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Abstract

The increase in data stored by cloud-based storage systems has led to a high demand
for efficient solutions for preserving its integrity and the users’ privacy. This work
investigates different concepts related to these problems, starting from codes with
locality properties. New results on the set of erasure patterns correctable by the
class of codes for grid-like topologies are obtained, along with a generic method for
adding global redundancy symbols. In an effort to facilitate efficient repair in terms of
both locality and required bandwidth, novel constructions of regenerating partial MDS
codes are introduced. Then, a new bounded distance decoder for the class of lifted
affine-invariant codes is introduced. Further, it is shown that this class can correct
almost all error patterns in the high-error regime.
The second part of this work analyzes the application of interleaving, a powerful

method for increasing the error decoding radius, to the popular class of alternant
codes. New upper and lower bounds on the probability of successfully decoding this
class of codes with the decoding algorithm by Schmidt et al. are derived, thereby
making it the only decoder for interleaved alternant codes for which such a theoretical
analysis is known.
Finally, new bounds on the rate of private information retrieval in the coded storage

setting are derived. The concepts of full support-rank and strongly linear PIR are
introduced and the respective capacities proved.

i





Acknowledgments

This dissertation is based on the work conducted during my time at the Institute for
Communications Engineering of the Technical University of Munich (TUM) in the
group for Coding and Cryptography led by Antonia Wachter-Zeh. I want to take this
opportunity to thank the many people that were part of the great journey I was allowed
to undertake these past years.
First and foremost, I would like to thank Antonia Wachter-Zeh for giving me this

opportunity, supporting my scientific and personal development, and providing a very
pleasant working environment. The many valuable discussion with Antonia con-
tributed significantly to the quality and presentation of the results in this work and I
greatly appreciate the freedoms I had scientifically, methodologically, and in the alloca-
tion of my time and efforts. Also, I am particularly grateful for the many conferences,
workshops, and seminars I was allowed to attend in various parts of the world, made
possible by the provided funding and encouragement to present any new results.
I am also very thankful to Camilla Hollanti for the fruitful collaborations, helpful

advice, and inviting me to Helsinki twice for a total of almost half a year. During
these visits she made sure that I always felt welcome and part of the group, which
made them great experiences, not only scientifically, but also personally. Many thanks
also go to Alexey Frolov for inviting me to Moscow for one month and the interesting
collaboration that ensued.
I would also like to thank Salim El Rouayheb for agreeing to be a reviewer of this

dissertation and Sebastian Steinhorst for serving as the committee chair.
For every project that filled the past four and a half years I was lucky enough to

work with fantastic, talented researchers. These collaborations ultimately led to the
results presented in this dissertation and shaped my own development as a researcher.
For that, I am deeply thankful to my co-authors Matteo Allaix, Hannes Bartz, Ragnar
Freij-Hollanti, Alexey Frolov, Masahito Hayashi, Camilla Hollanti, Stanislav Kruglik,
Jie Li, Hedongliang Liu, Alessandro Neri, Tefjol Pllaha, Rina Polyanskaya, Nikita
Polyanskii, Sven Puchinger, Johan Rosenkilde, Vladimir Sidorenko, Seunghoan Song,
Ilya Vorobyev, Antonia Wachter-Zeh, and Eitan Yaakobi.
Aside from the more directed efforts resulting in publications, I also learned a lot

from the frequent discussions, seminars, and meetings held at the institute and, in par-
ticular, within the group for Coding and Cryptography. These interactions sharpened
the tools required to tackle the problems presented in the following and I would like
to thank all members of the institute for that. Special thanks go out to my long-term

iii



office-mates Andreas Lenz and Julian Renner. Our many discussions, the conferences
we attended together, and the overall atmosphere in our office significantly contributed
to making the past years so enjoyable.
Last but certainly not least, I would like to thank my family and friends for support-

ing me and always lending an open ear. In particular, I am extremely grateful for the
encouragement and long-term support my parents, Barbara and Thomas Holzbaur,
have provided in all aspects of my life.

Lukas Holzbaur
Munich, December 2021

iv



Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Codes with Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Advances in Codes with Locality

3 Correctable Erasure Patterns in Product Topologies 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Regular Erasure Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Negative Results on Correctable Erasure Patterns . . . . . . . . . . . . 32
3.4 Connection between Product and Tensor-Product Codes . . . . . . . . 42
3.5 Global Redundancy s > 0 . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Summary and Open Problems . . . . . . . . . . . . . . . . . . . . . . . 47

4 Partial MDS Codes with Regeneration 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Regenerating Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 PMDS Codes with Nontrivial Global Regeneration . . . . . . . . . . . 56
4.4 PMDS Codes with Local Regeneration . . . . . . . . . . . . . . . . . . 64
4.5 Discussion and Comparison of PMDS Code Constructions with Local

Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Summary and Open Problems . . . . . . . . . . . . . . . . . . . . . . . 80

5 Decoding of Lifted Affine-Invariant Codes 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Bounded Distance Decoding . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 High-Error Randomized Decoding . . . . . . . . . . . . . . . . . . . . . 94
5.4 Summary and Open Problems . . . . . . . . . . . . . . . . . . . . . . . 100

v



Contents

6 Other Results on Codes with Locality 101
6.1 Error Decoding of Locally Repairable and Partial MDS Codes . . . . . 101
6.2 Lifted Reed–Solomon Codes and Lifted Multiplicity Codes . . . . . . . 102
6.3 Secure Codes with Accessibility for Distributed Storage . . . . . . . . . 103

II Decoding of Interleaved Alternant Codes

7 Decoding of Interleaved Alternant Codes 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Decoding Algorithms for Interleaved Alternant Codes . . . . . . . . . . 110
7.3 Technical Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . 116
7.4 The Success Probability of Decoding Interleaved Alternant Codes . . . 121
7.5 An Upper Bound on the Probability of Successful Decoding . . . . . . 124
7.6 Generalization of an Upper Bound on the Probability of Miscorrection . 127
7.7 Discussion and Numerical Results . . . . . . . . . . . . . . . . . . . . . 129
7.8 Summary and Open Problems . . . . . . . . . . . . . . . . . . . . . . . 137

III Private Information Retrieval

8 Towards the Capacity of PIR from Coded and Colluding Servers 141
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.3 Preliminary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.4 The Capacity of Linear, Full Support-Rank MDS-TPIR . . . . . . . . . 153
8.5 Capacity of MDS-coded TBSPIR for Schemes with Additive Randomness167
8.6 Strongly-Linear PIR Capacity . . . . . . . . . . . . . . . . . . . . . . . 171
8.7 Summary and Open Problems . . . . . . . . . . . . . . . . . . . . . . . 176

9 Other Results on PIR 179
9.1 Private Streaming with Convolutional Codes . . . . . . . . . . . . . . . 179
9.2 Computational Code-Based Single-Server Private Information Retrieval 180
9.3 Quantum Private Information Retrieval from Coded and Colluding Servers181

10 Conclusion and Outlook 183

vi



List of Figures

2.1 Lifted affine-invariant code. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Regularity property of erasure patterns. . . . . . . . . . . . . . . . . . . 33
3.2 Extension of regular erasure patterns to larger topologies. . . . . . . . . 41

4.1 DSS encoded with a locally MSR PMDS array code. . . . . . . . . . . . 55
4.2 Codeword structure of a universal PMDS code. . . . . . . . . . . . . . 71
4.3 Illustration of the local regeneration procedure. . . . . . . . . . . . . . 73
4.4 Comparison of the field sizes of different regenerating PMDS code con-

structions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Comparison of the field sizes of different regenerating PMDS code con-

structions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Comparison of the field sizes of different regenerating PMDS code con-

structions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Illustration of the different decoding events occurring in the local de-
coding of lifted affine-invariant codes. . . . . . . . . . . . . . . . . . . . 89

7.1 Majorization of a set of integers . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Comparison of the bounds on the success probability of decoding inter-

leaved alternant codes for different parameters. . . . . . . . . . . . . . . 132
7.3 Comparison of the bounds on the success probability of decoding inter-

leaved alternant codes for different parameters. . . . . . . . . . . . . . . 133
7.4 Comparison of the bounds on the success probability of decoding inter-

leaved alternant codes for different parameters. . . . . . . . . . . . . . . 134
7.5 Comparison of the bounds on the success probability of decoding inter-

leaved alternant codes for different parameters. . . . . . . . . . . . . . . 135

8.1 Rank properties of the Khatri-Rao product of matrices. . . . . . . . . . 155

vii



List of Tables

3.1 Correctable erasure patterns in different grid-like topologies. . . . . . . 31
3.2 Constructions of MR codes for different grid-like topologies. . . . . . . 31

4.1 Overview of the notation used in related works on regenerating and
PMDS codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Comparison of field sizes of locally MSR PMDS array code constructions. 79

7.1 Overview of the different bounds on the success probability of decoding
interleaved alternant codes. . . . . . . . . . . . . . . . . . . . . . . . . 130

8.1 Asymptotic PIR capacity results and conjectures. . . . . . . . . . . . . 145

viii



Abbreviations

BCH Bose–Ray-Chaudhuri–Hocquenghem
BD Bounded Distance
BMD Bounded Minimum Distance
DRGP Disjoint Repair Group Property
DSS Distributed Storage System
GRS Generalized Reed–Solomon
LRC Locally Recoverable Code
MBR Minimum Bandwidth Regenerating
MDS Maximum Distance Separable
ML Maximum Likelihood
MR Maximally Recoverable
MRD Maximum Rank Distance
MSR Minimum Storage Regenerating
PIR Private Information Retrieval
PMDS Partial Maximum Distance Separable
q-SC q-ary Symmetric Channel
RM Reed–Muller
RRC Rack-Aware Regenerating Code
RS Reed–Solomon
SD Sector-Disk
TP Tensor-Product

ix





Nomenclature

Basics

[a, b] Set of integers {i | a ≤ i ≤ b}
[b] Set of integers {i | 1 ≤ i ≤ b}
A Matrix
A[l, j] Element in l-th row and j-th column of A
A[l, :] l-th row of A
A[:, j] j-th column of A
A[I, :] Matrix A restricted to the rows indexed by I
A[:, I] or A|I Matrix A restricted to the columns indexed by I
ψβ(I) Mapping from thick columns I to corresponding columns
〈A〉row Row span of the matrix A
〈A〉col Column span of the matrix A
colsupp(A) The set of indices of nonzero columns of A
Ia The a× a identity matrix
u Vector
ui i-th element of the vector u
Zq Ring of integers mod q
Fq or F Finite field with q elements
F?q Multiplicative subgroup of Fq
Gr(Fnq , k) Set of k-dimensional subspaces of Fnq
I = {i1, i2, i3, . . .} Set
|I| Cardinality of set I
{{s1, s1, . . . , s2, . . .}} Multiset
supp(S) Underlying set of the multi-set S
δsiS Multiplicity of si in the multiset S
X Random variable
X ∼ Fq Random variable uniformly distributed over Fq
XI Set of random variables {Xj | j ∈ N}
supp(X) Set of realizations of X with nonzero probability
H(X) Entropy of random variable X
I(X;Y ) Mutual information of random variables X, Y

xi



List of Tables

Matrix and Vector Products

A ·B (Matrix) product
A×B Cartesian product
A⊗B Kronecker product
A ?B Hadamard / Star product
A�B Column-wise Khatri-Rao product
A ∗B Row-wise Khatri-Rao product
〈u,v〉 Inner product

Codes

C Code (set of vectors/matrices)
n Length of a code / number of servers
k Dimension of a code
dmin Minimum distance of a code
t Number of errors
〈C〉row Span of the elements of C
C×` `-fold Cartesian product of C, arranged as matrices
ACw Number of words of weight w in C, i.e., w-th weight enumerator

of code C
[n, k, dmin]q Linear code of length n, dimension k, and min. distance dmin

over Fq
[n, k, dmin; `]q Array code with ` rows
` Interleaving order
G Generator matrix
H Parity-check matrix
GRS(n, dmin,β,ν) GRS code of length n and distance d with (dual) code locators

β and dual column multipliers ν
G(n, dmin,β) Multiset of all GRS codes of length n and distance d with (dual)

code locators β
A(n, dmin,β) Multiset of all subfield subcodes of G(n, dmin,β)
Gab(n, dmin,β) Gabidulin code of length n and distance d with dual code loca-

tors β

Codes with Locality

n1 Number of rows / length of column code in grid-like topology
n2 Number of columns / length of row code in grid-like topology
b1 Number of erasures correctable in each column

xii



List of Tables

b2 Number of erasures correctable in each row
µ Number of local repair sets
W Partition of [n] into local repair sets
s Number of global parities
b Number of local parities in LRC or PMDS code
r Locality
% Local distance
nl Local length
PMDS(µ, nl, b, s,W) Partial MDS code
Tn1×n2(b1, b2, s) Grid-like topology
Cn1×n2(b1, b2, s) Set of all codes for the topology Tn1×n2(b1, b2, s)
CMR
n1×n2(b1, b2, s) Set of all MR codes for the topology Tn1×n2(b1, b2, s)

En1×n2(b1, b2, s) Set of all erasure patterns correctable in the topology
Tn1×n2(b1, b2, s)

Emax
n1×n2(b1, b2, s) Set of all maximal erasure patterns correctable in the topology

Tn1×n2(b1, b2, s)
E(a,b)
q Set of matrices E ∈ Fa×bq with at least one non-zero element in

each column

Lifted Affine-Invariant Codes

z Dimension of evaluation space of affine-invariant code
m Dimension of evaluation space of lifted affine-invariant code
{FzQ → Fq} Set of all functions mapping from FzQ to Fq
evFzQ(f(x)) Vector containing evaluations of f(x) in elements of FzQ
ϕV Mapping from element of z-dimensional subspace of FmQ to ele-

ment of FzQ
L(F) Set of functions corresponding to the lift of function set F
dF Minimum distance of code given by function set F
tF Number of errors correctable in code given by function set F
dlow Lower bound on minimum distance of code given by function

set L(F)
tlow Number of errors correctable according to lower bound dlow

PIR

n Number of servers
C [n, k] MDS storage code
m Number of files
α Subpacketization
X Matrix of random variables (files) with each entry X[l, j] ∼ F

xiii



List of Tables

X = {X1, . . . , Xm} Set of files with X l ∼ Fα×k
Xl File l interpreted as matrix of random variables
Y = X ·G Matrix of codewords stored in DSS
Y l Codewords corresponding to file l with supp(Y l) = C×α
Yl Codewords corresponding to file l interpreted as matrix
Y = {Y 1, . . . , Y m} Set of codewords corresponding to all files
Yj Part of Y stored on server j
β Number of thin columns per thick column / Number of iterations
b Number of adversarial servers
t Number of colluding servers
r Number of nonresponsive servers
α Number of stripes of each file
Q Set of query realizations supp(Q)
Qi = (Qi

1, . . . , Q
i
n) Query when the i-th file is requested

Qi
j Query sent to the j-th server when the i-th file is requested

Ai = (Ai1, . . . , Ain) Responses when the i-th file is requested
Aij Response from the j-th server when the i-th file is requested
S Vector space of shared randomness
S = (S1, . . . , Sn) ∈ Sn Randomness shared by the servers
Sj ∈ S Part of the shared randomness available to the j-th server

xiv



1
Introduction

In the seminal work of [Sha48] Shannon proposed a mathematical framework of com-
munications that went on to severely impact the technological world and shape what
is commonly referred to as the age of information. The use of channel codes, i.e., the
introduction of redundancy into a communication system, is shown to allow for com-
munication with vanishing probability of error over a variety of channels. Significant
effort has since been made to allow for ever more efficient communication at rates
approaching the theoretical limits and fulfilling the numerous requirements of differ-
ent communication systems. The most common approach of introducing redundancy
is mapping the information symbols, regarded as a vector over a finite field, to an
element of a linear subspace of longer vectors, called codewords, over the same finite
field. This set of viable codewords is referred to as the code and, if they form a linear
subspace, a linear code. The fundamental challenge of channel coding lies in achiev-
ing a favorable trade-off between the length of the codewords, number of information
symbols that can be mapped to each codeword, and some notion of distance between
all viable codewords, where the latter determines the resilience against error events
introduced by the respective channel.
One channel model that has received significant attention in the history of channel

coding is the erasure channel. Here, the channel output is given by the channel input
with some number of symbols replaced by a special erasure symbol that is not part of
the input alphabet. In other words, the values of a number of symbols are lost in po-
sitions known to the receiver. It is easy to see that these erasures are correctable if no
two codewords coincide in all nonerased positions. The metric that reflects this prop-
erty is the Hamming metric, defined as the number of positions in which two vectors
differ. For a code to provide a guarantee on the correctability of a specific number of
erasures its minimum distance, i.e., the minimum over the Hamming distance between
any pair of codewords, must exceed the number of erasures. Significant effort has
been made towards designing codes with large minimum distance and high rate result-
ing in codes such as Reed–Solomon (RS) [RS60], Bose–Ray-Chaudhuri–Hocquenghem
(BCH) [Hoc59; BRC60], Goppa codes [Gop70], and many more (see, e.g., [MS77;
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1 Introduction

Rot06]).

While the minimum distance of a code is an important parameter of a code, some
communication systems pose more involved challenges to the used code. Consider a
distributed storage system (DSS) consisting of multiple nodes, such as servers, hard
drives, or other storage media. A prime objective of any such system is to guarantee
the integrity of the stored data, which entails the necessity of protecting against the
loss of data when nodes fail, an event that is not uncommon if the number of nodes is
large. The simplest solution to address this issue is replication, where each data symbol
is stored multiple times on different nodes. However, this incurs a substantial storage
overhead directly proportional to the number of failed nodes the system is required
to resist . For this reason, (non-trivial) channel codes can now be found in real-world
systems, such as the RS codes employed in Facebook’s f4 storage system [MLR+14]
and the Google File System [Fik10]. By storing each symbol of a codeword on a
different node, a node failure now corresponds to the erasure of a symbol. The storage
overhead is then determined by the number of mapped information symbols over the
length of the codewords, referred to as the rate, and the guaranteed resilience against
node failures by the minimum distance. These are the primary characteristics that are
to be considered in the design of a storage code and the codes that achieve the optimal
trade-off between them are called maximum distance separable (MDS). Assuming each
node fails independently and with the same probability, employing a code of this class
maximizes the mean time to data loss, i.e., the expected time until a failure event
occurs that cannot be recovered.

However, as the number of storage nodes in DSSs grows, so does the frequency of
node failures. In classical codes, such as RS codes, a large number of nodes needs to be
involved in the recovery process, even if only a single node failed. To remedy this prob-
lem, codes with locality were introduced [CHL07; HSX+12; GHSY12; HCL13], which
allow for the recovery of a single or small number of nodes from only a small subset of
other nodes. This improvement comes at the cost of increased storage overhead for a
given minimum distance and considerable effort has been directed towards optimizing
various aspects of these locally recoverable codes (LRCs) [SAP+13; KPLK14; RKSV13;
BPSY16; BHH13; GHJY14; PD14; TB14a; SRV15]. A class of LRCs with particularly
strong erasure correction capabilities is given by partial MDS (PMDS) codes [CHL07;
HCL13; BHH13; GHJY14; BK15; BPSY16; CK16; HY16; GHK+17; HN20; GYBS18;
MPK19], which guarantee to correct any pattern of erasures that is theoretically cor-
rectable given the locality constraints or, in other words, maximize the mean time to
data loss in this setting. While these codes cover an important case of locality, real
world systems can rely on more involved constraints. For example, aside from an RS
code used to compensate failures within a data center, Facebook’s f4 storage system
also employs an additional code across data centers [MLR+14]. This generalization
of the concept of locality, referred to as the system’s topology, has also attracted the
attention of researches in recent years [GHSY12; GHK+17; SRLS18; KMG19; KLR19].
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Codes that are optimal with regard to a given topology, i.e., that are able to correct
any erasure pattern that is theoretically correctable given the topology constraints,
are referred to maximally recoverable (MR) codes.
Aside from the number of nodes involved in recovery, another major concern is the

amount of data traffic caused by these events. With storage capacity in the tera- or
even petabytes, this traffic can consume a lot of bandwidth on the interconnects in a
DSS. For example, in Facebook’s data warehouse cluster over 180 terabyte are trans-
ferred each day for compensating unavailable/failed nodes [RSG+13; RSG+14]. The
coding theoretic solution that addresses this problem are regenerating codes, as intro-
duced in the seminal work of [DGW+10]. These codes aim to minimize the required
repair bandwidth in the more likely case of a single or very few node failures and
an array of constructions under different models have been proposed [SR10; RSK11;
SRKR11; TWB12; PLD+12; KSP+13; CJM+13; GPV13; PYGP13; LC14; KK16b;
KGØ16; GFV17; YB17a; YB17b; SCM18; SCYM18; LTT18; HLSH19; HLH20].
Another type of channel event, referred to as a substitution error or simply error, is

the replacement of a number of symbols of the channel input by some other symbol of
the code alphabet. While the notion of locality fulfilled by LRCs and PMDS codes has
received a lot of attention in recent years due to its applicability to DSSs, locality prop-
erties are not only beneficial for erasure correction, but also have a long history in error
correction. Early error-decoding algorithms, such as the majority logic decoding algo-
rithm for Reed–Muller (RM) codes [MS77, Ch. 13], rely on linear dependencies within
many disjoint subsets of codeword positions. The number of such disjoint sets allow-
ing for the recovery of a specific symbol is referred to as the availability of the code.
Lifted affine-invariant codes are a class of codes that naturally provides strong locality
and availability properties. Well-known examples include lifted RS [GKS13; Guo15;
PV19] and lifted multiplicity codes [KSY14; Wu15; LW19], which can be viewed as
generalizations of q-ary RM codes [DGMW70; KLP68; MCJ73]. For some parameter
regimes, these classes include the best known constructions of batch codes [IKOS04]
and codes with the disjoint repair group property (DRGP) [LW19].
However, exploiting the locality and availability properties of a code is only one of

many possibilities to provide efficient decoding algorithms. Building on their alge-
braic structure, many codes without these properties can be decoded up to half their
minimum distance or even beyond, when allowing for a small failure probability or
a nonunique result. Interestingly, considering codes consisting of codeword matrices,
where each row is a codeword of a linear code, can provide significant benefits in this
context, in particular in systems with parallel transmission or where errors occur in
bursts. Different instances of this class of codes, commonly referred to as interleaved
codes, have been studied extensively [MK90; HV00; KL97; BKY03; BMS04; SSB09b;
Nie13; YL18; CS03; PV04; Par07; SSB07; CH13; WZB14; PR17]. These results
show that interleaving can allow for decoding of a very large number of errors with
high success probability. A theoretical analysis of this success probability, however,
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1 Introduction

poses a difficult problem and in some cases it is still necessary to rely on simulation
results [CS03; PV04; Par07; SSB07; CH13; WZB14; PR17].
While channel codes can provide resilience against data loss in the event of errors

or node failures, this is not the only concern in modern DSSs. As the amount of data
stored in these systems increases, so does the concern for the privacy of that data.
However, not only the data itself, but also knowledge of which files are requested
by a given user can be delicate information. The obvious approaches to resolve this
privacy concern are to hide the content of the files or the user’s identity from the
storage system. However, in settings where the data is offered by the storage system,
as commonly the case with, e.g., movies or stock market prices, the former is not an
option. Further, if the service is not publicly accessible, the required authentication
eliminates the latter as an option. These shortcomings motivate the problem of private
information retrieval (PIR), where only the identity of the requested file is hidden. The
initial study of this problem by Chor et al. [CGKS95] was followed by considerable
advances regarding the derivation of the maximal achievable information rate [SJ17;
BU18; SJ18b; HKS18; HGK+18; SJ18c; WS17b; WS17a; WS17c; WS19; FGH+19;
KLRA19] and practical PIR schemes [TGE18; TGK+19; FGHK17; DE19; ZTSL20;
LKH20; TSC19; ZYQT19], particularly in recent years.

1.1 Outline
This work explores several aspects of coding theory, which can be roughly divided into
the three areas of codes with locality, interleaved codes, and PIR.
To begin, Chapter 2 first introduces the notation used in this work and then proceeds

to give formal definitions of concepts required in the following chapters. With these
preliminaries established, we move on to the core of the dissertation.
Part I investigates different aspects of codes with locality, with a focus on maximally

recoverable codes. This part consists of four chapters. Chapter 3 considers MR codes
for grid-like topologies and shows that a previous conjecture on the set of erasure
patterns correctable by codes of this class is false. We then introduce a generic method
of adding global redundancy symbols to any MR code. Chapter 4 proposes the first
known construction of PMDS codes with regenerating properties. First, we consider
global regeneration, where the code obtained from puncturing the local redundancy in
an PMDS code is an optimal regenerating code. Then, we turn to constructing PMDS
codes with local regeneration, i.e., PMDS codes where each local code is an optimal
regenerating code. While the focus in Chapter 3 and Chapter 4 was on the (efficient)
correction of erasures, Chapter 5 considers error decoding in the class of lifted affine-
invariant codes. We introduce a new bounded minimum distance decoder that is
guaranteed to succeed if the number of errors is less than half of an asymptotically
tight bound on the distance. Then, we show that lifted affine-invariant codes can
correct errors of very high weight with vanishing probability of decoding failure. We
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1.1 Outline

conclude this part of the dissertation by briefly recalling some other results on codes
with locality in Chapter 6.
Part II considers the decoding of interleaved alternant codes. First, we recall a

known algorithm for the decoding of interleaved RS codes, which also applies to in-
terleaved alternant codes. The focus of Chapter 7 is then on deriving the first known
lower bounds on the success probability of this decoder, when applied to interleaved al-
ternant codes. To complement these lower bounds and to evaluate their performance,
we further introduce an upper bound on the probability of successful decoding.
Part III explores different notions of PIR, focusing on the setting with coded storage

and colluding nodes. The main result of Chapter 8 is the derivation of the capacity
for an important subclass of linear schemes in this setting, which includes all known
schemes that are flexible in terms of the applicable system parameters. Further, we
derive the capacity for two more subclasses of PIR schemes. Finally, Chapter 9 provides
a brief overview of other new results on PIR.

5





2
Preliminaries

This chapter formally introduces and briefly reviews the main concepts treated in this
work.

2.1 Notation
Denote the set of integers [a, b] := {i | a ≤ i ≤ b} and write [1, b] = [b]. The cardinality
of a set S = {s1, s2, . . .} is denoted by |S|. For a multiset S = {{s1, s1 . . . , s2, s2, . . .}}
denote by δsiS the multiplicity of si in S and by supp(S) the (non-multi) set of elements
in S. For sets I,J denote by I ×J = {(i, j) | i ∈ I, j ∈ J } their Cartesian product.
Consider an a × b matrix A. For integers i ∈ [a] and j ∈ [b] denote by A[i, j] the

element in row i and column j. Similarly, for sets I ⊆ [a] and J ⊆ [b] the submatrix
obtained from restricting the matrix A to the rows/columns indexed by I and J ,
respectively, is given by A[I,J ]. To restrict to a given subset of rows write A[I, :]
and for the restriction to a subset of columns A[:,J ] or A|J . For the linear span of
the rows/columns of A write 〈A〉row and 〈A〉col, respectively. The transpose of A is
denoted A>. The set of indices of the non-zero columns of A is denoted by colsupp(A).
Write diag(A1,A2, . . . ) to denote the block diagonal matrix with matrices A1,A2, . . .
on the diagonal. By slight abuse of notation, write diag(a) for the diagonal matrix
with the entries of the vector a on the main diagonal.
Write 0b and 1b to denote the all-zero and all-one vector of length b.
For a prime power q, the finite (extension) field of size q is denoted by Fq and its

multiplicative subgroup by F?q := Fq \ {0}. If the field size q is not of interest, it is
omitted from the notation. For an element α ∈ F denote its order, i.e., the smallest
non-zero integer i such that αi = 1, by order(α). The ring of s-variate polynomials
in the variables x = (x1, . . . , xs) with coefficients in Fq is denoted by Fq[x1, . . . , xs] or
Fq[x]. For the ring of integers modulo q, write Zq.
Write Fnq for the vector space consisting of all length n vectors over Fq. Similarly,

the matrix space of all a× b matrices over Fq is denoted Fa×bq .
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2 Preliminaries

The dimension of a linear subspace V ⊆ Fnq is denoted by dimq(V). The field size q
is omitted if obvious from context. The set of all linear subspaces of Fnq of dimension
k, i.e., the Grassmannian, is denoted by Gr(Fnq , k). The number of such subspaces is
given by the Gaussian binomial coefficient

[
n
k

]
q

=


(1−qn)(1−qn−1)...(1−qn−k+1)
(1−q)(1−q2)...(1−qk) , k ≤ n,

0, k > n.

For a random variable X denote the set of realizations with non-zero probability by
supp(X). If X is uniformly distributed over supp(X), write X ∼ supp(X). For a set
of integers I denote XI = {Xj | j ∈ I}. The expected value of a random variable X
is denoted E(X).

The indicator function is defined to be

1{statement} :=
1, if statement is true,

0, if statement is false.

2.1.1 Vector and Matrix Multiplication

In the following chapters several different notions of matrix products are used. For
completeness, we introduce them here and restate some known results on their relation.

Regular matrix/vector/scalar product: For A ∈ Fm×n and B ∈ Fn×n′ we have

A ·B =


〈A[1, :],B[:, 1]〉 〈A[1, :],B[:, 2]〉 · · · 〈A[1, :],B[:, n′]〉
〈A[2, :],B[:, 1]〉 〈A[2, :],B[:, 2]〉 · · · 〈A[2, :],B[:, n′]〉

...
...

. . .
...

〈A[m, :],B[:, 1]〉 〈A[m, :],B[:, 2]〉 · · · 〈A[m, :],B[:, n′]〉

 ∈ Fm×n′ ,

where the inner product between two vectors is

〈A[i, :],B[:, j]〉 =
n∑
l=1

A[i, l] ·B[l, j] .

If obvious from context, we omit the · symbol.
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Star-product / Hadamard product: For A ∈ Fm×n and B ∈ Fm×n we have

A ?B =


A[1, 1] ·B[1, 1] A[1, 2] ·B[1, 2] · · · A[1, n] ·B[1, n]
A[2, 1] ·B[2, 1] A[2, 2] ·B[2, 2] · · · A[2, n] ·B[2, n]

...
...

. . .
...

A[m, 1] ·B[m, 1] A[m, 2] ·B[m, 2] · · · A[m,n] ·B[m,n]

 ∈ Fm×n .

Kronecker product: For A ∈ Fm×n and B ∈ Fm′×n′ we have

A⊗B =


A[1, 1] ·B A[1, 2] ·B · · · A[1, n] ·B
A[2, 1] ·B A[2, 2] ·B · · · A[2, n] ·B

...
...

. . .
...

A[m, 1] ·B A[m, 2] ·B · · · A[m,n] ·B

 ∈ Fmm′×nn′ .

Column-wise Khatri-Rao product [KR68]: For A ∈ Fm×n and B ∈ Fm′×n we
have

A�B =
(
A[:, 1]⊗B[:, 1] A[:, 2]⊗B[:, 2] · · · A[:, n]⊗B[:, n]

)
∈ Fmm′×n .

Row-wise Khatri-Rao product / face-splitting product [KR68; Sly97]: For
A ∈ Fm×n and B ∈ Fm×n′ we have

A ∗B =


A[1, :]⊗B[1, :]
A[2, :]⊗B[2, :]

...
A[m, :]⊗B[m, :]

 ∈ Fm×nn′ .

For sets of vectors (codes) define

〈A〉row ? 〈B〉row := 〈{a ? b | a ∈ 〈A〉row ,b ∈ 〈B〉row}〉row
〈A〉row � 〈B〉row := 〈{a � b | a ∈ 〈A〉row ,b ∈ 〈B〉row}〉row
〈A〉row ⊗ 〈B〉row := 〈A⊗B〉row .

It is easy to check that these properties are independent of the choice of the bases A
and B of the respective row spaces.
The following proposition collects some well-known properties of the introduced

matrix products.

Proposition 2.1 (See, e.g., [Sly97] and [HJ91, Lemma 4.2.10.]). Consider matrices
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A,B,C,D and a row vector z. Then it holds that

(A ·B) ? (C ·D) = (A ∗C) · (B�D) (2.1)
(A ·B)⊗ z = A · (B⊗ z) (2.2)

〈A〉row ? 〈B〉row = 〈A�B〉row = 〈A〉row � 〈B〉row . (2.3)

For A ∈ Fm×n we have

1m · (A ∗ Im) (2.4)
=
(
A[1, 1],A[2, 1], . . . ,A[m, 1],A[1, 2],A[2, 2], . . . ,A[m, 2], . . . ,A[m,n]

)
∈ F1×mn ,

where Im denotes the m×m identity matrix. Moreover, if the matrix A is uniformly
distributed over Fk×m, then 1m · (A ∗ Im) is uniformly distributed over F1×km.

2.2 Linear Codes
By its most general definition, a code is simply a set of elements. However, most
literature on coding theory considers codes where these elements, called codewords,
are vectors of equal length n over a given field, also referred to as scalar codes. If this
subset is a k-dimensional linear subspace of Fnq , the code is linear and we denote it by
[n, k]q or [n, k], if the field size is obvious from context or not of interest.
Consider a basis of a k-dimensional subspace/code, i.e., a set of k codewords that

spans the code. A matrix G ∈ Fk×nq that contains such a basis as its rows is called a
generator matrix and the code is given by

C = {u ·G | u ∈ Fkq} .

Here, the vector u is commonly referred to as the message vector and the mapping
c = u ·G as the encoding of the message. As each linear subspace has a unique dual
space, the code can equivalently be described by

C = {c | c ∈ Fnq , c ·H> = 0} ,

where the rows of H form a basis of the dual space of C, also referred to as the dual
code C⊥.
The desired properties of a code depend on the metric under consideration. In this

work, we only consider the Hamming metric. The Hamming weight of a vector c ∈ Fnq
is the number of non-zero positions

wt(c) = | colsupp(c)| .

For two vectors c, c′ ∈ Fnq their Hamming distance is defined to be the number of
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positions in which the vectors differ and formally given by

dH(c, c′) = | colsupp(c− c′)| .

As we only consider the Hamming metric in the following, we simply write weight and
distance, respectively. A code parameter of particular interest in coding theory is the
minimum distance of a linear code C, i.e., the minimal number of positions in which
any two codewords differ, formally defined to be

dmin = min
c,c′∈C
c 6=c′

dH(c, c′) = min
c∈C\{0}

wt(c) ,

where the second equality holds by linearity of the code. When the minimum distance
is of interest and not obvious from context, it is include it in the notation and we
write [n, k, dmin] to denote a corresponding linear code. In the asymptotic analysis
of codes one commonly considers the behaviour of the distance relative to the code
length dmin/n, also referred to as the relative or normalized distance.
Generally, it is advantageous for the minimum distance to be as high as possible.

There is a substantial body of work investigating the bounds on the minimum distance
given the other code parameters. The bound of highest importance for this work is
the Singleton bound (cf. [MS77, Chapter 17]), which states that for any [n, k, dmin]
code it holds that

dmin ≤ n− k + 1 . (2.5)
Codes that attain this bound with equality are called maximum distance separable
(MDS) codes. One interesting property of MDS codes is that the number of codewords
of Hamming weight w in any MDS code C, i.e., its weight enumerators

ACw := |{c | wt(c) = w, c ∈ C}| ,

are completely determined by its length and distance.

Theorem 2.1 (Weight Enumerators of MDS Codes [MS77, Ch. 11, Theorem 6]). Let
C be an [n, k, dmin]q MDS code. The w-th weight enumerator AMDS

w of C is

ACw =
1, if w = 0,(

n
w

)∑w−dmin
j=0 (−1)j

(
w
j

)
(qw−dmin+1−j − 1), else.

To emphasize the fact that the values of ACw are independent of the specific MDS
code C, we simply write AMDS

w in the following.
MDS codes are known to exist for any combination of length n and dimension k,

however, only if the field size is sufficiently large1. To remedy this shortcoming, a
1Extended RS codes are MDS, exist for any prime power q, and require q ≥ n− 1. Determining the
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multitude of bounds also takes the field size into account. Among the best known are
the Elias, Griesmer, Hamming, Linear Programming, and Plotkin bound. For the sake
of brevity, we do not recall these bounds here, but instead refer the interested reader
to [MS77, Chapter 17].
In storage applications, which are the focus of this work, it is common to consider

a generalization of scalar codes where the elements are matrices, all with the same
number of rows and columns, instead of vectors. In other words, these array codes2

are subsets of F`×nq . The parameter ` is also referred to as the subpacketization of the
code. Note that the definition of the length, dimension, weight, and distance as given
above also translate to this setting, with the only difference being that we consider
columns of the codeword matrices in place of the positions of the codeword vectors of
scalar codes. We denote these codes by [n, k, dmin; `]q. Again, if the minimum distance
dmin and/or the alphabet size q are not of interest or clear from context, we write
[n, k; `], [n, k, dmin; `], or [n, k; `]q, respectively.
For an [n, k, dmin; `] code C and a set of integers I ⊆ [n] we write C|I for the code

obtained by restricting each codeword C ∈ C to the positions/columns indexed by I,
i.e., C|I = {C|I | C ∈ C}.

2.2.1 Erasure Correction
The main purpose of linear codes is to correct errors and/or erasures that occurred
during the transmission over some channel. When erasures occur in specific positions
of a codeword, these (columns of) symbols are replaced by an erasure symbol, which
we denote by T. Clearly, a code C can correct a set of erasures E ⊂ [n], also called
erasure pattern, if and only if there do not exist two (or more) codewords that coincide
in all non-erased (or surviving) positions [n] \ E . As any two codewords differ in at
least dmin positions, a code of minimum distance dmin therefore guarantees to correct
any combination of up to |E| ≤ dmin − 1 erasures, independent of their positions in
the codeword. However, this is only a sufficient condition for correctability, not a
necessary one. In general, an erasure pattern is correctable if the mapping from the
message u ∈ Fkq to the surviving positions, given by c|[n]\E = u·G|[n]\E , is still injective,
where G denotes a generator matrix of the code C. It is easy to see that this is the
case if and only if the submatrix G|[n]\E is of full rank k. The minimal sets of columns
for which this holds, i.e., the sets I ⊂ [n] with |I| = k such that rank(G|I) = k, are
called information sets of the code C. Consequently, in order to show that a code can
correct a given erasure pattern, it suffices to show that the complement of this pattern

field size q for which an MDS code exists for a given n and k is one of the big open problems in
coding theory referred to as the MDS conjecture, which was posed in [Seg55].

2In the literature, these codes are also referred to as vector codes. This term stems from the fact that
in storage applications each node commonly stores a column of a given codeword and therefore,
from the perspective of a single node, codes where the codewords are matrices/arrays imply storing
a vector. To avoid this misleading term, we only refer to these codes as array codes in this work.
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contains an information set of the code. A similar condition for the correctability of
an erasure pattern can be given in terms of the dual code C⊥ and the parity check
matrix H. By simple linear algebra arguments, it is easy to show that the erased
positions are only correctable if they contain an information set of the dual code, i.e.,
rank(H|E) = n− k.
We formally define two operations on linear codes that are particularly useful in the

context of erasure correction.

Definition 2.1. Let C be an [n, k] code and I ⊆ [n] be a set of integers. Define the
shortening operator as

shortI(C) = {c|[n]\I | c ∈ C, c|I = 0|I|}

and the puncturing operator as

punctI(C) = {c|[n]\I | c ∈ C} .

The duality of the shortening and puncturing operations is well-known, namely, for
any given set I ⊂ [n] it holds that shortI(C)⊥ = punctI(C⊥). Note that in our notation
we have punctI(C) = C|[n]\I .

2.2.2 Error Decoding
In contrast to erasures, the main difficulty when considering errors is that their position
is generally unknown. Assume a codeword c of a q-ary code C is transmitted over a
channel that introduces errors, i.e., corrupts some number of positions (columns) of the
codeword. The output of this channel, or received word, can be written as r = c + e,
where the support of e gives the set of error positions. In this case, the receiver is
interested in decoding this received word, i.e., determining the codeword that is most
likely to be the transmitted codeword. Assuming that the transmitted codeword c is
drawn from the code C uniformly at random, the decoder that optimally solves this
problem is called maximum likelihood (ML) decoder [MS77, Chapter 1]. For the q-ary
symmetric channel (q-SC) with ε < q−1/q, where each position of e is either 0 with
probability 1− ε or any other field element α ∈ F?q with probability ε/q−1, the result of
an ML decoder is well-known to be

c′ = arg min
c′∈C

(dH(c + e, c′)) .

We say the code can correct the error e uniquely if c′ = c. From a purely mathematical
perspective, an ML decoder optimally solves the decoding problem under the given
constraints. However, actually finding an efficiently implementable ML decoder for a
given code is extremely difficult. To circumvent these difficulties and allow for practical
algorithms to be designed, the problem can be relaxed. One such relaxation, that is
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of particular interest for this work, is bounded minimum distance (BMD) decoding.
There, given a code of minimum distance dmin, the decoder corrects any error up to
weight wt(e) = bdmin−1/2c, also referred to as the unique decoding radius of the code.
Since any two codewords of this code differ in at least dmin positions, an error of this
weight is guaranteed to be correctable. Efficient BMD decoders exist for many classes
of linear codes, however, note that this is generally not a simple problem and it is
unknown how to efficiently decode a random linear code up to its unique decoding
radius. In fact, a whole branch of cryptography is based on the assumption that
this is a hard problem and cryptographic schemes, such as the well-known McEliece
cryptosystem [McE78], rely on this hardness assumption.
While BMD decoding has the advantage of providing a decoding guarantee, it is

limited to half the minimum distance. One approach to remedy this is list decoding.
Here, the decoding radius is increased beyond the unique decoding radius and the goal
of the decoder is to return a list of all codewords that are within this extended radius.
Hence, as long as the number of errors that occurred is below the list decoding radius,
the correct codeword will be in this list. Formally, a q-ary code of length n is called
(τ, L)-list-decodable if the Hamming sphere of radius τ centered at any vector v ∈ Fnq
always contains at most L codewords c ∈ C. One question of interest in this context
is the maximal radius that still guarantees to result in a list of size polynomial in
the code length. Interestingly, it has been shown that any linear [n, k, dmin]q can be
decoded up to the q-ary Johnson radius [Joh62; Bas65].

