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Abstract— To safely and effectively participate in road traffic,
automated vehicles should explicitly consider compliance with
traffic rules and high-level specifications. We propose a method
that can incorporate traffic and handcrafted rules expressed in
time-labeled propositional logic into our reachability analysis,
which computes the over-approximative set of states reachable
by vehicles. These reachable sets serve as low-level trajectory
planning constraints to expedite the search for specification-
compliant trajectories. Depending on the adopted specifications,
related semantic labels are generated from predicates con-
sidering positions, velocities, accelerations, and general traffic
situations. We exhibit the applicability of the proposed method
with scenarios from the CommonRoad benchmark suite.

I. INTRODUCTION

Highly automated vehicles (AVs) promise increased road
safety compared with human-driven ones. To safely and
effectively participate in road traffic, AVs should explicitly
consider compliance with traffic and handcrafted rules. Com-
pliance with the former exempts manufacturers from poten-
tial liability claims in case an accident happens, whereas the
latter contribute to finding motion plans that meet specific
requirements.

Determining a drivable trajectory that satisfies a desired
discrete specification involves reasoning with both discrete
and continuous states of AV, which poses computational chal-
lenges originating from (a) vehicle dynamics and collision
avoidance, (b) discrete specifications, and (c) interwoven
dependencies between continuous trajectories and discrete
constraints. Planning on the discrete level may output plans
that meet the specifications but do not satisfy dynamic
constraints; similarly, motion planning methods may gener-
ate collision-free and dynamically feasible trajectories that
violate the specifications.

In this study, we address these challenges by extending
our previous work [1] to compute specification-compliant
reachable sets for a considered ego vehicle. Our over-
approximative reachable sets enclose all drivable trajectories
of AV and can be used as low-level trajectory planning
constraints [2], which expedite the search for specification-
compliant trajectories. Depending on the adopted specifica-
tions expressed in time-labeled propositional logic, relevant
semantic labels are attached to the reachable sets. An exem-
plary handcrafted rule can be described as “follow vehicle
A up to time step k1, then finish overtaking it from the left
before time step k2.”
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The efforts to obtain a specification-compliant trajectory
can be roughly categorized into three groups. The first group
generates discrete plans to guide the trajectory planning pro-
cess. For example, Shoukry et al. [3] proposed a satisfiability
modulo convex programming framework to handle Boolean
and convex constraints; Lahijanian et al. [4] proposed a
multilayered synergistic framework, which is an extension
of [5] to cope with newly discovered obstacles. Zhou et al.
[6] used timed automata to synthesize timed paths that
satisfy considered specifications. In these methods, the high-
level planners suggest discrete plans based on an abstraction
of a system, and the low-level motion planners generate
trajectories that comply with the discrete plans. Since the
continuous constraints are not explicitly considered by the
high-level planners, the drivability of the suggested plans
is often not ensured [7], thereby requiring frequent replan-
ning on the discrete level. The second group evaluates the
specifications on the planned trajectories with monitors [8],
[9]. The monitoring can be efficiently performed; however,
in case the trajectory under examination is rejected by the
monitor, no alternative candidate trajectory is returned. The
third group, to which the present study belongs, considers
the specifications before trajectory planning, e.g., in high-
level maneuver planners [10]–[13]. Kohlhaas et al. [13]
generated maneuvers with simple traffic rules by traversing
a graph represented in a semantic state space; Esterle et al.
[10] adopted a similar idea and generated maneuvers that
complied with linear temporal logic (LTL) specifications. In
a previous work [12], we output so-called driving corridors
that satisfied sequences of position relations to other vehicles.

Contrary to these works, we not only consider specifi-
cations with position relations to other obstacles but also
include predicates considering velocities, accelerations, and
general traffic situations based on the recent formalization
of German road traffic regulations in temporal logic [14],
[15]. In [14], traffic rules related to velocities, overtaking,
safe distances, priorities, etc, were formalized using LTL.
In comparison, metric temporal logic (MTL), which is an
extension of LTL to support time intervals, was used in [15]
to formalize a selection of traffic rules related to general and
interstate driving situations. The proposed method stands out
in that it

1) integrates predicates into reachable set computation for
compliance with traffic rules formalized in [15];

2) can incorporate handcrafted specifications with the
above-mentioned predicates; and

3) can be combined with any motion planning algorithms.
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Fig. 1: A scenario with four lanelets (with IDs 1–4 shown with numbered
boxes) and a leading vehicle (blue). Lanelet 3 is the goal lanelet (yellow)
of an ego vehicle. The straight line (magenta) indicates a reference path
leading to the goal lanelet.

