advantages of shock tolerance, lower reflected inertia,

more accurate and stable force control, less inadvertent damage to the environment, and the

capacity for energy storage. These designs absorb sudden contacts and impacts among the

links of a robot as in [35], and [36] improving the safety of the interactions. However, the pas-

sive elements in the design make the modeling more complicated and increase the difficulty

for precise control.

The concept of robot skin has also been developed to sense contact forces on the links and

take actions to induce compliant behavior on stiff robot designs. Different sensing technolo-

gies have been utilized for skin purposes as in [37, 38, 39, 40]. The direct measurement

of external forces provides the needed information for whole-body reactive control with stiff

(position commanded) robots as described in [41, 5].

2.1.2. Physical interactions enabled by robot skin
The human body is completely covered with different types of skin which, aside from pro-

tecting us from the environment, provide meaningful information of our interactions with the

environment. We use tactile information for different purposes depending on the nature of

the interaction forces and the location of the stimuli over our body. For example, we use the

information from the foot sole skin for walking and balance, the skin on our hands to explore

the environment, and the body skin to watch our physical integrity and interact with others.

Similarly, robotic systems can benefit from stimuli information if they can have access to it.

This was the motivation to develop robot skin systems. Covering robots with tactile sensors

brings a direct measurement of the external forces applied on any part of the robot and not

only in selected frames where force-torque sensors are mounted. Nevertheless, skin systems

come with a series of challenges that must be addressed to profit from tactile information.

As pointed in Section 1.1, robot skins are distributed sensing systems made up of a series of

tactile sensing elements commonly known as taxels, and the communication and interfacing

channels with a robot [42, 43]. A key feature of robot skins is the spatial distribution of the

tactile sensors. While classic force-torque sensors provide a fast and accurate measurement
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of the resultant wrench at the mounting coordinate frame, robot skins provide a discrete

capture of the interaction forces over the surface where they are mounted.

The position of the taxels over the robot’s links can be obtained utilizing different spatial

calibration methods as [44], and [45]. Furthermore, these large arrays of sensors produce

wide streams of data that represent another challenge for computing systems. However,

neuromorphic paradigms make it feasible to acquire and handle the sensor data [46] but

these techniques require the control algorithms to comply with their requirements.

Different sensing technologies have been applied to robot skins in the last decades. Primarily

for sensing contact force and pressure, several transduction principles are exploited to build

different types of tactile sensors (e. g. mechanical, resistive, capacitive, optical, piezoelectric,

etc. [47]). Additionally, other sensing modalities have been included in tactile sensors. For

example, contact temperature [48], proximity to objects [49, 50], and humidity [51].

Multi-modal tactile information helped implement behaviors in robots that were not possible

with simple force-torque sensors. One clear example is the dexterous in-hand manipulation

of complex shaped objects as described in [52]. Tactile feedback enabled whole body compli-

ance without the need for joint torque sensing for fixed base and mobile base robots as in [5].

It also allowed the real-time estimation of in-hand object properties as in [53] and the robot

state as in [54]. Having a direct measurement of the interaction forces and their location over

the robot links gives advantages for different applications which include whole-body physi-

cal interaction with humans and complex environments [23], social interaction by meaningful

contacts [55], biped balance and locomotion [56], robot nociception [57], among others.

2.1.3. Collision avoidance for safe interactions
For mechanically less complicated robot designs that cannot detect external contacts on

other parts than the end-effector, the usual strategy is to avoid contacts all the time as a

safety condition. The problem of avoiding self-collisions and impacts with the environment

has been tackled using model-based approaches as [58, 59, 60] and [61]. These approaches

require a geometric mapping of the robot and the environment to evaluate repulsive potential

functions between the robot links and the surrounding objects. Simplified geometric models

are often used in such methods to reduce the computational load and also to ensure a non-

interaction virtual layer surrounding all the body parts of the robot and the detected objects.

The success of these approaches relies on an accurate perception of the environment, then

for unstructured and changing scenarios, complex perception systems are required, which

often increase the computing demands.

When the environment is uncertain or constantly changing, it requires a continuous percep-

tion of its geometry to compute the repulsive forces that keep the robot’s links away from them.

This problem has been approached with machine vision systems as proposed in [62, 63], and

[64]. This type of feedback is fast and accurate with modern vision systems but is severely
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affected by occlusions in complex environments. To prevent occlusions, proximity sensing

distributed over the body has been adapted, such as the successful navigation methods in

mobile robots as proposed in [65]. Cheung and Lumelsky mounted opto-whisker sensors (in-

frared range finders) at the center of the larger links of a manipulator to keep a safe distance

from the environment during reaching tasks. Further approaches use other types of proximity

sensors, such as capacitive [49] or ultrasonic [66]. Latter implementations took advantage

of the miniaturization of proximity sensors adding more sensing points over the robot’s body,

such as the 50 sensors on a robot in [50].

2.1.4. Whole-body physical interactions with the environment
Distributed contact or proximity sensing over the body allows a robot to adapt to the envi-

ronment while pursuing a purposeful task with its end effector. For these cases, redundant

robots can operate when the environment imposes several constraints on the task. The more

degrees of freedom a robot has, the more simultaneous tasks it can perform. However, a task

priority assignment is needed to define which ones can be executed and which ones cannot

when the robot kinematics are overconstrained.

There are different methods to achieve the execution of a set of tasks according to the estab-

lished hierarchy. For instance, null space projection methods use the remaining degrees of

freedom available after fulfilling all the higher priority tasks to accomplish lower priority tasks.

This can be done by defining null-space projectors between the tasks’ workspaces as in [67]

and [68]. Another way to implement this approach is using a chain of quadratic problems

using the results of a higher priority task as restrictions for lower priority tasks [69] and [70].

These methods helped define and realize the tactile-based tasks defined in this work, as will

be detailed in Chapter 3.

2.1.5. Meaning of contacts during physical interaction
With the new capabilities for physical interaction, it became feasible to have collaboration

in shared space between humans and robots. However, the contacts with the environment

are different from the contacts with human collaborators and these are different from self-

collisions. Furthermore, contacts with the different parts of the human body are also different

from one another [33]. Therefore, contacts have different meanings and purposes during

physical interaction. Furthermore, with more information about them, a system can generate

better reactive behaviors and make smarter decisions. For example, contacts can be pro-

duced by hard or soft collisions between the robot and the environment. In such cases, the

robot must behave compliantly as in [71] to prevent damage. Moreover, when the collision

occurs with a human being, a robot shall distinguish the case and show a different compliant

reaction. Clear examples are the nursery robots of [22]. These robots are intended to handle

human bodies which are heavy, bulky, and sensitive. In this kind of application, interaction

forces are high (the weight of a human adult) but shall not be concentrated in small areas

because such conditions may lead to injuries in the human body. The same condition applies

for handling other kinds of heavy and bulky objects as in [72]. Therefore, the commonly used
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force-sensing technologies and techniques lack sensitivity for this kind of application, and

thus, new technologies must be considered for further development.

Different features help to classify contacts. For instance, the timing and frequency compo-

nents of the force profile are used to identify different human-robot interaction cases in [73],

the contact force magnitude is used to distinguish the interaction of the robot with mobile or

fixed obstacles in [74], and the thermal pattern is used to identify contacts with persons or

objects in [75]. Contacts can also be used to learn the dynamic parameters of the robot and

the environment as in [76]. Visual perception can help identify humans in the environment

to make a distinction between their intentional contacts with the robot and other environmen-

tal contacts as described in [77], and [78]. Tactile sensors are a good approach to acquire

complementary information to identify the different meanings of contacts. State-of-the-art

skin systems provide additional sensing modalities to complement contact force sensing. For

example, contact temperature [48], proximity to objects [49, 50], and humidity [51].

Adding more sensing modalities to robots increase their awareness of the environment and

the collaborators, either humans or other robots. But it is not all, the additional information

also helps estimate the internal states of the robot. For example, acceleration information

produced by robot skin was used to estimate the full second-order kinematic state of a float-

ing base humanoid robot in [54]. Several additional sensing modalities can provide artificial

nociception for robots to guarantee the operation under safe conditions to preserve the life

span of a robot as described in [79], and [80]. Similar to humans and animals, robots can

benefit from multiple sensing modalities distributed on the body to adapt the body behaviors

for a wide span of physical interactions including those that are dangerous for the robot itself

and its surrounding collaborators. In Chapter 3, we propose controllers for physical interaction

that combine sensing modalities of proprioceptive and exteroceptive sensors. Section 3.4 will

present two examples of whole body behaviors that combine direct and virtual interactions

together.

2.2. Physical Interactions for Locomotion

2.2.1. Biped balance and locomotion
In the previous section, we described the importance of physical interactions for coopera-

tion and safety. However, there is another set of physical interactions that are crucial for

any robotic system with legs: locomotion. While manipulation interactions consist of exerting

forces to inject momentum into an external body, locomotion interactions consist of exerting

forces to presumably fixed surfaces to inject momentum into one’s body. In reality, legged lo-

comotion is a complex self-organizing process that requires the coordinated efforts of several

elements of the body and involves strong and intermittent physical interaction between the

feet and the ground [81]. Let us focus on biped balance and walking, which is the human way

of locomotion and thus of humanoid robots.
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Humanoid robot’s biped balance and locomotion is a challenging task due to the naturally

unstable dynamics of floating base systems. Its difficulty increases, even more, when the

terrain is not flat and structured. In such conditions, walking controllers must be adapted to

the terrain either by mapping the terrain to plan a set of footholds [82, 83, 84] or by reacting

compliantly to the terrain modifying the footholds on-line [85, 86, 87, 88, 89].

Different methods have been developed for mapping the terrain looking for suitable footholds

by using cameras [82], laser scanners [83] or exploratory motions [84]. With a full 3D map

of the terrain, Griffin et. al. [90] achieved a footstep planned that can coup with rough terrain

conditions and even narrow passages barely larger than the foot sole.

State of the art walking controllers require the measurement and control of the reaction forces

exerted by the robot’s feet on the terrain. The classic approach is to include ankle force-

torque sensors in the leg design to have a direct measurement of the resultant wrench at the

mounting point. With these sensors, a robot can estimate the significant metrics for balance

and locomotion which are sufficient for walking over flat ground. These metrics include the

ZMP, CMP, GRF, among others. With ankle feedback, different controllers for flat and uneven

terrain have been proposed [85, 86, 87, 91, 92].

For more complicated terrain conditions, as deformable terrain or small footholds, the ankle

sensors must be combined with other means to feel the terrain and adapt the footholds for

walking. One example is the inclusion of contact switches at the borders of the sole as in [93]

where the LOLA robot detects early contact to adapt the foot impedance and the step timing.

Wiedebach et. al. [94] present a method for walking on small footholds which uses exploratory

foot motions to map the geometry of the supporting surfaces and fast stepping motions to go

from one to the next. Fully-torque controllable robot designs have been implemented for

rough terrain conditions combining joint-torque measurements with ankle force-torque sen-

sors as in the work done by Mesesan et. al. [95]. However, these robots neither can map the

terrain geometry without exploratory motions and rely entirely on body-impedance control to

keep balance. Not to mention that including torque sensors in each joint is expensive and

increases the complexity of the robot’s design.

In this thesis, a biologically-motivated approach for terrain sensing is presented by mounting

robot skin [7, 1, 5] on the foot soles of robots without modifying the foot design. The plantar

robot skin can be used to estimate all the states that are required for balance and locomotion

[96, 97] (e.g. CoP (Center of Pressure), ZMP, and CMP). Besides, it provides complemen-

tary information that ankle force-torque sensors cannot by exploiting the additional sensing

modalities. For example, the spatial distribution of force sensors in the robot skin enables

the reconstruction of the footprint’s pressure distribution and thus an accurate shape of the

supporting polygon. In the following sections, the motivation and details of the plantar skin

sensor are presented as well as its capabilities to improve biped balance and locomotion.
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2.2.2. Biological inspiration for plantar skin
The postural equilibrium of a human being results from a complex synergy of sensation and

actuation [98]. It is a dynamic phenomenon that keeps the center of gravity oscillating over

the standing feet by the application of antagonistic muscular reflexes triggered by different

stimuli [99]. This balance depends on a complex fusion of visual, vestibular, proprioceptive,

and exteroceptive feedback. It is known that none of them is essential for balance, but the lack

of each of these kinds of sensory feedback produces different changes in the posture and the

movement patterns during stance balance [100]. Between the exteroceptive receptors, the

cutaneous receptors of the foot sole play an important role in both balance and locomotion in

humans [101].

The human foot sole is covered with an endurable layer of glabrous skin that apart from

protecting the foot from rough surfaces, provides rich sensorial information about the terrain

such as texture, hardness, temperature, and pressure distribution on the foothold. The role

of its cutaneous receptors in the equilibrium control has been studied for more than a cen-

tury [102]. Studies reveal that subjects with the soles anesthetized by hypothermia show

increased posture sway while standing. For example in [103], the subjects presented larger

amplitude oscillations while closing the eyes (Romberg’s test [104]) than subjects with non-

anesthetized soles. A similar result was generated in [105] when body sway was galvanically

induced in the vestibular system of healthy subjects with anesthetized soles. Furthermore,

the inhibition of the sense of touch in the soles also induces delays in the compensatory

stepping reactions with different effects depending on the phase and the direction of the step

[106].

The human sole shows various sensitivity to mechanical stimuli in different regions [101].

This is because its mechanoreceptive afferents are connected to distinct nerves to transport

the data to the spinal cord [107] and because within the regions connected to one of these

nerves the receptor density is not uniform and their pressure thresholds are mismatched

[108]. Furthermore, the sensitivity and thresholds of these afferents change according to the

phase of a footstep during walking. For example, sensitivity is increased during the single

support phase on the swing foot and reduced considerably right after footfall [109].

The dynamic sensitivity of the human sole is used for triggering different muscular reflexes

during standing and walking and even for defining the direction of a reflex depending on the

walking phase [110]. During both standing and walking stages, the tactile stimuli are gattered

by three main nerve branches: i) sural, ii) superficial peroneal, and iii) posterior tibial [107].

These nerves include location-specific information that triggers combined muscle reflexes and

inhibitions. In [111], results from an experiment where subjects were walking on a treadmill

indicate that during the late swing phase, a large increment of sensitivity generally occurred

for the peroneal nerve, whereas sensitivity suppressions were observed for the tibial nerve.

13



In summary, 1) human equilibrium and locomotion rely significantly on the sense of touch pro-

vided by the mechanical afferents located on the feet. 2) these afferents are distributed with

different sensitivities and thresholds along the sole. 3) the sensitivity and threshold of the af-

ferents depend on the standing or walking phase with clear differences for the supporting and

the swing leg. 4) the afferents are connected to three main nerve branches that coordinate

different reflexes on muscular groups also depending on the walking phase.

2.2.3. Plantar robot skin for balance and walking
As described in the previous sections, robot skin can provide precise information about exter-

nal contacts with the environment in other parts of the body than the end effectors. However,

most tactile sensors are developed to provide high sensitivity at low and middle force ranges

[42]. Nevertheless, to be used in locomotion, robot skin must be capable of holding the weight

of a full-size biped or humanoid robot while resisting the impacts produced during walking on

unknown terrain.

Different sensing technologies have been applied to robot soles to improve the performance

and versatility of walking controllers. For example, resistive sensor arrays are mounted on

the foot soles of small-size humanoid robots without ankle force-torque sensors to enable the

direct measurement of the CoP [112, 113, 114, 115]. For bigger robot sizes (closer to human

size and weight), resistive sensors are combined within the structural layers of the soles to

increase the sensing range and endurance [116, 117]. Plantar resistive pressure sensors

have been applied to the H7 robot [118], the HRP-2 robot [119], and the BHR-2 robot [120].

All of these robots have a mass larger than 50 kg and are capable of dynamically walking over

flat terrain. The pressure grid sensors were proven capable of measuring the ZMP during all

the phases of walking and served as feedback for balance. Likewise, other tactile sensing

principles have been applied, like the optical measurement of rubber deformation [121] or the

high-speed pressure sensor grid [118] which can acquire the pressure shape of the foothold

at a frequency of 1kHz.

Furthermore, plantar tactile sensors can be combined with other sensing modalities to acquire

more information on the terrain and the foot interactions. For example, the perceptual foot

developed in [122] combines the classical ankle force-torque sensor design with a flexible

resistive sensor array and an IMU sensor. With this foot design, the ZMP and the supporting

polygon are acquired at a rate of 100 Hz and the foot orientation from the IMU sensor is used

to estimate the dynamic posture of the robot while walking at the same rate. The custom

MEMS sensors in [123] measure the grip force at the foot contacts. This information is used

to estimate the friction coefficient between the feet and different terrain conditions including

oiled surfaces. The IMU sensor in the foot design of [122] provides the spatial orientation of

the foot during the swing and support phases.
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Figure 1 Robot skin developed by Mitendorfer et al. [1]. a) Each taxel has four sensing modalities: force × 3, 3-axis
acceleration, temperature and pre-contact (proximity sensor). b) The data acquisition and network communication are handled
by an embedded microcontroller. c) The taxels have 4 communication ports to connect with the neighboring taxels to form a
dynamic communication grid in an hexagonal lattice. A group of taxels connected together form a skin patch.

2.3. Experimental Platforms Used in This Work

The formulations in this thesis were evaluated with three robotic platforms. All of them were

covered with the same multimodal skin [1, 5]. As shown in Fig. 1 the hexagonal taxels pro-

vide four sensing modalities (force, proximity, temperature, and acceleration). The taxels are

connected forming patches that provide uniform spatial distribution and optimal communica-

tion paths for tactile information [124]. The dimensions of the taxels and the geometry of the

layout are known, acquired by a spatial calibration algorithm as shown in [45]. The tactile in-

formation is generated with an event-based neuromorphic approach [46] that sends packets

of information only when significant changes in the sensor signals are detected to reduce the

latency and the computational load of the host computer.

2.3.1. TOMM robot
The Tactile Omnidirectional Mobile Manipulator (TOMM) [125] is a robot designed to be an

experimental platform to assess the capabilities and potential of robot skin. It is constructed

with an omnidirectional mobile base with two robotic manipulators with 6 DoF (Degrees of

Freedom) each as shown in Fig. 2. The arms can be controlled with position or velocity

commands, but the control framework in its embedded computer is compatible with effort level

control formulations. Joint torque commands are used to generate smooth joint trajectories

for the hardware interface in a torque resolver module that uses the dynamic model of the

whole body.
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Figure 2 Experimental platform TOMM, semi-humanoid robot with two 6-DOF arms covered with artificial skin.

The arms of TOMM are fully covered with robot skin and can host different types of end

effectors, including fingered hands with tactile sensors. The TOMM robot was used to test

the intentional contact behavior presented in Section 3.4.2 of this thesis.

2.3.2. H1 humanoid robot
The formulations in Chapters 3 and 4 of this thesis were evaluated with a floating base biped

robot fully covered with robot skin to assess their performance in large scale interactions. The

robotic platform that served this purpose is the H1 robot [4, 5] as shown in Fig. 3. The H1

robot is a full-size humanoid robot fully covered with robot skin. It is a REEM-C robot from

PAL Robotics, covered with 1260 taxels of the skin described in Fig. 1. Without considering

the fingers, the H1 robot has 30 position controlled DoF and two embedded computers that

run the ros_control framework [126] with an update rate of 200 Hz. The total mass of the H1

robot with the skin system is 86 kg.

The H1 robot is controlled with the framework shown in Fig. 4. It consist of a custom walking

controller based on the DCM dynamics similar to [6] as described in Section 4.1 of this thesis,

and a strict hierarchical task manager built with the null-space projector method described in

Section 3.1. The interconnection between these two sections is realized by a torque resolver

module that computes the joint trajectory commands from the torques calculated in the task

fusion module. The control framework of the H1 robot can allocate several tasks with strict

priority to generate complex body behaviors that can use the interaction modalities that will

be presented in Sections 3.2 and 3.3.

2.3.3. HRP-2Kai humanoid robot
The formulations for PFC (Preemptive Foot Compliance) and walking over partial footholds of

this thesis were evaluated in the H1 robot. However, to assess their generality and versatility,

another humanoid robot was used that runs a completely different walking controller and even
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Figure 3 The H1 robot is a full-size humanoid robot fully covered with robot skin. It will be the main experimental platform for
this thesis.
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Figure 5 a)The HRP-2Kai humanoid robot [3]. b) The 3D printed tactile shoes for the HRP2-Kai robot covered with 51 taxels
on each sole.
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Figure 6 The plantar tactile feedback was introduced in the open source walking controller running in the HRP-2Kai robot in
the mc_rtc framework by means of a bridge module using ROS publishers.

a different software framework and hardware interface. The HRP-2Kai robot [3] is the full-size

humanoid robot developed by Kawada Industries, as shown in Fig. 5. Its total mass is 65 kg

and also has 30 position controlled DoF.

The software running the controllers in the HRP-2Kai robot is the mc_rtc1 framework. The

formulations for plantar tactile feedback were added to the open source walking controller

implemented by Caron et al. [127] 2. The tactile information was added in the foot admittance

task of the walking controller. The ZMP adjustment from the center of the supporting polygon

was adapted without deep modifications to the code. As the robot skin software runs in

the ROS framework, an interface module that subscribes to ROS publishers is implemented

inside the mc_rtc controller, as shown in Fig. 6.