2.2.3 Interleaved Codes
One class of codes that will be of particular interest in Chapter 7 are array codes
where each row of the codeword array is a codeword of the same Fq-linear code. In
other words, codes of this class, also referred to as homogeneous interleaved codes, are
direct sums of a constituent code.

Definition 2.2 (Homogeneous Interleaved Code [MK90; KL97]). Let C be a linear
[n, k, dmin]q code and ` ∈ N. The corresponding `-interleaved code is defined to be

IC[n, k, dmin; `] := C×` = {C | C[i, :] ∈ C ∀i ∈ [`]} .

The parameter ` is referred to as the interleaving order and the code C as the con-
stituent code.

The great advantage of this class of codes is that it allows for efficient decoding
algorithms that correct errors beyond the unique decoding radius, where the number
of errors is given as the number of corrupted columns of the codeword array. We note
that in coding theory literature errors and erasures are more commonly defined as the
corruption/erasing of a symbol of the base field Fq instead of a column. However,
there are many practical motivations for considering this type of error, also referred
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to as a “burst errors”, such as replicated file disagreement location [MK90], data-
storage applications [KL97], suitable outer codes in concatenated codes [MK90; KL98;
HV99; JTH04; SSB05; SSB09b], ALOHA-like random-access [HV99], decoding scalar
codes beyond half-the-minimum distance by power decoding [SSB10; Kam14; Ros18;
PRB19], and recently code-based cryptography [EWZ18; HLPW19].
One decoder that allows for increasing the decoding radius by collaboratively decod-

ing the rows of an interleaved codes, was introduced in [MK90], rediscovered in [HV99],
and generalized in [HV00; RV14]. The remarkable property of this algorithm is that
it can be applied to decode up to t ≤ dmin − 2 errors in an interleaved codes with
an arbitrary constituent code C with high probability, provided that the interleaving
order is sufficiently large.
Other decoding algorithms for interleaved codes can also be applied in settings with

smaller interleaving order, however, only for specific classes of constituent codes. The
first such algorithm was given in [KL97] for interleaved RS codes and corrects up
to /̀`+1(n − k) errors. Since then, many decoders with better complexity and larger
decoding radius, as well as some bounds on the probability of decoding failure have
been derived [BKY03; CS03; PV04; BMS04; Par07; SSB07; SSB09b; CH13; Nie13;
WZB14; PR17; YL18]. Other code classes that have been considered as constituent
codes of interleaved codes are one-point Hermitian codes [Kam14; PRB19] and, more
generally, algebraic-geometry codes [BMS05].
One interesting property of homogeneous interleaved codes is that they can also be

viewed as codes over a larger field with the same parameters.

Corollary 2.1. Let {γ1, . . . , γ`} be a basis of Fq` over Fq and C be an [n, k, dmin]q.
Then the code {

(γ1, . . . , γ`) ·C | C ∈ C×`
}
' 〈C〉F

q`

is an [n, k, dmin]q` code.

To simplify the notation when considering errors in interleaved codes, we denote by
E(a,b)
q the set of matrices E ∈ Fa×bq with at least one non-zero element in each column.

Note that the matrices Ẽ with | colsupp(Ẽ)| =: t fulfill Ẽ|colsupp(Ẽ) ∈ E(`,t)
q . Further,

the set obtained by mapping such matrices to the corresponding vectors ẽ ∈ Fnq` by
the bijective mapping F`×nq 7→ Fnq` as in Corollary 2.1, is the subset of all vectors of
weight exactly t. Specifically, for an arbitrary basis {γ1, . . . , γ`} of Fq` over Fq we have

{(γ1, . . . , γ`) · Ẽ | Ẽ ∈ F`×nq , Ẽ|colsupp(Ẽ) ∈ E(`,t)
q } = {ẽ | ẽ ∈ Fnq` ,wt(ẽ) = t} .

Corollary 2.1 applies to arbitrary constituent codes. However, if the constituent
codes are RS codes, the statement can be refined, as in this case, it is well-known that
the resulting code is also an RS codes (cf. [SSB08]) with the same evaluation points,
which are in a subfield Fq of the interleaved code’s field Fq` .
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2.2.4 Generalized Reed–Solomon Codes
Generalized Reed–Solomon (GRS) codes are a particularly popular class of MDS codes
that is easy to construct, can be efficiently decoded, acts well as a constituent code
of interleaved codes, and possesses many more desirable properties. There are several
different possibilities to define GRS codes, below we collect those required in this work.

Definition 2.3 (Generalized Reed–Solomon Codes [MS77, Chapter 10]). For positive
integers n and dmin, let β ∈ Fnq be a vector of distinct code locators and ν ∈ (F?qm)n
be a vector of column multipliers. We define an [n, k = n − dmin + 1] generalized
Reed–Solomon code GRS(n, dmin,β,ν)qm as

GRS(n, dmin,β,ν)qm := {c ∈ Fnqm | H · diag(ν) · c> = 0} ,

with

H =


1 1 . . . 1
β1 β2 . . . βn
...

...
...

βdmin−2
1 βdmin−2

2 . . . βdmin−2
n

 ∈ F(dmin−1)×n
qm .

Equivalently, the code is defined by

GRS(n, dmin,β,ν)qm := {(ν̂1f(β1), ν̂2f(β2), . . . , ν̂nf(βn))
| f(x) ∈ Fqm [x], deg(f(x)) < n− dmin + 1}

with (cf. [Rot06, Problem 5.7])

ν̂i = ν−1
i

∏
j∈[n]
j 6=i

(βi − βj)−1, i ∈ [n] .

Denote by G(n, dmin,β)qm the multi-set

G(n, dmin,β)qm = {{GRS(n, dmin,β,ν)qm | ν ∈ (F?qm)n}} .

If the specific choice of the column multipliers ν, the code locators β, and/or the field
size qm are not important, we omit them and write GRS(n, dmin,β) or GRS(n, dmin),
respectively. GRS codes are well-known to be MDS, i.e., they fulfill the Singleton
bound, as given in Eq. (2.5), with equality.

2.2.5 Alternant Codes
By design, GRS codes must be defined over fields Fqm with qm ≥ n. In many appli-
cations it is desirable to work with codes of smaller field size, which can be obtained,
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e.g., by taking subcodes of codes defined over larger fields.

Definition 2.4 (Subfield Subcode). Let C be an [n, k, dmin]qm code. We define the
Fq-subfield subcode of C as

C ∩ Fnq = {c | c ∈ C, ci ∈ Fq ∀ i ∈ [n]} .

Equivalently, let H ∈ F(n−k)×n
qm be a parity check matrix of C. Then C ∩ Fnq is given by

the Fq kernel of H, i.e.,

C ∩ Fnq = {c | H · c> = 0, c ∈ Fnq } .

A class of subfield subcodes that has received considerable attention is that of sub-
field subcodes of GRS codes.

Definition 2.5 (Alternant Code [MS77, Ch. 12.2]). The subfield subcode of a GRS
code is referred to as an alternant code. For a fixed set of code locators β as in
Definition 2.3 and designed distance dmin, we define the multi-set of alternant codes as

A(n, dmin,β) = {{C ∩ Fnq | C ∈ G(n, dmin,β)}} .

Note that the parameter dmin is not (necessarily) the actual minimum distance of
the alternant code. In fact, for specific alternant codes it is known that the distance
is larger (see Remark 2.1). However, it serves as a lower bound that applies to all
alternant codes obtained by taking subfield subcodes of the codes in G(n, dmin,β).
We define A(n, dmin,β) as a multiset, since the multiplicities will be important in

the following. One further advantage is that for a given code length n, we know its
cardinality to be

|A(n, dmin,β)| = |G(n, dmin,β)| = (qm − 1)n . (2.6)

For GRS codes it is known [Del75] that for a fixed set of code locators β, it holds
that GRS(n, dmin,β,ν) = GRS(n, dmin,β,ν

′) if and only if ν ′ is an Fqm-multiple of ν,
i.e., any code C ∈ G(n, dmin,β) occurs with multiplicity exactly δCG(n,dmin,β) = qm − 1
in G(n, dmin,β). This gives a lower bound on the multiplicity of alternant codes by

δAA(n,dmin,β) ≥ qm − 1 ∀ A ∈ A(n, dmin,β) . (2.7)

We give some general well-known bounds on the dimension of the Fq-subcode of an
Fqm-linear code C in terms of the parameters of C.

Lemma 2.1. Let C be an [n, k, dmin]qm code. Then

max{n−m(n− k), 0} ≤ dimq(C ∩ Fnq ) ≤ min{k, kopt.
q (n, dmin)} ,
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where kopt.
q (n, dmin) is an upper bound on the dimension of a q-ary linear code of length

n and minimum distance dmin.

Proof. The lower bound of 0 is trivial. The lower bound of n−m(n− k) follows from
expanding the n− k rows of any parity-check matrix of C over some basis of Fqm over
Fq. The resulting m(n − k) × n matrix is a parity check matrix of the Fq-subcode of
C ∩ Fnq and the bound follows.
The upper bound of kopt.

q (n, dmin) follows from the fact that the distance of the code
C ∩Fnq is at least that of C. Finally, if elements in Fnq are Fq-linearly independent, then
they are also Fqm-linearly independent for every extension field Fqm of Fq. Therefore,
dimq(C ∩ Fnq ) ≤ k.

Remark 2.1 (Dimension vs. Distance of Binary BCH and Wild Goppa Codes). Wild
Goppa codes [SKHN76; Wir88], which include binary square-free Goppa codes [Gop70;
Gop71; Ber73], are a subclass of Goppa Codes. Along with BCH codes [Hoc59; BRC60],
Goppa codes are the best known class of alternant codes, due to their good distance prop-
erties. Now, consider the binary BCH and q-ary wild Goppa codes that are subfield
subcodes of a GRS code in G(n, dmin,β) for some β and dmin.
For binary BCH codes, it is well-known (cf. [MS77, Ch. 7]) that their dimension is

kBCH ≥ n−mn−k
2 , for length n and dimension k := n− dmin + 1 of the corresponding

GRS code. Therefore, the dimension of binary BCH codes exceeds the generic lower
bound of Lemma 2.1.
Wild q-ary Goppa codes on the other hand are often considered as alternant codes

of A(n, dmin,β), but with an increased minimum distance dGoppa ≈ q
q−1dmin. How-

ever, for the purpose of this work it is more convenient to view them as alternant
codes of A(n, dGoppa,β) with a larger dimension than guaranteed by the lower bound in
Lemma 2.1 instead of alternant codes in A(n, dmin,β) with increased distance. This is
possible as the improvements of wild Goppa codes compared to other alternant codes
can be shown by proving an equivalence between the Goppa codes obtained from differ-
ent Goppa polynomials (cf. [SKHN76], [BLP11, Theorem 4.1]), which directly implies
that CGoppa ∈ A(n, dmin,β) ∩ A(n, dGoppa,β) for dGoppa > dmin. Clearly, the “good” dis-
tance follows immediately from the code being in A(n, dGoppa,β), while the dimension
can be shown to be large by applying the lower bound of Lemma 2.1 corresponding to
A(n, dmin,β).

2.2.6 Gabidulin Codes
Another well-known class of evaluation codes, which is closely related to GRS codes,
is known as Gabidulin codes [Del78; Gab85; Rot91]. These codes are most popular
for being of maximum rank distance (MRD), the equivalent to the MDS property in
the rank-metric. However, they also possess properties that make them attractive for
constructions in the Hamming metric, as will be evident in Chapters 3 and 4.
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Definition 2.6 (Gabidulin codes). Let n and dmin be positive integers and β =
(β1, . . . , βn) ∈ FnqM be such that the βi are linearly independent over Fq. The [n, k, dmin]qM
Gabidulin code Gab(n, dmin,β)qM is defined to be

Gab(n, dmin,β)qM =
{
c | c ·H> = 0, c ∈ FnqM

}
with

H =


β1 β2 · · · βn
βq

1

1 βq
1

2 · · · βq
1
n

...
...

...

βq
dmin−2

1 βq
dmin−2

2 · · · βq
dmin−2
n

 ∈ Fdmin−1×n
qM .

Note that the existence of linearly independent βi implies n ≤M . The set {βi}, i ∈
[n] is referred to as the code locators of the Gabidulin code. While the column mul-
tipliers of GRS codes allow for the code locators in their generator and the parity-
check matrix to be the same, this is generally not the case for the code locators of a
Gabidulin code and its dual code. In the following, when we refer to the code locators
of a Gabidulin code, we always refer to the βi used for the parity-check matrix, as
in Definition 2.6.
The codewords of an Gab(n, dmin,β)qM Gabidulin code can be seen as matrices in

FM×nq by expanding elements of FqM into vectors in FMq using a fixed basis of FqM
over Fq. Thus, we can define the rank distance of two codewords as the rank of their
matrix representations’ difference. It is well-known that the minimum rank distance
of a Gabidulin code is n − k + 1, i.e., it fulfills the Singleton-like bound in the rank
metric with equality. Further, as the rank of the Fq-expansion of a vector is a lower
bound on its Hamming weight, Gabidulin codes are also MDS, i.e., fulfill the Singleton
bound in the Hamming metric with equality.
We recall another well-known property of Gabidulin codes. For completeness we

include short proof.

Lemma 2.2 (Isometries of Gabidulin Codes[Ber03, Lemma 3]). Let G ∈ Fk×nqM be
a generator matrix of the Gabidulin code Gab(n, dmin,β)qM . Then, for any full-rank
matrix A ∈ Fn×nq , the code

C ′ = 〈G ·A〉

is the Gabidulin code Gab(n, d,β′) with β′ = A−1 · β>.

Proof. Let H,H′ ∈ Fdmin−1×n
qM be the parity-check matrices, as given in Definition 2.6,

19



2 Preliminaries

of the codes Gab(n, dmin,β) and Gab(n, dmin,β
′), respectively. By definition, we have

0 = G ·H>

= G ·A ·A−1H>︸ ︷︷ ︸
(a)
=H′>

,

where (a) follows from the fact that λiβq
l

i + λjβ
ql

j = (λiβi + λjβj)q
l ∀ λi, λj ∈ Fq. As

A is of full rank over Fq, we have rankq(β′) = rankq(β). Further, if the elements of β
are linearly independent, so are the elements of β′, thereby fulfilling the requirements
of Definition 2.6 on the code locators.

2.3 Codes with Locality
In the classical erasure and error decoding problems, as discussed in Sections 2.2.1
and 2.2.2, the goal of the decoder is to determine the correct codeword while being able
to access all surviving positions. However, this is not desirable in some applications,
as access to individual positions can, e.g., be costly in terms of required time, hardware
utilization, or communication overhead. To remedy this problem, codes that allow for
the correction of some erasures and errors from small subsets of positions have been
introduced.

2.3.1 Locally Recoverable and Partial MDS Codes
The seminal work [GHSY12] established some fundamental results on a class of codes
with locality, commonly referred to as locally recoverable codes (LRCs). Non-rigorously,
a code is said to have locality r if every position can be recovered from at most r other
codeword positions. Equivalently, for every position, there has to exist a codeword
in the dual code of weight at most r that is supported on this position. If multi-
ple erasures can be tolerated within such a local repair set, the code is said to have
(r, %)-locality.

Definition 2.7 ((r, %)-locality (see, e.g., [KPLK14])). Let n, k, r, %, µ ∈ Z>0 with
µ ≥ 2. The [n, k, dmin] code C has (r, %)-locality if there exists a partition W =
{W1,W2, . . . ,Wµ} of [n] into sets of cardinality |Wj| ≤ r + % − 1 such that for all
j ∈ [µ] it holds that dH

(
C|Wj

)
≥ %.

Note that, by the Singleton bound (see Eq. (2.5)), the condition on the distance of
the local codes implies, that any subset of %− 1 positions of a local repair set can be
recovered by accessing at most r positions of that local repair set. The parameter r is
therefore called the locality of the code.
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In the following, Wj is referred to as the j-th local repair set and the code C|Wj
as

the j-th local code. For simplicity, we only consider codes where every local code is of
the same length nl = |W1| = . . . = |Wµ| with nl | n.
A Singleton-like upper bound on the achievable distance of an [n, k] code with (r, %)-

locality was derived in [GHSY12] for % = 2 and generalized for % ≥ 2 in [KPLK14]
to

dmin ≤ n− k + 1−
(⌈

k

r

⌉
− 1

)
(%− 1) . (2.8)

In the following we refer to codes achieving this bound with equality as distance-
optimal or simply optimal LRCs. Several classes of optimal LRCs are known [CHL07;
HCL13; BHH13; RKSV13; KPLK14; PD14; TB14a; TPD16; BPSY16; MPK19; HN20;
GYBS18] for a wide range of parameters.
While LRCs that fulfill the bound of Eq. (2.8) are optimal in terms of their min-

imum distance, they are not necessarily optimal with respect to the set of erasure
patterns they can correct. Codes that are also optimal in this regard, are called maxi-
mally recoverable LRCs [CHL07; HCL13; GHJY14; GHK+17; MPK19] or partial MDS
(PMDS) codes [BHH13; GYBS18; BPSY16; CK16; HN20]. The codes of this class of
LRCs correct all erasure patterns that are information-theoretically correctable, given
the locality constraints. These patterns are exactly those with b erasures in each local
code plus s additional erasures in arbitrary positions [BHH13; GHJY14]. For consis-
tency with literature on PMDS codes, we provide a formal definition of this special
class of LRCs.

Definition 2.8 (Partial MDS codes (see, e.g., [BHH13])). Let n, µ, b, s ∈ Z>0 be such
that µ ≥ 2, b < nl, and s ≤ (nl− b)(µ− 1). Let W = {W1,W2, . . . ,Wµ} be a partition
of [µnl] with |Wi| = nl ∀ i ∈ [µ].
Let C ⊂ Fµnlq be a linear [µnl, (n−b)µ−s] code. The code C is a PMDS(µ, nl, b, s,W)

partial MDS code if

• the code C|Wi
is an [nl, nl − b, b+ 1] MDS code for all i ∈ [µ] and

• for any Ei ⊂ Wi with |Ei| = b ∀ i ∈ [µ], the code C|[µnl]\∪µi=1Ei is an [µnl−bµ, µnl−
bµ− s, s+ 1] MDS code.

Equivalently, a PMDS array code, denoted by PMDS(µ, nl, b, s,W; `), is defined as
a code where the corresponding restrictions are MDS array codes. Trivially, PMDS
codes are optimal with respect to the Singleton-like bound of Eq. (2.8). We refer to
parameters n, µ, b, s satisfying the constraints of Definition 2.8 as valid PMDS param-
eters. Note that this excludes parameters for which the definition results in a trivial
PMDS code. One trivial case is given by b = 0 (and arbitrary µ, s), where the code
obtained from “puncturing b = 0 positions” in each local repair set, i.e., the unpunc-
tured code, is MDS by the second property of Definition 2.8. On the other hand, if
s = 0 (and arbitrary µ, b) the code is just a concatenation of (independent) local MDS
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codes. The requirement s ≤ (n− b)(µ− 1) is necessary for the PMDS code definition
since otherwise the dimension of the local code exceeds the overall dimension — a
contradiction.

Remark 2.2. A more general definition of PMDS codes, where the local code (in-
cluding its parameters such as length and distance, i.e., number of tolerable erasures)
can be different in each local repair set is sometimes considered in literature [HN20;
NH20]. For simplicity, we focus on PMDS where all local codes are the same code in
this work but note that the approaches taken in Chapter 4 can also be generalized to
PMDS codes with distinct local codes.

A relaxation of the PMDS properties leads to the class of sector-disk (SD) codes.
While this class is not the focus of in the following, some results on PMDS codes of
Chapter 4 also apply to SD codes and therefore we include a short definition here.
Informally, this class differs from PMDS codes by only requiring the second property
to hold for the puncturing of the same positions in each local repair set.

Remark 2.3 (Sector-Disk Code). Consider the partition W = {W1, . . . ,Wµ} with
Wi = [(i− 1)nl + 1, inl]. A Sector-Disk SD(µ, n, b, s,W; `) code is defined similar to a
PMDS codes as in Definition 2.8, except that the second property only needs to holds
for Ei = {(i− 1)nl + j | j ∈ ESD} and any ESD ∈ [nl] with |ESD| = b.

Remark 2.4. In [BPSY16; GYBS18] each codeword of the PMDS and SD codes
is regarded as a µ × n array. As we will construct PMDS and SD codes with local
regeneration in Chapter 4, we require subpacketization, i.e., each node does not store
a symbol, but a vector of multiple symbols. To avoid having different types of rows, we
adopt the terminology to the one commonly used in the LRC literature and view the
codewords of a PMDS or sector-disk (SD) code as vectors. Hence, what we refer to as
local codes is equivalent to the rows of [BPSY16; GYBS18].

2.3.2 Grid-Like Topologies
While LRCs and PMDS codes represent an important notion of locality, namely, the
case where the subsets of codeword positions that need to fulfill the locality constraints
are disjoint, some applications require a more sophisticated structure of the locality.
Consequently, the general concept of codes for topologies was introduced in [GHJY14].
In general, a topology is defined to be a restriction on the support of the parity-check
matrix of a code, i.e., a set of positions that are fixed to be zero. Given such a topology
T , we say code C is a code for the topology T if there exists a matrix H with C = 〈H〉⊥row
that fulfills these support restrictions.
One important special case is given by grid-like topologies Tn1×n2(b1, b2, 0), for which

several important results were established in the seminal paper [GHK+17]. In such a
topology, each column/row of a codeword, interpreted as an n1×n2 array, is a codeword
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of a column/row code with b1 and b2 parity equations, respectively. This class of codes
is well-known in coding theory and also referred to as product codes. The topology
Tn1×n2(b1, b2, s) augments these local parity checks by s additional parity-checks that
are not restricted in their support. Hence, codes for this topology are product codes
with s additional global parity constraints. We formally define codes for grid-like
topologies by adapting the notation of [GHK+17].

Definition 2.9 (Code for grid-like topology [GHK+17, Definition 2.1]). Let Ccol be
an [n1,≥ n1 − b1] code and Crow be an [n2,≥ n2 − b2] code. We define a code for the
topology Tn1×n2(b1, b2, s) to be any code with parity-check matrix

H =
(

Hlocal
Hglobal

)
,

where Hlocal is a parity-check matrix of the code Ccol ⊗ Crow and Hglobal is an arbitrary
s× n1n2 matrix.
We denote the set of all such codes by Cn1×n2(b1, b2, s).

By definition, a code C ∈ Cn1×n2(b1, b2, s) is a subset of Fn1n2 . However, we fre-
quently use the equivalent interpretation as a subset of Fn1×n2 , where each column/row
is a codeword of Ccol and Crow, respectively.
Throughout this work, let n1, n2, b1, b2, s be non-negative integers which satisfy n1 >

b1 and n2 > b2. Further, to exclude trivial cases where the dimension of the code C
is smaller than the dimension of the codes Ccol and/or Crow, we assume that s ≤
(n1 − b1)(n2 − b2)−max{n1 − b1, n2 − b2} for the remainder of this work.
It is easy to see that PMDS codes and LRCs, as defined in Section 2.3.1, are a special

case of codes for grid-like topologies given by Tµ×nl(0, b, s) = Tµ×nl(0, %− 1, dmin − %).
While product codes have been studied extensively (see, e.g., [MS77, Chapter 18]

and the references therein), the main difference between these works and [GHK+17],
aside from the additional global parities, is the goal of determining a characterization
of all erasure patterns that are correctable in these topologies.

Definition 2.10 (Correctable erasure pattern [GHK+17, Definition 2.2]). Let E ⊆
[n1]× [n2] denote a set of erased positions. We say the erasure pattern E is correctable
in the topology Tn1×n2(b1, b2, s) if and only if there exists a code in Cn1×n2(b1, b2, s) that
can correct this erasure pattern.
We denote the set of erasure patterns which are correctable in Tn1×n2(b1, b2, s) by

En1×n2(b1, b2, s) and by Emax
n1×n2(b1, b2, s) those that are not a proper subset of any other

correctable pattern.

Similar to the definition of a PMDS code, an MR code for a given topology must
be able to correct all theoretically correctable erasures patterns.
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Definition 2.11 (Maximally recoverable code [GHK+17, Definition 2.3]). We say a
code C ∈ Cn1×n2(b1, b2, s) is maximally recoverable (MR) if it corrects every erasure
pattern in En1×n2(b1, b2, s).
We denote the set of codes that are MR for a topology Tn1×n2(b1, b2, s) by CMR

n1×n2(b1, b2, s).

For a sufficiently large finite field, the existence of an MR code for any topology was
proved in [GHJY14].
Observe that, any code that can correct an erasure pattern E can also correct any

erasure pattern E ′ ⊂ E . Hence, an MR code is equivalently defined as being able to
correct any pattern in Emax

n1×n2(b1, b2, s) instead of En1×n2(b1, b2, s). By the same argu-
ment, the set of correctable erasure patterns En1×n2(b1, b2, s) is uniquely determined
by Emax

n1×n2(b1, b2, s).
We summarize some important properties of MR codes for grid-like topologies in

terms of our notation.

Proposition 2.2 (Properties of codes for grid-like topologies [GHK+17, Proposi-
tion 2.1]). For any C ∈ CMR

n1×n2(b1, b2, s) it holds that

• the dimensions of C, Ccol, and Crow are

dim(C) = (n1 − b1)(n2 − b2)− s
dim(Ccol) = n1 − b1 and dim(Crow) = n2 − b2 ,

• the codes Ccol and Crow are MDS.

2.3.3 Lifted Affine-Invariant Codes
Lifted affine-invariant codes are a class of codes that naturally provides strong locality
properties, however, in a different sense than LRCs and codes for grid-like topologies.
Affine-invariant codes are best described by regarding them as functions mapping
between certain domains such as vector spaces over finite fields.
Denote by {FzQ → Fq} the set of all functions mapping from FzQ to Fq, where Q is

a power of q. In this case, for any f ∈ {FzQ → Fq}, there exists a unique polynomial
f(x) ∈ FQ[x1, . . . , xz] of degree at most Q − 1 in each variable corresponding to the
function f .
For a function f(x) ∈ {FzQ → Fq} with x = (x1, x2, . . . , xz), we define the evaluation

map

evFzQ(f(x)) := (f(a))a∈FzQ ∈ FQzq .

Similarly, by slight abuse of notation, we write

evFzQ(F) := {evFzQ(f(x)) | f(x) ∈ F}
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for a set of functions F ⊆ {FzQ → Fq}. If the set of functions F is linear, i.e., it
contains λf + g for any λ ∈ FQ and f, g ∈ F , the set evFzQ(F) is a linear code.
A function A(x) ∈ {FtQ → FtQ} is called affine if it can be represented as Mx + b

for some matrix M ∈ Fz×zQ and vector b ∈ FzQ (if b = 0 the function is linear). If M
is of full rank, then A is said to be an affine permutation.
With these ingredients we are now ready to define affine-invariant codes.

Definition 2.12 (Affine-Invariant Code). The code evFzQ(F) is said to be affine-
invariant if for every affine permutation function A ∈ {FtQ → FtQ} and for every
f(x) ∈ F , the function f(A(x)) belongs to F .
Many important properties of affine-invariant codes were derived in [KS08; BSGM+11;

GKS13].
Example 2.1 (RS codes are affine-invariant). One simple example of affine-invariant
codes are RS codes. By Definition 2.3, they contain the evaluation of any univariate
polynomial of restricted degree. Specifically, the [n, k] RS code over Fq with locators
β = Fq is given by

C :=
{

evFq(f(x)) | f(x) ∈ {Fq → Fq}, deg(f(x)) < k
}
.

Now consider an affine permutation. As z = 1 in the case of RS codes, the permutation
is given by A(x) = mx+ b for some scalars m ∈ F?q and b ∈ Fq. Clearly, for any f(x),
the polynomial f ′(x) = f(mx + b) is of the same degree as f(x). Hence, we have
deg(f(A(x))) = deg(f(x)) < k and therefore evFq(f(A(x))) ∈ C. It follows that the
code is affine invariant.
On a high level, the idea of a lifted code is best described as the property that the

restriction to any subspace of a certain dimension is a codeword of a given code —
the code that is lifted to the higher dimension. To represent this property, we require
a formal definition of the restriction of a function to a given domain.
For a fixed basis {γ1, . . . ,γz} of a z-dimensional linear vector space V over FmQ define

the linear map ϕV : V 7→ FzQ by

ϕV

 z∑
j=1

λjγj

 := (λ1, . . . , λz) ∈ FzQ.

For a function g ∈ {FmQ → Fq} and an affine subspace V + a, where a ∈ FmQ , define the
function g(V)

a ∈ {FzQ → Fq} as

g(V)
a (y) := g(ϕ−1

V (y) + a) . (2.9)

Note that, for any two points a, a′ ∈ V of the same subspace V we have g(V)
a′ (y) =

g(V)
a (y + ϕV(a′ − a))
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F2
Q

x1

x2

f(0, 0) f(1, 0) · · ·

f(0, 1)
... One-dimensional affine sub-

space V+a of F2
Q. Evaluations

of f(x) in this subspace are a
codeword of F .

f(a1, a2)

Figure 2.1: Illustration of a lifted affine-invariant code for m = 2 and z = 1.

Definition 2.13 (Lifted Affine-Invariant Code [GKS13, Definition 1.1]). Let evFzQ(F)
be an affine-invariant code with F ⊆ {FzQ → Fq}. Denote by L(F) ⊆ {FmQ → Fq}
the set of functions f ∈ L(F) which fulfill that f (V)

a ∈ F for any z-dimensional affine
subspace V + a ⊂ FmQ . Then the lifted code is given by evFmQ (L(F)).

An illustration of a lifted affine-invariant code for m = 2 and z = 1 is given in
Fig. 2.1.
The minimum distance of a lifted affine-invariant code can be tightly bounded from

above and below.

Lemma 2.3 (Distance of Lifted Affine-Invariant Code [GKS13, Lemma 5.7]). Let
evFzQ(F) with F ⊆ {FzQ → Fq} be an affine-invariant code of distance dF . Then the
distance dL(F) of the lifted code evFmQ (L(F)), as in Definition 2.13, is bounded by

(dF − 1) Qm

Qz − 1 < dL(F) ≤ dFQ
m−z .
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Advances in Codes with Locality





3
Correctable Erasure Patterns in
Product Topologies

Abstract

Locality enables storage systems to recover failed nodes from small subsets of surviv-
ing nodes. The setting where nodes are partitioned into subsets, each allowing for local
recovery, is well understood. This chapter considers a generalization of this setting intro-
duced by Gopalan et al., where, viewing the codewords as arrays, constraints are imposed
on the columns and rows in addition to some global constraints. Specifically, new results
on the set of correctable erasure patterns are derived and a generic method of adding
such global parity-checks is presented. Further, the set of correctable erasure patterns in
topologies without global parities is related to those correctable in tensor-product codes.

This chapter is based on the work [HPYW21] published in the proceedings of the 2021
IEEE International Symposium on Information Theory (ISIT).

3.1 Introduction
To begin, we derive some results on the set erasure patterns correctable in grid-like
topologies (see Definition 2.9). Recall, that in this setting constraints are imposed on
the row and the column, i.e., each column and row are codewords of a column/row code.
For the special case of PMDS codes, the characterization of this set is known [BHH13;
GHJY14]. However, for grid-like topologies, which still represent a considerable simpli-
fication of the most general definition of a topology given in [GHJY14], it is a highly
non-trivial problem to determine the erasure patterns that are correctable, i.e., the
patterns that an MR code for the given topology must be able to correct. Interest-
ingly, it is in general not sufficient for the column and row code to be MDS to correct
all patterns in this set [GHK+17], which complicates the problem significantly. The
seminal works of [GHJY14; GHK+17] initiated studies of the classification of these
patterns for some restricted cases (see Table 3.1) and bounds on the required field size
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3 Correctable Erasure Patterns in Product Topologies

[SRLS18; KMG19; KLR19]. In particular, [GHK+17] established a necessary condition
for an erasure pattern to be correctable, which is then shown to also be sufficient for
the case of one column constraint and no global constraints. Further, the sufficiency
of this condition, referred to as regularity, is conjectured to also hold for the case of
more column constraints.

3.1.1 Contributions and Outline
Section 3.2 recalls the definition of a regular erasure pattern and restates a conjecture
made in [GHK+17] on their correctability. In Section 3.3 this conjecture is shown
to be false by providing a counter-example of a regular erasure pattern that is not
correctable in the corresponding topology. Specifically, we show that for any code of
this topology, as in Definition 2.9, there exists at least one non-zero codeword that
is zero in all nonerased positions of this pattern and therefore indistinguishable from
the all-zero codeword. Then, we investigate the implications this counter-example
has for the applicability of the conjecture to other topologies with larger parameters
by establishing relations between the respective sets of correctable erasure patterns
through shortening and puncturing arguments. By combining these arguments, we
show that the conjecture does not hold for a large class of grid-like topologies.
Section 3.4 considers the class of tensor product codes, which are defined as the

duals of codes for grid-like topologies without global parities. By exploiting a general
connection between the erasure patterns correctable in a code and its dual code, the
problems of MR codes for grid-like topologies and MR tensor-product codes are related.
The second main result of this chapter, provided in Section 3.5, is a generic method

of adding global code constraints. To this end, the method used for the construction of
PMDS codes in [RKSV13; CK16] and for the extension of binary codes in [GHJY14] is
generalized. Given an MR code for a grid-like topology without global redundancy over
an arbitrary field, an explicit construction that adds global redundancy is provided,
at the expense of an increase in field size.
Finally, in Section 3.6 the chapter is concluded and some interesting open problems

related to codes for grid-like topologies are briefly discussed.

3.2 Regular Erasure Patterns
In general, a necessary condition for the correctability of an erasure pattern is that
the number of erasures1 remaining in the code shortened in a given set of positions
does not exceed the number of parity symbols. If the code has local redundancy, this
condition can be refined to take into account that this local redundancy depends only

1Recall that codes for grid-like topologies are scalar codes and form a linear vector space (see
Definition 2.9). Accordingly, despite treating the codewords as matrices here, we consider erasures
of symbols, not columns.
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Table 3.1: Properties of different topologies. Lines 1 to 4 collect the known results.
Lines 5 and 6 summarizes the results on global redundancy of Section 3.5.
Lines 7 and 8 give the results on the characterization of correctable erasure
patterns presented in Section 3.3. The column “Conj.” indicates whether
the set of correctable erasure patterns matches Conjecture 3.1.
Topology Correctable Patterns Conj. Reference

Tn1×n2(0, b2, s) regular + any s - [BHH13; GHJY14]
Tn1×n2(1, 1, 0) regular 3 [GHK+17]
Tn1×n2(1, b2, 0) regular 3 [GHK+17]
Tn1×n2(1, 1, s) regular + any s - [GHJY14]
Tn1×n2(1, b2, s) regular + any s - [GHK+17] + Thm. 3.4
Tn1×n2(b1, b2, s) En1×n2(b1, b2, 0) + any s - Thm. 3.5
T5×5(2, 2, 0) See Rem. 3.2 7 Lem. 3.2

T(≥b1+3)×(≥b2+3)(≥ 2,≥ 2, 0) unknown 7 Thm. 3.2

Table 3.2: Known constructions of MR codes for different topologies. Lines 1 to 3
collect the known results. Lines 4 and 5 summarizes the results on global
redundancy of Section 3.5, where the ∼ symbol implies that a code for the
respective topology can be constructed given a code for the same topology
with s = 0.
Topology Construction Reference

Tn1×n2(0, b2, s) 3 [RKSV13; CK16]
Tn1×n2(1, 1, 0) 3 [GHK+17]
Tn1×n2(1, 1, s) 3 [GHJY14], [GHK+17] + Thm. 3.4
Tn1×n2(1, b2, s) ∼ Thm. 3.4 + any C ∈ CMR

n1×n2(1, b2, 0)
Tn1×n2(b1, b2, s) ∼ Thm. 3.4 + any C ∈ CMR

n1×n2(b1, b2, 0)
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3 Correctable Erasure Patterns in Product Topologies

on small subset of positions. In [GHK+17] such a refinement was given for grid-like
topologies and patterns that fulfill it are termed regular erasure patterns.
Definition 3.1 (Regular erasure pattern [GHK+17, Definition 3.1]). Consider the
topology Tn1×n2(b1, b2, 0) and an erasure pattern E ⊂ [n1] × [n2]. We say that E is
regular2 if for all U ⊆ [n1], |U| = u ≥ b1, and V ⊆ [n2], |V| = v ≥ b2, we have

|E ∩ (U × V)| ≤ vb1 + ub2 − b1b2 .

Remark 3.1. Intuitively, the restriction of the erasure pattern to U × V can be in-
terpreted as the shortening of the respective code in the positions outside of this grid.
As will be shown in Section 3.3.2, this shortened code needs to be able to decode the
remaining erasures for the pattern to be correctable. Definition 3.1 is a necessary (in
general insufficient, see Section 3.3.1) condition for this to be possible, namely, that
the number of erasures remaining in the shortened code does not exceed its redundancy.
For example, consider shortening of the blue positions of the first row of the patterns

in Fig. 3.1. Since the positions are part of an information set this reduces the code
dimension by 3. As the green parity position in the first row is a linear combination of
the shortened symbols, it is fixed to be zero in the shortened code and can therefore also
be shortened without further decreasing the dimension. This implies that despite the
total number of shortened symbols (indicated in gray) being 4, the dimension of the code
only decreases by 3. Hence, the shortened code is a [20, 9] code, which trivially corrects
at most 11 erasures. For the regular pattern 10 erasures remain in its restriction
to [2, 6] × [1, 4], thereby not leading to a contradiction. It is easy to check that this
pattern fulfills Definition 3.1 by applying this principle to all subgrids given by U and
V. On the other hand, in the irregular pattern 12 erasures remain in its restriction to
[2, 6]× [1, 4], showing that this pattern cannot be corrected.
It was shown in [GHK+17] that all erasure patterns that are not regular are not

correctable in the topology Tn1×n2(b1, b2, 0). On the other hand, for some cases (see
Table 3.1) it is known that all regular patterns are correctable, which led to the
following conjecture.
Conjecture 3.1 ([GHK+17, Conjecture 3.1]). An erasure pattern E is correctable for
the topology Tn1×n2(b1, b2, 0) if and only if it is regular.
In Section 3.3.1 we disprove this conjecture.

3.3 Negative Results on Correctable Erasure Patterns
This section presents negative results on the set of correctable erasure patterns for a
given topology. First, we prove that a specific erasure pattern is never correctable in

2The original definition does not include the restriction u ≥ b1 and v ≥ b2. However, it is easy to
check that this restriction is indeed necessary to exclude trivial cases.
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|E ∩ (U × V)|
vb1 + ub2 − b1b2

A regular erasure pattern:
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= 12 3
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T T

T T

T T




U = [1, 6]

V = [1, 4]
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T T

T T

T T

T T

T T



U = [2, 6]

V = [1, 4]

|E ∩ (U × V)|
vb1 + ub2 − b1b2

An irregular erasure pattern:
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T T

T T

T T T





U = [1, 6]

V = [1, 4]

= 12
= 11 7

T T

T TT

T T

T T

T T T




U = [2, 6]

V = [1, 4]

Figure 3.1: Illustration of the regularity property of an erasure pattern for the topology
T6×4(2, 1, 0). The blue positions represent an information set. Note that
such a subgrid is always an information set in an MR code for a grid-like
topology [GHK+17]. The green positions represent the remaining (parity)
symbols of the codeword. The value |E ∩(U×V)| is the number of erasures
remaining in the subgrid spanned by U and V and the number of remaining
parity symbols is given by vb1 + ub2 − b1b2.
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the topology T5×5(2, 2, 0), thereby disproving Conjecture 3.1 as given in [GHK+17].
Then, using this result, we provide generic methods of constructing incorrectable,
regular erasure patterns for larger topologies.

3.3.1 Disproving a Conjecture on the Correctability of Regular
Erasure Patterns

We begin with some simple observations on the relation between the generator matrix
and the entries of low-weight codewords of an arbitrary linear [5, 3] code.

Lemma 3.1. Consider a linear [5, 3] code Crow with generator matrix

Grow =

1 0 0 prow
1,1 prow

1,2
0 1 0 prow

2,1 prow
2,2

0 0 1 prow
3,1 prow

3,2


and a codeword (

1 α2 α3 0 0
)
∈ Crow . (3.1)

Then

prow
1,1 = −(α2p

row
2,1 + α3p

row
3,1 ) (3.2)

prow
1,2 = −(α2p

row
2,2 + α3p

row
3,2 ) . (3.3)

Proof. The statement follows from

(
1 α2 α3 0 0

)
=
(
1 α2 α3

)
·

1 0 0 prow
1,1 prow

1,2
0 1 0 prow

2,1 prow
2,2

0 0 1 prow
3,1 prow

3,2



⇒
(
1 α2 α3

)
·

p
row
1,1 prow

1,2
prow

2,1 prow
2,2

prow
3,1 prow

3,2

 =
(
0 0

)
.

