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Abstract

Understanding 3D environments is a long-term research topic since many years in com-
puter vision. It is fundamental to understand 3D surroundings in many real-world
computer vision applications, e.g. interactivity in robotics or AR/VR. With recent
breakthroughs in deep learning, the computer vision community has made tremendous
progress on perception in images. However, research in 3D perception has not been fully
explored. Thanks to the commodity 3D sensors, such as the Kinect series, a variety of
RGB-D datasets have been collected to enhance the 3D perception research. In this dis-
sertation, we aim to investigate possible deep-learning-based solutions for 3D perception
based on RGB-D data.

First, we propose 3D-SIS, a novel 3D semantic instance segmentation algorithm lever-
aging not only geometry but also color information. Our framework uses an anchor
mechanism to regress 3D bounding box locations, classify semantic labels, and segment
the 3D shape inside the bounding box. We further show a performance boost by fus-
ing the color features learned from 2D CNNs with geometric features learned from 3D
CNNs. Instance segmentation is the most complex and important task in perception as
it combines detection, classifications and segmentation. Our work shows the possibility
of 3D semantic instance segmentation.

Furthermore, we propose RevealNet, the first 3D semantic instance completion frame-
work. In this work, we aim to ”seeing behind objects”, namely completing the missing
geometry of each object in RGB-D Scans additional to the output of instance semantic
segmentation. We leverage 3D-SIS framework and add the completion branch network
to complete 3D object. Since there are no ground truth in 3D reconstruction in terms
of perfect object geometry, we use CAD model aligned to the 3D scan as ground-truth.
Intuitively, better 3D reconstruction quality leads to better performance of downstream
tasks. Our experiments also observe a performance boost for detection and instance
segmentation tasks with our completion branch.

Data is critical for learning, especially 3D data that is even harder to acquire and
annotate. We explore data-efficient scenarios for 3D perceptual tasks, namely learning
with limited annotated data. We propose a data-efficient benchmark with limited an-
notations (LA) and limited reconstructions (LR) for three popular 3D perceptual tasks.
For example, we propose to use e.g. only 1% of annotated points for training seman-
tic segmentation task in LA. We also propose an unsupervised pre-training algorithm
leveraging point-wise and spatial contexts contrastive learning. Our experiments show a
significant improvement with our pre-training algorithms on several popular benchmarks
and downstream tasks. We show better performance in both data-efficient scenarios and
on all currently available data.

Consequently, we discuss the limitations and potential future directions of our research.
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Zusammenfassung

Das Verständnis von 3D-Umgebungen ist seit vielen Jahren ein langfristiges Forschungs-
thema in der Computer-Vision. Es ist von grundlegender Bedeutung, die 3D-Umgebung
in vielen realen Computer-Vision-Anwendungen zu verstehen, z.B. Interaktivität in der
Robotik oder AR/VR. Mit den Durchbrüchen beim Deep Learning hat die Computer-
Vision-Community enorme Fortschritte bei der Wahrnehmung in Bildern erzielt. Die
Forschung zur 3D-Wahrnehmung wurde jedoch noch nicht vollständig erforscht. Dank
der Standard-3D-Sensoren wie der Kinect-Serie wurde eine Vielzahl von RGB-D Datasets
gesammelt, um die 3D-Wahrnehmungsforschung zu verbessern. In dieser Dissertation
wollen wir mögliche Deep Learning basierte Lösungen für die 3D-Wahrnehmung unter-
suchen, die auf RGB-D Daten basieren.

Zunächst schlagen wir 3D-SIS vor, einen neuartigen Algorithmus zur Segmentierung
semantischer 3D-Instanzen, der nicht nur die Geometrie, sondern auch die Farbinforma-
tionen wirksam nutzt. Unser Framework verwendet einen Ankermechanismus, um die
Positionen von 3D Begrenzungsrahmen zu regressieren, semantische Beschriftungen zu
klassifizieren und die 3D-Form innerhalb des Begrenzungsrahmens zu segmentieren. Wir
zeigen weiterhin eine Leistungssteigerung, indem wir die aus 2D CNNs gelernten Farb-
merkmale mit den aus 3D CNNs gelernten geometrischen Merkmalen verschmelzen. Die
Instanzsegmentierung ist die komplexeste und wichtigste Aufgabe in der Wahrnehmung,
da sie Erkennung, Klassifizierung und Segmentierung kombiniert. Unsere Arbeit zeigt
die Möglichkeit der Segmentierung semantischer 3D-Instanzen.

Darüber hinaus schlagen wir RevealNet vor, das erste Rahmenwerk zur 3D Seman-
tic Instance Completion. In dieser Arbeit wollen wir ”hinter Objekte sehen”, indem
wir die fehlende Geometrie jedes Objekts in RGB-D Scans zusätzlich zur Ausgabe der
Instanzsemantiksegmentierung vervollständigen. Wir nutzen das 3D-SIS Framework
und fügen das Netzwerk für die Vervollständigung des 3D Objekts hinzu. Da es bei
der 3D Rekonstruktion keine Grundwahrheit in Bezug auf eine perfekte Objektgeome-
trie gibt, verwenden wir ein auf den 3D Scans ausgerichtetes CAD Modell als Grund-
wahrheit. Intuitiv führt eine bessere 3D Rekonstruktionsqualität zu einer besseren Leis-
tung von nachgeschalteten Aufgaben. Unsere Experimente beobachten auch eine Leis-
tungssteigerung für Erkennungs- und Instanzsegmentierungsaufgaben mit unsere Ver-
vollständigung.

Daten sind für das Lernen von entscheidender Bedeutung, insbesondere 3D Daten,
die noch schwieriger zu bekommen und zu annotatieren sind. Wir untersuchen daten-
effiziente Szenarien für 3D Wahrnehmungsaufgaben, nämlich Lernen mit begrenzten
annotatierten Daten. Wir schlagen einen daten-effizienten Benchmark mit begrenzten
Annotationen (LA) und begrenzten Rekonstruktionen (LR) für drei beliebte 3D Per-
ception Aufgaben vor. Zum Beispiel schlagen wir vor, z.B. nur 1% der mit Anmerkun-
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gen versehenen Punkte für das Training der semantischen Segmentierungsaufgabe in
LA. Wir schlagen auch einen unbeaufsichtigten Algorithmus vor dem Training vor, der
punktuelles und räumliches Contrastive Loss nutzt. Unsere Experimente zeigen eine sig-
nifikante Verbesserung mit unseren Algorithmen vor dem Training bei mehreren gängigen
Benchmarks und nachgelagerten Aufgaben. Wir zeigen eine bessere Leistung sowohl in
daten-effizienten Szenarien als auch in allen derzeit verfügbaren Daten.

Infolgedessen diskutieren wir die Grenzen und möglichen zukünftigen Richtungen un-
serer Forschung.

viii Zusammenfassung
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1 Introduction

3D Computer Vision has been a very popular research topic since last century, which
mainly researches on two counterparts, 3D reconstruction and 3D understanding. 3D
reconstruction tries to digitize the real world from images. Its applications range from
online shopping, 3D printing to computer video games. Classic image-based 3D recon-
struction algorithms, such as Structure from Motion (SfM) [1] and Multi-View Stereo
(MVS)[2], leverage motion and stereo correspondence as their main cue to estimate cam-
era parameters and dense 3D reconstruction. Recently due to the hardware development,
commodity 3D sensors become readily available (see Figure 1.1. With the help of inertial
measurement unit (IMU) and depth camera, it is much easier to get 3D reconstructions
of much better quality, e.g. BundleFusion [3]. Taking the advantage of developed 3D
sensors, large-scale RGB-D data, such as ScanNet [4], has been collected to enhance the
3D understanding research.

Figure 1.1: Depth Sensors on the Market. Commodity 3D Sensors are now readily available
on the market from a variety of companies. Portable sensors are easily mounted on
mobile devices and carried around for collecting data.
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Part I. Introduction

3D Understanding or 3D perception aims to understand the surrounding 3D envi-
ronments, e.g. semantic segmentation or object detection. Its application ranges from
robotics interactivity to autonomous driving. As prerequisite of understanding 3D en-
vironments, reconstructing better quality geometry is a must. As large scale and high
quality 3D reconstruction is readily available as mentioned above, developing 3D under-
standing algorithms is emerging

The computer vision community has witness a tremendous progress in semantically
understanding images since decades. From traditional machine learning techniques and
hand-crafted feature descriptors, such as Support Vector Machine (SVM) [5] and Scale-
Invariant Feature Transform (SIFT) [6], to Deep Learning era, the metrics on bench-
marks, such as ImageNet [7] and COCO [8], has been progressively improved. In this
dissertation, we aim to extend the deep learning techniques to 3D understanding domain
by leveraging the large scale RGB-D data and advanced deep learning techniques.

We first show the possibility of 3D understanding on RGB-D data with deep learn-
ing techniques. We introduce 3D-SIS, a very first 3D semantic instance segmentation
algorithm. Inspired by R-CNN series in 2D perception work, we introduce the anchor
mechanism into 3D perception. We deploy anchors averagely in the 3D feature space
with which we also fuse the color features learned from 2D CNNs. The anchors spreading
in the space will be regressed to their closed objects that have most similar sizes as the
anchor. This stage is called bounding boxes regression. Afterwards, we crop the regions
of features defined by the regressed anchors. Using those cropped features, we further
predict each object’s semantic class label as well as their 3D shapes. Our experiments
show a significant improvement over methods that operate on single frame. We also show
using color features learned from 2D CNNs outperforms simple RGB color features. In
this work, we show a deep learning based algorithm jointly learning features from RGB
and geometry using multi-view RGB-D input recorded with commodity RGB-D sensors
on a very important 3D understanding task.

As discussed previously, good quality of 3D reconstruction is critical for 3D scene un-
derstanding in RGB-D scans. However, 3D scans have holes and missing geometry due
to missing view angles in the reconstruction process. To this end, we introduced the new
task of semantic instance completion. We propose to combine the completion task (to
learn complete missing geometry) together with 3D instance segmentation task. In this
newly proposed task, we tackle the problem of “seeing behind objects” by predicting
the missing geometry of individually segmented objects in RGB-D scans. This enables
a variety of applications in terms of complex interactions with objects in 3D, such as
robotic grasping. Even without seeing behind the objects, robot arm needs to know
the object’s full 3D shape. Furthermore, we introduce RevealNet, the first 3D semantic
instance completion approach to jointly detect objects and predict their complete ge-
ometry. Our proposed 3D CNNs learn from both color and geometry features to detect
and classify objects, then predicts the voxel occupancy for the complete geometry of the
object in an end-to-end fashion, which can be run on a full 3D scan in a single forward
pass. On both real and synthetic scan data, we significantly outperform state-of-the-art
approaches that do instance segmentation and completion separately. To verify our point
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Part I. Introduction

that good quality geometry leads to better 3D understanding, we also show experiments
that using completion loss significantly improves the perception performance, such as
3D detection and instance segmentation.

Previously introduced algorithms highly rely on data, not only on quality of 3D re-
construction but also on richness of collected and annotated data. In general, data is
critical for data-driven approaches. Deep learning is known for requiring huge amount
of annotated data for training. To this end, 3D data is even harder and more complex
to acquire and annotate. In the following, we focus on how to train a 3D perceptual
model with fewest annotated data. Therefore, we focus on data-efficient 3D scene under-
standing through a novel unsupervised pre-training algorithm that integrates the scene
contexts in the point-wise contrastive learning framework. We first define the problem
by proposing a data-efficient benchmark with two common scenarios, namely limited
annotations (LA) and limited reconstructions (LR). For each case, we propose to eval-
uate on three popular 3D perceptual tasks, i.e. 3D semantic segmentation, instance
segmentation and detection. For example, we propose to use e.g. only 1% of annotated
points for training semantic segmentation task in 3D semantic segmentation task or
only one annotated bounding box per scene for training a 3D detection model. Then,
we propose our unsupervised pre-training algorithm leveraging point-wise and spatial
contexts contrastive learning. Our experiments show a significant improvement with
our pre-training algorithms on several popular benchmarks and downstream tasks. We
show better performance in both data-efficient scenarios and on all currently available
data. As conclusion, we show the possibility of using extremely few data or annotations
to achieve competitive performance leveraging representation learning. Our results and
findings are very encouraging and can potentially open up new opportunities in 3D (in-
teractive) data collection, unsupervised 3D representation learning, and large-scale 3D
scene understanding.

We start with a specific and very important 3D scene understanding task, namely 3D
Semantic Instance Segmentation, and introduce our algorithm 3D SIS, where we show
the possibility to work on RGB-D data with deep learning. Following, we introduce
RevealNet, the first 3D Semantic Instance Completion algorithm to show the benefits
of better object geometry to scene understanding. Finally, we focus on data-efficient
scenarios for 3D scene understanding. As a summary, we contribute in the following
three aspects in 3D scene understanding.

• We introduced 3D-SIS, a very first 3D Semantic Instance Segmentation Algorithm,
that jointly learn from geometry and color features.

• We introduced the new task 3D Semantic Instance Completion task which is im-
portant for many real-world robotics applications. We also propose RevealNet,
the first 3D Semantic Instance Completion framework and show a significantly
improvement on other scene understanding tasks by completing instances.

• We explored data-efficient learning on 3D scene understanding task. By proposing
Contrastive Scene Contexts, a novel unsupervised pre-training algorithm, we show
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the possibility of of using extremely few data or annotations to achieve competitive
performance.

1.1 Dissertation Overview

This thesis is structured in 7 chapters that are grouped into three parts as following:

• Part I: Introduction (Chapters 1–2)

– Chapter 1 (Introduction) introduces the history and recent development of
3D scene understanding and our contributions to the community.

– Chapter 2 (Theoretical Fundamentals) explains basic concepts on 3D scene
understanding to assist understanding the thesis.

• Part II: 3D Scene Understanding and Data-Efficient Learning (Chapters 3–5)

– Chapter 3 introduces our work 3D-SIS on 3D Semantic Instance Segmentation
that is a fundamental task towards understanding 3D environments.

– Chapter 4 introduces our work RevealNet that further improves to better
understand 3D environments in the scene by completing the missing geometry
of the scan.

– Chapter 5 introduces our work on efficiently training 3D scene understanding
models to better understand 3D scenes with extremely few annotated 3D
data.

• Part III: Conclusion & Outlook (Chapters 6–7)

– Chapter 6 (Conclusion) summarizes our proposed methods and concludes our
contributions.

– Chapter 7 (Outlook) discusses the existing problems in our proposed methods
and hints the potential direction.

1.2 Contributions

This thesis addresses the existing problems in 3D Scene Understanding with learned 3D
priors, including specific tasks such as 3D Instance Segmentation and Completion, as
well as the performance of mentioned tasks in data-efficient scenarios. For 3D Instance
Segmentation, we propose 3D-SIS [9], a top-down anchor-based method to segment each
3D instance in 3D scenes. 3D-SIS jointly leverages geometry and color information to
achieve accurate instance segmentation results. Instance Segmentation has holes and
incompleteness on the geometry surface, and therefore we propose RevealNet [10] to fur-
ther complete the missing geometry on the shape surface. RevealNet further indicates
that completed geometry can benefit the segmentation performance. Besides specific
tasks, data is a critical factor for learning 3D priors. To solve this problem, we propose

6 Chapter 1. Introduction



Part I. Introduction

contrastive scene contexts [11], a novel pre-training algorithm based on contrastive learn-
ing framework. In this paper, we first propose the important benchmark on data-efficent
3D scene understanding, and further show the effectiveness of the proposed pre-training
method in different scene understanding tasks in data-efficient scenarios. More specifi-
cally, structured by publications, this thesis is built from the following contributions:

• We introduce our proposed method 3D-SIS for 3D Semantic Instance Segmenta-
tion. 3D-SIS is among the very first approaches targeting this important problem.
We first introduce and adapt the anchor mechanism into this 3D task and fuse the
2D color information to achieve accurate predictions both on bounding box level
as well as surface geometry. 3D-SIS is the first paper to make the 3D instance
segmentation possible in a top-down fashion. With the help of color and geometry
information, 3D-SIS achieved the state-of-the-art segmentation results and experi-
mentally indicates the effectiveness of fusing 2D color into 3D scene understanding
tasks. The method development and implementation was done by the first author.
Data generation and baselines were done with the help of Angela Dai. Discussions
with the co-authors led to the final paper [9].

• We introduce RevealNet for 3D Instance Completion. RevealNet is the first ap-
proach targeting the task of 3D Semantic Instance Completion. Compared to
3D-SIS, RevealNet not only segment each instance but also complete them in 3D
scans. RevealNet leverages an autoencoder architecture, and therefore is able to
get rid of the second backbone (not like 3D-SIS that have two backbones). Our ap-
proach first does instance segmentation and then further completes each object’s
surface geometry that are segmented out from first stage. RevealNet achieved
state-of-the-art results compared to its alternative baselines. Our approach also
indicates that better geometry can help semantic understanding. The method de-
velopment and implementation was done by the first author. Alternative baselines
were provided by Angela Dai. Discussions with the co-authors led to the final
paper [10].

• To solve the data huger problem of training deep learning models, we explore the
data-efficient 3D scene understanding with contrastive scene contexts. It is widely
known that deep learning methods can consume huge amount of data in order to
train a state-of-the-art model. This problem becomes even more critical in 3D
Scene Understanding, since the annotation and collection of 3D data are more
expensive compared to 2D. Therefore, we propose the data-efficient 3D scene un-
derstanding benchmark to systematically research on this problem. Meanwhile, we
also propose our solution, which is a self-supervised pre-training method leveraging
contrastive learning on point-wise loss and scene contexts. With our proposed ap-
proach, we can train competitive deep learning models with only 0.1% annotations
that achieve 96% of the baseline performance that uses full annotations. Our data-
efficient benchmark on 3D scene understanding attracts wide attentions pointing
a meaningful and promising research direction, and already has a number of com-
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petitive submissions. The method development and implementation was done by
the first author. Discussions with the co-authors led to the final paper [11]

1.3 List of Publications

J. Hou, A. Dai, and M. Nießner, “3D-SIS: 3D Semantic Instance Segmentation
of RGB-D Scans,” in Proceedings of Computer Vision and Pattern Recognition
(CVPR), IEEE, 2019

J. Hou, A. Dai, and M. Nießner, “RevealNet: Seeing Behind Objects in RGB-
D Scans,” in Proceedings of Computer Vision and Pattern Recognition (CVPR),
IEEE, 2020

J. Hou, B. Graham, M. Nießner, and S. Xie, “Exploring Data-Efficient 3D Scene
Understanding with Contrastive Scene Contexts,” in Proceedings of Computer Vi-
sion and Pattern Recognition (CVPR), IEEE, 2021
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2 Fundamentals and Methods

3D Computer Vision has been developing very fast equipped with deep learning tech-
niques. In this dissertation, we discuss about our algorithms proposed for 3D scene
understanding and its efficient learning. As deep learning is the fundamental technique
used in our proposed algorithms, some fundamental concepts and basic algorithms of
deep learning is described in Appendix for better understanding the thesis.

3D Deep Learning mainly researches on training neural network on 3D data, e.g. point
cloud or voxel grids. In Section 2.1, we introduce different representations of 3D data
that can be used for training a 3D neural network. In Section 2.2, we introduce a variety
of 3D neural network architectures designed for consuming different types of 3D data.
At last in Section 2.3, we introduce several popular 3D datasets used for training 3D
neural networks and popular tasks commonly evaluated in 3D scene understanding.

2.1 3D Representation

Deep learning has achieved great success in 2D domain, where neural networks learn
primarily from images. In 3D computer vision, we can still leverage the power of deep
learning techniques, such as neural network architectures, optimizations as well as the
regularization and so on. In 3D domain, however, the network has to learn from a totally
different data representations from 2D scenarios. In the following sections, we will give
a brief introduction on common 3D data representations used in 3D computer vision.

2.1.1 Point Cloud

Point cloud is the simplest way to represent 3D geometry in computer vision. A point
cloud is a set of data points in space. Each point is represented by its set of X, Y
and Z coordinate, in some cases also with a list of rgb values to represent color for
this point. The xyz coordinates represent 3D geometry in an unstructual way. More
specifically, points can appear differently in the space even for representing the same
shape. Point cloud is also permute invariant, i.e. the order of points should not matter
in the representation. We show a illustration of point clouds representing different 3D
objects in Figure 2.1.

There are multiple ways to generate point clouds. LiDAR is the most common way
to acquire point cloud for outdoor scenes. LiDAR is a method for determining ranges
with a laser and measuring the time for the reflected light to return to the receiver.
LiDAR is an acronym of ”light detection and ranging” or ”laser imaging, detection, and
ranging”. LiDAR has some important factors, such as range and lines. Range denotes
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Figure 2.1: Point Cloud Representation. Point cloud can be used to represent 3D geometry
of different shapes [15], such as table, chair etc.

the maximum distance it can detect and lines tell how sparse the point cloud is. For
instance, an 120-m and 64-line LiDAR can detect objects as far as 120 meters and rotates
64 lasers and measured the time of flight to calculate distance of surrounding objects. In
general, LiDAR produces very sparse point cloud. We show classic point clouds produced
by LiDAR sensor in Figure 2.2. Using LiDAR to detect 3D environments on the streets
is a common practice for autonomous driving.

Different from autonomous driving, robotics application normally runs in indoor envi-
ronments, where RGB-D cameras are often used. RGB-D cameras not only capture the
color information like normal cameras, but also detect a dense depth map. Leveraging
depth values, pixel coordinates and intrinsic matrix of the camera, we can easily generate
a point cloud. To this end, point clouds produced by RGB-D camera are generally much
denser than LiDAR.

2.1.2 Voxel Grid

Compared to point cloud, voxel grid is structured data, i.e. voxel grid is identical for
representing the same geometry. Voxel grid is normally represented by a 3D tensor and
a voxel size. Voxel size indicates its resolution, such as 2cm or 3cm. Smaller voxel size
can represent finer details. Depending on what to put in the voxel, there are several
types of voxel grids. As the voxel grid is the most similar representation to 2D pixels, it
attracts a lot of attention in the beginning. But it has the limitation on the resolutions,
such as huge memory consumption for finer details.

Occupancy Grid is a binary representation. More specifically, the content in each voxel
is either 0 or 1. Zero represents empty or free space, and one means occupied. Occupancy
grid is not a continues representation, so that it can not extract surface inside one voxel.
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Figure 2.2: Point Cloud From LiDAR Sensors [16]. Number of circles (like the water
ripple) indicates how many lasers are rotated by the LiDAR sensor. More circles
represent denser point cloud.

SDF Grid puts the signed distance field value (SDF) in each voxel. Signed distance
field measures the distance from current voxel to its closest surface. Positive sign denotes
outside of the objects, whereas negative sign denotes inside the surface. Compared to
occupancy grid, it can extract surface within a voxel. As the values in SDF voxels
are continuous, surface can be extracted within a voxel by Marching Cubes, where it
interpolates 0 values as surface, as presented in Figure 2.4. In practice, Truncated SDF
(TSDF) is often used. TSDF truncates the sdf values by a certain threshold, as the free
space is not interesting when it is too far from the surface. There are multiple ways to
generate SDF voxel grid; the most popular one is volumetric fusion [3], in which multiple
RGB-D frames are fused into the voxel grid according to their camera poses and camera
parameters.

2.1.3 Mesh

Mesh is composed by vertices that can be seen as point clouds as well as faces. Faces
define how to connect vertices. Normally triangles are used as faces, so that one face
includes indices of three vertices. Compared to voxel grid, mesh only exists on surface,
and do not model the free space.

We show a mesh of human face in Figure 2.5, in which each surface contains four
vertices called quads as showed on the right. If hiding the connectivity, we can see
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Figure 2.3: Voxel Grid Representation. Higher resolution can represent finer details, how-
ever, the number of voxels increases exponentially. Density denotes how many
voxels are occupied divided by the total number of voxels. Lower density means
more free space. The higher resolutions the voxel grid has, the more voxels are in
free space.

a smoothed human face on the left in the figure. Generally, mesh produces the most
visually pleasing graphics. There are several ways to generate mesh. For instance, we
can produce mesh surface from SDF voxel grid by Marching Cubes as introduced in
Section 2.1.2 or poisson mesh reconstruction from point cloud.

2.1.4 Implicit Neural Representation

Compared to traditional geometry representations, such as volumetric grids or point
clouds, implicit neural representation aims to parameterize geometry with learned neu-
ral network features. More specifically, implicit neural representation models implicit
functions, such as signed distance function (SDF). For example, DeepSDF [18] uses MLPs
to represent implicit SDF functions, and it takes xyz coordinates as input, and outputs
the SDF values of given xyz locations. Similarly, Occupancy Network [19] outputs a
binary value to indicate if the current location is on the surface given xyz coordinates.
To this end, implicit neural representation gets rid of the limitations of resolutions. By
sampling more and more xyz inputs, it can generate infinite finer resolutions.

Implicit functions. Mathematically, an explicit function is the function, in which the
dependent variable is given in terms of the independent variables, e.g. y = x + 1.
In this function, the dependent variable y is determined by the independent variable
x. Implicit functions, on the other hand, are usually given in a relation of the form
R(x1, . . . , xn) = 0, where R is a function of several variables, such as x2 + y2 = 0. To
this regard, signed distance function (SDF) is a classic implicit function. SDF outputs
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Figure 2.4: Isosurface at 0 in SDF. Surface is extracted at value 0, which is interpolated
within voxels [17]

the distance value from current location to its closest surface, given xyz coordinates as
the input variables to the function.

2.2 3D Neural Network

In previous section, we introduced commonly used 3D representations. To this end,
we need to leverage neural network to learn objectives by consuming the data. In this
section, we introduction several popular types of 3D neural networks and what are their
preferred data representations.

2.2.1 3D Convolutional Neural Network

3D Convolutional Neural Network (3D CNNs) is very similar to its counter part 2D
CNNs. The only difference is that it has one more dimension in kernel size. As illustrated
in Figure 2.6, it slides the kernel in the 3D tensor inputs.

As voxels are very similar to pixels, 3D CNNs are usually used to learn from voxel
grid data. For 3D Neural Network composed of 3D convolutions, we also need activation
functions, pooling layers etc. They are also very similar to 2D, but with one more
dimension.

2.2.2 SparseConv

3D CNNs has the drawback that it slides the kernels also on free space. However, free
space is not interesting for many tasks, such as semantic segmentation. Because we only
care the labels on the surface. As more than 90% voxels are in free space. 3D CNNs
consume huge memory and are trained very slowly for dealing with those voxels in free
space.
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Figure 2.5: Human Face Mesh. The connectivity is presented on the right, defined by quadri-
laterals (quads).

To conquer this drawback, SparseConv is invented [20]. The core idea is the conv
kernel only convolves with the values on the surface, and the voxels in free space are
ignored. We show a illustration in Figure 2.7. Since sparseconv only convolves on surface
values, the global features summarised by disconnected surfaces can be aggregated by
building a deeper network. As SparseConv can save huge memory and training speed by
ignoring free space voxels, a very deep 3D neural network is easy to build. In summary,
SparseConv is a very powerful backbone for 3D data as it saves memoery and train-
ing speed from free space thus can build very deep network for extracting meaningful
features.

2.2.3 PointNet

As the name suggests, PointNet [21] are designed for raw point cloud inputs, which en-
ables several downstream tasks presented in Figure 2.8. To process point cloud, PointNet
has several properties.

• Permutation (Order) Invariance: given the unstructured nature of point cloud
data, a scan made up of N points has N! permutations. The subsequent data
processing must be invariant to the different points orders.

• Transformation Invariance: it must be invariant to certain geometric transforma-
tions, such as rotation. For instance, an apple rotated by 90 degree should still be
classified as an apple.
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Figure 2.6: 3D Convolution Operation. Kernel Tensor is convoluted with Volume Tensor
in a sliding window fashion.

• Point Interactions: neighboring points often carries useful information, and a single
point should not be treated in isolation.

PointNet architecture is surprisingly simple and quite intuitive. It uses a shared multi-
layer perceptron (MLP) with several designed modules to extract meaning features and
satisfy the properties mentioned before at the same time. PointNet implements the
symmetric function with max pooling to extract feature for a local region. To this end,
it is invariant to the orders of points in this region (Permutation Invariance).

Motivated by Spatial Transformer Networks (STNs) [22], PointNet introduces Spatial
Transformer (ST) to satisfy Transformation Invariance. For a given input point cloud,
ST applies an appropriate rigid or affine transformation estimated from T-Net to achieve
pose normalization. T-Net is a regression network predicting an input-dependent trans-
formation matrix. Pose normalization, leveraging the estimated transformation matrix
from T-Net, aims to normalize the input point cloud to a canonical pose.

2.3 RGB-D Datasets and Related Work

In previous sections, we introduced various representations of 3D data and powerful
neural network backbones. All of those make 3D scene understanding tasks possible.
In this section, we walk through the mainstream tasks and data used in 3D Scene
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Figure 2.7: SparsConv Convolves Only With Surface Values. Greens represent activated
voxels that are convolved with kernels; red voxel is not activated, thus has no
influence on kernel weights [20].

Figure 2.8: PointNet Backbone. PointNet enables several downstream tasks as it can extract
features from unordered point cloud data [21].

Understanding. In Section 2.3.1, we introduce the most popular RGB-D datasets that
facilities the research. In Section 2.3.2, we introduce the mainstreams tasks included in
3D scene understanding areas and their state-of-the-art methods. In Section 2.3.3, we
introduce the state-of-the-art methods for training 3D Scene Understanding tasks with
extremely few annotated data.

2.3.1 RGB-D Datasets

RGB-D data refers to pairs of frames including depth frame and color frame. Each pair
of frames are associated with a set of camera parameters such as intrinsic and extrinsic.
With the help of those information, a 3D reconstruction can be obtained in either mesh
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or point cloud. In the following, we introduce several very popular RGB-D datasets that
boost the research of 3D scene understanding recently.

Figure 2.9: Aligned Models in ShapeNet [23]. Examples of categories of chair, laptop,
bench, and airplane.

ShapeNet [24] is a richly-annotated, large-scale repository of shapes represented by
3D CAD models of objects. ShapeNet contains 3D models from a multitude of se-
mantic categories, such as chair, laptop and bench. ShapeNet has indexed more than
3,000,000 models out of 3,135 categories. Each object is also attached with textures. It
is a collection of many semantic annotations for each 3D model, such as consistent rigid
alignments, parts and bilateral symmetry planes, as well as physical sizes. ShapeNet pro-
motes data-driven geometric analysis, and provides a large-scale quantitative benchmark
for research in computer graphics and vision. Furthermore, it also provides renderings
from different view angles centered in each object, which enables a lot of research of
reconstructing objects from single or multiple RGB images. We show examples of some
categories in Figure 2.9.
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Figure 2.10: Reconstruction and Annotations in ScanNet [4]. ScanNet provides
instance-level annotations in 3D. Different colors represent different instances.

ScanNet [4] is a richly annotated large-scale RGB-D dataset of indoor scenes, including
1213 indoor scenes for training, 321 scenes for validation and 100 scenes as test data. It
mostly records the hotel rooms, offices in the universities as well as rooms in houses. For
each scene, it provides the raw RGB frame and depth frames. For each depth frame and
color frame, it provides the camera intrinsic matrix. ScanNet also provides camera pose
for each depth frame that is globally optimized by BundleFusion [3]. Additionally, Scan-
Net includes the 3D reconstruction from volumetric fusion. For each scene, it provides
precise instance-level annotation as showed in Figure 2.10. Furthermore, the authors
also back project the 3D annotations back to 2D color frames based on the camera poses
and intrinsic matrix, which enables the research of geometry-color cross-modality. Scan-
Net has achieved great success and push the 3D scene understanding research forward
as it sets up the major benchmark in 3D scene understanding tasks, including semantic
segmentation, as it provides per-point semantic label annotations on 3D mesh, instance
segmentation, as it has the instance-level annotations, as well as object detection, as
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it provides tight axis-aligned bounding boxes estimated from instance annotation. A
variety of methods have been developed and compared on this benchmark.

Figure 2.11: Scan2CAD [25] Alignments. Scan2CAD aligns instance-level objects with
complete geometry (CAD model) to their incomplete counter parts in 3D scans
from ScanNet.

Figure 2.12: Amodal Bounding Box Annotations in Scan2CAD [25]. Compared to
ScanNet annotations, Scan2CAD provides amodel (full scale) 3D bounding boxes
computed from complete geometry (CAD model). Left: bounding box annotations
from ScanNet; right: bounding box annotations from Scan2CAD.
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Scan2CAD [25] aligns clean 3D CAD models from a 3D object database to the noisy
and incomplete geometry of RGB-D scans in ScanNet. Scan2CAD provides the align-
ment based on 1506 ScanNet scans and 14225 CAD models from ShapeNet. As the
alignments between the CAD model and scans are based on the key-point matching,
thus Scan2CAD annotated 97607 key-point pairs between the CAD models and their
counter parts in scans. A alignment example between CAD models and a specific scan
is presented in Figure 2.11. Scan2CAD enables a variety of research in 3D scene under-
standing, such as object detection as it provides amodal 3D bounding box annotations
computed from aligned CAD model with complete geometry, whereas ScanNet computes
tight bounding boxes from incomplete object geometry illustrated in Figure 2.12. As
Scan2CAD gives complete geometry of objects in incomplete scans, it enables the a new
research direction, semantic instance completion introduced in 4.

Figure 2.13: SUNCG Dataset. SUNCG [17] creates synthetic 3D scenes with complete ge-
ometry. It also contains rendered depth images and volumetric semantic ground
truth (instance level).

SUNCG [17] is a manually created large-scale dataset of synthetic 3D scenes with
realistic room and furniture layouts. Each scene has dense volumetric annotations as well
as instance information. SUNCG provides 49,884 valid floors that contain 404,058 rooms
and 5,697,217 object instances from 2644 unique object meshes covering 84 categories.
The authors manually labeled all the objects in the library to assign category labels. In
Figure 2.13, we show a set of top view renderings of each floor in SUNCG. As a synthetic
RGB-D dataset, SUNCG contains even a lot more scenes than the largest real-world
RBG-D dataset (ScanNet). It provides huge 3D data that can easily be manipulated and
enables the research of semantic scene completion that will be introduced in Section 2.3.2.

SUN-RGBD is captured by four different sensors and contains 10,335 RGB-D images.
The whole dataset is densely annotated and includes 146,617 2D polygons and 64,595
amodal 3D bounding boxes1 with accurate object orientations, as well as a 3D room

1Amodal perception is the perception of the whole of a physical structure when only parts of it affect
the sensory receptors
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Figure 2.14: SUN-RGBD Dataset. SUN-RGBD [26] contains various annotations, such as
room layout, scene classification and semantic segmentation etc, but it is mostly
known for 3D object detection (amodal) from single RBG-D image.

layout and scene category for each image. This dataset is a very popular benchmark
on object detection from single RGB-D image. We show some examples of the data in
Figure 2.14.

Figure 2.15: S3DIS Dataset. S3DIS Dataset [27] is very similar to ScanNet, including 2D
and 3D semantics. S3DIS is recorded to contain the whole floor (entire area), and
the rooms can be cropped from the floor.
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S3DIS covers indoor scenes over 6,000 m2 and contains over 70,000 RGB-D images,
along with surface normals, semantic annotations, as well as camera information. S3DIS
also includes reconstructed raw and semantically annotated 3D meshes and point clouds.
The dataset provides not only per-point label but also instance-level annotations, which
enables development of 3D semantic segmentation and instance segmentation.

2.3.2 3D Scene Understanding Tasks

RGB-D datasets have equipped and driven forward the research of 3D scene understand-
ing. In general, 3D scene understanding aims to understand the 3D environments of an
indoor scene, such as identifying the objects’ locations and their semantic labels as well
as segmentation of the scene. In this section, we introduce the popular tasks counted as
3D scene understanding.

Figure 2.16: Semantic Segmentation in ScanNet [28] Left: input point cloud; right:
semantic segmentation prediction. Different colors represent different semantic
classes.