1 https : //jrl− umi3218.github.io/mc_rtc/index.html
2 https : //github.com/stephane− caron/lipm_walking_controller

18



2.4. Summary

This chapter presented the previous works and biological inspirations that helped develop the

contributions of this thesis. The detailed background to construct the formulations for physical

interaction will be reviewed in the first Section of Chapters 3 and 4. The classic methods for

robot control focussed on interactions of the end effector with the environment. The lack of

sensor information in other parts of the robot’s body than the end-effector constrained the

possibilities for closed-loop control. As a result, these techniques avoided contact with the

environment by any chance. Nevertheless, as will be detailed in Section 3.1, the fundamen-

tals for whole-body physical interaction come from generalizations of the methods applied for

end-effector control.

Robot skins are inspired by the skin in humans and animals. Our bodies are covered with

skin that, aside from protecting our internal organs, provides sensing modalities that our

nerve system uses for several purposes. Skin provides feedback of mechanical pressure,

temperature, and humidity. The combination of its sensing modalities can detect specific

features of the environment as textures, vibrations, electric charges, and chemical reactions.

In Section 3.2 and 3.3 of this work, the formulations to control interactions from multi-modal

tactile feedback will be presented, including direct contact force measurement, proximity, and

temperature.

When the interactions compromise the body, human skin provides means of nociception that

detect these conditions and trigger muscular reflexes that prevent damage. Inspired by this

behavior, Section 3.4.1 will present a control method that detects harmful stimuli and pro-

duces reaction motions to it combining interactions of different modalities. Furthermore, The

idea of combining interactions of different modalities will be applied to enable an active explo-

ration behavior for robots in Section 3.4.2.

The skin plays an important role in the process of human walking. It provides feedback on

the ground reaction forces and helps synchronize the muscular reflexes that generate the

walking cycle. The plantar skin gives spatial and temporal information of the foot-ground

interactions that help modulate the tension in the antagonistic muscles of the ankles and the

knees. These observations inspired the concept of plantar skin for robots. Chapter 4 will

present the methods required include plantar tactile feedback in biped balance and walking

control.
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3. Tactile-Based Close Interactions

This chapter presents the formulations for whole-body physical interactions based on differ-

ent sensing modalities, specifically, tactile-based close interactions. We use the operational

space formulation from Khatib [128] with direct force feedback to generate whole-body com-

pliance on stiff (position or velocity controlled) robots. For interactive tasks, the direct force

feedback comes from wrist force-torque sensors or robot skins. The distributed force sensing

capability of robot skins allows the formulation to be applied over all the links of a robot that

have taxels mounted. During complex interactions, multiple contacts are treated as indepen-

dent tasks and combined to generate whole-body reaction torques that minimize the force at

each contact point.

Task fusion with strict priority is achieved by means of nested augmented null-space projec-

tors, following the formulations proposed by Sentis et al. [129] which account for supporting

contacts to define constraint tasks with the highest priority. Strict prioritization of the tasks

with support constraint is paramount for floating base robots (e. g., biped humanoid robots)

to guarantee postural stability and balance during physical interaction. In addition, prioritized

task execution allows giving preference to the reaction motions of a limb over the others by

assigning a higher priority in the stack. For skins with multiple sensing modalities, different

priorities can also be imposed independently according to the needs of the applications.

For skin systems with multiple sensing modalities, this chapter will provide the formulations

for virtual interactions that involve no physical contact between the robot and the environment.

These types of interactions generate virtual forces proportional to sensor measurements of,

for example, the temperature of the environment or the proximity of an object to the robot’s

body. Nevertheless, a distinction between virtual and direct physical interaction must be clear

to keep the postural stability of the robot during the interaction. This distinction is crucial

when controlling floating base robots where the supporting contacts provide the actuation

for balance control. Therefore, direct physical interaction must be taken into account when

controlling the supporting contacts. Moreover, as this chapter will propose, we can combine

direct and virtual interactions to generate versatile body behaviors in both fixed and floating

base robots.

Different sensing modalities working together over whole body tasks enable complex behav-

iors which can fit specific applications that require environmental awareness. In this chapter,

we will also present rules to change the priority of the tasks from interaction conditions to can-

cel the execution of a task when the situation puts the robot’s integrity at risk as presented in

[57, 74]. The main goal of this chapter is to set the basic definitions to develop new interaction

modalities from new sensing modalities that robot skins will include in the future.
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This chapter is presented as follows: Section 3.1 will summarize the operational space for-

mulation and the common methods for task fusion. Section 3.2 presents the formulation of

direct interaction tasks that involve physical contact between the robot and the environment.

Section 3.3 introduces the formulations to exploit sensing modalities that do not involve direct

physical contact with the environment, e. g. temperature. Section 3.4 combines both modal-

ities of interaction into composed whole-body behaviors, it presents two means to generate

priority adjustment in the tasks according to interaction conditions. Two different behaviors

are generated with this approach: Robot Nociception, and Intentional Contact. Finally, Sec-

tion 3.5 summarizes the results and contributions of this chapter.

3.1. Background on Prioritized Whole-Body Control

The operational space formulation proposed by Khatib [128] provides a useful framework

to model the dynamic interactions of the end effector of a robot in different spaces, and the

mapping to transform these interactions into the generalized joint space. The core formulation

that we will adapt in this work is the definition of an interaction task. Let us review the key

elements of the task formulation and prioritized task fusion into whole-body control.

3.1.1. Interaction tasks in the operational space
A standard representation of a robotic system with n DoF in generalized coordinates is de-

fined as

M (q) q̈ + c (q, q̇) + g(q) = τ (3.1)

being q ∈ Rn the position of the system in generalized coordinates, q̇ ∈ Rn is the velocity

and q̈ ∈ Rn the acceleration also in generalized coordinates. M (q) ∈ Rn×n is the symmetric

and positive definite inertia matrix, c (q, q̇) ∈ Rn is a vector composed by all the centrifugal

and Coriolis joint torques, g(q) ∈ Rn is the vector of joint torques produced by gravity, and

τ ∈ Rn is a vector of input torques.

Let us define a task x ∈ Rm as a purpose defined state in a specific space. The motion

in the task space can be mapped into the generalized joint space by the Jacobian matrix

J(q) =
∂x

∂q
∈ Rm×n as

ẋ = J(q)q̇ (3.2)

where ẋ ∈ Rm is the motion in the task space. Here we must highlight that the executability

of task x requires that its dimension is m ≤ n, and the Jacobian matrix is non-singular, and

thus has full row rank.

To produce variations in x, and ẋ, let us introduce an effort term f ∈ Rm such that the

dynamics of the task are described as

f = Λ(x)ẍ+ σ(x, ẋ) + %(x) (3.3)
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where Λ ∈ Rm×m is an imposed positive definite task inertia matrix, σ(x, ẋ) ∈ Rm is the

vector of centrifugal and Coriolis task forces, and %(x) ∈ Rm is the vector of task gravitational

forces. At the effort level, the interconnection between Eq. (3.1) and (3.3) can be established

by the relations

Λ(x) =
(
J(q)M−1(q)J>(q)

)−1

σ(x, ẋ) = J(q)†>
(
Ṁq̇ − l(q, q̇)

)
−Λ(x)J̇(q)q̇

%(x)(q) = J(q)†>g

as shown in [128], where l(q, q̇) describes the Coriolis torques calculated row-wise as

li(q, q̇) =
1

2
q̇>Mqi(q)q̇ i = 1, ..., n

The subscript (•)qi indicates the partial derivative with respect to the i-th joint coordinate,

and the operator (•)† represents the generalized inverse of (•). The force mapping from task

space to joint space can be derived from a static instance of the model with q̇ = 0, and q̈ = 0,

by

τ = J(q)>f (3.4)

which is the key formulation for the physical interaction tasks.

3.1.2. Fusion of interaction tasks
Several tasks can be defined using Eq. (3.4). The practicality of this formulation lays in the

fact that the tasks can be defined in different spaces and the mapping allows us to combine

them in the joint space. Therefore, we can define the i-th task in a set of k tasks as

τi = Ji(q)>fi (3.5)

This task has an associated interaction force fi, a Jacobian matrix Ji(q), and produces a

joint torque τi in the robot. A straightforward method to combine the joint torques of the k

tasks is by a weighted sum

τΣ =
k∑
i=1

Wiτi (3.6)

Wi ∈ Rn×n are diagonal weight matrices that ponderate the contribution of the task into

the torque of every joint. However, summing the torque contributions of all the tasks can

cause execution conflicts between the tasks that produce antagonistic reaction motions. Such

conditions keep these tasks from being accomplished and the robot behavior will not fulfill the

expectations of the application. Tuning the weight matrices help prioritizing the execution of

some tasks or a task over the others but the parasitic torques of the low weight tasks will

always produce disturbances in the highly prioritized task.

When mi < n, the task is executed in a subspace of the joint space of dimension n. Such a

case is produced by a kinematic redundancy which means that the joint space has a residual
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space of dimension mi − n while executing a mi dimension task. These remaining DoF can

be exploited to execute other tasks within the null-space of xi in q.

Let us define a priority rule for a set of tasks. Each task will have a priority i ∈ N in the set.

In all the following formulations, ia < ib implies that ia has a higher priority than ib and thus

the highest priority is i = 1. In order to project the i task in the null-space of the i− 1 task, a

dynamically consistent null space projector recursion is defined as

Ni(q) = Ni−1(q)
(
I− Ji−1(q)>(Ji−1(q)†)>

)
(3.7)

where I is the n× n identity matrix. Then, the prioritized task execution is imposed as

τtotal =
k∑
i=1

Niτi (3.8)

The recursive formulation of Eq. (3.7) implies that N1 = I which means that the highest

priority task can dispose of all the DoF it needs to be executed and thus it will be fulfilled as

long as m1 < n. However, the use of Ji−1(q) only guarantees orthogonality of task i with

respect to task i− 1 but not to higher priority tasks. Therefore, task i will disturb all the tasks

i−a for all a > 1. To prevent this, the calculation of the i-th null-space projector must account

for all the higher priority tasks. This is achieved by using an augmented Jacobian matrix [130]

instead of the task Jacobian in the calculation.

Let us define the augmented Jacobian matrix of the i-th task as

Ĵi(q) =



J1(q)

J2(q)

...

Ji(q)


(3.9)

With this matrix, we can compute the null-space of all the higher priority tasks simultaneously

to project the next task into it. The augmented null-space projector for the i-th task is then

defined as

N̂i(q) = I− Ĵi−1(q)>(Ĵi−1(q)†)> (3.10)

and the resultant joint torque for the task set is

τtotal =

k∑
i=1

N̂iτi (3.11)

With this formulation, the more tasks in the set, the larger the dimension of the augmented

Jacobian of the lower priority tasks, and thus the larger the number of calculations to obtain
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it. However, as proposed in [130], recursive formulation for Ĵi(q) and N̂i(q) can make the

process more efficient as

Ĵi(q) = JiN̂i(q)>

N̂i(q) = N̂i−1(q)
(
I− Ĵi−1(q)>(Ĵi−1(q)†)>

)
With the null-space projector methods for task fusion, a series of tasks in different spaces

can be combined with strict prioritization, with the guarantee that a lower priority task is

completely orthogonal to the higher priority tasks in the joint space. This allows to define

whole-body behaviors by assigning a set of tasks to fulfill the needs of an application, and

when it is required, rearrange the task set according to the task states as will be proposed in

Sections 3.4.1, and 3.4.2.

3.1.3. Task fusion for floating base robots
The previous formulations apply for fixed-base manipulators. However, when the base is not

attached to the ground, as in the case of legged robots (e. g. a biped humanoid robot as the

H1 robot described in Section 2.3.2) an additional constraint for the interactions in the legs

must be considered.

Sentis and Khatib proposed a generalization for task fusion in floating base systems in [131]

by defining constraint tasks in the hierarchy for the supporting contacts with the highest pos-

sible priority. In contrast to Eq. (3.1), a floating base robot representation must include the

state of the floating base. Furthermore, as the DoF of the floating base is underactuated, the

only means to produce variations in them is by applying external forces that produce motion

to the center of mass of the robot. In legged robots, these forces come from the support-

ing contacts. These contacts allow producing forces in the floating base state by generating

forces in the actuated joints of the legs. Let us rewrite Eq. (3.1) to include the floating base

state and the supporting contacts using the task formulation in Eq. (3.4).

M (χ) ν̇ + c (χ,ν) + g(χ) = S>τ + J>supportfsupport (3.12)

where χ is the state vector describing both the floating base position and orientation and the

joint states. ν ∈ Rn+6 is the complete velocity coordinates, containing the floating base’s

linear and rotational velocities, and joint velocities. ν̇ ∈ Rn+6 is the time derivative of ν.

M (χ), c (χ,ν) and g(χ) are the inertia matrix, Coriolis and gravity effects vectors respec-

tively. Jsupport and fsupport are the Jacobian matrices and the force vector of the supporting

contact points. S = [O I] is the actuated joint selection matrix. Note that χ not necessarily

has all its elements in R and χ̇ 6= ν.

In these systems, physical integrity depends on keeping a stable posture at all times. There-

fore, the forces at the supporting contacts must be kept in controlled equilibrium. Conse-

quently, any interaction tasks must be executed in a way that this equilibrium is not disturbed.

Thus, all the interaction tasks must be executed in the null space of all the supporting contact
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tasks.

τ = τsupport + Nsupport (τ1 +N2 (τ2 + ...+ Nmτm...)) (3.13)

where τsupport is the torque vector generated by the supporting contacts, and Nsupport is

the dynamically consistent null-space projector to execute the lower priority tasks in the null-

space of the supporting tasks. With this scheme, the interaction tasks can take any priority

from 1 to m in order to keep the stability of the system.

3.2. Formulation of Direct Interaction Tasks

The operational space formulation described in the previous section provides a powerful

framework to design controllers for a specific point of a manipulator. The geometric map

with the Jacobian matrix allows the definition of the controlled point where the task forces are

produced. In most cases, this point lays on the end effector geometry for two main reasons:

1) the end effector has the highest manipulability space of the whole robot, and 2) It is where

force-torque sensors are mounted for direct feedback. However, in human-robot collabora-

tion, interaction contacts are likely to occur in any part of the robot’s body. Direct feedback of

the contact forces over the whole body is possible by using tactile sensors and robot skins as

in [1, 132, 44].

Dean et al. [44] proposed a controller using direct input of contact force over the whole

body of a fixed base manipulator. The artificial compliant behavior achieved in that work

proved the possibility of turning a stiff robot into a soft robot with direct tactile feedback.

However, the implementation with that approach is computationally expensive because, for

every taxel, a contact Jacobian and a whole-body torque are computed. For larger robots,

that approach cannot be realized due to the number of operations required to compute the

Jacobian matrices. Therefore, a different task formulation is required to cope with several

hundreds of taxels mounted on large kinematic chains. One example is the method proposed

by Leboutet et al. [133] where the interaction forces from several taxels are combined in a

resultant force applied at the centroid of the contact geometry. Let us then define a general

interaction task for robots with large-scale skin systems.

The formulations in this section will be detailed using the robot skin developed by previous

works at the Institute for Cognitive Systems (ICS) [1, 5] (see Fig. 1). However, they can be

applied to any skin technology that provides direct force sensing and spatial localization of

the contact points [134, 135].

3.2.1. Kinematic modeling of interaction tasks
As described in Section 2.1.2, a minimum sensing element in a robot skin system, namely

a tactile pixel or taxel, in this case, the taxel is a piece of hardware that holds a group of

sensors within a pre-defined area. In every taxel, the minimal sensing modality required is

force sensing. The geometric parameters of a taxel are known by the hardware design and
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Figure 7 Kinematic description of a taxel in a pacth, mounted on a link of the robot.

the industrial processes required to manufacture it. To cover a surface on a robot, taxels are

connected as shown in Fig. 1-c to form patches. A patch is a group of taxels connected,

commonly in a uniform lattice shape. Therefore, we can define a coordinate frame Oi at the

i-th taxel in a patch as shown in Fig. 7.

The force sensor in the i-th taxel measures the contact force fi ∈ R3. If the sensor only

provides a measurement of the normal force, the contact force can be constructed as fi =

[0, 0, fi]
>. In the taxel, the force sensor is mounted at the origin of the coordinate frame Ofi ,

and the homogeneous transformation iTfi ∈ SE(3) from Ofi to Oi is known. To localize the

taxel in the patch, a patch coordinate frame Opatch can be defined within the area covered

by the patch. Then, the homogeneous transformation patchTi from Oi to Opatch must also be

known. The location of a patch in the kinematic chain of a robot is defined by the transfor-

mation linkTpatch from Opatch to the coordinate frame of the link where the patch is mounted

Olink. This information can be obtained by spatial calibration methods as in [45], and [44].

With the kinematic information of the taxels and the patches, we can find the transformation

from the contact coordinate frame Oi to Olink as

linkTfi =link Tpatch
patchTi

iTfi (3.14)

which is composed by the rotation linkRfi ∈ SO(3) and the translation linkrfi ∈ R3

linkTfi =


linkRfi

linkrfi

0 ∈ R1×3 1

 ∈ R4 (3.15)
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a)

b)

Figure 8 Computation of the interaction wrench from tactile information. a) the contact force fi produces a wrenchwfi at the
link coordinate frame Olink. b) a group of k contact points produce a resultant wrenchwf .

3.2.2. Interaction wrench from tactile information
Once the kinematic parameters of the taxels on the robot’s link are defined, let us analyze how

the interaction forces propagate through the kinematic chain. The contact force fi measured

by the i-th taxel is expressed at the contact reference frame Ofi . However, it produces a

wrench wfi ∈ R6 at the link frame Olink propagated by the lever linkrfi as shown in Fig. 8-a.

The interaction wrench of one taxel is then calculated as

wfi =


linkRfifi

linkrfi ×link Rfifi

 (3.16)

For interactions over larger areas, i.e. covering more than one taxel, we can add the contribu-

tions of each taxel to compute a resultant wrench at the link frame Olink. Therefore, a patch

of k taxels produces the resultant wrench wf ∈ R6 as illustrated in Fig. 8-b.

wf =

 ff
ηf

 =
k∑
i=1

wfi (3.17)
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Figure 9 Kinematic chain of the robot from the base link frame O0 to the patch mounting link frame Olink.

Wherewf is equal to the wrench produced by the sum of all the forces in the k taxels applied

to the CoP of the contact as shown in Fig. 8, and is composed by the interaction force

ff ∈ R3 and the twisting moment ηf ∈ R3. In these three vectors, the subscript f means that

its source is the direct force measurement from the taxel. This identifier will help distinguish

the force measurements from other sensing modalities in the taxel, this is given in the later

sections of this chapter.

In practice, a link of the robot can have more than one patch mounted simultaneously. How-

ever, the calculation of wf is still valid because the kinematic parameters of the formulation

are considered fixed and thus, the iteration over the taxels can be extended to all the k taxels

of all the l patches on the same link as

wf =

l∑
j=1

k∑
i=1

wfj,i (3.18)

where wfj,i is an extended representation of Eq. (3.17) with a subscript j to denote the

j-th patch in the link. This formulation is equivalent as having a virtual force-torque sensor

mounted at Olink, however we can freely chose the reference point to calculate the resultant

wrench, and make distinctions from the geometric information that the robot skin provides as

will be shown in Section 3.2.5.
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3.2.3. Direct physical interaction task formulation
To use the resultant wrench wf with the task formulation Eq. (3.4), we must now consider

the whole kinematic chain of the robot from the base link to the patches mounting link. This

requires the forward kinematics of the robot to be known. Let us define a coordinate frame

for every link of a robot from the link where the skin is mounted Olink to the root or base

link O0 as shown in Fig. 9. From the forward kinematics of the robot, we can calculate the

transformation to go from Olink to O0, from the transformations between each frame in the

kinematic chain as

0Tlink =0 T1
1T2 ...

link−2Tlink−1
link−1Tlink (3.19)

0Tlink is composed by the rotation 0Rlink ∈ SO(3) and the translation 0rlink ∈ R3. With this

information, we can finally define an operational task for direct interactions as

τf =0 Jlink(q)
> 0Elinkwf (3.20)

where τf ∈ Rn is the joint torque vector, 0Jlink ∈ R6×n is the geometric Jacobian map-

ping joint velocities q̇ onto Cartesian velocities of Olink with respect to O0, and 0Elink is the

composite 6D rotation matrix

0Elink =


0Rlink 0 ∈ R3×3

0 ∈ R3×3 0Rlink

 (3.21)

This task formulation can be applied to any link of a robot covered with taxels to generate a

compliant reaction to touch. The reaction torque is proportional to the contact forces applied

to the robot’s link. Therefore, it can be combined with other tasks with fusion methods as with

the weighted sum Eq. (3.6) or the null-space projectors Eq. (3.10). If multiple contacts are

applied to different skin patches on the robot’s body, they can be accounted in the same way.

Then, for a set of k contacts, the composite compliance torque is computed by

τf =



0J1(q)

0J2(q)

...

0Jk(q)



> 

wf1

wf2

...

wfk


(3.22)
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Figure 10 Although the proposed controller works at torque-effort level, it can be fed into a torque resolver to generate smooth
trajectories for position or velocity commanded interfaces as shown in [4, 5].

3.2.3.1 Experiment: Direct physical interactions

The formulation for direct physical interaction was applied in the H1 robot in [4]. The inter-

action task was implemented to use the information provided by the large area skin system

developed by [1, 5]. In [4], ten instances of the interaction task Eq. (3.20) were combined

with a standing balance task to generate an active compliant behavior on the upper body.