Observe that each row of Grow is a codeword of Crow and, in particular,(
1 0 0 prow

1,1 prow
1,2

)
∈ Crow . (3.4)
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We define the same notions in similar notation for a [5, 3] code Ccol, i.e.,(
1 γ2 γ3 0 0

)
∈ Ccol (3.5)(

1 0 0 pcol
1,1 pcol

1,2

)
∈ Ccol (3.6)

pcol
1,1 = −(γ2p

col
2,1 + γ3p

col
3,1) (3.7)

pcol
1,2 = −(γ2p

col
2,2 + γ3p

col
3,2) . (3.8)

Note that if Crow (Ccol) is MDS we have prow
1,1 , p

row
1,2 6= 0 (pcol

1,1, p
col
1,2 6= 0) and the code-

words given by Eqs. (3.1) and (3.4) (Eqs. (3.5) and (3.6)) are unique. This follows
from the well-known facts that all symbols in the parity part of a systematic generator
matrix of an MDS code must be non-zero and that every codeword of a linear code of
a given support and weight dmin is unique up to scalar multiplication with an element
of F∗.
With these general relations established, we are now ready to prove that there

exists a regular erasure pattern that is never correctable in the topology T5×5(2, 2, 0),
by constructing a non-zero codeword that is zero in all non-erased positions.

Lemma 3.2. The regular pattern E given by

E =


0 T T T T

T T T 0 0
T T T 0 0
T 0 0 T T

T 0 0 T T


E = {(i, j) | E[i, j] = T}

is not correctable in T5×5(2, 2, 0).

Proof. Let C ∈ Cn1×n2(b1, b2, 0). We prove the statement by constructing a non-zero
codeword of C that is zero in all non-erased positions. This implies that the code
C cannot correct the pattern uniquely since there are at least two codewords that
coincide on all non-erased positions — the constructed non-zero codeword and the
all-zero codeword.
To construct such a codeword, we replace the T-symbols in E by elements of F (not

all zero) in the following manner:

(a) Choose the element in position (2, 1) to be γ2 ∈ F∗. Note that, since the code is
linear, we can always normalize one single non-zero position to be an arbitrary
element of F∗ and w.l.o.g. we assume position (2, 1) to be non-zero.

(b) Choose the second row to be the γ2-multiple of Eq. (3.1).

(c) Choose the second and third column to be the corresponding multiples of Eq. (3.5).
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(d) To obtain a multiple of Eq. (3.1) as the third row, set its first position to be γ3.

(e) Encode the first row and column with Grow and Gcol, respectively.

(f) Replace the entries according to Eqs. (3.2), (3.3), (3.7) and (3.8).

(g) Fill in the fourth and fifth rows with the corresponding multiples of Eq. (3.4).
The individual steps are given by

(a)⇒


0 T T T T

γ2 T T 0 0
T T T 0 0
T 0 0 T T

T 0 0 T T


(b)⇒


0 T T T T

γ2 γ2α2 γ2α3 0 0
T T T 0 0
T 0 0 T T

T 0 0 T T



(c)⇒


0 α2 α3 T T

γ2 γ2α2 γ2α3 0 0
T γ3α2 γ3α3 0 0
T 0 0 T T

T 0 0 T T


(d)⇒


0 α2 α3 T T

γ2 γ2α2 γ2α3 0 0
γ3 γ3α2 γ3α3 0 0
T 0 0 T T

T 0 0 T T



(e)⇒


0 α2 α3 α2p

row
2,1 + α3p

row
3,1 α2p

row
2,2 + α3p

row
3,2

γ2 γ2α2 γ2α3 0 0
γ3 γ3α2 γ3α3 0 0

γ2p
col
2,1 + γ3p

col
3,1 0 0 T T

γ2p
col
2,2 + γ3p

col
3,2 0 0 T T



(f)⇒


0 α2 α3 −prow

1,1 −prow
1,2

γ2 γ2α2 γ2α3 0 0
γ3 γ3α2 γ3α3 0 0
−pcol

1,1 0 0 T T

−pcol
1,2 0 0 T T


(g)⇒


0 α2 α3 −prow

1,1 −prow
1,2

γ2 γ2α2 γ2α3 0 0
γ3 γ3α2 γ3α3 0 0
−pcol

1,1 0 0 −pcol
1,1p

row
1,1 −pcol

1,1p
row
1,2

−pcol
1,2 0 0 −pcol

1,2p
row
1,1 −pcol

1,2p
row
1,2

 .

It is easy to see that the fourth and fifth columns are also multiples of Eq. (3.6).
Hence, this array contains a codeword of the row code in every row and a codeword
of the column code in every column. It is therefore a valid codeword of any code for
T5×5(2, 2, 0). As the used properties hold for any linear code we conclude that this
pattern is never correctable.
Note that if both Crow and Ccol are MDS, the first step, i.e., choosing the element in

position (2, 1), determines the whole matrix, as each of the subsequent steps is unique
in this case.
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Remark 3.2. The proof of Lemma 3.2 can be carried out for any column/row permu-
tation of E, i.e., none of these permutations is correctable in T5×5(2, 2, 0). Further,
computer search shows that these 450 permutations are exactly the regular patterns
that are not correctable in this topology.

As the erasure pattern given in Lemma 3.2 is regular but not correctable in a grid-
like topology, we come to the following conclusion.

Theorem 3.1. Conjecture 3.1 (cf. [GHK+17, Conjecture 3.1]) is false.

Proof. Follows immediately from Lemma 3.2.

3.3.2 Implications of Incorrectable Regular Patterns for Larger
Topologies

This section is dedicated to showing the implications the incorrectable erasure pattern
for the topology T5×5(2, 2, 0), given in Lemma 3.2, has on the set of correctable erasure
for almost all topologies. To this end, we employ arguments based on shortening and
puncturing, as in Definition 2.1. We collect some well-known/basic properties of linear
codes in the following proposition.

Proposition 3.1. Let G and H denote a generator and parity-check matrix of an
[n, k] code C, respectively. Then,

1. H|[n]\I is a parity-check matrix of shortI(C) and G|[n]\I is a generator matrix of
punctI(C).

2. an erasure pattern E ⊂ [n] is correctable if and only if it fulfills the equivalent
conditions

dim(short[n]\E(C)) = 0 ⇐⇒ dim(punctE(C)) = k .

3. an erasure pattern E ⊂ [n] is correctable only if the pattern E \ I is correctable
in the code shortI(C) for any I ⊂ [n].

4. an erasure pattern E is correctable only if the pattern E \ I is correctable in the
code punctI(C) for any I ⊆ [E ].

Proof. Properties 1 and 2 are well-known.
Proof of 3): By property 2) we know that E \ I is correctable in shortI(C) if and

only if dim(short[n]\(E\I)(shortI(C))) = 0. Now observe that

short[n]\(E\I)(shortI(C)) = short([n]\(E\I))∪I(C)
= short([n]\E)∪I(C)
= shortI\([n]\E)(short([n]\E)(C)) .
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As shortening does not increase the code dimension we have

dim(short[n]\(E\I)(shortI(C))) ≤ dim(short[n]\E(C)) .

The statement follows from the observation that E is correctable in C if and only if
dim(short[n]\E(C)) = 0.
Proof of 4): By Definition 2.1 we have

dim(punctE(C)) ≤ dim(punctI(C)) ≤ dim(C)
punctE\I(punctI(C)) = punctE(C) .

If E is correctable in C it holds that dim(C) = dim(punctE(C)) by property 2), which
implies

dim(punctI(C)) = dim(punctE(C))
= dim(punctE\I(punctI(C))) .

By property 2) this is a necessary and sufficient condition for the pattern E \ I to be
correctable in the code punctI(C).

The properties of Proposition 3.1 provide two ways of relating an erasure pattern to
codes with larger parameters, which correspond to the opposite operations of short-
ening and puncturing3.
We begin by showing a general relation between the codes for grid-like topologies

for different parameters. The following lemma shows that restricting a code for a grid-
like topology to positions of a subgrid, either by shortening or puncturing the other
positions, gives a code for a grid-like topology of smaller parameters.

Lemma 3.3. Let C ∈ Cn1×n2(b1, b2, 0). Denote by Icol and Irow the sets of information
sets of the respective column and row code. Then for any U ⊆ [n1] such that ([n1]\U) ⊆
I for some I ∈ Icol and V ⊆ [n2] such that ([n2] \ V) ⊆ I for some I ∈ Irow we have

short([n1]×[n2])\(U×V)(C) ∈ C|U|×|V|(b1, b2, 0) .

Further, for any U ⊆ I for some I ∈ Icol and V ⊆ I for some I ∈ Irow we have

punct([n1]×[n2])\(U×V)(C) ∈ C|U|×|V|(b1 − (n1 − u), b2 − (n2 − v), 0) .

Proof. As h = 0, by Definition 2.9, the generator matrix of C is given by Gcol ⊗Grow.
Let GshortJ

col ,GshortJ
row and GpunctJ

col ,GpunctJ
row denote the generator matrices of the col-

umn/row code shortened/punctured in the positions indexed by J . It follows directly
3These operations are sometimes referred to as lengthening and extending.
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from the definition of the Kronecker product (see Section 2.1.1) that

short([n1]×[n2])\(U×V)(C) =
〈
GshortU

col ⊗GshortV
row

〉
punct([n1]×[n2])\(U×V)(C) =

〈
GpunctU

col ⊗GpunctV
row

〉
.

The statement follows from observing that shortening a position of an information set
of an [n1, n1 − b1] code gives an [n1 − 1, n1 − b1 − 1] code. Similarly, puncturing a
position in the complement of an information set gives an [n1 − 1, n1 − b1] code.

Using this relation between codes for different grid-like topologies, we can now es-
tablish a connection between the set of correctable erasure patterns in topologies with
longer row and/or column codes.

Lemma 3.4. If there exists a regular erasure pattern E that is not correctable in
Tn1×n2(b1, b2, 0) then there exists a regular erasure pattern E ′ that is not correctable in
Tn1+δ×n2+γ(b1, b2, 0) for any δ, γ ≥ 0.

Proof. We show that E ′ = E is not correctable4. An illustration of such a pattern is
provided in Fig. 3.2a. As E ′ does not contain additional erasures compared to E and
the restriction of Definition 3.1 does not depend on n1 or n2, we conclude that the
pattern is regular, i.e., the regularity of a pattern in Tn1×n2(b1, b2, 0) directly implies
the regularity of the same pattern in Tn1+δ×n2+δ(b1, b2, 0) for any δ, γ ≥ 0.
By Lemma 3.3 we have short([n1+δ]×[n2+γ])\([n1]×[n2])(C ′) ∈ Cn1×n2(b1, b2, 0) for any

code C ′ ∈ Cn1+δ×n2+γ(b1, b2, 0). By assumption, the restricted pattern E ′ ∩ ([n1] ×
[n2]) = E is not correctable in Tn1×n2(b1, b2, 0) and the statement follows from 3) in
Proposition 3.1.

The following shows a small example to illustrate the incorrectable patterns implied
by Lemma 3.4.

Example 3.1. Consider the erasure pattern E as in Lemma 3.2, which is not cor-
rectable in the topology T5×5(2, 2, 0). Then, by Lemma 3.4, the erasure pattern E ′ = E

4Even if E is maximal for Tn1×n2(b1, b2, 0), it is not maximal for the topology Tn1+δ×n2+γ(b1, b2, 0)
for any δ, γ > 0. However, it is also easy to construct a non-correctable maximal pattern by
having each additional column/row contain exactly b1 or b2 erasures, respectively.
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3 Correctable Erasure Patterns in Product Topologies

is not correctable in the topology T7×6(2, 2, 0). Illustrating E for this topology gives

E′ =



0 T T T T 0
T T T 0 0 0
T T T 0 0 0
T 0 0 T T 0
T 0 0 T T 0
0 0 0 0 0 0
0 0 0 0 0 0


E ′ = {(i, j) | E′[i, j] = T} .

Lemma 3.4 is based on increasing the length of the column and row codes while keep-
ing the respective number of redundancy symbols constant. In contrast, the following
lemma increases the length of the column and row code while holding the dimension
of each code constant.

Lemma 3.5. If there exists a regular erasure pattern E that is not correctable in
Tn1×n2(b1, b2, 0) then there exists a regular erasure pattern E ′ that is not correctable in
Tn1+δ×n2+γ(b1 + δ, b2 + γ, 0) for any δ, γ ≥ 0.

Proof. Denote by C ′col and C ′row the column and row code of a code C ′ ∈ Cn1+δ×n2+γ(b1+
δ, b2+γ, 0). Without loss of generality assume that the first n1−b1 and n2−b2 positions
are (a subset of) an information set of the code C ′col and C ′row. Let E ′ be the erasure
pattern obtained by adding δ rows and γ columns of erasures to E , i.e.,

E ′ = E ∪
(
([n1 + δ]× [n2 + γ]) \ ([n1]× [n2])

)
.

For an illustration of this pattern, see Fig. 3.2b. We show that this pattern is reg-
ular for the topology Tn1+δ×n2+γ(b1 + δ, b2 + γ, 0), i.e., fulfills Definition 3.1 for any
U ′ ⊆ [n1 + δ], |U ′| = u ≥ b1 + δ and V ′ ⊆ [n2 + γ], |V ′| = v ≥ b2 + γ. As the δ/γ
additional rows/columns consist only of erasures it suffices to show that the subsets of
rows/columns with [n1 + 1, n1 + δ] ⊂ U and [n2 + 1, n2 + γ] ⊂ V fulfill the condition.
Define U = U ′∩ [n1] and V = V ′∩ [n2] and observe that E ′ can be partitioned into two
disjoint subsets E ′ ∩ (U × V) and E ′ ∩ ((U ′ × V ′) \ (U × V)). For the former we have

|E ′ ∩ (U × V)| ≤ (v − γ)b1 + (u− δ)b2 − b1b2

because |E ′ ∩ (U × V)| = E is regular by assumption. The second subset are exactly
the δ/γ additional rows/columns, which consist only of erasures by definition of E ′,
and therefore

|E ′ ∩ ((U ′ × V ′) \ (U × V))| = vδ + uγ − δγ ,
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Survived Positions
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Pattern E
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Tn1×n2(b1, b2, 0)



δ

n1

n2 γ

(a) Erasure pattern E ′ as in Lemma 3.4,
which is regular in the topology
Tn1+δ×n2+γ(b1, b2, 0).
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Er
as
ur
es

Pattern E
Regular in

Tn1×n2(b1, b2, 0)



δ

n1

n2 γ

(b) Erasure pattern E ′ as in Lemma 3.5,
which is regular in the topology
Tn1+δ×n2+γ(b1 + δ, b2 + γ, 0).

Figure 3.2: Illustration of the extension of regular erasure patterns to larger topologies.

Hence, the cardinality of E ′ ∩ (U ′ × V ′) is bounded by

|E ′ ∩ (U ′ × V ′)| = |E ′ ∩ (U × V)|+ |E ′ ∩ ((U ′ × V ′) \ (U × V))|
≤ ((v − γ)b1 + (u− δ)b2 − b1b2) + (vδ + uγ − δγ)
= v(b1 + δ) + u(b2 + γ)− (b1 + δ)(b2 + γ)

and it follows that the pattern is regular for the topology Tn1+δ×n2+γ(b1 + δ, b2 + γ, 0).
By Lemma 3.3 we have punct([n1+δ]×[n2+γ])\([n1]×[n2])(C ′) ∈ Cn1×n2(b1, b2, 0). By defi-

nition, the pattern E = E ′ \
(
([n1 + δ]× [n2 + γ]) \ ([n1]× [n2])

)
is not correctable in

this topology and the statement follows by 4) in Proposition 3.1.

The following shows a small example of an incorrectable erasure pattern, based on
the pattern of Lemma 3.2.

Example 3.2. Consider the erasure pattern E as in Lemma 3.2, which is not cor-
rectable in the topology T5×5(2, 2, 0). Then, by Lemma 3.4, an erasure pattern that is
not correctable in T7×6(4, 3, 0) can be obtained by appending two rows and one column
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3 Correctable Erasure Patterns in Product Topologies

of erasures. Therefore, the pattern

E′ =



0 T T T T T

T T T 0 0 T

T T T 0 0 T

T 0 0 T T T

T 0 0 T T T

T T T T T T

T T T T T T


E ′ = {(i, j) | E′[i, j] = T}

is not correctable in the topology T7×6(4, 3, 0).

As the approaches of Lemmas 3.4 and 3.5 can be combined arbitrarily to obtain
erasure patterns that are incorrectable in larger topologies, we arrive at the following
main statement.

Theorem 3.2. Let b1, b2 ≥ 2. For any n1 ≥ b1 + 3 and n2 ≥ b2 + 3 there exist regular
erasure patterns that are not correctable in the topology Tn1×n2(b1, b2, 0).

Proof. Follows from applying Lemmas 3.4 and 3.5 to the topology T5×5(2, 2, 0), for
which an incorrectable regular erasure pattern exists by Lemma 3.2.

Observe that with the presented results, the only topologies Tn1×n2(b1, b2, 0) for
which it is not known whether Conjecture 3.1 applies are the cases b1, b2 ≥ 2 and
n1 ≤ b1 + 2 or n2 ≤ b2 + 2, i.e., settings where the column and/or the row code are of
very low rate.

3.4 Connection between Product and Tensor-Product
Codes

Before moving on to codes for grid-like topologies with global parities, we provide
a connection between codes for grid-like topologies with s = 0 and another class of
codes with application to storage, so called tensor-product (TP) codes [Wol65]. These
codes are defined as the duals of product codes and are interesting due to their small
storage overhead and good protection against some types of correlated erasures and
errors. However, there is no general classification of erasure patterns correctable by a
TP code. In this section, a connection between this problem and the corresponding
problem for grid-like topologies is established by showing how the maximal erasure
patterns of codes and their dual codes are connected. This implies that for certain TP
codes, which are duals of MR codes of a grid-like topology with s = 0, their correctable
erasure patterns can be exactly characterized by relying on the results summarized in
Table 3.1.
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3.4 Connection between Product and Tensor-Product Codes

Definition 3.2 (Tensor-Product Code). Consider an [n1, b1] code Ccol and an [n2, b2]
code Crow. Then the tensor-product code TP(Ccol, Crow) is the [n1n2, n1n2−(n1−b1)(n2−
b2)] code defined as

TP(Ccol, Crow) = 〈Hcol ⊗Hrow〉⊥ ,

where Hcol and Hrow denote parity-check matrices of the codes Ccol and Crow, respec-
tively.

We begin by formally establishing the connection between TP codes and codes for
grid-like topologies.

Lemma 3.6. Let C1 be an [n1, b1] code and C2 be an [n2, b2] code. Then

TP(C1, C2)⊥ ∈ Cn1×n2(b1, b2, 0) .

Proof. Denote by Hcol and Hrow parity-check matrices of the codes Ccol and Crow, re-
spectively. We have

TP(Ccol, Crow)⊥ = 〈Hcol ⊗Hrow〉 .

The statement follows from interpreting the matrices Hcol and Hrow as generator ma-
trices of [n1, n1 − b1] and [n2, n2 − b2] codes, respectively.

Now, to apply the results on correctable erasures patterns given in Table 3.1 to TP
codes, we only need to relate the set of erasure patterns correctable in a given code to
those correctable in its dual code.

Lemma 3.7. Consider any [n, k] code C and denote by E the set of erasure patterns
that are correctable in this code. Then the set E⊥ of erasure patterns correctable in the
dual code is given by

E⊥ = {E | E ⊆ [n] \ Emax, Emax ∈ E, |Emax| = n− k} .

Proof. It is well-known that the information sets of the dual of a code are exactly given
by the complements of the information sets of the code and that an erasure pattern
is correctable if and only if the surviving positions contain an information set (see
Proposition 3.1). Hence, the set of patterns correctable by the dual code is given by

{E | E ⊆ [n] \ I, I is an information set of C⊥}
= {E | E ⊆ I, I is an information set of C}
= {E | E ⊆ I, [n] \ I ∈ E, |I| = k}
= {E | E ⊆ [n] \ Emax, Emax ∈ E, |Emax| = n− k} .
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3 Correctable Erasure Patterns in Product Topologies

It follows that there is a deterministic relation between the sets of erasure patterns
correctable in a code and its dual.

Corollary 3.1. The set of maximal erasure patterns correctable in a code C uniquely
determines the set of erasure patterns correctable in the dual code C⊥.

For many classes of codes this result has limited practical value, as the set of all
maximal erasure patterns is commonly unknown. While the minimum distance of a
code provides a guarantee on the erasure patterns correctable in this code, this only
leads to a superset of the patterns correctable in the dual code. The interesting point
about applying this results to duals of MR codes is that for some topologies the set of
maximal patterns can be completely determined (see Table 3.1), leading to an exact
characterization of the patterns correctable in the dual code.

Theorem 3.3. Let Ccol be an [n1, b1] code and Crow be an [n2, b2] code. The set of
maximal erasure patterns correctable by the TP code TP(Ccol, Crow) is a subset of

{([n1]× [n2]) \ E | E ∈ Emax
n1×n2(b1, b2, 0)} .

Moreover, if TP(Ccol, Crow)⊥ ∈ CMR
n1×n2(b1, b2, 0) then this is exactly the set of erasure

patterns correctable in TP(Ccol, Crow).

Applying Theorem 3.3 to the cases where En1×n2(b1, b2, 0) is known (see Table 3.1)
establishes the correctable erasure patterns in the corresponding TP codes.

3.5 Global Redundancy s > 0
For some topologies with s = 0 the set of correctable erasure patterns is fully charac-
terized (as the regular patterns) and, for some cases, explicit constructions are known
(see Tables 3.1 and 3.2). For s > 0 only the special cases of b1 = 0 (corresponding
to PMDS codes, see Section 2.3.1) and b1 = b2 = s = 1 are known (see Table 3.1).
In this section, we characterize the set of correctable erasure patterns Emax

n1×n2(b1, b2, s)
as a function of Emax

n1×n2(b1, b2, 0), for any n1, n2, b1, b2, and s. A similar result for the
extension of codes defined by a binary parity-check matrix, i.e., where Hlocal is in F2,
has been derived in [GHJY14, Section V.A].

3.5.1 Construction
We generalize the Gabidulin-based code construction of [RKSV13] for b1 = 0 to any
number of column parities. These codes have been shown to be MR for the topology
Tn1×n2(0, b2, s), i.e., to be PMDS codes, in [CK16]. We show that by a similar two-stage
encoding procedure we can “add global redundancy” to codes for any grid-like topology.
Specifically, we give a general construction that, given a code Cout ∈ CMR

n1×n2(b1, b2, 0),
returns a code C ∈ CMR

n1×n2(b1, b2, s).
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Lemma 3.8. Let Iout be the set of information sets of Cout[nout, kout]q and Cin be
a Gab(kout, s,β)qkout code as in Definition 2.6. Then the code 〈Gin ·Gout〉 |I is a
Gab(kout, s,β

′)qkout code for any I ∈ Iout.

Proof. By definition of an information set, the matrix Gout|I is a full-rank matrix over
Fq. The statement follows from observing that 〈Gin ·Gout〉 |I = 〈Gin · (Gout|I)〉 and
applying Lemma 2.2.

We now provide a characterization of the set of erasure patterns correctable by this
construction when the code Cout is an MR code for a grid-like topology.

Theorem 3.4. Let Cout ∈ CMR
n1×n2(b1, b2, 0) be an [nout = n1n2, kout = (n1−b1)(n2−b2)]

code and
Cin := Gab

(
(n1 − b1)(n2 − b2), s,β

)
qs
,

with s ≥ (n1− b1)(n2− b2). Then the code 〈Gin ·Gout〉 corrects all erasure patterns in

{E ′ ∪ I | E ′ ∈ Emax
n1×n2(b1, b2, 0), I ⊂ ([n1]× [n2] \ E ′), |I| = s} .

Proof. Let E be an erasure pattern of the set above. Then, there is an erasure pattern
E ′ of the set Emax

n1×n2(b1, b2, 0) with E = E ′ ∪ I. The complement of E ′ is, by definition,
an information set of the outer code Cout. By restricting the overall code to this
information set, we thus obtain a Gabidulin code with parameters [(n1 − b1)(n2 −
b2), (n1 − b1)(n2 − b2) − s] by Lemma 3.8. Note that there are exactly s remaining
erasures (given by I) in the remaining positions. Since any Gabidulin code is MDS,
the restricted code can correct exactly s erasures, which concludes the proof.

As noted above, this construction is a generalization of the PMDS code construction
given in [RKSV13]. The following example captures this special case.

Example 3.3. Let Cout[n1n2, n1(n2 − b2)] be the code spanned by

diag(G,G, . . . ,G︸ ︷︷ ︸
n1 times

) ,

where G is the generator matrix of an arbitrary [n2, n2− b2]q MDS code. Observe that
Cout ∈ CMR

n1×n2(0, b2, 0) and the set of its information sets is given by

Iout = {From each block pick arbitrary n2 − b2 positions} .

Choose Cin to be an [n1(n2 − b2), n1(n2 − b2) − s]qn1(n2−b2) Gabidulin code to obtain
the PMDS code construction of [RKSV13]. Observe that Iout are exactly the subsets
of positions that must give an MDS code in a PMDS code according to the second
property of Definition 2.8.
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3.5.2 Correctable Erasure Patterns
To show that the code of Theorem 3.4 is indeed MR, it remains to characterize
the patterns correctable in Tn1×n2(b1, b2, s) given the set of patterns correctable in
Tn1×n2(b1, b2, 0).

Theorem 3.5. We have

Emax
n1×n2(b1, b2, s) = {E ′ ∪ I | E ′ ∈ Emax

n1×n2(b1, b2, 0), I ⊂ (n1 × n2 \ E ′), |I| = s} ,

i.e., any E ∈ Emax
n1×n2(b1, b2, s) can be obtained by adding s erasures to some E ′ ∈

Emax
n1×n2(b1, b2, 0).

Proof. “⊇” follows by the construction of Theorem 3.4.
The other direction is implied by the following argument. Let E ∈ Emax

n1×n2(b1, b2, s).
Denote by G the generator matrix of a code C ∈ Cn1×n2(b1, b2, s) that corrects E and
let Hlocal,Hglobal be as in Definition 2.9. Denote by C ′ ∈ Cn1×n2(b1, b2, 0) the code
obtained by setting Hglobal = 0. Then there exists a generator matrix of C ′ of the form

G′ =
(

G
Gglobal

)
,

for some Gglobal ∈ Fs×n1n2 . Trivially, we have

rank(G′|[n1n2]\E) ≥ rank(G|[n1n2]\E) = dim(C) ,

where the last equality holds because E is correctable in C by definition. By basic
linear algebra arguments there exists a subset I ⊂ E with |I| = dim(C)− dim(C ′) ≤ s
such that

rank(G′|([n1n2]\E)∪I) = rank(G′) = dim(C ′) .

It follows that E \ I is correctable in Tn1×n2(b1, b2, 0). This concludes the proof.

As an immediate consequence, it follows that, similar to the definition of PMDS
codes, the surviving positions after puncturing the “local redundancy” must form an
MDS code of distance s+ 1.

Corollary 3.2. Denote n = n1n2. Then, for any E ′ ∈ Emax
n1×n2(b1, b2, 0) and any [n, k]

code C ∈ CMR
n1×n2(b1, b2, s) the code C|n1×n2\E ′ must be an [n− |E ′|, k, s+ 1] MDS code.

Proof. It follows trivially from the dimension of C that the code C|[n2]\E ′ can never
correct more than s erasures. The existence of a code for which this restriction is an
MDS code follows from Corollary 3.3.
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As Gabidulin codes of length n can be defined over any extension field FqM as long
n ≥M , we arrive at the following statement.

Corollary 3.3. Let Cout[n, k]q ∈ CMR
n1×n2(b1, b2, 0). Then there exists an [n, k−s]qk code

C ∈ CMR
n1×n2(b1, b2, s).

Proof. Follows immediately from Theorems 3.4 and 3.5.

3.6 Summary and Open Problems
This chapter considered the class of maximally recoverable codes for grid-like topolo-
gies. First, it was shown that a conjecture on a characterization of the erasure patterns
correctable in such a topology is false. Then, codes for grid-like topologies and the
erasure patterns correctable therein were related to the class of Tensor-Product codes.
Finally, a generic method for adding global redundancy to codes for grid-like topolo-
gies was proposed, along with a characterization of the correctable erasure patterns as
a function of the patterns correctable without the global redundancy.
The main open problem, which is further motivated by the disproving of Conjec-

ture 3.1, is the search for a characterization of the erasure patterns correctable in
grid-like topologies. Further, explicit constructions are only known for very special
parameter settings. Such constructions, preferably of small field size, are a major
open problem which needs to be solved to increase the practicability of these codes.
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4
Partial MDS Codes with Regeneration

Abstract

Partial MDS (PMDS) and sector-disk (SD) codes are classes of erasure correcting codes
that combine locality with strong erasure correction capabilities. This chapter introduces
the first known construction of PMDS codes with global regeneration, which allows for
efficient repair for patterns of node failures that exceed the local erasure correction ca-
pability of the code and thereby invoke repair across different local repair sets. Further,
new constructions of PMDS and SD codes with local regeneration are presented, where
each local code is a bandwidth-optimal regenerating MDS code. In the event of a node
failure, these codes reduce both, the number of servers that have to be contacted as
well as the amount of network traffic required for the repair process. The construc-
tions require significantly smaller field size than the only other construction known in
literature.
This chapter is based on the work [HPYWZ21] published in the IEEE Transactions
on Information Theory. In part, the results on PMDS codes with local regeneration
have been published in the proceedings of the 2020 IEEE International Symposium on
Information Theory (ISIT) [HPYW20] (nominated for the 2021 NVMW Memorable
Paper Award).

4.1 Introduction
The previous chapter dealt with MR codes for grid-like topologies. Such codes and,
in general, codes with locality are of broad interest because of the small number of
positions required for node recovery, which is an important characteristic of DSSs.
Regenerating codes address the other major concern in node recovery, namely the re-
quired amount of data transmitted between the nodes. To lower this repair bandwidth,
regenerating codes allow for a larger number of nodes to be involved in the repair
process. The naive approach to node repair in an MDS code of length n and dimen-
sion k requires exactly k nodes to be involved. By accessing d > k nodes, but only
retrieving a function of the data stored on each node, regenerating codes significantly
decrease the repair bandwidth. Lower bounds on the required bandwidth for repair
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have been derived in [DGW+10; CJM+13] which lead to two extremal code classes,
namely minimum bandwidth regenerating (MBR) and minimum storage regenerating
(MSR) codes. MBR codes, as constructed in [RSK11; KSP+13; LC14; KK16b], of-
fer the lowest possible repair traffic, but at the cost of increased storage overhead
compared to MDS codes. This chapter considers d-MSR codes, as constructed in
[SR10; RSK11; SRKR11; TWB12; CJM+13; GFV17; YB17a; LTT18], which require
more network traffic for repair than MBR codes, but are optimal in terms of storage
overhead, i.e., they are MDS.
As locality and regeneration are two properties that allow for more efficient node

repair, it is a natural question whether these approaches can be combined. One com-
mon motivation for the use of locality is the physical limitation of the interconnect
between nodes from different local repair sets, e.g., because nodes are in different racks
or even data centers. In this case, it is of particular importance that the communica-
tion required in case of global recovery is low, despite it being less likely than failure
events that incur local recovery. In the first part of this chapter, we consider PMDS
codes with such global regeneration properties that offer nontrivial repair schemes for
the case where local recovery is not possible. Specifically, we introduce a PMDS code
construction that becomes an MSR code, when the local redundancy is removed.
Another approach addressing this problem is clustered storage [GPV13; PYGP13;

SCM18; SCYM18] and, specifically, rack-aware regenerating codes (RRCs) [HLSH19;
HLH20]. In this setting, the nodes are partitioned into a smaller number of racks,
similar to the partitioning of nodes for codes with locality. When a node fails within
a rack, it is regenerated by transmitting from each rack a function of the content of
its nodes. The distinction to regenerating codes is that the repair traffic is given by
the amount of data transmitted between the racks, while communication within each
rack is ignored. Aside from this definition of the repair bandwidth, there are two
important differences to the model we consider: 1) RRCs require a node that collects
the data from the nodes within the rack and computes a function of it that is to
be transmitted and 2) RRCs generally do not have locality, i.e., no repair is possible
within each rack. Double regenerating codes [HLZ16] refine this model by considering
two levels of regeneration, a local one, i.e., within the racks, and a global one, i.e.,
across the racks. A sightly different model has been considered in [PAM18], in which
repair is conducted by downloading a number of symbols from helper racks (also called
clusters) and additionally a number of symbols from a set of nodes of the same rack,
where, unlike for RRCs, both contribute to the overall repair bandwidth. Similar to
RRCs and double regenerating codes, the codes under this model do not have locality.
A rack-aware setting that also considers local recovery from node failures is given by

multi-rack distributed storage [TCS14; QLZ+18]. There, a small number of nodes can
be repaired/regenerated locally and failure patterns for which this is not possible are
repaired by contacting other racks in addition to the surviving local nodes. Similar to
RRCs, it is assumed that the contacted helper racks can process the data of the nodes
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within the rack and that the communication between racks is more costly than within
a rack. Along with an information-theoretic bound, [QLZ+18] presents a construction
for the case of an efficient local repair of a single node failure. The minimization of
the cross-rack repair bandwidth is stated as an open problem. In [TCS14] the authors
consider a more general setting which improves both, the repair bandwidth within
a rack in case of a small number of failure and across racks for failure patterns that
cannot be repaired locally. Similar to RRCs, this model differs from the one considered
in this chapter in that racks are able to process the data from their nodes prior to
sending it to other racks. Additionally, we consider a stronger notion of locality in
requiring the storage code to be PMDS.
The work with closest relation to the model of global regeneration in codes with

locality that we consider is [GKJS17], which introduces local redundancy by splitting
parity-check equations of HashTag codes [KGØ16; KGJØ17; LTT18]. While it is
shown that the codes are distance-optimal LRCs, they are generally not PMDS codes
and possess only information locality, i.e., the recovery from a small subset of positions
is only guaranteed for a set of systematic positions.
As noted above, the probability of such a global regeneration event to be induced

is low compared to the event of local recovery, hence, the relative importance of a
bandwidth-efficient solution for each case depends on various system parameters. The
second part of this chapter therefore considers PMDS code with local regeneration.
While locality limits the number of nodes involved in this process, the local recovery of
nodes still induces a large amount of network traffic, as the entire content of the helper
nodes needs to be downloaded when applying straight-forward recovery algorithms. To
circumvent this bottleneck, several locally regenerating codes [DGW+10] have been
proposed [KPLK14; RKSV13; KNK18; GKJS17; Hol14; LLL16]. In [CK16] it was
shown that the LRC construction of [RKSV13] is in fact a PMDS code, implicitly giving
the first construction of PMDS codes with local regeneration1. However, these PMDS
codes require a field size exponential in the length of the code and the subpacketization
of the local regenerating code (which may itself be exponential in the length of the
local code).

4.1.1 Contributions and Outline
In Section 4.3, we propose the first known construction of globally MSR PMDS codes,
where the MDS code obtained from puncturing b positions in each local repair set
is an MSR code. This allows for a significant reduction in the repair bandwidth in
case a global repair event is triggered. For that purpose, we introduce a new MSR

1The construction in [RKSV13] consists of two encoding stages, where in the second stage an arbi-
trary linear MDS code can be used to obtain the local codes. In [CK16] it was shown that the
construction in fact gives a PMDS code, independent of the explicit choice of the MDS code in
the second encoding stage. It follows that using a regenerating MDS code in the second encoding
stage results in a PMDS code with local regeneration.
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4 Partial MDS Codes with Regeneration

code construction based on [YB17a] which utilizes Gabidulin instead of Reed–Solomon
codes and prove that it is in fact an MSR code. This allows for building PMDS codes
with regenerating properties in a similar fashion as the Gabidulin-code-based PMDS
code construction (without regeneration) in [RKSV13]. The involved part for retaining
the MSR property for any puncturing of b positions in each local repair set is the choice
of evaluation points of these Gabidulin codes. An explicit choice based on pairwise
trivially intersecting subspaces is presented and proved to fulfill the required property
for any such puncturing pattern. The resulting code has a field size in O(nµ(nl+s)

l ) and
subpacketization in O((8nl)µnl(nl+s)).
In Section 4.4.1, we construct a new PMDS code with two global parities (s = 2),

where each local code is a d-MSR code. The construction is a nontrivial combination
of the PMDS codes in [BPSY16] with the MSR codes in [YB17a], and has field size in
the order of

O(µb2nl) .

In Section 4.4.2, we present a new general construction of locally MSR PMDS codes
for any number of global parities. The construction combines an arbitrary family
of universal PMDS codes, a class of PMDS codes that allows for the local codes
to be chosen almost arbitrarily, and an MSR code whose rows are all MDS codes.
This immediately leads to several new explicit locally MSR PMDS codes using known
universal PMDS code families and the MSR codes in [YB17a]. The PMDS codes in
[RKSV13] result in a field size in the order of

O
(
(bnl)µ(nl−b)

)
and the ones in [MPK19] give a field size in

O
(

max{bnl, µ+ 1})nl−b
)
.

We also slightly generalize the PMDS code family in [GYBS18] such that it becomes
universal. The resulting field size of the corresponding locally MSR PMDS code is in

O(nlb(2nlµ)s(b+1)−1) .

All new locally MSR PMDS codes have the same subpacketization as the underlying
MSR code from [YB17a].
In Section 4.5, we analyze the field size of the new constructions of locally MSR

PMDS codes. For the two-global-parities construction based on [BPSY16] and the
universal construction with the PMDS codes in [MPK19] and [GYBS18], there is a
reasonable parameter range in which the respective construction has lowest field size
among all known constructions. Moreover, for all parameters, there is a new construc-
tion that has a smaller field size than the only known construction of [RKSV13].
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4.2 Regenerating Codes

Table 4.1: An overview of the notation used in this work compared to the notation
used in [BPSY16; GYBS18; MPK19; RKSV13; YB17a]. The largest benefit
from this comparison is in Sections 4.4.1, 4.4.2 and 4.5, where we construct
and discuss PMDS codes with local MSR codes. Therefore, the length and
number of parities in the MSR code construction of [YB17a] are matched
with the parameters of the local codes in our work. Note that, in our
notation, the length of the MSR code in Section 4.3, where we consider
PMDS codes with global repair properties, is µ(nl − b) and the number of
parities is s.

Description [BPSY16] [GYBS18] [MPK19] [RKSV13] [YB17a] This work

Number of local repair sets r m g g - µ
Length of local MSR code n n r + δ − 1 r + δ − 1 n nl
# of local parity symbols m r δ − 1 δ − 1 r b
# of global parity symbols s s h D − 1 - s
Code length rn mn n n - µnl
Subpacketization - - - α l `
# of nodes needed for repair - - - d d d

4.2 Regenerating Codes
This work is largely based on the constructions of PMDS codes by Rawat et al.
[RKSV13], Blaum et al. [BPSY16], Gabrys et al. [GYBS18], and Martínez-Peñas
and Kschischang [MPK19] as well as the construction of MSR codes by Ye and Barg
in [YB17a]. Since the notations in these works are conflicting, i.e., the same symbols
are used for different parameters of the codes, Table 4.1 provides an overview of the
notation used in this work compared to these works.
In accordance with [DGW+10; CJM+13], we formally define the class of MSR codes.

Definition 4.1 (Regenerating code [DGW+10; CJM+13]). Let F ,R ⊂ [nl] be two
disjoint subsets. Let C be an [nl, nl − b; `]q MDS array code. Define M(C,F ,R) as
the smallest number of symbols of Fq one needs to download from the surviving nodes
indexed by R to recover the erased nodes indexed by F . Then

M(C,F ,R) ≥ |F||R|`
|F|+ |R| − nl + b

. (4.1)

For two integers h, d, with 1 ≤ h ≤ b and nl − b ≤ d ≤ nl − h, we say that the code C
is an (h, d)-MSR code if

max
|F|=h,|R|=d
F∩R=∅

M(C,F ,R) = hd`

h+ d− nl + b
.
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4 Partial MDS Codes with Regeneration

If h = 1 we say that the code is a d-MSR code. If in addition, d = nl − 1, we simply
say that the code is an MSR code.

Informally, in a regenerating array code, as in Definition 4.1, every codeword is
required to be recoverable from an arbitrary subset of nl − b columns. We now define
a slightly stronger property, which imposes a similar requirement on every row of a
codeword.

Definition 4.2. Let C be an [nl, nl − b; `] regenerating code as in Definition 4.1. We
say that the code C is a row-wise MDS regenerating code if for any i ∈ [`] the set
{C[i, :] | C ∈ C} is an [nl, nl − b] MDS code.

4.2.1 Regenerating Codes with Locality
With these notions established, we combine Definitions 2.8 and 4.1 to formally define
the class of globally MSR PMDS codes.