2.3.2.1 3D Semantic Segmentation

Semantic segmentation aims to assign a semantic label to each point for point cloud
or voxel for voxelgrid input as illustrated in Figure 2.16. In recent years, 3D semantic
segmentation has achieved great success starting from PointNet [21] to SparseConv [20],
[28]. The main metric in this task is Intersection-Over-Union (IoU). IoU is easy to
compute as showed in Equation 2.1. This task has one-to-one mapping from input to
output and don’t require additional techniques such as clustering algorithms, thus can
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be used as simplest downstream task to verify the capability of a backbone. Besides pure
geometric input, Dai et al. [29] introduces a cross-modality learning method (3DMV)
for this task. 3DMV uses TSDF (see Section 2.1.2 as input for 3D part, and RGB color
images that look at the same region as input for 2D part. As illustrated in Figure 2.17,
3D CNNs are used to summarize 3D geometric features, and 2D CNNs are used to
learn 2D color features. They are fused together by back-projection layer to predict
final results. Back-projection layer projects per-pixel features to voxels based on camera
parameters, such as intrinsic and extrinsic matrix. The introduction of 2D CNNs rather
than direct usage of raw RGB values aims to reduce the mismatch degree of the pixel
and voxel resolution, as one voxel can contain multiple pixels.

Figure 2.17: Illustration of 3DMV [29]. Color features are fused with geometric features
through back-projection layer to predict per-voxel semantic labels.

IoU =
Area of Overlap

Area of Union
(2.1)

2.3.2.2 3D Semantic Instance Segmentation

In this section, we introduce the state-of-the-art methods in 3D semantic instance seg-
mentation. The input of instance segmentation is the same as semantic segmentation,
e.g. a point cloud or voxelgrid. The output, however, is not a one-to-one mapping. As
the goal is to find individual object shape in the scan, the output is of an arbitrary num-
ber depending on how many objects in the scene as illustrated. The most popular metric
used in this task is mean Average Precision at N (mAP@N). N means the IoU overlap
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as defined in Equation 2.1. This metric ranks the the predictions with their scores or
confidences. Starting from the prediction with top scores, it computes true positives
(TP), false positives (FP) and false negatives (FN) in an accumulative way. True posi-
tive refers to the prediction that has at least N% overlap with any of the ground-truth
object, and False positive means the predictions that satisfy overlap but predict wrong
semantic labels. False Negative refers to the missing detection from ground truth. Ac-
cordingly, precision and recall can be computed by Equation 2.2 and 2.3. To this end, we
can draw a precision and recall curve. Average Precision is the integral over the curve,
and mAP is the mean value of APs over semantic classes.

There are two streams of methods developed in instance segmentation, namely top-
down and bottom-up. Top-down first detect objects and then segment their shape.
Bottom-up method first do semantic segmentation and then cluster the points into in-
stances. In this section, we introduce two bottom-up methods PointGroup [30] and
SGPN [31]. The top-down method is introduced in Chapter 3.

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

Figure 2.18: Instance Segmentation in ScanNetV2. Left: point cloud input; right: in-
stance segmentation prediction from PointGroup [30]. Different colors represent
different instances.

SGPN is the first method towards 3D instance segmentation in indoor scene. It process
the input point cloud with a PointNet backbone. SGPN obtains per-point features, and
input these features into three branches, namely a similarity matrix, a confidence map
and a semantic prediction branch. Similarity groups the points into instance proposals.
Confidence map predictis the score for each proposal. Semantic prediction branch pre-
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dicts the semantic class for each instance. As it computes distance between each pair
of points, SGPN consumes huge memory. To solve this issue, it process scene block by
block. Finally, blocks are merged into the prediction of the whole scene. This pipeline
is described in Figure 2.19.

Figure 2.19: SGPN Pipeline [31]. SGPN consumes point cloud with a PointNet backbone,
and propose instances by a similarity matrix that indicates the similarity between
each pair of points in embedded feature space.

PointGroup first predict semantic segmentation with a SparseConv backbone. Addi-
tionally, it enforces a voting-center loss, i.e. points belonging to the same object are
moved to the object center. Different from SGPN where the clustering happens in fea-
ture space, PointGroup clusters in spatial space. The points that are closed to each
other in euclidean space are grouped together into one instance. PointGroup proposes
to cluster in two euclidean spaces called dual clustering, one with center voting loss that
points are moved to the object centers, one without this loss. In this way, each point
can be assigned to more than one instance. Thus, they use Non Maximum Suppression
(NMS) to remove duplicates based on the scores estimated by a small network called
ScoreNet. The whole pipeline is showed in Figure 2.21.

Figure 2.20: PointGroup Network [30]. PointGroup takes point cloud with N points as
input to a U-Net backbone, and generate instances by Clustering, ScoreNet and
NMS.
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2.3.2.3 Object Detection

Object detection plays a very important role in 3D scene understanding. Same as previ-
ously introduced tasks, object detection task takes a point cloud as input, and output 3D
bounding boxes for each object in the scene as showed in Figure 5.9. Knowing where the
objects are is a very important step to a variety of applications, such as robotics route
planning and VR/AR. Similar to instance segmentation, detection also has two main
streams: top-down and bottom-up methods. In this section, we introduce a bottom-up
method called VoteNet [32]. We introduce our proposed algorithm that is a top-down
method in Chapter 3.

Figure 2.21: Detection Task in ScanNetV2 [32]. For each object in the scene, a 3D bound-
ing box that includes the object’ geometry is depicted.

VoteNet leverages a PointNet/PointNet++ [21], [33] backbone to extract features for
each point. Furthermore, a subset of points are sampled that considered as seed points.
Each seed independently generates a vote through a voting module. Then the votes are
aggregated into clusters and processed by the proposal module to generate the bounding
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box proposals including the location, dimensions, orientation and semantic classes. A
depicted pipeline can bee seen in Figure 2.23.

Figure 2.22: VoteNet Pipeline. Network Architecture of VoteNet [32]: from N points input,
feature extraction with PointNet++ backbone, to voting module and proposal
module.

2.3.2.4 Semantic Scene Completion

Tasks like semantic/instance segmentation assigns semantic labels to the input, but
does not change the input geometry. However, it is quite normal that 3D reconstruction
has holes and missing geometry due to the missing view angles or lighting conditions.
Semantic Scene Completion (SSC) aims to complete the missing geometry and their
semantic labels. In this section, we introduce two works: SSCNet [17] and RfD-Net [34].
SSCNet aims to complete whole scene, and RfD-Net completes missing geometry of each
object. In our work introduced in Chapter 4, we show improvement on detection and
instance segmentation tasks by completing objects’ geometry.

SSCNet takes a partial depth frame as input and complete the missing geometry as
well as per-voxel semantic label. It takes TSDF as input and leverages 3D CNNs for
feature extraction. SSCNet renders depth map from SUNCG so that they have the
ground truth of missing geometry and their semantic labels. It is the first pioneer work
to target this problem.

RfD-Net aims to complete missing geometry on individual objects. Because walls and
floors are normally easy to complete and less interesting for many applications. It first
detect 3D objects in the scan and then leverages Shape Completion method to complete
each object individually. RfD-Net uses the state-of-the-art implicit representation to
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reconstruct objects. To this end, they can get rid of resolution limitation and generate
high-quality geometry.

2.3.3 Efficient Learning in RGB-D Data

To make better 3D scene understanding, researchers have developed sophisticated meth-
ods based on deep learning. As data-driven methods, data influences hugely on deep
learning methods. On the other hand, data annotation in 3D is very expensive. To this
end, efficiently using data emerges in 3D scene understanding community. The general
goal is to use as few as annotated data to achieve competitive performance. In this sec-
tion, we introduce the pioneer work PointContrast, the first self-supervised pre-training
method on RGB-D data. Note that PointContrast is proposed to improve downstream
tasks’ performance, but not designed for data-efficient learning. Our work [13] is the first
to propose a 3D scene understanding benchmark including detection and semantic/in-
stance segmentation on data-efficient learning. We leverage a self-supervised pre-training
to reduce the needed annotations. In Chapter 5, we explain our methods in details.

Figure 2.23: PointContrast Pipeline [35]. PointContrast takes pairs of partial depth frames,
and learning correspondences matching as a pre-training task.

PointContrast takes a pair of depth frames that have at least 30% overlaps and enforce
a contrastive learning loss on correspondence matching task as pre-text training. The
pre-trained weights then are used as network initialization to be finetuned on downstream
tasks.
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3 3D Semantic Instance Segmentation

This chapter introduces the following paper:

J. Hou, A. Dai, and M. Nießner, “3D-SIS: 3D Semantic Instance Segmentation of
RGB-D Scans,” in Proceedings of Computer Vision and Pattern Recognition (CVPR),
IEEE, 2019

Abstract of paper As the most important task in 3D perception, 3D Instance Semantic
Segmentation includes detecting 3D objects, classify its semantic label and segment its
3D shape out. To tackle this problem, we introduce 3D-SIS, a novel neural network
architecture for 3D semantic instance segmentation in commodity RGB-D scans. The
core idea of our method is to jointly learn from both geometric and color signal, thus
enabling accurate instance predictions. Rather than operate solely on 2D frames, we
observe that most computer vision applications have multi-view RGB-D input available,
which we leverage to construct an approach for 3D instance segmentation that effectively
fuses together these multi-modal inputs. Our network leverages high-resolution RGB
input by associating 2D images with the volumetric grid based on the pose alignment
of the 3D reconstruction. For each image, we first extract 2D features for each pixel
with a series of 2D convolutions; we then backproject the resulting feature vector to
the associated voxel in the 3D grid. This combination of 2D and 3D feature learning
allows significantly higher accuracy object detection and instance segmentation than
state-of-the-art alternatives. We show results on both synthetic and real-world public
benchmarks, achieving an improvement in mAP of over 13 on real-world data.

Contribution The method development and implementation was done by the first au-
thor. Data generation and baselines were done with the help of Angela Dai. Discussions
with the co-authors led to the final paper.
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3.1 Introduction

Semantic scene understanding is critical to many real-world computer vision applications.
It is fundamental towards enabling interactivity, which is core to robotics in both indoor
and outdoor settings, such as autonomous cars, drones, and assistive robotics, as well
as upcoming scenarios using mobile and AR/VR devices. In all these applications, we
would not only want semantic inference of single images, but importantly, also require
understanding of spatial relationships and layouts of objects in 3D environments.

Figure 3.1: 3D Semantic Instance Segmentation. 3D-SIS performs 3D instance segmenta-
tion on RGB-D scan data, learning to jointly fuse both 2D RGB input features with
3D scan geometry features. In combination with a fully-convolutional approach en-
abling inference on full 3D scans at test time, we achieve accurate inference for
object bounding boxes, class labels, and instance masks.

With recent breakthroughs in deep learning and the increasing prominence of convolu-
tional neural networks, the computer vision community has made tremendous progress
on analyzing images in the recent years. Specifically, we are seeing rapid progress in
the tasks of semantic segmentation [36]–[38], object detection [39], [40], and semantic in-
stance segmentation [41]. The primary focus of these impressive works lies in the analysis
of visual input from a single image; however, in many real-world computer vision scenar-
ios, we rarely find ourselves in such a single-image setting. Instead, we typically record
video streams of RGB input sequences, or as in many robotics and AR/VR applications,
we have 3D sensors such as LIDAR or RGB-D cameras.

In particular, in the context of semantic instance segmentation, it is quite disadvan-
tageous to run methods independently on single images given that instance associations
must be found across a sequence of RGB input frames. Instead, we aim to infer spatial
relationships of objects as part of a semantic 3D map, learning prediction of spatially-
consistent semantic labels and the underlying 3D layouts jointly from all input views
and sensor data. This goal can also be seen as similar to traditional sensor fusion but
for deep learning from multiple inputs.

We believe that robustly-aligned and tracked RGB frames, and even depth data, from
SLAM and visual odometry provide a unique opportunity in this regard. Here, we can
leverage the given mapping between input frames, and thus learn features jointly from all
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input modalities. In this work, we specifically focus on predicting 3D semantic instances
in RGB-D scans, where we capture a series of RGB-D input frames (e.g., from a Kinect
Sensor), compute 6DoF rigid poses, and reconstruct 3D models. The core of our method
learns semantic features in the 3D domain from both color features, projected into 3D,
and geometry features from the signed distance field of the 3D scan. This is realized
by a series of 3D convolutions and ResNet blocks. From these semantic features, we
obtain anchor bounding box proposals. We process these proposals with a new 3D
region proposal network (3D-RPN) and 3D region of interest pooling layer (3D-RoI)
to infer object bounding box locations, class labels, and per-voxel instance masks. In
order to jointly learn from RGB frames, we leverage their pose alignments with respect
to the volumetric grid. We first run a series of 2D convolutions, and then backproject
the resulting features into the 3D grid. In 3D, we then join the 2D and 3D features in
end-to-end training constrained by bounding box regression, object classification, and
semantic instance mask losses.

Our architecture is fully-convolutional, enabling us to efficiently infer predictions on
large 3D environments in a single shot. In comparison to state-of-the-art approaches that
operate on individual RGB images, such as Mask R-CNN [41], our approach achieves
significantly higher accuracy due to the joint feature learning.

To sum up, our contributions are the following:

• We present the first approach leveraging joint 2D-3D end-to-end feature learning on
both geometry and RGB input for 3D object bounding box detection and semantic
instance segmentation on 3D scans.

• We leverage a fully-convolutional 3D architecture for instance segmentation trained
on scene parts, but with single-shot inference on large 3D environments.

• We outperform state-of-the-art by a significant margin, increasing the mAP by
13.5 on real-world data.

3.2 Related Work

3.2.1 Object Detection and Instance Segmentation

With the success of convolutional neural network architectures, we have now seen impres-
sive progress on object detection and semantic instance segmentation in 2D images [39]–
[45]. Notably, Ren et al. [42] introduced an anchor mechanism to predict objectness in
a region and regress associated 2D bounding boxes while jointly classifying the object
type. Mask R-CNN [41] expanded this work to semantic instance segmentation by pre-
dicting a per-pixel object instance masks. An alternative direction for detection is the
popular Yolo work [40], which also defines anchors on grid cells of an image.

This progress in 2D object detection and instance segmentation has inspired work on
object detection and segmentation in the 3D domain, as we see more and more video
and RGB-D data become available. Song et al. proposed Sliding Shapes to predict
3D object bounding boxes from single RGB-D frame input with handcrafted feature de-
sign [46], and then expanded the approach to operate on learned features [47]. The latter
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direction leverages the RGB frame input to improve classification accuracy of detected
objects; in contrast to our approach, there is no explicit spatial mapping between RGB
and geometry for joint feature learning. An alternative approach is taken by Frustum
PointNet [48], where detection is performed a 2D frame and then back-projected into
3D from which final bounding box predictions are refined. Wang et al. [31] base their
SGPN approach on semantic segmentation from a PointNet++ variation. They formu-
late instance segmentation as a clustering problem upon a semantically segmented point
cloud by introducing a similarity matrix prediction similar to the idea behind panoptic
segmentation [49]. In contrast to these approaches, we explicitly map both multi-view
RGB input with 3D geometry in order to jointly infer 3D instance segmentation in an
end-to-end fashion.

3.2.2 3D Deep Learning

In the recent years, we have seen impressive progress in developments on 3D deep learn-
ing. Analogous to the 2D domain, one can define convolution operators on volumetric
grids, which for instance embed a surface representation as an implicit signed distance
field [50]. With the availability of 3D shape databases [17], [23], [51] and annotated
RGB-D datasets [4], [26], [52], [53], these network architectures are now being used for
3D object classification [51], [54]–[56], semantic segmentation [4], [29], [57], and object
or scene completion [17], [58], [59]. An alternative representation to volumetric grids are
the popular point-based architectures, such as PointNet [21] or PointNet++ [33], which
leverage a more efficient, although less structured, representation of 3D surfaces. Multi-
view approaches have also been proposed to leverage RGB or RGB-D video information.
Su et al. proposed one of the first multi-view architectures for object classification by
view-pooling over 2D predictions [60], and Kalogerakis et al. recently proposed an ap-
proach for shape segmentation by projecting predicted 2D confidence maps onto the 3D
shape, which are then aggregated through a CRF [61]. Our approach joins together many
of these ideas, leveraging the power of a holistic 3D representation along with features
from 2D information by combining them through their explicit spatial mapping.

3.3 Method Overview

Our approach infers 3D object bounding box locations, class labels, and semantic in-
stance masks on a per-voxel basis in an end-to-end fashion. To this end, we propose
a neural network that jointly learns features from both geometry and RGB input. In
the following, we refer to bounding box regression and object classification as object
detection, and semantic instance mask segmentation for each object as mask prediction.

In Sec. 3.4, we first introduce the data representation and training data that is used
by our approach. Here, we consider synthetic ground truth data from SUNCG [17], as
well as manually-annotated real-world data from ScanNetV2 [4]. In Sec. 4.4, we present
the neural network architecture of our 3D-SIS approach. Our architecture is composed
of several parts; on the one hand, we have a series of 3D convolutions that operate in
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Figure 3.2: 3D-SIS Network Architecture. Our architecture is composed of a 3D detection
and a 3D mask pipeline. Both 3D geometry and 2D color images are taken as
input and used to jointly learn semantic features for object detection and instance
segmentation. From the 3D detection backbone, color and geometry features are
used to propose the object bounding boxes and their class labels through a 3D-RPN
and a 3D-RoI layer. The mask backbone also uses color and geometry features, in
addition to the 3D detection results, to predict per-voxel instance masks inside the
3D bounding box.

voxel grid space of the scanned 3D data. On the other hand, we learn 2D features that
we backproject into the voxel grid where we join the features and thus jointly learn
from both geometry and RGB data. These features are used to detect object instances;
that is, associated bounding boxes are regressed through a 3D-RPN and class labels are
predicted for each object following a 3D-ROI pooling layer. For each detected object,
features from both the 2D color and 3D geometry are forwarded into a per-voxel instance
mask network. Detection and per-voxel instance mask prediction are trained in an end-
to-end fashion. In Sec. 4.5, we describe the training and implementation details of our
approach, and in Sec. 4.6, we evaluate our approach.

3.4 Training Data

Data Representation We use a truncated sign distance field (TSDF) representation
to encode the reconstructed geometry of the 3D scan inputs. The TSDF is stored in a
regular volumetric grid with truncation of 3 voxels. In addition to this 3D geometry, we
also input spatially associated RGB images. This is feasible since we know the mapping
between each image pixel with voxels in the 3D scene grid based on the 6 degree-of-
freedom (DoF) poses from the respective 3D reconstruction algorithm.

For the training data, we subdivide each 3D scan into chunks of 4.5m × 4.5m × 2.25m,
and use a resolution of 96× 96× 48 voxels per chunk (each voxel stores a TSDF value);
i.e., our effective voxel size is ≈ 4.69cm3. In our experiments, for training, we associate
5 RGB images at a resolution of 328x256 pixels in every chunk, with training images
selected based on the average voxel-to-pixel coverage of the instances within the region.
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Our architecture is fully-convolutional (see Sec. 4.4), which allows us to run our
method over entire scenes in a single shot for inference. Here, the xy-voxel resolu-
tion is derived from a given test scene’s spatial extent. The z (height) of the voxel grid
is fixed to 48 voxels (approximately the height of a room), with the voxel size also fixed
at 4.69cm3. Additionally, at test time, we use all RGB images available for inference.
In order to evaluate our algorithm, we use training, validation, test data from synthetic
and real-world RGB-D scanning datasets.

Synthetic Data For synthetic training and evaluation, we use the SUNCG [17] dataset.
We follow the public train/val/test split, using 5519 train, 40 validation, and 86 test
scenes (test scenes are selected to have total volume < 600m3). From the train and
validation scenes, we extract 97, 918 train chunks and 625 validation chunk. Each chunk
contains an average of ≈ 4.3 object instances. At test time, we take the full scan data
of the 86 test scenes.

In order to generate partial scan data from these synthetic scenes, we virtually render
them, storing both RGB and depth frames. Trajectories are generated following the
virtual scanning approach of [59], but adapted to provide denser camera trajectories
to better simulate real-world scanning scenarios. Based on these trajectories, we then
generate partial scans as TSDFs through volumetric fusion [50], and define the training
data RGB-to-voxel grid image associations based on the camera poses. We use 23
class categories for instance segmentation, defined by their NYU40 class labels; these
categories are selected for the most frequently-appearing object types, ignoring the wall
and floor categories which do not have well-defined instances.

Real-world Data For training and evaluating our algorithm on real-world scenes, we
use the ScanNetV2 [4] dataset. This dataset contains RGB-D scans of 1513 scenes, com-
prising ≈2.5 million RGB-D frames. The scans have been reconstructed using Bundle-
Fusion [3]; both 6 DoF pose alignments and reconstructed models are available. Addi-
tionally, each scan contains manually-annotated object instance segmentation masks on
the 3D mesh. From this data, we derive 3D bounding boxes which we use as constraints
for our 3D region proposal.

We follow the public train/val/test split originally proposed by ScanNet of 1045
(train), 156 (val), 312 (test) scenes, respectively. From the train scenes, we extract
108241 chunks, and from the validation scenes, we extract 995 chunks. Note that due
to the smaller number of train scans available in the ScanNet dataset, we augment the
train scans to have 4 rotations each. We adopt the same 18-class label set for instance
segmentation as proposed by the ScanNet benchmark.

Note that our method is agnostic to the respective dataset as long as semantic RGB-D
instance labels are available.
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3.5 Network Architecture

Our network architecture is shown in Fig. 3.2. It is composed of two main components,
one for detection, and one for per-voxel instance mask prediction; each of these pipelines
has its own feature extraction backbone. Both backbones are composed of a series
of 3D convolutions, taking the 3D scan geometry along with the back-projected RGB
color features as input. We detail the RGB feature learning in Sec. 3.5.1 and the feature
backbones in Sec. 3.5.2. The learned 3D features of the detection and mask backbones are
then fed into the classification and the voxel-instance mask prediction heads, respectively.

The object detection component of the network comprises the detection backbone, a
3D region proposal network (3D-RPN) to predict bounding box locations, and a 3D-
region of interest (3D-RoI) pooling layer followed by classification head. The detec-
tion backbone outputs features which are input to the 3D-RPN and 3D-RoI to predict
bounding box locations and object class labels, respectively. The 3D-RPN is trained by
associating predefined anchors with ground-truth object annotations; here, a per-anchor
loss defines whether an object exists for a given anchor. If it does, a second loss regresses
the 3D object bounding box; if not, no additional loss is considered. In addition, we
classify the the object class of each 3D bounding box. For the per-voxel instance mask
prediction network (see Sec. 3.5.4), we use both the input color and geometry as well as
the predicted bounding box location and class label. The cropped feature channels are
used to create a mask prediction which has n channels for the n semantic class labels, and
the final mask prediction is selected from these channels using the previously predicted
class label. We optimize for the instance mask prediction using a binary cross entropy
loss. Note that we jointly train the backbones, bounding box regression, classification,
and per-voxel mask predictions end-to-end; see Sec. 4.5 for more detail. In the following,
we describe the main components of our architecture design, for more detail regarding
exact filter sizes, etc., we refer to the supplemental material.

3.5.1 Back-projection Layer for RGB Features

In order to jointly learn from RGB and geometric features, one could simply assign
a single RGB value to each voxel. However, in practice, RGB image resolutions are
significantly higher than the available 3D voxel resolution due to memory constraints.
This 2D-3D resolution mismatch would make learning from a per-voxel color rather
inefficient. Inspired by the semantic segmentation work of Dai et al. [29], we instead
leverage a series of 2D convolutions to summarize RGB signal in image space. We then
define a back-projection layer and map these features on top of the associated voxel grid,
which are then used for both object detection and instance segmentation.

To this end, we first pre-train a 2D semantic segmentation network based on the ENet
architecture [38]. The 2D architecture takes single 256 × 328 RGB images as input,
and is trained on a semantic classification loss using the NYUv2 40 label set. From
this pre-trained network, we extract a feature encoding of dimension 32 × 41 with 128
channels from the encoder. Using the corresponding depth image, camera intrinsics, and
6DoF poses, we then back-project each of these features back to the voxel grid (still 128
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channels); the projection is from 2D pixels to 3D voxels. In order to combine features
from multiple views, we perform view pooling through an element-wise max pooling over
all RGB images available.

For training, the voxel volume is fixed to 96× 96× 48 voxels, resulting in a 128× 96×
96 × 48 back-projected RGB feature grid in 3D; here, we use 5 RGB images for each
training chunk (with image selection based on average 3D instance coverage). At test
time, the voxel grid resolution is dynamic, given by the spatial extent of the environment;
here, we use all available RGB images. The grid of projected features is processed by a
set of 3D convolutions and is subsequently merged with the geometric features.

In ScanNet [4], the camera poses and intrinsics are provided; we use them directly
for our back-projection layer. For SUNCG [17], extrinsics and intrinsics are given by
the virtual scanning path. Note that our method is agnostic to the used 2D network
architecture.

3.5.2 3D Feature Backbones

For jointly learning geometric and RGB features for both instance detection and seg-
mentation, we propose two 3D feature learning backbones. The first backbone generates
features for detection, and takes as input the 3D geometry and back-projected 2D fea-
tures (see Sec. 3.5.1).

Both the geometric input and RGB features are processed symmetrically with a 3D
ResNet block before joining them together through concatenation. We then apply a
3D convolutional layer to reduce the spatial dimension by a factor of 4, followed by a
3D ResNet block (e.g., for an input train chunk of 96 × 96 × 48, we obtain a features
of size 24 × 24 × 12). We then apply another 3D convolutional layer, maintaining the
same spatial dimensions, to provide features maps with larger receptive fields. We define
anchors on these two feature maps, splitting the anchors into ‘small’ and ‘large’ anchors
(small anchors < 1m3), with small anchors associated with the first feature map of
smaller receptive field and large anchors associated with the second feature map of
larger receptive field. For selecting anchors, we apply k-means algorithm (k=14) on the
ground-truth 3D bounding boxes in first 10k chunks. These two levels of features maps
are then used for the final steps of object detection: 3D bounding box regression and
classification.

The instance segmentation backbone also takes the 3D geometry and the back-projected
2D CNN features as input. The geometry and color features are first processed inde-
pendently with two 3D convolutions, and then concatenated channel-wise and processed
with another two 3D convolutions to produce a mask feature map prediction. Note that
for the mask backbone, we maintain the same spatial resolution through all convolutions,
which we found to be critical for obtaining high accuracy for the voxel instance predic-
tions. The mask feature map prediction is used as input to predict the final instance
mask segmentation.

In contrast to single backbone, we found that this two-backbone structure both con-
verged more easily and produced significantly better instance segmentation performance
(see Sec. 4.5 for more details about the training scheme for the backbones).
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3.5.3 3D Region Proposals and 3D-RoI Pooling for Detection

Our 3D region proposal network (3D-RPN) takes input features from the detection
backbone to predict and regress 3D object bounding boxes. From the detection backbone
we obtain two feature maps for small and large anchors, which are separately processed
by the 3D-RPN. For each feature map, the 3D-RPN uses a 1×1×1 convolutional layer to
reduce the channel dimension to 2×Nanchors, where Nanchors = (3, 11) for small and large
anchors, respectively. These represent the positive and negative scores of objectness of
each anchor. We apply a non-maximum suppression on these region proposals based on
their objectness scores. The 3D-RPN then uses another 1× 1× 1 convolutional layer to
predict feature maps of 6×Nanchors, which represent the 3D bounding box locations as
(∆x, ∆y, ∆z, ∆w, ∆h, ∆l), defined in Eq. 3.1.

In order to determine the ground truth objectiveness and associated 3D bounding
box locations of each anchor during training, we perform anchor association. Anchors
are associated with ground truth bounding boxes by their IoU: if the IoU > 0.35, we
consider an anchor to be positive (and it will be regressed to the associated box), and if
the IoU < 0.15, we consider an anchor to be negative (and it will not be regressed to any
box). We use a two-class cross entropy loss to measure the objectiveness, and for the
bounding box regression we use a Huber loss on the prediction (∆x, ∆y, ∆z, ∆w, ∆h, ∆l)
against the log ratios of the ground truth box and anchors (∆gt

x , ∆
gt
y , ∆

gt
z , ∆

gt
w , ∆

gt
h , ∆

gt
l ),

where

∆x =
µ− µanchor

φanchor
∆w = ln(

φ

φanchor
) (3.1)

where µ is the box center point and φ is the box width.

Using the predicted bounding box locations, we can then crop out the respective
features from the global feature map. We then unify these cropped features to the same
dimensionality using our 3D Region of Interest (3D-RoI) pooling layer. This 3D-RoI
pooling layer pools the cropped feature maps into 4× 4× 4 blocks through max pooling
operations. These feature blocks are then linearized for input to object classification,
which is performed with an MLP.

3.5.4 Per-Voxel 3D Instance Segmentation

We perform instance mask segmentation using a separate mask backbone, which sim-
ilarly as the detection backbone, takes as input the 3D geometry and projected RGB
features. However, for mask prediction, the 3D convolutions maintain the same spatial
resolutions, in order to maintain spatial correspondence with the raw inputs, which we
found to significantly improve performance. We then use the predicted bounding box
location from the 3D-RPN to crop out the associated mask features from the mask back-
bone, and compute a final mask prediction with a 3D convolution to reduce the feature
dimensionality to n for n semantic class labels; the final mask prediction is the cth chan-
nel for predicted object class c. During training, since predictions from the detection
pipeline can be wrong, we only train on predictions whose predicted bounding box over-
laps with the ground truth bounding box with at least 0.5 IoU. The mask targets are
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defined as the ground-truth mask in the overlapping region of the ground truth box and
proposed box.

cab bed chair sofa tabl door wind bkshf cntr desk shlf curt drsr mirr tv nigh toil sink lamp bath ostr ofurn oprop avg

Seg-Cluster 16.8 16.2 15.6 11.8 14.5 10.0 11.7 27.2 20.0 25.7 10.0 0.0 15.0 0.0 20.0 27.8 39.5 22.9 10.7 38.9 10.4 0.0 12.3 16.4
Mask R-CNN [41] 14.9 19.0 19.5 13.5 12.2 11.7 14.2 35.0 15.7 18.3 13.7 0.0 24.4 23.1 26.0 28.8 51.2 28.1 14.7 32.2 11.4 10.7 19.5 19.9
SGPN [31] 18.6 39.2 28.5 46.5 26.7 21.8 15.9 0.0 24.9 23.9 16.3 20.8 15.1 10.7 0.0 17.7 35.1 37.0 22.9 34.2 17.7 31.5 13.9 22.5

Ours(geo only) 23.2 78.6 47.7 63.3 37.0 19.6 0.0 0.0 21.3 34.4 16.8 0.0 16.7 0.0 10.0 22.8 59.7 49.2 10.0 77.2 10.0 0.0 19.3 26.8
Ours(geo+1view) 22.2 70.8 48.5 66.6 44.4 10.0 0.0 63.9 25.8 32.2 17.8 0.0 25.3 0.0 0.0 14.7 37.0 55.5 20.5 58.2 18.0 20.0 17.9 29.1
Ours(geo+3views) 26.5 78.4 48.2 59.5 42.8 26.1 0.0 30.0 22.7 39.4 17.3 0.0 36.2 0.0 10.0 10.0 37.0 50.8 16.8 59.3 10.0 36.4 17.8 29.4
Ours(geo+5views) 20.5 69.4 56.2 64.5 43.8 17.8 0.0 30.0 32.3 33.5 21.0 0.0 34.2 0.0 10.0 20.0 56.7 56.2 17.6 56.2 10.0 35.5 17.8 30.6

Table 3.1: 3D instance segmentation on synthetic scans from SUNCG [17]. We eval-
uate the mean average precision with IoU threshold of 0.25 over 23 classes. Our
joint color-geometry feature learning enables us to achieve more accurate instance
segmentation performance.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

Mask R-CNN [41] 5.3 0.2 0.2 10.7 2.0 4.5 0.6 0.0 23.8 0.2 0.0 2.1 6.5 0.0 2.0 1.4 33.3 2.4 5.8
SGPN [31] 6.5 39.0 27.5 35.1 16.8 8.7 13.8 16.9 1.4 2.9 0.0 6.9 2.7 0.0 43.8 11.2 20.8 4.3 14.3
MTML 2.7 61.4 39.0 50.0 10.5 10.0 0.3 33.7 0.0 0.0 0.1 11.8 16.7 14.3 57.0 4.6 66.7 2.8 21.2
3D-BEVIS [62] 3.5 56.6 39.4 60.4 18.1 9.9 17.1 7.6 2.5 2.7 9.8 3.5 9.8 37.5 85.4 12.6 66.7 3.0 24.8
R-PointNet [63] 34.8 40.5 58.9 39.6 27.5 28.3 24.5 31.1 2.8 5.4 12.6 6.8 21.9 21.4 82.1 33.1 50.0 29.0 30.6

3D-SIS (Ours) 13.4 55.4 58.7 72.8 22.4 30.7 18.1 31.9 0.6 0.0 12.1 0.0 54.1 100.0 88.9 4.5 66.7 21.0 36.2

Table 3.2: Instance segmentation results on the official ScanNetV2 3D semantic in-
stance benchmark (hidden test set). Our final model (geo+5views) significantly
outperforms previous (Mask R-CNN, SGPN) and concurrent (MTML, 3D-BEVIS,
R-PointNet) state-of-the-art methods in mAP@0.5. ScanNetV2 benchmark data
accessed on 12/17/2018.

3.6 Training

To train our model, we first train the detection backbone and 3D-RPN. After pre-training
these parts, we add the 3D-RoI pooling layer and object classification head, and train
these end-to-end. Then, we add the per-voxel instance mask segmentation network along
with the associated backbone. In all training steps, we always keep the previous losses
(using 1:1 ratio between all losses), and train everything end-to-end. We found that a
sequential training process resulted in more stable convergence and higher accuracy.

We use an SGD optimizer with learning rate 0.001, momentum 0.9 and batch size 64
for 3D-RPN, 16 for classification, 16 for mask prediction. The learning rate is divided
by 10 every 100k steps. We use a non-maximum suppression for proposed boxes with
threshold of 0.7 for training and 0.3 for test. Our network is implemented with PyTorch
and runs on a single Nvidia GTX1080Ti GPU. The object detection components of the
network are trained end-to-end for 10 epochs (≈ 24 hours). After adding in the mask
backbone, we train for an additional 5 epochs (≈ 16 hours). For mask training, we also
use ground truth bounding boxes to augment the learning procedure.

40 Chapter 3. 3D Semantic Instance Segmentation



Part II. 3D Scene Understanding and Data-Efficient Learning

3.7 Results

We evaluate our approach on both 3D detection and instance segmentation predictions,
comparing to several state-of-the-art approaches, on synthetic scans of SUNCG [17]
data and real-world scans from the ScanNetV2 dataset [4]. To compare to previous
approaches that operate on single RGB or RGB-D frames (Mask R-CNN [41], Deep
Sliding Shapes [47], Frustum PointNet [48]), we first obtain predictions on each individual
frame, and then merge all predictions together in the 3D space of the scene, merging
predictions if the predicted class labels match and the IoU > 0.5. We further compare to
SGPN [31] which performs instance segmentation on 3D point clouds. For both detection
and instance segmentation tasks, we project all results into a voxel space of 4.69cm voxels
and evaluate them with a mean average precision metric. We additionally show several
variants of our approach for learning from both color and geometry features, varying the
number of color views used during training. We consistently find that training on more
color views improves both the detection and instance segmentation performance.
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Seg-Cluster 11.8 13.5 18.9 14.6 13.8 11.1 11.5 11.7 0.0 13.7 12.2 12.4 11.2 18.0 19.5 18.9 16.4 12.2 13.4
Mask R-CNN [41] 15.7 15.4 16.4 16.2 14.9 12.5 11.6 11.8 19.5 13.7 14.4 14.7 21.6 18.5 25.0 24.5 24.5 16.9 17.1
SGPN [31] 20.7 31.5 31.6 40.6 31.9 16.6 15.3 13.6 0.0 17.4 14.1 22.2 0.0 0.0 72.9 52.4 0.0 18.6 22.2

Ours(geo only) 22.1 48.2 64.4 52.2 16.0 13.4 0.0 17.2 0.0 20.7 17.4 13.9 23.6 33.0 45.2 47.7 61.3 14.6 28.3
Ours(geo+1view) 25.4 60.3 66.2 52.1 31.7 27.6 10.1 16.9 0.0 21.4 30.9 18.4 22.6 16.0 70.5 44.5 37.5 20.0 31.8
Ours(geo+3views) 28.3 52.3 65.0 66.5 31.4 27.9 10.1 17.9 0.0 20.3 36.3 20.1 28.1 31.0 68.6 41 66.8 24.0 35.3
Ours(geo+5views) 32.0 66.3 65.3 56.4 29.4 26.7 10.1 16.9 0.0 22.1 35.1 22.6 28.6 37.2 74.9 39.6 57.6 21.1 35.7

Table 3.3: 3D instance segmentation on ScanNetV2 [4]. We demonstrate mAP@0.25 on
18 classes. Our explicit leveraging of spatial mapping between 3D geometry and color
features extracted through 2D CNNs enables significantly improved performance.