The compliance controller outputs a joint-torque vector. However, a torque resolver as [4, 5]

enables its implementation for position or velocity commanded robots (see Fig. 10). In this

case, the torque resolver module computes dynamically consistent smooth trajectories for the

joints, imposing desired dynamics to the robot.

The simultaneous interaction tasks were: left upper arm, left lower arm, left-hand palm, left

hand back, right upper arm, right lower arm, right-hand palm, right hand back, torso, and hip.

These instances were combined in a single task as Eq. (3.22) and combined with a balance

task (the balance task implementation will be elaborated in Chapter 4) and a self-collision

avoidance task with the following strict hierarchy.

1. Balance / supporting task.

2. Self collision avoidance task.

3. Skin interaction task + body posture task.

Fig. 11 shows two results of the implementation. Fig. 11-a shows the robot under multiple

simultaneous contacts behaving compliantly to the interaction forces. Fig. 11-b shows a large

area interaction on the arms and the torso in a hug interaction. In these experiments, the

dimension of the interaction task increases with the number of instances of Eq. (3.20). If we

traverse all the taxels all the time considering the task to be full rank all the time, computing the

null-space projector to execute a lower priority task becomes unfeasible. This is the reason
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Figure 11 Direct interaction task implemented in a full-size humanoid robot in [4, 5]. a) Multiple simultaneous contacts are
supported. b) Large area interactions are supported in safe human-robot physical interaction.

why the whole-body interaction task has the lowest priority as the body posture task in these

experiments. To increase the versatility of this approach, we must enhance the formulations

to reduce the computational load.

3.2.4. Efficient computation for multiple interaction tasks over large areas
The number of implicit calculations in Eq. (3.18) increases with the number of taxels mounted

on the same link. Therefore, traversing all the taxels of a large link (e.g. the torso of a hu-

manoid robot) can be computationally expensive and thus not real-time safe. Therefore, an

active taxel calculation policy should be considered to avoid unnecessary calculations when

the interaction force detected is neglectable. Let us then define an interaction threshold εf
such that Eq. (3.32) is redefined as

wfi =



0 ∈ R6 ||fi|| < εf
linkRfifi

linkrfi ×link Rfifi

 εf ≤ ||fi||
(3.23)

Furthermore, a similar approach can help reduce the number of operation when handling

several tasks over different links of the robot by avoiding computing the Jacobian matrices of

the links where the interaction is neglectable. Then, we can rewrite Eq. (3.20) as

τf =


0 ∈ Rn ||wf || = 0

0Jlink(q)
> 0Elinkwf ||wf || 6= 0

(3.24)
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b)
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d)

Figure 12 Implementation of whole body interaction task with efficient computation. The skin compliance is executed with a
higher priority than a whole body Center of Mass position task. The CoM position task is executed in the null-space of the
active instances of the tactile interaction task. And these two are executed in the null-space of a self collision avoidance task
and a supporting/balance constraint task.

If the interaction task is applied in a strict hierarchical fusion as Eq. (3.10), the null space

projector of the instances with no force detected can be directly assigned as the identity

matrix I ∈ Rn×n which will avoid computing the generalized inverse of an m × n matrix and

three large size matrix multiplications.

3.2.4.1 Experiment: Efficient computation of multiple interaction tasks

We tested this formulation in a similar experiment to the one in Section 3.2.3.1 but applying

the methods of Section 3.2.4 to reduce the computations. With these efficient computation

methods, we can increase the priority of the tactile interaction task in the hierarchy. Therefore,

we moved the posture task one level down and replaced it with a full-rank Center of Mass

position control task formulated as

τcom =0 Jcom(q)> Kcomecom (3.25)

where 0Jcom(q) ∈ R3×n is the Center of Mass Jacobian matrix as proposed by Sugihara and

Nakamura in [136], Kcom ∈ R3×3 is a proportional gain, and ecom is the CoM position error

defined as ecom = xcom [0, 0, 0.8]> (a constant height over the supporting foot).
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Additionally, we increase the number of instances of the interaction task to one of the legs.

Therefore, the interaction task instances were 13: left upper arm, left lower arm, left-hand

palm, left hand back, right upper arm, right lower arm, right-hand palm, right hand back,

torso, hip, right upper leg, right lower leg, and right foot sole. The strict task hierarchy in this

experiment is:

1. Balance / supporting task.

2. Self collision avoidance task.

3. Skin interaction task.

4. Center of mass position task

Fig. 12 shows different interactions with the robot. The CoM position task compensates

with the free limbs the deviations that the interactions produce in the regulation of the CoM

position. The support balancing task (dimension 6) with the highest priority, in this case,

uses only the left leg. In the null-space of the support task, a self-collision avoidance task

similar to [137] is keeping the hands, elbows, foot, and knee away from each other and the

torso and supporting leg by generating repulsive fields. This task is also active only when

the monitored distances are critically small and bypassed when there is no risk of collision.

In the null-space of this task, the 13 instances of the tactile interaction task are executed

also with a dynamically changing dimension. Finally, in the null-space of all these tasks, the

CoM position task is continuously acting on all the remaining DoF of the robot. The behavior

imposed in the robot by these tasks shows a robust balance on the support foot while the

body posture can be modeled by multiple simultaneous contacts.

3.2.5. Physical interactions using additional information / Pressure driven
body compliance

The interaction task in Eq. (3.16) - (3.20) is formulated using link-wise resultant wrenches to

generate the joint reaction torques. It is equivalent to having force-torque sensors mounted

in the reference frames of the robot links (similar to the KUKA LWR [32]). However, tactile

sensors provide additional information from two main factors: 1) the spatial distribution of the

sensors over the body of the robot, and 2) additional sensing modalities as will be extended in

Section 3.3. Let us develop one clear example of a modality for body compliance that exploits

the spatial distribution of tactile sensors and cannot be reproduced using only joint torque

sensors.

The resultant link wrench in Eq. (3.17) is produced from direct force measurements in the

contact points as shown in Fig. 8. However, the area and geometry of the taxels are known

as drawn in Fig. 1. Therefore if we collect these details while building the interaction wrench,

we can approximate the geometry of the contact area as drawn in Fig. 13.
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b)

Figure 13 Pressure driven interaction task. a) interaction force is amplified when the contact area is small. b) interaction force
is damped when the contact area is larger.

Let us now formulate an interaction wrench that uses the area to amplify or damp the inter-

action force. In a group of k taxels, the taxel coordinate frame of the i-th taxel is defined as

Oi. In Oi, the force measured by the i-th taxel of area Ai is defined as fi ∈ R3. If the taxel

only provide the magnitude of the normal force fn ∈ R, the contact force can be constructed

as fi = [0, 0, fi]
>. Using a minimum contact force threshold εa while iterating over the taxels

as in Eq. (3.23), the area αi ∈ R of every contact point is

αi =


Ai ||fi|| ≥ εa

0 ||fi|| < εa

(3.26)

Then, with this information, we can define a pressure driven interaction wrench wP ∈ R6 by

scaling the interaction wrench wf with a gain ξ with units of area, e.g.
[
m2
]
, to adjust the

sensitivity of the compliant controller, and to match the units for the subsequent computations

as

wP =

 fP
ηP

 =
ξ∑
αi
wf (3.27)
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(a)Area = 1 Taxel (b)Area = 100 Taxels

Figure 14 Whole-body pressure-driven compliance controller. External forces were applied on the robot using probes
mounted on an force-torque sensor. a) The first probe concentrates all the applied force in a single taxel area. b)The second
probe distributes the force on a large area.

where wP is an amplified wrench depending on both the contact force and area, which will

be used to implement the pressure-driven body compliance modality. fP and ηP are the

amplified force and torque, respectively.

After computing the virtual wrench Eq. (3.27), we can propagate it through the kinematic

chain with the transposed Jacobian matrix using the task formulation. Therefore, knowing the

kinematic parameters of the robot and the transformations from the contact point to the base

link O0, the torques for the joints of the kinematic chain can be computed as

τP =0 Jlink(q)
> 0ElinkwP (3.28)

where τP ∈ Rn is the joint torque vector, and 0Jlink ∈ R6×n is the geometric Jacobian

mapping joint velocities q̇ onto Cartesian velocities of Olink with respect to O0. τP represents

the joint-torques generated by the amplified force to produce a pressure-based compliant

reactive behavior in the robot.

3.2.5.1 Experiment: Pressure-driven body compliance

We evaluated the performance of the pressure-driven compliance controller in the H1 robot

as in the experiments1 in Sections 3.2.3.1, and 3.2.4.1.

To highlight the difference between the reaction in a distributed contact force and a concen-

trated force, two scenarios were prepared. The task priority arrangement is as follows:

1 This result and the formulation of the pressure-driven body compliance was published in the peer reviewed
journal article [57] and presented in the 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2019).
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1. Balance / supporting task.

2. Pressure-driven compliance task.

3. Posture task.

The robot must keep the balance all the time while reacting to the contact pressure with the

whole upper-body. The posture task holds the lowest priority to provide postural stability to

the remaining DoF after the execution of the first two tasks. Two probes were used to apply

force on different parts of the upper body (see Fig. 14).

The probes were mounted on a force-torque sensor to measure the applied external force.

The robot reacts considerably faster when the force is concentrated in a small area. There-

fore, small forces can move large body parts like the torso when applied on a single taxel

(see Fig. 14-a). The behavior is kept also with multiple simultaneous contacts (see Fig. 14-

b). Conversely, the robot can hold large forces when they are distributed in a wide area (see

Fig. 14-b). Under low contact pressure, the robot holds the body posture strongly and the

pushing force is transferred to the floating base and thus handled by the balance controller.

The interaction forces, torques and joint velocities are plotted in Fig. 15. During the first 50

seconds of the experiment, the probe with a single taxel area Fig. 14-a was used. Then,

during the following time the probe with a large area Fig. 14-b was used. The plots show

that with the single-taxel probe, the external force ||fext|| is small but the virtual force ||fP ||
is large (see plot a in Fig. 15), producing highly reactive motions (see plots b and c in Fig.

15). And with the wide area probe, the external force reaches high levels but causes almost

no motion on the robot.

3.3. Formulation of Virtual Interaction Tasks

The interaction task formulation of the previous section is a straightforward method to close

the loop in controlled physical interactions of a robot with the environment. It uses direct

force measurements at the contact points to produce reaction joint torques that minimize the

contact force. However, spatially distributed additional modalities can be exploited to produce

a similar compliant behavior by using the artificial potential field approach [138].

In [58], Khatib proposes a method for obstacle avoidance by monitoring the distance between

significant points located in the kinematic chain of a robot and known geometry obstacles in

the environment. The potential field approach proposes then a virtual repellent force inversely

proportional to the distance between the robot geometry and the environment. However, this

approach required complete knowledge of the environment geometry, and complicated po-

tential field formulations. Later, direct distance measurement was available due to new sens-

ing technologies that allowed mounting several range finder sensors on a robot for collision

avoidance as in [49], and [50]. Range finder sensors can also be included in taxel hardware
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Figure 15 Reaction forces, torques and velocities during the experiment. During the first 50 seconds of the experiment, the
single taxel area probe was used. After that, the large area probe was mounted on the sensor. a) shows the interaction forces,
||fP || is the norm of the virtual force, ||fext|| is the applied force measured by the force-torque sensor in the probe, and A is
the contact area. b) shows some representative joint-torques generated by the pressure-driven compliance controller,
τTorso1 , τLA1 and τRA1 are the torque of the first joint of the torso, the left arm and the right arm respectively. c) shows the
joint velocities generated by the reaction motions.

which can help implement the potential field approach from direct distance measurements.

However, the formulation can be easily adapted to other sensing modalities that do not imply

physical force interactions.

Let us explore the potential of the potential fields approach by formulating virtual interaction

tasks that produce body reaction motions to different sensing modalities on robots with large

numbers of sensing points distributed over the robot’s body.

3.3.1. Virtual interactions from distributed proximity sensors
Following a standard potential field obstacle avoidance scheme [58]. Every object in the

environment, including all the robot’s links, is considered to have a repulsive field normal to

the object’s surface. Such field used to be described by a vector field defined by the geometry

of the object. In this form, when an object approaches a robot’s link, a reactive force inversely
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Figure 16 Direct measurement of repulsive field from distribute proximity sensors.

proportional to the distance between the bodies is applied to keep the robot’s body away from

it. The reactive force can be transformed into a joint torque vector as

τp =0 Jp (q)> fp (d) (3.29)

where τp ∈ Rn is the induced joint torque, fp ∈ Rm is the virtually induced force in task

coordinates being m the dimension of the task space, d ∈ R is the distance between the

surfaces of the link and the object, and Jp (q) ∈ Rm×n is the Jacobian matrix which defines

the differential kinematic mapping between the task space and the joint space for the surface

point where the distance is measured on the robot.

All the geometrical calculations regarding the potential fields around the objects can be

avoided by directly measuring the distance from a link’s surface to any surrounding object

as shown in Fig. 16. This measurement is possible thanks to the inclusion of a range finder

array as in [139]. In addition, because of nowadays electronics are smaller, advanced skin

implementations have higher spatial resolution and thus, the distances between the taxels

are shorter.

Most small size range finder sensors in the market deliver an inverse measurement that

saturates with the closest detectable distance and returns 0 when the target is outside the

sensing range. With this behavior, a repulsive force can be calculated defining a sensing

range as shown in Fig. 16.

fpi = kprox (drange − di)upi (3.30)

where di is the measured distance by the i-th taxel of the array, and kprox ∈ R is a defined

repulsion gain. The subscript p now denotes the origin of the feedback from proximity to the

environment. upi ∈ R3 is a unit vector that describes the sensing direction of the proximity

sensor. If the proximity sensor is oriented ortogonal to the taxel geometry, it is defined as

upi = [0 0 1]> which is the best configuration for collision avoidance because it produces the
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strongest repulsive filed from the environment.

The similarity to the interaction force ff is obvious and thus, the formulation of the operational

task from the proximity sensing is straightforward. Therefore, for a set of k taxels mounted on

a link, the contributions of the repulsive forces produce a resultant wrench at the link frame

Olink

wp =
k∑
i=1

wpi (3.31)

where

wpi =


linkRpifpi

linkrpi ×link Rpifpi

 (3.32)

Despite its similarity to Eq. (3.18),wp represents a virtual wrench that does not imply physical

contact with the environment. This is important when designing controllers for floating base

systems, where physical contacts with the environment modify the momentum of the system,

increase the supporting constraints, and produce variations in the floating base state. On the

other hand, virtual interactions only modify the momentum of the system but do not impose

hard constraints on the system. For fixed-base robots, both types of interactions (virtual and

direct) can be treated identically. Once the difference is highlighted, we can define the virtual

interaction task generated from proximity sensing as

τp =0 Jlink(q)> 0Elinkwp (3.33)

Additionally, the methods to reduce the number of operations applied in the previous section

can also be applied for virtual interactions. For the case of proximity sensors, the threshold

is automatically defined by the range of the sensors. Then, when an obstacle is far from the

sensing point, the sensor will return di = drange, and the virtual interaction wrench wp = 0 ∈
R6.

3.3.1.1 Experiment: Virtual interaction with proximity sensors

We evaluated the performance of the proximity-driven compliance task in the H1 robot as in

the experiments in Sections 3.2.3.1, and 3.2.4.1. The proximity-based virtual interaction task

was combined with the direct physical interaction task described in Section 3.2.3. The task

priority layout is:

1. Balance / supporting task.

2. Self collision avoidance task.

3. Skin interaction task + proximity task.
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Figure 17 Experimental evaluation of the proximity virtual interaction task. a) The hand of the robot is repelled by the hand
without touching it. b) This modality of body compliance enables the compliant behavior with a relatively mass-less object such
as a feather.

Fig. 17 shows two sequences from the virtual interaction. In Fig. 17-a the robot’s right hand

is repelled by a human hand without physical contact involved. The proximity sensors detect

the human hand and the task produces the reactive repelling force in the surface of the robot

hand. The sensing range of the sensors was adjusted to 2 cm. The sequence in Fig. 17-b

shows a feather manipulating the robot hand with virtual contact. The proximity interaction

task enables this kind of virtual interaction with weightless objects.

3.3.2. Virtual interactions from distributed temperature sensors
The potential field approach for collision avoidance described before maximizes the distances

between the robot and the environment to prevent collisions and unexpected contacts while

performing other operational tasks. The proximity task Eq. (3.33) implements it with direct

sensor feedback thanks to complementary sensing modalities included in the taxels of a robot

skin. However, the direct sensor input can come from other sensing modalities than proximity,

for example, temperature.

Human skin also senses temperature and our reactive motions when we detect a drastic

increment in the temperature of our hand in the vicinity of a hot object is to automatically

increase the distance (i.e. retraction reflex of the arm). This natural reflex helps preserve the

integrity of our body and is feasible thanks to the temperature sensing modality of our skin.

Similarly, for robot skin systems with temperature sensing, we can define a repulsive field and

thus a virtual interaction task proportional to the measured temperature.
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Figure 18 Temperature driven repulsive field. When the temperature detected at the i-th taxel is higher than κ0, a repulsive
potential κi ∈ R3 is generated to push the robot away from the source of temperature.

Most commercial temperature sensors return a value from 0 to saturation within a specific

temperature range. Within this range, we can define a threshold κ0 ∈ R to generate a virtual

repulsive force κi for the i-th taxel as

κi =


0 ∈ Rn Tmeasured < κ0

Tmeasured − κ0 Tmeasured ≥ κ0

(3.34)

where Tmeasured is temperature measured by the sensor and κi ∈ R the magnitude of the

repulsive force at the sensing point. We can then define a repulsive force vector at the taxel

frame Oi as can be seen in Fig. 18

fκi =


0

0

κi


(3.35)

Similarly to the other sensing modalities, the virtual force produces a virtual interaction wrench

at the link coordinate frame Olink.

wκi =


linkRifκi

linkri ×link Rifκi

 (3.36)
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Figure 19 Cooking simulation experiment. The robot operates an electric stove with a burner on at ≈ 180 ◦C. When the hand
of the robot passes by the burner, the taxels on the hand back detect the increment in the temperature and activate the
temperature compliant task which has higher priority than the hand Cartesian control task. As a result, the hand Cartesian
task is blocked by the retraction motion of the temperature compliance task.

Then, for a set of k taxels, the resultant interaction wrench is

wκ =
k∑
i=1

wκi (3.37)

and the interaction task from temperature sensing is defined as

τκ =0 Jlink(q)> 0Elinkwκ (3.38)

Once again, the formulations for efficient computation are valid to reduce the computational

load of this virtual interaction task.
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3.3.2.1 Experiment: Virtual interaction with temperature sensors

We evaluated the performance of the temperature-driven interaction task in the H1 robot in-

troduced in Section 2.3.2. The experiment emulates a cooking scenario where the robot

operates in front of an electric stove with a burner on, as shown in Fig. 19. The temperature

at the burner plate is ≈ 180 ◦C. For this experiment, a Cartesian Position and Orientation

task is included in the Hierarchy below the temperature compliance task. This decision is mo-

tivated by the priority of human reactions to burning temperature contacts as several studies

have shown in the past century [140]. Our nerve system prioritizes the reaction to a harm-

ful stimulus over a purpose task to prevent damage [141]. As a result, pain reflexes always

preempt manipulation tasks [142]. Thus, the task layout in this experiment is:

1. Balance / supporting task.

2. Temperature-driven compliance task.

3. Right hand Cartesian position and orientation task.

4. Posture task.

The Cartesian position and orientation task is defined using the operational space formulation

using Quaternion representation proposed by Yuan in [143]. The task is formulated with a

damped attractor field as

τh =0 Jlink (q)T

 −ẋh + Khpehp

−ωh + Khoeho

 (3.39)

where ẋh ∈ R3 us the Cartesian velocity of the hand, ωh ∈ R3 is the angular velocity of

the hand, both with respect to O0. Khp ∈ R3×3 and Kho ∈ R3×3 are diagonal proportional

gain matrices for the position and orientation. ehp and eho are the Cartesian position and

orientation errors as defined in [143].

Fig. 20 shows the virtual interaction forces and the temperature of the hand. Fig. 20-a

shows the temperature measured by the taxels of the hand the threshold κ0 that activates the

task. When one single taxel crosses the temperature threshold of 31 ◦C threshold, the virtual

interaction wrenchwκ is generated. The norm of components of this wrench is plotted in Fig.

20-b. fκ is the virtual interaction force and ηκ the virtual interaction torque, both in Ohand
coordinate frame. The joint torques of the right arm are plotted in 20-c. There, we can see

the torques generated by the Cartesian Position and Orientation hand before the temperature

increases in the hand. 20-d shows the joint velocities of the right arm generated during the

experiment.
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a)

b)

c)

d)

Figure 20 Virtual interaction forces, torques and velocities during the experiment. a) The temperatures measured by the 7
taxels in the hand back κi, the average temperature κ̄, and the thershold κ0. b) virtual interaction wrenchwκ composed by
the force fκ, and the torque ηκ. b) shows the joint-torques of the right arm. c) shows the joint velocities generated by the
reaction motions.