Definition 4.3 (Globally (h, d)-MSR PMDS array code). Let C be a PMDS(µ, nl, b, s,W; `)
code and d, h be chosen such that 1 ≤ h ≤ s and µ(nl − b) − s ≤ d ≤ µ(nl − b) − h.
The code C is globally (h, d)-MSR if the restriction C|[µnl]\∪µi=1Ei is a [µ(nl − b), µnl −
bµ− s, s+ 1; `] (h, d)-MSR code for any Ei ⊂ Wi with |Ei| = b for all i ∈ [µ].
If h = 1 we say the code is a globally d-MSR PMDS code. If in addition, d =

µ(nl − b)− 1, we simply say that the code is a globally MSR PMDS code.

The class of locally MSR PMDS codes, which we construct and analyze in Sec-
tions 4.4.1, 4.4.2 and 4.5, is defined similarly, except that the MSR property is required
for every local MDS code.

Definition 4.4 (Locally (h, d)-MSR PMDS array code). Let C be a PMDS(µ, nl, b, s,W; `)
code and d, h be chosen such that 1 ≤ h and nl− b ≤ d ≤ nl− h. The code C is locally
(h, d)-MSR if C|Wi

is an (h, d)-MSR code for all i ∈ [µ].
If h = 1 we say the code is a locally d-MSR PMDS code. If in addition, d = nl − 1,

we simply say that the code is an locally MSR PMDS code.

Fig. 4.1 shows an illustration of a locally MSR PMDS array code. Assuming the
code to be an (b = 2, s = 2)-PMDS code, the erasures in the first local code can be
corrected locally, but without taking advantage of the regenerating property, as the
number of available helper nodes is only nl − b. The erasure in the second local code
can be corrected from the remaining nl − b+ 1 nodes in the local repair set using the
locally regenerating property, and the erasures in the third local code can be recovered
by accessing nodes of the other local repair sets and could therefore benefit from the
global MSR property.
Throughout the paper, we consider in all constructions h = 1. This is the most

interesting case since in a storage system it is more likely that one node needs to be
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...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

PMDS codewordRow-wise MDS MSR codeword

`

Servers
Local repair set 1 Local repair set 2 Local repair set 3

Server Failures

Figure 4.1: Illustration of a DSS encoded with a locally MSR PMDS array code with
nl = 5, µ = 3, and each symbol of the code alphabet represented by a small
rectangle. The shown erasure pattern can be corrected by an (b = 2, s = 2)-
PMDS code.

regenerated than multiple nodes. In the globally MSR case, we further fix d to be
maximal, i.e., d = µ(nl − b) − 1. It can be seen from the bound in Definition 4.1
that the repair bandwidth decreases in d, i.e., it is minimal for this choice of d. See
Section 4.6 for a discussion on how the results can be generalized.

4.2.2 Ye-Barg Regenerating Codes
We provide a formal definition of the MSR codes of [YB17a, Construction 2] in the
notation used in this work.

Definition 4.5 (Ye-Barg (YB) d-MSR codes [YB17a, Construction 2]). Let z = d +
1− (nl − b) and {βi,j}i∈[z],j∈[nl] be a set of znl distinct elements of Fq, where q ≥ znl.
The [nl, nl − b; `] array code C over Fq is defined to be the set of codeword arrays with
` = znl rows and nl columns, where the a-th row fulfills the parity check equations

H(a) =


1 1 . . . 1

βa1,1 βa2,2 . . . βanl ,nl...
...

...
βb−1
a1,1 βb−1

a2,2 . . . βb−1
anl ,nl

 ,

for a ∈ [`] and a− 1 = ∑nl
i=1(ai − 1)zi−1 with ai ∈ [z].

As each row a fulfills the parity-check equations of an GRS code (see Definition 2.3),
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4 Partial MDS Codes with Regeneration

it is easy to see that a Ye-Barg code as in Definition 4.5 is in fact row-wise MDS d-MSR
code.

Remark 4.1. All constructions presented in the following can also be applied to obtain
globally/locally (h, d)-MSR PMDS codes, where the corresponding restriction of the
code is (the skew analog of) an (h, d)-MSR code as in [YB17a, Construction 3], which is
very similar in structure to [YB17a, Construction 2] given in Definition 4.5. However,
as the required subpacketization is larger for the former and the case of d-MSR codes
has the highest practical relevance, we focus on this class in this work.

Remark 4.2. In Definition 4.5 we define each row of the array code by a set of parity
check equations independent of the other `− 1 rows of the array. Note that this is not
possible for array codes in general. However, for the existence of such a description it
is sufficient that the matrices Ai, as defined in [YB17a], are diagonal matrices. This
allows for the simplified notation of Definition 4.5 for the cases considered in this work,
which highlights the fact that each row is indeed an [nl, nl− b] RS code, and thus MDS.

4.3 PMDS Codes with Nontrivial Global Regeneration
By definition, a PMDS code punctured in arbitrary b positions of each local repair set
is an MDS code of distance s + 1. In the following we construct PMDS codes where
each of these MDS codes is an MSR code. For the sake of simplicity, we focus on the
case of highest practical interest: MSR codes with that repair one position (h = 1)
from all d = µ(nl − b)− 1 remaining positions of the MDS code.
The construction is based on two main observations. First, the principle used in the

MSR codes of [YB17a] can also be applied using Gabidulin codes (recall Definition 2.6)
instead of RS codes. Second, as already used in the construction of codes for grid-
like topologies with global redundancy in Section 3.5, performing linearly independent
linear combinations of the symbols of a Gabidulin code yields another Gabidulin code
with different code locators. Using these observations and carefully choosing the code
locators for each row in an array of Gabidulin codewords, we assure that the code
obtained from puncturing b positions in each local repair set is MSR. The studied
construction works as follows.

Construction 4.1 (Globally MSR PMDS array codes). Let µ, nl, b, s be valid PMDS
parameters and B ∈ F`×µ(nl−b)

qM be a matrix with entries βi,j, i ∈ [`], j ∈ [µ(nl− b)]. We
define the [µnl, µ(nl − b)− s; `]qM array code C(µ, nl, b, s,B; `)q as{

C ∈ F`×µnlq | C[a, :] = u(a) ·G(a)
B · diag(GMDS,GMDS, . . .)∀u(a) ∈ Fµ(nl−b)−s

qm , a ∈ [`]
}
,

where G(a)
B is a generator matrix of the code Gab(µ(nl − b), µ(nl − b)− s,B[a, :]) as in

Definition 2.6 and GMDS is a generator matrix of an [nl, nl − b]q MDS code.
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4.3 PMDS Codes with Nontrivial Global Regeneration

It is easy to see that if the rows of the matrix B in Construction 4.1 contain linearly
independent elements, then each row of the code is a PMDS code of the code family
constructed in [RKSV13] (see also Example 3.3). In the remainder of this section,
we prove that if the matrix B is chosen in a suitable way, then the MDS array codes
obtained from erasing b positions in each local repair set are MSR codes of the following
type, which can be seen as a Gabidulin-analog of Ye–Barg codes.

Definition 4.6 (Skew Ye–Barg d-MSR codes). Let µ, nl, b, s be valid PMDS param-
eters, ` ∈ Z>0, and B ∈ F`×µ(nl−b)

qm be a matrix with entries B[i, j] = βi,j. Define
C(µ, nl, b, s,B) ⊂ F`×µ(nl−b)

q to be an [µ(nl − b), µ(nl − b) − s; `] array code over Fqm,
where each codeword is a matrix with ` rows and µ(nl − b) columns, such that for any
a ∈ [`] the a-th row is a codeword of a code with parity-check matrix

H(a)
B =


βa,1 βa,2 . . . βa,µ(nl−b)

βq
1

a,1 βq
1

a,2 . . . βq
1

a,µ(nl−b)
...

...
...

βq
s−1

a,1 βq
s−1

a,2 . . . βq
s−1

a,µ(nl−b)

 .

Denote by G(a)
B a generator matrix corresponding to H(a)

B .

Remark 4.3. Definition 4.6 is essentially the same as Definition 4.5, except that it
relies on Gabidulin codes. Note that there is also a difference in presentation: the
locators are not given as a set of elements, but instead given explicitly as an input for
each row. For Definition 4.5 the corresponding matrix B is easily obtained from a set
B = {βi,j}i∈[z],j∈[nl] of distinct elements of FqM by assigning B[a, j] = βaj ,j for a ∈ [`]
and a− 1 = ∑nl

i=1(ai − 1)zi−1 with ai ∈ [z], i.e., assigning the code locators of H(a) to
the a-th row of B.

For the node repair algorithm of Ye–Barg codes [YB17a], it is essential that the rows
of a codeword can be partitioned into subsets for which there exist parity checks that
differ exactly in position i , i.e., for which all entries are the same except for those
at position i, which are all distinct. This is due to the close relation of Ye–Barg to
Reed–Solomon codes. In Lemma 4.1 below, we analogously prove that Skew Ye–Barg
codes are MSR codes if the matrix of code locators B has the following property, which
is due to their relation to Gabidulin codes.

Definition 4.7 (YB-Grouping Property). Let µ, nl, b, s be valid PMDS parameters
and B ∈ F`×µ(nl−b)

qm . We say that the matrix B has the YB-grouping property w.r.t.
s if for each position i ∈ [µ(nl − b)] the rows of the matrix can be partitioned into
/̀s subsets Z1,Z2, . . . ,Z `

s
of |Za| = s rows such that for each a ∈ [ /̀s] the elements

{B[z, i] | z ∈ Za} are linearly independent and the elements {B[z, j] | z ∈ Za} are the
same for all other positions j ∈ [µ(nl − b)] \ {i}.
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4 Partial MDS Codes with Regeneration

This Ye-Barg grouping property is the key to the Ye-Barg MSR2 codes of [YB17a].
We modify the presented repair algorithm for our skew Ye-Barg codes to show their
MSR property.

Lemma 4.1. Let µ, nl, b, s be valid PMDS parameters and B ∈ F`×µ(nl−b)
qM be a matrix

such that for any a ∈ [`] the elements of its a-th row B(a) are linearly independent over
Fq. Further, let B have the Ye-Barg grouping property w.r.t. s as in Definition 4.7.
Then the code C(µ, nl, b, s,B) as in Definition 4.6 is an MSR code.

Proof. The MDS property follows directly as each row is a codeword of a Gabidulin
code, which are well-known to be MDS. It is easy to check that the recovery algorithm
of [YB17a, Theorem 1] also applies to the code of Definition 4.6. For completeness
we include a short proof here. Assume node i failed, i.e., we need to recover the
set {C[a, i] ∀ a ∈ [`]} from the helper nodes with indices [µ(nl − b)] \ {i}. Denote
B[i, j] = βi,j and let {Zi,1,Zi,2, . . . ,Zi, `

s
} be the partition of [`] into the subsets Zi,z

of s row indices for which the parity check equations differ exactly in position i and
the entries in position i are linearly independent. Note that such a partition exists for
every i ∈ [µ(nl − b)] by definition of the Ye-Barg grouping property. The a-th row of
a codeword C ∈ C is determined by the s parity checks

0 =
µ(nl−b)∑
j=1

βq
ξ

a,jC[a, j] = βq
ξ

a,iC[a, i] +
µ(nl−b)∑
j=1
j 6=i

βq
ξ

a,jC[a, j]

for ξ ∈ [0, s − 1]. Observe that βa,j = βa′,j ∀ a, a′ ∈ Zi,z, j 6= i and by slight abuse of
notation we denote βZi,z ,j := βa,j, a ∈ Zi,z. Summing over all a ∈ Zi,z gives

∑
a∈Zi,z

βq
ξ

a,iC[a, i] =
∑
a∈Zi,z

µnl∑
j=1
j 6=i

(
βq

ξ

a,jC[a, j]
)

=
µnl∑
j=1
j 6=i

(
βq

ξ

Zi,z ,j
∑
a∈Zi,z

C[a, j]
)
. (4.2)

This is a linear system of equations with s unknowns C[a, i], a ∈ Zi,z and s equations,
one for each ξ ∈ [0, s − 1]. By the Ye-Barg grouping property of B, the elements
{βa,i | a ∈ Zi,z} are linearly independent and the equations therefore linearly inde-
pendent. Hence, the unknowns can be uniquely determined if the right hand side
of Eq. (4.2) is known. Therefore, for repair of node i, node j transmits the set of
symbols  ∑

a∈Zi,z
C[a, j] | z ∈ [`/s]

 .

2Specifically, as these codes consider RS instead of Gabidulin codes the elements in the i-position
only need to be distinct in this case, not necessarily linearly independent.

58



4.3 PMDS Codes with Nontrivial Global Regeneration

As the cardinality of this set is /̀s, the repair bandwidth is (µ(nl−b)−1) /̀s and thereby
fulfills the bound on the minimal repair bandwidth of Definition 4.1 with equality, i.e.,
the code is an MSR code.

As each row in a codeword of a skew Ye-Barg codes is a codeword of a Gabidulin
code, Construction 4.1 can be applied to this code by multiplying it from the right
by the µ(nl − b) × µnl matrix diag(GMDS,GMDS, . . .). When puncturing arbitrary b
positions in each local repair set, which corresponds to removing columns of this block
diagonal matrix, we do not obtain the original skew Ye–Barg code. However, we do
get the original code multiplied by an invertible matrix over Fq from the right. By
Lemma 2.2 the rows of the resulting code are again codewords of a Gabidulin code.
In the following theorem we give a sufficient condition on the matrix B for this code
to again be a skew Ye-Barg code. If this holds for every possible puncturing pattern,
the code is globally MSR PMDS code as in Definition 4.3.

Theorem 4.1. Let µ, nl, b, s be valid PMDS parameters, W = {W1,W2, . . . ,Wµ} be
a partition of [µnl] with |Wi| = nl ∀ i ∈ [µ]. Then, the code C(µ, nl, b, s,B; `)qM as
in Construction 4.1 is a globally MSR PMDS code if the matrix

B · (diag(GMDS,GMDS, . . .)|[µnl]\∪µi=1Ei)
−1

has the YB grouping property (as in Definition 4.7) for any Ei ⊂ Wi with |Ei| = b.

Proof. Without loss of generality assume that Wi = [(i − 1)nl + 1, inl]. Denote I =
[µnl] \ ∪µi=1Ei, where Ei ⊂ Wi with |Ei| = b for all i ∈ [µ], and Ēi = [nl] \ Ei. The
restriction of the code C to the positions indexed by I is the code

CI =
〈(

G(a) · diag(GMDS,GMDS, . . .)
)∣∣∣
I

〉
=
〈
G(a) · (diag(GMDS,GMDS, . . .)|I)

〉
.

As GMDS is the generator matrix of an MDS code, the matrix diag(GMDS|Ē1 ,GMDS|Ē2 , . . .)
is a full-rank Fµ(nl−b)×µ(nl−b)

q matrix. By Lemma 2.2 it follows that code C(a)
I , consisting

of the a-th row of every codeword of CI , is a Gab(µ(nl− b), µ(nl− b)− s,β) code with

β = B[a, :] · (diag(GMDS,GMDS, . . .)|I)
−1 .

It follows directly from Lemma 4.1 that the code is MSR if the matrix

B · (diag(GMDS,GMDS, . . .)|I)
−1

has the Ye-Barg grouping property.

It remains to construct a matrix B that fulfills the property of Theorem 4.1. We
use the following slightly stronger property to simplify the analysis.
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Definition 4.8. We say that the matrix B ∈ F`×(µ(nl−b))
qM has the scrambled YB group-

ing property if B · diag(G1, . . . ,Gµ) has the YB grouping property for all invertible
matrices Gi ∈ F(nl−b)×(nl−b)

q .

The following theorem gives a construction of a matrix B that has the scrambled
YB grouping property.

Theorem 4.2. Let M = µ(nl − b+ s− 1) and choose µ subspaces

B(1), . . . ,B(µ) ∈ Gr(FMq , nl − b+ s− 1) ,

i.e., nl − b+ s− 1-dimensional subspaces of FMq , that span the space FMq .

For i = [µ], consider the sets

S(i) := {(β1, . . . , βnl−b) | 〈β1, . . . , βnl−b〉Fq is an (nl − b)-dimensional subspace of B(i)}

and

S :=
{

(β(1) | · · · | β(µ)) | β(i) ∈ S(i)
}
.

Then, the cardinality of S is

` := |S| =
[nl − b+ s− 1

nl − b

]
q

nl−b−1∏
i=0

(
qnl−b − qi

)µ

≤ 4µqµ(nl−b)(nl−b+s−1).

Let B ∈ F`×(nl−b)µ
qM be a matrix whose rows are exactly the entries of S. Then, B has

the scrambled YB grouping property as in Definition 4.8.

Proof. The cardinality of S(i) is the number of (nl − b)-dimensional subspaces of an
(nl − b+ s− 1)-dimensional vector space over Fq, times the number of bases of such a
subspace. The latter equals the number of invertible (nl − b)× (nl − b) matrices over
Fq. Hence, we have

|Si| =
[
nl − b+ s− 1

nl − b

]
q

nl−b−1∏
i=0

(
qnl−b − qi

)
≤ 4q(s−1)(nl−b)q(nl−b)2 = 4q(nl−b)(nl−b+s−1) ,
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where the inequality holds by [Ove07, Lemma 3.13]. Overall, we get

` = |S| =
µ∏
i=1
|S(i)|

=
[nl − b+ s− 1

nl − b

]
q

nl−b−1∏
i=0

(
qnl−b − qi

)µ

≤ 4µqµ(nl−b)(nl−b+s−1).

The matrix containing the elements of S as rows has the YB grouping property:

• Every element of S is a vector consisting of linearly independent entries. This is
obvious since the β(i) are linearly independent for each i, and the entries of the
β(i) are contained in trivially intersecting subspaces B(i).

• For a position j ∈ [nl − b] in the i-th block and an element β ∈ S, there are
the following s elements in S: Choose s − 1 elements γ2, . . . , γs that expand
the basis β(i)

1 , . . . , β
(i)
nl−b (which spans an (nl − b)-dimensional subspace) to the

(nl − b+ s− 1)-dimensional subspace B(i). Then, the s vectors

β(i) =: β
(i)
(1) =

(
β

(i)
1 . . . β

(i)
j−1 β

(i)
j β

(i)
j+1 β

(i)
nl−b

)
β

(i)
(2) =

(
β

(i)
1 . . . β

(i)
j−1 γ2 β

(i)
j+1 β

(i)
nl−b

)
...

β
(i)
(s) =

(
β

(i)
1 . . . β

(i)
j−1 γs β

(i)
j+1 β

(i)
nl−b

)

are all in S(i). Hence, the vectors(
β(1) | . . . | β(i−1) | β

(i)
(1) | β(i+1) | . . . | β(µ)

)
(

β(1) | . . . | β(i−1) | β
(i)
(2) | β(i+1) | . . . | β(µ)

)
...(

β(1) | . . . | β(i−1) | β
(i)
(s) | β(i+1) | . . . | β(µ)

)

are all in S and differ only in position j in the i-th block. The entries β(i)
j , γ2, . . . , γs

in the j-th position in the i-th block are linearly independent over Fq by con-
struction.

Furthermore, we have S = S · diag(G1, . . . ,Gµ) := {β · diag(G1, . . . ,Gµ) | β ∈ S}
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4 Partial MDS Codes with Regeneration

for all invertible matrices Gi ∈ F(nl−b)×(nl−b)
q . To see this, consider the following:

multiplying a subblock β(i) with an invertible matrix Gi from the right gives another
basis of the same subspace—hence β(i)Gi ∈ S(i) and β · diag(G1, . . . ,Gµ) ∈ S for all
β ∈ S. Since the Gi are invertible, the mapping β 7→ β ·diag(G1, . . . ,Gµ) is bijective.
These two observations imply that a matrix with the elements of S as rows has the

scrambled YB grouping property as in Definition 4.8.

By combining Theorems 4.1 and 4.2, we get the following existence result for a
globally MSR PMDS code.

Corollary 4.1. Let µ, nl, b, s be valid PMDS parameters. There is a globally MSR
PMDS code with field size

(nl − 1)µ(nl−b+s−1) ≤ qM < [2(nl − 1)]µ(nl−b+s−1)

and subpacketization

` =
[nl − b+ s− 1

nl − b

]
q

nl−b−1∏
i=0

(
qnl−b − qi

)µ ≤ 4µqµ(nl−b)(nl−b+s−1).

Proof. The corollary follows directly from using the matrix B constructed in Theo-
rem 4.2 in Construction 4.1 (see Theorem 4.1). Choosing q as the smallest prime
power ≥ nl−1 ensures that there is an [nl, nl− b]q MDS code as required in Construc-
tion 4.1. The statement follows from observing that, there is a prime power3 q with
nl − 1 ≤ q < 2(nl − 1).

Remark 4.4. There are no globally MSR codes in the literature that we can compare
the new construction with. Therefore, we only compare the field size and subpacketiza-
tion to a PMDS code without the globally MSR property, as well as the subpacketization
of an MSR code with the same parameters after puncturing b positions in each local
repair set. In other words, we determine how much we “pay” in terms of field size and
subpacketization if we go from a purely PMDS or MSR code to a globally MSR PMDS
code.
Construction 4.1 is an adaption of the Gabidulin-based PMDS code construction in

[RKSV13] (without local or global regeneration), which has field size qM < [2(nl −
1)]µ(nl−b). Compared to such a PMDS code, the exponent in the field size in Corol-
lary 4.1 is larger by a factor 1 + s−1

nl−b
. This difference is significant if the number of

global parities is large (recall that 1 ≤ s ≤ µ(nl− b)). Hence, we pay more in field size
for the globally MSR property if there are many global parities. It appears possible to
adapt other PMDS constructions, such as [MPK19] or [GYBS18], to have the globally
MSR property as well. Such a construction may reduce the field size significantly.

3Trivially, there is a power of two in this range. Further, by Bertrand’s postulate, there is even a
prime number within this range.
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4.3 PMDS Codes with Nontrivial Global Regeneration

Compared to a Ye–Barg MSR code with parameters [µ(nl−b), µ(nl−b)−s; `] (which
are the code parameters after puncturing b positions in each group of a PMDS code)
with subpacketization [(d+1−nl+b)µ(nl−b)]µ(nl−b), the subpacketization of the globally
MSR PMDS code in Corollary 4.1 is larger by roughly a factor (nl − b+ s− 1) in the
exponent. Hence, the exponent of the subpacketization is in O(µnl) without the PMDS
property and in O(µnl(nl + s)) for a globally MSR PMDS code.

Remark 4.5 (Global Regeneration in Grid-Like Topologies). While the presented
construction is specific to PMDS codes, the same approach can be applied to codes
for grid-like topologies4. The PMDS code construction of [RKSV13] can be viewed as
a special case of the construction of codes for grid-like topologies presented in Sec-
tion 3.5 (see Example 3.3). As shown in Theorem 3.5, this construction results in a
code C ∈ CMR

n1×n2(b1, b2, s) that, when punctured in the positions of an erasure pattern
E ′ ∈ Emax

n1×n2(b1, b2, 0), again results in a Gabidulin code. To obtain a code where these
surviving positions are also a codeword of an MSR code, Construction 4.1 can equiva-
lently be applied by replacing the diagonal matrix diag(GMDS,GMDS, . . .), where GMDS
is a generator matrix of an [nl, nl − b] MDS codes5, with a generator matrix of an
arbitrary code C ∈ Cn1×n2(b1, b2, 0) over Fq.
Let B ∈ F`×µ(nl−b)

qM be a matrix where each row contains elements that are linearly
independent over Fq. Consider the [n1n2, (n1 − b1)(n2 − b2)− s; `]qM code

C =
{
C ∈ F`×n1n2

q | C[a, :] = u(a) ·G(a)
B ·G0 ∀u(a) ∈ F(n1−b1)(n2−b2)−s

qm , a ∈ [`]
}
,

where G(a)
B is a generator matrix of the code Gab((n1 − b1)(n2 − b2), s,B[a, :]) as in

Definition 2.6 and G0 is a generator matrix of a code in CMR
n1×n2(b1, b2, 0) over Fq. It

is easy to see that each row of the codewords in C, and thereby also the entire array
code C, is in CMR

n1×n2(b1, b2, s) (see Theorem 3.5 on Page 46). To obtain a code with
global regeneration, similar to Definition 4.3, the difficulty again lies in guaranteeing
the YB-grouping property for every possible puncturing pattern. Specifically, we require
that the matrix B ·G0[:, Ē ′] has the YB-grouping property as in Definition 4.7, for the
complement Ē ′ := [n1n2] \ E ′ of any erasure pattern E ′ ∈ Emax

n1×n2(b1, b2, 0). However,
while for PMDS codes these patterns are easily characterized as those where exactly nl−
b positions survive in each local repair set (see Definition 2.8), their characterization
is significantly more difficult for grid-like topologies and in many cases unknown (see
Table 3.1 on Page 31). Consequently, in the grid-like setting, we are not able to
exploit the structure of G0[:, Ē ′] as done in Theorem 4.2 and have to resort to a more
generic approach: Choose the rows of B as all bases of all (n1 − b1)(n2 − b2) − s
dimensional subspaces of F(n1−b1)(n2−b2)

q . By the same arguments as in Theorem 4.2
4This remark is given to highlight the connection to codes for grid-like topologies, as considered
Chapter 3, and was not included in [HPYWZ21].

5Note that this block diagonal matrix spans a code of CMR
n1×n2

(0, b2, 0) with n1 = µ, n2 = nl, and
b2 = b.
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4 Partial MDS Codes with Regeneration

the multiplication by any full-rank matrix over Fq preserves the YB-grouping property.
However, while this method applies to the more general setting of grid-like topologies,
it results in a significantly larger subpacketization and is therefore not discussed in
more detail here.

4.4 PMDS Codes with Local Regeneration

For the remainder of this chapter we consider PMDS codes with local regeneration,
specifically, PMDS codes where each local code is a d-MSR code. We introduce several
new constructions, each obtained as a combination of the Ye-Barg MSR code (see
Definition 4.5) and a different underlying PMDS code.

4.4.1 Locally Regenerating PMDS and Sector-Disk Codes with
Two Global Parities

We begin by constructing array codes from the PMDS codes of [BPSY16] using the
ideas of [YB17a] to obtain locally d-MSR PMDS codes. Since the PMDS code con-
struction in [BPSY16] can be easily turned into an SD code (see Remark 2.3), we also
include the respective construction of SD codes with local d-MSR codes in this section.
While SD fulfill a weaker definition of locality than PMDS codes, the construction is
favorable in terms of required field size.
To apply the ideas of [YB17a] when constructing locally MSR PMDS and SD codes,

we need the local codes to be RS codes with specific code locators. The construction
of PMDS codes given in [BPSY16] has the property that the local codes are RS codes,
but the code locators are fixed to be the first nl powers of some element β of sufficient
order. We generalize this construction to allow for different choices of code locators
for the local codes.
Let q be a power of 2 and β ∈ Fq be an element with order(β) ≥ µN . The

[µnl, µ(nl − b)− 2] code C(µ, nl, b, 2,L, N) is given by the (bµ+ 2)× µnl parity-check
matrix

H =



H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

H1 H2 . . . Hµ

 , (4.3)
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where

H0 =



1 1 . . . 1
βi1 βi2 . . . βinl

β2i1 β2i2 . . . β2inl

...
...

. . .
...

β(b−1)i1 β(b−1)i2 . . . β(b−1)inl


for L = {i1, i2, . . . , inl} and, for 0 ≤ j ≤ µ− 1,

Hj+1 =
(

βbi1 βbi2 . . . βbinl

β−jN−i1 β−jN−i2 . . . β−jN−inl

)
.

Note that this generalization includes both [BPSY16, Construction A] and [BPSY16,
Construction B] as special cases:

CA = C(µ, nl, b, 2, [0, nl − 1], nl)

and
CB = C(µ, nl, b, 2, [0, nl − 1], NB)

for NB = (b+ 1)(nl − 1− b) + 1.
We now derive a general, sufficient condition on N , based on the set L, such that

the code is a PMDS code.

Lemma 4.2. Let µ, nl, b and s = 2 be valid PMDS parameters and L be a set of
nonnegative integers with |L| = nl. Then, the code C(µ, nl, b, 2,L, N) is a PMDS code
for any N ≥ (b+ 1)(maxi∈L i− b) + 1.

Proof. We follow the proofs of [BPSY16, Theorem 5] and [BPSY16, Theorem 7]. The
difference to the construction above is that in [BPSY16], the powers L = {i1, . . . , inl}
are consecutive, i.e., ij = j − 1. This results in a slightly more technical proof.
Assume b positions in each local repair set have been erased and in addition there

are 2 erasures in arbitrary positions. If the two erasures occur in the same local repair
set z, all local repair sets except for this one will be corrected by the local codes.
Assume the erasures in local repair set z occurred in positions Ez ⊂ [nl]. Since all
points in L are distinct, by the same argument as in [BPSY16], the erased positions
can be recovered uniquely if the matrix

Ĥ =
(

H0
Hz

)

restricted to the erased positions E is of full rank. Assume that the erased positions
are those corresponding to the powers {j1, j2, . . . , jb+2} ⊂ L. It is easy to see that this
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4 Partial MDS Codes with Regeneration

matrix ĤE can be transformed into a Vandermonde matrix by multiplying the last
row by β(z−1)N and column corresponding to jξ by βjξ for all ξ ∈ [b+ 2]. Therefore, it
is of full rank and the erasures can be corrected.

Now consider the case of two local repair sets with b+1 erasures each. Assume, with-
out loss of generality, that the positions corresponding to the powers {j1, . . . , jb+1} ⊂ L
are erased in local repair set 1 and those corresponding to {j′1, . . . , j′b+1} ⊂ L in local
repair set z + 1 with 1 ≤ z ≤ µ− 1. Define the matrix

F(j1, . . . , jb+1; j′1, . . . , j′b+1; b;N ; z) =



1 . . . 1 0 . . . 0
αj1 . . . αjb+1 0 . . . 0
...

. . .
...

...
. . .

...

α(b−1)j1 . . . α(b−1)jb+1 0 . . . 0
0 . . . 0 1 . . . 1
0 . . . 0 αj

′
1 . . . αj

′
b+1

...
. . .

...
...

. . .
...

0 . . . 0 α(b−1)j′1 . . . α(b−1)j′b+1

αbj1 . . . αbjb+1 αbj
′
1 . . . αbj

′
b+1

α−j1 . . . α−jb+1 α−Nz−j
′
1 . . . α−Nz−j

′
b+1



.

To show that the erased positions can be recovered, we need to show that this matrix
is invertible. By [BPSY16, Lemma 3] this is true if

Nz +
b+1∑
u=1

j′u −
b+1∑
u=1

ju 6= 0 mod order(β) . (4.4)

Note that [BPSY16, Lemma 3] shows this relation only for 0 ≤ j1 < j2 < · · · < jb+1 ≤
nl − 1 and 0 ≤ j′1 < j′2 < · · · < j′b+1 ≤ nl − 1. However, it is easy to check that the
result is independent of the specific values and only depends on the sums ∑b+1

u=1 ju and∑b+1
u=1 j

′
u. Since, by definition, the powers j1, j2, . . . , jb+1 are distinct integers, their sum

is lower bounded by
b(b+ 1)

2 =
b∑

u=0
u ≤

b+1∑
u=1

ju (4.5)

and upper bound by

b+1∑
u=1

ju ≤
b∑

u=0
(max
j∈L

j − b) + u

= (b+ 1)(max
j∈L

j − b) +
b∑

u=0
u = N − 1 + b(b+ 1)

2 . (4.6)
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4.4 PMDS Codes with Local Regeneration

The same bounds hold for the powers j′1, j′2, . . . , j′b+1. Combining Eqs. (4.5) and (4.6)
we get

−(N − 1) ≤
b+1∑
u=1

j′u −
b+1∑
u=1

ju ≤ N − 1.

Applying these bounds to Eq. (4.4) (recall that 1 ≤ z ≤ µ− 1) gives

1 = N − (N − 1) ≤ Nz +
b+1∑
u=1

j′u −
b+1∑
u=1

ju ≤ N(µ− 1) + (N − 1) = Nµ− 1 < order(β) ,

where the final inequality holds by definition of β. It follows that Eq. (4.4) is fulfilled
and the lemma statement holds.

By similar arguments we also give a general, sufficient condition on N for the code
to be an SD code.
Lemma 4.3. Let µ, nl, b and s = 2 be valid PMDS parameters and L be any set of
nonnegative integers with |L| = nl. Then, the code C(µ, nl, b, 2,L, N) is an SD code
for any N ≥ maxj∈L j + 1.
Proof. The case of b + 2 erasures in the same local repair set (horizontal code) is
the same as in Lemma 4.2 and [BPSY16, Theorem 5]. Now consider the case of
b column erasures in positions {j1, . . . , jb} ⊂ L and an additional erasure in each
of the local repair sets z + 1 and z′ + 1, with 0 ≤ z < z′ ≤ µ − 1, in positions
j, j′ ∈ L \ {j1, . . . , jb}. By the same argument as in [BPSY16, Theorem 5] we need to
show that β−j + β−N(z−z′)−j′ is invertible. With 1 ≤ z, z′ ≤ µ and 0 ≤ j, j′ ≤ N − 1
we get

N(z′ − z) + j′ − j ≥ N + j′ − j ≥ N − (N − 1) > 0

and

N(z′ − z) + j′ − j ≤ N(µ− 1) +N − 1 = Nµ− 1 < order(β) .

Combining these we get 1 ≤ N(z′ − z) + j′ − j ≤ Nµ− 1, so

N(z′ − z) + j′ − j 6= 0 mod order(β)

and it follows that β−j + β−N(z−z′)−j′ is invertible.

With these generalizations of [BPSY16, Construction A/B] we are now ready to
construct PMDS and SD codes, where each local code is a d-MSR code.
Construction 4.2 (Locally d-MSR PMDS/SD array codes). Let s = 2 and q, µ, nl, b, d,N ∈
Z>0 be positive integers with

67
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• b ≤ nl

• q a power of 2

• q ≥ max{µN, znl}+ 1, where z = d+ 1− (nl − b)

• ` = znl

For an element β ∈ Fq with order(β) ≥ max{µN, znl} denote βi,j = β(i−1)nl+j−1 for
i ∈ [z], j ∈ [nl].
We define the [µnl, µ(nl − b)− 2; `]qM array code C(µ, nl, b, 2, N, d; `)q as{

C ∈ F`×µnlq | H(a) · (C[a, :])> = 0∀ a ∈ [`]
}
.

The matrix H(a) is defined as

H(a) =



H(a)
0 0 . . . 0
0 H(a)

0 . . . 0
...

...
. . . · · ·

0 0 . . . H(a)
0

H(a)
1 H(a)

2 . . . H(a)
µ


∈ Fbµ+2×µnl

q ,

where

H(a)
0 =


1 1 . . . 1

βa1,1 βa2,2 . . . βanl ,nl...
...

...
βb−1
a1,1 βb−1

a2,2 . . . βb−1
anl ,nl

 ∈ Fb×nlq , (4.7)

with a ∈ [`] and a− 1 = ∑nl
i=1(ai − 1)zi−1 with ai ∈ [z]. For 0 ≤ j ≤ µ− 1 let

H(a)
j+1 =

(
βba1,1 βba2,2 . . . βbanl ,nl

β−jNβ−1
a1,1 β−jNβ−1

a2,2 . . . β−jNβ−1
anl ,nl

)
∈ F2×nl

q .

It remains to show that the local codes are MSR codes and the conditions under
which the code is a PMDS or SD code.

Theorem 4.3. Let µ, nl, b and s = 2 be valid PMDS parameters, d be an integer with
nl − b ≤ d ≤ nl − 1, and q > max{µN, znl}, where z = d+ 1− (nl − b) and

N = (b+ 1)(bnl − 1− b) + 1 .

Then the array code C(µ, nl, b, 2, N, d; `)q, as in Construction 4.2, is a locally d-MSR
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PMDS(µ, nl, b, 2,W; bnl) code over Fq, as in Definition 4.4, for W = {W1, . . . ,Wµ}
with Wi = [(i− 1)nl + 1, inl].

Proof. First, note that the βi,j in Construction 4.2 are given by β0, β1, . . . , βbnl−1. As
order(β) ≥ znl (which implies q > znl) these βi are distinct. Now consider the j-th
local repair set. The a-th row fulfills the parity check equations given in Eq. (4.7)
and since all elements βi,j are distinct, it is immediate that the local repair set is an
[nl, nl − b; bnl ] Ye-Barg code as in Definition 4.5.
For the PMDS property, observe that the a-th row, i.e., the row fulfilling the parity-

check equations H(a), is a code C(µ, nl, b, 2,L(a), N) as in Lemma 4.2, where L(a) =
{(ai − 1)nl + i− 1 | i ∈ [nl]} by definition of the βi,j. For any a it holds that

max
i∈L(a)

i ≤ max
i∈L(a)

a∈[`]

i = bnl − 1 .

By Lemma 4.2 the code is PMDS if N > (b+1)(maxi∈L i−b) and the lemma statement
follows.

Corollary 4.2. Let µ, nl, b and s = 2 be valid PMDS parameters, q be a power of 2,
d be an integer with nl − b ≤ d ≤ nl − 1, and z = d + 1 − (nl − b). Then, there is a
d-MSR PMDS code over Fq of field size

µb(bnl − b+ nl − 2) + 1 ≤ q ≤ 2µb(bnl − b+ nl − 2)

and subpacketization ` = [d+ 1− (nl − b)]nl.

Proof. We use Theorem 4.3 and derive bounds on the smallest field size q satisfying
the bound q > max{µN, znl} with N = (b+ 1)(bnl − 1− b) + 1 = b(bnl − b+ nl − 2).
First note that 1 ≤ z = d+ 1− (nl − b) ≤ b for the valid choices of d. Furthermore,

note that b ≥ 1 and nl ≥ b+ 1 ≥ 2. Thus, we have

µN = µb(bnl − b+ nl − 2) = µ
[
bnl + b2(nl − 1)− 2b︸ ︷︷ ︸

≥−1

]
≥ µ(bnl − 1) ≥ bnl ≥ znl.

Hence, we in fact only require q > µN . Trivially, there is a power of two between
µN + 1 and 2µN , which proves the claim.

For completeness, we provide a similar statement for d-MSR SD codes.

Theorem 4.4. Let µ, nl, b and s = 2 be valid PMDS parameters and q be a power of
2 with q > max{bnlµ, znl}. Then the array code C(µ, nl, b, 2, bnl, d; `)q as in Construc-
tion 4.2 is a locally d-MSR SD(µ, nl, b, s,W; znl) code over Fq, for W = {W1, . . . ,Wµ}
with Wi = [(i− 1)nl + 1, inl].
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Proof. The proof follows immediately from the proof of Theorem 4.3 and Lemma 4.3.

Remark 4.6. It is easy to check that by removing the last row of the parity-check
matrix as in Eq. (4.3) of the PMDS codes in [BPSY16], we obtain a PMDS code with
one global parity (s = 1). By the same operation on all the parity-check matrices for
the rows of the d-MSR PMDS code in Construction 4.2, we obtain a locally d-MSR
PMDS codes with one global parity. We do not discuss this case in detail since the
resulting codes have the same field size as the ones with two global parities.

4.4.2 Universal PMDS Codes with Local Row-Wise MDS MSR
Codes

In this section, we present a general technique for constructing PMDS codes with MSR
local codes, by combining an arbitrary row-wise MDS MSR code (see Definition 4.2)
with a universal PMDS code family. The latter notion was first defined in [MPK19],
and we formalize it below in Definition 4.9. Roughly speaking, a universal PMDS
code family arises from a PMDS construction in which the local code can be chosen
arbitrarily as the FqM -span of an Fq-linear MDS code. Although the universality
requirement seems to be strong, there are several PMDS constructions in the literature
that fulfill this property, for instance [RKSV13; MPK19] (cf. the overview in [MPK19]).
For the construction of [GYBS18], we show its universality in Section 4.4.2. Hence,
some of the PMDS constructions with the smallest field sizes in the literature have this
property, which enables the new general construction to achieve rather small field sizes
as well. Note that the PMDS construction with local regeneration in Section 4.4.1 is
not of the type presented here, since the PMDS family in [BPSY16] is not universal
due to strong dependencies between the choice of the local and global parities.

A General Code Construction

The following definition formalizes the notion of a universal PMDS code family, which
was introduced in [MPK19].

Definition 4.9 (Universal Partial MDS code family). Let µ, nl, b, s be valid PMDS
parameters. A family of codes is a universal PMDS code family FPMDS(µ, nl, b, s) over
FqM if there is a partition W = {W1,W2, . . . ,Wµ} (fixed for the entire family) such
that

• every code C ∈ FPMDS(µ, nl, b, s) is a PMDS(µ, nl, b, s,W; 1) code over FqM and

• for any MDS code Clocal[nl, nl − b, b + 1] over Fq, there is exactly one C ∈
FPMDS(µ, nl, b, s) such that C|Wi

= 〈Clocal〉F
qM
' C×Mlocal for all i = 1, . . . , µ. We

denote this unique code by F(Clocal) := C, i.e., F(·) can be seen as an injective
mapping between the set of MDS codes over Fq and the family F .
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F(Clocal) 3 C = ∈ 〈Clocal〉F
qM
∈ 〈Clocal〉F

qM
· · · ∈ 〈Clocal〉F

qM
∈ FµnqM

W1 W2 Wµ

Expand every entry in FqM as a column vector FMq using a basis of FqM over Fq

M rows

∈ Clocal

∈ Clocal

...

∈ Clocal

∈ Clocal

∈ Clocal

...

∈ Clocal

. . .