The remainder of this article is organized as follows:
Sec. II introduces basic definitions and necessary prelimi-
naries. Subsequently, we present the partitioning of the state
space and the computation of reachable sets in Sec. III. After-
ward, we demonstrate evaluations with exemplary scenarios
from the CommonRoad1 benchmark suite [16] in Sec. IV.
Finally, we conclude in Sec. V.

II. PRELIMINARIES

A. System Description

In this study, the considered scenarios are described in
the CommonRoad format. A typical CommonRoad scenario
(see Fig. 1) consists of (a) a road network represented by
lanelets [17], whose left and right bounds are modeled with
polylines, (b) static and dynamic obstacles, and (c) traffic
rule elements, such as traffic signs, traffic lights, and road
markings. We use the trajectories provided in the scenarios
and consider them as adequate prediction for obstacles over
time. Alternatively, one can adopt a set-based prediction [18]
for obstacles. Given a planning problem, which includes the
initial state of an ego vehicle and a set of goal states, a
reference path to the goal lanelet is planned. This path is used
to construct the local curvilinear coordinate system of the ego
vehicle, as described in [17]. The choice of this coordinate
system facilitates the formulation of maneuvers from the ego
vehicle’s perspective, e.g., lane-following, stopping before an
intersection, and preventing driving backward.

The system dynamics of the ego vehicle is abstracted by
a point-mass model with the center of the vehicle as the
reference point. The model is represented with two second-
order integrators in longitudinal s-direction and lateral d-
direction of the curvilinear coordinate system. Let � be a
variable, we denote by � and � its minimum and maximum
values, respectively. In addition, we attach subscripts s/d
to variables to indicate the directions in which they are
described. The system dynamics of the ego vehicle is

xk+1 =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

xk +


1
2∆t2 0
∆t 0
0 1

2∆t2

0 ∆t

uk, (1)

where k ∈ N0 is a discrete time step corresponding to a
point in time tk = k∆t, with ∆t ∈ R+ being a predefined
time increment. x ∈ X ⊂ R4 is a state in the state space
X , and u ∈ U ⊂ R2 is an input. The state of the vehicle is
modeled as x = (ps, vs, pd, vd)

T, with p and v representing

1https://commonroad.in.tum.de/

the position and velocity, respectively. The system accepts
inputs u = (as, ad)

T, where a is the acceleration. The
velocities and accelerations in both directions are bounded
by the over-approximation of the physically feasible values:

vs ≤ vs,k ≤ vs, vd ≤ vd,k ≤ vd, (2a)
as ≤ as,k ≤ as, ad ≤ ad,k ≤ ad. (2b)

The bounds are chosen conservatively to consider the kine-
matic limitations and effects arising from transforming the
system dynamics to the curvilinear coordinate system. No-
tably, the drivability of the planned trajectories should be
examined individually, e.g., using the drivability checker
described in [19]. Finally, we denote the length of the ego
vehicle by l.

B. Reachable Sets

Given an initial state x0 and an input trajectory u[0,k],
we use χk(x0, u[0,k]) to represent the solution to (1) at
time step k. We assume a set of time-dependent obstacles
to be given, the union of whose occupancies at time step
k is represented by Ok ⊂ R2. The sets of states whose
occupancy (considering the shape of the ego vehicle) are
overlapping with Ok are removed from the reachable sets.
Let X CF

k = X \ Ok be the set of collision-free states at
time step k, the exact collision-free reachable set of the ego
vehicle at k starting from the initial set of states X0 is

R∗k(X0) :=
{
χk(x0, u[0,k])

∣∣∣x0 ∈ X0,∀τ ∈ {0, . . . , k} :

uτ ∈ U , χτ (x0, u[0,τ ]) ∈ X CF
τ

}
.