3.7.1 3D Instance Analysis on Synthetic Scans

We evaluate 3D detection and instance segmentation on virtual scans taken from the
synthetic SUNCG dataset [17], using 23 class categories. Table 3.4 shows 3D detection
performance compared to state-of-the-art approaches which operate on single frames.
Table 4.4 shows a quantitative evaluation of our approach, the SGPN for point cloud
instance segmentation [31], their proposed Seg-Cluster baseline, and Mask R-CNN [41]
projected into 3D. For both tasks, our joint color-geometry approach along with a global
view of the 3D scenes at test time enables us to achieve significantly improved detection
and segmentation results.

3.7.2 3D Instance Analysis on Real-World Scans

We further evaluate our approach on ScanNet dataset [4], which contains 1513 real-world
scans. For training and evaluation, we use ScanNetV2 annotated ground truth as well as
the proposed 18-class instance benchmark. We show qualitative results in Figure 3.3. In
Table 3.5, we quantitatively evaluate our object detection against Deep Sliding Shapes
and Frustum PointNet, which operate on RGB-D frame, as well as Mask R-CNN [41]
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mAP@0.25 mAP@0.5
Deep Sliding Shapes [46] 12.8 6.2
Mask R-CNN 2D-3D [41] 20.4 10.5
Frustum PointNet [48] 24.9 10.8
Ours – 3D-SIS (geo only) 27.8 21.9
Ours – 3D-SIS (geo+1view) 30.9 23.8
Ours – 3D-SIS (geo+3views) 31.3 24.2
Ours – 3D-SIS (geo+5views) 32.2 24.7

Table 3.4: 3D detection in SUNCG [17]. We show mAP over 23 classes. Our holistic
approach and the combination of color and geometric features result in significantly
improved detection results over previous approaches which operate on individual
input frames.

projected to 3D. Our fully-convolutional approach enabling inference on full test scenes
achieves significantly better detection performance. Table 4.3 shows our 3D instance
segmentation in comparison to SGPN instance segmentation [31], their proposed Seg-
Cluster baseline, and Mask R-CNN [41] projected into 3D. Our formulation for learning
from both color and geometry features brings notable improvement over state of the art.

mAP@0.25 mAP@0.5
Deep Sliding Shapes [46] 15.2 6.8
Mask R-CNN 2D-3D [41] 17.3 10.5
Frustum PointNet [48] 19.8 10.8
Ours – 3D-SIS (geo only) 27.6 16.0
Ours – 3D-SIS (geo+1view) 35.1 18.7
Ours – 3D-SIS (geo+3views) 36.6 19.0
Ours – 3D-SIS (geo+5views) 40.2 22.5

Table 3.5: 3D detection on ScanNetV2 [4]. We show mAP over 18 classes. In contrast to
previous approaches operating on individual frames, our approach achieves signifi-
cantly improved performance.

Finally, we evaluate our model on the ScanNetV2 3D instance segmentation bench-
mark on the hidden test set; see Table 3.2. Our final model (geo+5views) significantly
outperforms previous (Mask R-CNN [41], SGPN [31]) and concurrent (MTML, 3D-
BEVIS [62], R-PointNet [63]) state-of-the-art methods in mAP@0.5. ScanNetV2 bench-
mark data was accessed on 12/17/2018.

3.8 Network Architecture

Table 3.8 details the layers used in our detection backbone, 3D-RPN, classification
head, mask backbone, and mask prediction. Note that both the detection backbone
and mask backbone are fully-convolutional. For the classification head, we use several
fully-connected layers; however, due to our 3D RoI-pooling on its input, we can run our
entire instance segmentation approach on full scans of varying sizes.
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small anchors big anchors
(8, 6, 8) (12, 12, 40)

(22, 22, 16) (8 , 60, 40)
(12, 12, 20) (38, 12, 16)

(62, 8 , 40)
(46, 8 , 20)
(46, 44, 20)
(14, 38, 16)

Table 3.6: Anchor sizes (in voxels) used for SUNCG [17] region proposal. Sizes are
given in voxel units, with voxel resolution of ≈ 4.69cm

small anchors big anchors
(8, 8, 9) (21, 7, 38)

(14, 14, 11) (7, 21, 39)
(14, 14, 20) (32, 15, 18)

(15, 31, 17)
(53, 24, 22)
(24, 53, 22)
(28, 4, 22)
(4, 28, 22)
(18, 46, 8)
(46, 18, 8)
(9, 9, 35)

Table 3.7: Anchor sizes used for region proposal on the ScanNet dataset [4]. Sizes
are given in voxel units, with voxel resolution of ≈ 4.69cm

We additionally list the anchors used for the region proposal for our model trained on
the ScanNet [4] and SUNCG [17] datasets in Tables 4.5 and 4.6, respectively. Anchors
for each dataset are determined through k-means clustering of ground truth bounding
boxes. The anchor sizes are given in voxels, where our voxel size is ≈ 4.69cm.

3.9 Training and Inference

In order to leverage as much context as possible from a input RGB-D scan, we lever-
age fully-convolutional detection and mask backbones to infer instance segmentation on
varying-sized scans. To accommodate memory and efficiency constraints during train-
ing, we train on chunks of scans, i.e. cropped volumes out of the scans, which we use to
generalize to the full scene at test time (see Figure 3.4). This also enables us to avoid
inconsistencies which can arise with individual frame input, with differing views of the
same object; with the full view of a test scene, we can more easily predict consistent
object boundaries.

The fully-convolutional nature of our methods allows testing on very large scans such
as entire floors or buildings in a single forward pass; e.g., most SUNCG scenes are
actually fairy large; see Figure 3.5.
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3.10 Additional Experiment Details

We additionally evaluate mean average precision on SUNCG [17] and ScanNetV2 [4]
using an IoU threshold of 0.5 in Tables 3.11 and 3.10. Consistent with evaluation at an
IoU threshold of 0.25, our approach leveraging joint color-geometry feature learning and
inference on full scans enables significantly better instance segmentation performance.
We also submit our model the ScanNet Benchmark, and we achieve the state-of-the-art
in all three metrics.

We run an additional ablation study to evaluate the impact of the RGB input and the
two-level anchor design; see Table. 4.3.

3.11 Conclusion

In this work, we introduce 3D-SIS, a new approach for 3D semantic instance segmenta-
tion of RGB-D scans, which is trained in an end-to-end fashion to detect object instances
and infer a per-voxel 3D semantic instance segmentation. The core of our method is to
jointly learn features from RGB and geometry data using multi-view RGB-D input
recorded with commodity RGB-D sensors. The network is fully-convolutional, and thus
can run efficiently in a single shot on large 3D environments. In comparison to existing
state-of-the-art methods that typically operate on single RGB-D frame, we achieve sig-
nificantly better 3D detection and instance segmentation results, improving on mAP by
over 13. We believe that this is an important insight to a wide range of computer vision
applications given that many of them now capture multi-view RGB and depth streams;
e.g., autonomous cars, AR/VR applications, etc..
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Figure 3.3: Qualitative comparison of 3D object detection and instance segmenta-
tion on ScanNetV2 [4]. Full scans above; close-ups below. Our joint color-
geometry feature learning combined with our fully-convolutional approach to in-
ference on full test scans at once enables more accurate and semantically coherent
predictions. Note that different colors represent different instances, and the same
instances in the ground truth and predictions are not necessarily the same color.
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layer name input layer type output size kernel size stride padding

geo 1 TSDF conv3d (32, 48, 24, 48) (2, 2, 2) (2, 2, 2) (0, 0, 0)
geo 2 geo 1 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 3 geo 2 conv3d (32, 48, 24, 48) (3, 3, 3) (1, 1, 1) (1, 1, 1)
geo 4 geo 3 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 5 geo 4 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 6 geo 5 conv3d (32, 48, 24, 48) (3, 3, 3) (1, 1, 1) (1, 1, 1)
geo 7 geo 6 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 8 geo 7 conv3d (64, 24, 12, 24) (2, 2, 2) (2, 2, 2) (0, 0, 0)
geo 9 geo 1 conv3d (32, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 10 geo 2 conv3d (32, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
geo 11 geo 3 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 12 geo 4 conv3d (32, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
geo 13 geo 5 conv3d (32, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
geo 14 geo 6 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 1 projected 2D features conv3d (64, 48, 24, 48) (2, 2, 2) (2, 2, 2) (0, 0, 0)
color 2 color 1 conv3d (32, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 3 color 2 conv3d (32, 48, 24, 48) (3, 3, 3) (1, 1, 1) (1, 1, 1)
color 4 color 3 conv3d (64, 48, 24, 48) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 5 color 4 maxpool3d (64, 48, 24, 48) (3, 3, 3) (1, 1, 1) (1, 1, 1)
color 6 color 5 conv3d (64, 24, 12, 24) (2, 2, 2) (2, 2, 2) (0, 0, 0)
color 7 color 6 conv3d (32, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 8 color 7 conv3d (32, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
color 9 color 8 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
color 10 color 9 maxpool3d (64, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
concat 1 (geo 14, color 10) concat (128, 24, 12, 24) None None None

combine 1 concat 1 conv3d (128, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
combine 2 combine 1 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
combine 3 combine 2 conv3d (64, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
combine 4 combine 3 conv3d (128, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
combine 5 combine 4 conv3d (64, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
combine 6 combine 5 conv3d (64, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
combine 7 combine 6 conv3d (128, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
combine 8 combine 7 maxpool3d (128, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)

rpn 1 combine 7 conv3d (256, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)
rpn cls 1 rpn 1 conv3d (6, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)

rpn bbox 1 rpn 1 conv3d (18, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
rpn 2 combine 5 conv3d (256, 24, 12, 24) (3, 3, 3) (1, 1, 1) (1, 1, 1)

rpn cls 2 rpn 2 conv3d (22, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)
rpn bbox 2 rpn 2 conv3d (66, 24, 12, 24) (1, 1, 1) (1, 1, 1) (0, 0, 0)

cls 1 combine 7 FC 128x4x4x4 → 256 None None None
cls 2 cls 1 FC 256 → 256 None None None
cls 3 cls 2 FC 256 → 128 None None None

cls cls cls 3 FC 128 → Ncls None None None
cls bbox cls 3 FC 128 → Ncls × 6 None None None
mask 1 TSDF conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 2 mask 1 conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 3 mask 2 conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 4 mask 3 conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 5 mask 4 conv3d (64, 96, 48, 96) (3, 3, 3) (1,1,1) (1,1,1)
mask 6 mask 5 conv3d (Ncls, 96, 48, 96) (1, 1, 1) (1,1,1) (0,0,0)

Table 3.8: 3D-SIS network architecture. We show detailed layer specifications of our net-
work including kernel size, channel numbers etc.
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Figure 3.4: 3D-SIS Training and Inference 3D-SIS trains on chunks of a scene, and lever-
ages fully-convolutional backbone architectures to enable inference on a full scene
in a single forward pass, producing more consistent instance segmentation results.

mAP@0.5 mAP@0.25
3D-SIS (only color-1view) 9.4 30.5
3D-SIS (only color-3view) 16.5 35.0
3D-SIS (only color-5view) 17.4 35.7
3D-SIS (only geometry) 16.0 27.6
3D-SIS (one anchor layer) 12.2 33.4

3D-SIS (final) 22.5 40.2

Table 3.9: Additional ablation study on ScanNetV2. We show combination of geometry
and color signal complement each other, thus achieving the best performance.
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Seg-Cluster 10.4 11.9 15.5 12.8 12.4 10.1 10.1 10.3 0.0 11.7 10.4 11.4 0.0 13.9 17.2 11.5 14.2 10.5 10.8
Mask R-CNN [41] 11.2 10.6 10.6 11.4 10.8 10.3 0.0 0.0 11.1 10.1 0.0 10.0 12.8 0.0 18.9 13.1 11.8 11.6 9.1
SGPN [31] 10.1 16.4 20.2 20.7 14.7 11.1 11.1 0.0 0.0 10.0 10.3 12.8 0.0 0.0 48.7 16.5 0.0 0.0 11.3

Ours(geo only) 11.5 17.5 18.0 26.3 0.0 10.1 0.0 10.3 0.0 0.0 0.0 0.0 24.4 21.5 25.0 17.2 34.9 10.1 12.6
Ours(geo+1view) 12.5 15.0 17.8 23.7 0.0 19.0 0.0 11.0 0.0 0.0 10.5 11.1 13.0 19.4 22.5 14.0 40.5 10.1 13.3
Ours(geo+3views) 14.4 19.9 48.4 37.3 16.9 18.3 0.0 11.0 0.0 0.0 10.5 13.1 16.3 15.3 51.3 13.0 12.9 13.4 17.3
Ours(geo+5views) 19.7 37.7 40.5 31.9 15.9 18.1 0.0 11.0 0.0 0.0 10.5 11.1 18.5 24.0 45.8 15.8 23.5 12.9 18.7

Table 3.10: 3D instance segmentation on real-world scans from ScanNetV2 [4]. We
evaluate the mean average precision with IoU threshold of 0.5 over 18 classes.
Our explicit leveraging of the spatial mapping between the 3D geometry and color
features extracted through 2D convolutions enables significantly improved instance
segmentation performance.
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Figure 3.5: Inference on large scene. Our fully-convolutional architectures allows testing
on a large SUNCG scene (45m x 45m) in about 1 second runtime.
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Seg-Cluster 10.1 10.9 10.4 10.1 10.3 0.0 0.0 12.9 10.7 15.2 0.0 0.0 10.0 0 0.0 11.2 26.1 12.1 0 16.5 0 0 10 7.7
Mask R-CNN [41] 0.0 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.8 11.4 10.8 18.8 13.5 0.0 11.5 0.0 0.0 10.7 4.3
SGPN [31] 15.3 28.7 23.7 29.7 17.6 15.1 15.4 0.0 10.8 16.0 0.0 10.9 0.0 0.0 0.0 12.3 33.7 25.9 19.2 31.7 0.0 10.4 10.5 14.2

Ours(geo only) 12.6 60.5 38.6 45.8 21.8 16.8 0.0 0.0 10.0 18.5 10.0 0.0 14.0 0.0 0.0 14.9 64.2 30.8 17.6 35.2 10.0 0.0 16.9 19.1
Ours(geo+1view) 13.9 42.4 35.3 52.9 22 10 0.0 35.0 13.4 21.4 10.0 0.0 13.5 0.0 0.0 10.0 33.8 29.2 17.7 48.3 10.0 16.9 10.0 19.4
Ours(geo+3views) 15.4 58.5 35.5 34.5 24.4 16.6 0.0 20.0 10.0 17.6 10.0 0.0 24.3 0.0 10.0 10.0 34.6 28.5 15.6 40.7 10.0 24.9 15.5 19.8
Ours(geo+5views) 15.5 43.6 43.9 48.1 20.4 10.0 0.0 30.0 10.0 17.4 10.0 0.0 14.5 0.0 10.0 10.0 53.5 35.1 17.2 39.7 10.0 18.9 16.2 20.6

Table 3.11: 3D instance segmentation on synthetic scans from SUNCG [17]. We
evaluate the mean average precision with IoU threshold of 0.5 over 23 classes. Our
joint color-geometry feature learning enables us to achieve more accurate instance
segmentation performance.
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4 Seeing Behind Objects in RGB-D Scans

This chapter introduces the following paper:

J. Hou, A. Dai, and M. Nießner, “RevealNet: Seeing Behind Objects in RGB-D
Scans,” in Proceedings of Computer Vision and Pattern Recognition (CVPR), IEEE,
2020

Abstract of paper 3D perception requires high quality 3D reconstruction. During 3D
reconstruction, it is often the case that people cannot scan each individual object from
all views, resulting in missing geometry in the captured scan. This missing geometry
can be fundamentally limiting for many applications, e.g., a robot needs to know the
unseen geometry to perform a precise grasp on an object. Thus, we introduce the task
of semantic instance completion: from an incomplete RGB-D scan of a scene, we aim to
detect the individual object instances and infer their complete object geometry. This will
open up new possibilities for interactions with objects in a scene, for instance for virtual
or robotic agents. We tackle this problem by introducing RevealNet, a new data-driven
approach that jointly detects object instances and predicts their complete geometry.
This enables a semantically meaningful decomposition of a scanned scene into individual,
complete 3D objects, including hidden and unobserved object parts. RevealNet is an end-
to-end 3D neural network architecture that leverages joint color and geometry feature
learning. The fully-convolutional nature of our 3D network enables efficient inference
of semantic instance completion for 3D scans at scale of large indoor environments in a
single forward pass. We show that predicting complete object geometry improves both
3D detection and instance segmentation performance. We evaluate on both real and
synthetic scan benchmark data for the new task, where we outperform state-of-the-art
approaches by over 15 in mAP@0.5 on ScanNet, and over 18 in mAP@0.5 on SUNCG.

Contribution The method development and implementation was done by the first au-
thor. Alternative baselines were provided by Angela Dai. Discussions with the co-
authors led to the final paper.
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Figure 4.1: RevealNet takes an RGB-D scan as input and learns to “see behind
objects”: from the scan’s color images and geometry (encoded as a TSDF), objects
in the observed scene are detected (as 3D bounding boxes and class labels) and for
each object, the complete geometry of that object is predicted as per-instance masks
(in both seen and unseen regions).

4.1 Introduction

Understanding 3D environments is fundamental to many tasks spanning computer vi-
sion, graphics, and robotics. In particular, in order to effectively navigate, and moreover
interact with an environment, an understanding of the geometry of a scene and the ob-
jects it comprises of is essential. This is in contrast to the partial nature of reconstructed
RGB-D scans; e.g., due to sensor occlusions. For instance, for a robot exploring an en-
vironment, it needs to infer where objects are as well as what lies behind the objects it
sees in order to efficiently navigate or perform tasks like grasping. That is, it needs not
only instance-level knowledge of objects in the scene, but to also estimate the missing
geometry of these objects. Additionally, for content creation or mixed reality applica-
tions, captured scenes must be decomposable into their complete object components, in
order to enable applications such as scene editing or virtual-real object interactions; i.e.,
it is often insufficient to segment object instances only for observed regions.

Thus, we aim to address this task of “seeing behind objects,” which we refer to as
semantic instance completion: predicting object detection as well as instance-level com-
pletion for an input partial 3D scan of a scene. Previous approaches have addressed these
tasks independently: 3D instance segmentation segments object instances from the visi-
ble surface of a partial scan [9], [31], [43], [63]–[67], and 3D scan completion approaches
predict the full scene geometry [17], [59], but lack the notion of individual objects. In
contrast, our approach focuses on the instance level, as knowledge of instances is essential
towards enabling interaction with the objects in an environment.

In addition, the task of semantic instance completion is not only important towards
enabling object-level understanding and interaction with 3D environments, but we also
show that the prediction of complete object geometry informs the task of semantic in-
stance segmentation. Thus, in order to address the task of semantic instance completion,
we propose to consider instance detection and object completion in an end-to-end, fully
differentiable fashion.
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From an input RGB-D scan of a scene, our RevealNet model sees behind objects to
predict each object’s complete geometry. First, object bounding boxes are detected and
regressed, followed by object classification and then a prediction of complete object ge-
ometry. Our approach leverages a unified backbone from which instance detection and
object completion are predicted, enabling information to flow from completion to de-
tection. We incorporate features from both color image and 3D geometry of a scanned
scene, as well as a fully-convolutional design in order to effectively predict the complete
object decomposition of varying-sized scenes. To address the task of semantic instance
completion for real-world scans, where ground truth complete geometry is not read-
ily available, we further introduce a new semantic instance completion benchmark for
ScanNet [4], leveraging the Scan2CAD [25] annotations to evaluate semantic instance
completion (and semantic instance segmentation).

In summary, we present a fully-convolutional, end-to-end 3D CNN formulation to
predict 3D instance completion that outperforms state-of-the-art, decoupled approaches
to semantic instance completion by 15.8 in mAP@0.5 on real-world scan data, and 18.5
in mAP@0.5 on synthetic data:

• We introduce the task of semantic instance completion for 3D scans;

• we propose a novel, end-to-end 3D convolutional network which predicts 3D se-
mantic instance completion as object bounding boxes, class labels, and complete
object geometry,

• and we show that semantic instance completion task can benefit semantic instance
segmentation and detection performance.

4.2 Related Work

Object Detection and Instance Segmentation Recent advances in convolutional neu-
ral networks have now begun to drive impressive progress in object detection and in-
stance segmentation for 2D images [39]–[45]. Combined with the increasing availability
of synthetic and real-world 3D data [4], [17], [53], we are now seeing more advances in
object detection [46]–[48], [68] for 3D. Sliding Shapes [46] predicted 3D object bounding
boxes from a depth image, designing handcrafted features to detect objects in a slid-
ing window fashion. Deep Sliding Shapes [47] then extended this approach to leverage
learned features for object detection in a single RGB-D frame. Frustum PointNet [48]
tackles the problem of object detection for an RGB-D frame by first detecting object in
the 2D image before projecting the detected boxes into 3D to produce final refined box
predictions. VoteNet [68] propose a reformulation of Hough voting in the context of deep
learning through an end-to-end differentiable architecture for 3D detection purpose.

Recently, several approaches have been introduced to perform 3D instance segmen-
tation, applicable to single or multi-frame RGB-D input. Wang et al. [31] introduced
SGPN to operate on point clouds by clustering semantic segmentation predictions. Li
et al. [63] leverages an object proposal-based approach to predict instance segmentation
for a point cloud. Simultaneously, Hou et al. [9] presented an approach leveraging joint
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color-geometry feature learning for detection and instance segmentation on volumetric
data. Lahoud et al. [65] proposes to use multi-task losses to predict instance segmenta-
tion. Yang et al. [64] and Liu et al. [69] both use bottom-up methods to predict instance
segmentation for a point cloud. Our approach also leverages an anchor-based object
proposal mechanism for detection, but we leverage object completion to predict instance
completion, as well as show that completing object-level geometry can improve detection
and instance segmentation performance on volumetric data.

3D Scan Completion Scan completion of 3D shapes has been a long-studied problem in
geometry processing, particularly for cleaning up broken mesh models. In this context,
traditional methods have largely focused on filling small holes by locally fitting geometric
primitives, or through continuous energy minimization [70]–[72]. Surface reconstruction
approaches on point cloud inputs [73], [74] can also be applied in this fashion to locally
optimize for missing surfaces. Other shape completion approaches leverage priors such
as symmetry and structural priors [75]–[79], or CAD model retrieval [80]–[84] to predict
the scan completion.

Recently, methods leveraging generative deep learning have been developed to predict
the complete geometry of 3D shapes [51], [85]–[87]. Song et al. [17] extended beyond
shapes to predicting the voxel occupancy for a single depth frame leveraging the geomet-
ric occupancy prediction to achieve improved 3D semantic segmentation. Recently, Dai
et al. [59] presented a first approach for data-driven scan completion of full 3D scenes,
leveraging a fully-convolutional, autoregressive approach to predict complete geometry
along with 3D semantic segmentation. Both Song et al. [17] and Dai et al. [59] show that
inferring the complete scan geometry can improve 3D semantic segmentation. With our
approach for 3D semantic instance completion, this task not only enables new applica-
tions requiring instance-based knowledge of a scene (e.g., virtual or robotic interactions
with objects in a scene), but we also show that instance segmentation can benefit from
instance completion.

4.3 Method Overview

Our network takes as input an RGB-D scan, and learns to join together features from
both the color images as well as the 3D geometry to inform the semantic instance com-
pletion. The architecture is shown in Fig. 4.2.

The input 3D scan is encoded as a truncated signed distance field (TSDF) in a volumet-
ric grid. To combine this with color information from the RGB images, we first extract
2D features using 2D convolutional layers on the RGB images, which are then back-
projected into a 3D volumetric grid, and subsequently merged with geometric features
extracted from the geometry. The joint features are then fed into an encoder-decoder
backbone, which leverages a series of 3D residual blocks to learn the representation for
the task of semantic instance completion. Objects are detected through anchor proposal
and bounding box regression; these predicted object boxes are then used to crop and
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extract features from the backbone encoder to predict the object class label as well as
the complete object geometry for each detected object as per-voxel occupancies.

We adopt in total five losses to supervise the learning process illustrated in Fig. 4.2.
Detection contains three losses: (1) objectness using binary cross entropy to indicate
that there is an object, (2) box location using a Huber loss to regress the 3D bounding
box locations, and (3) classification of the class label loss using cross entropy. Following
detection, the completion head contains two losses: per-instance completion loss using
binary cross entropy to predict per-voxel occupancies, and a proxy completion loss using
binary cross entropy to classify the surface voxels belonging to all objects in the scene.

Our method operates on a unified backbone for detection followed by instance com-
pletion, enabling object completion to inform the object detection process; this results
in effective 3D detection as well as instance completion. Its fully-convolutional nature
enables us to train on cropped chunks of 3D scans but test on a whole scene in a single
forward pass, resulting in an efficient decomposition of a scan into a set of complete
objects.

4.4 Network Architecture

From an RGB-D scan input, our network operates on the scan’s reconstructed geometry,
encoded as a TSDF in a volumetric grid, as well as the color images. To jointly learn
from both color and geometry, color features are first extracted in 2D with a 2D semantic
segmentation network [38], and then back-projected into 3D to be combined with the
TSDF features, similar to [9], [29]. This enables complementary semantic features to be
learned from both data modalities. These features are then input to the backbone of
our network, which is structured in an encoder-decoder style.

The encoder-decoder backbone is composed of a series of five 3D residual blocks,
which generates five volumetric feature maps F = {fi|i = 1 . . . 5}. The encoder results
in a reduction of spatial dimension by a factor of 4, and symmetric decoder results in
an expansion of spatial dimension by a factor of 4. Skip connections link spatially-
corresponding encoder and decoder features. For a more detailed description of the
network architecture, we refer to the appendix.

4.4.1 Color Back-Projection

As raw color data is often of much higher resolution than 3D geometry, to effectively
learn from both color and geometry features, we leverage color information by back-
projecting 2D CNN features learned from RGB images to 3D, similar to [9], [29]. For
each voxel location vi = (x, y, z) in the 3D volumetric grid, we find its pixel location
pi = (x, y) in 2D views by camera intrinsic and extrinsic matrices. We assign the voxel
feature at location vi with the learned 2D CNN feature vector at pi. To handle multiple
image observations of the same voxel vi, we apply element-wise view pooling; this also
allows our approach to handle a varying number of input images. Note that this back-
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Figure 4.2: Network Architecture. Our RevealNet network architecture takes an RGB-
D scan as input. Color images are processed with 2D convolutions to spatially
compress the information before back-projecting into 3D, to be merged with the 3D
geometry features of the scan (following [9], [29]). These joint features are used for
object detection (as 3D bounding boxes and class labels) followed by per-instance
geometric completion, for the task of semantic instance completion. In contrast to
[9], which leverages separate backbones for detection and instance segmentation,
our network maintains one unified backbone for both detection and completion
head, allowing the completion task to directly inform the detection parameters.

projection is differentiable, allowing our model to be trained end-to-end and benefit from
both RGB and geometric signal.

4.4.2 Object Detection

For object detection, we predict the bounding box of each detected object as well as the
class label. To inform the detection, features are extracted from feature maps F2 and
F3 of the backbone encoder. We define two set of anchors on these two features maps,
As = {ai|i = 1 . . . Ns} and Ab = {ai|i = 1 . . . Nb} representing ‘small’ and ‘large’ anchors
for the earlier F2 and later F3, respectively, so that the larger anchors are associated with
the feature map of larger receptive field. These anchors As ∪ Ab are selected through
a k-means clustering of the ground truth 3D bounding boxes. For our experiments, we
use Ns + Nb = 9. From these Ns + Nb clusters, Ab are those with any axis > 1.125m,
and the rest are in As.

The two features maps F2 and F3 are then processed by a 3D region proposal to
regress the 3D object bounding boxes. The 3D region proposal first employs a 1× 1× 1
convolution layer to output objectness scores for each potential anchor, producing an
objectness feature map with 2(Ns+Nb) channels for the positive and negative objectness
probabilities. Another 1 × 1 × 1 convolution layer is used to predict the 3D bounding
box locations as 6-dimensional offsets from the anchors; we then apply a non-maximum
suppression based on the objectness scores. We use a Huber loss on the log ratios of the
offsets to the anchor sizes to regress the final bounding box predictions:

∆x =
µ− µanchor
φanchor

∆w = ln(
φ

φanchor
) (4.1)
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where µ is the box center point and φ is the box width. The final bounding box loss
is then:

L∆ =

{
1
2∆

2, if |∆| ≤ 2

|∆|, otherwise.

Using these predicted object bounding boxes, we then predict the object class labels
using features cropped from the bounding box locations from F2 and F3. We use a 3D
region of interest pooling layer to unify the sizes of the cropped feature maps to a spatial
dimension of 4× 4× 4 to be input to an object classification MLP.

4.4.3 Instance Completion

For each object, we infer its complete geometry by predicting per-voxel occupancies.
Here, we crop features from feature map F5 of the backbone, which has a feature map
resolution matching the input spatial resolution, using the predicted object bounding
box. These features are processed through a series of five 3D convolutions which maintain
the spatial resolution of their input. The complete geometry is then predicted as voxel
occupancy using a binary cross entropy loss.

We predict Nclasses potential object completions for each class category, and select the
final prediction based on the predicted object class. We define ground truth bounding
boxes bi and masks mi as γ = {(bi,mi)|i = 1 . . . Nb}. Further, we define predicted
bounding boxes b̂i along with predicted masks m̂i as γ̂ = {(b̂i, m̂i)|i = 1 . . . N̂b}. During
training, we only train on predicted bounding boxes that overlap with the ground truth
bounding boxes:

Ω = {(b̂i, m̂i, bi,mi) | IoU(b̂i, bi) ≥ 0.5,

∀(b̂i, m̂i) ∈ γ̂,∀(bi,mi) ∈ γ}
We can then define the instance completion loss for each associated pair in Ω:

Lcompl =
1

|Ω|
∑

Ω

BCE(sigmoid(m̂i),m
′
i),

m′i(v) =

{
mi(v) if v ∈ b̂i ∩ bi
0 otherwise.

We further introduce a global geometric completion loss on entire scene level that
serves as an intermediate proxy. To this end, we use feature map F5 as input to a binary
cross entropy loss whose target is the composition of all complete object instances of the
scene:

Lgeometry = BCE(sigmoid(F5),∪(bi,mi)∈γ).

Our intuition is to obtain a strong gradient during training by adding this additional
constraint to each voxel in the last feature map F5. We find that this global geometric
completion loss further helps the final instance completion performance; see Sec 4.6.
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display table bathtub trashbin sofa chair cabinet bookshelf avg

Scene Completion + Instance Segmentation 1.65 0.64 4.55 11.25 9.09 9.09 0.18 5.45 5.24
Instance Segmentation + Shape Completion 2.27 3.90 1.14 1.68 14.86 9.93 7.11 3.03 5.49

Ours – RevealNet (no color) 13.16 11.28 13.64 18.19 24.79 15.87 8.60 10.60 14.52
Ours – RevealNet (no proxy) 21.94 7.63 12.55 28.24 20.38 22.58 13.42 9.51 17.03
Ours – RevealNet 26.86 13.21 22.31 28.93 29.41 23.64 15.35 14.48 21.77

Table 4.1: 3D Semantic Instance Completion on ScanNet [4] scans with
Scan2CAD [25] targets. We use mAP@0.5 as metric. Our end-to-end formula-
tion achieves significantly better performance than alternative, decoupled approaches
that first use state-of-the-art scan completion [59] and then instance segmentation [9]
method or first instance segmentation [9] and then shape completion [85].

4.5 Network Training

4.5.1 Data

The input 3D scans are represented as truncated signed distance fields (TSDFs) encoded
in volumetric grids. The TSDFs are generated through volumetric fusion [50] during
the 3D reconstruction process. For all our experiments, we used a voxel size of ≈
4.7cm and truncation of 3 voxels. We also input the color images of the RGB-D scan,
which we project to the 3D grid using their camera poses. We train our model on both
synthetic and real scans, computing 9 anchors through k-means clustering; for real-world
ScanNet [4] data, this results in 4 small anchors and 5 large anchors, and for synthetic
SUNCG [17] data, this results in 3 small anchors and 6 large anchors.

At test time, we leverage the fully-convolutional design to input the full scan of a
scene along with its color images. During training, we use random 96 × 48 × 96 crops
(4.5 × 2.25 × 4.5 meters) of the scanned scenes, along with a greedy selection of ≤ 5
images covering the most object geometry in the crop. Only objects with 50% of their
complete geometry inside the crop are considered.

4.5.2 Optimization

We train our model jointly, end-to-end from scratch. We use an SGD optimizer with
batch size 64 for object proposals and 16 for object classification, and all positive bound-
ing box predictions (> 0.5 IoU with ground truth box) for object completion. We use
a learning rate of 0.005, which is decayed by a factor of 0.1 every 100k steps. We train
our model for 200k steps (≈ 60 hours) to convergence, on a single Nvidia GTX 1080Ti.
Additionally, we augment the data for training the object completion using ground truth
bounding boxes and classification in addition to predicted object detection.

4.6 Results

We evaluate our approach on semantic instance completion performance on synthetic
scans of SUNCG [17] scenes as well as on real-world ScanNet [4] scans, where we ob-
tain ground truth object locations and geometry from CAD models aligned to ScanNet
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cab bed chair sofa tabl door wind bkshf cntr desk shlf curt drsr mirr tv nigh toil sink lamp bath ostr ofurn oprop avg

SC + IS 3.0 0.6 19.5 0.8 18.1 15.9 0.00 0.0 1.0 2.3 3.0 0.0 0.5 0.0 9.2 10.4 23.9 3.4 9.1 0.0 0.0 0.0 9.1 5.5
IS + SC 0.3 0.0 7.4 0.4 3.0 9.1 0.0 0.0 0.2 0.0 0.0 0.0 2.3 0.0 3.0 0.0 2.6 0.0 1.8 0.0 0.0 0.0 4.6 1.5

no color 19.05 41.8 38.2 11.9 23.9 9.1 0.0 0.0 2.5 21.6 9.1 0.0 12.6 4.6 49.4 33.8 63.4 36.9 38.8 14.7 15.9 0.0 23.8 20.5
no proxy 12.9 46.1 39.4 26.8 30.3 1.0 15.9 0.0 9.1 18.2 3.4 0.0 1.1 0.0 43.6 34.0 69.1 32.4 29.6 31.1 14.6 0.0 23.3 20.9
Ours 14.7 58.3 38.2 28.8 29.5 0.0 15.9 54.6 9.1 12.1 9.1 0.0 6.2 0.0 49.4 33.5 61.2 34.5 29.5 27.1 16.4 0.0 23.5 24.0

Table 4.2: 3D Semantic Instance Completion on synthetic SUNCG [17] scans at
mAP@0.5. Our semantic instance completion approach achieves significantly bet-
ter performance than alternative approaches with decoupled state-of-the-art scan
completion (SC) [59] followed by instance segmentation (IS) [9], as well as instance
segmentation followed by shape completion [85]. We additionally evaluate our ap-
proach without color input (no color) and without a completion proxy loss on the
network backbone (no proxy).

provided by Scan2CAD [25]. To evaluate semantic instance completion, we use a mean
average precision metric on the complete masks (at IoU 0.5). Qualitative results are
shown in Figs. 4.3 and 4.4.