∈ Clocal

∈ Clocal

...

∈ Clocal

∈ FM×(µnl)
q

Figure 4.2: Illustration of the codeword structure of the PMDS code F(Clocal) in Defi-
nition 4.9.

Note that that the FqM -span of the Fq local code can be viewed as a homogeneous
interleaved code (see Definition 2.2) with the same parameters, as observed in Corol-
lary 2.1. An illustration of the expansion of a PDMS codeword as in Definition 4.9 is
given in Fig. 4.2.
With these definitions established, we are now ready to present a construction of

locally MSR PMDS codes by combining a family of universal PMDS codes with a
row-wise MDS MSR code.

Construction 4.3. Let µ, nl, b, s be valid PMDS parameters and FPMDS(µ, nl, b, s) be
a universal PMDS code family. Let CMSR[nl, nl − b; `] be a row-wise MDS (h, d)-MSR
code and denote by C(a)

MSR the MDS code in its a-th row for a ∈ [`]. We define the code

FPMDS(CMSR) :=
{
C ∈ F`×µnlqM

∣∣∣ C[a, :] ∈ F(C(a)
MSR)∀ a ∈ [`]

}
.

Note that the code is well-defined, as by Definition 4.9 the family of PMDS codes
contains a PMDS code F(C(a)

MSR) for any MDS code C(a)
MSR over Fq.

Theorem 4.5. The code FPMDS(CMSR) in Construction 4.3 is a locally (h, d)-MSR
PMDS(µ, nl, b, s,W; `) code over FqM , for a partition W = {W1,W2, . . . ,Wµ} of [µnl]
with |Wi| = nl ∀ i ∈ [µ].

Proof. By construction, the codewords of FPMDS(CMSR) are matrices whose rows are
contained in a PMDS code of the family FPMDS. In particular, the PMDS code in
the a-th row has the MDS code C(a)

MSR as its local code. If we puncture all rows in all
positions but Wi for some i ∈ [µ], we obtain in the a-th row the code C(a)

MSR. Hence,
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for any i ∈ [µ] we have

FPMDS(CMSR)|Wi
=





C(1)[1, :]
...

C(1)[M, :]
C(2)[1, :]

...
C(`)[M, :]


∈ FM`×nl

q

∣∣∣ C(a)[j, :] ∈ C(a)
MSR ∀a ∈ [`], j ∈ [M ]


' CMSR × · · · × CMSR︸ ︷︷ ︸

M times

where the last step follows by re-arranging the rows of each codeword (see Fig. 4.3 for
an illustration). Hence, each local code is a Cartesian product of M (h, d)-MSR codes
and therefore (h, d)-MSR itself. The claim follows by the definition of (h, d)-MSR
PMDS codes.

The remaining difficulty in Construction 4.3 is to find suitable constructions of uni-
versal PMDS code families. Some families in the literature already have this property:
the Gabidulin-code-based construction of PMDS codes in [RKSV13] and the PMDS
code family constructed from linearized RS codes in [MPK19] are both universal. In
the following, we show that the construction of [GYBS18] can be turned into a uni-
versal PMDS code family. This allows for applying Construction 4.3 to three different
classes of universal PMDS codes.

Construction 4.3 using the Gabidulin-Code-Based PMDS Code Family

The code construction in [RKSV13] is based on Gabidulin codes (see Definition 2.6),
where the fact that the codes have maximal minimum rank distance is used in [CK16]
to show that the constructed codes are indeed PMDS. The construction is a special case
of the construction for grid-like topologies given in Section 3.5 (see also Example 3.3),
for completeness we briefly recall it here:

• Choose an arbitrary [nl, nl − b, b + 1]q MDS code Clocal and a generator matrix
Glocal thereof.

• Choose a Gabidulin code Gab(µ(nl − b), s) (see Definition 2.6) over FqM . This
requires M ≥ µ(nl − b).

• Encode a message in Fµ(nl−b)
qM with this Gabidulin code, which gives a vector

x ∈ Fµ(nl−b)
qM .

• Split the vector x into µ subblocks x(i) of size (nl − b), i.e., x = (x(1), . . . ,x(µ)).

72



4.4 PMDS Codes with Local Regeneration

∈ F(CMSR) ⊆ F`×(µnl)
qM

...
C = ...

...
. . .

Puncture everywhere but Wi (here: i = 1)

...

∈ F`×nlqM

∈ FM`×nl
q

C(1)[1, :]
C(1)[2, :]
...

C(1)[M, :]
C(2)[1, :]
C(2)[2, :]
...

C(2)[M, :]

...

C(`)[1, :]
C(`)[2, :]
...

C(`)[M, :]

entry-wise
expansion in Fq

C(1)[1, :]
C(2)[1, :]
...

C(`)[1, :]

∈ CMSR ⊆ F`×nlq

C(1)[2, :]
C(2)[2, :]
...

C(`)[2, :]

∈ CMSR ⊆ F`×nlq

...

C(1)[M, :]
C(2)[M, :]

...
C(`)[M, :]

∈ CMSR ⊆ F`×nlq

M codewords of CMSR
→ regenerate independently

Figure 4.3: Illustration of the local regeneration procedure implied by the proof of The-
orem 4.5.

• Encode each subblock with the generator matrix Glocal to obtain the final code-
word c, i.e.,

c = x · diag(Glocal,Glocal, . . . ,Glocal) =
(
x(1)Glocal, . . . ,x(µ)Glocal

)
∈ FµnlqM .

As Clocal is an arbitrary MDS code, we obtain a universal PMDS code family by fixing
a Gabidulin code CG and varying the local code. For fixed PMDS code parameters,
the construction requires only M ≥ µ(nl − b) (due to the Gabidulin code) and no
further restriction on q. Combining this family with the (row-wise MDS) Ye–Barg
MSR codes, Theorem 4.5 implies the following statement.

Corollary 4.3. For all valid PMDS parameters µ, nl, b, s, integer d with nl − b ≤
d ≤ nl − 1, and a partition W = {W1,W2, . . . ,Wµ} of [µnl] with |Wi| = nl ∀ i ∈
[µ], there exists a d-MSR PMDS(µ, nl, b, s,W; `) code over FqM , if the field size and
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subpacketization satisfy

M ≥ µ(nl − b), q ≥ znl, and ` = znl ,

where z = d+1−nl+b. In particular, such a code exists if qM = [(d+ 1− nl + b)n]µ(nl−b).

Construction 4.3 using the Linearized-RS-Codes-Based PMDS Code Family

The PMDS code construction in [MPK19] is similar to that of [RKSV13], however,
instead of Gabidulin codes it employs linearized Reed–Solomon codes. These sum-
rank-metric codes were first introduced in [MP18] and can be seen as a combination
of RS and Gabidulin codes. We do not formally define these codes here, but briefly
summarize some of their key properties. Let µ < q, n′l ≤ M , and k′ ≤ n′lµ. Consider
a [µn′l, k′]qM linearized RS code. These code are designed for the sum-rank metric
w.r.t. the parameter µ, in which codewords are subdivided into µ blocks of size n′l and
the distance of two codewords is the sum of the rank distances of the µ blocks. The
distance of linearized RS codes w.r.t. this metric is µn′l − k′ + 1. Again, this property
is essential for the codes of [MPK19] to be PMDS. The construction works as follows:

• Choose an arbitrary MDS code Clocal[nl, nl − b, b + 1] over Fq and a generator
matrix Glocal thereof.

• Choose a linearized Reed–Solomon code CLRS (cf. [MP18; MPK19]) of parameters
[µ(nl − b), µ(nl − b)− s] over FqM . This requires M ≥ nl − b and q > µ.

• Encode a message in Fµ(nl−b)−s
qM with the linearized Reed–Solomon code CLRS,

which gives a vector x ∈ Fµ(nl−b)
qM .

• Split the vector x into µ subblocks x(i) of size (nl − b), i.e., x = (x(1), . . . ,x(µ)).

• Encode each subblock with the generator matrix Glocal to obtain the final code-
word c, i.e.,

c = x · diag(Glocal,Glocal, . . . ,Glocal) =
(
x(1)Glocal, . . . ,x(µ)Glocal

)
∈ FµnlqM .

As Clocal is an arbitrary MDS code, we obtain a universal PMDS code family by fixing
a linearized Reed–Solomon code CLRS and varying the local code. For fixed PMDS
code parameters, the construction requires only M ≥ nl − b and q > µ. Note that,
compared to the Gabidulin-based PMDS construction above, the restriction on M is
much weaker, but we require an additional condition on q. Combining this family
with the (row-wise MDS) Ye–Barg MSR codes, Theorem 4.5 implies the following
statement.
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Corollary 4.4. For all valid PMDS parameters µ, nl, b, s, integer d with nl− b ≤ d ≤
nl− 1, and a partition W = {W1,W2, . . . ,Wµ} of [µnl] with |Wi| = nl ∀ i ∈ [µ], there
is a d-MSR PMDS(µ, nl, b, s,W; `) code over FqM , if the field size and subpacketization
satisfy

M ≥ nl − b, q ≥ max{znl, µ+ 1}, and ` = znl ,

where z = d+ 1− nl + b. In particular, such a code exists for a field of size

qM = max{(d+ 1− nl + b)nl, µ+ 1}nl−b .

Construction 4.3 using the PMDS Code Family by Gabrys et al.

The local codes of the PMDS code construction in [GYBS18, Section IV.A] are specific
RS codes. In order to apply Construction 4.3, we need to show that these PMDS
codes are in fact universal. The following theorem presents a slight generalization of
the construction and proves its universality. Note that the proof heavily rely on ideas
from [GYBS18, Lemma 2], [GYBS18, Corollary 5], and [GYBS18, Lemma 7].
Theorem 4.6 (Generalization of the PMDS Construction in [GYBS18]). Let nl, µ, b, s
be valid PMDS parameters and α1,1, α1,2, . . . , αµ,nl ∈ FqM be distinct field elements such
that any subset of (b+ 1)s elements of the αi,j is linearly independent over Fq. Define

H(j) =


αj,1 αj,2 . . . αj,nl
αqj,1 αqj,2 . . . αqj,nl
...

...
. . .

...

αq
s−1

j,1 αq
s−1

j,2 . . . αq
s−1

j,nl

 ∀ 1 ≤ j ≤ µ.

Then, the [µnl, µ(nl − b)− s]F
qM

code with parity-check matrix

H =



H(0) 0 . . . 0
0 H(0) . . . 0
...

...
. . . · · ·

0 0 . . . H(0)

H(1) H(2) . . . H(µ)

 ∈ F(µb+s)×µnl
qM

is a PMDS code, where H(0) ∈ Fb×nlq is a parity-check matrix of an arbitrary [nl, nl−b]q
MDS code.
Proof. Let c =

(
c(1), . . . , c(µ)

)
be a codeword of the PMDS code, where the µ blocks

c(i) ∈ FnlqM denote the local codewords. By definition, for all i = 1, . . . , µ, we have

H(0)c(i)> = 0 (4.8)
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Furthermore, with αi := (αi,1, αi,2, . . . , αi,nl), we have
µ∑
i=1

αqj

i c(i)> = 0, (4.9)

for all j = 0, . . . , s− 1. Define the sets V1, . . . ,Vµ ⊂ [nl] with Vi = {vi,1, vi,2, . . . , vi,b}.
Denote by V̄i := [nl] \ Vi the respective complement. The positions V1, . . . ,Vµ cor-
respond to the puncturing patterns Ei in the definition of PMDS codes (see Defini-
tion 2.8), i.e., to those subsets of positions of the local codes that, when restricted to,
need to result in an [µnl − µb, µnl − µb− s] MDS code.

By definition, the matrix H(0) is a parity-check matrix of an [nl, nl− b]q MDS code.
Hence, any subset of b columns of H(0) is invertible. For any i ∈ [µ] the vector c(i) is
a codeword of this local code and we have

0 = H(0) · (c(i))> = H(0)|Vi · (c(i)|Vi)> + H(0)|V̄i · (c
(i)|V̄i)

>

⇒ (c(i)|Vi)> = (H(0)|Vi)−1 ·H(0)|V̄i · (c
(i)|V̄i)

>

Since all entries of H(0) are from Fq by definition we have H(0) = (H(0))qj for the
component-wise power. It follows that

0 =
µ∑
i=1

αqj

i (c(i))>

=
µ∑
i=1

(αi|Vi)q
j
(
c(i)|Vi

)>
+ (αi|V̄i)

qj
(
c(i)|V̄i

)>
=

µ∑
i=1

[
(αi|Vi) ·

(
H(0)|Vi

)−1
·
(
H(0)|V̄i

)
+ (αi|V̄i)︸ ︷︷ ︸

=: γVi

]qj (
c(i)|V̄i

)>
.

Thus, the vector
(
c(1)|V̄1 , c

(2)|V̄2 , . . . , c
(µ)|V̄µ

)
is contained in a code with parity-check

matrix

Hγ :=


γq0

V

γq1

V
...

γqs−1

V

 ,

where

γV :=
(

γV1 ,γV2 , . . . ,γVµ

)
∈ Fµ(nl−b)

qM
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and γqi

V denotes the element-wise power of γV . Recall that

γVi = (αi|Vi) ·
(
H(0)|Vi

)−1
·
(
H(0)|V̄i

)
+ (αi|V̄i) .

Since
(
H(0)|Vi

)−1
·
(
H(0)|V̄i

)
is an b × (nl − b) matrix, each entry of γVi , and thus

each entry of γS, is a linear combination of at most b + 1 of the αi,j. Furthermore,
each such linear combination contains, nontrivially, one element from αi,j (namely the
corresponding entry in αi|V̄i) that appears only in this linear combination. Hence, any
set of s entries from γV depends on at most s(b + 1) of the αi,j, which are linearly
independent by assumption. It follows that these s entries from γS are also linearly
independent over Fq. Consequently, any s columns of the parity-check matrix Hγ are
linearly independent and Hγ is a parity-check matrix of an [nlµ− bµ, nlµ− bµ− s]qM
MDS code.
It remains to show that the local codes equal the FqM -span of an [nl, nl − b]q MDS

code. By construction it is obvious that each local code is a subcode of such an MDS
code, as it fulfills the parity-checks given by H(0). The fact that each local code is
equal to this MDS code, follows directly from the dimension of the code (see also
Proposition 2.2). Hence, the overall code is a PMDS code.

As the MDS code over Fq can be chosen arbitrarily for fixed α1,1, α1,2, . . . , αµ,nl ∈
FqM , Theorem 4.6 immediately implies a universal PMDS code family as in Defini-
tion 4.9. By Theorem 4.5, we get the following result.

Corollary 4.5. For all valid PMDS parameters µ, nl, b, s, integer d with nl− b ≤ d ≤
nl− 1, and W = {W1,W2, . . . ,Wµ} a partition of [µnl] with |Wi| = nl ∀ i ∈ [µ], there
is a d-MSR PMDS array code as in Construction 4.3 of field size

nl
[
d+ 1− (nl − b)

]
(nlµ)s(b+1)−1 ≤ qM ≤ 2nl

[
d+ 1− (nl − b)

]
(2nlµ)s(b+1)−1

and subpacketization
` =

[
d+ 1− (nl − b)

]nl
.

Proof. We combine the universal PMDS code family in Theorem 4.6 with Ye–Barg
codes (cf. Definition 4.5) using Construction 4.3. We choose q and M large enough
such that we can ensure that suitable field elements αi,j (of the PMDS code family)
and βi,j (of the Ye–Barg codes) exist. A sufficient condition for the existence of the
βi,j is q ≥ nl(d+ 1− (nl − b)). Thus, we can choose q to be the smallest prime power
greater or equal to nl(d+ 1− (nl − b)), which is at most q ≤ 2nl(d+ 1− (nl − b)).
For the αi,j, it is a bit more involved. By Theorem 4.6, we need to find nlµ elements

of FqM such that any subset of s(b + 1) elements is linearly independent. We use the
same idea as in [GYBS18, Lemma 7]. Take the columns of a parity-check matrix of
an [nlµ, nlµ−M, s(b+ 1) + 1]q code and interpret each column in FMq as an element of
FqM . It is well-known that any subset of dmin − 1 columns of the parity-check matrix
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of a code of distance dmin are linearly independent and it follows that these elements
fulfill the required condition.
It remains to determine the extension degree M and base field size q such that a

code with these parameters exists. We adapt the result in [Rot06, Problem 8.9] and
present it in terms of our notation. For any n′ = qw − 1, there exists a code with
parameters [n′, n′ −M, s(b+ 1) + 1]q for

M ≤ 1 +
(
s(b+ 1)− 1

)
w.

Choose w to be the smallest integer with n′ = qw − 1 ≥ nlµ. Note that there is such
an w with qw − 1 ≤ 2nlµ − 1, i.e., logq(nlµ) ≤ w ≤ logq(2nlµ). Hence, there is an
[n′, n′−M, s(b+ 1) + 1]q code with M ≤ 1 +

(
s(b+ 1)− 1

)
logq(2nlµ). Shortening the

code in (arbitrary) n′ − nlµ positions gives an [nlµ, nlµ−M, s(b+ 1) + 1]q code with
M ≤ 1 +

(
s(b+ 1)− 1

)
logq(2nlµ).

4.5 Discussion and Comparison of PMDS Code
Constructions with Local Regeneration

In the previous sections, we presented multiple constructions of locally MSR PMDS
codes, each based on a different PMDS code construction. In this section we compare
the parameters of these new constructions among each other and to the only existing
construction of locally d-MSR PMDS codes, which was presented in [RKSV13]. Ta-
ble 4.2 summarizes their respective field sizes and, for easier reference, labels the five
constructions by the letters A–E.
The known Construction E (see [RKSV13, Construction 1, case “(b+δ−1) | nl”]) first

encodes an information word from F`×(µ(nl−b)−s)
qM with an [`µ(nl− b), `(µ(nl− b)− s)]qM

Gabidulin code. The resulting codeword is then subdivided into µ groups, each of
length `(nl − b). These subblocks are then independently encoded using a generator
matrix of an [nl, nl − b; `]q d-MSR code. This gives a d-MSR PMDS array code with
subpacketization ` and field size qM , where the only requirements on ` and q are the
constraints of the MSR code and M ≥ `µ(nl − b) in order for the Gabidulin code to
exist. An advantage of this construction over the constructions of this work is that
it does not require the MSR code to be row-wise MDS. However, the field size is
exponential in the subpacketization, i.e., doubly exponential in nl for Ye–Barg codes.
In the following theorem we collect some relations between the obtained field sizes.

Informally, the observations can be summarized as:

• Construction C always has smaller field size than Constructions B and E.

• For two global parities, Construction A has the smallest field size among all
constructions (unless b or µ are very large).
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Table 4.2: Comparison of field sizes of locally d-MSR PMDS array code constructions
(parameters: d, nl, µ, b, s such that b ≤ nl, s ≤ (nl − b)µ, and nl − b ≤ d ≤
nl − 1).

Label Construction Restr. Smallest field size Q? = qM

A Corollary 4.2 s = 2 µb(bnl − b+ nl − 2) + 1 ≤ QA

≤ 2µb(bnl − b+ nl − 2)
B Corollary 4.3 – QB = [(d+ 1− nl + b)nl]µ(nl−b)

C Corollary 4.4 – QC = max
{

(d+ 1− nl + b)nl, µ+ 1
}nl−b

D Corollary 4.5 – nl
[
d+ 1− nl + b

]
(nlµ)s(b+1)−1 ≤ QD

≤ 2nl
[
d+ 1− nl + b

]
(2nlµ)s(b+1)−1

E [RKSV13] + Ye–Barg – QE = [(d+ 1− nl + b)nl](d+1−nl+b)nlµ(nl−b)

• For a large number of global or local parities (and s > 2), Construction C has
the smallest field size among all constructions.

• For a small number of global (but s > 2) and local parities, Construction D has
the smallest field size among all constructions.

Theorem 4.7. For all valid PMDS parameters µ, nl, b, s and integers d with nl − b <
d ≤ nl − 1, denote by QA, QB, QC, QD, QE the smallest field sizes obtained from the
constructions in Table 4.2.

(i) For all parameters, we have QC < QB < QE.

(ii) For s = 2, we have QA < QD. If in addition, b < nl − 3, and µ ≤ nnl−b−3
l , then

QA < QC.

(iii) For s(b+ 1) + 2b− 1 ≥ 2nl, we have QC < QD.

(iv) For 2s(b+ 1) + b ≤ nl, we have QD < QC.

Proof. We use the two properties (a) a ≤ a + 1 < 3a and (b) ab ≥ ab for integers
a, b ≥ 1, which can both be proven easily by induction.
Ad (i): As d > nl − b, we have d + 1 − nl − b > 1, so obviously QE > QB. If

(d + 1− nl − b)nl ≥ µ + 1, it is clear that QB > QC (here we use µ ≥ 2). In the case
(d+ 1− nl − b)nl ≥ µ+ 1, we have

QC = (µ+ 1)nl−b
(a)
< 3µ(nl−b) ≤ [(d+ 1− nl + b)nl]µ(nl−b) ,
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where (d+ 1− nl + b)nl ≥ 3 holds by assumption.
Ad (ii): We have

QA ≤ 2µb(bnl − b+ nl − 2)
< 2µn2

l [2(b+ 1)− 1]
(b)
≤ 2nl(nlµ)2(b+1)−1

≤ nl
[
d+ 1− nl + b

]
(nlµ)s(b+1)−1 ≤ QD ,

where we use d+ 1− nl + b ≥ 2. Furthermore, if also b < nl − 3 and µ ≤ nnl−b−3
l , we

have

QA ≤ 2µb(bnl − b+ nl − 2) < 2µn3
l ≤ 2nnl−bl ≤ [(d+ 1− nl + b)nl]nl−b ≤ QC .

Ad (iii): Denote z := d+ 1− nl + b and recall that 2 ≤ z ≤ b < nl. We must show
QD > (znl)nl−b and QD > (µ+ 1)nl−b. We start with the first inequality:

QD ≥ nlz(nlµ)s(b+1)−1 ≥ nlzn
s(b+1)−1
l ≥ nlz

(
n2
l︸︷︷︸

>nlz

) s(b+1)−1
2 >

(
nlz

) s(b+1)+1
2 ≥ (nlz)nl−b.

The second inequality holds since

QD ≥ nlb(nlµ)s(b+1)−1 > (µ+ 1)s(b+1)−1 ≥ (µ+ 1)nl−b .

Ad (iv): Define ξ := max{nlb, µ} (we use z := d+ 1− nl + b with 2 ≤ z ≤ b < nl as
above). It suffices to show QD < ξnl−b under the given conditions. We have

QD ≤ 2nlz( 2nl︸︷︷︸
≤nlz≤ξ

µ)s(b+1)−1 < ξ2s(b+1) ≤ ξnl−b ≤ QC.

This concludes the proof.

Figs. 4.4 to 4.6 plot the field size bounds of Table 4.2 over the number of local
parities b for different sets of PMDS code parameters and d = nl− 1. The field size of
Construction E (known construction) far exceeds the plot range and is therefore not
included in the figures.

4.6 Summary and Open Problems
This chapter considered PMDS codes with global and local regeneration properties.
For both settings, we have presented constructions of PMDS array codes with global/local
MSR codes.
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Figure 4.4: Comparison of the field sizes of Constructions A–D for nl = 10, µ = 5, and
d = 9. Construction E is not shown as it is out of plot range. Lines are
upper bounds, shadows indicate lower bounds. The field sizes of Construc-
tions B and C are independent of s.
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Figure 4.5: Comparison of the field sizes of Constructions A–D for nl = 15, µ = 15,
and d = 14. Construction E is not shown as it is out of plot range. Lines
are upper bounds, shadows indicate lower bounds. The field sizes of Con-
structions B and C are independent of s.
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Figure 4.6: Comparison of the field sizes of Constructions A–D for nl = 30, µ = 10,
and d = 29. Construction E is not shown as it is out of plot range. Lines
are upper bounds, shadows indicate lower bounds. The field sizes of Con-
structions B and C are independent of s.

Specifically, we have presented a construction of a globally MSR PMDS code by
introducing a new MSR code, which can be seen as the skew-analog of Ye–Barg codes
(similar to the analogy between Gabidulin and Reed–Solomon codes), and combining
it with the Gabidulin-code-based PMDS construction of [RKSV13]. This is the first
known construction of globally MSR PMDS codes. Compared to the underlying PMDS
code, the required field size is increased by a factor in the exponent. The required
subpacketization, compared to a Ye–Barg MSR code without the PMDS property, is
also increased by a factor in the exponent.
In the second part of this chapter, we have presented a construction for PMDS codes

with two global parities based on [BPSY16] where each local code is an MSR code and
whose field size is polynomial for a fixed number of local parities. Furthermore, we
have introduced a general construction that combines an arbitrary family of universal
PMDS codes with a row-wise MDS MSR code. After proving the universality property
for the PMDS construction of [GYBS18], we have explicitly stated the resulting field
size and subpacketization for three families of locally MSR PMDS codes based on
the combination of the universal PMDS code constructions of [RKSV13; MPK19;
GYBS18] with Ye–Barg MSR codes [YB17a]. Finally, we have compared the obtained
field sizes of the presented constructions. All constructions have a significantly smaller
field size than the only existing construction of PMDS codes with local regeneration
given in [RKSV13].
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4.6 Summary and Open Problems

Several open problems related to the presented results offer interesting opportunities
for further research. Applying the ideas of the presented constructions to the recently
proposed PMDS code constructions of [CMST20; GG20; MP20] could reduce the
required field size. Both, the constructions of locally and globally MSR PMDS codes
require large levels of subpacketization. The former rely on Ye-Barg regenerating
codes, which are known to be suboptimal in terms of subpacketization. However,
aside from being optimal in terms of repair bandwidth, they are also row-wise MDS, a
property that is essential to the presented constructions. A construction that can afford
to relax this requirement could improve the required subpacketization by employing
different classes of MSR codes as the local MDS codes. Additionally, the construction
of globally MSR PMDS codes is based on Gabidulin codes and thereby inherently
suffers from a large required field size. This field size could be lowered by instead
employing linearized RS codes to achieve similar gains as shown for locally MSR PMDS
codes in Section 4.5. Aside from the improvements of the constructions, lower bounds
on the required subpacketization and field size would help evaluate the performance of
the presented constructions. Finally, for the globally MSR PMDS codes, it remains an
open problem to utilize surviving local redundancy nodes, in particular in the extreme
case where r + 1 nodes in a single local repair set fail while all other nodes survive.
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5
Decoding of Lifted Affine-Invariant
Codes

Abstract

Lifting of affine invariant codes is a powerful method for constructing codes with strong
locality and availability properties, which recently lead to significant advances in the
construction of, e.g., batch and PIR codes. This chapter introduces a simple bounded
distance decoder for lifted affine-invariant codes that is guaranteed to decode up to half
of an asymptotically tight bound on their minimum distance. Further, long q-ary lifted
affine-invariant codes are shown to correct almost all error patterns of relative weight
q−1/q − ε for ε > 0.

This chapter is based on the work [HP20] published in the proceedings of the 2020 IEEE
Information Theory Workshop (ITW).

5.1 Introduction
The previous chapters considered codes that provide one (Chapter 4) or two (Chap-
ter 3) disjoint repair sets for each position, with the primary purpose of correcting
erasures. While this notion of locality is well-suited for use in, e.g., distributed stor-
age, locality also has implications in other areas of research and, specifically, in error
correction. The class of lifted affine-invariant codes studied in this chapter is nat-
urally suited to provide a large number of repair sets (availability) and therefore of
interest for applications such as locally decodable and testable codes [GKS13], batch
codes [HPPV20], low-degree testing [AS03], and list decoding [GRS00; STV01].
The essential property of a lifted affine-invariant code (see Section 2.3.3) is that the

restriction of a codeword to any subspace of a given dimension is a codeword of the code
being lifted. A popular example of codes in this class are lifted RS codes [GKS13],
which, on a high level, are generalizations of q-ary Reed–Muller codes [DGMW70;
KLP68; MCJ73] that provide the same locality and availability properties at a higher
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5 Decoding of Lifted Affine-Invariant Codes

rate. These properties naturally lead to local decoding algorithms, i.e., randomized
approaches to correctly recover a single symbol with high probability. However, they
can also be exploited to design algorithms for the recovery of the entire codeword
symbol-by-symbol through aggregation of the local decoding results.
The presented results can be applied to any lifted affine-invariant code, such as lifted

RS codes. As this class contains q-ary RM codes as subcodes, the decoder also applies
to this well-known class of codes. Due to this close relation and the fact that lifted
RS codes are one of the most prominent examples of lifted affine-invariant codes, we
shortly recall some of the more recent decoding algorithms for q-ary RM codes here. A
q-ary RM code RMq(u,m) consists of the evaluation of all m-variate polynomials of
degree at most u with coefficients in Fq. These codes have been shown to be subfield
subcodes of RS codes over Fqm [KLP68]. Thus, any decoding algorithm for RS codes
can be used to decode RM codes. Randomized list-decoding algorithms for RM codes
were proposed in [GRS00; STV01; AS03; GKZ08] and three deterministic list-decoders
for Reed–Muller codes running in polynomial time were introduced in [PW04]. Two
of the latter view RM codes as subfield subcodes of RS codes and can decode beyond
half the minimum distance requiring a polynomial number of field operations in the
large field Fqm . An approach for a global decoding algorithm of RM codes based on
local decoding has been discussed in [KK16a].
For u < q the code RMq(u,m) is a subcode of the corresponding lifted RS code,

as introduced in [GKS13]. It is known [GKS13; HPPV20] (see also Section 6.2) that
for fixed m and large q, the rate of lifted RS codes approaches one, whereas the rate
of non-binary RM codes does not exceed 1/m!. Surprisingly, similar to RM codes, they
can also be seen as subfield subcodes of (low-degree) RS codes [GK16] and thereby
(list-)decoded by RS (list-)decoders over Fqm .

5.1.1 Contributions and Outline
Section 5.2 introduces a new deterministic bounded distance (BD) decoding algorithm
for lifted affine-invariant codes. As long as the base code admits an efficient unique
decoding algorithm, this decoder runs in polynomial time and is guaranteed to de-
code up to half of the asymptotically tight bound on the minimum distance given
in [GKS13, Lemma 5.7] (see Lemma 2.3). Applying the decoder to lifted RS codes
requires n2 poly(log q) operations in Fq (see Theorem 5.1), given a BMD decoder for
the (q-ary) RS base code running in q poly(log q) (see, e.g., [Gao03]).
Then, in Section 5.3, we analyse a fast randomized decoder for long q-ary codes

constructed by lifting a fixed affine-invariant code. A random pattern of errors with
relative weight less than q−1/q − ε is shown to be correctable with probability at least
1 − δ, where δ can be exponentially small in length, in time log δ−1 poly(ε−1). This
resembles the behaviour of randomized decoders for low-rate binary RM codes shown
in [Dum04; Kri70].
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5.2 Bounded Distance Decoding

5.2 Bounded Distance Decoding

In this section, we introduce a simple bounded distance decoder for lifted affine-
invariant codes, solely based on the definition of lifting. Specifically, the decoder
is based on principle that the restriction of a lifted affine-invariant code L(F) to any
affine subspace belongs to the code F . Assuming a fixed value at one position, we de-
rive the minimal number of positions in which the evaluations of two functions would
have to disagree for the decoding of these restrictions to give the respective result.
We then show that the value that results in the lowest number must be the correct
value of the function at this position, as long as the number of positions in which the
evaluations of the functions disagree (number of errors) is within the decoding radius.
The resulting decoder is therefore a BD decoder, i.e., given a number of errors within
the defined range, it succeeds with probability 1.
A (partial) partition of FmQ , treated as an m-dimensional vector space, is a partition

of the vector space into trivially intersecting z-dimensional subspaces V1, . . . ,Vs ⊂ FmQ ,
i.e., Vi ∩Vj = {0} for i 6= j. Such a (partial) partition has been shown to exist [Bu80]
for any z ≤ m/2 and

s =

Qm−1
Qz−1 , if z | m,
Qm−z, if z - m.

(5.1)

Before introducing the decoding algorithm, we require some preliminary definitions
related to the to the distance properties of lifted affine-invariant codes.

Definition 5.1. For 1 ≤ z ≤ m
2 , let evFzQ(F) with F ⊆ {FzQ → Fq} be an affine-

invariant code of distance dF . Define tF := bdF−1
2 c. Consider a function g ∈ {FmQ →

Fq} and let g(Vi)
a be as in Eq. (2.9). For any point a ∈ FmQ , field element α ∈ Fq, and

integer j ∈ [0, tF ], define Ma(α, j) to be the number of affine subspaces of the form
a + Vi such that there exists1 a ĝ(Vi)

a ∈ F with ĝ(Vi)
a (0) = α and

• dH
(

evFzQ\0(g(Vi)
a ), evFzQ\0(ĝ(Vi)

a )
)

= j, if dF is even,
• dH

(
evFzQ(g(Vi)

a ), evFzQ(ĝ(Vi)
a )

)
= j, if dF is odd.

(5.2)

Further, defineMa(?) to be the number of affine subspaces a+Vi for which no ĝ(Vi)
a ∈ F

that satisfies Eq. (5.2) exists for any α ∈ Fq and j ∈ [0, tF ]. For α ∈ Fq, denote

δa(α) :=
{
1{g(a) 6= α}, if dF is odd,
0, if dF is even.

1Note that by definition of tF there exists at most one such function in F .
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5 Decoding of Lifted Affine-Invariant Codes

For a ∈ FmQ and α ∈ Fq, define

Na(α) := 1{g(a) 6= α}+
tF∑
j=0

(j − δa(α))Ma(α, j)

+
∑
β 6=α

tF∑
j=0

(dF − 1− j + δa(β))Ma(β, j) + (tF + 1− δa(α))Ma(?).

Despite the complicated formal notation, the underlying idea of this definition is
rather simple. In a lifted affine-invariant code, the function g(Vi)

a corresponds to the
word of the affine-invariant code obtained by restricting the function g to the affine
subspace Vi + a (with the point a shifted to the origin). When applying a decoder for
the affine-invariant code in all affine subspaces containing the point a, each decoding
outcome can be viewed as a “vote” for the value of the correct word in this point.
Intuitively, a vote is “more reliable” when fewer errors were corrected. The variable
Ma(α, j) counts the number of these votes for the value α at position a from decoders
that corrected exactly j errors in the respective restriction to the affine subspace. The
number of decoders that failed to return a valid codeword is given by Ma(?). The
different events contributing to Ma(β, j) and Ma(?) are illustrated in Fig. 5.1.
On a high level, the value Na(α) then aggregates these values to reflect the minimal

number of errors that must have occurred for these votes to be possible, when assuming
α to be the correct value in position a. The first sum accounts for the subspaces that
“voted” for the value α at point a. Given the assumption that α is the correct value
in this position, all decoders that “voted” for a different value must have returned
an incorrect word, which is accounted for in the second double sum. The last term
accounts for the errors required for a local decoder to fail. Finally, the indicator
function and the various δ account for the possibility of an error at position a.
Formally, we can apply Definition 5.1 to express the distance between the evaluations

of two functions in terms of the distances between the evaluations of their respective
restrictions to affine subspaces.

Lemma 5.1. Let F , g, and Na(α) be as in Definition 5.1 and L(F) ⊆ {FmQ → Fq}
be the set of functions of a lifted code as in Definition 2.13. Then for any a ∈ FmQ ,
α ∈ Fq, and f ∈ L(F) with f(a) = α it holds that

dH
(

evFmQ (f), evFmQ (g)
)
≥ Na(α) .

Proof. Given the point a ∈ FmQ , we count the number of evaluations that must differ
between f and g given the values ofMa(β, j), ∀β ∈ Fq, ∀j ∈ {0, 1 . . . , tF}, andMa(?).
Recall thatMa(β, j) is the number of affine subspaces a+Vi for which ĝ(Vi)

a (0) = β and
Eq. (5.2) holds. By definition of a (partial) partition, these affine subspaces intersect
only in a and the sum over all Ma(β, j) is the number of affine subspaces of the form
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5.2 Bounded Distance Decoding

F2
Q

x1

x2 β

(a) Received word of lifted affine-invariant
code. Red dots indicate errors and β is
the value in position a, erroneously re-
ceived instead of the correct value α.

F2
Q

x1

x2 β

(b) If decoding on the affine subspace V1 + a
fails, the one-dimensional subspace must
contain > tF errors. The number of
these affine subspaces is given byMa(?).

F2
Q

x1

x2 α

(c) The affine subspace V2 + a is decoded
correctly, correcting the j = 2 errors in-
dicated in green. The number of these
affine subspaces is given by Ma(α, 2).

F2
Q

x1

x2 β

(d) The affine subspace V3 + a is decoded in-
correctly to a word at distance ≥ dF of
the correct word. The number of these
affine subspaces is given by Ma(β, 2).

Figure 5.1: Illustration of the different decoding events on affine subspaces of dimen-
sion z = 1 in a lifted affine-invariant code over F2

Q (see also Fig. 2.1 on
Page 26) contributing to Ma(β, j) and Ma(?). The distance of the affine-
invariant code is dF = 5. Note that each decoding event is independent,
e.g., correcting the error in position a in Fig. 5.1c does not affect the other
decoding results.
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5 Decoding of Lifted Affine-Invariant Codes

a + Vi, i.e., ∑
β,j

Ma(β, j) +Ma(?) = s, (5.3)

for s as in Eq. (5.1). Hence, the distance between f and g is lower bounded by

dH
(

evFmQ (f), evFmQ (g)
)
≥ 1{f(a) 6= g(a)}+

s∑
i=1

dH
(

evFzQ\0(f (Vi)
a ), evFzQ\0(g(Vi)

a )
)
.

As f(a) = α by assumption, we have 1{f(a) 6= g(a)} = 1{g(a) 6= α}. For the remain-
ing positions, first consider the case of odd dF . For all affine subspaces contributing
to M(α, j) (see Fig. 5.1c), where j ≤ tF , we have

dH
(

evFzQ(f (Vi)
a ), evFzQ(g(Vi)

a )
)
≥

j, if ĝ(Vi)
a = f (Vi)

a ,

dF − j ≥ j, else.
(5.4)

Excluding point a in f and g, i.e., the origin in the restrictions to a + Vi, we obtain

dH
(

evFzQ\{0}(f
(Vi)
a ), evFzQ\{0}(g

(Vi)
a )

)
≥ j − 1{g(Vi)

a (0) 6= α} .

Now consider the affine subspaces contributing to M(β, j) with β 6= α (see Fig. 5.1d).
As f (Vi)

a , ĝ(Vi)
a ∈ F and f (Vi)

a (0) = α 6= β = ĝ(Vi)
a (0), we have

dH
(

evFzQ(f (Vi)
a ), evFzQ(ĝ(Vi)

a )
)
≥ dF .

Therefore

dH
(

evFzQ\{0}(f
(Vi)
a ), evFzQ\{0}(ĝ

(Vi)
a )) ≥ dF − 1{f (Vi)

a (0) 6= g(Vi)
a (0)}︸ ︷︷ ︸

=1

.

Further, we have dH
(

evFzQ(g(Vi)
a ), evFzQ(ĝ(Vi)

a )
)

= j and

dH
(

evFzQ\{0}(g
(Vi)
a ), evFzQ\{0}(ĝ

(Vi)
a )

)
= j − 1{g(Vi)

a (0) 6= β}.

By the triangle inequality we get

dH
(

evFzQ\{0}(f
(Vi)
a ), evFzQ\{0}(g

(Vi)
a )

)
≥ dF − 1− j + 1{g(Vi)

a (0) 6= β}.

Finally, as f (Vi)
a ∈ F , a necessary condition for an affine subspace to contribute to

Ma(?) (see Fig. 5.1b) is

dH
(

evFzQ(f (Vi)
a ), evFzQ(g(Vi)

a )
)
≥ tF + 1 .

90



5.2 Bounded Distance Decoding

Again, excluding position a gives

dH
(

evFzQ\{0}(f
(Vi)
a ), evFzQ\{0}(g

(Vi)
a )

)
≥ tF + 1− 1{f (Vi)

a (0) 6= g(Vi)
a (0)}︸ ︷︷ ︸

=1{g(Vi)
a (0)6=α}

.

By the same arguments, we obtain the lower bounds for even dF . The only difference
to the case of odd dF is that the erasure placed in position ĝ(Vi)

a (0) means that none
of the j errors can be in position a.
The lemma statement follows from observing that Na(α) is defined as the weighted

sum over these cases.

Lemma 5.1 provides a lower bound on the distance between the evaluations of two
functions solely based on the results of the decoders applied to the restrictions to the
subspaces of the (partial) partition. Similarly, bounds on the distance of a lifted affine-
invariant code can also be derived as a function of the distance of the affine-invariant
code [GKS13, Lemma 5.7] (see Lemma 2.3). The following formalizes the bound on
the distance considered in the presented BD decoder.

Definition 5.2. For 1 ≤ z ≤ m
2 , let evFzQ(F) with F ⊆ {FzQ → Fq} be an affine-

invariant code of distance dF . Let L(F) ⊆ {FmQ → Fq} be the set of functions of a
lifted code as in Definition 2.13. Define

dlow :=
(dF − 1)Qm−1

Qz−1 + 1, if z | m,
(dF − 1)Qm−z + 1, otherwise.