Subsequently, we omit X0 for convenience. Obtaining R∗k is
computationally demanding in general; therefore, we instead
compute its over-approximation Rk, which is the union of
so-called base sets R(i)

k , i ∈ N. Each base set R(i)
k = P̂(i)

s,k×
P̂(i)
d,k is chosen to be a Cartesian product of two convex poly-

topes P̂(i)
s,k and P̂(i)

d,k which represent the reachable positions
and velocities in (ps, vs) and (pd, vd) planes, respectively
(see Fig. 2a–b) [1]. This choice is motivated by the existence
of efficient algorithms for required set operations on convex
polytopes. To simplify the notation, we also denote the
collection of R(i)

k by Rk, i.e., Rk =
{
R(1)
k , . . . ,R(i)

k

}
.

The projection of R(i)
k onto the position domain yields axis-

aligned rectangles D(i)
k (see Fig. 2c), whose union is referred

to as the drivable area Dk. Similarly, we use Dk to denote
the collection of D(i)

k .

Definition 1 (Projection):
The operator proj♦(·) maps the input to its elements ♦. For
example, proj(p,v)(x) = (p, v)T for x = (p, v, a)T. A set
X can be projected using the same notation: proj♦(X ) =
{proj♦(x)|x ∈ X}.
Definition 2 (Drivable Area):
The drivable area is defined as the projection of the reach-
able set onto the position domain: Dk := proj(ps,pd)(Rk).
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Fig. 2: Polytopes and drivable area of a base set R(i)
k .
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Fig. 3: Reachability graph GR holding nodes of different time steps. The
nodes with the same labels have the same color.

In this study, each base set R(i)
k additionally carries a set

L(i)
k of semantic labels, whose collection is denoted by Lk.

The generation of these labels will be explained in Sec. III-
D.3. Let us introduce the reachability graph GR, which is
a directed graph connecting base sets R(i)

k so that their
temporal and spatial relationships can be queried (see Fig. 3).
In GR, each node represents exactly one base set R(i)

k .
An edge connecting R(i)

k and R(j)
k+1 indicates that R(j)

k+1 is
reachable from R(i)

k . A base set R(i)
k may reach several base

sets R(j)
k+1 in the next time step.

III. METHODOLOGY

To obtain specification-compliant reachable sets, we
should (a) semantically label reachable sets with relevant
predicates and (b) constrain reachable sets to subsets satis-
fying the desired specifications. We partition the state space
based on position predicates to expedite the labeling process.
Similar strategies have been employed in [10], [13], [20].
We do not consider velocity predicates at this stage since it
requires the computationally demanding splitting of the state
space with (non)linear curves (see Fig. 5c–d). Instead, we
directly evaluate them on individual reachable sets (detailed
in Sec. III-D.2). The selection of considered predicates is
listed in Tab. I: Evaluating a dynamic predicate is obstacle-
dependent, whereas that of a static predicate is not.

A. Formulation of Partitions

Computing the partitions of the state space involves op-
erations such as set intersection and difference. To avoid

gross approximations while maintaining the computational
complexity at an acceptable level, they are modeled with
a set of hyperrectangles rectq . Notably, such a choice is
not mandatory, any other representation that captures the
partitions suffices. Each rectq is defined as a Cartesian
product of intervals over the position and velocity domains:

rectq :=
(
[p
q,s
, pq,s]× [vq,s, vq,s]

)
× (3)(

[p
q,d
, pq,d]× [vq,d, vq,d]

)
,

where pq,s and vq,s denote the position and velocity of the q-
th hyperrectangle in the s-direction, respectively. The same
applies to pq,d and vq,d in the d-direction. A regular grid
of pairwise-disjoint axis-aligned cells is formed along the
reference path. Let C(q) = [p

q,s
, pq,s]× [p

q,d
, pq,d] ⊂ R2 be

the q-th cell in the grid. By computing the Cartesian product
of C(q) and velocity intervals [vq,s, vq,s] and [vq,d, vq,d], a
hyperrectangle rectq can be created. By default, the velocity
intervals [vs, vs] and [vd, vd] (see (2a)) are used.