3D Detection Instance Segmentation
3D-SIS [9] 25.70 20.78
Ours (no compl) 31.93 24.49
Ours (no color) 29.29 23.55
Ours (no proxy) 31.52 25.92
Ours 36.39 30.52

Table 4.3: 3D Detection and Instance Segmentation on ScanNet [4] scans with
Scan2CAD [25] annotations at mAP@0.5. We evaluate our instance com-
pletion approach on the task of instance segmentation and detection to justify our
contribution that instance completion task helps instance segmentation and detec-
tion. We evaluate our approach without completion (no compl), without color input
(no color), and without a completion proxy loss on the network backbone (no proxy).
Predicting instance completion notably increases performance of predicting both in-
stance segmentation and detection (Ours vs. no compl). We additionally compare
against 3D-SIS [9], a state-of-the-art approach for both 3D detection and instance
segmentation on 3D dense volumetric data (the representation we use).

Comparison to state-of-the-art approaches for semantic instance completion. Ta-
bles 4.1 and 4.2 evaluate our method against state of the art for the task of semantic
instance completion on our real and synthetic scans, respectively. Qualitative compar-
isons on ScanNet scans [4] with Scan2CAD [25] targets (which provide ground truth for
complete object geometry) are shown in Fig. 4.3. We compare to state-of-the-art 3D
instance segmentation and scan completion approaches used sequentially; that is, first
applying a 3D instance segmentation approach followed by a shape completion method
on the predicted instance segmentation, as well as first applying a scene completion ap-
proach to the input partial scan, followed by a 3D instance segmentation method. For
3D instance segmentation, we evaluate 3D-SIS [9], which achieves state-of-the-art per-
formance on a dense volumetric grid representation (the representation we use), and for
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3D Detection Instance Segmentation
3D-SIS [9] 24.70 20.61
Ours (no compl) 29.80 23.86
Ours (no color) 31.75 31.59
Ours (no proxy) 34.05 32.59
Ours 37.81 36.28

Table 4.4: 3D Detection and Instance Segmentation on synthetic SUNCG [17] scans
at mAP@0.5. To demonstrate the benefits of instance completion task for instance
segmentation and 3D detection, we evaluate our semantic instance completion ap-
proach on the task of instance segmentation and 3D detection. Predicting instance
completion notably benefits 3D detection and instance segmentation (Ours vs. no
compl).

scan completion we evaluate the 3D-EPN [85] shape completion approach and ScanCom-
plete [59] scene completion approach. Our end-to-end approach for semantic instance
completion results in significantly improved performance due to information flow from in-
stance completion to object detection. For instance, this allows our instance completion
to more easily adapt to some inaccuracies in detection, which strongly hinders a decou-
pled approach. Note that the ScanComplete model applied on ScanNet data is trained
on synthetic data, due to the lack of complete ground truth scene data (Scan2CAD
provides only object ground truth) for real-world scans.

Does instance completion help instance detection and segmentation? We can also
evaluate our semantic instance completion predictions on the task of semantic instance
segmentation by taking the intersection between the predicted complete mask and the
input partial scan geometry to be the predicted instance segmentation mask. We show
that predicting instance completion helps instance segmentation, evaluating our method
on 3D semantic instance segmentation with and without completion, on ScanNet [4] and
SUNCG [17] scans in Tables 4.3 and 4.4, as well as 3D-SIS [9], an approach jointly pre-
dicts 3D detection and instance segmentation, which also operates on dense volumetric
data, achieving state-of-the-art performance on this representation. We find that pre-
dicting instance completion significantly benefits instance segmentation, due to a more
unified understanding of object geometric structures.

Additionally, we evaluate the effect on 3D detection in Tables 4.3 and 4.4; predicting
instance completion also significantly improves 3D detection performance. Note that in
contrast to 3D-SIS [9] which uses separate backbones for detection and instance seg-
mentation, our unified backbone helps 3D mask information (complete or non-complete)
propagate through detection parameters to improve 3D detection performance.

What is the effect of a global completion proxy? In Tables 4.1 and 4.2, we demon-
strate the impact of the geometric completion proxy loss; here, we see that this loss im-
proves the semantic instance completion performance on both real and synthetic data. In
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Tables 4.3 and 4.4, we can see that it also improves 3D detection and semantic instance
segmentation performance.

Can color input help? Our approach takes as input the 3D scan geometry as a TSDF as
well as the corresponding color images. We evaluate our approach with and without the
color input stream; on both real and synthetic scans, the color input notably improves
semantic instance completion performance, as shown in Tables 4.1 and 4.2.

4.7 Network Architecture

In this section, we detail our RevealNet network architecture in Section 4.7.

small anchors big anchors
(9, 10, 9) (47, 20, 23)

(17, 21, 17) (23, 20, 47)
(12, 19, 13) (16, 18, 30)
(16, 12, 15) (17, 38, 17)

(30, 18, 16)

Table 4.5: Anchor sizes used for region proposal on the ScanNet dataset [4]. Sizes
are given in voxel units, with voxel resolution of ≈ 4.69cm

small anchors big anchors
(8, 6, 8) (12, 12, 40)

(22, 22, 16) (8 , 60, 40)
(12, 12, 20) (38, 12, 16)

(62, 8 , 40)
(46, 8 , 20)
(46, 44, 20)
(14, 38, 16)

Table 4.6: Anchor sizes (in voxels) used for SUNCG [17] region proposal. Sizes are
given in voxel units, with voxel resolution of ≈ 4.69cm

Table 5.16 details the layers used in our backbone. 3D-RPN, classification head, and
mask completion head are described in Table 4.11. Additionally, we leverage the residual
blocks in our backbone, which is listed in Table 4.9. Note that both the backbone and
mask completion head are fully-convolutional. For the classification head, we use several
fully-connected layers; however, we leverage 3D RoI-pooling on its input, so that we can
run our method on large 3D scans of varying sizes in a single forward pass [9].

We additionally list the anchors used for the region proposal for our model trained on
our ScanNet-based semantic instance completion benchmark [4], [25] and SUNCG [17]
datasets in Tables 4.5 and 4.6, respectively. Anchors for each dataset are determined
through k-means clustering of ground truth bounding boxes. The anchor sizes are given
in voxels, where our voxel size is ≈ 4.69cm.
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4.8 Inference Timing

physical size (m) 5.8 x 6.4 8.3 x 13.9 10.9 x 20.1
voxel resolution 124 x 136 176 x 296 232 x 428
forward pass (s) 0.15 0.37 0.72

Table 4.7: Inference time on entire scenes without color signal. Timings are given in
seconds, physical sizes are given in meters and spatial sizes are given in voxel units,
with voxel resolution of ≈ 4.69cm

.

In this section, we present the inference timing with and without color projection
in Table 4.7 and 4.8. Note that our color projection layer currently projects the color
signal into 3D space sequentially, and can be further optimized using CUDA, so that it
can project the color features back to 3D space in parallel. A scan typically contains
several hundreds of images; hence, this optimization could significantly further improve
inference time.

physical size (m) 4.7 x 7.7 7.9 x 9.6 10.7 x 16.5
voxel resolution 100 x 164 168 x 204 228 x 352

image count 49 107 121
color projection (s) 1.43 5.16 11.78

forward pass (s) 0.19 0.34 0.64
total (s) 1.62 5.50 12.42

Table 4.8: Inference timing on entire large scans with RGB input. Timings are given in
seconds, physical sizes are given in meters and spatial sizes are given in voxel units,
with voxel resolution of ≈ 4.69cm

.

4.9 Model-fitting vs. Prediction-based Methods

In terms of object level completion in the RGB-D scan, We discuss about differences
between model-fitting and prediction-based methods. Regarding model-fitting methods,
“Scan2CAD” [25] and “End-to-End CAD” [88] define a CAD alignment task for which
they require a pre-defined set of CAD models for each test scene; i.e., GT objects are
given at test time and only alignment needs to be inferred (cf. Scan2CAD benchmark).
Prediction-based method method, e.g. RevealNet, does not have the GT objects as input
in the test time.

Semantic instance completion is fundamentally more flexible as it operates on a per-
voxel basis (vs. fixed CAD models); i.e., allowing construction of much more true-to-
observation geometry (e.g., necessary in the context of robotics). Since prediction-based
methods complete the missing surface based on observed geometry that performs as an
anchor, RevealNet easily overlaps with the ground truth surface, whereas model-fitting
methods, which predicts rotation/scale/translation, could have little overlap with the

60 Chapter 4. Seeing Behind Objects in RGB-D Scans



Part II. 3D Scene Understanding and Data-Efficient Learning

ground truth surface due to slight misalignment (e.g. 10 degrees rotation error). In
addition, we want to highlight that CAD model alignment does not help their detection
performance, but instance completion in RevealNet does.

ResBlock Input Layer Type Input Size Output Size Kernel Size Stride Padding

convres0 CNN feature Conv3d (N,X,Y,Z) (N/2,X,Y,Z) (1,1,1) (1,1,1) (0,0,0)
normres0 convres0 InstanceNorm3d (N/2,X,Y,Z) (N/2,X,Y,Z) None None None
relures0 normres0 ReLU (N/2,X,Y,Z) (N/2,X,Y,Z) None None None
convres1 relures0 Conv3d (N/2,X,Y,Z) (N/2,X,Y,Z) (3,3,3) (1,1,1) (1,1,1)
normres1 convres1 InstanceNorm3d (N/2,X,Y,Z) (N/2,X,Y,Z) None None None
relures1 normres1 ReLU (N/2,X,Y,Z) (N/2,X,Y,Z) None None None
convres2 relures1 Conv3d (N/2,X,Y,Z) (N,X,Y,Z) (1,1,1) (1,1,1) (0,0,0)
normres2 convres2 InstanceNorm3d (N,X,Y,Z) (N,X,Y,Z) None None None
relures2 normres2 ReLU (N,X,Y,Z) (N,X,Y,Z) None None None

Table 4.9: Network Details. Residual block specification in RevealNet.

4.10 Performance Study over Degrees of Completeness

Both our SUNCG and ScanNet settings have a large variety of incompleteness. We show
a histogram in Fig. 4.5 of our current results on ScanNet (numbers split from Tab. 1
main paper). From the histogram, We show that with more complete geometry input,
semantic instance completion task becomes easier.

4.11 Limitations

Our approach shows significant potential in the task of semantic instance completion,
but several important limitations still remain. First, we output a binary mask for the
complete object geometry, which can limit the amount of detail represented by the com-
pletion; other 3D representations such as distance fields or sparse 3D representations [20]
could potentially resolve greater geometric detail. Our approach also uses axis-aligned
bounding boxes for object detection; it would be helpful to additionally predict the ob-
ject orientation. We also do not consider object movement over time, which contains
significant opportunities for semantic instance completion in the context of dynamic
environments.

4.12 Conclusion

In this paper, we tackle the problem of “seeing behind objects” by predicting the missing
geometry of individual objects in RGB-D scans. This opens up many possibilities for
complex interactions with objects in 3D, for instance for efficient navigation or robotic
grasping. To this end, we introduced the new task of semantic instance completion
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BackBone Input Layer Type Input Size Output Size Kernel Size Stride Padding

geometry0 TSDF Conv3d (2,96,48,96) (32,48,24,48) (2,2,2) (2,2,2) (0,0,0)
norm0 geometry0 InstanceNorm3d (32,48,24,48) (32,48,24,48) None None None
relu0 norm0 ReLU (32,48,24,48) (32,48,24,48) None None None

block0 relu0 ResBlock (32,48,24,48) (32,48,24,48) None None None
color1 CNN feature Conv3d (128,96,48,96) (32,48,24,48) (2,2,2) (2,2,2) (0,0,0)
norm1 color1 InstanceNorm3d (32,48,24,48) (32,48,24,48) None None None
relu1 norm1 ReLU (32,48,24,48) (32,48,24,48) None None None

block1 relu1 ResBlock (32,48,24,48) (32,48,24,48) None None None
concat2 (block0,block1) Concatenate (32,48,24,48) (64,48,24,48) None None None

combine2 concat2 Conv3d (64,48,24,48) (128,24,12,24) (2,2,2) (2,2,2) (0,0,0)
norm2 combine2 InstanceNorm3d (128,24,12,24) (128,24,12,24) None None None
relu2 norm2 ReLU (128,24,12,24) (128,24,12,24) None None None

block2 relu2 ResBlock (128,24,12,24) (128,24,12,24) None None None
encoder3 block2 Conv3d (128,24,12,24) (128,24,12,24) (3,3,3) (1,1,1) (1,1,1)
norm3 combine3 InstanceNorm3d (128,24,12,24) (128,24,12,24) None None None
relu3 norm3 ReLU (128,24,12,24) (128,24,12,24) None None None

block3 relu3 ResBlock (128,24,12,24) (128,24,12,24) None None None
skip4 (block, block3) Conv3d (128,24,12,24) (64,48,24,48) (2,2,2) (2,2,2) (0,0,0)
norm4 combine4 InstanceNorm3d (64,48,24,48) (64,48,24,48) None None None
relu4 norm4 ReLU (64,48,24,48) (64,48,24,48) None None None

block4 relu4 ResBlock (64,48,24,48) (64,48,24,48) None None None
concat5 (block2,block4) Concatenate (64,48,24,48) (128,48,24,48) None None None
decoder5 block5 ConvTranspose3d (128,48,24,48) (32,96,48,96) (2,2,2) (2,2,2) (0,0,0)
norm5 combine5 InstanceNorm3d (32,96,48,96) (32,96,48,96) None None None
relu5 norm5 ReLU (32,96,48,96) (32,96,48,96) None None None

block5 relu5 ResBlock (32,96,48,96) (32,96,48,96) None None None
proxy5 block5 ConvTranspose3d (32,96,48,96) (1,96,48,96) (1, 1, 1) (1,1,1) (0,0,0)

Table 4.10: Network Architecture. Backbone layer specifications in RevealNet.

along with RevealNet, a new 3D CNN-based approach to jointly detect objects and
predict their complete geometry. Our proposed 3D CNN learns from both color and
geometry features to detect and classify objects, then predicts the voxel occupancy for
the complete geometry of the object in an end-to-end fashion, which can be run on a full
3D scan in a single forward pass. On both real and synthetic scan data, we significantly
outperform state-of-the-art approaches for semantic instance completion. We believe
that our approach makes an important step towards higher-level scene understanding
and helps to enable object-based interactions and understanding of scenes, which we
hope will open up new research avenues.
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Figure 4.3: Qualitative results on real-world ScanNet [4] scenes with Scan2CAD [25]
targets. Close-ups are shown on the right. Note that different colors denote
distinct object instances in the visualization. Our approach effectively predicts
complete individual object geometry, including missing structural components (e.g.,
missing chair legs), across varying degrees of partialness in input scan observations.
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Figure 4.4: Qualitative results on SUNCG dataset [17] (left: full scans, right: close-
ups). We sample RGB-D images to reconstruct incomplete 3D scans from random
camera trajectories inside SUNCG scenes. Note that different colors denote distinct
object instances in the visualization.
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Figure 4.5: Results of Tab. 1 split by levels of object completeness in mAP@0.5.
More complete input is easier.
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RPN Input Layer Type Input Size Output Size Kernel Size Stride Padding

rpn6 block2 Conv3d (128,24,12,24) (256,24,12,24) (3,3,3) (1,1,1) (1,1,1)
norm6 rpn6 InstanceNorm3d (256,24,12,24) (256,24,12,24) None None None
relu6 norm6 ReLU (256,24,12,24) (256,24,12,24) None None None

rpncls7a relu6 Conv3d (256,24,12,24) (8,24,12,24) (1,1,1) (1,1,1) (0,0,0)
norm7a rpncls7a InstanceNorm3d (8,24,12,24) (8,24,12,24) None None None

rpnbbox7b relu6 Conv3d (24,24,12,24) (24,24,12,24) (1,1,1) (1,1,1) (0,0,0)
norm7b rpnbbox7b InstanceNorm3d (24,24,12,24) (24,24,12,24) None None None

rpn8 block3 Conv3d (128,24,12,24) (256,24,12,24) (3,3,3) (1,1,1) (1,1,1)
norm8 rpn8 InstanceNorm3d (256,24,12,24) (256,24,12,24) None None None
relu8 norm8 ReLU (256,24,12,24) (256,24,12,24) None None None

rpncls9a relu8 Conv3d (256,24,12,24) (8,24,12,24) (1,1,1) (1,1,1) (0,0,0)
norm9a rpncls9a InstanceNorm3d (10,24,12,24) (10,24,12,24) None None None

rpnbbox9b relu8 Conv3d (30,24,12,24) (30,24,12,24) (1,1,1) (1,1,1) (0,0,0)
norm9b rpnbbox9b InstanceNorm3d (30,24,12,24) (30,24,12,24) None None None

Class Head Input Layer Type Input Size Output Size Kernel Size Stride Padding

roipool10 block2/block3 RoI Pooling (64,arbitrary) (64, 4, 4, 4) None None None
flat10 roipool10 Flat (64,4,4,4) (4096) None None None
cls10a flat10 Linear (4096) (256) None None None
relu10a cls10a ReLU (256) (256) None None None
cls10b relu10a Linear (256) (128) None None None
relu10b cls10b ReLU (128) (128) None None None
cls10c relu10b Linear (128) (128) None None None
relu10c cls10c ReLU (128) (128) None None None
clscls10 relu10c Linear (128) (8) None None None

clsbbox10 relu10c Linear (128) (48) None None None

Mask Head Input Layer Type Input Size Output Size Kernel Size Stride Padding

mask11 block2/block3 Conv3d (N,arbitrary) (N,arbitrary) (9,9,9) (1,1,1) (4,4,4)
norm11 mask11 InstanceNorm3d (N,arbitrary) (N,arbitrary) None None None
relu11 norm11 ReLU (N,arbitrary) (64,arbitrary) None None None

mask12 relu11 Conv3d (N,arbitrary) (N,arbitrary) (7,7,7) (1,1,1) (3,3,3)
norm12 mask12 InstanceNorm3d (N,arbitrary) (N,arbitrary) None None None
relu12 norm12 ReLU (N,arbitrary) (64,arbitrary) None None None

mask13 relu12 Conv3d (N,arbitrary) (N,arbitrary) (5,5,5) (1,1,1) (2,2,2)
norm13 mask13 InstanceNorm3d (N,arbitrary) (N,arbitrary) None None None
relu13 norm13 ReLU (N,arbitrary) (64,arbitrary) None None None

mask14 relu13 Conv3d (N,arbitrary) (N,arbitrary) (3,3,3) (1,1,1) (1,1,1)
norm14 mask14 InstanceNorm3d (N,arbitrary) (N,arbitrary) None None None
relu14 norm14 ReLU (N,arbitrary) (64,arbitrary) None None None

mask15 relu14 Conv3d (N,arbitrary) (N,arbitrary) (1,1,1) (1,1,1) (0,0,0)

Table 4.11: Network Structures. Head layer specifications of RPN, Classification and Mask
Completion in RevealNet.
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5 Data-Efficient 3D Scene Understanding

This chapter introduces the following paper:

J. Hou, B. Graham, M. Nießner, and S. Xie, “Exploring Data-Efficient 3D Scene
Understanding with Contrastive Scene Contexts,” in Proceedings of Computer Vision
and Pattern Recognition (CVPR), IEEE, 2021

Abstract of paper The rapid progress in 3D scene understanding has come with grow-
ing demand for data; however, collecting and annotating 3D scenes (e.g. point clouds)
are notoriously hard. For example, the number of scenes (e.g. indoor rooms) that can
be accessed and scanned might be limited; even given sufficient data, acquiring 3D la-
bels (e.g. instance masks) requires intensive human labor. In this paper, we explore
data-efficient learning for 3D point cloud. As a first step towards this direction, we
propose Contrastive Scene Contexts, a 3D pre-training method that makes use of both
point-level correspondences and spatial contexts in a scene. Our method achieves state-
of-the-art results on a suite of benchmarks where training data or labels are scarce. Our
study reveals that exhaustive labelling of 3D point clouds might be unnecessary; and
remarkably, on ScanNet, even using 0.1% of point labels, we still achieve 89% (instance
segmentation) and 96% (semantic segmentation) of the baseline performance that uses
full annotations.

Contribution The method development and implementation was done by the first au-
thor. Discussions with the co-authors led to the final paper.
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Training Data

with Limited Annotations

Instance Segmentation 

Predictions

Figure 5.1: Limited Annotations Overview. How many point labels are necessary to train a
3D instance segmentation model on point clouds? It turns out not too many! With
the help of unsupervised pre-training, only 20 labelled points per scene (less than
0.1% of the total points) are used to fine-tune an instance segmentation model on
ScanNet. Left: Train samples; only colored points (enlarged for better visibility)
are labeled. Right: Predictions in validation set and different colors represent
different instances.

5.1 Introduction

Recent advances in deep learning on point clouds, such as those obtained from LiDAR
or depth sensors, together with a proliferation of public, annotated datasets [4], [24],
[27], [89]–[93], have led to swift progress in 3D scene understanding. However, compared
to large-scale 2D scene understanding on images [7], [8], [94], the scale of 3D scene
understanding—in terms of the amount and diversity of data and annotations, the model
size, the number of semantic categories, and so on—still falls behind. We argue that
one major bottleneck is the fact that collecting and annotating diverse 3D scenes are
significantly more expensive. Unlike 2D images that comfortably exists on the Internet,
collecting real world 3D scene datasets usually involves traversing the environment in
real life and scanning with 3D sensors. Therefore, the number of indoor scenes that can
be scanned might be limited. What is more concerning is that, even given sufficient data
acquisition, 3D semantic labelling (e.g. bounding boxes and instance masks) requires
complex pipelines [4] and labor-intensive human effort.

In this work, we explore a new learning task in 3D, i.e. data-efficient 3D scene under-
standing, which focuses on the problem of learning with limited data or supervision1.
We note that the importance of data-efficient learning in 3D is two-fold. One concerns
the status quo: given limited data we have right now, can we design better methods
that perform better? The other one is more forward-looking: is it possible to reduce the

1Sometimes a distinction is drawn between data-efficiency and label-efficiency, to separate the scenarios
of limited amount of data samples and limited supervision; here, we use data-efficiency to encompass
both cases.
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human labor for annotation, with a goal of creating 3D scene datasets on a much larger
scale?

To formally study the problem, we first introduce a suite of scene understanding
benchmarks that encompasses two complementary settings for data-efficient learning:
(1) limited scene reconstructions (LR) and (2) limited annotations (LA). The first setting
concerns the scenario where the bottleneck is the number of scenes that can be scanned
and reconstructed. The second one focuses on the case where in each scene, the budget
for labeling is constrained (e.g. one can only label a small set of points). For each
setting, the evaluation is done on a diverse set of scene understanding tasks including
object detection, semantic segmentation and instance segmentation.

For data-efficient learning in 2D [95], representation learning, e.g. pre-training on
a rich source set and fine-tuning on a much smaller target set, often comes to the
rescue; in 3D, representation learning for data-efficient learning is even more wanted
but long overdue. With this perspective, we focus on studying data-efficient 3D scene
understanding through the lens of representation learning.

Only recently, PointContrast [35] demonstrates that network weights pre-trained on
3D partial frames can lead to a performance boost when fine-tuned on 3D semantic
segmentation and object detection tasks. Our work is inspired by PointContrast. How-
ever, we observe that the simple contrastive-learning based pretext task used in [35] only
concerns point-level correspondence matching, which completely disregards the spatial
configurations and contexts in a scene. In Section 5.3, we show that this design limits
the scalibility and transferability; we further propose an approach that integrates the
spatial information into the contrastive learning framework. The simple modification
can significantly improve the performance over PointContrast, especially on complex
tasks such as instance segmentation.

Our exploration in data-efficient 3D scene understanding provides some surprising ob-
servations. For example, on ScanNet, even using 0.1% of point labels, we are still able to
recover 89% (instance segmentation) and 96% (semantic segmentation) of the baseline
performance that uses full annotations. The results imply that exhaustive labelling of
3D point clouds might not be necessary. In both scenarios of limited scene reconstruc-
tions (LR) and limited annotations (LA), our pre-trained network, when used as the
initialization for supervised fine-tuning, offers consistent improvement across multiple
tasks and datasets. In the scenario of LA, we also show that an active labeling strategy
can be enabled by clustering the pre-trained point features.

In summary, the contributions of our work include:

• A systematic study on data-efficient 3D scene understanding with a comprehensive
suite of benchmarks.

• A new 3D pre-training method that can gracefully transfer to complex tasks such
as instance segmentation and outperform the state-of-the-art results.

• Given the pre-trained network, we study practical solutions for data-efficient learn-
ing in 3D through fine-tuning as well as an active labeling strategy.
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5.2 Related Work

3D Scene Understanding. Research in deep learning on 3D point clouds have been
recently shifted from synthetic, single object classification [21], [55], [96] to the challenge
of large-scale, real-world scene understanding. A variety of datasets [4], [26], [27], [93],
[97] and algorithms have been proposed for 3D object detection [32], [98]–[100], semantic
segmentation [21], [28], [101]–[104] and instance segmentation hou20193d, [10], [30],
[31], [63]–[65], [105]–[107]. In the past year, sparse convolutional networks [28], [104]
stand out as a promising approach to standardize deep learning for point clouds, due to
its computational efficiency and state-of-the-art performance for 3D scene understanding
tasks [28], [30], [108]. In this work, we also adopt a sparse U-Net [109] backbone for our
exploration.

3D Representation Learning. Compared to 2D vision, the limits of big data are
far from being fully explored in 3D. In 2D representation learning, for example, trans-
fer learning from a rich source data (e.g. ImageNet [7]) to a (typically smaller) target
data, has become a dominant framework for many applications [110]. In contrast, 3D
representation learning has not been widely adopted and most 3D networks are trained
from scratch on the target data directly. Recently, unsupervised pre-training has made
great progress and drawn significant attention in 2D [95], [111]–[120]. Following suit,
recent works attempt to adapt the 2D pretext tasks to 3D, but mostly focus on single
object classification tasks on ShapeNet [121]–[129]. Our work is mostly inspired by a re-
cent contrastive-learning based method PointContrast [35], which first demonstrates the
effectiveness of unsupervised pre-training on a diverse set of scene-level understanding
tasks. As we will show in the later sections, the simple point-level pre-training objective
in PointContrast ignores the spatial contexts of the scene (such as relative poses of ob-
jects, and distances between them) which limits its transferability for complex tasks such
as instance segmentation. PointContrast also focuses on downstream tasks with 100%
data and labels, while we systematically explore a new data-efficient paradigm that has
practical importance.

Data-Efficient Learning. Data-efficient learning concerns the problem of learning
with limited training examples or labels. This capability is known in cognitive science to
be a distinctive characteristic of humans [130]. In contrast, training deep neural networks
is not naturally data-efficient, as it typically relies on large amount of annotated data.
Among many potential solutions towards this goal, representation learning (commonly
through transfer learning) is arguably the most promising one. A good representation
“entangles the different explanatory factors of variation behind the data” [131] and thus
makes the downstream prediction easier (and less data-hungry). This concept has been
validated successfully in natural language processing [132] and to some extent in 2D
image classification [95]. Pursuing this direction in 3D is even more desirable, considering
the potential benefit in reducing the labor of data collection and annotation. Existing
work focuses on mostly single CAD model classification or part segmentation [35], [127],
[133]–[137]. To the best of our knowledge, our work is the first to explore data-efficient
learning in a real-world, large-scale 3D scene understanding setup.
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2 Partitions 4 Partitions 8 Partitions

Figure 5.2: Illustration of Scene Contexts. We visualize the 2,4 and 8 spatial partitions
for Scene Contexts. The anchor point is in the center. For 2 and 4 partitions,
only relative angles are sufficient. For 8 partitions (a cross-section is shown), both
relative angles and distances are needed.

5.3 Contrastive Scene Contexts for Pre-training

In this section, we first briefly revisit the PointContrast framework [35], and discuss the
shortcomings and remedies. We then introduce our pre-training algorithm.

Revisiting PointContrast. The pre-training objective for PointContrast is to achieve
point equivariance with respect to a set of random geometric transformations. Given a
pair of overlapping partial scans, a contrastive loss for pre-training is defined over the
point features. The objective is to minimizes the distance for matched points (positive
pairs) and maximize the distance between unmatched ones (negative pairs). Despite
the fact that strong spatial contexts exist among objects in a scene, this objective does
not capture any of the spatial information: the negative pairs could be sampled from
arbitrary locations across many scenes in a mini-batch. We hypothesize that this leads
to some limitations: 1) the spatial contexts (e.g. relative pose, direction and distance),
which could be pivotal for complex tasks such as instance segmentation, are entirely
discarded from pre-training; 2) the scalibility of contrastive learning might be hampered;
PointContrast cannot utilize a large number of negative points, potentially because that
contrasting a pair of spatially distant and unrelated points would contribute little to
learning. In fact, PointContrast uses only a random sampling of 1024 points per scene
for pre-training, and it has been shown that results do not improve with more sampled
points [35]. We also confirm this behavior with experiments later this section.

Contrastive Scene Contexts. We hope to integrate spatial contexts into the pre-
training objective. There are many ways to achieve the goal, and here we take inspiration
from the classic ShapeContext local descriptor [138]–[140] for shape matching. The
ShapeContext descriptor partitions the space into spatially inhomogeneous cells, and
encodes the spatial contexts about the shape at each point by computing a histogram
over the number of neighboring points in each cell. We call our method Contrastive
Scene Contexts because at a high level, our method also aims to capture the distribution
over relative locations in a scene. We partition the scene point cloud into multiple
regions, and instead of having a single contrastive loss for the entire point set sampled in
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a mini-batch, we perform contrastive learning in each region separately, and aggregate
the losses in the end.

Concretely, given a pair of partial frame point clouds x and y from the same scene,
we have correspondence mapping (i, j) ∈Mxy available, where i is the index of a point
xi ∈ R3 in frame x and j is the index of a matched point yj ∈ R3 in frame y. Similar
to PointContrast, we sample N pairs of matched points as positives. However, in our
method, for each anchor point xi, the space is divided into multiple partitions and other
points are assigned to different partitions based on their relative angles and distances to
i.

The distance and angle information needed for scene context partition at anchor point
xi is as follows,

Dik =

√√√√
3∑

d=1

(xdi − xdk)
2 (5.1)

Aik = arctan2(Dik) + 2π (5.2)
where D is the relative distance matrix. Dik stores the distance between point i and
point k and A is the relative angle matrix, where Aik stores the relative angle between
point i and point k. In Equation (1) d represents the 3D dimension. With D and A, a
ShapeContext-like spatial partitioning function can be easily constructed on-the-fly. In
Figure 5.2, we show a visual illustration of how the space partitioning works. Computing
2 or 4 partitions only requires cutting the space according to relative angles based on A;
while the 8 or more partitions also require the extent of the inner regions using D. We
always partition the space uniformly along the relative angles and distances. Note that
the partitioning is relative to the anchor point i.

Suppose there are P partitions, we denote the spatial partition functions as parp(·),
where p ∈ {1, . . . , P}. Function parp(·) takes the anchor point i as input, and return a
set of points as negatives. A PointInfoNCE loss Lp is independently computed for each
partition:

Lp = −
∑

(i,j)∈M
log

exp(f1i · f2j /τ)∑
(·,k)∈M,k∈parp(i) exp(f1i · f2k/τ)

(5.3)

Details of Equation (3) and other implementation details can be found in Appendix.
The final loss is computed by aggregating all partitions L = 1

|P |
∑

p Lp.
Analysis. We first show that by integrating the scene contexts into the objective, our
pre-training method can benefit more from a larger point set. We conduct an analysis
experiment by varying the number of scene context partitions and the number of points
sampled for computing the contrastive loss. We pre-train our model for a short schedule
(20K iters). We then fine-tune the pre-trained weights on S3DIS instance segmentation
benchmark [27]. Results are shown in Figure 5.3, the green line represents a variant
with no spatial partitioning ; the left-most point represents PointContrast2. Similar to
the observation in [35], without scene contexts, increasing the number of sampled points

2Not exactly identical since the matched points are sampled per scene in this experiment, rather than
from the whole mini-batch as in PointContrast; we have verified that this nuance does not influence
the conclusion.
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Figure 5.3: Analysis Experiment. Varying the number of partitions and sampled points for
pre-training; Results are reported on the S3DIS instance segmentation task [27].
Using scene context partitions has enabled constrastive learning to utilize more
points for better performance.

does not improve the performance; with more partitions, increasing # sampled points
leads to a consistent boost in performance (up to 4096 points). We use 8 partitions as
empirically it works best. This shows that our method leads to better scalability as more
points can be utilized for pre-training.

We achieve state-of-the-art instance segmentation results in terms of mAP@0.5 (Ta-
ble. 5.1) using a simple bottom-up clustering mechanism with voting loss (details in
Appendix). We do not use any special modules such as Proposal Aggregation [106] or
Scoring Network [30]. We observe a 2.9% absolute improvement over PointContrast pre-
training, which brings the improvement over train-from-scratch baseline to 4.1%. This
substantial margin demonstrates the effectiveness of Contrastive Scene Contexts on in-
stance segmentation tasks. We provide more results comparing against PointContrast
in Section 5.5.3.

5.4 Data-Efficient 3D Scene Understanding

To formally explore data-efficient 3D scene understanding, in this section, we propose
two different learning paradigms and relevant benchmarks that are associated with two
complementary settings that can occur in real world application scenarios: (1) limited
scene reconstructions (LR) and (2) limited annotations (LA). The first setting mainly
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Methods mAP@0.5
ASIS [105] 55.3

3D-BoNet [64] 57.5
PointGroup [30] 57.8
3D-MPA [106] 63.1

Train from scratch 59.3
PointContrast (PointInfoNCE) [35] 60.5 (+1.2)

Contrastive Scene Contexts 63.4 (+4.1)

Table 5.1: Fine-tuning results for instance segmentation on S3DIS [27]. A simple
clustering-based model with Contrastive Scene Contexts pre-trained backbone per-
forms significantly better than the train-from-scratch baseline and PointContrast
pre-training [35].
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Figure 5.4: Overview of Data-Efficient 3D Scene Understanding. Left: Unsupervised
pre-training with Contrastive Scene Contexts. The outputs of pre-training are 1)
a pre-trained U-Net F (that can be used as an offline feature extractor) and 2) its
associated weights W. Right: After pre-training, different learning scenarios can
be applied for the downstream tasks such as learning with limited scene reconstruc-
tions (LR) or limited annotations (LA). In the case of LR, the pre-trained weights
W are used as network initialization for fine-tuning. In the case of LA, all the scene
reconstructions can be used but only a limited annotation budget is available, e.g.
20 points can be annotated (semantic labels) per scene. Again, W can be used
as network initialization for fine-tuning; optionally the feature extractor F can be
used in an active labeling strategy to decide which points to annotate. Baselines
are standard supervised learning where models are trained from scratch.

concerns the scenario where the bottleneck of data collection is the number of scenes that
can be scanned and reconstructed. The second one focuses on the case where in each
scene, the budget for labeling is limited (e.g. one can only label a small set of points).
Since 3D point labeling is human intensive, this represents a practical scenario where a
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data-efficient learning strategy can greatly reduce the annotation cost. An overview is
presented in Figure 5.4, and details of individual benchmarks are described below.