Remark 5.1. Note that by [GKS13, Lemma 5.7] (see Lemma 2.3) we have dL(F) ≥
dlow. Further, as z | m implies Qz − 1 | Qm − 1, it is easy to check that dlow coincides
with the lower bound of [GKS13, Lemma 5.7] in this case. On the other hand, dlow is
slightly lower if z - m, due to the fact that [GKS13, Lemma 5.7] employs arguments
based on all affine subspaces passing through a point, while dlow can be obtained by only
considering the evaluation in the points of a partial partition of FmQ , as will be shown
in the proof of Theorem 5.1.

It remains to show the existence of a bounded distance decoder based on the distance
measure introduced in Lemma 5.1.

Theorem 5.1. For 1 ≤ z ≤ m
2 , consider an affine-invariant code evFzQ(F) with F ⊆

{FzQ → Fq} of distance dF . Denote by D′ a decoder for this code running in time
T (D′) which corrects tF :=

⌊
dF−1

2

⌋
errors and, if dF is even, one erasure. Let L(F) ⊆

{FmQ → Fq} be the set of functions of the lifted code as in Definition 2.13 and dlow be
as in Definition 5.2.
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5 Decoding of Lifted Affine-Invariant Codes

Then, there exists a decoder D for the lifted affine-invariant code evFmQ (L(F)) that
corrects tlow := bdlow−1

2 c errors in time O(Q2m−zT (D′)) and O(Q2m−2zT (D′)) for even
and odd distance dF , respectively.

Proof. For completeness, we include a short proof that dL(F) ≥ dlow, as it is closely
related to the principle of the presented decoder. Let f, f̃ ∈ L(F) and assume f(a) 6=
f̃(a). As the affine subspaces a + V1, ..., a + Vs intersect only in a, we have

d(f, g) ≥ 1{f(a) 6= f̃(a)}+
s∑
i=1

dH
(

evFzQ\{0}(f
(Vi)
a ), evFzQ\{0}(f̃

(Vi)
a )

)
.

By Definition 2.13 we have f (Vi)
a , f̃ (Vi)

a ∈ F . Further, from f(a) 6= f̃(a) it follows that
f (Vi)

a 6= f̃ (Vi)
a , so

dH
(

evFzQ\{0}(f
(Vi)
a ), evFzQ\{0}(f̃

(Vi)
a )

)
≥ dF − 1 .

The bound of dL(F) ≥ dlow follows from setting s as in Eq. (5.1).

Finally, we now show the existence of a unique decoder for up to tlow errors by
proving that in this case

f(a) = arg min
α∈Fq

{Na(α)}

with Na(α) as in Definition 5.1.

Suppose that a function g ∈ {FmQ → Fq} is close to some function f ∈ L(F) such
that

dH
(

evFmQ (f), evFmQ (g)
)
≤ tlow .

For the correct value of α = f(a), we have

Na(α) ≤ dH
(

evFmQ (f), evFmQ (g)
)
≤ tlow

by Lemma 5.1. For a contradiction, assume there exists an α′ ∈ Fq with α′ 6= α and
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5.2 Bounded Distance Decoding

Na(α′) ≤ Na(α). Then

Na(α) +Na(α′) ≥ 1{g(Vi)(a) 6= α}+ 1{g(Vi)(a) 6= α′}︸ ︷︷ ︸
≥1

+
tF∑
j=0

(2tF + 1)︸ ︷︷ ︸
≥dF−1

(Ma(α, j) +Ma(α′, j))

+
∑

β 6=α,α′

tF∑
j=0

2(dF − 1− j + δa(β))︸ ︷︷ ︸
≥dF−1

M(β, j)

+ (2tF + 2− δa(α̂)− δa(α̂))︸ ︷︷ ︸
≥dF−1

Ma(?)

≥ 1 + (dF − 1)
∑
α,j

Ma(α, j) +Ma(?)
 Eq. (5.3)= dlow . (5.5)

As Na(α) ≤ tlow, this implies Na(α′) ≥ dlow − tlow > tlow by definition of tlow, which
contradicts the initial assumption of Na(α′) ≤ Na(α). We conclude that f(a) =
arg minα∈F{Na(α)}.
To estimate the running time of the described algorithm first note that the values

Na(α) ∀ a ∈ FmQ , α ∈ Fq can be obtained from the decoding results

• D′(evFzQ(g(Vi)
a )) ∀ a ∈ FmQ , i ∈ [s] if dF is odd,

• D′(evT
FzQ

(g(Vi)
a )) ∀ a ∈ FmQ , i ∈ [s] if dF is even, where evT

FzQ
is equal to evFzQ , except

that an erasure is placed at the origin.

Therefore, the required number of instances of the decoder of D′ is proportional to the
number of points |FmQ |, the number of vector spaces s in the (partial) partition, and the
running time T (D′) of the decoder D′. Hence, it can be estimated by O(Q2m−zT (D′)).
When dF is odd, we have g(Vi)

a′ (y) = g(Vi)
a (y + ϕVi(a′ − a)) ∀ a, a′ ∈ Vi, i.e., the

respective evaluations are only a permutation of the positions, and therefore need to
run the local decoder D′ only once per affine subspace, resulting in a running time of
O(Q2m−2zT (D′)).

Remark 5.2. We have two additional comments:

1. If L(F) (or the considered subcode) is linear and has low rate, the complexity of
its decoding might be reduced. Any linear [n, k]q-code can be represented as a sys-
tematic code. Thus, it suffices to reconstruct k information symbols and, if nec-
essary, encode them to get the whole codeword. In this case, the running time is
O(knQ−zT (D′)) (plus O(nk) operations for encoding).
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5 Decoding of Lifted Affine-Invariant Codes

2. A randomized local correction algorithm for lifted Reed–Solomon and Reed–Muller
codes was proposed in [GK16]. A key idea of that algorithm is similar to the al-
gorithm of Theorem 5.1, namely: assign appropriate weights to the results of local
decoding and aggregate them to get a final decision for a symbol.

5.3 High-Error Randomized Decoding

In this section, we show that for any fixed linear affine-invariant code evFzQ(F) with
F ⊆ {FzQ → Fq}, long lifted codes evFmQ (L(F)) can correct almost all patterns of
errors of relative weight less than q−1/q − ε with ε > 0. To this end, we consider
the q-ary symmetric channel (q-SC) with error probability pq,ε := q−1/q − ε that takes
a q-ary symbol at its input and outputs either the unchanged input symbol, with
probability 1 − pq,ε, or one of the other q − 1 symbols, each with probability pq,ε/q−1.
In the following, we discuss the case when F is a single parity-check (SPC) code,
but the same decoding algorithm also applies for any non-trivial affine-invariant code
evFmQ (L(F)) with F ( {FzQ → Fq}.

We begin with a general statement on the probability of the outcome of the sum
over random variables distributed according to a q-SC.

Lemma 5.2. Let ξ1, . . . , ξk be i.i.d. random variables with supp(ξi) = Fq that take the
value 0 with probability 1− pq,ε and any value of F?q with probability pq,ε/q−1. Then

Pr
{

k∑
i=1

ξi = 0
}

= 1
q

+
(

1− 1
q

)(
1− qpq,ε

q − 1

)k

and for any α ∈ F?q

Pr
{

k∑
i=1

ξi = α

}
= 1
q
− 1
q

(
1− qpq,ε

q − 1

)k
.

Proof. We prove the statement by induction on k. For k = 1, the statement holds by
definition as it simply reflects the realization probabilities of a single random variable.
Suppose that the statement holds for k − 1. From the independence of the variables
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ξi and the inductive assumption, it follows that

Pr
{

k∑
i=1

ξi = 0
}

=
∑
β∈Fq

Pr
{
k−1∑
i=1

ξi = −β and ξk = β

}

=
∑
β∈Fq

Pr
{
k−1∑
i=1

ξi = −β
}
· Pr {ξk = β}

=
1
q

+
(

1− 1
q

)(
1− qpq,ε

q − 1

)k−1
 (1− pq,ε) +

1
q
− 1
q

(
1− qpq,ε

q − 1

)k−1
 pq,ε

= 1
q

+
(

1− qpq,ε
q − 1

)k−1 ((q − 1)(1− pq,ε)
q

− pq,ε
q

)

= 1
q

+
(

1− 1
q

)(
1− qpq,ε

q − 1

)k
.

By the symmetry of the channel, Pr
{∑k

i=1 ξi = α
}
is the same for any α ∈ F∗q. Thus,

Pr
{

k∑
i=1

ξi = α

}
=

1− Pr
{∑k

i=1 ξi = 0
}

q − 1

= 1
q
− 1
q

(
1− qpq,ε

q − 1

)k
.

Lemma 5.2 provides the success probability of a simple symbol decoder of a linear
code of dimension k based on taking the positions of an information set and returning
the linear combination corresponding to the desired symbol. In this case, the ξi rep-
resent the value of the error in each position. Note that by symmetry of the channel,
the coefficients of this linear combination do not affect the distribution of the sum.
Before giving the main statement of this section, we derive an upper bound on the

dimension of a lifted SPC code.

Lemma 5.3. Consider an SPC code evFQ(F) with F ⊆ {FQ → Fq}, i.e., for any
f ∈ F it holds that ∑a∈FQ f(a) = 0. Let L(F) ⊆ {FmQ → Fq} be the set of functions
of the lifted code as in Definition 2.13. Then the dimension of the code evFmQ (L(F)) is
ΘQ(mQ−2).

Proof. First we introduce some useful notation. Denote Q = pl for a prime integer p
(recall that q is a prime power and Q a power of q). For two tuples u,v ∈ ZmQ we say
u = (u1, . . . um) is less than or equal to v = (v1, . . . , vm) by the p-partial order, i.e.,
u ≤p v, if for ui = ∑l

j=1 u
(j)
i pj−1 and vi = ∑l

j=1 v
(j)
i pj−1 it holds that u(j)

i ≤ v
(j)
i for all
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i ∈ [m] and j ∈ [l]. Next, we define a slight modification of the modulo operation2,
denoted mod∗ Q, that takes a non-negative integer and maps it to an element from
ZQ by

a mod∗ Q :=
0, if a = 0,
b ∈ [Q− 1], if a 6= 0, a = b mod Q− 1.

For a tuple u, we define its degree deg(u) to be ∑m
i=1 ui.

In [GKS13], it was proved that dimFq

(
evFmQ (L(F))

)
can be determined by counting

the number of good tuples v ∈ ZmQ such that there is no u ∈ ZmQ with u ≤p v and
deg(u) mod∗ Q = Q − 1. Consider a set S ⊂ [m] with3 |S| = Q − 2 and a tuple
v ∈ ZmQ that has the property vi = 1 for i ∈ S and vi = 0 otherwise. Clearly, all

(
m
Q−2

)
such tuples are good as deg(u) ≤ deg(v) ≤ Q − 2 for any u ∈ ZmQ with u ≤p v and
therefore deg(u) mod∗ Q 6= Q− 1. Thus, dimFq

(
evFmQ (L(F))

)
≥ ΩQ(mQ−2), as first

shown in [GKS13].
It remains to prove the upper bound on the dimension. We shall prove that the

number of appropriate v ∈ ZmQ is at most
(
1 + logpQm

)Q−2
. Toward a contradiction,

assume that it is larger than this value. First consider all v with ∑m
i=1

∑logpQ
j=1 v

(j)
i ≤

Q − 2. Each v is represented by the coefficients v(j)
i for i ∈ [m] and j ∈ [logp(Q)] or,

equivalently, by a multi-set V of cardinality |V| = Q − 2 containing each (i, j) with
multiplicity δ(i,j)

V = v
(j)
i and an empty-symbol with multiplicity

δempty
V = Q− 2−

m∑
i=1

logpQ∑
j=1

v
(j)
i .

Each element of this multi-set is either one of the logp(Qm) index pairs or the empty-
symbols. Hence, the number of such unordered multi-sets of cardinality Q − 2, and
thereby the number of appropriate tuples v, is upper bounded by the number of ordered
(Q− 2)-tuples over the same alphabet, i.e.,∣∣∣∣∣∣

v ∈ ZmQ
∣∣∣∣ m∑
i=1

logp(Q)∑
j=1

v
(j)
i ≤ Q− 2


∣∣∣∣∣∣ ≤

(
1 + logp(Qm)

)Q−2
.

Hence, if the number of appropriate v ∈ ZmQ exceeds
(
1 + logpQm

)Q−2
there exists at

least one v such that ∑m
i=1

∑logpQ−1
j=0 v

(j)
i ≥ Q− 1. We will prove that this v cannot be

good, i.e., there exists a u ∈ ZmQ with u ≤p v such that deg(u) mod∗ Q = Q− 1.
2The operation is the same as taking mod Q − 1, except that any non-zero multiple of Q − 1 is
mapped to Q− 1 instead of 0.

3Note that we consider Q to be fixed, so asymptotically m > Q− 2.
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To this end, consider a sequence of Q−1 distinct tuples u1, . . . ,uQ−1 ∈ ZmQ with pos-
itive degrees such that uι−1 ≤p uι ≤p v for ι ∈ [Q− 1]. Clearly, if all deg(uι) mod∗ Q
are different, then there exists a ι ∈ [Q− 1] such that

deg(uι) mod∗ Q = Q− 1 .

On the other hand, assume there exist two tuples uι,uι′ with ι < ι′ and deg(uι) mod∗ Q =
deg(uι′) mod∗ Q. Then for the tuple u := uι′ − uι 6= 0 it holds that

deg(u) mod∗ Q =
m∑
i=1

uι′,i − uι,i mod∗ Q

=
m∑
i=1

uι′,i −
m∑
i=1

uι,i mod∗ Q

= deg(uι′)− deg(uι) mod∗ Q = Q− 1 ,

where the final equality follows from two observations:
1. The partial order uι ≤p uι′ and the fact that the uι are distinct implies deg(uι) <

deg(uι′) and therefore deg(uι′)− deg(uι) > 0. Hence, by definition of the oper-
ation mod∗ Q we have

deg(uι′)− deg(uι) mod∗ Q = b

for some b ∈ [Q− 1] such that deg(uι′)− deg(uι) mod Q− 1 = b mod Q− 1.

2. As the uι are of positive degree, the assumption deg(uι) mod∗ Q = deg(uι′) mod∗ Q
implies

deg(uι′) mod Q− 1 = deg(uι) mod Q− 1
⇒ deg(uι′)− deg(uι) mod Q− 1 = 0 .

It follows that the tuple u satisfies the two required conditions deg(u) mod∗ Q = Q−1
and u ≤p uι′ ≤p v. Thus, v is not a good tuple and this contradiction completes the
proof.

With these preliminary results established, we are now ready to provide the main
statement of this section.
Theorem 5.2. Consider an SPC code evFQ(F) with F ⊆ {FQ → Fq}, i.e., for any
f ∈ F it holds that ∑a∈FQ f(a) = 0. Let L(F) ⊆ {FmQ → Fq} be a the set of functions
of the lifted code as in Definition 2.13.

1. Parameters of the code: The code is of length n = Qm and dimension

dimFq

(
evFmQ (L(F))

)
= ΘQ

(
mQ−2

)
.
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2. High-error randomized decoder: Let f ∈ L(F) and g be a function for
which each value is obtained independently by transmitting the corresponding
value of f over the q-SC with error probability pq,ε := q−1/q − ε. For any δ >
exp (−cn) with some constant c = c(Q, ε), there exists a decoder D running in
time OQ

(
log 1

δ
+log logn
ε2Q−2

)
such that the error probability Pr {D(g) 6= f} < δ.

Proof. The lower bound on the dimension of the code was already proved in [GKS13],
the upper bound in Lemma 5.3.
Let f ∈ L(F) and g be a noisy version of f , where each symbol of f is corrupted by

the q-SC with error probability pq,ε = q−1/q − ε. We fix a partial partition of FmQ into
one-dimensional vector spaces V1, . . . ,Vs, where s ≤ Qm−1/Q−1.
For any i ∈ [s] and a ∈ FmQ it holds that evFQ(f (Vi)

a ) ∈ F by Definition 2.13. Since
F is an SPC code, the symbol f(a) can be reconstructed from the evaluations of f in
the points b ∈ a + Vi \ {a} as

f(a) = −
∑

b∈a+Vi\{a}
f(b) .

Define the indicator random variables4

ψ(i)
a := 1

−f(a) =
∑

b∈a+Vi\{a}
g(b)

 ,
ψ(i,α)

a := 1

−f(a) = α +
∑

b∈a+Vi\{a}
g(b)

 for α ∈ F∗q .

Then, by Lemma 5.2, the expected value of these random variables is

E[ψ(i)
a ] = 1

q
+ q − 1

q

(
εq

q − 1

)Q−1

=: p̂

and for any α ∈ F∗q,

E[ψ(i,α)
a ] = 1

q
− 1
q

(
εq

q − 1

)Q−1

=: p̌ .

Define the random variables

Σa :=
∑
i∈[s]

ψ(i)
a , Σ(α)

a :=
∑
i∈[s]

ψ(i,α)
a for α ∈ F?q .

4The first variable can be seen as the indication that the respective line gives a correct decoding
result for this position, while the second variable indicates that the difference between the correct
result and the returned value is α.
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Now, consider the decoder with output f̃ that, for each position a, decides for the
value f̃(a) = β that maximizes the number of affine subspaces a + Vi for which∑

b∈a+Vi\{a}
g(b) = −β .

In other words, it decides for the value β in position a that receives the most “votes”
from the decoders of the SPC code on the different lines. Then the result of the
decoding is incorrect with probability

Pr
{
∃α ∈ F∗q s.t. Σa < Σ(α)

a

}
≤
∑
α∈F?q

Pr
{

Σa < Σ(α)
a

}
= (q − 1) Pr

{
Σa < Σ(α)

a

}
,

where the last equality holds because the channel is symmetric. Note that Σa and Σ(α)
a

are binomial random variables, which we denote by B(s, p̂) and B(s, p̌). Let p̄ := p̂+p̌/2.
By Hoeffding’s bound [Hoe94], it holds that

Pr{B(s, p̂) < p̄s} = Pr{B(s, p̂) < (p̂− (p̂− p̄)︸ ︷︷ ︸
p̂−p̌/2

)s}

≤ exp
−2

(
p̂− p̌

2

)2

s

 = exp
(
−1

2 (p̂− p̌)2 s
)

Pr{B(s, p̌) ≥ p̄s} = Pr{B(s, p̂) ≥ (p̌+ (p̄− p̌)︸ ︷︷ ︸
p̂−p̌/2

)s} = exp
(
− 1

2 (p̂− p̌)2 s
)
.

Therefore, the probability of an incorrect decoding result is bounded by

Pr
{
∃α ∈ F∗q s.t. Σa < Σ(α)

a

}
≤ (q − 1) Pr

{
Σa < Σ(α)

a

}
≤ (q − 1) (Pr {B(s, p̂) < p̄s}+ Pr {B(s, p̌) ≥ p̄s})

≤ 2(q − 1) exp
(
−1

2(p̂− p̌)2s
)
.

By Lemma 5.3, the dimension of the lifted code is dimFq(evFmQ (L(F))) = ΘQ(mQ−2).
To reconstruct the original polynomial f , it suffices to recover the evaluation of f in
an information set of the code. Thus, by the union bound, the probability of error in
recovering f is given by

OQ

(
mQ−2 exp

(
−1

2(p̂− p̌)2s
))

.
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This is less than δ, if

s = ΩQ

(
log 1

δ
+ logm
ε2Q−2

)
.

5.4 Summary and Open Problems
This chapter introduced a simple BD decoder that is applicable to any lifted affine-
invariant code. The principle of this decoder is to apply a local decoder on all subspaces
containing a given point and aggregate the decoding results to determine an estimate
of the codeword at this position. This estimate is shown to be correct as long as
the number of errors does not exceed half of an asymptotically tight bound on the
minimum distance of lifted affine-invariant codes.
Furthermore, we have shown that lifted affine-invariant codes are able to correct

errors of very high weight with arbitrarily high success probability, as the code length
approaches infinity. To this end, we considered a decoder that, similar to the intro-
duced BD decoder, decodes the affine-invariant (SPC) code obtained by restricting to
one-dimensional subspaces. By bounding the probability of a correct result in each
of these local decoding steps, we were able to estimate the probability of a correct
decision in a given codeword positions, obtained through majority decision among the
corresponding local decoding results.
A promising direction for future research is further exploring probabilistic decoding

of lifted affine-invariant codes. While the introduced BD decoder has the advantage of
providing a decoding guarantee, the result on the high-error regime shows that these
codes possess a structure that is potentially able to decode far beyond the unique
decoding radius with only a small probability of error.
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6
Other Results on Codes with Locality

This chapter briefly summarizes a selection of other works on codes with locality. For
more details the interested reader is referred to the respective publications.

6.1 Error Decoding of Locally Repairable and Partial
MDS Codes

This abstract summarizes the results of [HPW21] published in the IEEE Transactions on Informa-
tion Theory. In part, the results on list decoding of LRCs have been published in the proceedings of
the 2018 IEEE International Symposium on Information Theory (ISIT) [HW18] and the results on
error decoding of PMDS codes in the proceedings of the 2019 IEEE Information Theory Workshop
(ITW) [HPW19].

This work considers the application of two powerful methods for increasing the
decoding radius, interleaving and list decoding, to PMDS codes and LRCs. In list
decoding, the goal of the decoder is to return all codewords within a given distance,
called the decoding radius, of the received word. It is known that all linear codes can
be decoded up to the q-ary Johnson radius [Joh62; Bas65] and decodability beyond this
radius with a maximal list size polynomial in the code length is only known for a few
nontrivial classes of codes [GX12; GR08; PV05]. In this work, the inherent structure
of distance-optimal LRCs is used to show that this class of codes can be decoded up
to a newly derived radius, which exceeds the Johnson radius as long as the normalized
code rate exceeds the normalized rate in each local code. When the number of local
repair sets is fixed, the maximal list size is shown to be polynomial in the code length.
A general list-decoding algorithm for LRCs that achieves this radius is proposed along
with an explicit realization for LRCs that are subcodes of Reed–Solomon codes (such
as Tamo–Barg LRCs [TB14a]). Further, a probabilistic algorithm of low complexity
for unique decoding of LRCs is given and its success probability analyzed.
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The second part of the work considers the decoding of high-order interleaved PMDS
codes. It is shown that for a wide range of parameters interleaved decoding can
increase their decoding radius beyond the minimum distance, while the probability
of successful decoding approaches 1 as the code length goes to infinity. To this end,
the decoding algorithm for high-order interleaved codes by Metzner and Kapturowski
[MK90] is applied. The inherent advantage of this decoder is that it is applicable to any
linear code of sufficiently large interleaving order. To analyze its success probability,
a new sufficient success condition is derived. The structure of PMDS codes is then
used to prove a bound on the probability that this condition is fulfilled. Some families
of PMDS code parameters are shown to correct n − k − 1 errors, i.e., almost up to
the Singleton bound, with a success probability approaching 1 as the length goes to
infinity.
The two proposed methods apply to any distance-optimal LRC or high-order inter-

leaved PMDS code, respectively, and therefore do not require a change in the structure
of the codes. Hence, they can be viewed as a worst-case measure that can be employed
as a last resort in the case of error events, without any increase in costs, e.g., in terms
of storage overhead, for any system employing a code of this class.

6.2 Lifted Reed–Solomon Codes and Lifted Multiplicity
Codes

This abstract summarizes the results of [HPP+21] published in the IEEE Transactions on Informa-
tion Theory. In part, the results on lifted RS codes have been published in the proceedings of the 2020
IEEE International Symposium on Information Theory (ISIT) [HPPV20] (nominated for the 2020
ISIT Best Student Paper Award) and the results on lifted multiplicity codes in the proceedings of the
2020 IEEE Information Theory Workshop (ITW) [HPP+20].

Lifted Reed-Solomon [GKS13] and lifted multiplicity codes [KSY14] are classes of
lifted affine-invariant codes, constructed from specific sets of m-variate polynomials.
These codes allow for the design of high-rate codes that can recover every codeword
or information symbol from many disjoint sets. As both classes of codes are based
on generalizations of RM codes, it is a natural question whether these techniques can
be combined to further improve the parameters. Some progress in the study of these
lifted multiplicity codes has recently been made in [Wu15; LW19]. In [Wu15], the
authors show asymptotic results for any number of variables, while [LW19] is devoted
to improving these bounds on the required redundancy in the bi-variate case.
This work continues the study of lifted RS and lifted multiplicity codes. First,

new lower bounds on the rate of lifted RS codes for any number of variables m are
established, which match the known bounds of [GKS13] for m = 2 and [PV19] for
m = 3, and improve upon the result of [GKS13] for any m > 2. Next, these results are
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used to provide a lower bound on the rate of lifted multiplicity codes obtained from
polynomials in an arbitrary number of variables, which matches the known bounds
of [LW19] and improves upon those of [Wu15] for any m ≥ 2. Specifically, a subcode
of a lifted multiplicity code is investigated, formed by the linear span of m-variate
monomials whose restriction to an arbitrary line in Fmq is equivalent to a low-degree
univariate polynomial. The tight asymptotic behavior of the fraction of such mono-
mials is determined for the case of a fixed number of variables m and large alphabet
size q.
Using these results, new explicit construction of batch codes [IKOS04] utilizing lifted

Reed-Solomon codes are introduced. For some parameter regimes, these codes have a
better trade-off between parameters than all previously known batch code construc-
tions. Further, it is shown that lifted multiplicity codes have a better trade-off between
redundancy and the number of disjoint recovering sets for every codeword symbol than
previously known constructions, thereby providing the best known PIR codes [FVY15]
for some parameter regimes. Finally, a new local self-correction algorithm for lifted
multiplicity codes is presented.

6.3 Secure Codes with Accessibility for Distributed
Storage

This abstract summarizes the results of [HKFW21] published in the IEEE Transactions on Informa-
tion Forensics & Security. In part, the results have been published in the proceedings of the 2020 IEEE
Global Communications Conference (GLOBECOM) [HKFW20].

The problem of locality, i.e., the ability of a distributed storage system (DSS) to
recover a specified number of node failures from only a small number of surviving
nodes, has been studied intensively in recent literature. This increased interest is
driven by the desire to avoid large overhead and organizational complexity stemming
from involving a large number of nodes in the repair process. By the same reasoning,
it is not desirable for a system having to connect to a large number of nodes to recover
data requested by a user. When user data is not secret, this is not an issue, as a
systematic encoding of the data offers a simple and optimal solution, where a user
retrieving data can obtain files from a single server. However, when any number of t
nodes should not be able to learn anything about the user data, systematic encoding
is no longer possible. This work considers the problem of local access in secure DSS,
a problem closely related to secret sharing [Sha79].
Specifically, the problem of efficient access to information stored on a DSS is con-

sidered in the presence of a passive eavesdropper under different efficiency measures.
First, the secure recovery of any file or subset of a given number of files from a lim-
ited number of nodes is investigated. For this case, the capacity for the alphabet
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independent case is established along with an explicit code construction attaining it.
A similar problem was considered in [Hua17; HB16; HB17], however, the proposed
solution imposes a very specific access structure, where accessing any file always re-
quires accessing the same subset of nodes, while other nodes never participate in the
retrieval process. To remedy this shortcoming, methods for balancing the access load,
i.e., ensuring that any server is involved equally often in serving the user requests, are
investigated. Further, three constructions over small fields are proposed, as well as an
existence results based on a random coding argument. Then, the proposed framework
is generalized to the case of limited repair bandwidth. A bound on repair bandwidth
is derived along with an explicit code construction attaining it in the case of large file
size.

104



Part II

Decoding of Interleaved Alternant
Codes





7
Decoding of Interleaved Alternant
Codes

Abstract

Interleaved Reed–Solomon codes admit efficient decoding algorithms which correct burst
errors far beyond half the minimum distance in the random errors regime, e.g., by
computing a common solution to the Key Equation for each Reed–Solomon code, as
described by Schmidt et al. If this decoder does not succeed, it may either fail to return
a codeword or miscorrect to an incorrect codeword, and good upper bounds on the
fraction of error matrices for which these events occur are known.
The decoding algorithm immediately applies to interleaved alternant codes as well,
i.e., the subfield subcodes of interleaved Reed–Solomon codes, but the fraction of decod-
able error matrices differs, since the error is now restricted to a subfield. This chapter
presents new general lower and upper bounds on the fraction of error matrices decodable
by Schmidt et al.’s decoding algorithm, thereby making it the only decoding algorithm
for interleaved alternant codes for which such bounds are known.

This chapter is based on the work1 [HLN+21] published in the IEEE Transactions on
Information Theory. In part, the results have been published in the proceedings of the
2020 IEEE Information Theory Workshop (ITW) [HLN+20].

7.1 Introduction
We now turn away from codes with locality and consider decoding of a class of subcodes
of GRS codes, namely, alternant codes2. Specifically, we are interested in `-interleaved
homogeneous interleaved codes, as in Definition 2.2, where the component code is an

1That work also contains a comparatively simple bound that is only applicable to the restrictive
case where the interleaving order exceeds the number of errors. As the author of this thesis was
not the principle author for that part, it is excluded here.

2These concepts are not mutually exclusive, as taking a subfield subcode of an LRC that is a
subcode of an GRS code, such as Tamo-Barg LRCs [TB14b], yields an LRC that is a subcode of
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alternant codes, as formally introduced in Section 2.2.5. Note that, aside from the
other applications discussed in Section 2.2.3 and below, this class of codes is naturally
connected DSSs. These systems commonly store a large number of codewords and
the corruption of any number of nodes would imply errors in the same positions of all
these codewords (see also Section 6.1).
Generalized Reed–Solomon (GRS) codes are among the most-studied classes of

constituent codes for interleaved codes. There are several decoders for `-interleaved
[n, k] GRS codes [KL97; BKY03; BMS04; SSB09b; Nie13; YL18] that decode up to
tmax := `

`+1(n−k) errors. As this decoding radius exceeds the unique decoding radius of
the interleaved RS code3, all of these decoders necessarily fail for some error patterns.
For an interleaved GRS code over qm and errors of weight t, applying the decoder
of [FT91; SSB09a] leads to a fraction of approximately q−m(tmax−t) errors that are not
correctable. In other words, for uniformly distributed errors of a given weight, the
probability of unsuccessful decoding decreases exponentially in the difference between
the maximal decoding radius and the actual error weight.
There are also various other decoding algorithms for interleaved GRS codes that

decode beyond the radius tmax [CS03; PV04; Par07; SSB07; CH13; WZB14; PR17].
For some of these decoders, simulation results suggest a large fraction of error matrices
of weight up to the claimed maximal radius can be successfully decoded, and in some
very special cases, it is possible to derive bounds on this fraction. However, in general,
only little is known about the fraction of decodable errors for these decoders, which
are therefore not considered in this chapter.
Surprisingly, despite the abundant research on the topic of interleaved RS codes,

little is known about the decoding of interleaved alternant codes. This family of codes
contains some of the best-known and most-often used algebraic codes over small fields,
including BCH [Hoc59; BRC60] and Goppa codes [Gop70]. In principle, alternant
codes can be used as constituent codes in any of the applications of interleaved codes
mentioned in Section 2.2.3. Additionally, we see several concrete reasons to specifically
consider alternant codes:

• Alternant codes (especially BCH codes) are some of the most-often used alge-
braic codes in practice, including applications such as data storage and com-
munications. Any system that already uses these codes and is prone to burst
errors may be retroactively upgraded to enable a larger error-correction capabil-
ity. For instance, in NOR and NAND flash memory, Hamming and BCH codes
are considered as the standard error correction approach (see [WDPZ11; LRS06;
CLS09]). Traditionally, Hamming codes are used in single-level flash memories
to correct single errors, as they have a simple decoding algorithm, which only

an alternant code. There are also more intricate combinations of the concepts, such as the class of
cyclic LRCs studied in [TBGC15], which combine the approaches of Tamo-Barg LRCs and BCH
codes [Hoc59; BRC60].

3Recall that interleaving preserves the minimum distance (see Corollary 2.1)
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uses a small circuit area. For multi-level flash memories, however, single-error
correction is not sufficient and BCH codes with larger distance are employed.
In [SRZ06], the scenario of more than four levels, i.e., storing more than two
bits per flash memory cell, was investigated and it was shown that BCH codes
of larger correction capability are needed. To address the fact that errors in
flash memories might occur over whole bit or word lines, [YEC12] employs prod-
uct codes with BCH component codes. This motivates the use of interleaved
alternant and in particular interleaved BCH codes.

• In applications where the cost of encoding is dominant, e.g., in storage systems
where writing occurs more often than reading an erroneous codeword, encoding
in a subfield reduces the complexity. Hence, it might be advantageous to use
alternant codes instead of GRS codes in some of the applications of interleaved
codes. Note that decoding is usually done in the field of the corresponding GRS
code, so the reduction in complexity is less significant.

• In some applications, such as code-based cryptography, GRS and algebraic-
geometry codes cannot be used due to their vast structure, which can be turned
into structural attacks on the cryptosystem. However, their subfield subcodes are
in many cases unbroken (see [CMCP17, Conclusion] and [CR20, Section 7.5.3]).
In particular, the codes proposed in McEliece’s original paper [McE78], binary
Goppa codes, have withstood efficient attacks for more than 40 years. In a
McEliece-type system, the ciphertext is the sum of a codeword of a public code
and a randomly chosen “error” which hides the codeword from the attacker. If
multiple codewords are encrypted in parallel, they form an interleaved code and
the errors can be aligned in bursts of larger weight. This approach has the po-
tential to increase the designed security parameter, or in turn reduce the key
size, and was first studied in [EWZ18; HLPW19]. This comes at the cost of a
(hopefully very small) probability of unsuccessful decryption, which corresponds
to the probability of unsuccessful decoding of the interleaved decoder.

As alternant codes are subcodes of GRS codes, interleaved alternant codes can be
decoded by the decoders of interleaved GRS codes. However, the set of all errors
of a given weight differs for interleaved alternant codes, as it only contains matrices
over the subfield corresponding to the alternant code, not the field of the GRS code.
Therefore, the bounds on the fraction of decodable error matrices for the decoding
of interleaved GRS codes do not apply to interleaved alternant codes. Aside from a
theoretical interest, it is crucial for all of the above mentioned applications to estimate
this fraction, or, equivalently, the probability of successful decoding for errors drawn
uniformly at random from this set.
This chapter introduces new lower bounds on the probability of success for decod-

ing interleaved alternant codes with the decoder from [FT91; SSB09b] for uniformly
distributed errors of a given weight. Further, for comparison, we also derive upper
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bounds on the probability of successful decoding. To the best of our knowledge, this
is the first work that studies the success probability of decoding interleaved alternant
codes for general parameters.

7.1.1 Outline and Contributions
To begin, Section 7.2 recaps the syndrome-based interleaved decoder from [FT91;
SSB09b] and formally defines the event of a decoding failure and a miscorrection. We
derive a necessary and sufficient condition for the decoder to succeed, which simplifies
the subsequent analyses. Section 7.3 establishes some technical preliminary results,
which are then used in Sections 7.4 and 7.5 for the derivation of the main results in
this chapter:

• Theorem 7.2 provides a framework for lower bounding the probability of decod-
ing success for interleaved alternant codes with the decoder of [FT91; SSB09b],
by relating it to properties of the set of all alternant codes obtained from the gen-
eralization of specific RS codes. Based on this framework, Theorem 7.3 presents
a lower bound on the probability of successful decoding by applying the technical
results established in Section 7.3.

• Theorem 7.4 gives an upper bound on the probability of success for decoding
interleaved alternant codes with the considered decoder. This result allows us
to evaluate the performance of the lower bound presented in Theorem 7.3.

In Section 7.7 we present numerical evaluations of the new bounds for different code
parameters and discuss their implications. Finally, we conclude the chapter and discuss
some open problems in Section 7.8.

7.2 Decoding Algorithms for Interleaved Alternant
Codes

For completeness, we begin with a brief recap of the decoding algorithm for interleaved
RS codes presented in [FT91; SSB09b]. Let C×` be an `-interleaved alternant code
with C ∈ A(n, dmin,β), as in Definition 2.5, and H be the parity-check matrix of the
corresponding GRS(n, dmin,β,ν)qm ∈ G(n, dmin,β)qm of C as in Definition 2.3.

Remark 7.1. GRS codes allow for β = 0 to be an element of the code locators β. How-
ever, as this complicates the decoding process described in the following (see Eq. (7.2))
and for consistency with [SSB09b], we restrict the code locators to be βi 6= 0 ∀i ∈ [n]
for the remainder of this chapter.
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Consider a channel where burst errors of column weight t occur. A codeword C ∈
C×` of an `-interleaved alternant code is transmitted and the channel returns the
received word

R = C + Ẽ ∈ F`×nq ,

where each row of C ∈ F`×nq is a codeword of C and Ẽ ∈ F`×nq with | colsupp(Ẽ)| = t,
i.e., Ẽ has exactly t nonzero columns. Since C ⊂ GRS, the interleaved alternant
code C×` is a subcode of an interleaved GRS code and the received word R can be
decoded by any decoding algorithm for interleaved GRS codes and, in particular,
syndrome-based collaborative decoding algorithms. Such algorithms, to name a few,
can be found in [FT91] for BCH codes and [KL97; BKY03; SSB09b] for interleaved
GRS code (for a more extensive overview see Section 2.2.3). We briefly recapitulate
the decoding method below and summarize a naive version4 of [SSB09b, Algorithm 2]
in Algorithm 1.

The syndromes of each row of R are given by

S := R ·H> = Ẽ ·H> ∈ F`×(dmin−1)
qm . (7.1)

Define the error locator polynomial by5

Λ(x) :=
t∏
i=1

(1− β−1
ji
x) = 1 + Λ1x+ · · ·+ Λtx

t , (7.2)

where the t roots {βj1 , . . . , βjt} of Λ(x) are the code locators corresponding to the error
positions. Obviously, as the decoder does not know the error positions, it is unable
to directly set up this polynomial. However, as shown in [Pet60], for any i ∈ [`], the
vector of coefficients of Λ(x), denoted by Λ = (Λ1, . . . ,Λt), fulfills the linear equations

S[i, 1] S[i, 2] . . . S[i, t]
S[i, 2] S[i, 3] . . . S[i, t+ 1]
...

...
. . .

...
S[i, dmin − 1− t] S[i, dmin − t] . . . S[i, dmin − 2]


︸ ︷︷ ︸

S(i)(t)


Λt

Λt−1
...

Λ1

 =


−S[i, t+ 1]
−S[i, t+ 2]

...
−S[i, dmin − 1]


︸ ︷︷ ︸

T(i)(t)

.

Thus, determining the error positions colsupp(Ẽ) is equivalent to solving the linear

4This is to mean that we do not consider improvements regarding performance here, for more details,
see Remark 7.2.

5Since we restrict the code locators to be βi 6= 0 ∀i ∈ [n] (see Remark 7.1) the error locator
polynomial is well-defined.
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system of equations S(t) in t unknowns given by
S(1)(t)
S(2)(t)
...

S(`)(t)


︸ ︷︷ ︸

S(t)


Λt

Λt−1
...

Λ1


︸ ︷︷ ︸

Λ

=


T(1)(t)
T(2)(t)

...
T(`)(t)


︸ ︷︷ ︸

T(t)

. (7.3)

After determining Λ from Eq. (7.3), the roots of the error locator polynomial as in
Eq. (7.2) uniquely determine the error positions and we may use a standard method
for error evaluation such as Forney’s algorithm [For65] (see [Rot06, Section 6.6]) to
calculate the error values in Ê. Then, by subtracting the calculated error Ê from R,
we obtain the estimated codeword Ĉ = R − Ê. Alternatively, the positions can be
declared erasures and corrected by an arbitrary erasure decoder to obtain Ĉ.

Algorithm 1: Syndrome-based Collaborative Decoding Algorithm
Input: received word R
Output: Ĉ or decoding failure

1 Calculate the syndrome matrix S // See Eq. (7.1)
2 if S[i, :] = 0 for all i then return Ĉ = R
3 Find minimal t? s.t. S(t?) ·Λ? = T(t?) has a solution Λ? // See Eq. (7.3)
4 if the solution Λ? is not unique then output decoding failure and stop
5 if Λ?(x) has t? distinct roots in Fqm then
6 Evaluate the errors Ê by Forney’s algorithm [For65]
7 Calculate Ĉ = R − Ê
8 else
9 Output decoding failure

10 end

For a channel adding errors with some distribution, the collaborative decoding al-
gorithm given in Algorithm 1 may yield three different results:

• The algorithm returns the correct result, i.e., Ĉ = C, with success probability
Psuc.

• The algorithm returns an erroneous result, i.e., Ĉ 6= C, with miscorrection
probability Pmisc.

• The algorithm returns a decoding failure, with failure probability Pfail.

Note that from the perspective of the decoder a successful decoding event cannot be
distinguished from a miscorrection.
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Remark 7.2 (Practical Implementations). Algorithm 1 is a naive approach useful
for proving the success probability and does not reflect an efficient implementation.
For practical implementations, one can use some fast algorithm for solving the linear
system of equations of Line 3, for instance, [SS11, Algorithm 3] with the complexity of
O(`dmin

2) operations in Fqm, or the currently fastest algorithm [RS21] with complexity
O∼(`ω−1dmin) where O∼ omits the log-factors in dmin and ω is the matrix multiplication
exponent, for which the best algorithms known give ω < 2.38 [CW90; LG14].

Algorithm 1 yields a bounded distance decoder which can decode beyond half of the
minimum distance

⌊
dmin−1

2

⌋
with high probability. Clearly, the solution Λ? cannot be

unique if the number of equations in Eq. (7.3) is less than the number of unknowns,
which implies the maximum decoding radius of Algorithm 1 given in the following
theorem.