Let P = {pred1, pred2, . . . } be the set of considered
position predicates, with its power set denoted by 2P . We
denote by part(k;Zj) the set of hyperrectangles for which
the predicates in Zj ∈ 2P evaluate to True at time step
k ∈ N0. Zj is realizable if ∃k ∈ {0, . . . , kh} : part(k;Zj) 6=
∅, with kh being a predefined planning horizon. Fig. 5b
illustrates exemplary partitions projected onto the (ps, vs)
plane. We aim to obtain the collection Z ⊆ 2P of all
realizable Zj considering relevant lanelets and obstacles:

Z =
{
Zj ∈ 2P

∣∣∣∃k ∈ {0, . . . , kh} : part(k;Zj}) 6= ∅
}
.

Z is used for splitting of reachable sets (see Sec. III-D.2).

B. Evaluation of Position Predicates

1) Static Position Predicates: These predicates do not
depend on obstacles. We formulate two examples as follows:
• InLanelet(k; rectq, Lid): True if rectq is within the

lanelet with ID id, denoted by Lid, at time step k.
• DrivesRightmost(k; rectq, area): True if rectq in-

tersects with the rightmost area of lanelets, denoted by
area. The distance between any point within this area
to the right bound of the lanelet does not exceed a
predefined distance.

We use ZL ⊆ 2P to denote the power set of considered static
position predicates. For the sake of brevity, we only keep the
lanelets and obstacles (explained later) in the arguments of
predicates in the rest of this work.

2) Dynamic Position Predicates: These predicates reflect
position relationships between the ego vehicle and obstacles.
In this study, we use vehicles as examples of obstacles. Let
V = {V1, . . . , VN} be the set of other vehicles with IDs N =
{1, . . . , N}. In addition, let occ(k;Vn) return the occupancy
of Vn at time step k, with bounds in the s-direction denoted
by p

n,s,k
and pn,s,k, respectively. Along the s-direction, the

mutually exclusive predicates Pn,s =
{
{InFrontOf(Vn)},

{Behind(Vn)}, {Beside(Vn)}
}

can be evaluated on rectq
with respect to Vn at time step k as follows:



TABLE I: The selection of considered predicates inspired by [15].

Category Type Predicate Source/Inspiration

Position Static InLanelet,DrivesRightmost,OnMainCarriageWay,OnAccessRamp, . . . R I2, R I4
Dynamic Behind,Beside, InFrontOf,LeftOf,AlignedWith,RightOf, . . . R G1, R I2

Velocity Static BelowFOVVLimit,BelowTypeVLimit,AboveMinimumVLimit, . . . R G3, R I1
Dynamic SafeFollowingVelocity(To), SafeLeadingVelocity(To),DrivesFaster, . . . R G1, R I2

Acceleration Static AdmissibleBraking, . . . R G2

General Static ChangeLanelet,PreservesTrafficFlow, StandingStill, . . . R G4, R I1
Dynamic InCongestion, SlowLeadingVehicle, . . . R G1, R G4, R I1

V1

{Behind(V1),AlignedWith(V1), InLanelet(L1)}
{Behind(V1),LeftOf(V1), InLanelet(L2)}
{Beside(V1),LeftOf(V1), InLanelet(L2)}
{InFrontOf(V1),AlignedWith(V1), InLanelet(L1)}
{InFrontOf(V1),LeftOf(V1), InLanelet(L2)}

k = 0

k = 30

Fig. 4: Projection of the partitions of Zj ∈ Z onto the position domain.
Lanelet IDs are shown with numbered boxes.

• InFrontOf(Vn): True if p
q,s
− l/2 > pn,s,k.

• Behind(Vn): True if pq,s + l/2 < p
n,s,k

.
• Beside(Vn): True if ¬InFrontOf(Vn) ∧ ¬Behind(Vn)
∧proj(ps,pd)(rectq) ∩ occ(k;Vn) = ∅.

Analogously, along the d-direction, the mutually exclusive
set of predicates Pn,d =

{
{LeftOf(Vn)}, {RightOf(Vn)},

{AlignedWith(Vn)}
}

can be evaluated on rectq .