5.4.1 Limited Annotations (LA)

In this benchmark, we explore 3D scene understanding with a limited budget for point
cloud annotations. We consider a diverse set of tasks including semantic segmentation,
instance segmentation and object detection. Specifically, for instance segmentation and
semantic segmentation, the annotation budget is in terms of the number of points for
labelling. This is practically useful: if an annotator only needs to label the semantic
labels for 20 points, it will only require a few minutes to label a full room. Our benchmark
considers four different training configurations on ScanNet including using {20, 50, 100,
200} labeled points per scene. For object detection, the annotation budget is with respect
to the number of bounding boxes to label in each scene. Our benchmark considers four
different training configurations including {1, 2, 4, 7} labeled bounding boxes. Our base
dataset is ScanNetV2 [4] which has 1201 scenes for training. We evaluate the model
performance on standard ScanNetV2 validation set of 312 scenes that has full labels.

5.4.2 Limited Scene Reconstructions (LR)

For current 3D scene datasets, it is common for annotators to carry commodity depth
cameras and record 3D videos at private houses or furniture stores. It might be un-
realistic to enter a large number of homes and obtain detailed scanning. In this case,
the number of scenes might be the bottleneck and the training has to be done on lim-
ited amount of scene reconstructions. We simulate this scenario by random sampling
a subset of ScanNetV2 training set. Our benchmark has four configurations {1%, 5%,
10%, 20%} (100% represents the entire ScanNet train set) for semantic segmentation
and instance segmentation; and {10%, 20%, 40%, 80%} for object detection. During
test time, evaluation is on all scenes in the validation set.

5.5 Experimental Results

In this section, we present our experimental results on the data-efficient 3D scene under-
standing benchmarks: ScanNet-LA with limited annotations and ScanNet-LR with
limited scene reconstructions. In both scenarios, we compare our method against the
baseline of training from scratch, and report results on semantic/instance segmentation
and object detection. We also compare our models with the state-of-the-art method in
the last part of the section.
Experiments Setup For pre-training, we use SGD optimizer with learning rate 0.1
and a batch-size of 32. The learning rate is decreased by a factor of 0.99 every 1000
steps. The model is trained for 60K steps. The fine-tuning experiments on instance
segmentation and semantic segmentation are trained with a batch-size of 48 for a total
of 10K steps. The initial learning rate is 0.1, with polynomial decay with power 0.9. For
all experiments, we use data parallel on 8 NVIDIA V100 GPUs. For object detection
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experiments, we fine-tune the model with a batch-size of 32 for 180 epochs. The initial
learning rate is set to 0.001 and decayed by a factor of 0.1 at epoch 80, 120 and 160. For
all the experiments, we use the same Sparse Res-UNet [35] as the backbone. For both
training and testing, the voxel size for Sparse ConvNet is set to 2.0 cm. We use Sparse
ConvNet implemented by MinkowskiEngine [28].

5.5.1 Limited Annotations

As introduced in Section 5.4, the Limited Annotation (LA) benchmark covers two differ-
ent annotation types: Limited Point Annotations for semantic and instance segmentation
and Limited Bounding Box Annotations for detection. The pre-trained network (and its
weights) can be used as initialization for fine-tuning, or integrate in an active labeling
strategy, which we describe below.
Active labeling. Since we focus on the scenario of having limited annotation budget, it
is natural to consider an active learning strategy during the data annotation process; i.e.
one can interactively query an annotator to label some data points that can help most for
subsequent training. The core idea of our approach is to perform a balanced sampling
on the feature space, so that the selected points will be the most representative and
exemplary ones in a scene. Our pre-trained network extracts dense features at each
point of the to-be-annotated point cloud, by simply performing a forward pass. We then
perform k-means clustering in this feature space to obtain K cluster centroids. We select
the K centroids as the points to be provided to the annotators for labeling. We also
present two baseline strategies including a simple random sampling strategy where K
points are randomly selected to be labeled, and a similar k-means sampling strategy
on raw (RGB+XYZ) inputs, rather than on the pre-trained features.

We note that although our experiments are simulated based on the already collected
ScanNet dataset, our pre-trained feature extractor and the labeling strategy are readily
useful in a real-world data annotation pipeline.
Results. In Figure 5.7 we show that compared to the naive from-scratch baselines,
our proposed pre-training framework can lead to much improved performance. It is
interesting to see that, for both semantic segmentation and instance segmentation, even
without fine-tuning, the active labeling strategy alone provides point labels that make
the trained model perform significantly better, compared to random sampling or k-
means sampling baseline strategies, yielding a >10% absolute improvement in terms of
mAP@0.5 and mIoU when the training data has only 20 point labels.

The fact that active labeling strategy performs on par with the more common pre-
training and fine-tuning paradigm, suggests that finding exemplary points to label is
crucial for data-efficient learning. Of course, in real applications both active labeling
and fine-tuning can be used jointly, and we indeed observe a further (though admittedly
smaller) boost in performance by 1) active sampling points to label and then 2) fine-
tuning with the pre-trained weights.

Overall, with the help of our Contrastive Scene Contexts pre-training, even using
around 0.1% of point labels (e.g. 200 labeled points out of 150K total points per scene),
we are still able to achieve 50.4% mAP@0.5 for instance segmentation, and 69.0% mIoU
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No. of Boxes VoteNet (scratch) VoteNet (ours)
all 35.4 39.3 (+3.9)

1 9.1 10.9 (+1.8)

2 15.9 18.5 (+2.6)

4 22.5 26.1 (+3.6)

7 26.5 30.4 (+3.9)

Table 5.2: Object detection results using Limited Bounding Box Annotations on
ScanNet. The metric is mAP@0.5. “Ours” denotes the fine-tuning results with
our pre-trained model. We list the upper-bound performance using all annotated
bounding boxes (in average about 13 bounding boxes per scene) as a reference in
the first row.

for semantic segmentation. This indicates a recovery of 89% and 96% of baseline perfor-
mance that uses 100% of the annotations. We show additional qualitative comparison
in Figure 5.5.
Limited Bounding Box Annotations. For object detection, we use VoteNet [32]
as the detector framework; follwoing [35], we replace PointNet [21] with our Sparse
Res-UNet. For this part, we do not use any active labeling strategy as the labeling
cost for bounding boxes are much smaller. We random sample {1, 2, 4, 7} bounding
boxes per scene and train the detector. In Table 5.2, we observe that our pre-training
also consistently improves over the baseline VoteNet, and the performance gap does not
diminish when more box annotations are available.

5.5.2 Limited Scene Reconstructions

In this section, we report the experimental results for another scenario of data-efficient
3D scene understanding, when there is a shortage of scene reconstructions. For instance
segmentation and semantic segmentation tasks, we random sample subsets of ScanNet
scenes of different sizes. We sample {1%, 5%, 10%, 20%} of the entire 1201 scenes in the
training set (which corresponds to 12, 60, 120, and 240 scenes, respectively). For object
detection, we find it very difficult to train the detector when the scenes are too scarce.
Thus we sample {10%, 20%, 40%, 80%} subsets. For each configuration, we randomly
sample 3 subsets and report the averaged results to reduce variance. We also use the
official ScanNetV2 validation set for evaluation.

Network fine-tuned with our pre-trained model again shows a clear gap compared to
the training from scratch baseline (Table 5.3). We achieve competitive results (50.6%
mAP@0.5 for instance segmentation and 64.6% mIoU for semantic segmentation) using
only 20% of the total scenes.

Similar behavior can be observed on the object detection task on ScanNet, and the
difference between with and without our pre-training is more pronounced in Table 5.4:
the detector can barely produce any meaningful results when the data is scarce (e.g. 10%
or 20%) and trained from scratch. However, fine-tuning with our pre-trained weights,
VoteNet can perform significantly better (e.g. improve the mAP@0.5 by more than 16%
with 20% training data).
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Instance Seg. Semantic Seg.
Data Pct.

Scratch Ours Scratch Ours
100% 56.9 59.4 (+2.5) 72.2 73.8 (+1.6)

1% 9.9 13.2 (+3.3) 26.0 28.9 (+2.9)

5% 31.9 36.3 (+4.4) 47.8 49.8 (+2.0)

10% 42.7 44.9 (+2.2) 56.7 59.4 (+2.7)

20% 48.1 50.6 (+2.5) 62.9 64.6 (+1.7)

Table 5.3: 3D semantic and instance segmentation results with Limited Scene Re-
constructions (ScanNet-LR). Metric is mAP@0.5 for instance segmentation and
mIoU for semantic segmentation. “Scratch” denotes the training from scratch base-
line, and “Ours” denotes the fine-tuning results using our pre-trained weights. Re-
sults using 100% of the data during training are listed in the first row.

Data Pct. VoteNet (scratch) VoteNet (ours)
100% 35.4 39.3 (+3.9)

10% 0.3 8.6 (+8.3)

20% 4.6 20.9 (+16.3)

40% 22.0 29.2 (+7.2)

80% 33.7 36.7 (+3.0)

Table 5.4: Object detection results with Limited Scene Reconstructions on ScanNet.
Metric is mAP@0.5. We show constantly improved results over training from scratch,
especially so when 10% or 20% of the data are available. Results using all scenes are
listed in the first row.

5.5.3 Additional Comparisons to PointContrast

As 3D-SIS is closely related to PointContrast [35], we provide additional results in this
section, including comparisons on the data-efficient ScanNet benchmarks (Table 5.5) as
well as on other datasets and benchmarks (Table 5.6). Our pre-training method outper-
forms [35] in almost every benchmark setting, sometimes by a big margin. These results
further render the importance of integrating scene contexts in contrastive learning. No-
tably, our pre-training method on S3DIS achieves 72.2% mIoU which outperforms, for
the first time, the supervised pre-training result reported in [35].

5.5.4 Analysis on Active Labeling: Cluttered Scenes

To better explain our active labeling strategy and show that it can work in scenes with
heavy occlusion and clutter, we filter out a ScanNet subset of 200 cluttered scenes that
has multiple objects per one square meter area. Compared to naive k-means sampling,
active labeling performs even better on cluttered scenes. In Figure 5.8, we visualize
a cluttered scene and sampled points (bottom); we also show quantitatively (top) our
strategy covers more distinct objects and thus has a balancing effect.

In this supplemental document, we describe the details of our implementation in Sec-
tion 5.6. We show more visualizations of our models on semantic segmentation and
object detection tasks with extremely scarce data for training in Section 5.7. Detailed
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Settings Task (Metric) SC PC [35] Ours
LA (200 points) ins (mAP@0.5) 43.5 44.5 (+1.0) 48.9 (+5.4)

LA (200 points) sem (mIoU) 65.5 67.8 (+2.3) 68.2 (+2.7)

LA (7 bboxes ) det (mAP@0.5) 33.4 34.9 (+1.5) 35.9 (+2.5)

LR (240 scenes) ins (mAP@0.5) 48.1 48.4 (+0.3) 50.6 (+2.5)

LR (240 scenes) sem (mIoU) 62.9 63.0 (+0.1) 64.6 (+1.7)

LR (960 scenes) det (mAP@0.5) 33.7 36.3 (+2.6) 37.4 (+3.7)

Table 5.5: Comparisons to PointContrast for data-efficient 3D scene understanding
on ScanNet. We compare our method with PointContrast (PC) and training from
scratch (SC) in various tasks. Our method constantly achieves better results in both
Limited Point Annotations (LA) and Limited Scene Reconstructions (LR) scenarios.

Datasets Task (Metric) SC PC [35] Ours
S3DIS ins (mAP@0.5) 59.3 60.5 (+1.2) 63.4 (+4.1)

S3DIS sem (mIoU) 68.2 70.3 (+2.1) 72.2 (+4.0)

SUN RGB-D det (mAP@0.5 ) 31.7 34.8 (+3.1) 36.4 (+4.7)

ScanNet ins (mAP@0.5) 56.9 58.0 (+1.1) 59.4 (+2.5)

ScanNet sem (mIou) 72.2 74.1 (+1.9) 73.8 (+1.6)

ScanNet det (mAP@0.5) 35.4 38.0 (+2.6) 39.3 (+3.9)

Table 5.6: Downstream fine-tuning results on other benchmarks. Contrastive Scene
Contexts (Ours) achieve better or on par results compared to PointContrast (PC) [35]
on instance segmentation (ins), semantic segmentation (sem) and object detection
(det) across multiple datasets.

per-category results on data-efficient benchmark as well as on full data are showed in
Section 5.8.

5.6 Implementation Details

Data Preprocessing. Following [35], we subsample the partial frames by every 25
frames. We find pairs of frames within each scene by computing their overlaps. In
detail, every single frame is transformed to world coordinates. We iterate every pair of
frames to calculate how many points are overlapped by 2.5cm threshold. For example,
for each point in frame A, if we can find another point in frame B within 2.5cm in the
transformed coordinate system (world), then those 2 points are stored as a correspon-
dence pair. When 2 frames have at least 30% overlaps of points, those 2 frames are saved
for training. We save and use both the xyz coordinates and rgb color for pre-training.

PointInfoNCE Loss. Here we explain the details of the PointInfoNCE loss (Equation
3 in the main paper).
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Lp = −
∑

(i,j)∈M
log

exp(f1i · f2j /τ)∑
(·,k)∈M,k∈parp(i) exp(f1i · f2k/τ)

(5.4)

M denotes the set of all the corresponding matches from two frames. Denote the point
features from two frames f1 and f2 respectively. In this formulation, we use the points
that have at least one match as negative, and non-matched points are discarded. For a
matched pair (i, j) ∈M , point feature f1i serves as the query and f2j serves as the positive

key. Point feature f2k where ∃(·, k) ∈ M , k ∈ parp(i) and k 6= j are used as the set of
negative keys. In practice, we sample a subset of matched pairs from M for training.

Active Labelling. We first use our pre-trained network to make a forward pass on all
the voxels of each scene in the training data, and save the 96-dim penultimate layer
features at each voxel. Then we back-project the features at each voxel to the raw point
cloud using nearest neighbour search. We run a k-means clustering algorithm on the
features and xyz coordinates of the point cloud on each scene to get k centroids, where
k is the number of points we propose to annotator to label. We run k-means for 50
iterations.

Clustering Algorithm in Instance Segmentation. We adapt the code of breadth first
search from PointGroup [30]. Clustering only happens in the test time. In the test
time, we cluster on points that are shifted by learned directional and distance vectors.
Directional and distance vectors are learned by voting-center loss in the training time.
We use 3cm-ball as threshold for every point to search its neighbouring points at each
iteration. Within the ball, the points are grouped into one instance when they have the
same semantic label. We don’t use the ScoreNet proposed in PointGroup, so that we
don’t have additional network for training. We simply average the scores of semantic
prediction of the points belonging to the same instance.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

Scratch 31.8 72.4 56.0 52.7 55.9 36.6 25.3 47.6 14.7 11.3 10.1 36.4 34.5 57.5 90.0 33.7 80.3 35.8 43.5
PointContrast 39.2 71.2 63.1 71.4 48.4 36.9 20.5 45.2 18.2 8.1 13.9 32.4 31.5 64.1 97.0 42.3 54.9 40.1 44.5

Ours 43.7 75.2 62.9 65.7 50.5 43.4 27.4 52.9 26.9 19.7 14.4 34.4 39.9 61.9 97.4 49.4 75.3 39.0 48.9

Table 5.7: Instance Segmentation with Limited Point Annotations (ScanNet-LA). We
use mAP@0.5 as metric and demonstrate per-category performance over 18 classes
on data-efficient benchmark (200 labelled points for training per scene).

wall floor cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

Scratch 81.6 96.1 57.5 79.5 88.1 82.2 67.1 55.9 54.4 76.3 24.3 59.9 52.9 67.9 39.8 55.9 86.9 58.2 82.4 42.1 65.5
PointContrast 83.0 96.0 61.1 79.5 89.5 81.9 71.6 57.1 57.0 73.0 22.6 62.0 58.8 69.1 44.4 63.6 91.5 59.4 85.2 48.5 67.8

Ours 84.0 95.9 60.2 79.0 89.5 83.8 69.6 60.2 56.7 80.6 26.1 63.9 55.6 63.5 45.1 63.7 91.9 56.9 84.7 52.6 68.2

Table 5.8: Semantic Segmentation with Limited Point Annotations (ScanNet-LA).
We evaluate mean IoU over 20 classes on data-efficient benchmark (200 labelled
points per scene for training).
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cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

Scratch 5.4 71.9 64.2 59.8 37.3 17.1 6.8 32.3 0.4 16.8 33.7 26.7 29.2 3.3 87.9 20.6 70.2 17.9 33.4
PointContrast 10.3 71.8 71.1 61.2 43.1 21.6 9.4 34.7 2.3 6.8 25.7 21.2 32.6 17.1 84.1 20.4 74.6 20.0 34.9

Ours 10.9 69.5 70.2 62.1 44.3 18.2 9.0 39.8 1.0 9.2 32.9 25.3 35.6 10.3 78.9 26.5 81.0 21.2 35.9

Table 5.9: Object Detection with Limited Bounding Box Annotations . We evaluate
mAP@0.5 over 18 classes on data-efficient benchmark (7 annotated bounding boxes
for training per scene).

ceiling floor wall beam column window door chair table bookcase sofa board avg
Scratch 46.8 89.5 72.5 0.0 38.2 72.5 89.5 88.0 39.3 34.7 72.7 85.7 59.3
PointContrast 66.0 93.0 73.0 0.0 18.6 72.8 88.3 91.4 42.3 29.5 63.6 88.0 60.5
Ours 74.4 88.0 76.5 0.0 32.4 74.6 96.4 91.0 45.0 28.8 63.6 90.5 63.4

Table 5.10: Instance Segmentation on Stanford Area 5 Test [27]. We evaluate mAP@0.5
over 12 classes.

5.7 More Visualizations

We show more visualizations of semantic segmentation and object detection predictions
from our model trained with extremely scarce annotations. We show the semantic seg-
mentation on ScanNet validation set with our model trained on 20 labelled points per
scene in Figure 5.10. We also demonstrate the object detection results on ScanNet val-
idation set predicted by our model trained on 1 bounding box annotated per scene in
Figure 5.9.

5.8 Per-Category Results

In this section, we demonstrate detailed per-category performance as supplement of data-
efficient benchmark. Instance segmentation on ScanNet-LA (Limited Scene Annotations,
200 labelled points for training) is showed in Table 5.7; semantic segmentation of per-
category performance on ScanNet-LA is showed in Table 5.8; object detection on Limited
Bounding Boxes Annotations is showed in Table 5.9.

5.9 Different Backbones.

We use Sparse Residual U-Net (SR-UNet-34, also used in [28]) as backbone architecture.
3D-MPA also uses a Sparse Residual U-Net backbone, and the performance gap is due
to the additional head modules (e.g., Proposal Consolidation) which is orthogonal to
our pre-training method. To show our algorithm is generic and agnostic to the specific
backbone, we perform experiments with different backbones, including SR-UNet-18A
and PointNet++. Models pre-trained with our method yield significant better results;
see Tab. 5.16.
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ceiling floor wall beam column window door chair table bookcase sofa board clutter avg

Scratch 91.5 98.6 84.1 0.0 33.0 56.9 63.9 90.1 81.7 72.5 76.5 77.9 59.6 68.2
PointContrast 93.3 98.7 85.6 0.1 45.9 54.4 67.9 91.6 80.1 74.7 78.2 81.5 62.3 70.3

Ours 95.1 98.4 86.3 0.0 40.7 60.8 85.2 91.8 81.9 73.9 78.9 82.8 62.4 72.2

Table 5.11: Semantic Segmentation on Stanford Area 5 Test [27]. We evaluate mIoU
over 13 classes.

bed table sofa chair toilet desk dresser night stand book bathtub avg
Scratch 47.8 19.6 48.1 54.6 60.0 6.3 15.8 27.3 5.4 32.1 31.7
PointContrast [35] 50.5 19.4 51.8 54.9 57.4 7.5 16.2 37.0 5.9 47.6 34.8
Ours 55.3 20.3 53.8 53.6 65.9 6.1 15.5 38.0 9.1 46.5 36.4

Table 5.12: Object Detection on SUN RGB-D [46]. We use mAP@0.5 as metric and show
per-category AP@0.5 over 10 classes.

5.10 ScanNet Benchmark

We report validation results to directly compare with PointContrast which also evalu-
ates on the val set. Additionally, we submitted our model to the ScanNet Benchmark
(test set); see Tab. 5.15. Our method significantly outperforms 3D-MPA, despite not
leveraging the special 3D-MPA proposal module.

5.11 Conclusion

In this work, we focus on data-efficient 3D scene understanding through a novel un-
supervised pre-training algorithm that integrates the scene contexts in the contrastive
learning framework. We show the possibility of using extremely few data or annotations
to achieve competitive performance leveraging representation learning. Our results and
findings are very encouraging and can potentially open up new opportunities in 3D (in-
teractive) data collection, unsupervised 3D representation learning, and large-scale 3D
scene understanding.
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cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

Scratch 49.0 70.0 87.4 66.5 71.1 47.4 39.6 53.0 30.8 32.8 30.8 41.7 48.6 60.1 99.9 68.4 75.3 52.4 56.9
PointContrast 49.4 72.1 87.2 71.7 67.0 49.0 40.7 57.8 35.6 24.0 30.2 49.9 53.0 65.2 98.3 61.7 80.5 50.8 58.0

Ours 50.8 74.1 88.7 61.4 67.2 48.0 42.0 57.0 33.8 32.5 42.9 47.4 49.5 68.9 98.2 71.3 80.5 54.7 59.4

Table 5.13: Instance Segmentation on ScanNetV2 [4] Validation Set. We evaluate the
mean average precision with IoU threshold of 0.5 over 18 classes.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

Scratch 9.9 70.5 70.0 60.5 43.4 21.8 10.5 33.3 0.8 15.4 33.3 26.6 39.3 9.7 74.7 23.7 75.8 18.1 35.4
PointContrast 13.1 74.7 75.4 61.3 44.8 19.8 12.9 32.0 0.9 21.9 31.9 27.0 32.6 17.5 87.4 23.2 80.8 26.7 38.0

Ours 15.1 74.3 71.9 60.2 46.4 21.2 15.0 32.5 1.1 9.4 36.6 21.3 37.3 47.5 84.3 26.2 86.8 21.2 39.3

Table 5.14: Object Detection on ScanNetV2 Validation Set. We use mAP@0.5 as metric
and show per-category performance over 18 classes.

Input Scene
Ground-truth

Active Labeling & 

Fine-tuning

Random labeling & 
Training from scratch

Figure 5.5: Qualitative Instance Segmentation Results (ScanNet-LA). With our pre-
trained model as initialization for fine-tuning, together with an active labeling pro-
cess, our approach (trained with 20 labeled points per scene) generates high-quality
instance masks. Different color represents instance index only (same instances
might not share the same color).
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Figure 5.6: 3D Instance Segmentation with Limited Point Annotations (ScanNet-
LA). Ours (init) denotes the network initialization by our pre-trained model. Ours
(act. labeling) denotes the active selection of annotated points by our pre-trained
model. Ours (init+act. labeling) denotes using our model as both network ini-
tialization and active labeling. We additionally mark the upper bound of using all
150K annotated points (in average) per scene as the dash line.

AP AP@50 AP@25
3D-MPA [106] 35.5 61.1 73.7

ours (pre-trained) 40.5 64.8 79.1

Table 5.15: ScanNet Instance Segmentation (test set) results.. Similar to S3DIS, we
outperform 3D-MPA.

Task Dataset Backone mAP@0.5
scratch ins S3DIS SR-UNet-18A 58.6

ours (pre-trained) ins S3DIS SR-UNet-18A 62.8
scratch det ScanNet PointNet++ 33.5

ours (pre-trained) det ScanNet PointNet++ 39.2

Table 5.16: Pre-training with different backbones. 100% of available train data is used;
we would expect larger deltas with smaller train set.
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Figure 5.7: 3D Semantic Segmentation with Limited Point Annotations (ScanNet-
LA). Ours (init) denotes the network initialization by our pre-trained model. Ours
(act. labeling) denotes the active selection of annotated points by our pre-trained
model. Ours (init+act. labeling) denotes using our model as both network ini-
tialization and active labeling. We additionally mark the upper bound of using all
150K annotated points (in average) per scene as the dash line.
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distinct objects are covered with active labeling; Bottom: Visualization of sampled
points in a cluttered scene.
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Figure 5.9: Object Detection Results (Limited Bounding Box Annotations). With
our pre-trained model as initialization for fine-tuning, our approach generates high-
quality detection predictions. Here our model is trained with 1 bounding box
annotated per scene.
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Figure 5.10: Semantic Segmentation Results (ScanNet-LA). With our pre-trained model
as initialization for fine-tuning, together with an active labeling process, our ap-
proach generates high-quality semantic segmentation predictions. Here our model
is fine-tuned with 20 labeled points per scene.

88 Chapter 5. Data-Efficient 3D Scene Understanding



Part III

Conclusion & Outlook





6 Conclusion

This dissertation investigates a very important research topic: 3D Scene Understanding.
We mainly focus on three problems: 3D Semantic Instance Segmentation, 3D Seman-
tic Instance Completion and Data-Efficient 3D Scene Understanding. Each of these
problems were introduced in Part II and we present concluding remarks in the following.

3D-SIS: Semantic Instance Segmentation in RGB-D Scans In Chapter 3, we in-
troduce 3D-SIS, our 3D semantic instance segmentation algorithm. We present an 3D
anchor regression mechanism for bounding boxes detection. Following Mask-RCNN way,
we define a mask branch for 3D shape estimation and a classification branch for semantic
label prediction. Our ablation study reveals the fusion of 2D CNNs color features and
3D geometry features futher boosts the performance. We show our algorithms generalize
on both synthetic and real data and outperform our baselines by a large margin.

RevealNet: Seeing Behind Objects in RGB-D Scans In Chapter 4, we discuss instance-
level completion. We present RevealNet, the first semantic instance completion algo-
rithm. Following 3D-SIS framework, we introduced a completion branch to complete
missing geometry of 3d objects in RGB-D scans. Although there are no perfect 3D re-
constructions as ground truth, we leverage objects’ CAD models aligned to 3D scans as
target to learn instance-level completion. Our ablation study shows incorporating geo-
metric completion on instances loss improves detection and segmentation performance.
Our end-to-end joint training algorithm significantly outperforms the baselines that do
completion and instance segmentation separately.

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts
In Chapter 5, we explore the data-efficient scenarios for 3D scene understanding tasks.
We propose the benchmark of using limited annotations and reconstructions for training.
To this end, we also propose an unsupervised pre-training algorithm leveraging point-
wise and spatial contexts in a contrastive learning framework. Our experiments reveal
that even with less than 1% annotated points on ScanNet, we can achieve competitive
results as baseline using 100% annotated points for semantic and instance segmentation
tasks. For detection task, we show with only 10% available annotations and recon-
structions on ScanNet, state-of-the-art methods can barely learn anything. However, it
can predict meaningful results with our pre-training algorithm. Our research opens up
the possibility of large-scale 3D scene understanding by saving much effort on human
annotations.
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7 Limitations and Future Work

“We can only see a short distance ahead, but we can
see plenty there that needs to be done.”

–– Alan Turing, Computing Machinery and
Intelligence (1950)

7.1 3D-SIS: Semantic Instance Segmentation in RGB-D Scans

In this work, we explore the fusion of color features and geometric features represented by
tsdf. We learn the color feature from a simle ENet network on a semantic segmentation
task. However, there are a variety of more powerful 2D CNNs and 2D tasks that can
be used for learning better 2D features, e.g. Mask-RCNN with FPN [41] on instance
segmentation task. We can also hugely improve the inference time by leveraging more
advanced 3D backbones rather than 3D CNNs, e.g. SparseConvs [104]. For simplicity,
we only regress the locations and sizes of 3D bounding boxes. Another improvement
could be also learn the pose of objects, such as rotation around world-up axis. To this
end, it may help to predict better 3D object shapes.

7.2 RevealNet: Seeing Behind Objects in RGB-D Scans

In RevealNet, we learn to complete missing geometry of each 3D object in RGB-D
scans. We use aligned CAD models of objects as ground truth. We compute a simple
binary cross entropy loss on unseen parts to predict if it is occupied or not. Due to the
completion loss, it is a deterministic way to predict missing geometry. To this end, we
actually predict the average geometry of unseen parts. However, the missing geometry
has multiple possible shapes. In the future work, we try to explore to use a generative
model, e.g. GANs, to complete the missing geometry by multiple possibilities.

Another potential improvement of a binary mask for the complete object geometry is
to use implicit neural representations. Binary mask can hugely limit the details of geom-
etry. To this end, implicit neural representations, such as DeepSDF [18] or Occupancy
Network [19], could potentially resolve greater geometric details.

We also do not consider object movement over time, which contains significant oppor-
tunities for semantic instance completion in the context of dynamic environments.
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7.3 Exploring Data-Efficient 3D Scene Understanding with
Contrastive Scene Contexts

In this work, we investigate the possibility of using extremely few annotated data to
train 3D scene understanding models. We notice that exhaustively annotating every
point might not be necessary. We propose to find the representative points in feature
space by clustering, and propose this point the annotator to label. However, there is
still a big unknown space to explore. For example, annotating a point on each instance
might be even more representative, but could consume more time. Because annotator
needs to rotate the camera to find each distinct instance. As a trade-off of time effort
and performance, it is still in discussion how to find the most representative points to
annotate.

We also propose a pre-training algorithm leveraging spatial contexts which is given
by free in 3D. There are other more information that given by free in RGB-D data
and we can also take advantage of. For instance, key point matching between depth
frames and color images. It is still in debate what is a better way to jointly pre-train
on cross-modality features between geometry and color, so that it can better transfer to
downstream scene understanding tasks.
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A Open-source Code & Videos

A.1 3D-SIS: Semantic Instance Segmentation in RGB-D Scans

• Source Code: https://github.com/Sekunde/3D-SIS

• Video: https://www.youtube.com/watch?v=IH9rNLD1-JE

A.2 RevealNet: Seeing Behind Objects in RGB-D Scans

• Video: https://www.youtube.com/watch?v=iyT_fkOA2yg

A.3 Exploring Data-Efficient 3D Scene Understanding with
Contrastive Scene Contexts

• Video: https://www.youtube.com/watch?v=E70xToZLgs4

• Project: https://sekunde.github.io/project_efficient/
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3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans

Ji Hou Angela Dai Matthias Nießner
Technical University of Munich

Figure 1: 3D-SIS performs 3D instance segmentation on RGB-D scan data, learning to jointly fuse both 2D RGB input
features with 3D scan geometry features. In combination with a fully-convolutional approach enabling inference on full 3D
scans at test time, we achieve accurate inference for object bounding boxes, class labels, and instance masks.

Abstract

We introduce 3D-SIS, a novel neural network architec-
ture for 3D semantic instance segmentation in commodity
RGB-D scans. The core idea of our method is to jointly
learn from both geometric and color signal, thus enabling
accurate instance predictions. Rather than operate solely
on 2D frames, we observe that most computer vision appli-
cations have multi-view RGB-D input available, which we
leverage to construct an approach for 3D instance segmen-
tation that effectively fuses together these multi-modal in-
puts. Our network leverages high-resolution RGB input by
associating 2D images with the volumetric grid based on
the pose alignment of the 3D reconstruction. For each im-
age, we first extract 2D features for each pixel with a series
of 2D convolutions; we then backproject the resulting fea-
ture vector to the associated voxel in the 3D grid. This com-
bination of 2D and 3D feature learning allows significantly
higher accuracy object detection and instance segmentation
than state-of-the-art alternatives. We show results on both
synthetic and real-world public benchmarks, achieving an
improvement in mAP of over 13 on real-world data.

1. Introduction

Semantic scene understanding is critical to many real-
world computer vision applications. It is fundamental to-
wards enabling interactivity, which is core to robotics in
both indoor and outdoor settings, such as autonomous cars,
drones, and assistive robotics, as well as upcoming scenar-
ios using mobile and AR/VR devices. In all these applica-
tions, we would not only want semantic inference of single
images, but importantly, also require understanding of spa-
tial relationships and layouts of objects in 3D environments.

With recent breakthroughs in deep learning and the in-
creasing prominence of convolutional neural networks, the
computer vision community has made tremendous progress
on analyzing images in the recent years. Specifically, we are
seeing rapid progress in the tasks of semantic segmentation
[19, 13, 21], object detection [11, 26], and semantic instance
segmentation [12]. The primary focus of these impressive
works lies in the analysis of visual input from a single im-
age; however, in many real-world computer vision scenar-
ios, we rarely find ourselves in such a single-image setting.
Instead, we typically record video streams of RGB input
sequences, or as in many robotics and AR/VR applications,
we have 3D sensors such as LIDAR or RGB-D cameras.
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In particular, in the context of semantic instance seg-
mentation, it is quite disadvantageous to run methods in-
dependently on single images given that instance associa-
tions must be found across a sequence of RGB input frames.
Instead, we aim to infer spatial relationships of objects as
part of a semantic 3D map, learning prediction of spatially-
consistent semantic labels and the underlying 3D layouts
jointly from all input views and sensor data. This goal can
also be seen as similar to traditional sensor fusion but for
deep learning from multiple inputs.

We believe that robustly-aligned and tracked RGB
frames, and even depth data, from SLAM and visual odom-
etry provide a unique opportunity in this regard. Here, we
can leverage the given mapping between input frames, and
thus learn features jointly from all input modalities. In this
work, we specifically focus on predicting 3D semantic in-
stances in RGB-D scans, where we capture a series of RGB-
D input frames (e.g., from a Kinect Sensor), compute 6DoF
rigid poses, and reconstruct 3D models. The core of our
method learns semantic features in the 3D domain from
both color features, projected into 3D, and geometry fea-
tures from the signed distance field of the 3D scan. This is
realized by a series of 3D convolutions and ResNet blocks.
From these semantic features, we obtain anchor bounding
box proposals. We process these proposals with a new 3D
region proposal network (3D-RPN) and 3D region of inter-
est pooling layer (3D-RoI) to infer object bounding box lo-
cations, class labels, and per-voxel instance masks. In order
to jointly learn from RGB frames, we leverage their pose
alignments with respect to the volumetric grid. We first run
a series of 2D convolutions, and then backproject the result-
ing features into the 3D grid. In 3D, we then join the 2D and
3D features in end-to-end training constrained by bounding
box regression, object classification, and semantic instance
mask losses.

Our architecture is fully-convolutional, enabling us to ef-
ficiently infer predictions on large 3D environments in a sin-
gle shot. In comparison to state-of-the-art approaches that
operate on individual RGB images, such as Mask R-CNN
[12], our approach achieves significantly higher accuracy
due to the joint feature learning.

To sum up, our contributions are the following:

• We present the first approach leveraging joint 2D-
3D end-to-end feature learning on both geometry and
RGB input for 3D object bounding box detection and
semantic instance segmentation on 3D scans.

• We leverage a fully-convolutional 3D architecture for
instance segmentation trained on scene parts, but with
single-shot inference on large 3D environments.

• We outperform state-of-the-art by a significant margin,
increasing the mAP by 13.5 on real-world data.

2. Related Work

2.1. Object Detection and Instance Segmentation

With the success of convolutional neural network archi-
tectures, we have now seen impressive progress on object
detection and semantic instance segmentation in 2D im-
ages [11, 27, 18, 26, 16, 12, 17]. Notably, Ren et al. [27]
introduced an anchor mechanism to predict objectness in
a region and regress associated 2D bounding boxes while
jointly classifying the object type. Mask R-CNN [12] ex-
panded this work to semantic instance segmentation by pre-
dicting a per-pixel object instance masks. An alternative
direction for detection is the popular Yolo work [26], which
also defines anchors on grid cells of an image.