3.4. Combination of Direct and Virtual Interaction Tasks in
Whole-Body Behaviors

This chapter introduced the formulations of direct and virtual interaction tasks that exploit the

different sensing modalities available in robot skins. The experiments in Sections 3.2.3.1,

3.2.4.1, 3.3.1.1, and 3.2.5.1 showed the performance of the tasks on whole-body interactions

in a full-size humanoid robot. These experiments imply also the fusion of the interaction

tasks with constraint tasks (the balance/support task) and full-rank tasks at the bottom of the

hierarchy. We can combine different modalities of interaction tasks to fulfill the requirements

of applications that require manipulation with awareness of the environment.
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The cooking simulation experiment in Section 3.3.2.1 brings the multi-modal interactions into

a meaningful purpose which uses the task hierarchy to cancel (or block) a task when the

robot’s integrity is compromised. Additional sensory information can also be used to manage

the priorities of the tasks when the interaction (direct and virtual) show a certain pattern. Let

us analyze two cases where multi-modal tactile information serves a higher level of purpose

than the feedback for the interaction alone.

3.4.1. Task priority adjustment for nociceptive reflex in robots
Humans and animals have several modalities of nociception distributed along the body [141].

In [79], Bagnato et al. highlight the advantages of self-diagnosis and nociception in biological

systems and the approaches take in robotics to emulate these features. Nociception in robots

can help prevent overloads of the actuators, and detect unusual operating conditions as,

for example, a worn bearing that can break soon and cause damage to the system. Let

us explore how tactile information can be used for a basic modality of nociception and its

implications in the hierarchical task execution developed in the previous sections.

The cooking simulation experiment in Section 3.3.2.1 showed a first insight on robot nocicep-

tion where the robot senses a potentially harmful interaction and triggers a reactive motion to

it. The pressure-driven interaction wrench in the experiment of Section 3.2.5.1 distinguishes

between interaction forces highly concentrated in a small area and distributed interaction over

a larger area. This behavior can serve to implement a direct force interaction task in the hand

while keeping the contact pressure under a safety boundary. When the pressure is high, the

interaction task amplifies the force and the reaction motion is, in a sense, similar to the arm

retraction in the cooking experiment. If a similar interaction is applied over human skin, there

is one threshold in the pressure that will stimulate the mechanical nociceptors in the skin and

activate a retraction reflex similar to the one that a burning contact produces. Let us elaborate

on this idea in a case study experiment with the H1 robot.

3.4.1.1 Experiment: nociceptive reflex for robots

In this experiment, the default task priorities are as follows:

1. Balance / supporting task.

2. Right hand Cartesian position task.

3. Right hand Cartesian orientation task.

4. Pressure-driven compliance task.

5. Posture task.

The robot must keep balance and react to the contact pressure as in the previous experiment.

However, with a higher priority, the Cartesian tasks are keeping the position and orientation
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Probe

Figure 21 (a) Force sensors used in the experiment. A JR3 force-torque sensor was mounted on the probe and an ATI mini45
force-torque sensor in the wrist of the robot. (b) The arm is covered with robot skin which provides contact force information
(pose, magnitude and area).

of the right hand. Then, when a highly concentrated force ||fP || > ε is detected and keeping

the Cartesian tasks from being accomplished, they will be deactivated, releasing all the DoF

for the pressure-driven compliance task. The idea is to verify the feasibility of the higher

priority tasks in the robot behavior and cancel them if a highly concentrated force (potentially

harmful) is sensed by the robot. Therefore, when a high-pressure interaction is detected, the

task priorities are rearranged as:

1. Balance / supporting task.

2. Pressure-driven compliance task.

3. Posture task.

Two probes were used to distribute the contact force in different areas. The first probe is

designed to concentrate the contact force into a single taxel area (see Fig. 22-a). The sec-

ond probe covers a seven-taxel area and thus generates lower contact pressure than the first

probe when applying the same external force (see Fig. 22-b). The interaction forces were

monitored with an force-torque sensor mounted at the wrist of the robot in a classical con-

figuration of an end-effector (see Fig. 21-a). The interaction forces using the single-taxel

probe are plotted in Fig. 23-a. The threshold for the virtual force to deactivate the Cartesian

controllers was set to 10N. The threshold was exceeded when applying a small force with the

single-taxel probe. Conversely, with the seven taxel probe (see Fig. 23-b), the force to cancel

the Cartesian tasks was considerably larger than in the previous case.
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(a)

Area = 1 Taxel

(b)

Area = 7 Taxels

Figure 22 Probes mounted on a force-torque sensor to generate different pressure distributions with the same force. (a) Area
of one skin taxel. (b) Area of seven taxels.

a)

b)

Figure 23 Interaction forces measured in the experiment. The upper plot shows the data of the experiment using the 1-taxel
area probe. The lower plot shows the data when the 7-taxel area probe was used. ||fext|| is the norm of the external contact
force applied by the probe. ||fwrist|| is the norm of the force measured by the force-torque sensor mounted at the wrist of the
robot arm, ||fP || is the norm of the virtual force (first three elements ofwP ), A is the contact area measured by the robot
skin. The higher-priority Cartesian tasks are disabled when ||fP || > fthres.
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3.4.2. Task priority adjustment for intentional contact
Potential fields are widely used in robotics to prevent collisions [59, 144]. However, choosing

a proper function to define the vector fields may become difficult. Local minima can get the

trajectory stuck into undesired equilibrium points trying to avoid contacts as shown by [145].

Such a scenario may keep the robot from accomplishing other tasks, for instance, tracking a

certain position or orientation on the end effector.

Some strategies to escape from local minima have been proposed as the virtual obstacle

approach in [146] or the hierarchical execution of tasks in [137]. Within this hierarchical ap-

proach, collision avoidance can be defined as a task between other goals and safety tasks.

Let us define a task hierarchy policy to manage task priorities according to tactile data pro-

vided by multi-modal robot skin. Such policy allows reducing the safety tasks like collision

avoidance and physical interference compliance to simple potential field rules. It is well known

that potential fields are prone to undesired behaviors such as oscillations and stagnations due

to local minima [145]. However, with this scheme, smooth task priority changes are triggered

when local minima are detected in presence of obstacles allowing the robot to touch objects

in the environment under a defined tolerable force.

The concept of “Intentional Contact” is introduced in this work as a tool to explore and clear

mobile obstacles from the environment in order to enable the execution of the goal tasks. Skin

force feedback during the Intentional Contact phases lets the policy trigger an emergency

rearrangement if the contact force exceeds a permitted rank. In that scenario, reducing the

contact force takes the highest priority. The proposed policy can be applied to any hierarchical

task manager on position, velocity, or force-controlled robots.

Let an end effector position task be defined as

τg =0 Jef (q)> fg (x, ẋ) (3.40)

where τg ∈ Rn is the torque vector needed to achieve the task, 0Jef ∈ Rm×n is the Jacobian

matrix for the end effector and fg ∈ Rm is the desired wrench or force in task space produced

by a control law to track the desired trajectory of the end effector whose position and velocity

are described in task coordinates by x ∈ Rm and ẋ ∈ Rm, respectively. The sub-index g was

chosen to denote a goal task.

On a common implementation, it is expected that the goal task is executed avoiding any

collision. This can be done by adding the proximity task Eq. (3.33) and Eq. (3.40). However,

the usage of added potential fields may lead to local minima producing undesired equilibrium

points on the robot trajectory [145]. If the robot’s path falls in one of those regions, it would

be detected if the norm of the velocity vector ẋ decreases to a value lower than a desired

transitory threshold εv. In such a case, switching of the control law must be considered, for

instance, a reduction in the sensing range allowing the robot to approach objects in order to
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carry out the goal task.

If the sensing range is decreased to zero and the goal task is still not fulfilled, then the robot

can exert forces on the environment to modify its configuration in order to clear the path for

the goal task. Following this idea and taking advantage of the capabilities of the artificial skin,

a robot can exert Intentional Contacts on surrounding objects and reallocate them to make

the goal task feasible. Tactile feedback during the contact makes it possible to keep all the

contact forces below a defined margin εc and step back if it is exceeded.

The force limit may be defined by the resilience of the skin layer and also the surrounding

objects. Therefore, the system should be able to push and move light objects while fulfilling

all the other tasks and reactively respect all the hard physical constraints of the environment.

To ensure this, the skin should be able to measure the contact force knowing exactly the point

where it is being applied on the robot’s body in order to compute a response torque similar to

Eq. (3.33) as

τc =

k∑
i=1

JTci (q)fci (3.41)

where τc ∈ Rn is the needed torque vector to relax the contact force, fc ∈ Rm is the contact

force measured in task space and Jci ∈ Rm×n is the Jacobian matrix which defines the

differential kinematic mapping between the task space of dimension m and the joint space of

dimension m for the surface point where the force is located at the i-th sensed contact point

in a set of k measuring points.

According to the proposed behavior, three priority arrangements shall be considered as

shown in Table 1.

The conditions in Table 1 are used for triggering transitions between the three cases. Here,

smooth transition methods can help to keep joint torques under feasible values and to avoid

overshoot behaviors and chattering on the robot performance which could lead to damage of

the mechanical components.

3.4.2.1 Experiment: Intentional contact in simulation

In order to corroborate that the proposed policy matches the desired behavior, a simulated en-

vironment was set with a planar 7-DOF robot. The robot was provided with skin-like sensing

capabilities to measure contact forces and proximity on every link, emulating the function-

ality of artificial skin. Two goal-tasks are defined. The higher priority task is to reach and

keep a desired position with the end effector, keeping the velocity bounded during long dis-

placements. This control law is described in [58], where the desired speed ẋd is defined with
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(a) Transitory phases with collision avoidance

Priority Task id Task name Conditions

1 τp Obstacle avoidance 0 ≤ ||fp||

2 τg Goal task set εv < ||ẋ||

3 τc Contact reaction ||fc|| = 0

(b) Intentional approach and contact

Priority Task id Task name Conditions

1 τg Goal task set 0 < ||fp||

2 τc Contact reaction ||ẋ|| ≤ εv

3 τp Obstacle avoidance 0 ≤ ||fc|| < εc

(c) Hard contact reaction

Priority Task id Task name Conditions

1 τc Contact reaction 0 ≤ ||fp||

2 τg Goal task set 0 ≤ ||ẋ||

3 τp Obstacle avoidance ||fc|| ≥ εc

Table 1 Priority arrangements for obstacle avoidance and Intentional Contact

respect to the distance to an attraction point in Cartesian space

ẋd =
kp
kv

(xd − x) (3.42)

where the kp and kv are proportional and derivative scalar gains respectively. With this de-

sired end effector speed, a force vector is defined

fg = −kv (ẋ− νẋd) (3.43)

where the speed saturation function is defined as

ν = min

1,
Vmax√
ẋTd ẋd

 (3.44)

being Vmax a maximum speed value allowed for the system.
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Simulated 7 DoF with a moving obstacle

Figure 24 Stages of the proposed skin reactive policy. (a) Initial condition, the robot’s first reaction is to avoid the obstacle. (b)
The robot tries to reach its end effector goal position but falls into a local minimum due to the potential fields nature. (c)
Intentional contact, the robot approaches and pushes the obstacle with a contact force fc lower than the permissible threshold
εc in order to fulfill the goal-task, the original pose of the obstacle is marked by the dashed circle. (d) Hard contact reaction, an
external force fe > εc is applied to the obstacle so it moves and transfers the force to the robot which moves to reduce the
contact force.
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Figure 25 (a) Priority arrangement according to Table 1. (b) End effector speed and minimal value to consider a local minimum
in

[
m
s

]
. (c) Force produced by proximity sensors at the closest point to an obstacle in [N ]. (d) Highest contact force detected

by the skin and maximum permitted contact force in [N ]. (e) Norm of the torque vector τ in [Nm].
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The second task is to keep the end effector oriented vertically, pointing in the positive direction

of y − axis. For this task, the control law is the same but considering the end effector’s

orientation. A movable obstacle is placed between the initial position of the robot and the

desired end-effector position to induce a local minimum on the execution of the tasks.

The proposed task-priority policy was implemented using the augmented Jacobian null-space

projection described in [68] with soft transitions defined as

τ = χτk−1 + (1− χ)τk (3.45)

where

χ =
(1− tanh (δt (t− tt)))

2
(3.46)

with τk−1 being the output torque at the moment when the transition was triggered, τk the

output torque with the new priority arrangement, t the time, tt the specific instant the transition

was triggered, and δt a smoothing gain.

Fig. 24 plotted the interaction between the robot and the obstacle while the tasks are ex-

ecuted. The forces acting on the robot and the transitions between the task arrangements

during the process are shown in Fig. 25.

3.4.2.2 Experiment: intentional contact using tactile feedback

In order to evaluate the proposed concept on a physical platform, a robot manipulator covered

with skin is needed. The skin must be able to measure both contact force and proximity in

a reasonable range. Our robot TOMM [125] covers those requirements as shown in Section

2.3.1.

In this experiment, the mobile base was fixed to the ground and a position control task was

implemented for the end effector. The position control task will track the desired position with

the end effector of TOMM’s right arm over a table. Under these conditions, two scenarios

were tested. In the first one (Fig. 26), non-fixed obstacles were be placed in the path to the

goal position and the robot had to move them in order to fulfill the goal-task as long as the

contact force remains under the tolerated value. One of the obstacles was placed exactly

in the desired position. In the second scenario (Fig. 27), a non-fixed obstacle and a fixed

obstacle was be placed on the robot’s path specially configured to induce the classic local

minimum problem using the potential fields. The robot tries to reach the desired position and

faces the local minima produced by the obstacles. When the Intentional Contact occurs, the

robot makes its path to the desired position by pushing and moving the non-fixed obstacle

around the fixed one. The only information provided to the robot in this experiment is the

desired position and orientation for the end effector to set the goal task. No information about

the obstacles is needed.
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Experimental setup with non fixed obstacles

 Path of the 
end effector

Figure 26 (1) Initial position. (2) Local minimum reached. (3) Intentional Contact to move the obstacles. (4) Goal position
reached. Red arrows describe the Cartesian velocity of the end effector. Blue arrows describe repulsive force generated by the
movable objects when they are close to the robot. Green arrows describe de contact forces between the robot and the
obstacles. Red arrows describe the attractive force induced by the desired position.

1 2

3 4

Experimental setup with one fixed obstacle 

Fixed

FixedFixed

Fixed

 Path of the 

end effector

Figure 27 (1) Initial position. (2) Local minimum reached. (3) Intentional Contact to move the non fixed obstacle. (4) Goal
position reached. Red arrows describe the Cartesian velocity of the end effector. Blue arrows describe repulsive force
generated by the movable objects when they are close to the robot. Green arrows describe de contact forces between the
robot and the obstacles. Red arrows describe the attractive force induced by the desired position.
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Figure 28 Movable obstacles scenario. (a) Priority arrangement according to Table 1. (b) End effector speed and minimal
value to consider a local minimum in

[
m
s

]
. (c) Force produced by proximity sensors at the closest point to an obstacle in [N ].

(d) Highest contact force detected by the skin and maximum permitted contact force in [N ]. (e) Norm of the torque vector τ in
[Nm].
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Figure 29 Non movable obstacle scenario. (a) Priority arrangement according to Table 1. (b) End effector speed and minimal
value to consider a local minimum in

[
m
s

]
. (c) Force produced by proximity sensors at the closest point to an obstacle in [N ].

(d) Highest contact force detected by the skin and maximum permitted contact force in [N ]. (e) Norm of the torque vector τ in
[Nm].
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In Figures 28 and 29 the interacting forces during the experiment, as well as the priority

arrangement configuration according to Table 1 are displayed. In the contact force graph

from Fig. 29, a number of Intentional Contact attempts are shown, along the path around the

fixed obstacle.

The presented hierarchical policy for interaction provides a reactive way to explore and modify

the environment keeping safety as the main concern. It can be implemented under different

conditions according to the needs of the applications. Other control laws and hierarchy man-

agement methods are supported for the proposed set of conditions. The use of potential

fields prevents collisions and enables soft interaction contact events to prevent damage to

the mechanical parts and the skin itself.

Intentional Contact allows a robot to interact with its environment in order to fulfill the goal

tasks2. The concept can be applied to other perception technologies but artificial skin ex-

pands the idea to the whole body. Tactile feedback plays an important role during the In-

tentional Contact phases because the contact force must be constantly monitored as it is

responsible for triggering the hard-contact task priority arrangement. Enabling Intentional

Contact in a robot makes it possible to clear the path along with unknown scenarios without

considering the dynamical properties of the obstacles. The major advantage of this approach

is that no previous knowledge about the environment is required. The behavior of the robot

is completely reactive to the environment, task priority rearrangements are triggered by in-

teraction events that can be also used to modify controller gains and adjust thresholds and

tolerances for different operational conditions.

3.5. Summary

This chapter transformed the operational space formulation from Khatib to physical direct

and virtual interactions using robot skin. We use the spatial distribution of multiple sensors

provided by robot skin to directly measure interaction forces and environmental conditions to

generate reactive motions in the whole body of stiff (position-controlled) robots.

Distributed force-sensing was used to formulate interaction tasks in Section 3.2 which en-

abled a compliant behavior to external forces, similar to the body compliance achieved with

joint torque sensors, such as with the KUKA LWR. The formulations were tested in a highly

redundant system, a 30 DoF floating base humanoid robot fully covered with skin (Fig. 3).

To cope with the redundancy of the robot, we used strict hierarchical task execution to fuse

several instances of physical interaction tasks with posture and purpose tasks with differ-

ent priorities. The prioritized combination of tasks helps generate whole-body behaviors that

guarantee that the primary tasks, such as balance and supporting contacts, are executed on

top of the purpose tasks that do not compromise the integrity of the robot or the operators.

2 This work on Intentional Contact was presented at a peer-reviewed international conference in [74].
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Distributed sensing requires the generation and processing of large amounts of information

that, in practice, increases the computational load of the system. However, different methods

and technologies can be applied to improve the performance of handling large amounts of

tactile information. Skin systems improve the generation and communication of tactile infor-

mation with neuromorphic approaches as the event-based protocol in [46]. On the application

side, which is the concern of this thesis, traversing the taxels to generate the interaction tasks

is time-consuming and can break the real-time loop of a controller if the amount of taxels is

too large. In this thesis, we proposed a method to discard the information that is not relevant

for the interactions, for example skipping the computations related to the taxels that measure

forces smaller than a set range. We showed the potential of this approach by enabling sev-

eral simultaneous interactions over the whole body of a robot in the experiment in Section

3.2.4.1.

The advantage of distributed force sensing over joint-torque sensors lies in the additional

geometric information it provides about the contact interactions. While joint torque sensors

measure the resultant body torques caused by the external forces, distributed force sensing

can detect when multiple contacts are applied over the same link and the areas where the

contact forces are applied. This additional information allows the generation of alternative

body compliance modalities as in the case of the pressure-driven body compliance presented

in Section 3.2.5.1.

Pressure-driven body compliance amplifies the forces that are concentrated in small areas

producing fast reactions and dampens the forces distributed over large surfaces providing

the capability of handling high payloads as long as they are distributed. This modality of

compliance was inspired by the way we handle heavy loads in everyday life. We distribute the

contact of heavy objects in larger areas to prevent damaging our bodies. We can measure

the contact pressure with our skin, and when it presents a threat, it activates the nociceptor of

our skin that triggers nociceptive reflections to protect ourselves. We followed this behavior in

Section 3.4.1.1 to design a way of mechanical nociception for robots that cancel the execution

of an interaction task when the interaction forces are highly concentrated.

Distributed sensing of other modalities provides information on the environment that helps

to generate other types of body behaviors. However, sensing modalities different from con-

tact force shall not be treated as direct physical interactions because they do not involve

direct contact between the robot and the environment. We can use these measurements to

generate virtual repulsive or attracting forces that produce body reactions but do not intro-

duce external forces in the model. This difference is most important for floating base robots

because virtual interactions must not be considered in the supporting contacts for balance

controllers. Therefore, all the virtual interactions must be handled with lower priority than the

direct physical interactions to keep the equilibrium in the supporting contacts. This distinction

will be highlighted in Chapter 4 where the modalities of contact force and proximity sensing

will be used as feedback for biped locomotion.
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This chapter presented two modalities of virtual interactions using distributed sensors. In

Section 3.3.1, distributed proximity sensors were used to generate repellent potential fields

from the environment geometry. These repulsive fields push the robot body away from any

object in the environment. This modality of virtual interaction enables a collision avoidance

behavior over the whole body that requires no other perception system than the skin and

the robot kinematic chain. Similarly, distributed temperature sensors were used to produce a

temperature-driven modality of body compliance. We used the formulation for virtual interac-

tions to generate repulsive forces triggered from temperature measurements. The experiment

in Section 3.3.2.1, shows a robot in a cooking scenario that detects the temperature of the

hand is rising fast, and it generates a pushing force that retracts the hand to put distance

between the hand and the source of heat.

Finally, in Section 3.4.2 direct and virtual interactions were combined to achieve an end ef-

fector task activating intentional contacts of the robot with the environment. Proximity-based

collision avoidance was combined with a Cartesian control of the end effector. When the re-

pulsive fields of the collision avoidance task fall into local minima, a priority rearranges of the

tasks enable the robot to come closer to the environment and exert contact forces to modify

it in the pursuit of fulfilling the end effector task. Distributed force sensors allow the robot to

measure the contact forces and distinguish whether a part of the environment can be pushed

away or if it is fixed. With this behavior, the robot pushes away movable obstacles avoiding

fixed obstacles, clearing the path to fulfill the end effector task. The intentional contact behav-

ior is only possible by combining direct and virtual interactions with distributed sensing points.