C. Realizable Sets of Position Predicates

The operator product(·) over ñ collections A1, . . . ,Añ is
defined as

product(A1, . . . ,Añ) =
{
A′1 ∪ · · · ∪ A′ñ

∣∣
A′i ∈ Ai, i ∈ {1, . . . , ñ}

}
.

As an example, in the presence of a vehicle V1,
product(P1,s,P1,d) =

{
{InFrontOf(V1),LeftOf(V1)}, . . . ,

{Beside(V1),AlignedWith(V1)}
}

(see Sec. III-B.2). We de-
note by ZV

n the collection of realizable sets of position
predicates created with respect to Vn that can be projected
onto the curvilinear coordinate system of the ego vehicle.
The formulation of ZV

n and Z (see Sec. III-A) are presented
in Alg. 1: we iteratively examine all possible combinations of
predicates and keep the ones that have a nonempty partition
for at least one time step within the planning horizon kh.
Fig. 4 illustrates the projection of the partitions of Zj ∈ Z
created for an exemplary scenario onto the position domain
at two time steps. Owing to our formulation of the predicates,
the mentioned projection is collision-free with respect to the
obstacles and are pairwise-disjoint at any specific time step.

Algorithm 1 Realizable Sets of Position Predicates
Inputs: Set N of IDs of vehicles, planning horizon kh,

Collection ZL

Output: Collection Z
1: for n in N do . Formulation of ZV

n

2: ZV
n ← {}

3: Pn,s,Pn,d ← OBTAINPREDICATES(n) . see Sec. III-B.2
4: for Zi in product(Pn,s,Pn,d) do
5: if HASNONEMPTYPARTITION(Zi) then
6: ZV

n .ADD(Zi)
7: end if
8: end for
9: end for

10:
11: Z ← ZL . Formulation of Z
12: for n in N do
13: Z ′ ← {}
14: for Zi in product(Z,ZV

n) do
15: if HASNONEMPTYPARTITION(Zi) then
16: Z ′ .ADD(Zi)
17: end if
18: end for
19: Z ← Z ′
20: end for
21: return Z
22:
23: function HASNONEMPTYPARTITION(Zi)
24: for k = 0 to kh do
25: if part(k;Zi) 6= ∅ then
26: return True
27: end if
28: end for
29: return False
30: end function

D. Computation of Reachable Sets

In addition to our previous works [1], [12], we seman-
tically label the reachable sets and constrain them to states
satisfying the desired specifications (Alg. 2 lines 4–6). As the
reachable sets are computed iteratively over time, it suffices
to give a detailed explanation for one step of the computation.

1) Propagation of Base Sets (Alg. 2, line 3): Each base
set R(i)

k−1 ∈ Rk−1 of the previous time step is propagated ac-
cording to the system model (1), resulting in the propagated
sets RP,(i)

k ∈ RP
k (see Fig. 5a). The propagation is performed

similarly to the method described in [1], except that one can
additionally impose acceleration constraints. As an example,
rule R G2 [15] describes situations in which braking abruptly
is allowed, i.e., braking harder than a predefined value adef >



Algorithm 2 Computation of Reachable Sets

Inputs: Specification φ, base sets R(i)
0 ∈ R0 with their

semantic labels L(i)
0 ∈ L0, planning horizon kh,

realizable sets of position predicates Z .
Output: Reachability graph GR.

1: GR.ADD(R0,L0)
2: for k = 1 to kh do
3: RP

k ← PROPAGATE(Rk−1) . Sec. III-D.1
4: RS

k ← SPLITTING(RP
k , Z ) . Sec. III-D.2

5: RL
k,Lk ← LABELING(RS

k , φ) . Sec. III-D.3
6: RC

k ← CHECKCOMPLIANCE(RL
k , Lk , φ) . Sec. III-D.4

7: Rk ← CREATENEWBASESETS(RC
k) . Sec. III-D.5

8: GR.ADD(Rk , Lk)
9: end for

10: return GR
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Fig. 5: Propagation, splitting, and labeling of base sets. For clarity, we only
show the operations in the s-direction. Labels of polytopes are shown in
gray boxes. (a) Propagation. (b) Splitting regarding partitions. (c) Splitting
regarding static velocity predicates: three polytopes split with predicates
Abovev1 and Belowv2. (d) Splitting regarding dynamic velocity predicates:
two polytopes split with a predicate Belowvk . Notably, the two newly
split polytopes are slightly over-approximated and convexified due to the
nonlinearity introduced by the predicate.

as. If this rule is considered, we only propagate the base
sets with the acceleration interval [as, as] under the specified
situations, otherwise [adef, as]. Sets L(i)

k of propagated sets
RP,(i)
k are initialized with empty sets.