This progress in 2D object detection and instance seg-
mentation has inspired work on object detection and seg-
mentation in the 3D domain, as we see more and more
video and RGB-D data become available. Song et al. pro-
posed Sliding Shapes to predict 3D object bounding boxes
from single RGB-D frame input with handcrafted feature
design [30], and then expanded the approach to operate
on learned features [31]. The latter direction leverages the
RGB frame input to improve classification accuracy of de-
tected objects; in contrast to our approach, there is no ex-
plicit spatial mapping between RGB and geometry for joint
feature learning. An alternative approach is taken by Frus-
tum PointNet [22], where detection is performed a 2D frame
and then back-projected into 3D from which final bound-
ing box predictions are refined. Wang et al. [35] base their
SGPN approach on semantic segmentation from a Point-
Net++ variation. They formulate instance segmentation as
a clustering problem upon a semantically segmented point
cloud by introducing a similarity matrix prediction similar
to the idea behind panoptic segmentation [15]. In contrast to
these approaches, we explicitly map both multi-view RGB
input with 3D geometry in order to jointly infer 3D instance
segmentation in an end-to-end fashion.

2.2. 3D Deep Learning

In the recent years, we have seen impressive progress
in developments on 3D deep learning. Analogous to the
2D domain, one can define convolution operators on vol-
umetric grids, which for instance embed a surface repre-
sentation as an implicit signed distance field [4]. With the
availability of 3D shape databases [36, 3, 32] and anno-
tated RGB-D datasets [29, 1, 5, 2], these network archi-
tectures are now being used for 3D object classification
[36, 20, 24, 28], semantic segmentation [5, 34, 6], and ob-
ject or scene completion [8, 32, 9]. An alternative represen-
tation to volumetric grids are the popular point-based archi-
tectures, such as PointNet [23] or PointNet++ [25], which
leverage a more efficient, although less structured, repre-
sentation of 3D surfaces. Multi-view approaches have also
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been proposed to leverage RGB or RGB-D video informa-
tion. Su et al. proposed one of the first multi-view archi-
tectures for object classification by view-pooling over 2D
predictions [33], and Kalogerakis et al. recently proposed
an approach for shape segmentation by projecting predicted
2D confidence maps onto the 3D shape, which are then ag-
gregated through a CRF [14]. Our approach joins together
many of these ideas, leveraging the power of a holistic 3D
representation along with features from 2D information by
combining them through their explicit spatial mapping.

3. Method Overview

Our approach infers 3D object bounding box locations,
class labels, and semantic instance masks on a per-voxel
basis in an end-to-end fashion. To this end, we propose a
neural network that jointly learns features from both geom-
etry and RGB input. In the following, we refer to bounding
box regression and object classification as object detection,
and semantic instance mask segmentation for each object as
mask prediction.

In Sec. 4, we first introduce the data representation and
training data that is used by our approach. Here, we con-
sider synthetic ground truth data from SUNCG [32], as well
as manually-annotated real-world data from ScanNetV2 [5].
In Sec. 5, we present the neural network architecture of our
3D-SIS approach. Our architecture is composed of several
parts; on the one hand, we have a series of 3D convolu-
tions that operate in voxel grid space of the scanned 3D
data. On the other hand, we learn 2D features that we back-
project into the voxel grid where we join the features and
thus jointly learn from both geometry and RGB data. These
features are used to detect object instances; that is, associ-
ated bounding boxes are regressed through a 3D-RPN and
class labels are predicted for each object following a 3D-
ROI pooling layer. For each detected object, features from
both the 2D color and 3D geometry are forwarded into a
per-voxel instance mask network. Detection and per-voxel
instance mask prediction are trained in an end-to-end fash-
ion. In Sec. 6, we describe the training and implementation
details of our approach, and in Sec. 7, we evaluate our ap-
proach.

4. Training Data

Data Representation We use a truncated sign distance
field (TSDF) representation to encode the reconstructed ge-
ometry of the 3D scan inputs. The TSDF is stored in a reg-
ular volumetric grid with truncation of 3 voxels. In addi-
tion to this 3D geometry, we also input spatially associated
RGB images. This is feasible since we know the mapping
between each image pixel with voxels in the 3D scene grid
based on the 6 degree-of-freedom (DoF) poses from the re-
spective 3D reconstruction algorithm.

For the training data, we subdivide each 3D scan into
chunks of 4.5m × 4.5m × 2.25m, and use a resolution of
96 × 96 × 48 voxels per chunk (each voxel stores a TSDF
value); i.e., our effective voxel size is ≈ 4.69cm3. In our
experiments, for training, we associate 5 RGB images at a
resolution of 328x256 pixels in every chunk, with training
images selected based on the average voxel-to-pixel cover-
age of the instances within the region.

Our architecture is fully-convolutional (see Sec. 5),
which allows us to run our method over entire scenes in
a single shot for inference. Here, the xy-voxel resolution
is derived from a given test scene’s spatial extent. The z
(height) of the voxel grid is fixed to 48 voxels (approxi-
mately the height of a room), with the voxel size also fixed
at 4.69cm3. Additionally, at test time, we use all RGB im-
ages available for inference. In order to evaluate our algo-
rithm, we use training, validation, test data from synthetic
and real-world RGB-D scanning datasets.

Synthetic Data For synthetic training and evaluation,
we use the SUNCG [32] dataset. We follow the public
train/val/test split, using 5519 train, 40 validation, and 86
test scenes (test scenes are selected to have total volume
< 600m3). From the train and validation scenes, we extract
97, 918 train chunks and 625 validation chunk. Each chunk
contains an average of ≈ 4.3 object instances. At test time,
we take the full scan data of the 86 test scenes.

In order to generate partial scan data from these synthetic
scenes, we virtually render them, storing both RGB and
depth frames. Trajectories are generated following the vir-
tual scanning approach of [9], but adapted to provide denser
camera trajectories to better simulate real-world scanning
scenarios. Based on these trajectories, we then generate
partial scans as TSDFs through volumetric fusion [4], and
define the training data RGB-to-voxel grid image associa-
tions based on the camera poses. We use 23 class categories
for instance segmentation, defined by their NYU40 class
labels; these categories are selected for the most frequently-
appearing object types, ignoring the wall and floor cate-
gories which do not have well-defined instances.

Real-world Data For training and evaluating our algo-
rithm on real-world scenes, we use the ScanNetV2 [5]
dataset. This dataset contains RGB-D scans of 1513 scenes,
comprising ≈2.5 million RGB-D frames. The scans have
been reconstructed using BundleFusion [7]; both 6 DoF
pose alignments and reconstructed models are available.
Additionally, each scan contains manually-annotated object
instance segmentation masks on the 3D mesh. From this
data, we derive 3D bounding boxes which we use as con-
straints for our 3D region proposal.

We follow the public train/val/test split originally pro-
posed by ScanNet of 1045 (train), 156 (val), 312 (test)
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Figure 2: 3D-SIS network architecture. Our architecture is composed of a 3D detection and a 3D mask pipeline. Both 3D
geometry and 2D color images are taken as input and used to jointly learn semantic features for object detection and instance
segmentation. From the 3D detection backbone, color and geometry features are used to propose the object bounding boxes
and their class labels through a 3D-RPN and a 3D-RoI layer. The mask backbone also uses color and geometry features, in
addition to the 3D detection results, to predict per-voxel instance masks inside the 3D bounding box.

scenes, respectively. From the train scenes, we extract
108241 chunks, and from the validation scenes, we extract
995 chunks. Note that due to the smaller number of train
scans available in the ScanNet dataset, we augment the train
scans to have 4 rotations each. We adopt the same 18-class
label set for instance segmentation as proposed by the Scan-
Net benchmark.

Note that our method is agnostic to the respective dataset
as long as semantic RGB-D instance labels are available.

5. Network Architecture
Our network architecture is shown in Fig. 2. It is com-

posed of two main components, one for detection, and
one for per-voxel instance mask prediction; each of these
pipelines has its own feature extraction backbone. Both
backbones are composed of a series of 3D convolutions,
taking the 3D scan geometry along with the back-projected
RGB color features as input. We detail the RGB feature
learning in Sec. 5.1 and the feature backbones in Sec. 5.2.
The learned 3D features of the detection and mask back-
bones are then fed into the classification and the voxel-
instance mask prediction heads, respectively.

The object detection component of the network com-
prises the detection backbone, a 3D region proposal net-
work (3D-RPN) to predict bounding box locations, and a
3D-region of interest (3D-RoI) pooling layer followed by
classification head. The detection backbone outputs fea-
tures which are input to the 3D-RPN and 3D-RoI to pre-
dict bounding box locations and object class labels, respec-
tively. The 3D-RPN is trained by associating predefined
anchors with ground-truth object annotations; here, a per-
anchor loss defines whether an object exists for a given an-
chor. If it does, a second loss regresses the 3D object bound-
ing box; if not, no additional loss is considered. In addi-
tion, we classify the the object class of each 3D bounding

box. For the per-voxel instance mask prediction network
(see Sec. 5.4), we use both the input color and geometry as
well as the predicted bounding box location and class label.
The cropped feature channels are used to create a mask pre-
diction which has n channels for the n semantic class labels,
and the final mask prediction is selected from these channels
using the previously predicted class label. We optimize for
the instance mask prediction using a binary cross entropy
loss. Note that we jointly train the backbones, bounding
box regression, classification, and per-voxel mask predic-
tions end-to-end; see Sec. 6 for more detail. In the follow-
ing, we describe the main components of our architecture
design, for more detail regarding exact filter sizes, etc., we
refer to the supplemental material.

5.1. Back-projection Layer for RGB Features

In order to jointly learn from RGB and geometric fea-
tures, one could simply assign a single RGB value to each
voxel. However, in practice, RGB image resolutions are sig-
nificantly higher than the available 3D voxel resolution due
to memory constraints. This 2D-3D resolution mismatch
would make learning from a per-voxel color rather ineffi-
cient. Inspired by the semantic segmentation work of Dai
et al. [6], we instead leverage a series of 2D convolutions
to summarize RGB signal in image space. We then define a
back-projection layer and map these features on top of the
associated voxel grid, which are then used for both object
detection and instance segmentation.

To this end, we first pre-train a 2D semantic segmen-
tation network based on the ENet architecture [21]. The
2D architecture takes single 256 × 328 RGB images as in-
put, and is trained on a semantic classification loss using
the NYUv2 40 label set. From this pre-trained network, we
extract a feature encoding of dimension 32 × 41 with 128
channels from the encoder. Using the corresponding depth
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image, camera intrinsics, and 6DoF poses, we then back-
project each of these features back to the voxel grid (still
128 channels); the projection is from 2D pixels to 3D vox-
els. In order to combine features from multiple views, we
perform view pooling through an element-wise max pool-
ing over all RGB images available.

For training, the voxel volume is fixed to 96 × 96 × 48
voxels, resulting in a 128 × 96 × 96 × 48 back-projected
RGB feature grid in 3D; here, we use 5 RGB images for
each training chunk (with image selection based on average
3D instance coverage). At test time, the voxel grid resolu-
tion is dynamic, given by the spatial extent of the environ-
ment; here, we use all available RGB images. The grid of
projected features is processed by a set of 3D convolutions
and is subsequently merged with the geometric features.

In ScanNet [5], the camera poses and intrinsics are pro-
vided; we use them directly for our back-projection layer.
For SUNCG [32], extrinsics and intrinsics are given by the
virtual scanning path. Note that our method is agnostic to
the used 2D network architecture.

5.2. 3D Feature Backbones

For jointly learning geometric and RGB features for both
instance detection and segmentation, we propose two 3D
feature learning backbones. The first backbone generates
features for detection, and takes as input the 3D geometry
and back-projected 2D features (see Sec. 5.1).

Both the geometric input and RGB features are pro-
cessed symmetrically with a 3D ResNet block before join-
ing them together through concatenation. We then apply a
3D convolutional layer to reduce the spatial dimension by a
factor of 4, followed by a 3D ResNet block (e.g., for an in-
put train chunk of 96×96×48, we obtain a features of size
24×24×12). We then apply another 3D convolutional layer,
maintaining the same spatial dimensions, to provide fea-
tures maps with larger receptive fields. We define anchors
on these two feature maps, splitting the anchors into ‘small’
and ‘large’ anchors (small anchors < 1m3), with small an-
chors associated with the first feature map of smaller re-
ceptive field and large anchors associated with the second
feature map of larger receptive field. For selecting anchors,
we apply k-means algorithm (k=14) on the ground-truth 3D
bounding boxes in first 10k chunks. These two levels of
features maps are then used for the final steps of object de-
tection: 3D bounding box regression and classification.

The instance segmentation backbone also takes the 3D
geometry and the back-projected 2D CNN features as in-
put. The geometry and color features are first processed
independently with two 3D convolutions, and then concate-
nated channel-wise and processed with another two 3D con-
volutions to produce a mask feature map prediction. Note
that for the mask backbone, we maintain the same spatial
resolution through all convolutions, which we found to be

critical for obtaining high accuracy for the voxel instance
predictions. The mask feature map prediction is used as in-
put to predict the final instance mask segmentation.

In contrast to single backbone, we found that this two-
backbone structure both converged more easily and pro-
duced significantly better instance segmentation perfor-
mance (see Sec. 6 for more details about the training scheme
for the backbones).

5.3. 3D Region Proposals and 3D-RoI Pooling for
Detection

Our 3D region proposal network (3D-RPN) takes input
features from the detection backbone to predict and regress
3D object bounding boxes. From the detection backbone
we obtain two feature maps for small and large anchors,
which are separately processed by the 3D-RPN. For each
feature map, the 3D-RPN uses a 1 × 1 × 1 convolutional
layer to reduce the channel dimension to 2×Nanchors, where
Nanchors = (3, 11) for small and large anchors, respectively.
These represent the positive and negative scores of object-
ness of each anchor. We apply a non-maximum suppression
on these region proposals based on their objectness scores.
The 3D-RPN then uses another 1×1×1 convolutional layer
to predict feature maps of 6×Nanchors, which represent the
3D bounding box locations as (∆x,∆y,∆z,∆w,∆h,∆l),
defined in Eq. 1.

In order to determine the ground truth objectiveness
and associated 3D bounding box locations of each anchor
during training, we perform anchor association. Anchors
are associated with ground truth bounding boxes by their
IoU: if the IoU > 0.35, we consider an anchor to be
positive (and it will be regressed to the associated box),
and if the IoU < 0.15, we consider an anchor to be
negative (and it will not be regressed to any box). We
use a two-class cross entropy loss to measure the objec-
tiveness, and for the bounding box regression we use a
Huber loss on the prediction (∆x,∆y,∆z,∆w,∆h,∆l)
against the log ratios of the ground truth box and anchors
(∆gt

x ,∆gt
y ,∆gt

z ,∆gt
w ,∆gt

h ,∆gt
l ), where

∆x =
µ− µanchor

φanchor
∆w = ln(

φ

φanchor
) (1)

where µ is the box center point and φ is the box width.

Using the predicted bounding box locations, we can then
crop out the respective features from the global feature map.
We then unify these cropped features to the same dimen-
sionality using our 3D Region of Interest (3D-RoI) pooling
layer. This 3D-RoI pooling layer pools the cropped feature
maps into 4×4×4 blocks through max pooling operations.
These feature blocks are then linearized for input to object
classification, which is performed with an MLP.
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cab bed chair sofa tabl door wind bkshf cntr desk shlf curt drsr mirr tv nigh toil sink lamp bath ostr ofurn oprop avg
Seg-Cluster 16.8 16.2 15.6 11.8 14.5 10.0 11.7 27.2 20.0 25.7 10.0 0.0 15.0 0.0 20.0 27.8 39.5 22.9 10.7 38.9 10.4 0.0 12.3 16.4
Mask R-CNN [12] 14.9 19.0 19.5 13.5 12.2 11.7 14.2 35.0 15.7 18.3 13.7 0.0 24.4 23.1 26.0 28.8 51.2 28.1 14.7 32.2 11.4 10.7 19.5 19.9
SGPN [35] 18.6 39.2 28.5 46.5 26.7 21.8 15.9 0.0 24.9 23.9 16.3 20.8 15.1 10.7 0.0 17.7 35.1 37.0 22.9 34.2 17.7 31.5 13.9 22.5
Ours(geo only) 23.2 78.6 47.7 63.3 37.0 19.6 0.0 0.0 21.3 34.4 16.8 0.0 16.7 0.0 10.0 22.8 59.7 49.2 10.0 77.2 10.0 0.0 19.3 26.8
Ours(geo+1view) 22.2 70.8 48.5 66.6 44.4 10.0 0.0 63.9 25.8 32.2 17.8 0.0 25.3 0.0 0.0 14.7 37.0 55.5 20.5 58.2 18.0 20.0 17.9 29.1
Ours(geo+3views) 26.5 78.4 48.2 59.5 42.8 26.1 0.0 30.0 22.7 39.4 17.3 0.0 36.2 0.0 10.0 10.0 37.0 50.8 16.8 59.3 10.0 36.4 17.8 29.4
Ours(geo+5views) 20.5 69.4 56.2 64.5 43.8 17.8 0.0 30.0 32.3 33.5 21.0 0.0 34.2 0.0 10.0 20.0 56.7 56.2 17.6 56.2 10.0 35.5 17.8 30.6

Table 1: 3D instance segmentation on synthetic scans from SUNCG [32]. We evaluate the mean average precision with IoU
threshold of 0.25 over 23 classes. Our joint color-geometry feature learning enables us to achieve more accurate instance
segmentation performance.

5.4. Per-Voxel 3D Instance Segmentation

We perform instance mask segmentation using a separate
mask backbone, which similarly as the detection backbone,
takes as input the 3D geometry and projected RGB features.
However, for mask prediction, the 3D convolutions main-
tain the same spatial resolutions, in order to maintain spa-
tial correspondence with the raw inputs, which we found
to significantly improve performance. We then use the pre-
dicted bounding box location from the 3D-RPN to crop out
the associated mask features from the mask backbone, and
compute a final mask prediction with a 3D convolution to
reduce the feature dimensionality to n for n semantic class
labels; the final mask prediction is the cth channel for pre-
dicted object class c. During training, since predictions
from the detection pipeline can be wrong, we only train on
predictions whose predicted bounding box overlaps with the
ground truth bounding box with at least 0.5 IoU. The mask
targets are defined as the ground-truth mask in the overlap-
ping region of the ground truth box and proposed box.

6. Training
To train our model, we first train the detection backbone

and 3D-RPN. After pre-training these parts, we add the 3D-
RoI pooling layer and object classification head, and train
these end-to-end. Then, we add the per-voxel instance mask
segmentation network along with the associated backbone.
In all training steps, we always keep the previous losses (us-
ing 1:1 ratio between all losses), and train everything end-
to-end. We found that a sequential training process resulted
in more stable convergence and higher accuracy.

We use an SGD optimizer with learning rate 0.001, mo-
mentum 0.9 and batch size 64 for 3D-RPN, 16 for classifi-

cation, 16 for mask prediction. The learning rate is divided
by 10 every 100k steps. We use a non-maximum suppres-
sion for proposed boxes with threshold of 0.7 for training
and 0.3 for test. Our network is implemented with PyTorch
and runs on a single Nvidia GTX1080Ti GPU. The object
detection components of the network are trained end-to-end
for 10 epochs (≈ 24 hours). After adding in the mask back-
bone, we train for an additional 5 epochs (≈ 16 hours). For
mask training, we also use ground truth bounding boxes to
augment the learning procedure.

7. Results
We evaluate our approach on both 3D detection and in-

stance segmentation predictions, comparing to several state-
of-the-art approaches, on synthetic scans of SUNCG [32]
data and real-world scans from the ScanNetV2 dataset [5].
To compare to previous approaches that operate on single
RGB or RGB-D frames (Mask R-CNN [12], Deep Sliding
Shapes [31], Frustum PointNet [22]), we first obtain predic-
tions on each individual frame, and then merge all predic-
tions together in the 3D space of the scene, merging predic-
tions if the predicted class labels match and the IoU > 0.5.
We further compare to SGPN [35] which performs instance
segmentation on 3D point clouds. For both detection and in-
stance segmentation tasks, we project all results into a voxel
space of 4.69cm voxels and evaluate them with a mean aver-
age precision metric. We additionally show several variants
of our approach for learning from both color and geome-
try features, varying the number of color views used during
training. We consistently find that training on more color
views improves both the detection and instance segmenta-
tion performance.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Mask R-CNN [12] 5.3 0.2 0.2 10.7 2.0 4.5 0.6 0.0 23.8 0.2 0.0 2.1 6.5 0.0 2.0 1.4 33.3 2.4 5.8
SGPN [35] 6.5 39.0 27.5 35.1 16.8 8.7 13.8 16.9 1.4 2.9 0.0 6.9 2.7 0.0 43.8 11.2 20.8 4.3 14.3
MTML 2.7 61.4 39.0 50.0 10.5 10.0 0.3 33.7 0.0 0.0 0.1 11.8 16.7 14.3 57.0 4.6 66.7 2.8 21.2
3D-BEVIS [10] 3.5 56.6 39.4 60.4 18.1 9.9 17.1 7.6 2.5 2.7 9.8 3.5 9.8 37.5 85.4 12.6 66.7 3.0 24.8
R-PointNet [37] 34.8 40.5 58.9 39.6 27.5 28.3 24.5 31.1 2.8 5.4 12.6 6.8 21.9 21.4 82.1 33.1 50.0 29.0 30.6
3D-SIS (Ours) 13.4 55.4 58.7 72.8 22.4 30.7 18.1 31.9 0.6 0.0 12.1 0.0 54.1 100.0 88.9 4.5 66.7 21.0 36.2

Table 2: Instance segmentation results on the official ScanNetV2 3D semantic instance benchmark (hidden test set). Our
final model (geo+5views) significantly outperforms previous (Mask R-CNN, SGPN) and concurrent (MTML, 3D-BEVIS,
R-PointNet) state-of-the-art methods in mAP@0.5. ScanNetV2 benchmark data accessed on 12/17/2018.
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Figure 3: Qualitative comparison of 3D object detection and instance segmentation on ScanNetV2 [5] (full scans above;
close-ups below). Our joint color-geometry feature learning combined with our fully-convolutional approach to inference
on full test scans at once enables more accurate and semantically coherent predictions. Note that different colors represent
different instances, and the same instances in the ground truth and predictions are not necessarily the same color.
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cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Seg-Cluster 11.8 13.5 18.9 14.6 13.8 11.1 11.5 11.7 0.0 13.7 12.2 12.4 11.2 18.0 19.5 18.9 16.4 12.2 13.4
Mask R-CNN [12] 15.7 15.4 16.4 16.2 14.9 12.5 11.6 11.8 19.5 13.7 14.4 14.7 21.6 18.5 25.0 24.5 24.5 16.9 17.1
SGPN [35] 20.7 31.5 31.6 40.6 31.9 16.6 15.3 13.6 0.0 17.4 14.1 22.2 0.0 0.0 72.9 52.4 0.0 18.6 22.2
Ours(geo only) 22.1 48.2 64.4 52.2 16.0 13.4 0.0 17.2 0.0 20.7 17.4 13.9 23.6 33.0 45.2 47.7 61.3 14.6 28.3
Ours(geo+1view) 25.4 60.3 66.2 52.1 31.7 27.6 10.1 16.9 0.0 21.4 30.9 18.4 22.6 16.0 70.5 44.5 37.5 20.0 31.8
Ours(geo+3views) 28.3 52.3 65.0 66.5 31.4 27.9 10.1 17.9 0.0 20.3 36.3 20.1 28.1 31.0 68.6 41 66.8 24.0 35.3
Ours(geo+5views) 32.0 66.3 65.3 56.4 29.4 26.7 10.1 16.9 0.0 22.1 35.1 22.6 28.6 37.2 74.9 39.6 57.6 21.1 35.7

Table 3: 3D instance segmentation on ScanNetV2 [5] with mAP@0.25 on 18 classes. Our explicit leveraging of spatial
mapping between 3D geometry and color features extracted through 2D CNNs enables significantly improved performance.

7.1. 3D Instance Analysis on Synthetic Scans

We evaluate 3D detection and instance segmentation on
virtual scans taken from the synthetic SUNCG dataset [32],
using 23 class categories. Table 4 shows 3D detection per-
formance compared to state-of-the-art approaches which
operate on single frames. Table 1 shows a quantitative eval-
uation of our approach, the SGPN for point cloud instance
segmentation [35], their proposed Seg-Cluster baseline, and
Mask R-CNN [12] projected into 3D. For both tasks, our
joint color-geometry approach along with a global view of
the 3D scenes at test time enables us to achieve significantly
improved detection and segmentation results.

mAP@0.25 mAP@0.5
Deep Sliding Shapes [30] 12.8 6.2
Mask R-CNN 2D-3D [12] 20.4 10.5
Frustum PointNet [22] 24.9 10.8
Ours – 3D-SIS (geo only) 27.8 21.9
Ours – 3D-SIS (geo+1view) 30.9 23.8
Ours – 3D-SIS (geo+3views) 31.3 24.2
Ours – 3D-SIS (geo+5views) 32.2 24.7

Table 4: 3D detection in SUNCG [32], using mAP over 23
classes. Our holistic approach and the combination of color
and geometric features result in significantly improved de-
tection results over previous approaches which operate on
individual input frames.

7.2. 3D Instance Analysis on Real-World Scans

We further evaluate our approach on ScanNet dataset [5],
which contains 1513 real-world scans. For training and
evaluation, we use ScanNetV2 annotated ground truth as
well as the proposed 18-class instance benchmark. We show
qualitative results in Figure 3. In Table 5, we quantita-
tively evaluate our object detection against Deep Sliding
Shapes and Frustum PointNet, which operate on RGB-D
frame, as well as Mask R-CNN [12] projected to 3D. Our
fully-convolutional approach enabling inference on full test
scenes achieves significantly better detection performance.
Table 3 shows our 3D instance segmentation in comparison
to SGPN instance segmentation [35], their proposed Seg-
Cluster baseline, and Mask R-CNN [12] projected into 3D.
Our formulation for learning from both color and geometry
features brings notable improvement over state of the art.

mAP@0.25 mAP@0.5
Deep Sliding Shapes [30] 15.2 6.8
Mask R-CNN 2D-3D [12] 17.3 10.5
Frustum PointNet [22] 19.8 10.8
Ours – 3D-SIS (geo only) 27.6 16.0
Ours – 3D-SIS (geo+1view) 35.1 18.7
Ours – 3D-SIS (geo+3views) 36.6 19.0
Ours – 3D-SIS (geo+5views) 40.2 22.5

Table 5: 3D detection on ScanNetV2 [5], using mAP over
18 classes. In contrast to previous approaches operating on
individual frames, our approach achieves significantly im-
proved performance.

Finally, we evaluate our model on the ScanNetV2 3D in-
stance segmentation benchmark on the hidden test set; see
Table 2. Our final model (geo+5views) significantly outper-
forms previous (Mask R-CNN [12], SGPN [35]) and con-
current (MTML, 3D-BEVIS [10], R-PointNet [37]) state-
of-the-art methods in mAP@0.5. ScanNetV2 benchmark
data was accessed on 12/17/2018.

8. Conclusion
In this work, we introduce 3D-SIS, a new approach for

3D semantic instance segmentation of RGB-D scans, which
is trained in an end-to-end fashion to detect object instances
and infer a per-voxel 3D semantic instance segmentation.
The core of our method is to jointly learn features from
RGB and geometry data using multi-view RGB-D input
recorded with commodity RGB-D sensors. The network
is fully-convolutional, and thus can run efficiently in a sin-
gle shot on large 3D environments. In comparison to exist-
ing state-of-the-art methods that typically operate on single
RGB frame, we achieve significantly better 3D detection
and instance segmentation results, improving on mAP by
over 13. We believe that this is an important insight to a
wide range of computer vision applications given that many
of them now capture multi-view RGB and depth streams;
e.g., autonomous cars, AR/VR applications, etc..
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lowship, a TUM-IAS Rudolf Mößbauer Fellowship, and the
ERC Starting Grant Scan2CAD (804724).

4428



References
[1] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.

Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017. 2

[2] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-
D data in indoor environments. International Conference on
3D Vision (3DV), 2017. 2

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 2

[4] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 303–312. ACM, 1996. 2, 3

[5] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 2, 3, 5, 6, 7, 8

[6] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-
view prediction for 3d semantic scene segmentation. arXiv
preprint arXiv:1803.10409, 2018. 2, 4

[7] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
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RevealNet: Seeing Behind Objects in RGB-D Scans

Ji Hou Angela Dai Matthias Nießner
Technical University of Munich

Figure 1: RevealNet takes an RGB-D scan as input and learns to “see behind objects”: from the scan’s color images and
geometry (encoded as a TSDF), objects in the observed scene are detected (as 3D bounding boxes and class labels) and for
each object, the complete geometry of that object is predicted as per-instance masks (in both seen and unseen regions).

Abstract

During 3D reconstruction, it is often the case that people
cannot scan each individual object from all views, result-
ing in missing geometry in the captured scan. This missing
geometry can be fundamentally limiting for many applica-
tions, e.g., a robot needs to know the unseen geometry to
perform a precise grasp on an object. Thus, we introduce
the task of semantic instance completion: from an incom-
plete RGB-D scan of a scene, we aim to detect the individ-
ual object instances and infer their complete object geome-
try. This will open up new possibilities for interactions with
objects in a scene, for instance for virtual or robotic agents.
We tackle this problem by introducing RevealNet, a new
data-driven approach that jointly detects object instances
and predicts their complete geometry. This enables a se-
mantically meaningful decomposition of a scanned scene
into individual, complete 3D objects, including hidden and
unobserved object parts. RevealNet is an end-to-end 3D
neural network architecture that leverages joint color and
geometry feature learning. The fully-convolutional nature
of our 3D network enables efficient inference of semantic
instance completion for 3D scans at scale of large indoor
environments in a single forward pass. We show that pre-

dicting complete object geometry improves both 3D detec-
tion and instance segmentation performance. We evaluate
on both real and synthetic scan benchmark data for the new
task, where we outperform state-of-the-art approaches by
over 15 in mAP@0.5 on ScanNet, and over 18 in mAP@0.5
on SUNCG.

1. Introduction

Understanding 3D environments is fundamental to many
tasks spanning computer vision, graphics, and robotics. In
particular, in order to effectively navigate, and moreover
interact with an environment, an understanding of the ge-
ometry of a scene and the objects it comprises of is essen-
tial. This is in contrast to the partial nature of reconstructed
RGB-D scans; e.g., due to sensor occlusions. For instance,
for a robot exploring an environment, it needs to infer where
objects are as well as what lies behind the objects it sees in
order to efficiently navigate or perform tasks like grasping.
That is, it needs not only instance-level knowledge of ob-
jects in the scene, but to also estimate the missing geometry
of these objects. Additionally, for content creation or mixed
reality applications, captured scenes must be decomposable
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into their complete object components, in order to enable
applications such as scene editing or virtual-real object in-
teractions; i.e., it is often insufficient to segment object in-
stances only for observed regions.

Thus, we aim to address this task of “seeing behind ob-
jects,” which we refer to as semantic instance completion:
predicting object detection as well as instance-level com-
pletion for an input partial 3D scan of a scene. Previous ap-
proaches have addressed these tasks independently: 3D in-
stance segmentation segments object instances from the vis-
ible surface of a partial scan [43, 14, 46, 45, 18, 26, 23, 8],
and 3D scan completion approaches predict the full scene
geometry [39, 7], but lack the notion of individual objects.
In contrast, our approach focuses on the instance level, as
knowledge of instances is essential towards enabling inter-
action with the objects in an environment.

In addition, the task of semantic instance completion
is not only important towards enabling object-level under-
standing and interaction with 3D environments, but we also
show that the prediction of complete object geometry in-
forms the task of semantic instance segmentation. Thus, in
order to address the task of semantic instance completion,
we propose to consider instance detection and object com-
pletion in an end-to-end, fully differentiable fashion.

From an input RGB-D scan of a scene, our RevealNet
model sees behind objects to predict each object’s complete
geometry. First, object bounding boxes are detected and re-
gressed, followed by object classification and then a predic-
tion of complete object geometry. Our approach leverages
a unified backbone from which instance detection and ob-
ject completion are predicted, enabling information to flow
from completion to detection. We incorporate features from
both color image and 3D geometry of a scanned scene, as
well as a fully-convolutional design in order to effectively
predict the complete object decomposition of varying-sized
scenes. To address the task of semantic instance completion
for real-world scans, where ground truth complete geometry
is not readily available, we further introduce a new seman-
tic instance completion benchmark for ScanNet [4], lever-
aging the Scan2CAD [1] annotations to evaluate semantic
instance completion (and semantic instance segmentation).

In summary, we present a fully-convolutional, end-to-
end 3D CNN formulation to predict 3D instance completion
that outperforms state-of-the-art, decoupled approaches to
semantic instance completion by 15.8 in mAP@0.5 on real-
world scan data, and 18.5 in mAP@0.5 on synthetic data:

• We introduce the task of semantic instance completion
for 3D scans;

• we propose a novel, end-to-end 3D convolutional net-
work which predicts 3D semantic instance completion
as object bounding boxes, class labels, and complete
object geometry,

• and we show that semantic instance completion task
can benefit semantic instance segmentation and detec-
tion performance.

2. Related Work
Object Detection and Instance Segmentation Recent
advances in convolutional neural networks have now begun
to drive impressive progress in object detection and instance
segmentation for 2D images [9, 33, 23, 32, 20, 13, 21].
Combined with the increasing availability of synthetic and
real-world 3D data [4, 39, 2], we are now seeing more ad-
vances in object detection [37, 38, 31, 30] for 3D. Sliding
Shapes [37] predicted 3D object bounding boxes from a
depth image, designing handcrafted features to detect ob-
jects in a sliding window fashion. Deep Sliding Shapes [38]
then extended this approach to leverage learned features
for object detection in a single RGB-D frame. Frustum
PointNet [31] tackles the problem of object detection for
an RGB-D frame by first detecting object in the 2D image
before projecting the detected boxes into 3D to produce fi-
nal refined box predictions. VoteNet [30] propose a refor-
mulation of Hough voting in the context of deep learning
through an end-to-end differentiable architecture for 3D de-
tection purpose.

Recently, several approaches have been introduced to
perform 3D instance segmentation, applicable to single or
multi-frame RGB-D input. Wang et al. [43] introduced
SGPN to operate on point clouds by clustering semantic
segmentation predictions. Li et al. [46] leverages an object
proposal-based approach to predict instance segmentation
for a point cloud. Simultaneously, Hou et al. [14] presented
an approach leveraging joint color-geometry feature learn-
ing for detection and instance segmentation on volumetric
data. Lahoud et al. [18] proposes to use multi-task losses
to predict instance segmentation. Yang et al. [45] and Liu
et al. [22] both use bottom-up methods to predict instance
segmentation for a point cloud. Our approach also lever-
ages an anchor-based object proposal mechanism for detec-
tion, but we leverage object completion to predict instance
completion, as well as show that completing object-level
geometry can improve detection and instance segmentation
performance on volumetric data.

3D Scan Completion Scan completion of 3D shapes has
been a long-studied problem in geometry processing, partic-
ularly for cleaning up broken mesh models. In this context,
traditional methods have largely focused on filling small
holes by locally fitting geometric primitives, or through
continuous energy minimization [40, 27, 47]. Surface re-
construction approaches on point cloud inputs [15, 16] can
also be applied in this fashion to locally optimize for miss-
ing surfaces. Other shape completion approaches leverage
priors such as symmetry and structural priors [42, 24, 29,
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36, 41], or CAD model retrieval [25, 34, 17, 19, 35] to pre-
dict the scan completion.

Recently, methods leveraging generative deep learning
have been developed to predict the complete geometry of
3D shapes [44, 6, 11, 12]. Song et al. [39] extended be-
yond shapes to predicting the voxel occupancy for a sin-
gle depth frame leveraging the geometric occupancy predic-
tion to achieve improved 3D semantic segmentation. Re-
cently, Dai et al. [7] presented a first approach for data-
driven scan completion of full 3D scenes, leveraging a fully-
convolutional, autoregressive approach to predict complete
geometry along with 3D semantic segmentation. Both Song
et al. [39] and Dai et al. [7] show that inferring the com-
plete scan geometry can improve 3D semantic segmenta-
tion. With our approach for 3D semantic instance com-
pletion, this task not only enables new applications requir-
ing instance-based knowledge of a scene (e.g., virtual or
robotic interactions with objects in a scene), but we also
show that instance segmentation can benefit from instance
completion.