Theorem 7.1 (Maximum Decoding Radius [SSB09b, Theorem 3]). Let C×` be an `-
interleaved alternant code with C ∈ A(n, dmin,β). For a received word R = C + Ẽ,
where C ∈ C×` and | colsupp(Ẽ)| = t, Algorithm 1 may only succeed, i.e., return
Ĉ = C, if t satisfies

t ≤ tmax := `

`+ 1(dmin − 1) . (7.4)

Proof. There are t unknowns and `(dmin − 1 − t) equations in the linear system of
equations of Eq. (7.3). Trivially, this cannot result in a unique solution for the t
unknowns Λ1, . . . ,Λt if the number of unknowns is larger than the number of equations,
i.e., we may only obtain a unique solution from Eq. (7.3) if

t ≤ `(dmin − 1− t) .

The statement follows from solving the inequality for t.

By the nature of a bounded distance decoder, where correction spheres inevitably
overlap for some error patterns of weight t larger than half of the minimum distance⌊
dmin−1

2

⌋
, Algorithm 1 is unsuccessful with some probability when t >

⌊
dmin−1

2

⌋
. The

focus of this work is to bound this success probability, assuming a uniform distribution
of errors of given weight t. The techniques we use are based on analyzing Eq. (7.3)
and overbounding the number of cases where rank(S(t)) < t when t errors occurs.
To bound the success probability of Algorithm 1 based on this analysis, we first show
that rank(S(t)) < t is a necessary and sufficient condition for Algorithm 1 to be
unsuccessful. In other words, as rank(S(t)) ≤ t by design, the decoder succeeds exactly
when S(t) is of full rank t. The arguments are an extension of the proof of [SSB09b,
Lemma 2].
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Lemma 7.1 (Condition for unsuccessful decoding). Let C×` be an `-interleaved alter-
nant code with C ∈ A(n, dmin,β). For a received word R = C + Ẽ, where C ∈ C×` and
| colsupp(Ẽ)| = t, Algorithm 1 is not successful, i.e., returns Ĉ 6= C or a decoding
failure, if and only if rank(S(t)) < t.

Proof. Denote by Λ(x) the true error locator polynomial corresponding to the t error
positions (indices of nonzero columns) | colsupp(Ẽ)|. Then Λ(x) has t distinct roots
in Fqm and Λ is a solution of S(t) as in Eq. (7.3). Trivially, if t = 0 we have S = 0
and the algorithm always returns the correct word C in Line 2. Now assume t > 0.
Necessary condition: We show that unsuccessful decoding implies rank(S(t)) < t.
The algorithm can fail only on Lines 4 and 9. Line 3 determines the minimal t?

such that S(t?) has at least one solution Λ?, hence t? ≤ t. Note that Λ? is also
a solution to S(t) since t ≥ t? (see [SSB09b, Lemma 2]). If the algorithm fails on
Line 4, the system S(t?) has many solutions, hence S(t) also has many solutions and
rank(S(t)) < t. A failure on Line 9 occurs if Λ?(x) does not have t? different roots,
which implies Λ?(x) 6= Λ(x). Again, the system S(t) has at least two solutions Λ and
Λ? and rank(S(t)) < t.
Only Lines 2 and 7 can result in a miscorrected codeword. If the decoder outputs

Ĉ on Line 2, we have Ĉ 6= C as t > 0. Further, in this case S(t) = 0, so rank(S(t)) =
0 < t.
If the algorithm outputs a miscorrected codeword Ĉ 6= C on Line 7, the error

positions in R− Ĉ correspond to a Λ?(x) whose coefficients Λ? are a solution to S(t?)
and hence also to S(t). Thus S(t) has two different solutions Λ? and Λ, which are
different since Ĉ 6= C, and it follows that rank(S(t)) < t.
Sufficient condition: We show that unsuccessful decoding follows from rank(S(t)) < t.
Only Lines 2 and 7 can result in the output of a valid codeword. Let us assume that

rank(S(t)) < t but the decoding was successful, i.e., Ĉ = C. If C was found in Line 2
then R = C and the number of errors is t = 0, which contradicts the assumption
t > 0. If the correct C = Ĉ was the result of Line 7, then the minimal t? is equal
to the actual number of errors t and Λ? = Λ; otherwise it is not possible for the
polynomial Λ?(x), which is of degree t?, to have t distinct roots. Since, by assumption,
the algorithm did not fail, it follows from Line 4 that in this case S(t) has a unique
solution which contradicts our assumption that rank(S(t)) < t.

Remark 7.3 (Application of Lemma 7.1 to interleaved RS codes). It was shown
in [SSB09b, Lemma 2] that Algorithm 1 returning a decoding failure is a sufficient
condition for the matrix S(t) to be rank deficient. Therefore, an upper bound on the
probability of rank(S(t)) < t provides an upper bound on the probability of a decoding
failure. In Lemma 7.1 we extend this argument by showing that the decoder does not
succeed if and only if rank(S(t)) < t. This implies that any bound on the probability of
rank(S(t)) < t is not only a bound on the probability of a decoding failure, but an upper
bound on sum of the probability of a decoding failure and the probability that the decoder
returns a miscorrection. As this is a property of the decoder and therefore not specific
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to interleaved alternant codes, it follows that the upper bound on the probability of a
decoding failure for interleaved RS codes of [SSB09b, Theorem 7] is in fact an upper
bound on the probability of the decoder being unsuccessful, i.e., a bound on 1− Psuc.

With the help of Lemma 7.1, we now present the formal condition for a decoding
success, which is the basis of the bounds presented in Section 7.4.

Lemma 7.2. Let C×` be an `-interleaved alternant code with C ∈ A(n, dmin,β) and
E = {j1, j2, . . . , jt} ⊂ [n] be a set of |E| = t error positions. For a codeword C ∈ C×`,
an error matrix Ẽ ∈ F`×nq with colsupp(Ẽ) := E and E := Ẽ|E ∈ E(`,t)

q , and a received
word R := C + Ẽ, Algorithm 1 succeeds, i.e., returns Ĉ = C, if and only if

@v ∈ Ftqm \ {0} such that H · diag(v) · E> = 0 , (7.5)

where H ∈ Fdmin−t−1×t
qm is a parity-check matrix of the code GRS(t, dmin − t,β|E ,1)qm.

Proof. We extend and adapt the proof for interleaved RS codes from [SSB09b].
According to Lemma 7.1, Algorithm 1 may only yield a decoding failure or a

miscorrection Ĉ 6= C if rank(S(t)) < t, with S(t) as in Eq. (7.3). In other words, the
decoding may only be unsuccessful, if there exists a nonzero vector u ∈ Ftqm such that
S(t) · u = 0, i.e.,

∃u ∈ Ftqm \ {0} such that S(i)(t) · u = 0 , ∀i ∈ [`] . (7.6)

It is known (see [PW72, Theorem 9.9][SSB09b]) that a syndrome matrix S(i)(t) can
be decomposed into

S(i)(t) = H · F(i) ·D ·V ,

where the matrix H is defined as in the lemma statement (see also Definition 2.3),

V =



1 1 · · · 1
βj1 βj2 · · · βjt
β2
j1 β2

j2 · · · β2
jt

...
...

...
βt−1
j1 βt−1

j2 · · · βt−1
jt



>

∈ Ft×tqm ,

F(i) = diag(E[i, :]) ∈ Ft×tq ,

D = diag(ν ′|E) ∈ Ft×tqm ,

and ν ′ are the column multiplier of the GRS code corresponding to the alternant code
C, i.e., GRS(n, dmin,β,ν

′)qm ∩ Fq = C.
Observe that the matrices D and V are both square and of full rank. Therefore,

the product v = D · V · u defines a one-to-one mapping u → v, such that 0 → 0.
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Consequently, the statement Eq. (7.6) is equivalent to the statements

∃v ∈ Ftqm \ {0} such that H · diag(E[i, :]) · v = 0 , ∀i ∈ [`]
⇐⇒ ∃v ∈ Ftqm \ {0} such that H · diag(v) · E[i, :] = 0 , ∀i ∈ [`] ,

and the lemma statement follows.

Above we extended and adapted the first part of the proof of the upper bound on
the failure probability for interleaved RS codes in [SSB09b], where the error matrix
Ẽ is assumed to be over Fqm (the field of RS codes). Simulation results indicate that
this bound is quite tight. However, for interleaved alternant codes, Ẽ is over Fq (the
subfield of the alternant code) and the bound from [SSB09b] is not valid in this case.
Lemma 7.2 gives a necessary and sufficient condition for Algorithm 1 to succeed for

an error Ẽ with fixed E = supp(Ẽ) and Ẽ|E ∈ E(`,t)
q . In Section 7.4 and Section 7.5 we

bound the probability of successful decoding of Algorithm 1 for a random error matrix
Ẽ where Ẽ|E ∼ E(`,t)

q .

7.3 Technical Preliminary Results
Before deriving the bounds on the success probability of decoding interleaved alter-
nant codes in Section 7.4, we establish some technical preliminary results required for
proving the bounds.

7.3.1 Maximization of Integer Distributions
To begin, we derive a simple upper bound on the maximization of a sum of integer
powers, under a restriction on the base of the power.

Definition 7.1 (Majorization Relation). Let M = {{M1,M2, . . . ,Mc}} and K =
{{K1, K2, . . . , Kc}} be two (finite) multi-sets of real numbers of the same cardinality.
We say that the setM majorizes the set K and write

M� K or K ≺M

if, after a possible renumeration,M and K satisfy the following conditions:

(1) M1 ≥M2 ≥ · · · ≥Mc and K1 ≥ K2 ≥ · · · ≥ Kc;

(2) ∑j
i=1Mi ≥

∑j
i=1Ki, ∀ 1 ≤ j ≤ c;

We recall a well known result on multi-sets under this majorization relation.
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· · ·

1 2 3 c

a

b

M∈M(a,b)
c,B ≺

· · ·

· · ·
1 2 3 c

⌈
B−ca
b−a

⌉

c−
⌈
B−ca
b−a

⌉
a

b

Mmax

Figure 7.1: Illustration of the multiset Mmax as in the proof of Lemma 7.4, which
majorizes all multisetsM∈M(a,b)

c,B .

Lemma 7.3 (Karamata’s inequality [KDLM05, Theorem 1]). LetM = {{M1,M2, . . . ,Mc}}
and K = {{K1, K2, . . . , Kc}} be two multi-sets of real numbers from an interval [a, b].
If the set M � K and f : [a, b] → R is a convex and nondecreasing function, then it
holds that

c∑
i=1

f(Mi) ≥
c∑
i=1

f(Ki) . (7.7)

For convenience of notation, we define a fixed notation for the set over which we
will maximize in the following.

Definition 7.2. Denote by M(a,b)
c,B the set of all multi-sets M = {{M1, . . . ,Mc}} of

cardinality c with b ≥M1 ≥ . . . ≥Mc ≥ a and ∑M∈MM = B.

With these definitions established, we are now ready to give an upper bound on the
sum over the results of a convex nondecreasing function evaluated on the elements of
any multi-set in M(a,b)

c,B .

Lemma 7.4. Let a, c ≥ 1, b ≥ a, ca ≤ B ≤ cb, and M(a,b)
c,B be as in Definition 7.2.

Then, for any function f(x) that is convex and nondecreasing in the interval a ≤ x ≤ b,
it holds that

max
M∈M(a,b)

c,B

∑
M∈M

f(M) ≤
(
B − ca
b− a

+ 1
)

(f(b)− f(a)) + cf(a)

Proof. By definition ∑
M∈M

M = ∑
M∈supp(M)

δMMM = B, ∀ M ∈M(a,b)
c,B and it follows that
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for allM∈M(a,b)
c,B we have

δbM = 1
b

(
B −

∑
M∈supp(M)\{b}

δMMM

)
≤ B − (c− δbM)a

b
,

δbM ≤
B − ca
b− a

.

LetMmax = {b, . . . , b, a, . . . , a} be a multiset with δbMmax =
⌈
B−ca
b−a

⌉
and δaMmax = c −

δbMmax , as illustrated in Fig. 7.1. It can readily be seen thatMmax �M ∀ M ∈M(a,b)
c,B

(note thatMmax ∈M(a,b)
c,B if (b− a)|(B − ca)).

Since f(x) is a convex nondecreasing function for a ≤ x ≤ b, it follows from
Lemma 7.3 that ∑

M∈Mmax

f(M) ≥
∑
M∈M

f(M) , ∀ M ∈M(a,b)
c,B . (7.8)

Hence, for the maximization over M(a,b)
c,B we have

max
M∈M(a,b)

c,B

∑
M∈M

f(M) ≤
∑

M∈Mmax

f(M)

= δbMmaxf(b) + (c− δbMmax)f(a)

=
⌈
B − ca
b− a

⌉
(f(b)− f(a)) + cf(a)

and the lemma statement follows.

7.3.2 Sum over the Cardinalities of Alternant Codes
For specific subclasses of alternant codes, such as some BCH and Goppa codes, lower
bounds on their dimension better than those in Lemma 2.1 are known [MS77] (see Re-
mark 2.1). However, in general it is a difficult and open problem to predict the
dimension of an alternant code for given column multipliers v. On the other hand, the
sum over the cardinality of subfield subcodes for all combinations of nonzero column
multipliers is easily determined, not only for alternant codes, but for any linear code
with a known weight distribution.
For a linear [n, k, dmin]qm code C, define

Bn,dmin,w(C) :=
∑

v∈(F?
qm

)n

∣∣∣∣{c · diag(v) | c ∈ C,wt(c) = w} ∩ Fnq
∣∣∣∣ .

Since every linear code contains the all-zero codeword and no other codeword of weight
< dmin, the sum over the cardinality of the subcodes for all combinations of non-zero
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column multipliers is given by

Bn,dmin(C) := (qm − 1)n +
n∑

w=dmin

Bn,dmin,w(C) =
∑

v∈(F?
qm

)n

∣∣∣∣{c · diag(v) | c ∈ C} ∩ Fnq
∣∣∣∣ .

Observe that if C is a GRS(n, dmin,β,ν) code for some ν ∈ (F?qm)n, then Bn,dmin,w is
the sum over the number of codewords of weight w in all alternant codes A(n, dmin,β)
and Bn,dmin(C) is the sum over their cardinalities. Interestingly, while the weight
enumerators and cardinality of a specific subfield subcode depend on v, the sum of
these values over all v only depends on the weight enumerators of C.

Lemma 7.5. Let C be an [n, k, dmin]qm code and denote by ACw the w-th weight enu-
merator of C. Then,

Bn,dmin,w(C) = ACw · (qm − 1)n−w(q − 1)w .

Proof. Let c be a codeword of C. We have c · diag(v) ∈ Fnq if and only if civi ∈ Fq for
all i ∈ [n]. If i ∈ supp(c), then there are exactly q−1 choices of vi for which civi ∈ Fq.
Else, any of the qm − 1 possible values of vi give civi = 0 ∈ Fq. Hence, we have

Bn,dmin,w(C) =
∑

v∈(F?
qm

)n

∣∣∣∣{c · diag(v) | c ∈ C,wt(c) = w} ∩ Fnq
∣∣∣∣

=
∑
c∈C

wt(c)=w

∣∣∣∣{v ∈ (F?qm)n | civi ∈ Fq ∀i ∈ [n]}
∣∣∣∣

= ACw · (qm − 1)n−w(q − 1)w .

The weight distribution of an MDS code only depends on its parameters, not the
code itself (see Theorem 2.1). Hence, for an MDS code C we can omit the dependence
on C and write

BMDS
n,dmin,w

:= Bn,dmin,w(C) and BMDS
n,dmin

:= Bn,dmin(C) . (7.9)

7.3.3 Probability of a Code Containing a Random Matrix
We now prove a technical lemma that bounds the probability that all rows of a ran-
domly chosen matrix with no all-zero columns are in a code of a certain dimension.
This is a refined version of [SSB09b, Lemma 3].
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7 Decoding of Interleaved Alternant Codes

Lemma 7.6. For some integers ` > 0, n ≥ k ≥ 0, let A be an [n, k]q code and denote
by AAw its w-th weight enumerator. Then, for E ∼ E(`,n)

q we have

Pr
E∼E(`,n)

q

{E[i, :] ∈ A ∀i ∈ [`]} ≤ qk`(q − 1)− (q` − 1)(qk − 1− AAn )− (q − 1)
(q − 1)(q` − 1)n .

Proof. Let L ⊂ F`×nq be the set of matrices whose rows are codewords of A and denote
by L0 ⊂ L the subset of all matrices in L with at least one all-zero column. Observe
that

{E | E[1, :], . . . ,E[`, :] are Fq-scalar multiples of e, e ∈ Ā ∪ {0},wt(e) < n} ⊆ L0 ,

where Ā is a set of representatives6 of (A\{0})/F?q, which is of cardinality |Ā| = qk−1
q−1 .

If e = 0 there is only one matrix, i.e., the all-zero matrix. For all other e with
wt(e) < n each row can be an Fq-multiple of e and all these matrices are unique, if at
least one row is not 0. The number of such choices is q` − 1, so

|L0| ≥ (q` − 1)(|Ā| − |{c ∈ Ā | wt(c) = n}|︸ ︷︷ ︸
=: AAn

(q−1)

) + 1

= (q` − 1)
(q − 1) (qk − 1− AAn ) + 1 .

Recall that E(`,n)
q does not contain any matrices with all-zero columns by definition,

so L0 ∩ E(`,n)
q = ∅. As L0 ⊂ L, it follows that

Pr
E∼E(`,n)

q

{E[i, :] ∈ A ∀i = [`]} =
|L ∩ E(`,n)

q |
|E(`,n)

q |
= |L \ L0|
|E(`,n)

q |
= |L| − |L0|
|E(`,n)

q |
.

The lemma statement follows from the observation that |L| = |A|` = qk` and |E(`,n)
q | =

(q` − 1)n.

If |L0| is large, it is worthwhile to deduct it from |L| as in Lemma 7.6. However,
for other parameters, (our best lower bound on) |L0| becomes negligible compared to
|L|. Therefore, we also define a simplified version of this upper bound, where we only
exclude the zero matrix from L.

Corollary 7.1. For some integers ` > 0, n ≥ k ≥ 0, let A be an [n, k]q code. Then,

6A common choice is the set of all nonzero codewords of A whose first nonzero entry is 1.
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for E ∼ E(`,n)
q we have

Pr
E∼E(`,n)

q

{E[i, :] ∈ A ∀i ∈ [`]} ≤ |L \ {0`×n}|
|E(`,n)

q |
= qk` − 1

(q` − 1)n .

7.4 The Success Probability of Decoding Interleaved
Alternant Codes

We now turn to the main topic of this chapter, namely providing bounds on the perfor-
mance of the decoder of [FT91; SSB09b] (see Section 7.2) when applied to interleaved
alternant codes. Recall that the success probability is given by

Psuc = 1− Pfail − Pmisc ,

where Pfail and Pmisc are the probability of a decoding failure and a miscorrection,
respectively.
We begin by applying the technical results of Section 7.3 to obtain a lower bound

on the success probability of decoding interleaved alternant codes that is valid for
any interleaving order `. The applied principle is a generalization of the approach in
[SSB09b].

7.4.1 A Lower Bound on the Success Probability for any
Interleaving Order `

To begin, we relate the problem of bounding the probability of successful decoding to
properties of the multisets A(n, dmin,β) of alternant codes for different parameters.
Theorem 7.2. Let C×` be an `-interleaved alternant code with C ∈ A(n, dmin,β) and
E = {j1, j2, . . . , jt} ⊂ [n] be a set of |E| = t error positions. For a codeword C ∈ C×`,
an error matrix Ẽ ∈ F`×nq with supp(Ẽ) := E and E := Ẽ|E ∼ E(`,t)

q , and a received
word R := C + Ẽ, Algorithm 1 succeeds, i.e., returns Ĉ = C, with probability

Psuc(C×`, E) ≥ 1−
t∑

w=dmin−t

∑
V⊆E
|V|=w

∑
A∈A(w,dmin−t,β|V )

(
δAA(w,dmin−t,β|V )

)−1

· Pr
E∼E(`,n)

q

{E[i,V ] ∈ A ∀ i ∈ [`]} ,

where δAA(w,dmin−t,β|V ) is the multiplicity of A in A(w, dmin − t,β|V).

Proof. By Lemma 7.2 the decoding of Ẽ succeeds if and only if

@v ∈ Ftqm \ {0} such that H · diag(v) · E> = 0 ,
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7 Decoding of Interleaved Alternant Codes

where H ∈ F(dmin−t−1)×t
qm denotes the parity-check matrix of the code GRS(t, dmin −

t,β|E ,1)qm , i.e., the RS codes of distance dmin − t with locators corresponding to the
error positions.
Therefore, the probability of unsuccessful decoding is upper bounded by

1−Psuc(C×`, E) ≤ Pr
E∼E(`,n)

q

{∃ v ∈ Ftqm \ {0} s.t. H · diag(v) · E> = 0}

≤
t∑

w=1
Pr

E∼E(`,n)
q

{∃ v ∈ Ftqm ,wt(v) = w s.t. H · diag(v) · E> = 0} (7.10)

(a)=
t∑

w=dmin−t
Pr

E∼E(`,n)
q

{∃ v ∈ Ftqm ,wt(v) = w s.t. H · diag(v) · E> = 0}

=
t∑

w=dmin−t

∑
V⊆[E]
|V|=w

Pr
E∼E(`,n)

q

{∃ A ∈ A(w, dmin − t,β|V) s.t. E[i,V ] ∈ A ∀ i ∈ [`]}

≤
t∑

w=dmin−t

∑
V⊆[E]
|V|=w

∑
A∈A(w,dmin−t,β|V )

(δAA(w,dmin−t,β|V ))−1 Pr
E∼E(`,n)

q

{E[i,V ] ∈ A ∀ i ∈ [`]} ,

where (a) holds because any dmin − t− 1 columns of H are linearly independent.

With this connection between the multisets A(w, dmin − t,β|V) and the probability
of successful decoding Psuc(C×`, E) established, we now apply the technical results of
Section 7.3 to obtain a lower bound.

Theorem 7.3. The probability of successful decoding Psuc(C×`, E) as in Theorem 7.2
is lower bounded by

Psuc(C×`, E) ≥ 1−
t∑

w=dmin−t

(
t
w

)
(qm − 1)(q` − 1)w

(
(q` − 1)
(q − 1)

(
cw +BMDS

w,dmin−t,w −B
MDS
w,dmin−t

)

− cw +
(
BMDS
w,dmin−t − cwaw
bw − aw

+ 1
)

(b`w − a`w) + cwa
`
w

)
,

where

aw = max{1, qw−(dmin−t−1)m},

bw = qk
opt.
q (w,dmin−t),

cw = (qm − 1)w,

BMDS
w,dmin−t and B

MDS
w,dmin−t,w are given in Eq. (7.9), and kopt.(w, dmin−t) is an upper bound

on the dimension of a q-ary code of length w and minimum distance dmin − t.
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Proof. For a q-ary code A denote kA := dimq(A). From Theorem 7.2 we get

1− Psuc(C×`, E) ≤
t∑

w=dmin−t

∑
V⊆[E]
|V|=w

∑
A∈A(w,dmin−t,β|V )

(
δAA(w,dmin−t,β|V )

)−1

· Pr
E∼E(`,n)

q

{E[i,V ] ∈ A ∀ i ∈ [`]}

(a)
≤

t∑
w=dmin−t

∑
V⊆[t]
|V|=w

∑
A∈A(w,dmin−t,β|V )

(qm − 1)−1 (q − 1)qkA` − (q` − 1)(qkA − 1− AAw)− (q − 1)
(q − 1)(q` − 1)w

(b)=
t∑

w=dmin−t

∑
V⊆[t]
|V|=w

1
(qm − 1)(q` − 1)w

(q` − 1)
(q − 1) (cw +BMDS

w,dmin−t,w)− cw

+
 ∑
A∈A(w,dmin−t,β|V )

qkA` − (q` − 1)
(q − 1) q

kA


(c)
≤

t∑
w=dmin−t

(
t
w

)
(qm − 1)(q` − 1)w

(q` − 1)
(q − 1) (cw +BMDS

w,dmin−t,w)− cw

+ max
M∈M[aw,bw ]

cw,B
MDS
w,dmin−t

∑
M∈M

M ` − (q` − 1)
(q − 1) M



=
t∑

w=dmin−t

(
t
w

)
(qm − 1)(q` − 1)w

(q` − 1)
(q − 1) (cw +BMDS

w,dmin−t,w −B
MDS
w,dmin−t)− cw

+ max
M∈M[aw,bw ]

cw,B
MDS
w,dmin−t

∑
M∈M

M `

 ,

where (a) holds by Eq. (2.7) and Lemma 7.6, (b) holds as ∑A∈A(w,dmin−t,β|V ) A
A
w =

BMDS
w,dmin−t,w (see Eq. (7.9)) and |A(w, dmin − t,β|V)| = cw (see Eq. (2.6)), and (c)

holds as aw and bw are lower and upper bounds on the cardinality of all codes A ∈
A(w, dmin − t,β|V) (see Lemma 2.1) and because ∑A∈A(w,dmin−t,β|V ) q

kA = BMDS
w,dmin−t by

Lemma 7.5. The theorem statement follows by Lemma 7.4.

By the use of Corollary 7.1 instead of Lemma 7.6 in inequality (a) we get a slightly
simplified (though worse) lower bound.

Corollary 7.2. The probability of successful decoding Psuc(C, E) as in Theorem 7.2 is
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7 Decoding of Interleaved Alternant Codes

lower bounded by

Psuc(C×`, E) ≥ 1−
t∑

w=dmin−t

(
t
w

)
(qm − 1)(q` − 1)w

·
(
− cw +

(
BMDS
w,dmin−t − cwaw
bw − aw

+ 1
)

(b`w − a`w) + cwa
`
w

)
,

where

aw = max{1, qw−(r−t)m}

bw = qk
opt.
q (w,dmin−t)

cw = (qm − 1)w,

BMDS
w,dmin−t is given in Eq. (7.9), and kopt

q (w, dmin−t) is an upper bound on the dimension
of a q-ary code of length w and minimum distance dmin − t.

7.5 An Upper Bound on the Probability of Successful
Decoding

For interleaved GRS codes it is known [SSB09b] that the probability of a decoding
failure, and by Lemma 7.1 also the probability of unsuccessful decoding, decreases
exponentially in the difference between the number of errors and the maximal decoding
radius of Eq. (7.4). While the numerical results show that this probability is larger
for interleaved alternant codes, it nevertheless quickly drops to values out of range for
simulation. To evaluate the performance of the lower bounds of Section 7.4, we derive
an upper bound on the probability of a decoding success, by showing that for a certain
set of error matrices the decoder given in Algorithm 1 is never successful and then
analyzing its cardinality.

We begin with a technical statement on the cardinality of the set of these “bad”
matrices.

Lemma 7.7. Denote by Ew-bad the set of matrices E ∈ E(`,t)
q for which there exists a
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vector e ∈ F`q that is a scalar multiple of at least w columns of E. Then

max
w≤ξ≤t

{Zξ} ≤ |Ew-bad| ≤ (t− w + 1) max
w≤ξ≤t

{Zξ}

Zξ :=
b t`c∑
j=1

(−1)j−1
(
q`−1
q−1
j

)
Dξ
j

Dξ
j :=

j−1∏
z=0

(
t− zξ
ξ

) (q − 1)jξ(q` − qj)t−jξ .

Proof. Consider the equivalence relation ≡q on F`q \ {0} defined by v ≡q u if there
exists a λ ∈ F?q such that v = λu. For a fixed vector e ∈ F`q \ {0} and a matrix
E ∈ E(`,w)

q denote by δe
E = |{i | E[:, i] ≡q e}| the multiplicity of e among the multiset

of columns of E under the given equivalence relation. For a set of representatives
S ⊂ F`q \ {0} under the given equivalence relation, we have

Dξ
|S| := |{E | E ∈ E(`,w)

q , δe
E = ξ ∀ e ∈ S}| =

|S|−1∏
z=0

(
t− zξ
ξ

) (q−1)|S|ξ(q`−q|S|)t−|S|ξ ,

where the first term accounts for the positions of the vectors of S in E, the second
term is the number of choices for the scalar coefficients of these positions, and the third
term is the number of choices for the remaining columns, namely any nonzero vector
that is not equivalent to any element of S. By the principle of inclusion-exclusion we
get

Zξ := {E | ∃e ∈ F`q \ {0} s.t. δe
E = ξ,E ∈ E(`,w)

q }

Zξ := |Zξ| =
b tξc∑
j=1

(−1)j−1
(
q`−1
q−1
j

)
Dξ
j .

The lemma statement follows from the observation that

Ew-bad =
t⋃

j=w
Zj .

Using the lower bound on the cardinality of Ew-bad, we now derive an upper bound
on the probability of successful decoding, by showing that the decoder never succeeds
if the error matrix is in this set.

Theorem 7.4 (Upper Bound on Psuc). Let C×` be an `-interleaved alternant code with
C ∈ A(n, dmin,β) and E = {j1, j2, . . . , jt} ⊂ [n] be a set of |E| = t error positions. For a
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7 Decoding of Interleaved Alternant Codes

codeword C ∈ C×`, an error matrix Ẽ ∈ F`×nq with supp(Ẽ) := E and E := Ẽ|E ∼ E(`,t)
q ,

and a received word R := C + Ẽ Algorithm 1 succeeds, i.e., returns Ĉ = C, with
probability

Psuc(C×`, E) ≤ 1− maxdmin−t≤ξ≤t{Zξ}
(q` − 1)t ,

where Zξ is given in Lemma 7.7.

Proof. First observe that each summand in Eq. (7.10) gives a lower bound on the
probability of unsuccessful decoding. Therefore, the fraction of matrices E ∈ E(`,w)

q

that fulfills

∃v ∈ Ftqm with wt(v) = dmin − t such that H · diag(v) · E> = 0 , (7.11)

where H ∈ F(dmin−t−1)×t
qm denotes the parity-check matrix of the code GRS(t, dmin −

t,β|E ,1)qm , gives a lower bound on the probability of unsuccessful decoding 1 −
Psuc(C×`, E). We denote by Ew-bad ⊂ E(`,t)

q the set of matrices E ∈ E(`,t)
q that ful-

fills Eq. (7.11) and show that any error matrix E ∈ E(`,t)
q for which there exists a

subset L ⊂ [t] of at least dmin − t columns such that rank(E|L) = 1 fulfills Eq. (7.11)
and is therefore in Ew-bad.
Let L ⊂ [t] be a set of size |L| = dmin− t and v ∈ Ftqm be a vector with supp(v) = L.

Denote by H̄ = H|L, ᾱ = (α|E)|L, v̄ = v|L, and Ē = E|L the respective restrictions
to the support L of v. Observe the equivalence

H · diag(v) · E = 0 ⇔ H̄ · diag(v̄) · Ē = 0 . (7.12)

Recall that E has no all-zero columns by definition. As H̄ ·diag(v̄) ∈ F(dmin−t−1)×dmin−t
qm

is the parity check matrix of a GRS code, it is of full-rank dmin − t − 1 and the
dimension of its right kernel is exactly 1. We conclude that for any E ∈ E(`,t)

q that
fulfills Eq. (7.12) there necessarily exists a subset L of dmin − t columns such that
rank(E|L) = 1.
To show that this is also sufficient, first note that all rows Ē[i, :] of this rank 1 matrix

are necessarily scalar multiples of some vector e ∈ (F?q)dmin−t, where at least one scalar
is nonzero (recall that E does not have any all-zero columns). For any fixed v ∈ Ftqm
with supp(v) = L, the matrix H̄ is the parity-check matrix of a [dmin − t, 1, dmin − t]
GRS code, and therefore the Fqm-kernel of H̄ consists of the Fqm-scalar multiples of one
vector e′ ∈ (F?q)dmin−t. Further, as v can be any vector of support supp(v) = L, there
exists a v such that H̄ · diag(v̄) · e′ = 0 for any e′ ∈ (F?qm)dmin−t, and, in particular,
for any e ∈ (F?q)dmin−t. It follows that there exists a v such that Eq. (7.12) is fulfilled
and we conclude that the condition is also sufficient.
A set L ⊂ [t] with |L| = dmin − t such that rank(E|L) = 1 exists if and only if a
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subset of dmin − t ≤ ξ ≤ t columns in E are equivalent. Thus, by Lemma 7.7, the
probability of successful decoding is bounded from above by

Psuc(C×`, E) ≤ 1− |Ew-bad|
|E(`,w)

q |
≤ 1− maxdmin−t≤ξ≤t{Zξ}

(q` − 1)t .

7.6 Generalization of an Upper Bound on the
Probability of Miscorrection

Before moving on to the numerical comparison between the derived bounds, we es-
tablish one last ingredient required for the interpretation of the results, namely, the
probability of a miscorrection Pmisc. To this end, we adapt the upper bound on Pmisc
for interleaved RS codes from [SSB09b] to interleaved alternant codes. The strategy
of this bound applies for any decoder that possess the following property.

Definition 7.3 (ML certificate property [SSB09b, Definition 3]). Consider a code C
and a received word R = C + Ẽ with C ∈ C. A decoder of C is said to have the
ML certificate property if it always either returns Ĉ = arg minĈ∈C | colsupp(Ĉ,R)| or
declares a decoding failure.

It was shown in [SSB09b, Theorem 5] that the decoder of [SSB09b] for interleaved
RS codes has the ML certificate property. As this is a property of the decoder, it
clearly also holds when the decoder is applied to any subcode of the interleaved RS
codes and, in particular, for interleaved alternant codes. However, the bound given
in [SSB09b, Theorem 6] depends on the weight enumerators of the considered code,
which are unknown for (interleaved) alternant codes. To circumvent this issue, we
slightly generalize [SSB09b, Theorem 6] by employing general upper bounds on the
weight enumerators, thereby making it independent of the specific linear code used.

Theorem 7.5 (Johnson Bound on Weight Enumerators [Bas65; Joh62] (see [MS77,
Ch. 17])). For any code C of length n and distance dmin over Fq it holds that

ACw ≤
θqdminn

w2 − θqn(2w − dmin)

with θq = 1− 1
q
, provided the denominator is positive.

This bound only applies if the denominator is positive, but we can also make a
statement if this is not the case.
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Theorem 7.6 (General Bound on Weight Enumerators [MS77, Theorem 4, Chap-
ter 17]). For any code C of length n and distance dmin it holds that

ACw ≤
n

w
Â

[n−1,dmin]
w−1 ,

where Â[n−1,dmin]
w−1 is an upper bound on the (w−1)-th weight enumerator of an arbitrary

code of length n− 1 and distance dmin.

Proof. Note that [MS77, Theorem 4, Chapter 17] only considers binary codes. How-
ever, it is easy to see that it holds for any q by applying the same double counting
argument for the number of nonzero positions, instead of the number of ones.

Finally, we replace the explicit dependence on the weight enumerators in [SSB09b,
Theorem 6] by the generic (code independent) bounds of Theorems 7.5 and 7.6, to
obtain an upper bound on the probability of a miscorrection that is valid for any
linear code and decoder that exhibits the ML certificate property.
Theorem 7.7 (Miscorrection Probability, generalizes [SSB09b, Theorem 6]). Let C be
a linear code of length n and minimum distance dmin over FQ decoded with a decoder
that exhibits the ML certificate property as in Definition 7.3. Assume that the decoding
radius of this decoder is tmax and that it decodes a codeword that is corrupted by t errors.
Let

Â[n,dmin]
w =


⌊

θQdminn
w2−θQn(2w−dmin)

⌋
, if w2 > θQn(2w − dmin),

Â
[n−1,dmin]
w−1 , else,

with θQ = 1− 1
Q
, and

U(Q, t, w, ρ) =
t+w−ρ∑

i=d t+w−ρ2 e

(
w

i

)(
i

ρ− (t+ w) + 2i

)(
n− w
t− i

)
· (Q− 2)ρ−(t+w)+2i(Q− 1)t−i ,

where 00 := 1.
Then, the probability of a miscorrection is

Pmisc(C, t) ≤
∑t+tmax
w=dmin Â

[n,dmin]
w

∑min{t,tmax}
ρ=0 U(Q, t, w, ρ)(

n
t

)
(Q− 1)t

,

Proof. Trivially, the bound of [SSB09b, Theorem 6] is increasing in the weight enumer-
ator Aw, so replacing them with the upper bound Â[n,dmin]

w obtained from Theorems 7.5
and 7.6 results in a valid upper bound on Pmisc.

The bound of Theorem 7.7 is valid for any linear code. For completeness, we explic-
itly relate its parameters to those of interleaved alternant codes.
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Corollary 7.3 (Miscorrection Probability of Interleaved Alternant Codes). Let C×`
be an `-interleaved alternant code with C ∈ A(n, dmin,β) and E = {j1, j2, . . . , jt} ⊂ [n]
be a set of |E| = t error positions. For an error matrix Ẽ ∈ F`×nq with supp(Ẽ) := E
and Ẽ|E ∼ E(`,t)

q and any decoder with the ML certificate property, the probability of a
miscorrection when correcting t ≤ tmax errors is upper bounded by Theorem 7.7 with
Q = q`.

Proof. Fix a basis of Fq` over Fq and regard the code C×` as a scalar code over Fq` .
By Corollary 2.1 the minimum distance of the scalar code is dmin and as Theorem 7.7
holds for any linear scalar code, the statement follows.

Corollary 7.3 presents a rather rough upper bound, as it is independent of both, the
specific alternant code and its dimension. Nevertheless, it is sufficient for the purpose
of showing that the probability of unsuccessful decoding of interleaved alternant codes
is dominated by the failure probability, as evident from the numerical results presented
in the next section.

7.7 Discussion and Numerical Results
In Sections 7.4 and 7.5 we have established lower and upper bounds on the probability
of successful decoding

Psuc = 1− Pfail − Pmisc

for the decoding algorithm of [FT91; SSB09b] when applied to interleaved alternant
codes for uniformly distributed errors of a given weight. In the following we present and
discuss some numerical results, where we compare these upper and lower bounds7. In
order to better emphasize the individual contributions of failures and miscorrections,
we further include an upper bound on the probability of miscorrection Pmisc, given
in Theorem 7.7, in the plots of Figs. 7.2 to 7.5. We label, summarize, and describe
the different bounds and versions thereof in Table 7.1 and, for convenience and clarity,
refer to them by their respective label for the remainder of this section. Further, we fix
the code length to be n = qm− 1, i.e., given the base field size q and extension degree
m, we construct the longest possible RS/alternant codes, while excluding βi = 0 as a
code locator.
Aside from the comparison of the lower and upper bounds on the success probability,

it is also interesting to see how the probability of successful decoding of an interleaved
alternant codes compares to that of the corresponding interleaved GRS code over Fqm .

7For better presentation, we plot the respective bounds on the probability of unsuccessful decoding
1− Psuc instead of the bounds on Psuc.
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7 Decoding of Interleaved Alternant Codes

Table 7.1: Overview of the bounds shown in Figs. 7.2 to 7.5
Label Defined in Description

L.RS Theorem 7.8 Lower bound on the probability of successful decoding for
interleaved RS codes

L.A Theorem 7.3 Lower bound on the probability of successful decoding for
interleaved alternant codes where the minimum of the Sin-
gleton, Griesmer, Hamming, Plotkin, Elias, and Linear Pro-
gramming bound is used for kopt

q .
L.A1 Theorem 7.3 Lower bound on the probability of successful decoding for

interleaved alternant codes, where the Singleton bound is
used for kopt

q .
L.A2 Corollary 7.2 Simplified version of Theorem 7.3. The minimum of the

Singleton, Griesmer, Hamming, Plotkin, Elias, and Linear
Programming bound is used for kopt

q .
M Corollary 7.3 Upper bound on the probability of a miscorrection for inter-

leaved alternant codes. We assume that the decoding radius
of the interleaved decoder is

⌊
`
`+1(dmin − 1)

⌋
, i.e., the largest

number of errors for which the RS interleaved decoder, given
in Algorithm 1, would succeed (see Remark 7.4).

U Theorem 7.4 Upper bound on the probability of successful decoding for
interleaved alternant codes.

SIM Remark 7.4 Threshold number of errors such that for all numbers of er-
rors left of the indicated line, the interleaved alternant de-
coder succeeds with a probability of Psuc > 0.9 obtained by
simulation with 100 decoding iterations per parameter set.
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7.7 Discussion and Numerical Results

Such a bound was derived8 and shown to be close to the probability of successful
decoding obtained from simulation in [SSB09b]. For the reader’s convenience we re-
state it in Theorem 7.8 and assign it the label L.RS. Note that the decoder employed
in [SSB09b] is equivalent to the decoder considered in this work (see Algorithm 1),
however the error matrix Ẽ is assumed to be over Fqm (the field of the RS code) in
Theorem 7.8.

Theorem 7.8 (Probability of successful decoding for interleaved RS codes [SSB09b,
Theorem 7]). Let C×` be an `-interleaved GRS code with C ∈ G(n, dmin,β)qm as in Def-
inition 2.3 and E = {j1, j2, . . . , jt} ⊂ [n] be a set of |E| = t error positions. For a code-
word C ∈ C×`, an error matrix Ẽ ∈ F`×nqm with supp(Ẽ) := E and E := Ẽ|E ∼ E(`,t)

qm ,
and a received word R := C + Ẽ, Algorithm 1 succeeds, i.e., returns Ĉ = C, with
probability

Psuc(C×`, E) ≥ 1−
qm` − 1

qm

qm` − 1

t · q−m(`+1)(tmax,RS−t)

qm − 1 (7.13)

where tmax,RS = `
`+1(dmin − 1).