2) Splitting (Alg. 2, line 4): The propagated sets RP,(i)
k

are split into new sets RS,(i)
k ∈ RS

k regarding position and
velocity predicates. We first introduce the velocity predicates.

a) Static Velocity Predicates: These predicates typi-
cally relate to the constant extremum requirements on ve-
locities. Rule R G3 [15] requires that maximum velocity
limits originating from various sources to be respected. These
include limits introduced due to the limited field of view of
the ego vehicle and vehicle type-specific limits.

b) Dynamic Velocity Predicates: These predicates de-
pend on other dynamic obstacles present in the scenario.
Examples are predicates indicating whether the ego vehicle
is driving at a safe velocity regarding a leading or a following
vehicle Vn [15, cf. Sec. IV.C].

The splitting of RP,(i)
k is performed as follows:

1) RP,(i)
k are split such that the newly split sets intersect

only with a single partition of Z (see Fig. 5b).
2) The split sets are further split, over-approximated and

convexified (if needed) regarding velocity predicates
(see Fig. 5c–d).

3) Semantic Labeling (Alg. 2, line 5): Next, we evaluate
the general traffic situation predicates introduced by the
specification (see details in Sec. III-D.4) on RS,(i)

k , and
update their semantic labels L(i)

k . These predicates may
reveal whether the ego vehicle has conducted a lanelet-
change maneuver (see Sec. IV-A) and if it is stuck in a traffic
congestion, etc. The labels L(i)

k are updated as follows:

1) Sets RS,(i)
k propagated with acceleration-specific rules

include corresponding predicates in their sets of se-
mantic labels L(i)

k .
2) Sets RS,(i)

k include the position predicates associated
with the partition with which it intersects, velocity
predicates, and general traffic situation predicates that
evaluate to True in their sets of semantic labels L(i)

k .

The sets with updated L(i)
k are denoted by RL,(i)

k ∈ RL
k.

4) Checking Specification Compliance (Alg. 2, line 6):
In this step, we iterate through RL,(i)

k and examine the
compliance of their labels L(i)

k with the given specification.
Let σ be an atomic proposition, a time-labeled propositional
formula φ is defined in Backus-Naur form as:

φ ::= σ | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | GI(φ),

where the operator GI dictates a time interval I for which φ
should hold. If I is unspecified, we assume it to be the entire
planning horizon [0, kh]. Let L(i)

k be the set of labels to be
examined, its compliance with σ is defined as: L(i)

k |= σ iff
σ ∈ L(i)

k . As an example, the following specification enforces
the ego vehicle to follow V1 between time steps 0 and 10,
and never to be on its right for the entire planning horizon:

G[0,10](Behind(V1) ∧ AlignedWith(V1))∧
G(¬RightOf(V1)).

We discard RL,(i)
k whose set of semantic labels L(i)

k do
not comply with φ, and refer to the remaining sets as
RC,(i)
k ∈ RC

k. Recall that the reachable sets enclose all
drivable trajectories of the vehicle, thus an empty set RC

k

implies that φ is unsatisfiable and cannot be complied with
by any possible trajectory of the ego vehicle. In such a
case, one can either recompute the reachable sets with a
different specification, or trigger previously computed fail-
safe trajectories [21]. Integrating MTL specifications into our
reachable sets using model checkers will be a future study.



5) Creation of New Base Sets (Alg. 2, line 7): Finally,
the new base sets R(i)

k ∈ Rk are created from the nonempty
sets RC,(i)

k . The substeps include obtaining the drivable
areas DC,(i)

k of RC,(i)
k , merging and repartitioning DC,(i)

k ,
and ultimately producing the sets R(i)

k . These are performed
similarly to the description in [1, Alg. 1] with one difference:
to preserve the set of position predicates at the merging step,
only DC,(i)

k projected from sets RC,(i)
k with the same partition

are merged. The reachability graph GR is updated in the end
by inserting sets R(i)

k along with their labels L(i)
k as new

nodes.