3. Method Overview
Our network takes as input an RGB-D scan, and learns

to join together features from both the color images as well
as the 3D geometry to inform the semantic instance com-
pletion. The architecture is shown in Fig. 2.

The input 3D scan is encoded as a truncated signed dis-
tance field (TSDF) in a volumetric grid. To combine this
with color information from the RGB images, we first ex-
tract 2D features using 2D convolutional layers on the RGB
images, which are then back-projected into a 3D volumet-
ric grid, and subsequently merged with geometric features
extracted from the geometry. The joint features are then
fed into an encoder-decoder backbone, which leverages a
series of 3D residual blocks to learn the representation for
the task of semantic instance completion. Objects are de-
tected through anchor proposal and bounding box regres-
sion; these predicted object boxes are then used to crop and
extract features from the backbone encoder to predict the
object class label as well as the complete object geometry
for each detected object as per-voxel occupancies.

We adopt in total five losses to supervise the learning
process illustrated in Fig. 2. Detection contains three losses:
(1) objectness using binary cross entropy to indicate that
there is an object, (2) box location using a Huber loss to
regress the 3D bounding box locations, and (3) classifica-
tion of the class label loss using cross entropy. Following
detection, the completion head contains two losses: per-
instance completion loss using binary cross entropy to pre-
dict per-voxel occupancies, and a proxy completion loss us-
ing binary cross entropy to classify the surface voxels be-
longing to all objects in the scene.

Our method operates on a unified backbone for detection

followed by instance completion, enabling object comple-
tion to inform the object detection process; this results in
effective 3D detection as well as instance completion. Its
fully-convolutional nature enables us to train on cropped
chunks of 3D scans but test on a whole scene in a single
forward pass, resulting in an efficient decomposition of a
scan into a set of complete objects.

4. Network Architecture
From an RGB-D scan input, our network operates on

the scan’s reconstructed geometry, encoded as a TSDF in
a volumetric grid, as well as the color images. To jointly
learn from both color and geometry, color features are
first extracted in 2D with a 2D semantic segmentation net-
work [28], and then back-projected into 3D to be combined
with the TSDF features, similar to [5, 14]. This enables
complementary semantic features to be learned from both
data modalities. These features are then input to the back-
bone of our network, which is structured in an encoder-
decoder style.

The encoder-decoder backbone is composed of a series
of five 3D residual blocks, which generates five volumetric
feature maps F = {fi|i = 1 . . . 5}. The encoder results in a
reduction of spatial dimension by a factor of 4, and symmet-
ric decoder results in an expansion of spatial dimension by
a factor of 4. Skip connections link spatially-corresponding
encoder and decoder features. For a more detailed descrip-
tion of the network architecture, we refer to the appendix.

4.1. Color Back-Projection

As raw color data is often of much higher resolution
than 3D geometry, to effectively learn from both color
and geometry features, we leverage color information by
back-projecting 2D CNN features learned from RGB im-
ages to 3D, similar to [5, 14]. For each voxel location
vi = (x, y, z) in the 3D volumetric grid, we find its pixel
location pi = (x, y) in 2D views by camera intrinsic and
extrinsic matrices. We assign the voxel feature at location
vi with the learned 2D CNN feature vector at pi. To handle
multiple image observations of the same voxel vi, we apply
element-wise view pooling; this also allows our approach
to handle a varying number of input images. Note that this
back-projection is differentiable, allowing our model to be
trained end-to-end and benefit from both RGB and geomet-
ric signal.

4.2. Object Detection

For object detection, we predict the bounding box of
each detected object as well as the class label. To inform the
detection, features are extracted from feature maps F2 and
F3 of the backbone encoder. We define two set of anchors
on these two features maps, As = {ai|i = 1 . . . Ns} and
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Figure 2: Our RevealNet network architecture takes an RGB-D scan as input. Color images are processed with 2D convolu-
tions to spatially compress the information before back-projecting into 3D, to be merged with the 3D geometry features of the
scan (following [5, 14]). These joint features are used for object detection (as 3D bounding boxes and class labels) followed
by per-instance geometric completion, for the task of semantic instance completion. In contrast to [14], which leverages
separate backbones for detection and instance segmentation, our network maintains one unified backbone for both detection
and completion head, allowing the completion task to directly inform the detection parameters.

Ab = {ai|i = 1 . . . Nb} representing ‘small’ and ‘large’
anchors for the earlier F2 and later F3, respectively, so that
the larger anchors are associated with the feature map of
larger receptive field. These anchors As ∪ Ab are selected
through a k-means clustering of the ground truth 3D bound-
ing boxes. For our experiments, we use Ns + Nb = 9.
From these Ns + Nb clusters, Ab are those with any axis
> 1.125m, and the rest are in As.

The two features maps F2 and F3 are then processed
by a 3D region proposal to regress the 3D object bound-
ing boxes. The 3D region proposal first employs a 1×1×1
convolution layer to output objectness scores for each po-
tential anchor, producing an objectness feature map with
2(Ns + Nb) channels for the positive and negative object-
ness probabilities. Another 1 × 1 × 1 convolution layer
is used to predict the 3D bounding box locations as 6-
dimensional offsets from the anchors; we then apply a non-
maximum suppression based on the objectness scores. We
use a Huber loss on the log ratios of the offsets to the anchor
sizes to regress the final bounding box predictions:

∆x =
µ− µanchor

φanchor
∆w = ln(

φ

φanchor
)

where µ is the box center point and φ is the box width. The
final bounding box loss is then:

L∆ =

{
1
2∆

2, if |∆| ≤ 2

|∆|, otherwise.

Using these predicted object bounding boxes, we then
predict the object class labels using features cropped from

the bounding box locations from F2 and F3. We use a 3D
region of interest pooling layer to unify the sizes of the
cropped feature maps to a spatial dimension of 4 × 4 × 4
to be input to an object classification MLP.

4.3. Instance Completion

For each object, we infer its complete geometry by pre-
dicting per-voxel occupancies. Here, we crop features from
feature map F5 of the backbone, which has a feature map
resolution matching the input spatial resolution, using the
predicted object bounding box. These features are pro-
cessed through a series of five 3D convolutions which main-
tain the spatial resolution of their input. The complete ge-
ometry is then predicted as voxel occupancy using a binary
cross entropy loss.

We predict Nclasses potential object completions for each
class category, and select the final prediction based on the
predicted object class. We define ground truth bounding
boxes bi and masks mi as γ = {(bi,mi)|i = 1 . . . Nb}.
Further, we define predicted bounding boxes b̂i along with
predicted masks m̂i as γ̂ = {(b̂i, m̂i)|i = 1 . . . N̂b}. Dur-
ing training, we only train on predicted bounding boxes that
overlap with the ground truth bounding boxes:

Ω = {(b̂i, m̂i, bi,mi) | IoU(b̂i, bi) ≥ 0.5,

∀(b̂i, m̂i) ∈ γ̂, ∀(bi,mi) ∈ γ}

We can then define the instance completion loss for each

2101



display table bathtub trashbin sofa chair cabinet bookshelf avg
Scene Completion + Instance Segmentation 1.65 0.64 4.55 11.25 9.09 9.09 0.18 5.45 5.24
Instance Segmentation + Shape Completion 2.27 3.90 1.14 1.68 14.86 9.93 7.11 3.03 5.49
Ours – RevealNet (no color) 13.16 11.28 13.64 18.19 24.79 15.87 8.60 10.60 14.52
Ours – RevealNet (no proxy) 21.94 7.63 12.55 28.24 20.38 22.58 13.42 9.51 17.03
Ours – RevealNet 26.86 13.21 22.31 28.93 29.41 23.64 15.35 14.48 21.77

Table 1: 3D Semantic Instance Completion on ScanNet [4] scans with Scan2CAD [1] targets at mAP@0.5. Our end-to-
end formulation achieves significantly better performance than alternative, decoupled approaches that first use state-of-the-
art scan completion [7] and then instance segmentation [14] method or first instance segmentation [14] and then shape
completion [6].

associated pair in Ω:

Lcompl =
1

|Ω|
∑

Ω

BCE(sigmoid(m̂i),m
′
i),

m′
i(v) =

{
mi(v) if v ∈ b̂i ∩ bi

0 otherwise.

We further introduce a global geometric completion loss
on entire scene level that serves as an intermediate proxy. To
this end, we use feature map F5 as input to a binary cross
entropy loss whose target is the composition of all complete
object instances of the scene:

Lgeometry = BCE(sigmoid(F5),∪(bi,mi)∈γ).

Our intuition is to obtain a strong gradient during train-
ing by adding this additional constraint to each voxel in the
last feature map F5. We find that this global geometric com-
pletion loss further helps the final instance completion per-
formance; see Sec 6.

5. Network Training
5.1. Data

The input 3D scans are represented as truncated signed
distance fields (TSDFs) encoded in volumetric grids. The
TSDFs are generated through volumetric fusion [3] during
the 3D reconstruction process. For all our experiments, we
used a voxel size of ≈ 4.7cm and truncation of 3 voxels.
We also input the color images of the RGB-D scan, which
we project to the 3D grid using their camera poses. We
train our model on both synthetic and real scans, comput-
ing 9 anchors through k-means clustering; for real-world
ScanNet [4] data, this results in 4 small anchors and 5 large
anchors, and for synthetic SUNCG [39] data, this results in
3 small anchors and 6 large anchors.

At test time, we leverage the fully-convolutional design
to input the full scan of a scene along with its color im-
ages. During training, we use random 96 × 48 × 96 crops
(4.5× 2.25× 4.5 meters) of the scanned scenes, along with
a greedy selection of ≤ 5 images covering the most object
geometry in the crop. Only objects with 50% of their com-
plete geometry inside the crop are considered.

5.2. Optimization

We train our model jointly, end-to-end from scratch. We
use an SGD optimizer with batch size 64 for object propos-
als and 16 for object classification, and all positive bound-
ing box predictions (> 0.5 IoU with ground truth box) for
object completion. We use a learning rate of 0.005, which
is decayed by a factor of 0.1 every 100k steps. We train
our model for 200k steps (≈ 60 hours) to convergence, on
a single Nvidia GTX 1080Ti. Additionally, we augment the
data for training the object completion using ground truth
bounding boxes and classification in addition to predicted
object detection.

6. Results

We evaluate our approach on semantic instance comple-
tion performance on synthetic scans of SUNCG [39] scenes
as well as on real-world ScanNet [4] scans, where we ob-
tain ground truth object locations and geometry from CAD
models aligned to ScanNet provided by Scan2CAD [1]. To
evaluate semantic instance completion, we use a mean av-
erage precision metric on the complete masks (at IoU 0.5).
Qualitative results are shown in Figs. 3 and 4.

Comparison to state-of-the-art approaches for seman-
tic instance completion. Tables 1 and 2 evaluate our
method against state of the art for the task of semantic in-
stance completion on our real and synthetic scans, respec-
tively. Qualitative comparisons on ScanNet scans [4] with
Scan2CAD [1] targets (which provide ground truth for com-
plete object geometry) are shown in Fig. 3. We compare
to state-of-the-art 3D instance segmentation and scan com-
pletion approaches used sequentially; that is, first applying
a 3D instance segmentation approach followed by a shape
completion method on the predicted instance segmentation,
as well as first applying a scene completion approach to
the input partial scan, followed by a 3D instance segmen-
tation method. For 3D instance segmentation, we evaluate
3D-SIS [14], which achieves state-of-the-art performance
on a dense volumetric grid representation (the representa-
tion we use), and for scan completion we evaluate the 3D-
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Figure 3: Qualitative results on real-world ScanNet [4] scenes with Scan2CAD [1] targets. Close-ups are shown on the right.
Note that different colors denote distinct object instances in the visualization. Our approach effectively predicts complete
individual object geometry, including missing structural components (e.g., missing chair legs), across varying degrees of
partialness in input scan observations.

EPN [6] shape completion approach and ScanComplete [7]
scene completion approach. Our end-to-end approach for
semantic instance completion results in significantly im-
proved performance due to information flow from instance
completion to object detection. For instance, this allows
our instance completion to more easily adapt to some inac-
curacies in detection, which strongly hinders a decoupled
approach. Note that the ScanComplete model applied on

ScanNet data is trained on synthetic data, due to the lack
of complete ground truth scene data (Scan2CAD provides
only object ground truth) for real-world scans.

Does instance completion help instance detection and
segmentation? We can also evaluate our semantic in-
stance completion predictions on the task of semantic in-
stance segmentation by taking the intersection between the
predicted complete mask and the input partial scan geom-

2103



cab bed chair sofa tabl door wind bkshf cntr desk shlf curt drsr mirr tv nigh toil sink lamp bath ostr ofurn oprop avg
SC + IS 3.0 0.6 19.5 0.8 18.1 15.9 0.00 0.0 1.0 2.3 3.0 0.0 0.5 0.0 9.2 10.4 23.9 3.4 9.1 0.0 0.0 0.0 9.1 5.5
IS + SC 0.3 0.0 7.4 0.4 3.0 9.1 0.0 0.0 0.2 0.0 0.0 0.0 2.3 0.0 3.0 0.0 2.6 0.0 1.8 0.0 0.0 0.0 4.6 1.5
no color 19.05 41.8 38.2 11.9 23.9 9.1 0.0 0.0 2.5 21.6 9.1 0.0 12.6 4.6 49.4 33.8 63.4 36.9 38.8 14.7 15.9 0.0 23.8 20.5
no proxy 12.9 46.1 39.4 26.8 30.3 1.0 15.9 0.0 9.1 18.2 3.4 0.0 1.1 0.0 43.6 34.0 69.1 32.4 29.6 31.1 14.6 0.0 23.3 20.9
Ours 14.7 58.3 38.2 28.8 29.5 0.0 15.9 54.6 9.1 12.1 9.1 0.0 6.2 0.0 49.4 33.5 61.2 34.5 29.5 27.1 16.4 0.0 23.5 24.0

Table 2: 3D Semantic Instance Completion on synthetic SUNCG [39] scans at mAP@0.5. Our semantic instance completion
approach achieves significantly better performance than alternative approaches with decoupled state-of-the-art scan comple-
tion (SC) [7] followed by instance segmentation (IS) [14], as well as instance segmentation followed by shape completion [6].
We additionally evaluate our approach without color input (no color) and without a completion proxy loss on the network
backbone (no proxy).

Figure 4: Qualitative results on SUNCG dataset [39] (left: full scans, right: close-ups). We sample RGB-D images to
reconstruct incomplete 3D scans from random camera trajectories inside SUNCG scenes. Note that different colors denote
distinct object instances in the visualization.

etry to be the predicted instance segmentation mask. We
show that predicting instance completion helps instance
segmentation, evaluating our method on 3D semantic in-
stance segmentation with and without completion, on Scan-

Net [4] and SUNCG [39] scans in Tables 3 and 4, as well as
3D-SIS [14], an approach jointly predicts 3D detection and
instance segmentation, which also operates on dense volu-
metric data, achieving state-of-the-art performance on this
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3D Detection Instance Segmentation
3D-SIS [14] 25.70 20.78
Ours (no compl) 31.93 24.49
Ours (no color) 29.29 23.55
Ours (no proxy) 31.52 25.92
Ours 36.39 30.52

Table 3: 3D Detection and Instance Segmentation on Scan-
Net [4] scans with Scan2CAD [1] annotations at mAP@0.5.
We evaluate our instance completion approach on the task
of instance segmentation and detection to justify our con-
tribution that instance completion task helps instance seg-
mentation and detection. We evaluate our approach with-
out completion (no compl), without color input (no color),
and without a completion proxy loss on the network back-
bone (no proxy). Predicting instance completion notably
increases performance of predicting both instance segmen-
tation and detection (Ours vs. no compl). We additionally
compare against 3D-SIS [14], a state-of-the-art approach
for both 3D detection and instance segmentation on 3D
dense volumetric data (the representation we use).

3D Detection Instance Segmentation
3D-SIS [14] 24.70 20.61
Ours (no compl) 29.80 23.86
Ours (no color) 31.75 31.59
Ours (no proxy) 34.05 32.59
Ours 37.81 36.28

Table 4: 3D Detection and Instance Segmentation on syn-
thetic SUNCG [39] scans at mAP@0.5. To demonstrate the
benefits of instance completion task for instance segmen-
tation and 3D detection, we evaluate our semantic instance
completion approach on the task of instance segmentation
and 3D detection. Predicting instance completion notably
benefits 3D detection and instance segmentation (Ours vs.
no compl).

representation. We find that predicting instance completion
significantly benefits instance segmentation, due to a more
unified understanding of object geometric structures.

Additionally, we evaluate the effect on 3D detection in
Tables 3 and 4; predicting instance completion also signif-
icantly improves 3D detection performance. Note that in
contrast to 3D-SIS [14] which uses separate backbones for
detection and instance segmentation, our unified backbone
helps 3D mask information (complete or non-complete)
propagate through detection parameters to improve 3D de-
tection performance.

What is the effect of a global completion proxy? In Ta-
bles 1 and 2, we demonstrate the impact of the geometric
completion proxy loss; here, we see that this loss improves
the semantic instance completion performance on both real

and synthetic data. In Tables 3 and 4, we can see that it also
improves 3D detection and semantic instance segmentation
performance.

Can color input help? Our approach takes as input the
3D scan geometry as a TSDF as well as the corresponding
color images. We evaluate our approach with and without
the color input stream; on both real and synthetic scans, the
color input notably improves semantic instance completion
performance, as shown in Tables 1 and 2.

7. Limitations
Our approach shows significant potential in the task of

semantic instance completion, but several important lim-
itations still remain. First, we output a binary mask for
the complete object geometry, which can limit the amount
of detail represented by the completion; other 3D repre-
sentations such as distance fields or sparse 3D representa-
tions [10] could potentially resolve greater geometric detail.
Our approach also uses axis-aligned bounding boxes for ob-
ject detection; it would be helpful to additionally predict the
object orientation. We also do not consider object move-
ment over time, which contains significant opportunities for
semantic instance completion in the context of dynamic en-
vironments.

8. Conclusion
In this paper, we tackle the problem of “seeing behind

objects” by predicting the missing geometry of individual
objects in RGB-D scans. This opens up many possibilities
for complex interactions with objects in 3D, for instance
for efficient navigation or robotic grasping. To this end, we
introduced the new task of semantic instance completion
along with RevealNet, a new 3D CNN-based approach to
jointly detect objects and predict their complete geometry.
Our proposed 3D CNN learns from both color and geome-
try features to detect and classify objects, then predicts the
voxel occupancy for the complete geometry of the object in
an end-to-end fashion, which can be run on a full 3D scan in
a single forward pass. On both real and synthetic scan data,
we significantly outperform state-of-the-art approaches for
semantic instance completion. We believe that our approach
makes an important step towards higher-level scene under-
standing and helps to enable object-based interactions and
understanding of scenes, which we hope will open up new
research avenues.
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Training Data

with Limited Annotations
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Figure 1: How many point labels are necessary to train a 3D instance segmentation model on point clouds? It turns out not
too many! With the help of unsupervised pre-training, only 20 labelled points per scene (less than 0.1% of the total points)
are used to fine-tune an instance segmentation model on ScanNet. Left: Train samples; only colored points (enlarged for
better visibility) are labeled. Right: Predictions in validation set and different colors represent different instances.

Abstract

The rapid progress in 3D scene understanding has come
with growing demand for data; however, collecting and an-
notating 3D scenes (e.g. point clouds) are notoriously hard.
For example, the number of scenes (e.g. indoor rooms)
that can be accessed and scanned might be limited; even
given sufficient data, acquiring 3D labels (e.g. instance
masks) requires intensive human labor. In this paper, we
explore data-efficient learning for 3D point cloud. As a
first step towards this direction, we propose Contrastive
Scene Contexts, a 3D pre-training method that makes use
of both point-level correspondences and spatial contexts in
a scene. Our method achieves state-of-the-art results on
a suite of benchmarks where training data or labels are
scarce. Our study reveals that exhaustive labelling of 3D
point clouds might be unnecessary; and remarkably, on
ScanNet, even using 0.1% of point labels, we still achieve
89% (instance segmentation) and 96% (semantic segmenta-
tion) of the baseline performance that uses full annotations.

1. Introduction
Recent advances in deep learning on point clouds, such

as those obtained from LiDAR or depth sensors, together
with a proliferation of public, annotated datasets [9, 13, 53,
32, 64, 2, 40, 55], have led to swift progress in 3D scene
understanding. However, compared to large-scale 2D scene
understanding on images [14, 38, 23], the scale of 3D scene
understanding—in terms of the amount and diversity of data
and annotations, the model size, the number of semantic
categories, and so on—still falls behind. We argue that one
major bottleneck is the fact that collecting and annotating
diverse 3D scenes are significantly more expensive. Unlike
2D images that comfortably exists on the Internet, collect-
ing real world 3D scene datasets usually involves travers-
ing the environment in real life and scanning with 3D sen-
sors. Therefore, the number of indoor scenes that can be
scanned might be limited. What is more concerning is that,
even given sufficient data acquisition, 3D semantic labelling
(e.g. bounding boxes and instance masks) requires complex
pipelines [13] and labor-intensive human effort.

In this work, we explore a new learning task in 3D, i.e.
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data-efficient 3D scene understanding, which focuses on the
problem of learning with limited data or supervision1. We
note that the importance of data-efficient learning in 3D is
two-fold. One concerns the status quo: given limited data
we have right now, can we design better methods that per-
form better? The other one is more forward-looking: is it
possible to reduce the human labor for annotation, with a
goal of creating 3D scene datasets on a much larger scale?

To formally study the problem, we first introduce a suite
of scene understanding benchmarks that encompasses two
complementary settings for data-efficient learning: (1) lim-
ited scene reconstructions (LR) and (2) limited annotations
(LA). The first setting concerns the scenario where the bot-
tleneck is the number of scenes that can be scanned and
reconstructed. The second one focuses on the case where in
each scene, the budget for labeling is constrained (e.g. one
can only label a small set of points). For each setting, the
evaluation is done on a diverse set of scene understanding
tasks including object detection, semantic segmentation and
instance segmentation.

For data-efficient learning in 2D [28], representation
learning, e.g. pre-training on a rich source set and fine-
tuning on a much smaller target set, often comes to the res-
cue; in 3D, representation learning for data-efficient learn-
ing is even more wanted but long overdue. With this per-
spective, we focus on studying data-efficient 3D scene un-
derstanding through the lens of representation learning.

Only recently, PointContrast [65] demonstrates that net-
work weights pre-trained on 3D partial frames can lead to
a performance boost when fine-tuned on 3D semantic seg-
mentation and object detection tasks. Our work is inspired
by PointContrast. However, we observe that the simple
contrastive-learning based pretext task used in [65] only
concerns point-level correspondence matching, which com-
pletely disregards the spatial configurations and contexts
in a scene. In Section 3, we show that this design limits
the scalibility and transferability; we further propose an ap-
proach that integrates the spatial information into the con-
trastive learning framework. The simple modification can
significantly improve the performance over PointContrast,
especially on complex tasks such as instance segmentation.

Our exploration in data-efficient 3D scene understand-
ing provides some surprising observations. For example, on
ScanNet, even using 0.1% of point labels, we are still able
to recover 89% (instance segmentation) and 96% (semantic
segmentation) of the baseline performance that uses full an-
notations. The results imply that exhaustive labelling of 3D
point clouds might not be necessary. In both scenarios of
limited scene reconstructions (LR) and limited annotations
(LA), our pre-trained network, when used as the initializa-

1Sometimes a distinction is drawn between data-efficiency and label-
efficiency, to separate the scenarios of limited amount of data samples and
limited supervision; here, we use data-efficiency to encompass both cases.

tion for supervised fine-tuning, offers consistent improve-
ment across multiple tasks and datasets. In the scenario of
LA, we also show that an active labeling strategy can be en-
abled by clustering the pre-trained point features.

In summary, the contributions of our work include:

• A systematic study on data-efficient 3D scene under-
standing with a comprehensive suite of benchmarks.

• A new 3D pre-training method that can gracefully
transfer to complex tasks such as instance segmenta-
tion and outperform the state-of-the-art results.

• Given the pre-trained network, we study practical so-
lutions for data-efficient learning in 3D through fine-
tuning as well as an active labeling strategy.

2. Related Work
3D Scene Understanding. Research in deep learning on
3D point clouds have been recently shifted from synthetic,
single object classification [47, 46, 48] to the challenge of
large-scale, real-world scene understanding. A variety of
datasets [2, 13, 54, 18, 55] and algorithms have been pro-
posed for 3D object detection [45, 44, 43, 24], semantic
segmentation [46, 56, 62, 57, 20, 12] and instance seg-
mentation [59, 30, 69, 36, 60, 67, 31, 15, 34, 33]. In
the past year, sparse convolutional networks [20, 12] stand
out as a promising approach to standardize deep learning
for point clouds, due to its computational efficiency and
state-of-the-art performance for 3D scene understanding
tasks [12, 25, 34]. In this work, we also adopt a sparse
U-Net [49] backbone for our exploration.
3D Representation Learning. Compared to 2D vision,
the limits of big data are far from being fully explored
in 3D. In 2D representation learning, for example, trans-
fer learning from a rich source data (e.g. ImageNet [14])
to a (typically smaller) target data, has become a domi-
nant framework for many applications [19]. In contrast,
3D representation learning has not been widely adopted
and most 3D networks are trained from scratch on the
target data directly. Recently, unsupervised pre-training
has made great progress and drawn significant attention in
2D [42, 3, 39, 28, 63, 58, 29, 27, 10, 8, 21]. Following
suit, recent works attempt to adapt the 2D pretext tasks to
3D, but mostly focus on single object classification tasks
on ShapeNet [1, 17, 68, 22, 37, 61, 26, 51, 50]. Our work
is mostly inspired by a recent contrastive-learning based
method PointContrast [65], which first demonstrates the ef-
fectiveness of unsupervised pre-training on a diverse set of
scene-level understanding tasks. As we will show in the
later sections, the simple point-level pre-training objective
in PointContrast ignores the spatial contexts of the scene
(such as relative poses of objects, and distances between
them) which limits its transferability for complex tasks such
as instance segmentation. PointContrast also focuses on
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downstream tasks with 100% data and labels, while we sys-
tematically explore a new data-efficient paradigm that has
practical importance.
Data-Efficient Learning. Data-efficient learning concerns
the problem of learning with limited training examples
or labels. This capability is known in cognitive science
to be a distinctive characteristic of humans [6]. In con-
trast, training deep neural networks is not naturally data-
efficient, as it typically relies on large amount of anno-
tated data. Among many potential solutions towards this
goal, representation learning (commonly through transfer
learning) is arguably the most promising one. A good rep-
resentation “entangles the different explanatory factors of
variation behind the data” [5] and thus makes the down-
stream prediction easier (and less data-hungry). This con-
cept has been validated successfully in natural language
processing [7] and to some extent in 2D image classifica-
tion [28]. Pursuing this direction in 3D is even more desir-
able, considering the potential benefit in reducing the labor
of data collection and annotation. Existing work focuses on
mostly single CAD model classification or part segmenta-
tion [70, 52, 41, 11, 26, 16, 65]. To the best of our knowl-
edge, our work is the first to explore data-efficient learning
in a real-world, large-scale 3D scene understanding setup.

3. Contrastive Scene Contexts for Pre-training
In this section, we first briefly revisit the PointContrast

framework [65], and discuss the shortcomings and reme-
dies. We then introduce our pre-training algorithm.
Revisiting PointContrast. The pre-training objective for
PointContrast is to achieve point equivariance with respect
to a set of random geometric transformations. Given a
pair of overlapping partial scans, a contrastive loss for pre-
training is defined over the point features. The objective
is to minimizes the distance for matched points (positive
pairs) and maximize the distance between unmatched ones
(negative pairs). Despite the fact that strong spatial contexts
exist among objects in a scene, this objective does not cap-
ture any of the spatial information: the negative pairs could
be sampled from arbitrary locations across many scenes in
a mini-batch. We hypothesize that this leads to some lim-
itations: 1) the spatial contexts (e.g. relative pose, direc-
tion and distance), which could be pivotal for complex tasks
such as instance segmentation, are entirely discarded from
pre-training; 2) the scalibility of contrastive learning might
be hampered; PointContrast cannot utilize a large number of
negative points, potentially because that contrasting a pair
of spatially distant and unrelated points would contribute
little to learning. In fact, PointContrast uses only a random
sampling of 1024 points per scene for pre-training, and it
has been shown that results do not improve with more sam-
pled points [65]. We also confirm this behavior with exper-
iments later this section.

2 Partitions 4 Partitions 8 Partitions

Figure 2: Illustration of Scene Contexts. We visualize
the 2,4 and 8 spatial partitions for Scene Contexts. The an-
chor point is in the center. For 2 and 4 partitions, only rela-
tive angles are sufficient. For 8 partitions (a cross-section is
shown), both relative angles and distances are needed.

Contrastive Scene Contexts. We hope to integrate spa-
tial contexts into the pre-training objective. There are many
ways to achieve the goal, and here we take inspiration from
the classic ShapeContext local descriptor [4, 35, 66] for
shape matching. The ShapeContext descriptor partitions the
space into spatially inhomogeneous cells, and encodes the
spatial contexts about the shape at each point by comput-
ing a histogram over the number of neighboring points in
each cell. We call our method Contrastive Scene Contexts
because at a high level, our method also aims to capture the
distribution over relative locations in a scene. We parti-
tion the scene point cloud into multiple regions, and instead
of having a single contrastive loss for the entire point set
sampled in a mini-batch, we perform contrastive learning in
each region separately, and aggregate the losses in the end.

Concretely, given a pair of partial frame point clouds x
and y from the same scene, we have correspondence map-
ping (i, j) ∈ Mxy available, where i is the index of a point
xi ∈ R3 in frame x and j is the index of a matched point
yj ∈ R3 in frame y. Similar to PointContrast, we sample
N pairs of matched points as positives. However, in our
method, for each anchor point xi, the space is divided into
multiple partitions and other points are assigned to different
partitions based on their relative angles and distances to i.

The distance and angle information needed for scene
context partition at anchor point xi is as follows,

Dik =

√√√√
3∑

d=1

(xd
i − xd

k)
2 (1)

Aik = arctan2(Dik) + 2π (2)

where D is the relative distance matrix. Dik stores the dis-
tance between point i and point k and A is the relative angle
matrix, where Aik stores the relative angle between point i
and point k. In Equation (1) d represents the 3D dimen-
sion. With D and A, a ShapeContext-like spatial partition-
ing function can be easily constructed on-the-fly. In Fig-
ure 2, we show a visual illustration of how the space par-
titioning works. Computing 2 or 4 partitions only requires
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cutting the space according to relative angles based on A;
while the 8 or more partitions also require the extent of the
inner regions using D. We always partition the space uni-
formly along the relative angles and distances. Note that the
partitioning is relative to the anchor point i.

Suppose there are P partitions, we denote the spatial par-
tition functions as parp(·), where p ∈ {1, . . . , P}. Function
parp(·) takes the anchor point i as input, and return a set of
points as negatives. A PointInfoNCE loss Lp is indepen-
dently computed for each partition:

Lp = −
∑

(i,j)∈M

log
exp(f1i · f2j /τ)∑

(·,k)∈M,k∈parp(i)
exp(f1i · f2k/τ)

(3)

Details of Equation (3) and other implementation details
can be found in Appendix. The final loss is computed by
aggregating all partitions L = 1

|P |
∑

p Lp.
Analysis. We first show that by integrating the scene con-
texts into the objective, our pre-training method can benefit
more from a larger point set. We conduct an analysis ex-
periment by varying the number of scene context partitions
and the number of points sampled for computing the con-
trastive loss. We pre-train our model for a short schedule
(20K iters). We then fine-tune the pre-trained weights on
S3DIS instance segmentation benchmark [2]. Results are
shown in Figure 3, the green line represents a variant with
no spatial partitioning; the left-most point represents Point-
Contrast2. Similar to the observation in [65], without scene
contexts, increasing the number of sampled points does not
improve the performance; with more partitions, increasing
# sampled points leads to a consistent boost in performance
(up to 4096 points). We use 8 partitions as empirically it
works best. This shows that our method leads to better scal-
ability as more points can be utilized for pre-training.

We achieve state-of-the-art instance segmentation results
in terms of mAP@0.5 (Table. 1) using a simple bottom-
up clustering mechanism with voting loss (details in Ap-
pendix). We do not use any special modules such as Pro-
posal Aggregation [15] or Scoring Network [34]. We ob-
serve a 2.9% absolute improvement over PointContrast pre-
training, which brings the improvement over train-from-
scratch baseline to 4.1%. This substantial margin demon-
strates the effectiveness of Contrastive Scene Contexts on
instance segmentation tasks. We provide more results com-
paring against PointContrast in Section 5.3.

4. Data-Efficient 3D Scene Understanding
To formally explore data-efficient 3D scene understand-

ing, in this section, we propose two different learning
paradigms and relevant benchmarks that are associated with
two complementary settings that can occur in real world ap-
plication scenarios: (1) limited scene reconstructions (LR)

2Not exactly identical since the matched points are sampled per scene
in this experiment, rather than from the whole mini-batch as in PointCon-
trast; we have verified that this nuance does not influence the conclusion.
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Figure 3: Analysis Experiment. Varying the number of
partitions and sampled points for pre-training; Results are
reported on the S3DIS instance segmentation task [2]. Us-
ing scene context partitions has enabled constrastive learn-
ing to utilize more points for better performance.

Methods mAP@0.5
ASIS [60] 55.3

3D-BoNet [67] 57.5
PointGroup [34] 57.8

3D-MPA [15] 63.1
Train from scratch 59.3

PointContrast (PointInfoNCE) [65] 60.5 (+1.2)

Contrastive Scene Contexts 63.4 (+4.1)

Table 1: Fine-tuning results for instance segmentation
on S3DIS [2]. A simple clustering-based model with Con-
trastive Scene Contexts pre-trained backbone performs sig-
nificantly better than the train-from-scratch baseline and
PointContrast pre-training [65].

.

and (2) limited annotations (LA). The first setting mainly
concerns the scenario where the bottleneck of data collec-
tion is the number of scenes that can be scanned and re-
constructed. The second one focuses on the case where in
each scene, the budget for labeling is limited (e.g. one can
only label a small set of points). Since 3D point labeling is
human intensive, this represents a practical scenario where
a data-efficient learning strategy can greatly reduce the an-
notation cost. An overview is presented in Figure 4, and
details of individual benchmarks are described below.

4.1. Limited Annotations (LA)

In this benchmark, we explore 3D scene understanding
with a limited budget for point cloud annotations. We con-
sider a diverse set of tasks including semantic segmentation,
instance segmentation and object detection. Specifically,
for instance segmentation and semantic segmentation, the
annotation budget is in terms of the number of points for
labelling. This is practically useful: if an annotator only
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Figure 4: Overview of Data-Efficient 3D Scene Understanding. Left: Unsupervised pre-training with Contrastive Scene
Contexts. The outputs of pre-training are 1) a pre-trained U-Net F (that can be used as an offline feature extractor) and 2) its
associated weights W. Right: After pre-training, different learning scenarios can be applied for the downstream tasks such
as learning with limited scene reconstructions (LR) or limited annotations (LA). In the case of LR, the pre-trained weights
W are used as network initialization for fine-tuning. In the case of LA, all the scene reconstructions can be used but only a
limited annotation budget is available, e.g. 20 points can be annotated (semantic labels) per scene. Again, W can be used as
network initialization for fine-tuning; optionally the feature extractor F can be used in an active labeling strategy to decide
which points to annotate. Baselines are standard supervised learning where models are trained from scratch.

needs to label the semantic labels for 20 points, it will only
require a few minutes to label a full room. Our benchmark
considers four different training configurations on ScanNet
including using {20, 50, 100, 200} labeled points per scene.
For object detection, the annotation budget is with respect
to the number of bounding boxes to label in each scene. Our
benchmark considers four different training configurations
including {1, 2, 4, 7} labeled bounding boxes. Our base
dataset is ScanNetV2 [13] which has 1201 scenes for train-
ing. We evaluate the model performance on standard Scan-
NetV2 validation set of 312 scenes that has full labels.