The framework for handling direct and virtual interactions presented in this thesis allows the

generation of this kind of body behavior that expands the capabilities of robots in complex

environments.

Overall, this Chapter presented the formulations to combine different modalities of sensor

feedback into whole body behaviors. The interaction tasks can be applied in fixed based and

floating base robots as the TOMM robot (Fig. 2) and the H1 robot (Fig. 3). The whole body

behaviors combining interaction modalities allow a robot to interact with the environment and

even to modify it if an application requires it.
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4. Tactile Based Bipedal Robot Balance and
Locomotion

This chapter presents the formulations to exploit multi-modal tactile feedback for bipedal robot

balance and locomotion. The sensing modalities introduced in Chapter 3 are now applied for

plantar sensing to measure the interaction forces between the foot and the terrain. The dis-

tributed direct force measurements provide the information to estimate the significant metrics

for bipedal robot balance control [147] that are commonly measured using ankle force-torque

sensors. These metrics include the ZMP, CMP, GRF, and the DCM, also called CP (Capture

Point). Additionally, the geometric information on the contacts helps approximate the support-

ing polygon which provides the boundaries for guaranteeing stable footholds during standing

and walking.

The plantar tactile information provides complementary information that is highly valuable for

bipedal robot walking controllers. Knowing the geometry of the supporting polygon allows

assessing a foothold immediately after foot landing without the need for exploratory motions

or complex visual systems. With the instant information on the foothold, a robot can decide

whether it is safe to step on it or a step retargeting is required to find a better suitable foothold.

Furthermore, the proximity sensing modality provides preemptive geometric information of

the terrain during the foot landing motion while walking. This modality allows the formulation

of the preemptive foot compliance that increases the robustness of a walking controller to

unknown terrain conditions.

This chapter also provides the formulations to use the supporting polygon geometry to define

constraints for the robot balance controllers. Two examples will be presented that incorpo-

rates the plantar tactile feedback into two different walking controllers in two different full-size

humanoid robots. The bounding box of the supporting polygon will be used to redefine the

friction cone constraints introduced by Caron et al. in [8]. The tactile information lets us re-

move the full-sole contact assumption required in several walking controllers as [127, 148, 6].

The supporting polygon can also be used to constraint the adjustments to the reference ZMP

in the DCM feedback-based balance controller proposed by Englsberger et al. in [6].

Walking over partial footholds requires the knowledge of the contact geometry to define the

constraints of the motions. But to keep the dynamic stability, the walking motions must be ad-

justed to respect these constraints. Nevertheless, the tactile information provides the insights

needed to adapt the walking reference trajectories online right after foot landing. We pro-

vide the formulations to apply these changes from tactile information that achieve continuous

dynamic walking over partial footholds.
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The formulations for balance and control with plantar tactile feedback presented in this chap-

ter are generalized to be applied with any skin system that provides distributed force sensing.

We will present the advantages of having additional sensing modalities (e. g. proximity

sensing) for enhancing walking motions online using the formulations of virtual interactions

introduced in Chapter 3.

Aside from the proximity sensing modality, different robot skins can be applied for tactile

sensing. However, most of the available solutions require deep modifications in the foot

design to incorporate the tactile sensors. In this thesis, we propose a simple but practical

solution to mount tactile sensors on the feet of humanoid robots that require no permanent

changes in the robot’s legs: mountable shoes.

Mountable shoes can provide plantar tactile sensation to a robot in less than five minutes of

setup time. They also facilitate unmounting for maintenance and repairments of the tactile

sensors and the versatility to modify the skins for different applications. To test the formula-

tions in this chapter, tactile shoes were built for the HRP-2Kai robot [3] and the H1 robot [149]

as shown in Figures 3 and 5.

This chapter is presented with the following layout: Section 4.1 will review the fundamentals

of biped balance and walking control required to elaborate the contributions of this thesis.

Section 4.2 will introduce the modalities for plantar tactile sensation and the metrics calcu-

lated from it. Section 4.3 introduces the application of plantar tactile feedback into balance

and walking controllers for full-sole flat footholds. Two experiments are presented to compare

the performance of a robot with plantar tactile feedback with a robot using the classic ankle

force-torque sensors. Section 4.4 applies the plantar sensation for walking on uneven terrain

and partial footholds. We expand the formulations of balance and walking control to use the

supporting polygon, and introduce the PFC modality using plantar proximity sensing. Several

validate these formulations running in both the HRP-2kai and the H1 robots. Finally, Section

4.5 summarizes the results and contributions of the Chapter.

Along this chapter, the subscript (•)f denotes that the vector (•) was generated from the

force sensing modality of the skin. Likewise, (•)p denotes the proximity sensing modality.

4.1. Background on Balance and Walking Control

Biped walking is a complex process composed of a succession of antagonistic interactions

that must be controlled within strict boundaries to keep a harmonic pace from one step to

another [150, 151, 152]. At a glance, the dynamics of walking split into two phases: single

and double support [153].
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During the double support phases, the body swings from above one foot to the other, trans-

ferring the weight from one foot to the other in a smooth transition that eventually releases all

the load of the rear foot. Then, the single support phase starts pushing forward the body over

the supporting leg and swinging the free leg to the next foothold and the cycle starts over

again.

A biped robot is modeled as a floating base system (Eq. (3.12)) where the supporting contacts

are external forces applied on the feet. The phases of walking are produced by the control

of these interactions between the feet and the ground. However, to reduce the complexity of

the problem, a common strategy is to simplify the dynamics using a low-dimensional model

to approximate the interactions required for walking [154].

4.1.1. Linear inverted pendulum model (LIP)
The most common simplified model for bipedal walking is the LIP. As illustrated in Fig. 30, the

body is seen as a point mass located on a stretchable inverted pendulum so that the height of

the CoM zx is kept constant. In this representation, the CoM position in the world coordinate

frame Ow is given by x ∈ R3, and its velocity and acceleration are ẋ ∈ R3, and ẍ ∈ R3

respectively. The pendulum’s fulcrum is located on the ground on a point p ∈ R3 such that

the GRF fGR ∈ R3 concentrates all the dynamic forces produced by the motion of the CoM

and the gravity. Therefore, we can describe the motion of the CoM using the LIP model as

ẍ = ω2(x− p) (4.1)

where ω =

√
g

zx
is the radian frequency of the pendulum defined by the gravity acceleration

g and the height of the pendulum zx.

4.1.2. Zero moment point (ZMP) and supporting polygon
While the LIP model provides a simple way to represent the reaction forces involved in walk-

ing, the realization of these motions requires the control of the legs to reproduce the desired

resultant forces with the foot’s sole over the ground. However, as a floating base system, a

biped robot is prone to tilting over if the interactions are not kept in equilibrium. Furthermore,

to realize the GRF required by the LIP model, the contact between the supporting foot and

the ground must be keep static. Therefore, the primary concern to realize walking motions is

to guarantee the stable contact of a foot sole with the ground.

The formulation of the ZMP as a metric for contact stability was introduced by Vukobratović in

[155]. Let us analyze the 2D case for a flat foot in contact with the ground. Define a coordinate

ρ to describe a position in the sole of the foot. The ground reaction force at a given ρ is given

by the force function ρ as drawn in Fig. 31-a. At the point % ∈ ρ, the reaction force field (or

pressure distribution) along the whole sole, produces a resultant force

f% =

∫
sole

f(ρ)dρ (4.2)
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Figure 30 LIP (Linear Inverted Pendulum) representation of the walking dynamics. The CoM (Center of Mass) position in the
world coordinate frame Ow is given by x ∈ R3, and its velocity and acceleration are ẋ ∈ R3, and ẍ ∈ R3 respectively. The
pendulum’s fulcrum is located on the ground on a point p ∈ R3 such that the GRF fGR ∈ R3. The height of the CoM is kept
constant at zx.
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a)

b)

c)

Figure 31 Definition of the ZMP. a) the pressure distribution of a foot in full contact with the ground. b) the GRF located at the
point where the reaction torque is zero. c) the supporting polygon S is the convex hull enclosing the sets of contact points of
the feet SR and SL.
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and a resultant torque

η% =

∫
sole

(ρ− %)f(ρ)dρ (4.3)

From these expressions, it is clear that for an arbitrary pressure distribution of f(ρ), f% is

kept constant at any point. Nevertheless, η% depends on % and thus is different for every %.

The ZMP of the foot pFoot is then defined as the point in the sole where η% = 0 as shown in

Fig. 31-b, and can be calculated as

pFoot =

∫
sole ρf(ρ)dρ∫
sole f(ρ)dρ

(4.4)

The ZMP formulation can be extended to the 3D space by adding a second coordinate in the

function of the pressure distribution as described in [12]. If we define a set of x-y coordinates

to define a point in the sole, the reaction force is then given by f(x, y). Therefore, the ZMP

is then extended to

pFootx =

∫
sole xf(x, y)dsole∫
sole f(x, y)dsole

(4.5)

pFooty =

∫
sole yf(x, y)dsole∫
sole f(x, y)dsole

(4.6)

Equations (4.5) and (4.6) describe the ZMP in a sole of a foot. The usual method to estimate

this point is using the measurements of a force-torque sensor mounted in the ankle of the

foot. However, for the case of the double support phases in the walking cycle, the ZMP must

consider the interactions of both feet with the ground. Let us define the ZMP for the left and

right foot as pL = [pLx ,pLy , 0]> and pR = [pRx , pRy , 0]> respectively as drawn in Fig. 31-c.

In the same way, fL = [fLx , fLy , fLz ]
> and fR = [fRx , fRy , fRz ]

> are the ground reaction

forces of the left and right foot respectively. With this information, the ZMP of the whole

system can be computed as

px =
pRxfRz + pLxfLz

fRz + fLz
(4.7)

py =
pRyfRz + pLyfLz

fRz + fLz
(4.8)

When the whole foot sole is in contact with the ground, the CoP is equivalent to the ZMP and

can be located at any point of the sole. When the foot tilts over one of the borders of the sole,

the CoP no longer has zero moment around the CoP and thus, ZMP does not exist. The set

of points Ssole where the ZMP can exist is called support polygon and encloses all the contact

points between one foot and the ground for the single support phases. On the other hand, for

double support phases, the support polygon comprises all the points where the composed

ZMP (Eq. (4.7) and (4.8)) can exist. In such a case, the support polygon is formed by the

convex hull S that encloses SL and SR. Where SL and SR, are the supporting polygons of

the left foot and the right foot respectively as drawn in Fig. 31-c.
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The ZMP has served as a primary metric of postural stability for decades [97]. We can say

that a foothold is stable as long as the ZMP exists in the supporting polygon and therefore, it

serves as feedback for balance and walking control.

4.1.3. Divergent component of motion (DCM) and walking control
The LIP model describes the motion of the CoM of the robot. The ZMP and the support

polygon provide metrics to assess the stability and the constraints to keep the model stable.

Let us now review the formulation of the DCM and how it provides a framework to generate

stable walking motions.

The DCM, originally named Capture Point, was introduced independently in [156] and [157]

as a complementary metric to assess the stability of walking motion. Briefly, the DCM is the

point on the ground where the fulcrum of the LIP model must be placed so that the CoM

comes to a complete rest given a defined CoM velocity. For practicality in the formulation, the

DCM is considered co-planar to the CoM. Therefore, for the LIP model in Eq. (4.1) the DCM

ξ ∈ R3 is defined as

ξ = x+
ẋ

ω
(4.9)

Equation (4.9) describes the CoM’s first order dynamics as

ẋ = −ω(x− ξ) (4.10)

which is stable when ω > 0. In other words, the DCM is a natural attractor point for the CoM.

The first order dynamics of the DCM are

ξ̇ = ẋ+
ẍ

ω
(4.11)

which we can combine with Eq. (4.1) as

ξ̇ = ω(ξ − p) (4.12)

which is unstable. However, we can use p as a control input to stabilize it. This structure

is the core of the algorithm to generate walking motions proposed by [6]. Englsberger et al.

develop a practical method to define walking primitives that exploit the stable dynamics of the

CoM following a reference DCM. The method consist of 4 steps:

1. Footstep plan: The process starts with the definition of the footstep locations over the

terrain. They can be defined by simple geometric rules or considering the geometry of

the environment as in [158] and [159]. Regardless of the method used, the footsteps

are a list of poses over the terrain used as reference positions and orientations for the

feet. Let us define the footsteps as a set of transformations wTi ∈ SO(3) composed

by the rotation wRi ∈ SE(3) and the translation wri.
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Figure 32 Walking motion generation from Englsberger et al. in [6]: 1) Define footstep positions. 2) Define VRP (Virtual
Repellent Point) over the footsteps. 3) Compute the DCM waypoints between the VRPs. 4) Execute the plan evaluating the
DCM and CoM dynamics.

2. Virtual Repellent Point (VRP) plan: Once defined the footstep locations, we can

set virtual repellent points than will push away the DCM from where they are located.

Therefore, by defining VRPs over the target foot locations as drawn in Fig 32, we can

produce the reference trajectories for the DCM. Therefore, the i-th VRP is defined by

ri =w ri +


0

0

zx


(4.13)

3. DCM way point plan: With the VRPs, we proceed to define waypoints evaluating the

solution of Eq. (4.12) for a constant p, and constant step time tstep. The i-th DCM

waypoint is given by

ξi = ri+1 + eωtstep (ξi+1 + ri+1) (4.14)

4. Generate CoM trajectory: Once generated all the waypoints for the DCM, the refer-

ence trajectory for the DCM ξr is given by the solutions of Eq. (4.12) as

ξr = ri + eω(t−tstep) (ξi + ri) (4.15)

where t ∈ R is the time. Then, the trajectory of the CoM is given by Eq. (4.10) which is

smoothly following ξr.
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Figure 33 Kinematics of the foot swing motion during the single support phase. At the i-th step, the non supporting foot moves
from wri−1 to wri+1 in a smooth spline that reaches zstep height.

These steps generate a smooth stable trajectory for the CoM over the footsteps. The only

missing part of the walking reference motions is the swing motions of the legs during the

single support phases. The step motions are coordinated within a step period tstep. This

period is divided into the periods of the two phases tss for the single support, and tds for the

double support, such that

tstep = tss + tds (4.16)

Then, the foot motion must be generated within tss as drawn in Fig. 33. The most usual way

to generate these motions is with constrained splines of third or higher-order, or with a series

of interpolations as proposed in [160]. However, the start time of the splines must be precisely

triggered by a walking state machine that coordinates the walking motions as in [161].

4.1.4. Balance control for bipedal walking
A robot can stably walk over perfectly flat terrain if it tracks the walking motions with perfect

accuracy in an open loop. However, they are sensitive to external perturbations, motion

tracking deviations, modeling inaccuracies, and irregularities in the terrain. Therefore, open-

loop walking with the generated pattern is not feasible if any of these conditions appear. In

reality, all of these issues are present and disturb the walking motions, thus we must somehow

close the loop. To do so, we can make use of the structure of the DCM-CoM dynamics again.

We can define stable closed loop dynamics for the DCM as

ξ̇ − ξ̇r = −kξ (ξ − ξr) (4.17)

where ξr ∈ R3 is the reference DCM trajectory defined by the algorithm in Section 4.1.3,

ξ̇r ∈ R3 its derivative, ξ ∈ R3 is the actual DCM of the robot, ξ̇ ∈ R3 its derivative, and

kξ > 0 ∈ R is a proportional gain. Evaluating the left side with Eq. (4.12) for both the

reference DCM ξ̇r = ω(ξr − pr) and actual DCM ξ̇ = ω(ξ − pd), we can define a control

input from the ZMP position as

pd = pr −
(

1 +
kξ
ω

)
(ξr − ξ) (4.18)
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where pd ∈ R3 is an adjusted ZMP reference position, namely desired ZMP, that closes the

loop for tracking the reference DCM. Nevertheless, we must close the loop on the CoM level

to track pd with the real ZMP. There are different methods for ZMP tracking as described in

[12]. One simple example is by defining a stable closed loop dynamics, similar to Eq. (4.17)

as

ṗ− ṗd = −kp (p− pd) (4.19)

which we can derive and expand to an adjusted reference for the CoM as considering ṗd =

xr −
1

ω2

...
xr with

...
xr = 0 ∈ R3 a zero jerk reference trajectory for the CoM as

ẋr = ṗ + kp(p− pd) (4.20)

which closes the loop commanding the velocity of the CoM using ZMP feedback.

4.2. Plantar Tactile Sensing for Biped Robots

As summarized in the previous section, walking controllers require the measurement and

control of the reaction forces exerted by the robot’s feet on the terrain. The classic approach

is to include ankle force-torque sensors to have a direct measurement of the resultant wrench

at the mounting point. With these sensors, a robot can estimate the significant metrics for bal-

ance and locomotion which are sufficient for walking over flat and uneven ground. However,

in [162] and [56], we proposed plantar multi-modal robot skin to enhance the capabilities of

biped robots to acquire more information on the foot-ground interactions which complement

the ankle sensors to improve balance and locomotion control. In this section, the require-

ments and capabilities of plantar skin for biped robots will be revised, and the formulations to

estimate the significant metrics needed for balance and locomotion.

4.2.1. Hardware for plantar sensing
Full-size humanoid robots are designed to work in human environments and to perform tasks

with humans. Their mass can be larger than 100 kg and consequently, the weight of these

robots can vary around 980 N without considering payloads. Also, biped walking consists of

a succession of single and double support phases. Therefore, the skin sensor required for

this application must be capable of holding around 980 N in the area of a foot and still sense

variations in the contact pressure.

Due to the heavy load requirement, the suitable robot skins for full-size humanoid robot soles

are the resistive matrix arrays [116, 117, 122] and the capacitive force cell [163]. Some of the

skin technologies that have proved capable of resisting high pressure and still sense varia-

tions are the Tekscan pressure sensors [164] with pressures larger than 1 MPa, the flexible

ROBOSKIN sensors [163] under pressures larger than 150 kPa, and the stretchable PsSi tac-

tile sheet [165] under pressures larger than 150 kPa. Nevertheless, these tactile sensors only

provide the pressure shape, and the geometrical mapping over the robot sole must be ob-
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tained manually. Even more, they would require protective layers to prevent damage caused

by harsh terrain textures.

The robot skin developed at our lab fulfills the load requirement [1]. Each skin taxel with a

surface area of 6.9 cm2 (Fig. 1) can hold more than 80 kg and still sense variations in the

applied force (operating pressure ≈ 80 MPa). As described in Chapter 3, it provides four

sensing modalities (force, proximity, acceleration, and temperature) over a uniform spatial

distribution that can cover complex curved surfaces [166]. The complete tactile information

can be delivered at a rate up to 250 Hz in large scale areas (covering not only the soles)

due to new neuromorphic paradigms, such as the even-driven communication approach by

Bergner et al. [167]. The robot skin also provides the position of every taxel on the sole

[168] which can be used to reconstruct the pressure shape when the foot is on the ground in

real-time.

The skin taxels are connected with the neighboring taxels conforming a dynamic network

where the data packets are sent following optimal communication paths to reduce the latency

[124]. This dynamic network configuration is valuable for the foot-sole application because the

skin must reconfigure its communication channels in case of hardware damage. Therefore,

if a heavy impact is produced between the terrain and the sole, and a taxel in the sole is

damaged, the network reconfigures itself and continues transporting the data generated by

the other taxels. Nevertheless, the construction of the taxels is resilient and can hold hard

impacts without receiving damage. Additionally, following the biological principle of the sole

skin in human feet, the external silicon layer was thickened for this special application to

extend its lifespan. This silicon material shows a high friction coefficient over different surfaces

which improves the stability of the steps, reducing the likelihood of slipping.

4.2.2. Mountable tactile shoes
New advances in skin technologies allow covering complex surfaces with tactile sensors with-

out major modifications to the body parts. For example, the rubber-dome optical-based tactile

sensors in [121] allowed covering the feet of a biped robot with an active toe joint. How-

ever, this mounting mechanism still requires a modification of the robot’s feet, and the rubber

domes’ add a spring-damper layer between the foot and the ground. Another practical mount-

ing mechanism for plantar sensors is the wireless sensitive shoes in [169]. These shoes en-

capsulate all the electronics and enable the measurement of the ZMP from force sensors.

Mountable shoes can serve other purposes in addition to incorporating sensors. For exam-

ple, the shoes in [170] provide energy storing elements for lateral motions that help reduce

the energy consumption in the actuators.

Modularity in hardware and software increases the versatility of robotic platforms. By re-

placing simple elements, a robot can adapt to different applications, analogously to how we

change clothes and shoes for different activities. For this thesis, two 42 taxel patches were

created to cover the soles of the H1 robot as shown in 3. These patches are mounted on a
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Right Foot Left Foot2 x 42 Taxels

Figure 34 Skin patches mounted on the soles of the REEM-C robot. 42 taxels in each sole, mounted on 3D printed removable
sole covers.

set of 3D printed removable sole covers which make it easy to mount and dismount without

making permanent changes on the robot. This mounting mechanism can be easily adapted

to different foot sizes and geometries by creating the mountable covers for the robot foot and

the skin patches to cover the sole area. Furthermore, the same process was applied to mount

51 taxels on each sole of the HRP-2Kai robot. Plantar robot skin is mounted on both robots

with the same apparatus as shown in Figures 3 and 5. The robot skin mounted on the shoes

is the latest version of the tactile sensors developed at the Institute for Cognitive Systems

[5].