IV. EVALUATION

In this section, we exhibit the applicability of our
method using varied specifications on three scenarios. Se-
lected parameters and computation results are listed in
Tab. II. The animation of the evaluation can be found at
https://mediatum.ub.tum.de/1595757. Before presenting the
evaluation results, we introduce relevant labels and explain
how selected traffic rule elements can be incorporated.

A. Relevant Labels

• AdmissibleBraking: This indicates that the rule R G2
is considered (see Sec. III-D.1).

• SafeFollowingVelocity, SafeLeadingVelocity: These
indicate that the ego vehicle has respected safe fol-
lowing/leading velocities to other dynamic obstacles,
respectively (see Sec. III-D.2).

• ChangeLanelet(L1, L2): This indicates that the ego
vehicle has performed a lanelet-change maneuver from
Li to Lj .

B. Incorporating Traffic Rule Elements

1) Prohibiting Change of Lanelet: Assuming a case where
the ego vehicle is not allowed to change from L1 to L2,
which may be imposed by different traffic rule elements, such
as road markings, no-overtaking signs, and traffic lights. We
model this with GI(¬ChangeLanelet(L1, L2)).

2) Lanelet-specific Velocity Limits: Lanelet-specific ve-
locity limits can neither be modeled as static nor dynamic
predicates (as described in Sec. III-D.2). Recalling that
the partitions of sets of position predicates are modeled
with hyperrectangles rectq , we adjust the velocity intervals
[vq,s, vq,s] of rectq in the lanelets to incorporate these
velocity limits.

C. Scenario I: Precise Overtaking

The first scenario illustrates a situation where the ego
vehicle should overtake a leading vehicle V1 in the presence
of another vehicle V2. The following specification is issued,
for example, by a high-level maneuver planner, which should
be precisely followed by the ego vehicle:

G[0,15](Behind(V1) ∧ AlignedWith(V1)) ∧
G[16,38](InLanelet(L2) ∨ InLanelet(L4)) ∧
G[39,45](InFrontOf(V1) ∧ Behind(V2) ∧ InLanelet(L3)) ∧
G(AdmissibleBraking).

TABLE II: Selected Parameters and Computation Results

Description Unit I II III

Parameter
kh step 45 45 40 40 40 40
∆t s 0.1 0.1 0.1 0.1 0.1 0.1
vs m/s 16.6 16.6 16.6 16.6 16.6 16.6
vs m/s 0 0 0 0 0 0
vs,0 m/s 12.0 12.0 14.5 14.5 14.0 14.0
vd m/s 4.0 4.0 4.0 4.0 4.0 4.0
vd m/s -4.0 -4.0 -4.0 -4.0 -4.0 -4.0
as m/s2 2.0 2.0 2.0 2.0 2.0 2.0
as m/s2 -6.0 -6.0 -6.0 -6.0 -6.0 -6.0
adef m/s2 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
Grid cell size m2 1×1 2×2 1×1 2×2 1×1 2×2

State Space Partition
|Z| - 14 14 14 14 52 52
# Hyperrectangles - 1800 450 1800 450 1700 430

Computation Time
Propagation ms 360 131 434 213 288 174
Splitting ms 439 138 715 296 1360 532
Labeling ms 25 9 95 20 85 37
Compliance check ms 92 31 123 56 268 112
Creation of new base sets ms 16 8 30 17 43 22
Sum ms 932 317 1397 602 2044 877

We compute the reachable sets over time as explained in the
previous section. The resulting reachable sets are nonempty,
thereby implying that one may find a trajectory that satisfies
thet specification. Fig. 6 visualizes the drivable areas of the
ego vehicle at different time steps, as well as an exemplary
trajectory planned within the reachable sets [2]. Changing
Behind(V2) to InFrontOf(V2) for k ∈ [39, 45] in the
specification yields an empty reachable set; thus, we can
reject it before trying to plan a trajectory that satisfies the
specification.