4.2. Limited Scene Reconstructions (LR)

For current 3D scene datasets, it is common for anno-
tators to carry commodity depth cameras and record 3D
videos at private houses or furniture stores. It might be un-
realistic to enter a large number of homes and obtain de-
tailed scanning. In this case, the number of scenes might
be the bottleneck and the training has to be done on lim-
ited amount of scene reconstructions. We simulate this sce-
nario by random sampling a subset of ScanNetV2 training
set. Our benchmark has four configurations {1%, 5%, 10%,
20%} (100% represents the entire ScanNet train set) for se-
mantic segmentation and instance segmentation; and {10%,
20%, 40%, 80%} for object detection. During test time,
evaluation is on all scenes in the validation set.

5. Experimental Results
In this section, we present our experimental results

on the data-efficient 3D scene understanding benchmarks:
ScanNet-LA with limited annotations and ScanNet-LR
with limited scene reconstructions. In both scenarios, we
compare our method against the baseline of training from
scratch, and report results on semantic/instance segmenta-
tion and object detection. We also compare our models with
the state-of-the-art method in the last part of the section.
Experiments Setup For pre-training, we use SGD opti-
mizer with learning rate 0.1 and a batch-size of 32. The
learning rate is decreased by a factor of 0.99 every 1000
steps. The model is trained for 60K steps. The fine-tuning
experiments on instance segmentation and semantic seg-
mentation are trained with a batch-size of 48 for a total of
10K steps. The initial learning rate is 0.1, with polynomial
decay with power 0.9. For all experiments, we use data
parallel on 8 NVIDIA V100 GPUs. For object detection
experiments, we fine-tune the model with a batch-size of 32
for 180 epochs. The initial learning rate is set to 0.001 and
decayed by a factor of 0.1 at epoch 80, 120 and 160. For
all the experiments, we use the same Sparse Res-UNet [65]
as the backbone. For both training and testing, the voxel
size for Sparse ConvNet is set to 2.0 cm. We use Sparse
ConvNet implemented by MinkowskiEngine [12].

5.1. Limited Annotations
As introduced in Section 4, the Limited Annotation (LA)

benchmark covers two different annotation types: Limited
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Figure 5: Qualitative Instance Segmentation Results (ScanNet-LA). With our pre-trained model as initialization for fine-
tuning, together with an active labeling process, our approach (trained with 20 labeled points per scene) generates high-quality
instance masks. Different color represents instance index only (same instances might not share the same color).

Point Annotations for semantic and instance segmentation
and Limited Bounding Box Annotations for detection. The
pre-trained network (and its weights) can be used as ini-
tialization for fine-tuning, or integrate in an active labeling
strategy, which we describe below.

Active labeling. Since we focus on the scenario of having
limited annotation budget, it is natural to consider an active
learning strategy during the data annotation process; i.e.
one can interactively query an annotator to label some data
points that can help most for subsequent training. The core
idea of our approach is to perform a balanced sampling
on the feature space, so that the selected points will be the
most representative and exemplary ones in a scene. Our
pre-trained network extracts dense features at each point
of the to-be-annotated point cloud, by simply performing
a forward pass. We then perform k-means clustering in this
feature space to obtain K cluster centroids. We select the
K centroids as the points to be provided to the annotators
for labeling. We also present two baseline strategies includ-

ing a simple random sampling strategy where K points
are randomly selected to be labeled, and a similar k-means
sampling strategy on raw (RGB+XYZ) inputs, rather than
on the pre-trained features.

We note that although our experiments are simulated
based on the already collected ScanNet dataset, our pre-
trained feature extractor and the labeling strategy are readily
useful in a real-world data annotation pipeline.
Results. In Figure 6 we show that compared to the naive
from-scratch baselines, our proposed pre-training frame-
work can lead to much improved performance. It is interest-
ing to see that, for both semantic segmentation and instance
segmentation, even without fine-tuning, the active labeling
strategy alone provides point labels that make the trained
model perform significantly better, compared to random
sampling or k-means sampling baseline strategies, yielding
a >10% absolute improvement in terms of mAP@0.5 and
mIoU when the training data has only 20 point labels.

The fact that active labeling strategy performs on
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Figure 6: 3D Instance and Semantic Segmentation with Limited Point Annotations (ScanNet-LA). Ours (init) denotes
the network initialization by our pre-trained model. Ours (act. labeling) denotes the active selection of annotated points by
our pre-trained model. Ours (init+act. labeling) denotes using our model as both network initialization and active labeling.
We additionally mark the upper bound of using all 150K annotated points (in average) per scene as the dash line.

No. of Boxes VoteNet (scratch) VoteNet (ours)
all 35.4 39.3 (+3.9)

1 27.5 30.3 (+2.8)

2 30.9 32.4 (+1.5)

4 32.5 34.6 (+2.1)

7 33.4 35.9 (+2.5)

Table 2: Object detection results using Limited Bound-
ing Box Annotations on ScanNet. The metric is
mAP@0.5. “Ours” denotes the fine-tuning results with our
pre-trained model. We list the upper-bound performance
using all annotated bounding boxes (in average about 13
bounding boxes per scene) as a reference in the first row.

par with the more common pre-training and fine-tuning
paradigm, suggests that finding exemplary points to label
is crucial for data-efficient learning. Of course, in real ap-
plications both active labeling and fine-tuning can be used
jointly, and we indeed observe a further (though admittedly
smaller) boost in performance by 1) active sampling points
to label and then 2) fine-tuning with the pre-trained weights.

Overall, with the help of our Contrastive Scene Con-
texts pre-training, even using around 0.1% of point labels
(e.g. 200 labeled points out of 150K total points per scene),
we are still able to achieve 50.4% mAP@0.5 for instance
segmentation, and 69.0% mIoU for semantic segmentation.
This indicates a recovery of 89% and 96% of baseline per-
formance that uses 100% of the annotations. We show ad-
ditional qualitative comparison in Figure 5.
Limited Bounding Box Annotations. For object detec-
tion, we use VoteNet [44] as the detector framework; foll-
woing [65], we replace PointNet [46] with our Sparse Res-
UNet. For this part, we do not use any active labeling

strategy as the labeling cost for bounding boxes are much
smaller. We random sample {1, 2, 4, 7} bounding boxes
per scene and train the detector. In Table 2, we observe that
our pre-training also consistently improves over the base-
line VoteNet, and the performance gap does not diminish
when more box annotations are available.

5.2. Limited Scene Reconstructions
In this section, we report the experimental results for

another scenario of data-efficient 3D scene understanding,
when there is a shortage of scene reconstructions. For in-
stance segmentation and semantic segmentation tasks, we
random sample subsets of ScanNet scenes of different sizes.
We sample {1%, 5%, 10%, 20%} of the entire 1201 scenes
in the training set (which corresponds to 12, 60, 120, and
240 scenes, respectively). For object detection, we find it
very difficult to train the detector when the scenes are too
scarce. Thus we sample {10%, 20%, 40%, 80%} subsets.
For each configuration, we randomly sample 3 subsets and
report the averaged results to reduce variance. We also use
the official ScanNetV2 validation set for evaluation.

Network fine-tuned with our pre-trained model again
shows a clear gap compared to the training from scratch
baseline (Table 3). We achieve competitive results (50.6%
mAP@0.5 for instance segmentation and 64.6% mIoU for
semantic segmentation) using only 20% of the total scenes.

Similar behavior can be observed on the object detection
task on ScanNet, and the difference between with and with-
out our pre-training is more pronounced in Table 4: the de-
tector can barely produce any meaningful results when the
data is scarce (e.g. 10% or 20%) and trained from scratch.
However, fine-tuning with our pre-trained weights, VoteNet
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Instance Seg. Semantic Seg.Data Pct. Scratch Ours Scratch Ours
100% 56.9 59.4 (+2.5) 72.2 73.8 (+1.6)

1% 9.9 13.2 (+3.3) 26.0 28.9 (+2.9)

5% 31.9 36.3 (+4.4) 47.8 49.8 (+2.0)

10% 42.7 44.9 (+2.2) 56.7 59.4 (+2.7)

20% 48.1 50.6 (+2.5) 62.9 64.6 (+1.7)

Table 3: 3D semantic and instance segmentation results
with Limited Scene Reconstructions (ScanNet-LR). Met-
ric is mAP@0.5 for instance segmentation and mIoU for se-
mantic segmentation. “Scratch” denotes the training from
scratch baseline, and “Ours” denotes the fine-tuning results
using our pre-trained weights. Results using 100% of the
data during training are listed in the first row.

can perform significantly better (e.g. improve the mAP@0.5
by more than 16% with 20% training data).

Data Pct. VoteNet (scratch) VoteNet (ours)
100% 35.4 39.3 (+3.9)

10% 0.3 8.6 (+8.3)

20% 4.6 20.9 (+16.3)

40% 22.0 29.2 (+7.2)

80% 33.7 36.7 (+3.0)

Table 4: Object detection results with Limited Scene Re-
constructions on ScanNet. Metric is mAP@0.5. We show
constantly improved results over training from scratch, es-
pecially so when 10% or 20% of the data are available. Re-
sults using all scenes are listed in the first row.

5.3. Additional Comparisons to PointContrast
As Contrastive Scene Contexts is closely related to

PointContrast [65], we provide additional results in this
section, including comparisons on the data-efficient Scan-
Net benchmarks (Table 5) as well as on other datasets and
benchmarks (Table 6). Our pre-training method outper-
forms [65] in almost every benchmark setting, sometimes
by a big margin. These results further render the impor-
tance of integrating scene contexts in contrastive learning.
Notably, our pre-training method on S3DIS achieves 72.2%
mIoU which outperforms, for the first time, the supervised
pre-training result reported in [65].

5.4. Analysis on Active Labeling: Cluttered Scenes

To better explain our active labeling strategy and show
that it can work in scenes with heavy occlusion and clut-
ter, we filter out a ScanNet subset of 200 cluttered scenes
that has multiple objects per one square meter area. Com-
pared to naive k-means sampling, active labeling performs
even better on cluttered scenes. In Figure 7, we visualize a
cluttered scene and sampled points (bottom); we also show
quantitatively (top) our strategy covers more distinct objects
and thus has a balancing effect.

Settings Task (Metric) SC PC [65] Ours
LA (200 points) ins (mAP@0.5) 43.5 44.5 (+1.0) 48.9 (+5.4)

LA (200 points) sem (mIoU) 65.5 67.8 (+2.3) 68.2 (+2.7)

LA (7 bboxes ) det (mAP@0.5) 33.4 34.9 (+1.5) 35.9 (+2.5)

LR (240 scenes) ins (mAP@0.5) 48.1 48.4 (+0.3) 50.6 (+2.5)

LR (240 scenes) sem (mIoU) 62.9 63.0 (+0.1) 64.6 (+1.7)

LR (960 scenes) det (mAP@0.5) 33.7 36.3 (+2.6) 37.4 (+3.7)

Table 5: Comparisons to PointContrast for data-efficient
3D scene understanding on ScanNet. We compare our
method with PointContrast (PC) and training from scratch
(SC) in various tasks. Our method constantly achieves bet-
ter results in both Limited Point Annotations (LA) and Lim-
ited Scene Reconstructions (LR) scenarios.

Datasets Task (Metric) SC PC [65] Ours
S3DIS ins (mAP@0.5) 59.3 60.5 (+1.2) 63.4 (+4.1)

S3DIS sem (mIoU) 68.2 70.3 (+2.1) 72.2 (+4.0)

SUN RGB-D det (mAP@0.5 ) 31.7 34.8 (+3.1) 36.4 (+4.7)

ScanNet ins (mAP@0.5) 56.9 58.0 (+1.1) 59.4 (+2.5)

ScanNet sem (mIou) 72.2 74.1 (+1.9) 73.8 (+1.6)

ScanNet det (mAP@0.5) 35.4 38.0 (+2.6) 39.3 (+3.9)

Table 6: Downstream fine-tuning results on other bench-
marks. Contrastive Scene Contexts (Ours) achieve better
or on par results compared to PointContrast (PC) [65] on
instance segmentation (ins), semantic segmentation (sem)
and object detection (det) across multiple datasets.
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Figure 7: Top: object coverage percentage—more distinct
objects are covered with active labeling; Bottom: Visual-
ization of sampled points in a cluttered scene.
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D Deep Learning Basics

Neural network is in the core position of deep learning study. Thus, we will first introduce
the fundamentals of neural network in Section D.1. Data-driven approaches, such as
neural network, consume huge amount of data to train. In Section D.2, we discuss the
basic algorithms used for training a neural network.

D.1 Neural Network

Due to the popularity of mobile devices, people nowadays can easily take pictures or
record videos, and share them in social media. As a result, vast amount of data live
in the internet. With the huge amount of available data, data-driven approaches, such
as machine learning, are evolving very fast. Rather than analytically design the math-
ematical models, learning algorithms are invented to make computers develop solutions
automatically by themselves through extracting features from training data. As a fur-
ther step of machine learning, deep learning is proposed to consume even more data
for better learning. Different from traditional machine learning algorithms that have a
bunch of models, such as Random Forest, SVM etc, deep learning builds a single type
of model, i.e. neural network.

Figure D.1: Illustration of Neural Network [141]. Neural Network is a Mult-Layer Per-
ceptron.

Neural network is structure by layers. The previous layer’s output is used as input to
the next layer. In the beginning, due to the limitation of hardware, very shallow neural
network is generally built called perception. Perceptron is a single layer neural network
and a multi-layer perceptron is called Neural Networks (see Figure D.1. Neural Network
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can simulate arbitrary functions. Let x ∈ Rm be the input vector, y ∈ Rk be the output.
Network parameters are defined as θ ∈ Rn. Neural Network models a function mapping
f : Rm × Rk → Rn. As mentioned before, Network f as a multi-layer perceptron is
constructed as a composition of functions. Each layer can be seen as function g, of
which the weights (neurons) are defined mathematically as a matrix W ∈ Rn×m, and
bias is defined as b ∈ Rm. Let input of this layer be x ∈ Rn. Output is then computed
as Wx+ b. The network f of l layers is f = g0 ◦ g1...gl−1.

D.1.1 Convolutional Layer

Figure D.2: Convolution Operation [142]. Kernel Matrix is convoluted with Image Matrix
in a sliding window fashion.

In computer vision, Convolutional Neural Network [143] is widely used for image-based
tasks. In Figure D.1, we show a multi-layer perceptron where each neuron is connected
by all the neurons in previous layer (fully connected). Different from perceptron, a
Convolutional Neural Network (CNNs) is composited by a series of convlutional layers.
In CNNs, weights of each layer are defined as kernels (or filters). Kernel is defined as a
n ×m matrix. Matrix size n ×m is also called kernel size. The kernel will operate on
the input matrix in a sliding window fashion, as illustrated in Figure D.2. With sliding
windows, kernel weights are shared between pixels so that it reduces weights number
compared to perceptron. Then output of a convolutional layer is called feature map.
Convolution is defined as following.
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O[m,n] =
∑

j

∑

k

k[j, k]F [m− j, n− k] (D.1)

Where O[m,n] is the value at [m,n] location in the output feature map, F is the input
feature map. Term j and k define the kernel size.

Convolution layers have a couple of parameters must be predefined, such as kernel size.
Besides, padding is a necessary operation applied before convolution to keep the input
size after convolution. Padding is defined as a size that extends the input feature map
on both sides. It can be zero padding, adding zeros on the boundaries or mirror padding,
replicating the border values of feature maps. Each convolutional layer can have multiple
kernels which is called channels. Each kernel will generate one channel in the output
feature map. For instance, 2D convolutional layer generate a three dimensional output
feature map with size m× n× c, where m is the matrix height, n is the matrix width, c
is the channel number. Another important parameter is stride, which defines how many
pixels we slide the filter. When the stride is 1, then we move the filters one pixel at a
time. When the stride is 2, then the filters jump 2 pixels at a time as we slide them
around. This will produce smaller output volumes spatially. Knowing the filter size,
padding and strides, we can easily compute the output feature map size in the following
equation.

Os =
W − F + 2P

S
+ 1 (D.2)

where Os denotes the output size; W indicates the input size; F is the kernel size; P
means padding, and S is the stride.

Figure D.3: Deconvolution Operation [142]. Deconvolution increases the input size from
3× 3 to 5× 5 with kernel size 3, padding 1, and stride 2.

Transposed Convolution (Deconvolution). Convolution layer normally reduces the
input feature map size. When up-sampling is desired, people often use transposed con-
volution. This operation can be seen as a reverse of convolution, which increases the
input feature map size. For instance, input size can be decreased by half by setting
stride as 2 in convolution. But in deconvolution with stride 2, it doubles the input size
as presented in Figure D.3. In deconvolution, we can also easily compute the output size
by reversing the the Equation D.2.
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D.1.2 Pooling Layer

A pooling layer is a new layer added after the convolutional layer. specifically after a
non-linearity. For example, the layers in a model may look as following order:

• Input Image

• Convolutional Layer

• Nonlinearity

• Pooling Layer

The addition of a pooling layer after the non-linearity is a common pattern used for
down sampling the feature map size. Pooling involves selecting a pooling operation with a
pre-defined kernel. Similar to convolution, it also requires paremeters like stride, padding
etc. Thus, we can use the same Equation D.2 to compute output size after pooling layer.
Different from convolution, the pooling operation has no learnable weights, but has to
be specified. Two common functions used in the pooling operation are:

Average Pooling. Calculate the average value for each patch on the feature map. Math-
ematically, it is defined as following,

O[m,n] =

∑
j=0...h

∑
k=0...w F [m− j, n− k]

h× w (D.3)

where O[m,n] denotes the value after pooling layer at location [m,n] and F is the input
feature map; h,w means the filter’s height and width.

Figure D.4: Max Pooling Operation [144]. Max Pooling Operation takes the maximum
value in each divided sub-region. In implantation, it also needs to track down the
indices for back propagation purpose.

Max Pooling. Calculate the maximum value for each patch of the feature map. We
show a graphical illustration in Figure D.4.

O[m,n] = max
i=0...h,j=0...w

F [m− i, n− j] (D.4)
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where O[m,n] denotes the value after pooling layer at location [m,n] and F is the input
feature map; h,w means the filter’s height and width.

D.1.3 Linear Layer

Linear Layer (Fully Connected Layer) in a neural networks is the layer where all the
neurons from previous layer are connected to all the neurons in the next layer (see Fig-
ure D.1). Fully connected layers are normally used in classification tasks. In classification
model, the output is a one-dimensional fixed-length vector indicating the probabilities
for each class label. The feature map is usually linearized after convolutional layer and
then mapped to the fixed-length vector via linear layer. Linear layer consumes huge
memory compared to convolutional layer, since it connects to very previous neurons. In
some other tasks, such as semantic segmentation, people usually use fully convolutional
network, in which there are no linear layers. Because the input image could be arbitrary
sizes and the output needs to be a one-to-one mapping to input in such task.

D.1.4 Normalization Layer

Figure D.5: Differences between Normalization Layers. Different normalization tech-
niques normalize across different dimensions in the feature map [145].

Normalization layer plays a very important role in neural network. Normalization
layer standardizes the inputs distribution to a learned mean and variance. Through
normalization Layers, feature maps become more statistically pleasing, and easier to
learn as well as faster to converge. In this section, we introduce the commonly used
normalization layers, such as Batch Norm, Layer Norm, Instance Norm and Group
Norm. Illustration of differences between those normalization layers can been seen in
Figure D.5

Batch Normalization (BN) normalizes each input in the current mini-batch by sub-
tracting the input mean and dividing it by the standard deviation in the current mini-
batch. Each layer does not expect inputs with zero mean and unit variance, but instead
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some other mean and variance throughout the training data. Hence the BN layer also
introduces two learnable parameters γ and β. Consider a mini-batch B of size m. To
this end, we have m values output from activation function in the mini-batch,B = {x1...m}.
Let the normalized values be y1...m. We demonstrate the BN in Algorithm 1. In the
algorithm, ε is a constant added to the mini-batch variance for numerical stability.
In short words, Batch Normalization calculates mean and variance for each individual
channel across all samples and both spatial dimensions.

Require: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Ensure: {yi = BN(xi, γ, β)}

µB ←
1

m

m∑

i=1

xi mini-batch mean

σ2B ←
1

m

m∑

i=1

(xi − µB)2 mini-batch variance

yi ←
xi − µB√
σ2B + ε

normalize

Algorithm 1: Batch Normalization. Normalization is applied to the output x over
a mini-batch after activation functions.

Layer Normalization (LN) directly computes the normalization statistics from the
summed inputs to the neurons within a hidden layer so the normalization does not
introduce any new dependencies between training cases. It works well for modelling
sequences, e.g. in RNNs or transformers. Layer normalization statistics is computed
over all the hidden units in the same layer as follows:

µi =
1

m

m∑

j=1

xij (D.5)

σ2i =
1

m

m∑

j=1

(xij − µi)2 (D.6)

yij =
xij − µi√
σ2i + ε

(D.7)

In short words, Layer Normalization estimates mean and variance for each individual
sample across all channels and both spatial dimensions. In layer normalization, all the
hidden units in a layer share the same normalization terms. Unlike batch normalization,
layer normalization does not impose any constraint on the size of the mini-batch and it
can be used when batch size is 1.
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Instance Normalization (IN) calculates mean and variance for each individual channel
for each individual sample across both spatial dimensions. Unlike batch normalization,
the instance normalization layer is applied at test time as well, due to non-dependency of
mini-batch. This technique is originally devised for style transfer, the problem instance
normalization tries to address is that the network should be agnostic to the contrast of
the original image.

Group Normalization (GN) divides channels into groups and normalizes the features
within each group. GN does not exploit the batch dimension, thus its computation is
independent of batch sizes. In the case where the group size is 1, it is equivalent to
Instance Normalization.

D.1.5 Activation Functions

Figure D.6: ReLU Activation Function [146]. The gradient is cut in the negative axis.

An activation function is a function used in artificial neural networks which introduces
non-linearity. If the inputs lies in a certain range of values, the activation function ”fires”,
otherwise it does nothing or nearly nothing. In other words, an activation function is
like a gate that checks if an incoming value is in a certain range. Activation functions are
very useful because they add non-linearities into neural networks, which allows neural
networks to learn powerful operations. Without activation functions, the entire network
could be re-factored to a simple linear operation or matrix transformation on its input,
and it would no longer be capable of performing complex tasks such as image recognition.
Well-known activations include the rectified linear unit (ReLU) function, and the family
of sigmoid functions, such as the logistic sigmoid function.

Rectified Linear Unit (ReLU) is a piece-wise linear function that outputs zero if its
input is negative, and directly outputs the input otherwise. Mathematically, it is defined
as following (see its graph in Figure D.6).

f(x) = max(0, x) (D.8)
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ReLU cuts off the gradients in back-propagation when x < 0 as showed in Equation D.9.
When x < 0, it passes 0 gradients to network weights, thus does not update the weights
at all.

df(x)

dx
=





1, if x > 0.

0, if x < 0.

undefined, otherwise.

(D.9)

Leaky Rectified Linear Unit (LReLU) is proposed to solve dying ReLU (no gradients
when x < 0). LReLU still has very small gradient in negative region, so that the gradient
is nonzero at all points except 0 where it is undefined (see Figure D.7.)

Figure D.7: Leaky ReLU Activation Function [146]. Simlar to ReLu, but the gradient
changes slowly in negative part.

S(x) =
ex

ex + 1
(D.10)

Logistic Sigmoid Function has a useful property that its gradient is defined every-
where. Besides, its output is conveniently between 0 and 1 for all inputs. Because of
this nice property, it is often used at the last to convert logits to probabilities. The
logistic sigmoid function is easier to work with mathematically, but the exponential
functions make it computationally intensive to compute. In practice, simpler functions
such as ReLU are often preferred. The mathematical definition is in Equation D.10 (see
Figure D.8).

Softmax is a function that converts multiple values into probabilities and guarantees
the summation of those values equals to 1. Mathematical definition is showed in Equa-
tion D.11. It is often used at the end to convert logits to probabilities for the multi-label
classification task. Notably, softmax is a generalization of sigmoid. When there are 2
classes (binary classification), softmax is equivalent to sigmoid function.
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S(xi) =
exi

∑C
j=1 e

xj
(D.11)

Figure D.8: Sigmoid Function [146]. Values are activated sharply when x is centered around
0 and get flat when x→ +∞ or x→ −∞.

D.2 Training Neural Network

In this section, we introduce the algorithms used for trianing a neural network model.
We first illustrate a simple network for digit recognition in Figure D.9. When training a
network in computer vision, we input an image that goes through a serious convolutional
layers (Conv 1 and Conv 2 in Figure D.9) and max pooing layers(Max-Pooing). The
feature map out of the last convolutional layer is linearized into 1D vector. Fully-
Connected layers (fc 3 and fc 4) further operates on the vector to generate a 1D vector
with length 10 (there are 10 digits from 0 to 9 in total). This procedure is called forward
pass.

The output of forward pass is compared with ground-truth to compute a loss. We
introduce commonly used loss in Section D.2.3. Then the network weights are updated
through back-propagation (in Section D.2.1) and Stochastic Gradient Descent (in Sec-
tion D.2.2). Before training, there are multiple way to initialize network weights. We
introduce network initialization in Section D.2.4. In the training, learning rates are
updated as well. Different learning rate schedulers are presented in Section D.2.6. To
prevent over-fitting problem, we introduce several regularization techniques commonly
used in Section D.2.5.

D.2.1 Back-propagation

In 1986, back-propagation was proposed to train a multi-layer neural network [148].
Since decades, it is still the fundamental algorithms to train a neural network. The core
concept for back-propagation is to apply chain rule in the gradient computations. For
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Figure D.9: Illustration of a Neural Network Model [147]. We show a simple network
model to better explain each parts in training process.

Figure D.10: Illustration of Back-Propagation. We show a naive case in back-propagation
to show how the chain rule works [141].

example, we demonstrate a naive case in Figure D.10. Let a(3) be the output, and we
want to update θ1. We first need to compute a loss based on output a(3) and the ground-
truth. For simplicity, let this loss be L(a(3)). Then we compute the partial derivatives
of L(a(3)) with respect to θ1 along the path as presented in Equation D.12.

∂L(a(3))

∂θ1
=
∂L(a(3))

∂a(3)
∂a3

∂a2
∂a2

∂θ1
(D.12)

In neural network, this is very efficient to update weights. Because the weights are
updated layer by layer, the gradients on the path don’t need to be computed twice.

For instance, we can re-use ∂L(a(3))

∂a(3)
for computing ∂L(a(3))

θ1
, since we would have already

computed it when updating θ2.
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D.2.2 Stochastic Gradient Descent

Gradient Descent is commonly used in differential calculus. It expresses a relationship
between two variables: “y over x”. In this case, the y is the error produced by the
neural network, and x is the parameter of the neural network. The parameter has a
relationship to the error, and by changing the parameter, we can increase or decrease the
error. Back-propagation tells us how to compute the gradient, and Stochastic Gradient
Descent (SGD) tells how to update the weights by gradients for each training sample.
Following the convention from last section D.2.1, we can update the weights θ1 with
SGD as presented in Equation D.13.

θ1 = θ1 − η ·
∂L(a(3);x(i), y(i))

∂θ1
(D.13)

where x(i) and y(i) are the input and target in one training sample, and η is the
learning rate indicating the step size.

D.2.3 Training Loss

In previous sections, we show how to compute the gradient from loss. Neural network
is capable to solve a variety of tasks. Different tasks require different losses. In this
section, we introduce the commonly used losses for different tasks.

L2 Loss is the most commonly used loss function for regression. It aims to reduce the
L2 distance between prediction and ground-truth as presented in Equation D.14. As it
computes the mean of the squared values, it is also called Mean Squared Error (MSE).

L(y, ŷ) =
1

N

N∑

i=0

(yi − ŷi)2 (D.14)

L1 Loss is also commonly used in regression task. Different from L2 loss, it computes
the mean of L1 norm between predicted values and ground-truth values, as showed
in Equation D.15. Compared to L2 loss, L1 loss is less sensitive to outliers. As it
uses absolute values between predicted values and ground-truth, it is also called Mean
Absolute Error (MAE).

L(y, ŷ) =
1

N

N∑

i=0

|yi − ŷi| (D.15)

Cross Entropy Loss is usually used in classification task. We show its mathematical
definition in Equation D.16.

CE = −
C∑

i=1

tilog(softmax(si)) (D.16)

where ti (either 1 or 0) denotes the ground-truth label, and si is the output of network.

Binary Cross Entropy Loss is a special case of CE. When there are 2 classes (binary
classification), CE is transformed into BCE. Mathematical definition of BCE is showed
in Equation D.17.
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BCE = −
C=2∑

i=1

tilog(f(si)) = −t1log(f(s1))− (1− t1)log(1− f(s2)) (D.17)

where f denotes the sigmoid function.

D.2.4 Network Initialization

This optimization always requires a starting point. Weight initialization is a procedure
to set the weights of a neural network to some values that define the starting point for
the optimization, in another work training. Network Initialization is a very important
factor that could significantly influence network training. One of the most successful
story in computer vision is transfer learning. Normally, people like to initialize the
network weights learned from other data or loss, so that it can transfer across knowledge
domains. In fact, most downstream tasks in 2D computer vision will use ImageNet
Pre-trained weights as initialization. And it turns out very useful especially for fine-
tunning on smaller datasets. In this section, we will introduce several popular network
initialization methods and give out their mathematical definitions for detailed analysis.

Xavier Initialization is calculated as a random number with a uniform probability
distribution between the range [149]. Let n be the number of inputs to the neurons.
Weights are sampled from a uniform distribution between the range [− 1√

n
,+ 1√

n
]. As

weights are multiplied with input values, small weights make the values through the
neurons small, and too large weights make signal grow too fast until it’s too massive to
be useful. Xavier initialization makes sure the weights are just right, keeping the signal
in a reasonable range even through many layers in the first forward pass.

He Initialization is calculated as a random number with a Gaussian probability dis-

tribution with a mean of 0.0 and a standard deviation of
√

2
n , where n is the number

of inputs to neurons [150]. The way of He Initialization looks very similar to Xavier,
however, they play different roles. It is related to the non-linearities used in the network.
Kumal et al. [151] proves mathematically that He Initialization is the best initialization
strategy for the ReLU activation function, which is non-differentiable at 0.

Pre-trained Initialization uses a pre-trained weights to initialize the network. It turns
out to outperform previously introduced initialization by a large margin, as it has learned
priors. However, this method is not flexible as others. In general, your network structure
must be very similar to some pre-defined architectures. For instance, ImageNet Pre-
trained weights normally require a standard backbone, e.g. ResNet50 or ResNet101. In
practise, it also forces the naming rules to be the same, so that the pre-trained weights
can be matched.
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Figure D.11: Over-fitting. We show a classic over-fitting case of polynomial fit [152]

D.2.5 Regularization

Regularization techniques are widely used to prevent over-fitting problems. Over-fitting
can be well explained by Figure D.11. As illustrated in the figure, we want to fit a
polynomial equation for some sampled points. Over-fitted curves would go through every
points, so that it has lower training error. However, it does not really represents the
curves, from which the points are sampled. To this end, it has very high generalization
errors. In this section, we introduce normally used regularization techniques in neural
network training.

Weight Decay reduces the weights regularly during the training. As a observation of
over-fitting cases, the weights usually have extremely large numbers for fitting every seen
data points. To this end, decaying the weights by L2 norm is often used to prevent large
weights as well as over-fitting. In practice, we multiply the sum of squares of weights
with so small number and this small number is called weight decay. This term is added
in loss term as presented in Equation D.18.

Loss = MSE(ŷ, y) + wd
∑
|w|2 (D.18)

where MSE is mean squared error as introduced previously, and it could be arbitrary
loss; wd is so called weight decay. In practice, it should be a very small number, e.g.
0.005.

Data Augmentation aims to augment training data. Training with more data is always
a good strategy for preventing over-fitting. However, training data is normally very
expensive. Thus, data augmentation, such as rotation, crop and rescale etc., is invented
to artificially generate more data.
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Dropout introduces randomness in the training. During training, a number of nodes
are randomly ignored or “dropped out”. By dropping, it refers to temporarily removing it
from the network, along with all its incoming and outgoing connections. To this end, this
makes the layer act like another layer with a different number of nodes and connectivity.
In effect, each update to a layer during training is performed with a different “view” of
the configured layer. By introducing randomness in the training with this way, dropout
can significantly prevent network from over-fitting.

D.2.6 Learning Rate Scheduler

Figure D.12: Learning Rates. Choosing the correct learning rates can significantly influence
training process [153].

During optimization, the learning rates are adapted as training steps, which can hugely
influence the training results. As showed in Figure D.12, having a good learning rate
decides the Learning rate scheduler, as its name suggests, is used to adjust the learning
rate. In this section, we introduce several commonly used learning rate schedulers. We
further show the curves of different learning rate schedulers in Figure D.13.

Constant Learning Rate Scheduler maintains the learning rate to be the same as its
initialized learning rate throughout the whole training procedure. In practice, it is the
default setup, if no learning rate scheduler is specified.

Exponential Learning Rate Scheduler decays the learning rate in a step-based fash-
ion. It reduces the learning rates by scales computed by a fixed hyper-parameter every
iteration, as presented in Equation D.19.

lr = lr0 · e−kt (D.19)
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Figure D.13: Learning Rate Schedulers [141]. X-axis denotes training epochs, and y-axis
demonstrates the change of learning rates.

where lr0 is the initialized learning rate; k is the hyper-parameter and t is the iteration
number.

Multi-Step Learning Rate Scheduler reduces the learning rate by scale s every n steps.
Hyper-parameters s and n need to be specified before training starts. This scheduler can
be seen as a piece-wise function of training step. In a specific range of training steps,
learning rate remains the same, and learning rate decays by a fixed ratio.

Cosine Learning Rate Scheduler reduces the learning rate in a cosine-like curve as
showed in Figure D.13. It is inspired by the observation that it is not so ideal to
decrease the learning rate too drastically in the beginning and in the end we might want
to “refine” the solution using a very small learning rate. This results in a cosine-like
schedule with the following functional form for learning rates.

lrn = lrN +
lr0 − lrN

2
(1 + cos(

πn

N
)), n ∈ (0, N) (D.20)

where n denotes the current training step, and N means the maximum training steps.
Thus, lr0 is the initialized learning rate, and lrN is the learning rate when training ends.
Notably, lr0 is bigger than lrN , as learning rate decays during the training.
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Warmup Learning Rate Scheduler increases the learning rate in the beginning phase
of training. As illustrated in Figure D.12, a large learning rate may lead to unstable
optimization problems, whereas a low learning rate could make the training process
extremely slow. To prevent divergence in the beginning as well as slow convergence, a
rather simple fix for this dilemma is proposed, namely a warmup period. In the start,
the learning rate increases to its initial maximum and then cool down until the end of
the optimization process. For simplicity, a linear increase can be adopted, and this leads
to a schedule of the form indicated in Figure D.13.
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BCE Binary Cross Entropy.
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CNNs Convolutional Neural Networks.
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SDF Signed Distance Field.
SfM Structure from Motion.
SGD Stochastic Gradient Descent.
SIFT Scale-Invariant Feature Transform.
SSC Semantic Scene Completion.
ST Spatial Transformer.
STNs Spatial Transformer Networks.
SVM Support Vector Machine.

TP True Positive.
TSDF Truncated Signed Distance Field.
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