4.2.3. Center of Pressure Estimation (CoP) from plantar information
There are different methods to locate the center of pressure of a robot’s foothold with differ-

ent foot and sensor designs [12]. For example, using an array of single-axis force sensors

distributed on the sole. The normal force sensors in our robot skin fulfill that requirement. It

covers the whole area of the sole with a uniform distribution of normal force sensors as shown

in Fig. 34. Then, for a single sole, the position of the center of pressure is defined as

px =

∑k
i=1 pixfiz∑k
i=1 fiz

, py =

∑k
i=1 piyfiz∑k
i=1 fiz

, (4.21)

where, for a group of k taxels mounted on a robot’s sole, fjz is the vertical ground reaction

force measured by a taxel located at ri with respect to the sole coordinate frame Osole as

shown in Fig. 35. We denote p as the computed CoP of the foot sole. Furthermore, the
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Figure 35 Computation of the CoP on the sole using the normal force sensors in the robot skin. fi is the normal force
measured by the i− th taxel, p is the computed CoP position, and soleTi the homogeneous transformation from Oi to Osole.
As an example of additional information that can be generated with the robot skin, the contact area A is easily computed.

uniform spatial distribution and size of the taxels enables a fast computation of the contact

area by counting the taxels that detect contact force over an activation threshold ||fiz || > εf .

All the taxels that satisfy this condition are called Active-Taxels. Then, the contact area is

A = kAtaxel, (4.22)

with Ai ≈ 691 mm2.

4.2.4. Ground reaction force (GRF) from plantar information
In a set of k taxels mounted on a sole with a coordinate frame Osole located at the sole

surface, the i-th taxel measures the contact force ff,i = [ff,i,x ff,i,y ff,i,z]
> ∈ R3 at its

mounting coordinate frameOi. Assuming a spatially calibrated robot skin, the transformation
soleTi from Oi to the sole coordinate frame Osole is known and composed by the rotation
soleRi ∈ SO(3) and the translation soleri ∈ R3. A graphic description of these parameters is

drawn in Fig. 35.

Considering the contribution of all the taxels on the sole, the resultant GRW (Ground Reaction

Wrench) at Osole frame is calculated as

ωf =

 ff
ηf

 =

k∑
i=1


soleRi ff,i

soleri ×sole Ri ff,i

 ∈ R6, (4.23)

where ff = [ff,x ff,y ff,z]
> is the GRF, and ηf = [ηf,x ηf,y ηf,z]

> the sole reaction torque,

both in Osole coordinate frame. This is equivalent as the measurement of a 6D force-torque
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units [mm]

Figure 36 The Corner points of the taxel are used to populate a cluster which later is used to find the smallest convex hull as
supporting polygon. This example is using the geometry of the hexagonal taxels in the robot skin designed at ICS [7].

sensor mounted at Osole. Let us define a coordinate frame parallel to Osole but located at

the CoP Op as drawn in Fig. 35. Transforming ηf from Osole to Op yields to fp = ff , and

ηp,x = ηp,y = 0 ∈ R which is the GRF with zero moment according to Vukobratović [155].

4.2.5. Supporting Polygon Acquisition from plantar information
The extra information the robot skin provides enables the direct acquisition of important

balance-stability metrics such as the supporting polygon. As depicted in Fig. 37 the con-

struction of the supporting polygon from skin information starts by finding the active taxel

(Fig. 37-b). Then, for every active taxel in the sole, the set of corner points Sc = [c1 c2 ... c6]

of the hexagonal taxel are transformed to the sole frame Osole as shown in Fig. 36 and added

to a cluster set (Fig. 37-c)

Ssole =

kn

j=1

soleTjSc, (4.24)

where soleTj is the homogeneous transformation from taxel frame Oj to the sole frame Osole.

Finally, the cluster of contact points on the sole Ssole can be used to find the smallest convex

hull wrapping Ssole using algorithms such as [171] (Fig. 37-d). It is also possible to find

concave hulls describing the shape of the ground contact areas with algorithms such as

[172].

For double support, the point clusters of each sole SL and SR can be transformed to world

coordinates and concatenated (Fig. 37-f)

Sfeet =w TLSL ‖w TRSR (4.25)

with wTL and wTR being the transformation from the left sole frame OL and right sole frame

OR to world frame Ow respectively. And then, find the convex hull wrapping Sfeet which

generate the double support supporting polygon (Fig. 37-g).
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a) Sole skin cover b) Active taxels

c) Active skin point cluster d) Supporting polygon
(Convex hull)

Contact force supporting polygon
Pre-Touch estimated polygon

e)

f) Composition of general support polygon Contact force composite supporting polygon
Pre-Touch composite estimated polygon

g)

Figure 37 Supporting polygon acquisition. a) The spatial distribution of the robot skin over the sole. b) Detection of active
taxels where fjz > εf . c) Active taxels point cluster. d) Convex hull obtained from the point cluster. e) Two polygons obtained
from different sensing modalities: contact force and pre-touch. f) Polygons of both feet. g) Composite supporting polygon and
pretouch polygon (convex hull from feet polygons).

The accuracy of Sfeet is inversely proportional to the size of the taxels. However, for control

purposes, a simplified convex polygon can be constructed from the initial approximation using

iterative algorithms. For example, [173] finds the maximum area triangle inscribed in a convex

polygon, [174] finds the maximum area parallelogram in a convex polygon, and [175] finds

the minimal area enclosing parallelogram containing a convex polygon.

This procedure can be applied to other sensing modalities to obtain the temperature footprint

of a sole or the pre-touch modality to find a preemptive shape of the supporting polygon from

a few centimeters before the foot landing (Fig. 37-e). This information is useful to create

preemptive controllers for robust walking over unknown terrain.

4.2.6. Preemptive ground reaction wrench (PGRW) from plantar proximity
sensors

Human feet are flexible structures of bones, joints, muscles, and soft tissues that let us stand

upright and perform activities like walking, running, and jumping. Its complex anatomy allows

the feet to find the best suitable foothold while walking by relaxing the ankle muscles and

letting them adapt to the terrain. This mechanism also bears the high loads and impacts of

biped walking while providing tactile and proprioceptive feedback on the interactions.

New actuator technologies are being developed to mimic the flexibility of human muscles

showing promising results as summarized in [176]. However, these complex mechanical

designs increase the cost of the construction and the difficulty of servo control. To simplify
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Figure 38 Supporting polygon constructed from tactile information. The real contact geometry Sreal can be approximated
from the known taxel geometry and measured forces fi. First, a cluster Scluster with the points of the contour of the contact
area is created. Then, the convex hull of Scluster approximates the physical supporting polygon SF . This information can be
used to define contact constraints as the quadrilateral SC which can be used on force distribution optimization methods.

the design and lower the costs, the legs and feet of several biped robots are built with stiff

actuated joints that are not back-drivable nor soft as summarized in [177].

To alleviate this problem, plantar proximity sensing has been proposed in [178] for a small

size robot. Plantar proximity sensing enabled preemptive ankle motion planing for walking

on uneven terrain even with a coarse sensor distribution. Furthermore, if every taxel on the

foot sole provides proximity-to-ground sensing within a suitable range, a virtual preemptive

GRW can be computed using the virtual interaction formulation from proximity sensing in

Section 3.3.1. This scenario is depicted in Fig. 39-a, where every taxel on the sole measures

the distance to the ground. Most of low-cost commercial sensors deliver a numeric value

inversely proportional to the detected distance ρi = drange−di, where drange is the maximum

range of the sensor and di the actual distance.

Let us define a virtual ground repellent force inversely proportional to the distance between

the taxel and the ground within its sensing range fp,i = [0 0 kpρi]
> ∈ R3 (see Fig. 39-a).

The magnitude of the repulsive field can be adjusted with kp ∈ R according to the needs of

the walking motion. Analogously to the case of force sensing skin, for k taxels on the sole,

the Virtual Ground Reaction Wrench (VGRG) is calculated as

wp =

 fp
ηp

 =

k∑
i=1


soleRpifpi

solerpi ×sole Rpifpi

 (4.26)

The components of wp serve two purposes that will be expanded in the following sections:

fp helps detect premature contacts and damp the foot motion to reduce the landing impact.

ηp helps adapt the foot orientation to the terrain geometry to find a larger contact area at foot

landing.
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(a)

(b)

Figure 39 A sole covered with proximity sensing taxels. A proximity sensor provides the distance di from the taxel to the
ground within the sensing range ρr . The proximity measurements can be used to generate height contours Sεp for the areas
where di > εp.

4.2.7. Preemptive supporting polygon from plantar proximity sensors
Analogous to the supporting polygon construction from contact information, a preemptive

shape of such polygon can be constructed from the proximity information. In robot skins

with proximity sensing on every taxel, a convex polygon Sp can be acquired from the convex

hull enclosing the contours of all the taxels where the measured distance exceeds a certain

threshold di > εp. Furthermore, as the example depicted in Fig. 39-b, different height con-

tours can be constructed defining different thresholds to approximate the ground geometry

during the single support phases of walking.

4.3. Balance and Walking With Full Sole Contacts Using Plantar
Tactile Feedback

In this section, the methods described above are experimentally evaluated. The results ob-

tained using robot skin are compared to similar methods using ankle force-torque sensors.

The controllers were implemented on the H1 robot with the skin sole covers shown in Fig.

341.

1 The results in this section were presented in the 2018 IEEE-RAS 18th International Conference on Humanoid
Robots (Humanoids 2018) [162] and a Journal article [56].
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Min Max

Force sensor active

Proximity sensor active

Skin CoP

Left/Right Skin CoP

Left/Right Supporting polygon

Left/Right Pre-touch polygon

Composite supporting polygon

Composite pre-touch polygon

a) b)

c)

Figure 40 Snapshots of the sensor data from the robot skin in ROS-Rviz. a) Raw sensor data from Force sensors and
pre-touch sensors. b) Computation of local and global CoP, supporting polygon and pre-touch polygon. c) Final representation
of the Left and Right CoP, the general CoP, the supporting polygons and pre-touch polygons.

The measurement of the CoP and the reconstruction of the supporting polygon from raw skin

data are shown in Fig. 40. First, we identify the active-taxels as shown in Fig 40-a. The taxels

where the pre-touch sensor is active are marked in red and the taxels which detect contact

force are marked in blue. With the active-taxels data, as shown in Fig. 40-b, we compute

the CoP of each foot with the method described in Section 4.2.5. With this data information,

as shown in Fig. 40-c, we can also construct the supporting polygon and the pre-touch

polygon for each foot using the method described in Section 4.2.7. Finally, we combine the

feet’s polygons to construct the composite supporting polygon and the composite pre-touch

polygon as described in Section 4.2.7.

In the following subsections, the skin measurements are used as tactile feedback in a balance

controller and to re-plan steps when an obstacle is detected under the foot during walking.

4.3.1. Experiment: Tactile-based ZMP feedback in a balance controller
The online acquisition of the CoP can be used to compute the ZMP feedback for stable

balance controllers and dynamically balanced walking controllers [97]. To assess the per-

formance of the skin ZMP acquisition, a bench test was implemented comparing the ZMP

position estimated by both the robot skin and ankle force-torque sensors in a balance con-
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troller. The feedback law used for this test is the 2D DCM-ZMP regulator controller [179].

ξ = x+
ẋ

ω
(4.27)

pd = pr −
(

1 +
kξ
ω

)
(ξr − ξ) (4.28)

ẋd = kf (p− pd) + kx(xd − x) (4.29)

where ω =

√
g

zx
∈ R is the inverted pendulum frequency at CoM height zx, p ∈ R3 and

ṗ ∈ R3 are the real and desired ZMP, ξ ∈ R2 and ξr ∈ R2 are the real and reference DCM,

x ∈ R3 and xd ∈ R3 are the real and desired CoM positions and kξ, kf and kx are positive

gains. The controller was designed to be compliant to external pushing forces and return to

a standing position afterwards. The parameters are listed in Table 2.

Table 2 Balance control parameters.

Parameter Value

ξr 0 ∈ R3 [m]

xd 0 ∈ R3 [m]

zx 0.8 [m]

kξ 1.5

kf 0.5

kx 1.0

εf 0.15 [kg]

The robot was standing on both legs keeping balance and was pushed and pulled by an

operator to introduce unknown disturbances on the controller as shown in Fig. 41. The plots

in Fig. 42-a,e and 42-c,f show the estimated ZMP x and y components used directly as

feedback in the balance controller (assuming both soles are in full contact with the ground).

In these plots, a comparison of the ZMP measured by the ankle force-torque sensors and the

robot skin is presented. The difference in the estimation of the ZMP between the force-torque

sensor and the robot skin pFT −pskin is shown in Fig. 42-b,g and 42-d,h. The plots in Fig. 43

show the comparison of the estimated ZMP with the force-torque sensors and the skin in the

xy plane. Fig. 43-a shows the local ZMP in each foot and the supporting polygon detected

for each foot. Fig. 43-b shows the composite ZMP and supporting polygon.

As a comparison, the experiment was conducted under two conditions, first using the skin

measured ZMP as feedback in the balance controller and then using the ZMP estimated with

the ankle force-torque sensors. In both cases, the gains of the balance controller were the

same. The operator pushed and pulled the robot from the neck to induce compliant motions

in the robot body. When the external force was removed, the robot came back to the desired
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Figure 41 An experimental test of the ZMP estimation using robot skin. The robot is standing executing a CoM-ZMP compliant
balance controller and an operator is pushing the upper body to disturb its balance. The ZMP used in the feedback loop was
estimated using the robot skin.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 42 Data plot of the balance experimental test (Fig. 41). The ZMP was estimated using two different sensors: the
robot’s ankle force-torque sensors (blue), and the robot skin on the sole (red). The experiment was recorded twice, first using
the skin ZMP as feedback in the balance controller and then, using the force-torque sensor ZMP. a,e) x component of the
ZMP. b,f) difference between the force-torque sensor and robot skin ZMP x component. c,g) y component of the ZMP. d,h)
difference between the force-torque sensor and the robot skin ZMP y component.

79



(a)

(b)

Figure 43 2D Data plot of the CoP experimental test shown in Fig. 41. a) Single sole force-torque sensor DCM (left plFT
and

right prFT ), skin DCM (left plskin
and right prskin ), and supporting polygon (left SL and right SR). b) Composite

force-torque sensor DCM pFT , skin DCM pSkin, and the composite supporting polygon Sfeet.

80



Planned swing foot trajectory

Figure 44 The trajectory of the swing foot during the experiment. When a premature contact is detected, the forces and
moments in the ankle are measured by the force-torque sensor to evaluate if the obstacle is safe to step on it.

ZMP position located at the center of the supporting polygon. During the experiment, the

ZMP was deviated up to 10 cm from the reference (located at 0 cm) by the external forces.

However, it never reached the supporting polygon border to prevent breaking the full-sole

contact assumption. The most considerable difference between the ZMP estimation from the

force-torque sensor and the skin was approximately 1 cm and, although the magnitude of the

disturbances was unknown, the balance controller showed a stable behavior in both cases.

4.3.2. Experiment: Steps re-planning from instantaneous contact information
This experiment is designed to examine the advantages the plantar robot skin has over the

ankle force-torque sensors for footstep re-planning over unknown terrain. The robot is in-

tended to walk on a straight line without knowing the geometry of the terrain. The walking

controller is designed for flat terrain and does not consider ankle compliance. If an early con-

tact occurs during the swing-leg phase (Fig. 44), the feasibility of stepping on the detected

obstacle is evaluated with a simple rule which only uses the information acquired during the

impact. If the obstacle is considered as stable, the robot continues walking over it following

the planned footsteps. If the obstacle is considered as not safe, the footstep is re-planed to

circumvent the obstacle and the robot continues walking as shown in Fig. 45. To check the

step feasibility, the following rules are designed with the different sensors:

a) With the force-torque sensors, the moment produced at the ankle by the collision ηs (Fig.

44) is compared to a feasibility threshold of εt. This was defined under the assumption that

the impact of a flat foot over flat terrain produces only vertical force. Therefore if ||ηs|| ≥ εt

the step must be re-planed.

b) With the robot skin, the relation
Ap
As

is compared to a feasibility threshold of εA where Ap

is the area of the supporting polygon detected at the moment of the impact, and As is the

total foot sole area (measured directly from the robot’s foot). This rule was designed under

the assumption that a safe foothold must cover at least a certain percentage of the sole area

to provide enough surface to generate enough friction for stepping on it. Therefore if
Ap
As
≤ εA

the step must be re-planed.
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Figure 45 Walking on unknown terrain experiment. a) If a foothold is not safe to step onto it, the robot must re-plan to sidestep
the detected obstacle. b) The re-planed step must consider the size of the obstacle ∆o and a clearance distance ∆c .

 a) b)

d)c)

Figure 46 Different conditions for step feasibility evaluation. a) With no obstacle, both feasibility rules result in no re-plan. b)
With a big flat obstacle, both feasibility rules result in no re-plan. c) With a small flat obstacle hit with the border of the sole,
both feasibility rules trigger a step re-plan. d) With a small flat obstacle hit with the center of the sole, just below the
force-torque sensor, the force-torque sensor rule does not trigger the re-plan, while the robot skin detects the unsafe condition
and triggers the re-plan.
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Both rules are analogous. However, the force-torque sensor cannot directly measure the

contact area. Thus, it cannot be used for rule b while the plantar robot skin can be used for

both. This is one major advantage of having more information about the ground contacts.

The conditions for step re-plan are represented in Fig. 46. For the cases where the contact

provides a large flat surface, both rules a and b result in no re-plan Fig. 46-a and 46-b . If

the contact is produced by a small flat obstacle Fig. 46-c, both rules trigger a step re-plan.

All these conditions are correctly evaluated by both, the force-torque sensors and the robot

skin. Nevertheless, when premature contact generates a moment, which is not large enough,

the force-torque sensor fails to detect small surfaces and considers them as similar to a large

area flat obstacle Fig. 46-b. For example, when a small flat obstacle is touched with the sole

right below the force-torque sensor Fig. 46-d. On the other hand, the robot skin can measure

the small obstacle area and trigger a step re-plan.

Right after the first contact, the robot skin can additionally provide the exact distance to

sidestep an obstacle. We can obtain the obstacle’s width ∆o from the bounding box of the

supporting polygon and the clearance distance ∆c from the geometry of the foot sole. With

this information, we can easily re-plan the step as shown in Fig. 45-b.

Fig. 47 shows the experimental comparison for an obstacle in the form shown in Fig. 46-d.

The force-torque sensor fails to detect the unsafe foothold and the walking controller tries to

step onto the obstacle causing the robot to fall. The robot skin detects correctly the unsafe

obstacle and triggers the step re-plan with the exact distance to sidestep the obstacle and

continues walking.

The walking test was performed under eight different conditions using four different obstacles

as shown in Table 2. For each obstacle, the test was run once using only the force-torque

sensor and once using only the robot skin. The thresholds for the feasibility check rules are

εt for the force-torque sensor and εA for the contact area. The force-torque sensor failed

with obstacles 3 and 4 which provide a small flat area that was assumed to be large enough

to support the robot. Obstacle 4 is made with 3 small spheres which are providing round

surfaces similar to stepping on pebbles. This three-point contact condition is not detectable

by the force-torque sensor without exploratory motions.

4.4. Walking on Uneven Terrain and Partial Footholds

In Section 4.3, we probed how plantar skin complements balance and walking controllers to

prevent stepping over insecure terrain conditions. In this section, the tactile information will

be used to extend the formulations of balance and walking controllers to walk over uneven

terrain and partial footholds.
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Figure 47 Experimental evaluation of the step feasibility rules using force-torque sensors and robot skin. On the left side, the
robot skin successfully detects the small area of the obstacle and triggers a step re-plan with the exact distance required to
sidestep the obstacle. On the right side, the force-torque sensor fails to detect the unsafe condition and the walking controller
tries to step on the obstacle leading the robot to fall.
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Table 3 Tested obstacles. Green: Robot completed the test. Red: Robot fell down.

No. Obstacle Footprint
ηs[Nm]
εt = 8.0

Ap/As
εA = 0.8

Handled by
force-torque
sensor

Handled by
robot skin

1 6.5 0.85
Stepping on
obstacle

Stepping on
obstacle

2 8.6 0.16
Footstep re-
plan

Footstep re-
plan

3 6.0 0.33
Stepping on
obstacle

Footstep re-
plan

4 4.5 0.23
Stepping on
obstacle

Footstep re-
plan

4.4.1. Preemptive foot compliance (PFC) using plantar proximity sensors
A common strategy for bipedal robot walking on uneven terrain using ankle force-torque sen-

sors is to generate compliant joint motions from the GRW to distribute the contact forces

along the sole [86, 180, 85, 181, 93]. This approach is briefly depicted in Fig. 48. During the

swing phase of walking, the foot can encounter an unexpected early contact caused by a ter-

rain irregularity or an obstacle. During the swing phase of walking, the foot can encounter an

unexpected early contact caused by a terrain irregularity or an obstacle. This event produces

an impact which is measured by the ankle sensor as a spike in the force fankle ∈ R3 and

torque ηankle ∈ R3.

The swing foot motion is canceled when early contact is detected, for instance, when the

ankle force exceeds a predefined threshold ||fankle|| > εstop. However, this method causes

heavy impacts on highly dynamic walking motions. In [182], the impacts are reduced by

adding contact switches on the corners of the foot. However, for irregular terrain (as in the

case of a small size obstacle), the switches at the corners of the sole can miss the early

contact, leading to an impact in the foot.