D. Scenario II: Respecting Safe Velocities

In this scenario, the ego vehicle is driving on the left side
of two other vehicles V1 and V2, and wishes to change to
lanelets on the right (1 and 3). The unrestricted reachable
sets (see Fig. 7a) show that the ego vehicle can reach lanelet
1 at time step k = 20 and deliberately cut in between V1
and V2 for k ∈ [30, 40]. By contrast, after considering the
specification with safe velocity rules

G(SafeFollowingVelocity ∧
ChangeLanelet(·, ·)→ SafeLeadingVelocity),

being in lanelet 1 is no longer legal at time step k = 20, so
is the case with being between V1 and V2 for k ∈ [30, 40]
(see Fig. 7b). Following V1 in lanelets 1 and 3 is still a
legal maneuver at later time steps, provided the ego vehicle
has sufficiently slowed down to respect the safe following
velocity rule.

E. Scenario III: Overtaking from the Left

Next, we present a scenario in which the ego vehicle
intends to overtake its preceding vehicle V1. The unrestricted
reachable sets propagate to all lanelets in the scenario and
enclose various maneuvers, including overtaking V1 from the
right (see Fig. 8a). By imposing the constraint that the ego

https://mediatum.ub.tum.de/1595757
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Fig. 6: Scenario I: Precise overtaking. (a) Drivable area at different time
steps. (b) Exemplary trajectory planned within the reachable set. (c) Drivable
area over time. Each color corresponds to a clause in the specification whose
time interval is specified.

vehicle should overtake V1 at some future time steps, and
not being on its right for the entire planning horizon, we
explicitly demand that the ego vehicle can only overtake
V1 from its left. In addition, we add a constraint to forbid
entering lanelet 4 to further restrict the reachable sets:

G[35,45](InFrontOf(V1) ∧ AlignedWith(V1)) ∧
G(¬RightOf(V1) ∧ ¬ChangeLanelet(L3, L4)).

As can be seen from Fig. 8b, the reachable sets flow to lanelet
3 from the left of V1 at k = 20, return back to lanelet 2 at
k = 30, and finally end in front of V1 at k = 40, which is
exactly required by the specification.

F. Analysis of Computation Results

The computation times listed in Tab. II are obtained
through a prototype implemented using Python and C++ on
a 2.8 GHz laptop. The computation times for operations,
including splitting, labeling, and compliance checking, are
linear to the number of nodes in the reachability graph, which
is, in turn, proportional to the number of hyperrectangles:
For all three scenarios, the evaluations were performed using

(a)

(b)

Fig. 7: Scenario II: Respecting safe velocities to other vehicles. (a) Not
considering specifications. (b) Considering specifications.

two grid cell sizes. By doubling the cell sizes and thereby
reducing the number of hyperrectangles, we observed a
drastic decrease (approximately 60%) in the computation
time, which could be further improved by representing the
partitions with more sophisticated polytopes. We refer to [1,
Appendix B] for a detailed explanation of the computation
complexity of propagation and creation of base sets. The
method for accelerating the reachable set computation in
[22] did not consider dynamic velocity and acceleration
constraints; how this method can be coupled with our reach-
ability analysis should be investigated in the future.

V. CONCLUSIONS

In this study, we proposed a method to obtain
specification-compliant reachable sets for a considered ego
vehicle, which is used to guide motion planners to find
specification-compliant trajectories. Compared with exist-
ing methods, the proposed method can not only consider
traffic and handcrafted rules considering position predicates
but also velocity, acceleration, and general traffic situation
predicates. The evaluations showed that our method could
easily incorporate desired specifications as well as identify
and reject the unsatisfiable ones. In the future, we will
investigate how to fully incorporate traffic rules formulated
in MTL formulas into our reachable sets. MTL formulas
are much more expressive than propositional logic and LTL
by having temporal operators over time, such as OnceI and
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Fig. 8: Scenario III: Overtaking from the left. (a) Not considering specifi-
cations. (b) Considering specifications.

FutureI . In addition, it is also worth investigating that how
specifications should be manipulated when they cannot be
fully complied with, e.g., when a collision cannot be avoided
without making a prohibited lane change.
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