When the terrain is irregular, ||ηankle|| is larger than in the flat terrain case, and thus, the ZMP

is pushed away from the sole center. Such disturbance can be compensated by distributing

the contact forces along the sole. The force distribution can be realized by changing the foot

orientation with a foot impedance controller as in [180], and [93] or as an optimization problem

as in [183], and [8].
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(a)

(b)

Figure 48 Foot compliance with ankle force-torque sensors: (a) foot compliance for uneven terrain is triggered when an
external force spikes as a result of a collision with an unexpected obstacle. (b) foot motion is generated to minimize the ankle
torque τankle which causes the adaptation of the foot orientation to comply with the terrain conditions.

Proximity sensing plantar skin can provide the terrain information required approach the prob-

lem of walking on uneven terrain, enabling PFC for the foot orientation and a virtual repellent

force for smoothly stopping the landing foot. The formulation for the PGRW (Preemptive

Ground Reaction Wrench) in Section 4.2.6 provides the computation of the repulsive forces

needed for the PFC.

The VGRW (Virtual Ground Reaction Wrench) can be added as a complementary input to

any foot admittance or motion tracking controller for ankle force-torque sensors without sig-

nificant changes in the formulation. However, its contribution must be set to zero once the

foot touches the ground to avoid adding disturbances to the balance controller. Let us define

a sole wrench for PFC as

wsole =


wf +wp for ||wf || = 0

wf for ||wf || > 0

(4.30)

Fig. 49 shows the preemptive foot compliance during one stride. It starts when the swing foot

approaches an unexpected obstacle or an inclined terrain segment (Fig. 49-a). When the

terrain enters the proximity sensors’ range, the PFC starts damping the swing motion (Fig.

49-b). Simultaneously, the sole is pushed to adopt the terrain orientation (Fig. 49-c). This

can be done by any controller that minimizes ηp. The foot tracking motion is damped by fp
which increases as the foot gets closer to the terrain. The preemptive foot compliance can
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(a) (b) (d)(c)

Figure 49 (a) the swing foot with plantar proximity sensing approaches an obstacle. (b) when the obstacle enters the sensing
range, a virtual repellent force field produces a virtual GRW solewp. (c) foot motion damps due to solewp and stops when
||solefp|| > εstop while adapting the foot orientation to match the terrain slope. (d) once foot landed, the real GRW solewf
(measured by force sensing taxels) is used as feedback.

be used to define an early contact for stopping the swing motion when the virtual exceeds a

certain threshold

fp > εstop (4.31)

However, there can be cases where the foot lands before the early contact condition Eq.

(4.31) is fulfilled. This can happen, for example, when the foot lands over a partial foothold

that generates a small fp. Once the foot lands, the real GRW measured from force-sensing

taxels or an ankle force-torque sensor must be used for a final adjustment of the foot on the

terrain (Fig. 49-d).

4.4.1.1 Experiment: HRP-2Kai robot steps over moving obstacle using PFC

The PFC effects can be seen in Fig. 50. The HRP-2 robot steps in place and an obstacle is

slid below a foot while landing. The proximity sensing adjusts the orientation of the foot before

the contact and stops the swing motion before the impact. With this preemptive adaptation,

the impact against an unexpected obstacle produces a smaller disturbance to the balance

controller, which can coup with it by distributing the ground reaction forces over the available

contact geometry.

4.4.1.2 Experiment: HRP-2Kai robot on flat ground, foot landing impact reduction with PFC

Adding the PFC force component from Eq. (4.30) to the ankle force measurement, we can

detect early contacts and stop the foot swing motion before hitting the ground. This impact

reduction is visible when walking over flat ground as shown in Fig. 51. In this experiment, the

HRP-2Kai robot is commanded to take 6 forward steps of 20 cm with tss = 1.4, and tds = 0.5

and 5 cm height. With the proximity sensors disabled, the walking motion produces impacts
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Figure 50 Preemptive foot compliance in the HRP-2 robot. The robot is stepping in place and an obstacle is introduced below
the sole during a foot swing phase.

≈ 350 N. With the proximity sensing enabled, the impact forces are reduced to below 200 N

and suppressed to 0 N in some steps.

Fig. 52 shows the impact ranges of the two runs. The left bar shows the maximum and

minimum impact recorded when PFC is off. The maximum impact is 430 N, the minimum

impact is 156 N, and the average impact is 340 N. When the PFC is enabled, the maximum

impact is 200 N, the minimum impact is 0 N which means a smooth foot landing, and the

average impact is 58 N. The average impact with PFC is 17% of the average impact with no

PFC. The maximum impact with no PFC is 46% of the maximum impact with no PFC.

4.4.1.3 Experiment: H1 robot on flat ground, foot landing impact reduction with PFC

Let us analyze the impact suppression effect of PFC in a larger stepping run in the H1 robot.

In this experiment, the H1 robot takes 100 steps under two conditions, first with PFC on and

then with PFC off. In both cases, the single support phase time is tss = 0.9, and the double

support time is tds = 0.3. The step height is 5 cm Fig. 53 shows the impacts recorded

by the left ankle force-torque sensor during the runs. Fig. 53-a shows the landing impact

magnitudes measured by the left ankle force-torque sensor ff when the PFC is disabled.

Fig. 53-b shows the run with PFC enabled. The impact forces are smaller with the PFC and

in several steps, the impact force is 0 N.
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Figure 51 An effect of the PFC is the reduction of impact forces, even on walking over flat ground. The HRP-2Kai robot takes 6
forward steps with tss = 1.4, and tds = 0.5. In the upper plot, PFC is disabled and the HRP-2Kai robot hits the ground with a
force ≈ 350 N in every step. In the lower plot, the PFC reduces the impacts below 200 N and suppresses them to 0 N in some
of the steps.
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Figure 52 Impact reduction caused by PFC in the HRP-2Kai robot taking 6 steps. The average impact with PFC on is 17% of
the average impact when PFC is off. The maximum impact recorded with PFC is 430 N. With PFC on the maximum impact
recorded is 200 N which is a reduction of 54%.
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a)

b)

Figure 53 Left foot landing impacts. a) The H1 robots took 100 steps (50 with the left foot) with no PFC. b) The same
experiment with PFC enabled. The missing impacts are recorded as 0 N by the ankle force-torque sensor, they are lower than
the activation threshold of 50 N.
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Figure 54 Impact reduction caused by PFC in the H1 robot taking 100 steps. The average impact with PFC on is 22% of the
average impact when PFC is off. The maximum impact recorded with PFC is 615 N. With PFC on the maximum impact
recorded is 261 N which is a reduction of 58%.

Fig. 54 shows the impact ranges of the two runs. The left bar shows the maximum and

minimum impact recorded when PFC is off. The maximum impact is 615 N, the minimum

impact is 329 N, and the average impact is 486 N. When the PFC is enabled, the maximum

impact is 261 N, the minimum impact is 0 N which means a smooth foot landing, and the

average impact is 109 N. The average impact with PFC is 22% of the average impact with no

PFC. The maximum impact with no PFC is 42% of the maximum impact with no PFC.

At first glance, this improvement may not be necessary for flat ground and the impacts can

be absorbed by passive elements such as soft rubber soles or ankle couples. However, the

picture is different if an unexpected obstacle is hit at foot landing.

4.4.1.4 Experiment: H1 robot over a flat obstacle, foot landing impact reduction with PFC

The impact reduction effect of the PFC applies also when early contacts are caused by un-

even terrain conditions. This experiment shows the effect when walking over obstacles. Walk-

ing controllers for flat ground cannot deal with discontinuities in the terrain height. The impact

caused by an unexpected rise in the terrain height disturbs the balance of the walking con-

troller and can cause it to fall. The risk increases if the step time is shorter, e.g. dynamic

walking.

In Fig. 55, the H1 robot takes 6 forward steps of 20 cm with tss = 0.9, and tds = 0.3.

However, in the third step, an obstacle with a height of 3 cm is hit with the left foot. When the

PFC is disabled, the impact produced by the unexpected obstacle≈ 1100 N. The disturbance

causes the walking controller designed for flat ground to lose balance and fall. The impact is

abrupt and the force-torque sensor cannot stop the swing motion in time to reduce it. When

the PFC is enabled, the early contact is anticipated by the virtual force fp and the foot swing

motion stopped in time. The impact produced by the obstacle is≈ 370 N, and the disturbance

on the balance controller is suppressed successfully. The impact in this case is in the same
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range as the impacts on flat ground recorded in the experiment in Section 4.4.1.3.

4.4.2. Walking motion adjustment from contact geometry
Although preemptive foot compliance helps find suitable footholds over uneven terrain, the

terrain geometry must be considered to adapt the walking motions to keep the stability. For

example, the three-dimensional control in [184] compensates for height variations in the ter-

rain, [181, 86], and [180] adapt to terrain inclination, and [94] adapts the walking motions to

step on partial footholds including line contacts.

Motion planning for walking commonly starts by planning the footsteps over the terrain. Then,

a feasible reference ZMP trajectory within these footsteps is created. A common strategy is

to define the ZMP way-points at the center of the planned steps where full sole contact is

assumed. Finally, a smooth trajectory for the center of mass is interpolated using a simplified

model such as the LIP. Nevertheless, during the execution of the motion, disturbances and

uncertainties make the system deviate, and feedback control is required to track the reference

trajectories. Therefore, the trajectories should be continuously adjusted from sensor feedback

every time a foot takes a new step. Let us analyze the case of a foot landing over a partial

foothold and how plantar tactile information helps re-plan the motion.

As described in Section 4.2.5, plantar robot skin provides an approximation of the real contact

geometry and thus the supporting polygon. Additionally, the centroid of a convex polygon can

be easily computed with fast algorithms as [185]. The centroid of the supporting polygon

rf can be used as an immediate new reference position for the ZMP right after contact is

detected as shown in Fig. 56.

Depending on the capabilities of the robot, a security check with the relation of the sole area

Asole and the supporting polygon area Af can be defined to decide to step over the obstacle

or take other action, for example, a step re-plan as in Section 4.3.2, or an emergency stop as

in [186].

4.4.3. Balance control using the contact geometry
A necessary condition for stable biped walking is the existence of the ZMP inside the sup-

porting polygon [155]. Furthermore, if the ZMP gets too close to the edge, the robot can

tilt at the slightest disturbance and fall. To prevent this, balance controllers push the ZMP

away from the edges of the supporting polygon by distributing the contact forces along the

sole. Different strategies can be applied for balance control, an efficient method is to used a

feedback loop of the DCM to shift the target position of the ZMP. Let us complement it with

the plantar tactile information.

In Section 4.1.1, we expressed the walking dynamics in terms of the LIP model with Eq.

(4.1). Then, in Section 4.1.3 we revised the generation of stable walking motions using the

LIP model and the DCM. Finally, in Section 4.1.4 we revised the feedback control required
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Figure 55 The H1 robot walks over flat ground and finds an unexpected 3cm obstacle (tss = 0.9, tds = 0.3). In the upper
plot, PFC is disabled and the 1150 N impact produced by the obstacle causes a robot to fall. In the lower plot, the PFC
anticipates the obstacle and damps the impact to 370 N. This allows the stabilizer to keep the balance and continue walking.
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Figure 56 Reference ZMP adjustment from tactile information when a foot lands over a foothold smaller than the robot sole.
(a) the centroid rF of the supporting polygon SF can be directly assigned as new ZMP reference. (b) Closer look at the ZMP
reference change from the original plan pref to the centroid rF .

to track the walking motions closing the loop with information on the ground reactions. The

chain structure of the DCM and the LIP model helped propagate the feedback to stabilize the

walking motions. Eq. (4.18) minimizes the DCM deviations by shifting the desired position

for the ZMP. Nevertheless, p must stay within the supporting polygon to keep the stability.

Therefore, its reference trajectory pd must be constrained inside the estimated supporting

polygon Sf as a safety measurement. Englsberger et al. proposed adjusting pd to the closes

point in the known sole geometry. However, there was no knowledge on the real shape of the

contact and thus full sole contact was assumed.

Plantar skin provides the missing information on the contact geometry that will help constraint

pd. Hence, after computing a first approximation pd,ini two cases are possible as shown in

Fig. 57: a) pd,ini lays inside Sf and pd = pd,ini, b) pd lays outside Sf and must be shifted to

the closest point in Sf . Algorithm 1 verifies the first case and implements the second when

needed from the vertices of Sf and an initial adjusted ZMP reference pd,ini.

pd is now constrained inside an accurate approximation of the supporting polygon. Addi-

tionally, the supporting polygon as a constraint for ZMP control is known. Therefore, pd can

be tracked with any ZMP tracking control to close the loop on for the walking control. For

example Eq. (4.20) or the QP (Quadratic Programming) formulation in [8].

4.4.4. Constrained contact wrench distribution
A common strategy for ZMP tracking is through CoM admittance control [187]. However,

plantar wrench control can improve the ZMP tracking by distributing the contact forces along

the sole [188]. Furthermore, if the contact area is smaller than the sole, such distribution

of forces must be kept within the contact geometry. Fortunately, the supporting polygon
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Algorithm 1 Constraining pd inside Sf
Input: Sk: the k vertices of Sf in clockwise order,

pd,ini ∈ R3,pd,ini,z = 0 ∈ R3

Output: pd ∈ Sf such that
||pd − pd,ini|| = inf{||a− pd,ini|| | a ∈ Sf}

Function next(j)
if j = k then

return 1
else

return j + 1
end if

pd = Sk(1)
inside = true
for i = 1 to k do
l = Sk(next(i))− Sk(i)
d = pd,ini − Sk(i)
v = d× l
if vz > 0 then
r = (d · l) / (l · l)
if r ≤ 0 then

p̃d = Sk(i)
else if 0 < r < 1 then

p̃d = Sk(i) + rl
else if 1 ≤ r then

p̃d = Sk(next(i))
end if
if ||pd,ini − p̃d|| < ||pd,ini − pd|| then

pd = p̃d
end if
inside = false

end if
end for
if inside then

pd = pd,ini
end if
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(a) (b)

Figure 57 Adjustment of reference ZMP pd to stay inside Sf from an initial approximation pd,ini. a) pd,ini lays inside Sf and
pd = pd,ini, b) pd lays outside Sf and must be shifted to the closest point in Sf .

estimated with plantar skin can help define constraints for different controllers. As an example,

let us adapt the contact stability formulation proposed by Caron et al. [8], which defines linear

constraints for an ankle-wrench distribution QP from the supporting polygon assuming full-

sole contacts. The formulation of these constraints is the sole wrench cone

|fx| ≤ µfz (4.32)

|fy| ≤ µfz (4.33)

fz > 0 (4.34)

|τx| ≤ Y fz (4.35)

|τy| ≤ Xfz (4.36)

τz,min ≤ τz ≤ τz,max (4.37)

where

τz,min := −µ (X + Y ) fz + |Y fx − µτx|+ |Xfy − µτy| (4.38)

τz,max := +µ (X + Y ) fz − |Y fx + µτx| − |Xfy + µτy| (4.39)

µ is the friction coefficient, and X, Y are the dimensions of the sole as shown in Fig. 58. Let

us now consider the case of a partial foothold to rewrite the wrench cone. For simplicity as a

proof of concept, we will keep the constraint that the contact is still an axis-aligned rectangle.

This rectangle can be constructed by optimization algorithms as [189] to find the maximum

area rectangle, or merely as a bounding box of the contact with a safety inner offset. Note that

the second is less accurate but faster to compute, and therefore would require a conservative

margin to be applicable in realistic scenarios.
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Figure 58 Contact constraints geometry in [8] adapted to smaller contact rectangular areas approximated by plantar skin.

As shown in Fig. 58, the limits of the contact are now divided by maximum Xmax, Ymax and

minimum Xmin, Ymin for each axis. With this geometry, the torsional part of the wrench cone

(Eq. (4.38) and (4.39)) is redefined as

Ymaxfz ≤ τx ≤ Yminfz (4.40)

Xminfz ≤ τy ≤ Xmaxfz, (4.41)

however, the constraints for τz can no longer be expressed in the concise notation of Eq.

(4.39) and (4.39), and must consider the different cases

−Ymaxfx −Xmaxfy − µ(Xmax + Ymax)fz + µτx + µτy ≤ τz

−Ymaxfx +Xminfy − µ(Xmin + Ymax)fz + µτx − µτy ≤ τz

+Yminfx −Xmaxfy − µ(Xmax + Ymin)fz − µτx + µτy ≤ τz

+Yminfx +Xminfy − µ(Xmin + Ymin)fz − µτx − µτy ≤ τz

−Ymaxfx −Xmaxfy + µ(Xmax − Ymax)fz − µτx − µτy ≥ τz

−Ymaxfx +Xminfy + µ(Xmin − Ymax)fz − µτx + µτy ≥ τz

+Yminfx −Xmaxfy + µ(Xmax − Ymin)fz + µτx − µτy ≥ τz

+Yminfx +Xminfy + µ(Xmin − Ymin)fz + µτx + µτy ≥ τz

With these new constraints, the solution of the QP will generate an ankle wrench, which

distributes the contact forces on the corners of the rectangle cF,i shown in Fig. 58.
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4.4.5. Experiment: Stepping over partial footholds
Two robots running different controllers were used to validate the plantar sensing with the for-

mulations from this Section: a) the HRP-2Kai robot [3] described in Section 2.3.3. The tactile

information was added in the foot admittance task of the open source2 controller implemented

by Caron et al. [127]. The ZMP adjustment from the center of the supporting polygon was

adapted without deep modifications into the code. b) the H1 robot described in Section 2.3.2.

The H1 robot runs the ros_control framework [126] and a custom walking controller based

on the DCM dynamics similar to [6] as described in Section 4.1.

Plantar robot skin is mounted on both robots with the shoes described in Section 4.2.2. The

skin system delivers four sensing modalities (force, proximity, temperature, and acceleration)

at a maximum update rate of 250 Hz.

The principles described in this section were primarily validated on the HRP-2 robot. The

single support time was assigned as tss = 1.4, and the double support time as tss = 0.5.

Additionally, the weights of the cost function were adjusted as follows: W...
x = 5 for the CoM

jerk,Wẋ = 100 for the CoM velocity, andWp = 50 for the ZMP. This adjustment was required

to reduce the ZMP distribution reactions due to the small surface of the foothold. The tuning

of the weights was done by trial and error in simulation.

Subsequently, the second round of experiments was validated for the H1 robot with faster-

walking motions and smaller footholds. For the H1 robot, the single support time was as-

signed as tss = 0.9, and the double support time as tss = 0.3. In all the experiments, early

contacts are assumed when the contact force in the landing foot is larger than 70 N. Two sets

of experiments were prepared for each robot walking over obstacles with an area smaller than

the foot sole. The robots are commanded to take 6 forward steps. The step size is 20 cm and

the height of the swing foot motion to 8 cm.

4.4.5.1 Experiment: HRP-2Kai stepping over partial footholds

The first experiment shows the HRP-2 robot walking over two different obstacles. In Fig. 59,

the obstacle is only supporting the rear half of the robot sole. When the foot lands over the

obstacle, the plantar skin approximates the shape of the contact and the constraints for the

ZMP Xmax, and Xmin are defined. Additionally, the reference point for the ZMP pr is shifted

to the center of the contact area. Then, while shifting the robot’s weight to the new supporting

foot, the balance controller shifts the desired ZMP pd to track the reference. Nevertheless,

the adjustment is constrained within Xmax, Xmin, Ymax, and Ymin. These limits are also

used to define the constraints for the wrench distribution QP, which controls the real ZMP p.

A closer look at the constraint adjustment is detailed in Fig. 59-c. The dashed green line is

the original constraint X, which considers full sole contact.

2 https : //github.com/stephane− caron/lipm_walking_controller
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(b)

(c)

Figure 59 The HRP-2Kai robot walks over an onstacle that is half the size of the sole. The plantar skin approximates the
supporting polygon SF , and the contact constraints for the ZMP wrench distribution control are defined as the bounding box
SF with a safety inner offset of 1 cm. The obstacle requires an adjustment in the sagital direction. The reference ZMP pref is
shifted to the center of the contact area. The desired ZMP pd is adjusted and constrained within the supporting area and the
real ZMP p is controlled to track pd considering the hard constraints Xmax,Xmin.
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Figure 60 The HRP-2Kai robot walks over an obstacle that is half the size of the sole. The plantar skin approximates the
supporting polygon SF , and the contact constraints for the ZMP wrench distribution control are defined as the bounding box
SF with a safety inner offset of 1 cm. The obstacle triggers an adjustment on the lateral direction. The reference ZMP pref is
shifted to the center of the contact area. The desired ZMP pd is adjusted and constrained within the supporting area and the
real ZMP p is controlled to track pd considering the hard constraints Ymax, and Ymin.
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Fig. 60 shows the experiment with another obstacle, which only supports the lateral half of

the sole. In this case, the adjustment is performed on the y axis. In Fig. 60-c, the support-

ing polygon constraints Ymin and Ymax are plotted and the dashed line shows the full sole

geometry.

4.4.5.2 Experiment: H1 robot stepping over partial footholds

A similar experiment with the H1 robot is shown in Fig.61 and Fig. 62. First, the H1 robot

walks over a foothold that covers only the rear half of the sole. However, the robot does not

have information on the terrain and is commanded to take five forward steps. The step length

is 20 cm, and the height is 8 cm. The single support time is 0.9 s and the double support time

is 0.3 s. When the foot hits the obstacle, the reference ZMP pr is shifted to the centroid of

the supporting polygon, and the DCM waypoints are replanned automatically. Then the robot

continues walking and constraints the adjustment of the ZMP within the supporting polygon

using Algorithm 1.

We ran the same experiment with the H1 robot with a smaller obstacle as shown in Fig.

62. The contact area of the obstacle is ≈ 30% of the H1’s sole (Fig. 62-a). Nevertheless,

the walking controller can step over it without falling and the ZMP is always kept inside the

supporting polygon. Fig. 62-b shows the adjustment of the virtual repellent points r over the

contact area. This adjustment is also reflected in the reference DCM trajectory ξref , and the

reference CoM trajectory xr. In these plots, the gray polygons are the different supporting

polygons for both the single support and double support phases.

4.4.5.3 Experiment: H1 robot walking over a beam

Walking over partial footholds is possible with plantar tactile feedback as shown in the pre-

vious experiments in this section. However, these experiments involved only one obstacle

smaller than the sole. To assess the performance of our approach in a continuous walking

case, we designed an experiment inspired by the labor of heights workers. Construction

workers in high buildings are often required to step on or traverse structures that are built with

thin beams. Furthermore, in many cases, they must also carry tools and materials. Heights

workers move over scaffolds that are made with thin beams to reduce the drag caused by the

wind.

Walking continuously over partial footholds is not possible without plantar sensing. A remark-

able example of walking on partial footholds is the work from Wiedebach et al. [94]. However,

they map the geometry of the terrain using fast exploratory motions between each step. Their

solution is very robust to the terrain conditions but relies on aggressive motions and slow

stepping to keep the balance.
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(a)

(b)

(c)

Figure 61 The H1 robot walking over a partial foothold. The upper plot shows the adjustment of the walking reference
trajectories. The lower plot shows the tracking of the ZMP constrained in the supporting region Sf . r are the VRPs, ξr is the
reference trajectory for the DCM, xr is the reference trajectory for the CoM, pr is the reference trajectory for the ZMP, pd is
the adjusted desired position of for the ZMP, and p is the real ZMP during the experiment. 102



(a)

(b)

(c)

Figure 62 The H1 robot walking over an obstacle smaller than the foot sole (approx. 30% of the sole area). The upper plot
shows the adjustment of the walking reference trajectories. The lower plot shows the tracking of the ZMP constrained in the
supporting region Sf . r are the VRPs, ξr is the reference trajectory for the DCM, xr is the reference trajectory for the CoM,
pr is the reference trajectory for the ZMP, pd is the adjusted desired position of for the ZMP, and p is the real ZMP during the
experiment.
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Figure 63 The H1 robot walking over a 12 cm beam. The length of its sole is 25 cm. The supporting polygon constructed from
plantar tactile information is used to adjust online the walking motions. The VRPs and thus the DCM waypoints are shifted to
the centroid of the polygon acquired right after foot landing. Then the supporting polygon is used to constraint the adjusted
reference ZMP pd for the balance controller.
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In this experiment, we set up a beam between two platforms. The beam is 1.3 m long and 12

cm in width. The H1 robot walked over the beam with 50 side steps of 8 cm going from one

platform to the other under two different conditions. In both cases, the single support time is

0.9 s and the double support time is 0.3 s.

Fig. 63 shows the first case of the experiment. The picture sequence shows the robot walking

over the beam. In the 2D plot, the gray contours are the supporting polygons Sf acquired

with plantar tactile feedback. The walking motions are adapted to the supporting polygon

geometry as described in Section 4.4.2. When a foot lands on the beam, the VRP of the

next step is shifted to the centroid supporting polygon of the foot, then the DCM waypoints

are adjusted to match the new VRP. The supporting polygon is also used to constraint the

reference ZMP using algorithm 1. The yellow line is the adjusted ZMP pd which is constrained

inside Sf with a safety offset of 1.5 cm. The real ZMP p is represented in the blue line. The

red squares show the centroids of the Sf polygons used to adapt the walking motions.

Fig. 64 shows the second case for the experiment, the terrain geometry is the same but the

H1 robot was placed in the initial position with a small angular deviation around the z axis. The

robot once again takes 50 side steps of 8 cm but when it reaches the beam, the plantar tactile

information detects the angular deviation and the walking motions are adapted as described

in Section 4.4.5. The supporting polygon with inner offset is also used as constraint for the

ZMP reference adjustment in the balance controller.

In this experiment, the H1 robot walked over a 12 cm beam. The foot length of the H1 robot

with the tactile shoes is 25 cm, therefore the supporting polygon in every step is about 50%

of the sole. Plantar tactile feedback allows the robot to walk over the beam without the need

of exploratory motions to map the terrain. Every step provides the geometric information of

the foothold immediately after touching the ground. Then the trajectories for the DCM are

adjusted online and despite producing an abrupt change in the DCM reference point, the

CoM follows the new reference point smoothly as described in the LIP model in Eq. (4.10).

4.5. Summary

This chapter provided the formulations for physical and virtual interaction to bipedal robot

balance and locomotion. With the distributed force sensing provided by robot skin, a robot can

measure the interaction forces exerted by the terrain and the geometry of the interaction area.

These measurements provide information on the walking metrics that the classic approach

(ankle force-torque sensors) can not. State-the-art walking controllers cope with the missing

information by making assumptions as full sole contact (for example [8, 188]) or by slowing

down the walking pace applying fast exploratory motions over the footholds before transferring

the weight to the landing foot.
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Figure 64 The H1 robot walking over a 12 cm beam with a deviated initial orientation. When the robot walks from the first
platform to the beam, the supporting polygon constructed from tactile plantar feedback helps adjust the walking motions as
described in Section 4.4.5, and at to constraint the reference ZMP in for the balance controller.
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The formulations presented in this chapter merge the capabilities that plantar skin provides

into bipedal robot balance and walking control. We revised how to find the ZMP from the

plantar tactile information, which is the fundamental metric for equilibrium in most walking

controllers. We investigated the capability of plantar skin to replace ankle force-torque sen-

sors to measure the ZMP and the GRF with a side-by-side comparison of both feedbacks in

a balance controller. Nevertheless, the plantar skin system must know the location of every

taxel in the sole to estimate the ZMP.

In the experimental runs, we found that to find the ZMP, there is no need for precise calibration

of the force cell in the taxels, as long as the sensitivities and sensing ranges of the taxels are

uniform. The formulation of the ZMP (Eq. (4.21)) divides the product of the force and the

location of the taxels by the vertical component of the resultant force, which is the largest

component of the GRF. Therefore, in practice, the variations in the magnitude of the GRF are

compensated when computing the ZMP. However, if we need to compute the GRF, proper

calibration of the force cells will be required.

In Section 4.2.5, we introduce a new method to approximate the shape of the supporting

polygon from plantar tactile information. In that method, we exploited the spatial distribution

of the taxels over the sole, combined with the knowledge of the taxel geometry. In practice,

the taxel geometry is given during the hardware design of the robot skin systems. Therefore,

we can assume that the shape and size of the taxels are known. Our method applies to

any taxel shape and size. Combining taxels of different shapes and sizes is not a problem,

as long as the geometry of all the taxels is known. The accuracy of the supporting polygon

approximation depends on the spatial resolution of the skin system. However, in practice,

the plantar skin can have a coarse spatial resolution and still be functional when applied to

bipedal robot balance and walking control as shown in the experiments of walking over partial

footholds.

We used the proximity sensing modality of the plantar skin to preemptively estimate the

ground reaction wrench and generate an ankle reaction during the swing motion of the sin-

gle support phase of the walking cycle. The preemptive foot compliance modality introduced

in Section 4.4.1 uses the proximity sensors of the taxels to generate a virtual reaction force

that damps the landing motion and adapts the foot orientation to the terrain geometry. The

damping of the landing motion reduces the magnitude of the impacts during walking. The

experiments in Sections 4.4.1.2 and 4.4.1.3 show how the landing impact forces with PFC

are reduced to 20%, compared to the landing impacts with no PFC. This also applies to un-

expected obstacles encountered during walking. PFC anticipates the stopping of the swing

motion to land softly when an increment in the terrain height is detected. In such cases,

plantar skin provides information to either cancel and re-plan a stepping motion as shown

in Section 4.3.2 or to step over the obstacle using its geometry to define constraints for the

walking motions and balance control.
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The direct supporting polygon acquisition right after foot landing enabled the adaptation of

the walking motion during the double support phase of the walking cycle. The centroid of the

polygon detected in the landing foot defines a new target position for the ZMP to continue

walking. Then, we recalculate the walking motions to step over the new foothold, which can

be smaller than the sole. We no longer require the assumption of full sole contact to compute

the walking motions nor the reactions for balance. The adapted walking motions can be

tracked using the supporting polygon as a constraint in the balance control. We improved

the balancer modules of two different controllers using the supporting polygon in the ZMP

tracking formulation. We validated the proposed method on two different full-sized humanoid

robots running different software frameworks and walking controllers. The generality of the

formulations in this thesis allowed the implementation of the plantar tactile feedback in both

robots without requiring deep modifications in the walking controller. The formulations in this

chapter enabled the walking controllers of both robots to walk over uneven terrain and step

over partial footholds. Both controllers were designed for walking over flat ground, considering

full sole contacts. In the last experiment in Section 4.4.5.3 the H1 robot continuously walked

over a narrow beam without stopping to assess the terrain conditions. The robot adapted its

walking motions to keep the balance and stay over the beam, constraining its compensatory

motions within the geometry of the contacts measured by the plantar skin.

From the inspiration on human plantar skin and the practical evaluation done during the de-

velopment of the formulations of this chapter, the minimum required features for plantar skin

for bipedal robots can be listed as follows:

• The soles of the robot must be fully covered by skin.

• The position and shape of all the taxels in the skin must be known.

• The taxels of one foot must not saturate when holding the whole robot’s weight.

• The taxels must provide force sensing modality.

While the items above are the minimum requirements for plantar sensing, it is also useful to

include the proximity sensing modality in the taxels to enable PFC in the walking controllers.

In this thesis, the skin was mounted on the robots using 3D printed shoes which are a practical

apparatus for plantar skin. The tactile shoes developed for the experiments of this chapter

allow mounting plantar skin on a robot with a short preparation time. They also are easy

to remove and require no permanent changes in the foot design of the robot. Furthermore,

preparing tactile shoes requires only the knowledge of the external foot geometry to design

the model to print. The contributions of this chapter explored the advantages that plantar

sensing brings for bipedal robot balance and walking control as an alternative to ankle force-

torque sensors or a complement to them providing the missing information about the foot-

terrain interactions that ankle force-torque sensors cannot deliver.
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5. Conclusion and Outlook

The goal of this thesis is to extend the capabilities of robots for physical interactions with

the environment. For this purpose, we explored the use of robot skin that provides direct

measurements of the interactions and additional insights into the environmental conditions.

Robot skin systems are increasing their capabilities every year by including new sensing

modalities, increasing the sensor resolution and operation range, reducing the size of the

taxels, and improving the durability of the hardware designs. However, the fast development

of these systems causes a bottleneck in the classic robot control techniques that cannot

exploit all the new modalities of tactile feedback. Therefore, the control techniques must be

continuously updated to handle the tactile information and develop closed-loop controllers

that use these new modalities of feedback. To overcome this gap, this thesis presents the

fundamentals to exploit multi-modal tactile feedback to enhance the versatility of physical

interactions for robots.

Through the chapters of this thesis, we proposed a series of formulations to extract useful

information from large amounts of tactile information to model physical interactions for con-

trol. The contributions of this thesis set a precedence to enable different modalities of body

compliance control from alternative sensing modalities. The direct and virtual interaction

task formulations presented in this thesis can be combined to fit the requirements of new

applications for robots equipped with multi-modal sensory skin. We presented case studies

where the tactile information was used to make higher-level decisions such as task priority

rearrangements or step replanning in the context of biped walking.

Within all the forms of physical interaction, locomotion is one of the most important. Walking

is paramount in the everyday life of human beings and animals. In this thesis, we expanded

the formulations to use multi-modal tactile feedback in the complex process of biped loco-

motion. We presented methods to measure the interactions of the supporting contacts from

plantar skin to acquire the metrics used in bipedal robot balance and walking controllers. The

methods presented in this thesis substantially extend and complemented the formulations for

balance and walking control to remove the assumption of full sole contact that is commonly

taken due to the lack of geometric information on the supporting contacts.

5.1. Summary of Results and Contributions

Whole-body physical interaction control methods

We designed a series of tasks using the operational space formulation from Khatib and Sentis

[131] that exploit the spatial distribution of force sensors in robot skins. The direct interaction

task collects the measurements of all the taxels in a link of the kinematic chain and generates
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joint torque reaction motions to minimize the contact forces. This thesis expanded the whole

body interaction control framework of Dean et al. [4] by formulating other modalities of inter-

action and proposing a method to automatically activate/deactivate the interaction tasks from

the tactile information. This improves the performance when running several simultaneous

instances of interaction tasks together. The performance of the method was evaluated in the

experiment in Section 3.2.4.1 which combines 13 instances of direct physical contact inter-

action tasks with 13 instances of proximity-based collision-avoidance virtual interaction tasks

while standing on one leg with a supporting/balance task, and below all these tasks, with a

lower priority, a full-rank CoM controller task. All these computations were made possible to

be implemented in real-time the embedded computer inside the H1 robot.

Whole-body virtual interaction control methods from alternative sensing modalities

This thesis provides the formulations for generating interaction tasks from the additional in-

formation that robot skins deliver. This information includes the geometric localization of the

contacts provided by the spatial distribution of the taxels in the skin and the additional sens-

ing modalities aside from the force sensing included in the taxels (in this work, proximity, and

temperature).

The geometric information on the contacts was used to formulate the pressure-driven body

compliance behavior. This modality of physical interaction amplifies the forces when con-

centrated in a small area and damps the forces when distributed over large areas. This

new tactile-based modality of physical interaction generates a behavior that cannot be imple-

mented using the classic force-torque sensor approaches and provides a valuable component

to generate combined whole-body behaviors for future applications.

This thesis also presented the formulations to generate interaction tasks from sensing modal-

ities that do not imply a physical contact of the robot with the environment. As examples of

this type of interaction, we presented virtual repellent tasks from distributed proximity sen-

sors. This modality of virtual interactions allows manipulating the posture of a robot without

touching it. This behavior can be applied when a robot must avoid contact with the environ-

ment. The repellent potential fields generated from the proximity sensor signals push away

the robot links from any object in the environment providing a versatile whole-body collision-

avoidance control. This includes operators, surrounding objects, and the other links of the

robot.

Following the virtual interaction formulation, this thesis presented a temperature-driven body

compliance modality that generates a virtual repulsive potential fields that drive away the

robot’s links from hot surfaces. This modality of body compliance can be applied in appli-

cations where a robot must operate close to hazard hot surfaces as the cooking scenario

experiment in Section 3.3.2.1.
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Whole-body behaviors combining physical and virtual interactions

This thesis presented two cases of body behaviors that use tactile information to make

changes in the priorities of tasks. The mechanical nociception in Section 3.4.1 deactivates

a task if the pressure-driven compliance task in a lower priority detects a potentially harmful

concentration of forces. The intentional contact behavior presented in Section 3.4.2 rear-

ranges the task priorities to escape from local minima when the collision-avoidance prevents

an end-effector task from executing. The possibility of a direct measurement of physical in-

teractions allows a robot to apply intentional contacts to the environment to modify it to clear

the way for the end-effector. Aside from these two specific behaviors, the formulations in

this thesis for direct and virtual interactions provide a practical framework to generate other

modalities of body behaviors for future applications in robotics.

The examples presented in this thesis show how the environmental awareness that multi-

modal tactile feedback brings can be used to make higher-level decisions in robotic applica-

tions aside from enabling closed-loop physical interaction.

Plantar sensing modalities for biped balance and locomotion

This thesis presented a practical method to mount plantar skin on biped robots with mountable

tactile shoes. With the information provided by plantar skin, we can locate the ZMP of a biped

robot and construct the supporting polygon. We presented a method to find the convex

hull of the sole contacts using the tactile information and the geometric parameters of the

taxels. We compared the ZMP acquired from robot skin to the classic method using ankle

force-torque sensors. Plantar skin is capable of serving as the main feedback in balance

controllers with similar results as ankle force-torque sensors, and at the same time provide

geometric information of the terrain.

Preemptive foot compliance

With the additional sensing modality of proximity to the terrain in plantar skin, this thesis devel-

oped the Preemptive Foot Compliance (PFC) modality for the swing leg in the single support

phase of the walking cycle. PFC adapts the foot orientation using the virtual repulsive force

formulation developed for the virtual interactions to match the terrain inclination before hitting

the ground. This preemptive motion helps reduce the impact at foot landing and thus reduces

the disturbance forces produced by anticipated contacts. This modality is a good comple-

ment to any ankle impedance controller, reducing the required reaction motion to adopt the

foothold geometry with the sole. Additionally, the virtual repulsive force suppresses 80% of

the landing impact force on average when walking over flat ground.
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Constrained balance control using plantar skin

This thesis presented two new methods that constraint the ZMP reference position within the

geometry of the supporting polygon constructed by robot skin.

This thesis removed the assumption of full-sole contact commonly made in walking controllers

[127, 148, 6] providing a method to construct the actual supporting polygon from plantar

tactile information. As the first example of this principle, the bounding box of the supporting

polygon was used to redefine the constraints of the ZMP distribution QP problem in [8]. With

the generalization of the friction cone constraints presented Section 4.4.4 in this work, the

open-source controller [127] was capable of keeping the balance while stepping over partial

footholds as presented in Section 4.4.5.1.

This thesis also presented an algorithm to constraint the adjusted reference ZMP from the

DCM tracking controllers inside the supporting polygon constructed from plantar skin. This

change was applied in a DCM-ZMP walking controller that was also capable of stepping over

partial footholds with the contact information acquired right at the foot landing. This removes

completely all the assumptions of the contact geometry (even the bounding box requirement

for the experiment in Section 4.4.5.1) by directly using the supporting polygon to constraint

the adjustments of the reference ZMP done by balance controllers.

Walking motion adaptation from plantar tactile feedback

This thesis proposed a new method to modify online the walking motions to adapt to the actual

contact geometry with the tactile information acquired right at the foot landing. Our method

re-plans the VRPs and DCM waypoints to the center of the supporting polygon measured im-

mediately after foot touchdown. With this method, a robot is capable of continuously walking

over partial footholds while keeping the reaction motions for balance within the supporting

polygon.

The new method was evaluated in an experiment where a robot walked over a narrow beam

in a scenario inspired by construction sites. In state-of-the-art walking controllers without

plantar tactile feedback, a robot must apply exploratory motions to map the terrain geometry

at every step, slowing down the walking motion. This thesis advanced the state-of-the-art

by setting the formulations for plantar tactile feedback that provide the geometric information

of the terrain immediately after foot contact, which allows adapting the walking reference

motions within one update cycle of the walking control. Therefore, with the proposed method,

no stops or exploratory motions are required to continuously walk over partial footholds.
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5.2. Outlook

Based on the experiences gained and the evaluations presented in this work, some ideas

emerged that are worth exploring in future works.

Distributed sensing for virtual interactions is a promising idea to give awareness to robots.

The next logical step in this direction is to include even more sensing modalities into the robot

skins to enhance the reactive control of robots, especially in critical situations. For exam-

ple, humidity, radiation, or chemical detectors can help a robot detect released substances

in cooperative scenarios with human workers. Multi-modal body behaviors as the ones pre-

sented in this work can improve the performance in hazardous scenarios where robots can

help improve the working conditions or prevent damages to the health of human workers. The

pressure-driven body compliance in this work can be applied, for example, for manipulating

human bodies in health care robots. In such a sensitive application, the interaction forces can

be as high as the weight of a human body. However, they should not be concentrated in small

areas because applying high pressures on a human body can cause injuries in the skin or in

the soft tissues of the body.

The set of interaction modalities and the priority of the tasks used to realize the two whole-

body behaviors presented in this work were selected and assigned by a person from observa-

tions of human behavior in real scenarios. However, the realization of new behavior could be

generalized by semantic relations from human actions. It would be worth exploring the possi-

bility of developing a general method to select interaction modalities and task priorities from

application description semantics to automatize the generation of whole-body behaviors.

Plantar tactile feedback is also a promising idea that allows the design of new control tech-

niques for robot balance and walking. In this work, the tactile information was used to modify

the kinematics of the walking motion. However, a drastic change in the walking pattern should

also represent a change in the timing of the walking cycle. Plantar feedback can help coordi-

nate the timing of the walking cycle similarly as plantar skin helps regulate the timing of the

muscular reflexes in human walking.

As the plantar skin provides additional information for balance and control, the same principle

can be extended to the whole body. A robot with a whole-body skin system as the H1 robot

used in this work can exploit the sensing modalities of the skin on the hands, the arms, or the

torso for balance and locomotion. The community of humanoid robotics has proposed control

techniques for multi-limb locomotion that can profit from the tactile information from robot

skins. For example, the intentional contact behavior presented in this work can be applied to

generate motions to look for supporting surfaces with the hands. Then, once defined upper

body supporting contacts and their geometry, the tactile feedback can be used for generalized

stability criteria as the 3D polyhedron in [190] or the projected ZMP support area in [191].
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