Before we discuss the numerical evaluations of the bounds, we make an important
observation based on the simulation results.

Remark 7.4. For most parameters the provided lower bounds on the success proba-
bility of decoding interleaved alternant codes do not provide a nontrivial bound for the
same decoding radius as the bounds for interleaved RS codes of [SSB09b]. To determine
the real decoding threshold, i.e., the smallest number of errors for which the decoder
succeeds with nonnegligible probability9, we rely on simulation results. This thresh-
old is indicated in the plots and labeled SIM. Notably, for all tested parameters, the
threshold for interleaved alternant codes is the same as for interleaved RS codes, i.e.,
the simulation results imply that the collaborative decoding of errors in an interleaved
alternant code succeeds w.h.p. for any number of errors t with

t ≤ `

`+ 1(dmin − 1) = tmax,RS .

The numerical evaluations of the bounds are given in Figs. 7.2 to 7.5 for different
base field size q, extension degree m, and distance dmin, each for varying interleaving
order `:

8The bound in [SSB09b] is presented as a bound on the probability of failure, but it is in fact a
bound on the probability of unsuccessful decoding (see Remark 7.3).

9We arbitrarily choose this probability to be Psuc > 0.9 and run 100 decoding iterations for each
parameter set to determine the decoding threshold.
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Figure 7.2: Comparison of the bounds for different parameters. For the bounds
L.RS, L.A, L.A1, L.A2, and U on the success probability the respective prob-
abilities of unsuccessful decoding 1− Psuc are shown.
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Figure 7.3: Comparison of the bounds for different parameters. For the bounds
L.RS, L.A, L.A1, L.A2, and U on the success probability the respective prob-
abilities of unsuccessful decoding 1− Psuc are shown.
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Figure 7.4: Comparison of the bounds for different parameters. For the bounds
L.RS, L.A, L.A1, L.A2, and U on the success probability the respective prob-
abilities of unsuccessful decoding 1− Psuc are shown.
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Figure 7.5: Comparison of the bounds for different parameters. For the bounds
L.RS, L.A, L.A1, L.A2, and U on the success probability the respective prob-
abilities of unsuccessful decoding 1− Psuc are shown.
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• q = 2,m = 10,dmin = 51: For the parameters in Figs. 7.2a to 7.2c and 7.4a the
code rate10 is R = k

n
≈ 0.5, assuming k = n− (dmin− 1)m (which holds for most

alternant codes). For wild Goppa and BCH codes the rate is RGop./BCH ≈ 0.75
(see Remark 2.1).

• q = 2,m = 11,dmin = 101: For comparison to the parameters stated above, in
Figs. 7.3a to 7.3c and 7.4b we fix the rate R = k

n
≈ 0.5 (RGop./BCH ≈ 0.75),

increase m, and vary dmin accordingly.

• q = 32,m = 2,dmin = 51: To illustrate the influence of the base field size q, in
Figs. 7.5a and 7.5b we show some evaluations for q = 32.

We now briefly discuss the main observations taken from the numerical results.
As L.A1 and L.A2 are simplifications of L.A and therefore strictly worse, we leave
their comparison to each other until later in the section, and begin by only comparing
L.RS, L.A,M, and U. All statements on the decoding failure, miscorrection, and success
probability refer to the syndrome-based collaborative decoder of [FT91; SSB09b] given
in Algorithm 1.

• For fixed q,m, and `, the probability of a decoding success is significantly lower
for interleaved (q-ary) alternant codes than for interleaved (qm-ary) RS codes, as
even the upper bound U on the success probability for interleaved alternant codes
is in most cases smaller than the lower bound L.RS on the success probability
for interleaved RS codes.

• The probability of unsuccessful decoding interleaved alternant codes 1 − Psuc
is dominated by the probability of failure Pfail, as Pmisc � 1 − Psuc, i.e., the
bound on the probability of a miscorrection Pmisc, labeled M, is multiple orders
of magnitude smaller than 1−Psuc = Pmisc +Pfail for the best bound on Psuc given
by L.A. This is consistent with the numerical results from [SSB09b] for the case
of decoding interleaved RS codes.

• For higher interleaving order ` and relatively small number of errors t, the bound
L.A essentially matches the upper bound of Theorem 7.4 (see Figs. 7.2c, 7.3c,
7.4a and 7.4b).

• For fixed q,m, and dmin, the relative gap between the number of errors for which
the lower bounds on the probability of decoding success become nontrivial, i.e.,
give Psuc > 0, and the simulated decoding threshold decreases for increasing
interleaving order ` (compare Figs. 7.2a to 7.2c and 7.4a or Figs. 7.3a to 7.3c
and 7.4b).

10Recall that interleaving does not change the rate of the code.

136



7.8 Summary and Open Problems

Now consider the different versions of the bound in Theorem 7.3 labeled L.A, L.A1,
and L.A2.

• For small q, the performance of Theorem 7.3 is significantly worse when using a
field size independent bound for kopt

q , as evident from comparing L.A and L.A1
in Fig. 7.2a to 7.4b. This can be expected due to the increasing gap between
kopt
q and the Singleton bound for decreasing q.

• For larger interleaving order `, the simplified lower bound on the probability
of successful decoding L.A2 approaches the best version of the bound L.A (see
Fig. 7.2c to 7.4b).

7.8 Summary and Open Problems
This chapter presented the first known lower and upper bounds for general parame-
ters on the probability of successfully decoding interleaved alternant codes with the
algorithm of [FT91; SSB09b]. The event of a decoding failure was shown to be the
main cause of unsuccessful decoding, i.e., miscorrections are negligible in this sense.
Numerical evaluations show that one of the provided lower bounds on this probability
of successful decoding is tight for some parameters, as it matches the corresponding
newly derived upper bound.
The most apparent open problem, in particular for smaller interleaving order, is

closing the gap between the number of errors for which the bounds provide a nontriv-
ial success probability and the simulated threshold for which the decoder succeeds.
A closely related question, which is also of purely theoretical interest, is determining
the distribution of the dimensions of all alternant codes for a given set of RS code
locators. For specific applications, such as code-based cryptography, improvements of
the bounds for other error distributions, arising, e.g., from an additional restriction to
full-rank errors, could be of practical relevance. Finally, the simplification of the pre-
sented bound on the probability of decoding success, such that an analytical derivation
of the maximal number of errors that result in a nontrivial bound is possible, as in the
case of interleaved RS codes, is an interesting question to consider.
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Part III

Private Information Retrieval





8
Towards the Capacity of PIR from
Coded and Colluding Servers

Abstract

In this chapter, two practical concepts related to private information retrieval (PIR)
are introduced and coined full support-rank PIR and strongly linear PIR. Being of full
support-rank is a technical, yet natural condition required to prove a converse result
for a capacity expression and satisfied by almost all currently known capacity-achieving
schemes, while strong linearity is a practical requirement enabling implementation over
small finite fields with low subpacketization degree.
The capacity of MDS-coded, linear, full support-rank PIR in the presence of collud-
ing servers is derived, as well as the capacity of symmetric, linear PIR with colluding,
adversarial, and nonresponsive servers for the recently introduced concept of matched
randomness. This positively settles the capacity conjectures stated by Freij-Hollanti et
al. and Tajeddine et al. in the presented cases. It is also shown that, further restricting
to strongly linear PIR schemes with deterministic linear interference cancellation, the
so-called star product scheme proposed by Freij-Hollanti et al. is essentially optimal and
induces no capacity loss.

This chapter is based on the work [HFLH22] published in the IEEE Transactions on
Information Theory. In part, the results have been published in the proceedings of the
2019 IEEE Information Theory Workshop (ITW) [HFH19].

8.1 Introduction
The previous chapters where concerned with the analysis, construction, and (efficient)
decoding of different notions of linear codes. The application to DSSs has been the
common motivation for these efforts, as linear codes can provide improved resilience
against node failures with a relatively small storage overhead and interleaving is a
natural consequence of the structure of these systems. With the amount of data
stored in DSSs, this protection against the loss or corruption of data has become a
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8 Towards the Capacity of PIR from Coded and Colluding Servers

topic of broad interest. However, assuring data integrity is not the only requirement
of such systems and, in particular, systems that guarantee user privacy are in high
demand.
As a result, PIR from storage systems has gained a lot of interest in recent years,

where the goal of a user is to download a desired file without revealing the identity
of the file to the servers. Specifically, this setting assumes a database consisting of a
number of servers1, which receives and answers queries of users for specific (functions
of) files stored in the system. In the seminal work of [CGKS95] Chor et al. showed that
information-theoretic privacy is not possible for systems comprised of a single server.
This initiated the study of two main models of PIR. The first approach are systems
consisting of a single server providing computational privacy, i.e., privacy under the
assumption of an attacker with limited computational power. Several schemes have
been proposed [KO97; Lip05; Lip05; AG07; YKPB12; GH19; ABFK16; ACLS18;
KLL+15; LP17], including one by the author of this work [HHW20] (see Section 9.2).
However, these schemes incur a heavy computational load on the servers [SC07] and
are prone to cryptanalytic attacks [LB16; BL21].
The main alternative to such single-server PIR schemes are schemes operating on

systems consisting of multiple servers, which do not all communicate (collude) with
each other. The advantage of this model is that it allows for schemes of low complexity
and high rate, while providing perfect, information-theoretic privacy. Following the
influential work of [SJ17], which derives the capacity of PIR from replicated storage, a
multitude of different models emerged, such as PIR from MDS-coded storage [BU18],
with colluding servers [SJ18b], with side information [HKS18; HGK+18], and symmet-
ric PIR (SPIR) [WS17b; WS17a; WS17c; SJ18c; WS19]. Here, symmetric refers to
the property that the user is only able to decode the requested file and learns nothing
about the other files.
In this chapter, we investigate the capacity of different notions of PIR from MDS-

coded storage, i.e., the maximal achievable rate at which the private retrieval of a
file from a database encoded with an MDS code is possible. Further, we consider
symmetric privacy in the presence of adversaries and nonresponsive servers.
In the following, we denote nonsymmetric and symmetric PIR with t-collusion by

TPIR and TSPIR. For the setting with additional b adversarial2 (and possibly r non-
reponsive) servers we write TBPIR and TBSPIR, respectively.

8.1.1 Known Results and Conjectures
For some settings the PIR capacity is known, e.g., for replicated storage without [SJ17]
and with colluding servers [SJ18b], MDS-coded storage without collusion [BU18],

1We refer to the storage units in the system as servers instead of nodes in this chapter to imply
the assumption that each of them can be contacted individually, which is not necessarily true for
other kinds of nodes, such as individual hard drives within a rack.

2In PIR literature these adversarial servers are also referred to as Byzantine servers.
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single-server PIR with side information [HKS18; HGK+18], and SPIR [SJ18c; WS17b;
WS17a; WS17c; WS19]. It has also been shown that the MDS property is not neces-
sary for achieving the MDS–PIR capacity [FGH+19; KLRA19].
For the reader’s convenience, we summarize the known results relevant to this work

in the following, along with some conjectures on the capacity of the open cases.
Nonrigorously, the rate of a PIR scheme with m files is denoted and defined (for a

formal definition, see Definition 8.5) as

Rm = size of the desired file
size of the total download .

We denote by Cm the capacity, i.e., the largest achievable rate of a PIR scheme for
m files under some given constraints. A collection of schemes defined for a varying
number of files is said to be of asymptotic rate

R∞ := lim
m→∞

Rm ,

and is called asymptotically capacity achieving if

R∞ = lim
m→∞

Cm .

In a symmetric scheme, the servers need to share some amount of randomness to hide
the undesired files from the user [GIKM00]. The amount of this randomness relative
to the file size is referred to as the secrecy rate and denoted ρ (for a formal definition,
see Definition 8.6).
Let us now assume n > k+ t+ 2b+ r− 1, where n is the number of servers, k is the

dimension of the storage code and t, b, r refer to the number of colluding, adversarial,
and nonresponsive servers, respectively. For the remainder of this chapter we exclude
the trivial case of a single file and assume m ≥ 2.

Theorem 8.1 (Capacity of MDS-coded TSPIR [WS17a, Theorem 1] and uncoded
TBSPIR [WS17b, Theorem 1]). The capacity of MDS-TSPIR, i.e., symmetric PIR
from [n, k] MDS-coded storage with t colluding servers, is

CMDS
TSPIR =

{
1− k+t−1

n
, if ρMDS

TSPIR ≥ k+t−1
n−k−t+1

0, otherwise .

The capacity of uncoded TBSPIR, i.e., symmetric PIR from replicated storage with t
colluding and b adversarial servers, is

CRep
TBSPIR =

{
1− 2b+t

n
, if ρTBSPIR ≥ t

n−t−2b
0, otherwise .

It is easy to check that when t = 1 or k = 1, the above SPIR capacity coincides with
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the asymptotic (in the number of files) capacity of PIR without server privacy [BU18;
SJ18b]. The following conjectures describe the natural extension of this observation
to more general settings.

Conjecture 8.1 (Asymptotic MDS-coded TBPIR [TGK+19, Conjecture 1]). The
asymptotic capacity of MDS-coded TBPIR, i.e., PIR from [n, k] MDS-coded storage
with t colluding, b adversarial, and r nonresponsive servers as the number of files
m→∞, is

CMDS
∞−TBPIR = 1− k + t+ 2b+ r − 1

n
.

Conjecture 8.2 (MDS-coded TBSPIR [TGK+19, Conjecture 2]). The capacity of
MDS-coded TBSPIR, i.e., symmetric PIR from [n, k] MDS-coded storage with t col-
luding, b adversarial, and r nonresponsive servers, is

CMDS
TBSPIR = 1− k + t+ 2b+ r − 1

n
.

Remark 8.1. In the original version of the above conjectures, the denominator is n−r
instead of n. This discrepancy is caused by our choice to include the nonresponsive
servers in the calculation of the download cost. While it is reasonable to argue that
nonresponsive servers do not incur any download and should therefore not be included
in this cost, this depends on the particular system as, e.g., dropped packets on the side
of the user could also cause a missing response, while clearly causing network traffic.
Here, we also count the nonresponsive servers in the download cost, but point out that
the results apply to both points of view.

For the case of a finite number of files, the observation of the capacity expressions
for the known cases of either k = 1 or t = 1 naturally leads to the following conjecture.

Conjecture 8.3 (MDS-coded TPIR [FGHK17, Conjecture 1]). Let C be an [n, k, dmin]
code with a generator matrix G that stores m files via the distributed storage system
Y = X ·G, and fix 1 ≤ t ≤ n− k. Any PIR scheme for Y that protects against any t
colluding servers has rate Rm at most

Rm ≤
1− k+t−1

n

1− (k+t−1
n

)m
m→∞
−−−−→ 1− k + t− 1

n
.

Conjecture 8.3 in its full extent was disproved in [SJ18a], where the authors exhibited
an explicit PIR scheme for m = 2 files distributed over n = 4 servers using a rate 1/2
storage code, which protects against t = 2 collusion. This scheme has rate 3/5, while
the conjectured capacity was 4/7. However, as will be shown in the following, the
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Table 8.1: Asymptotic capacity results and conjectures (in red). The maximum num-
ber of colluding, adversarial, and nonresponsive servers is denoted by t, b, r,
respectively.

Restrictions [n, k] MDS-coded PIR Reference

− 1− k+t+2b+r−1
n

[TGK+19]

b = r = 0 1− k+t−1
n

[FGHK17]

k = 1, r = 0 1− t+2b
n

[BU19]

t = 1, b = r = 0 1− k
n

[BU18]

k = 1, b = r = 0 1− t
n

[SJ18b]

conjecture does hold for important subclasses of PIR schemes, which do not contain
this counter-example.
In Table 8.1, we summarize the known asymptotic capacity results relevant to this

work and show the conjectured results [FGHK17; TGK+19] in red.

8.1.2 Contributions and Outline
We begin this chapter by formalizing the considered model of a DSS and definitions
of the different notions of PIR in Section 8.2.
The main contribution of this chapter, provided in Section 8.4, is the proof of the

capacity of linear, full support-rank, MDS-coded PIR with colluding servers. Nonrig-
orously, linearity refers to the property that the responses are obtained as the inner
product between the (encoded pieces of the) files stored at a node and a query vector.
This appears to be a natural assumption as, to the best of our knowledge, all (asymp-
totically) capacity-achieving schemes are in fact linear [SJ17; FGHK17; SJ18a; SJ18b;
BU18; TGK+19; FGH+19; KLRA19; BU19; DE19].
The seemingly technical assumption of full support-rank (see Definition 8.2) restricts

the generality of the result, however, we demonstrate its practical relevance in two
important regards. Firstly, the capacity achieving schemes for the special cases of
k = 1 (uncoded storage) or t = 1 (no collusion) given in [SJ17; SJ18b; BU18; BU19]
fulfill this definition. Second, the only scheme for general parameters achieving this
newly proved capacity, introduced in [DE19], is also of full support-rank3.

3We note that the necessary assumption was not made in the original paper [DE19], however, as we
show in Section 8.4.2, it is in fact required to hold for the scheme to be private.

145



8 Towards the Capacity of PIR from Coded and Colluding Servers

Further, and more importantly, the result provides insights towards the requirements
for proving a general capacity expression. To better illustrate this, we take a high-level
look at existing schemes: In the “simplest” approach, as utilized in [CGKS95; TGE18;
TGK+19; FGHK17], privacy is achieved through ensuring that each t-tuple of servers
receives a set of vectors uniformly distributed over the respective linear vector space.
The advantage of these schemes is that they achieve the respective asymptotic PIR
capacity (for the cases where it is known, see Table 8.1), are relatively simple, and
allow for small subpacketization. However, they fall short in achieving the capacity
for a finite number of files.
The schemes able to achieve the capacity for a finite number of files [SJ17; SJ18b;

BU18; BU19] are based on querying for specific, carefully chosen pieces of (encoded)
files. In this case, the queries received by t-tuples are no longer uniformly distributed
over all vectors since as, e.g., the all-zero vector will never be a query in these schemes.
Furthermore, the equivalent of querying for specific pieces of files in a linear scheme
is sending specific unit vectors as the queries. As querying for the same symbol mul-
tiple times is clearly suboptimal, these vectors are necessarily linearly independent.
Similarly, the only general scheme achieving the newly derived capacity for the coded-
colluding case k, t > 1, given in [DE19], is also based on constructing queries supported
only on the positions corresponding to specific, carefully chosen files. As shown in Sec-
tion 8.4.2, the natural choice to achieve privacy here, is requiring supported positions
of the query to be linearly independent.
Our definition of full support-rank PIR (see Definition 8.2) captures this linear

independence of the queries shared by these schemes. Thereby, the results we prove in
the following show that in order to exceed the rate achieved by the scheme in [DE19],
it is necessary for some restrictions of the queries to subsets of t servers to be linearly
dependent. To further support this argument, we show in Section 8.4.2 that it is exactly
this property that allows the scheme of [SJ18a], which is not of full support-rank, to
exceed the (thereby disproved in full generality) conjectured capacity of [FGHK17,
Conjecture 1].
In Section 8.5 we move on to the proof of the capacity of symmetric PIR from MDS-

coded storage with colluding, adversarial, and nonresponsive servers. This confirms
Conjecture 8.2 and shows that the symmetric PIR scheme of [TGK+19] is capacity
achieving.
Finally, in Section 8.6, we introduce a new notion of PIR schemes, which we coin

strongly linear. Aside from the linearity of the query scheme, this class of schemes is
characterized by the linearity and independence of their decoding functions, i.e., the
(piece of) the desired file is obtained as a linear combination of the responses, which is
independent of the query realization. While strong-linearity is a technical assumption,
schemes of this class are of high practical relevance, as they allow for achieving the
asymptotic capacity with small subpacketization. We show that all schemes in this
class can be replaced by a star-product scheme as in [FGHK17] without loss in rate,
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thereby proving the capacity of these schemes.

8.2 Problem Setup
We now formalize the problem setup and recall some known results for different set-
tings. For the purpose of this chapter we need to consider a generalized version of a
DSS. In particular, as we derive information-theoretic expressions, we need to explic-
itly define the files, node storage, and related concepts as random variables. To this
end, we first introduce some new notation, aimed to balance consistency in notation
and readability of the presented results.

8.2.1 Notation
In the following we will define several random variables W , denoted by capital let-
ters, whose realizations are (subsets of) a matrix space, i.e., supp(W ) ⊆ Fm×n. To
establish the required technical results we also need the equivalent interpretation of
these random variables as matrices of random variables over F, i.e., matrices W where
each W[i, j] is a random variable distributed over F. For a set of random variables
W = {W1,W2, . . . ), we denote the corresponding matrix containing the Wj as a rows
or columns by W = (W>

1 ,W>
2 , . . .)> or W = (W1,W2, . . .), where the applicable

interpretation will be explicitly provided or clear from context. Semantically, the
rows/columns of such a matrix W corresponding to each Wj belong together. To
avoid double indexing, we restrict ourselves to only using one method of indexing, i.e.,
either super-/subscripts or square brackets, at a time. When necessary, we refer to
such sets of rows/columns as thick rows/columns and to index them, we define a map
from the indices of such thick rows/columns, to sets of normal rows/columns. For a
set I ⊆ [n] define

ψβ(I) =
⋃
i∈I
{(i− 1)β + 1, . . . , iβ} . (8.1)

Then, for an m × nβ matrix W = (W1,W2, . . . ,Wn), where each Wj is an m × β
matrix, the restriction W[:, ψβ(I)] indexes the |I| β-thick columns given by I, where
a thick column is a submatrix consisting of β consecutive columns of W. Note that
this is equivalent to the set of random variables WI . The same notation is used to
index thick rows.

8.2.2 Problem Setup
Consider a distributed storage system consisting of n servers storing m files X =
{X1, X2, . . . , Xm}, where each X l is a random variable uniformly distributed over
Fα×k. Interpreted as a matrix, the data matrix is denoted by X ∈ Fαm×k, where each
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8 Towards the Capacity of PIR from Coded and Colluding Servers

block of α consecutive rows corresponds to a file. This matrix is encoded with an [n, k]
MDS storage code and server j stores the j-th thick column (see Section 2.1) of

Y = X ·G =


X1

X2

...
Xm

 ·G =


Y 1

1 Y 1
2 · · · Y 1

n

Y 2
1 Y 2

2 · · · Y 2
n

...
...

. . .
...

Y m
1 Y m

2 · · · Y m
n

 ∈ Fαm×nq ,

where G is a generator matrix of the storage code. Note that Y l = X lG is the
encoded version of the l-th file and Y l

j is a random variable taking realizations over Fαq
representing the symbols corresponding to this file stored at node j.
For l ∈ [m], j ∈ [n], and I ⊂ [n], the random variables Y l, Yj, and YI taking

realizations over a distribution of matrices can equivalently be described as matrices
of random variables taking realizations over Fq, given by Y[ψα(l), :] (the l-th thick
row of Y), Y[:, j] (the j-th column of Y), and Y[:, I] (the restriction of Y to the
columns indexed by I), respectively. Here, α gives the number of stripes of each file
and we note that each stripe is encoded independently of other stripes. The m files
are independent and each consists of k i.i.d. randomly drawn symbols from Fαq . Hence,
for the entropies4 it holds that

H(X l) = kα log q, ∀ l ∈ [m]
H(X1, . . . , Xm) = mkα log q .

We consider MDS codes, so every subset of at least k servers recover all files, i.e., for
any set W ⊂ [n] with |W| ≥ k it holds that

H(YW) = H(X1, . . . , Xm) = mkα log q
H(X1, . . . , Xm | YW) = 0 .

Further, we assume that the servers have access to a shared source of randomness,
which has been shown [GIKM00] (see also [SJ18c, Footnote 2]) to be required for
enforcing the property of symmetry, i.e., ensuring that the user learns nothing about
the files other than the requested file. Formally, let S be a vector space over Fq, and
let

S = (S1, . . . , Sn)

be a random variable with supp(S) ⊆ Sn, where the symbols of Sj may be used by
the j-th server.

4Note that the base of the logarithm here is irrelevant, as it only reflects the unit (bits, nats, . . . ) in
which the entropy is measured. As we are interested in rates in this chapter, i.e., relative relations
between entropies, the results are independent of this choice.
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In general, a PIR scheme consists of a user desiring the file with index i, who picks
the corresponding query

Qi =
(
Qi

1, . . . , Q
i
n

)
from the set of all possible queries Q, and sends Qi

j to the j-th server. Every server
returns a response Aij that is a β-tuple of symbols in Fq. For an honest (nonadversarial)
server, this response depends on the query Qi

j, the symbols Yj stored at server j, and
the randomness S shared by the servers, in a way known to the user. The list of
responses from all servers for a given query is denoted by

Ai =
(
Ai1, . . . , A

i
n

)
.

The desired file X i should now be recoverable from the responses, meaning that

H(X i | Qi, Ai,Q, i) = 0 . (8.2)

In this work we only consider PIR schemes in which the query functions, i.e., the
function that each server applies to obtain its response Aij, are linear.

Definition 8.1 (Linear PIR). A PIR scheme is said to be linear if

• the query Qi can be represented as a matrix Qi ∈ Fαm×βn, where each β-thick
column Qi[:, ψβ(j)] corresponds to the query Qi

j to server j ∈ [n], and

• the responses Aij of server j ∈ [n] are given by the vector

Ai[:, ψβ(j)] =
( 〈

Y[:, j],Qi[:, (j − 1)β + s]
〉

+ S[:, (j − 1)β + s]
)
s∈[β]

= Y[:, j]> ·Qi[:, ψβ(j)] + S[:, ψβ(j)] ,

where the vector S ∈ F1×βn depends on the j-th share Sj of the randomness S
shared by the servers.

Briefly and nonrigorously, in a linear PIR scheme each server receives β query vectors
and responds with the β inner products between these vectors and the column of Y
that it stores (possibly plus an additional symbol given by the shared randomness).
In the case of nonsymmetric PIR, the servers do not need any shared randomness and
we may assume that S = 0.
It is customary to think of the β coordinates of the queries Qi

j as iterations. In this
terminology, a linear PIR scheme consists of β iterations, where in iteration s the user
sends for each j ∈ [n] the query vector

Qi[:, (j − 1)β + s] ∈ Fαm×1
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and receives a response row vector(
A[:, (j − 1)β + s]

)
j∈[n]

∈ F1×n.

It is easy to see that it is suboptimal to send linearly dependent queries to servers.
However, in general, submatrices of the query matrix may indeed be nontrivially lin-
early dependent (see [SJ18a] and Section 8.4.2), i.e., have supported columns that are
linearly dependent. The technical assumption we make in the following, given below
in Definition 8.2, restricts all supported columns of the query for a subset of less than
or equal to t servers to be linearly independent, even when restricting to an arbitrary
subset of files. We therefore coin these schemes as full support-rank PIR schemes.
Definition 8.2 (Full support-rank PIR). A linear PIR scheme is said to be of full
support-rank if for every query realization q ∈ supp(Qi) ⊂ Fαm×βn, any subset T ⊆ [n]
of |T | ≤ t servers, and any file index j ∈ [m] it holds that

rank(q[ψα(j), ψβ(T )]) = | colsupp(q[ψα(j), ψβ(T )])|.

Most PIR schemes in the literature are indeed of full support-rank, including those
in [SJ17; SJ18c; SJ18b; BU18; BU19; DE19; ZTSL20; LKH20; TSC19; ZYQT19]. A
notable example of a scheme that is not of full support-rank is the counter-example
to Conjecture 8.3 given in [SJ18a]. For a more detailed discussion regarding the
applicability of Definition 8.2 to existing schemes, see Section 8.4.2.
In general, the goal of information-theoretic private information retrieval with t-

collusion is for the user to retrieve a file such that any set of t storage servers learns
nothing about the index of the desired file. This is referred to as user privacy.
Definition 8.3 (User Privacy with t-Collusion). Any t colluding servers shall not be
able to obtain any information about the index of the requested file, i.e., the mutual
information

I(i;Qi
T , A

i
T , YT , S) = 0, ∀ T ⊂ [n], |T | = t . (8.3)

We also consider symmetric PIR (SPIR), where the user is not supposed to learn
any information about the files other than the requested one.
Definition 8.4 (Server Privacy). The user shall learn no information about files other
than the requested one, i.e.,

I(X [m]\{i};Qi, Ai,Q, i) = 0 . (8.4)

A scheme that satisfies Eq. (8.2) and Eq. (8.3) is called a PIR scheme. If the scheme
in addition satisfies Definition 8.4, then it is called an SPIR scheme. We are interested
in the capacities of linear PIR and SPIR with collusion and adversaries (denoted with
a prefix T and/or B, respectively), i.e., the highest achievable rate at which a desired
file can be retrieved under these constraints.
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Definition 8.5 ((S)PIR Rate and Capacity). The rate of an (S)PIR scheme is the
number of information bits of the requested file retrieved per downloaded answer bits,
i.e.,

R(S)PIR = H(X i)∑n
j=1H(Aij)

.

In order to achieve symmetric privacy, the servers require some amount of shared
randomness [GIKM00].

Definition 8.6 (Secrecy Rate). The secrecy rate is the amount of common randomness
shared by the storage servers relative to the file size, i.e.,

ρSPIR = H(S)
H(X i) .

8.3 Preliminary Lemmas
We begin the technical part of this chapter by introducing some intermediate notions
and lemmas which will be required in both Sections 8.4 and 8.5.
We will repeatedly use Han’s inequality for joint entropies [CT91], which we state

here for completeness. Let W = {W1, . . .Wn} be a set of random variables defined on
the same probability space. Denote by

(
[n]
k

)
the set of all subsets of [n] with cardinality

k. Then
k

n
H(W1, . . .Wn) ≤ 1(

n
k

) ∑
T ∈([n]

k )
H(WT ). (8.5)

Our proofs of linear, full support-rank MDS-TPIR in Section 8.4 and MDS-TBSPIR
capacity in Section 8.5 are partly based on the proofs of TBSPIR capacity in a repli-
cated setting [WS17b] as well as the proofs of SPIR capacity [WS17c] and TSPIR
capacity [WS17a] from MDS-coded storage. We first prove the intermediate results
for a set of servers that is free of adversaries and then, similar to [WS17b], argue that
the entropy of the adversarial responses has to be the same as for honest (nonadver-
sarial) servers to obtain the capacity. For completeness, the proofs of the intermediate
steps are included, though some of the proofs can be taken, with only minor adapta-
tions, from [WS17a] and [WS17b].
Similar to the replicated case in [WS17b, Lemma 6], in the following we argue that

when considering zero error probability, i.e., guaranteeing that the user can decode
if the number of corrupted answers is less than or equal to b and the number of
nonresponsive servers is less than or equal to r, every realization of n−2b−r authentic
answers has to be unique.
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Lemma 8.1. In an optimal scheme with zero error probability for b adversarial and
r nonresponsive servers it holds that

H(X i | AiH,Q) = 0 ,

for any set H ⊆ [n] of honest servers with |H| ≥ n− 2b− r.

Proof. The proof is similar to the replicated case of [WS17b, Lemma 6] and included for
completeness. We show that the response of any n−2b−r honest servers must suffice to
correctly recover the desired file by proving that the corresponding responses must be
unique for any realization of file i. Denote by Aij(X i = xi) the honest response of the j-
th server for the realizationX i = xi ∈ Fα×kq of the i-th file. For a contradiction, assume
that for a set R ⊂ [n] with |R| = r of nonresponsive servers and a set H ⊂ [n] \ R
of honest servers with |H| = n − 2b − r it holds that AiH(X i = xi) = AiH(X i = x̃i)
for two different realizations xi 6= x̃i of file i. Partition the 2b remaining servers
B = [n] \ (H ∪ R) into two subsets B1 and B2, each of size b, and denote their
responses by AiB1 and AiB2 , respectively. Now consider the following cases:

• The realization of file i is X i = xi. The servers of B1 are adversarial and
reply with AiB1(X i = x̃i). The servers of B2 are honest, i.e., they reply with
AiB2(X i = xi).

• The realization of file i is X i = x̃i. The servers of B1 are honest, i.e., they
reply with AiB1(X i = x̃i). The servers of B2 are adversarial and reply with
AiB2(X i = xi).

As AiH(X i = xi) = AiH(X i = x̃i) by assumption, the user receives exactly the same
responses from the servers in both cases and is therefore not able to differentiate
between the two realizations. Hence unique decoding would fail, thereby violating
the zero error probability requirement. Note that, as we require zero decoding error
probability it is not necessary for the adversarial servers to know the index i. Instead,
in each case it suffices that the probability of the adversarial servers replying with the
respective responses is nonzero. We conclude that for any two different realizations
xi 6= x̃i of file i we have AiH(X i = xi) 6= AiH(X i = x̃i), and the statement of the lemma
follows.

The following basic lemma will also be required in multiple proofs and applies to
both the symmetric and nonsymmetric setting.

Lemma 8.2. For any set N ⊂ [n] of honest (nonadversarial) servers

H(AiN | Q, X i, Qi
N ) = H(AiN | X i, Qi

N ) .
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Proof. We first show that I(AiN ;Q | X i, Qi
N ) ≤ 0, as follows

I(AiN ;Q | X i, Qi
N ) ≤ I(AiN , X [m], S;Q | X i, Qi

N )
(a)= I(X [m], S;Q | X i, Qi

N )
= H(X [m], S | X i, Qi

N )−H(X [m], S | X i, Qi
N ,Q)

(b)= H(X [m], S | X i)−H(X [m], S | X i) = 0

where (a) follows because the answers AiN are a function of the queries Qi
N , the files

X [m], and the shared randomness S (for the nonsymmetric case S can be thought of as
a constant, e.g., S = 0), and (b) holds because the files X [m] and shared randomness S
are independent of the queries. As mutual information is nonnegative, it follows that

I(AiN ;Q | X i, Qi
N ) = H(AiN | X i, Qi

N )−H(AiN | Q, X i, Qi
N ) = 0

⇒ H(AiN | X i, Qi
N ) = H(AiN | Q, X i, Qi

N ) .

8.4 The Capacity of Linear, Full Support-Rank
MDS-TPIR

In this section we prove the capacity of linear, full support-rank PIR from MDS-coded
storage with collusion.
As we are only concerned with nonsymmetric PIR here, we assume S = 0 for the

remainder of this section.

8.4.1 Converse
A novel formulation of the key Lemma 8.7, which is slightly stronger than the cor-
responding lemmas in [WS17c; WS17a], allows us to induct over the number of files,
without requiring the symmetry assumption. We then use this induction result to prove
the MDS-TPIR capacity for linear, full support-rank schemes. The same proof also
yields an upper bound for the capacity in the presence of adversarial servers. How-
ever, the upper bound for MDS-TBPIR does not correspond to any known scheme
constructions, and does not agree with the MDS-TBSPIR capacity asymptotically as
the number of files grows to infinity.
The main technical difficulty in the derivation of this result is captured in Lemma 8.6,

which describes how sets of as many as k + t − 1 servers will give responses that are
independent of the index of the desired file, even when conditioned on an arbitrary
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subset of files. In order to show this we need some additional technical results on the
rank of the Khatri-Rao product [KR68] of certain matrices (see Section 2.1.1).
For completeness, we note that the following results also hold if the thick columns

are not all of the same size β, but instead each consist of a (possibly) different number
of columns. However, to not complicate the notation even further, we restrict ourselves
to PIR schemes that query each node exactly β times, which corresponds to equal sized
thick columns, each consisting of β columns.

Lemma 8.3. Let C be a [k+ t− 1, k] MDS code with generator matrix G ∈ Fk×(k+t−1)
q

and q ∈ Fα×β(k+t−1)
q be a matrix such that for any set T ⊂ [k + t− 1] with |T | = t we

have

rank(q[:, ψβ(T )]) = | colsupp(q[:, ψβ(T )])| . (8.6)

Then

rank((G⊗ 1β)� q) = | colsupp(q)| .

Proof. By a similar argument as in [Ran13, Proof of Lemma 6], we determine the
rank of this matrix by proving that the unit vectors el ∈ F(k+t−1)β, l ∈ colsupp(q)
are contained in the row span of the matrix (G ⊗ 1β) � q, where 1β denotes the all-
one vector of length β. First observe that for any full-rank matrices P1 ∈ Fk×k and
P2 ∈ Fα×α we have

rank
(
(G⊗ 1β)� q

)
= dim

(
〈(G⊗ 1β)� q〉row

)
(a)= dim

(
〈G⊗ 1β〉row � 〈q〉row

)
(b)= dim

(
〈P1 · (G⊗ 1β)〉row � 〈P2 · q〉row

)
(c)= dim

(
〈(P1 ·G)⊗ 1β〉row � 〈P2 · q〉row

)
(8.7)

= rank
(
(P1 ·G)⊗ 1β)� (P2 · q)

)
,

where (a) follows from Eq. (2.3), (b) holds because the left-multiplication by a full-
rank matrix does not change the row space, and (c) holds by Eq. (2.2). To obtain
the unit vectors el ∈ F(k+t−1)β, l ∈ ψβ(1) ∩ colsupp(q), choose P1 such that P1G is
in systematic form, i.e., its first k columns are an identity matrix. This is always
possible, since G is the generator matrix of an MDS code. Now consider the set
T = {1, k + 1, . . . , k + t − 1} and choose P2 such that the submatrix consisting of
the t columns indexed by ψβ(T ), i.e., the β-thick columns T , contain the unit vectors
el ∈ Ftβ, l ∈ colsupp(q[:, ψβ(T )]) as rows. Eq. (8.6) guarantees that such a matrix
exists. Fig. 8.1 illustrates these matrices and the transformation step.
Now the first row of the matrix (P1 ·G)⊗ 1β is a vector that is only (and exactly,

154



8.4 The Capacity of Linear, Full Support-Rank MDS-TPIR

row

 G ⊗ 1β

� 6=
0

6=
0

6=
0

6=
0

6=
0

6=
0

6=
0

q[
:,
ψ
β
(1

)]

q[
:,
ψ
β
(2

)]

· · ·

Support of q[:, ψβ(T )]
Here T ={1,4,5}

=

row

1 1 1
1 1 1

1 1 1
�

1
1

1
1

1q[
:,
ψ
β
(1

)]

q[
:,
ψ
β
(2

)]
· · ·

3
Star-product of first rows

1

Figure 8.1: Illustration of the proof of Lemma 8.3 for k = t = β = 3. The blue
areas indicate positions that are potentially nonzero, white areas contain
only zeros. Columns in the support of q, i.e., nonzero columns of q, are
indicated by 6= 0. The second line corresponds to Eq. (8.7) when P1 and
P2 are chosen as described in the proof for T = {1, 4, 5}. The third line is
the first unit vector, given by the star-product of the first rows of the two
matrices.
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as the code is MDS) supported on the positions ψβ(T ). Further, by the choice of
P2, for any l ∈ colsupp(q), there exists a row in the matrix P2 · q of support S ⊂
{l} ∪ ψβ({2, 3, . . . , k}) and l ∈ S. Hence, the star-product of these rows, which, by
definition of the column-wise Khatri-Rao product, is a row of (P1 ·(G⊗1β))�(P2 ·q),
is the l-th unit vector.
By the same approach we can show that all the unit vectors el ∈ F(k+t−1)β, l ∈

colsupp(q) are contained in the row span5 of (G⊗ 1β)� q and the lemma statement
follows.

With this technical lemma established, we now link the entropy of the answers of
any subset of k + t− 1 servers to the column support of the query.

Lemma 8.4. Let C be an [n, k] MDS code with generator matrix G ∈ Fk×nq and
Y = X ·G ∈ Fαm×nq , where X is chosen uniformly at random from all Fαm×k matrices.
Further, let q ∈ Fαm×βn be a matrix such that for any set T ⊂ [n] with |T | = t and
nonempty set F ⊂ [m] we have

rank(q[ψα(F), ψβ(T )]) = | colsupp(q[ψα(F), ψβ(T )])| .

Then for any set N ⊂ [n] with |N | = k + t− 1 it holds that

H
( ∑
l∈ψα(F)

(Y[l,N ]⊗ 1β) ? q[ψα(F), ψβ(N )]
)

= | colsupp(q[ψα(F), ψβ(N )])| .

Proof. Let Im denote the m×m identity matrix. We begin with some transformation
steps:∑

l∈ψα(F)
(Y[l,N ]⊗ 1β) ? q[ψα(F), ψβ(N )]

= 1|ψα(F)| ·
(
((X[ψα(F), :] ·G|N )⊗ 1β) ? (I|ψα(F)| · q[ψα(F), ψβ(N )])

)
(2.2)= 1|ψα(F)| ·

(
(X[ψα(F), :] · (G|N ⊗ 1β)) ? (I|ψα(F)| · q[ψα(F), ψβ(N )])

)
(2.1)= 1|ψα(F)| ·

(
(X[ψα(F), :] ∗ I|ψα(F)|) · ((G|N ⊗ 1β)� q[ψα(F), ψβ(N )])

)
=

(
1|ψα(F)| · (X[ψα(F), :] ∗ I|ψα(F)|)

)
·
(
(G|N ⊗ 1β)� q[ψα(F), ψβ(N )]

)
.

By Eq. (2.4) and the definition of X, the vector 1|ψα(F)| · (X[ψα(F), :] ∗ I|ψα(F)|) is
5Observe that the matrices P1 and P2 are chosen to show that a specific unit vector is contained as
a row of the matrix (P1 ·(G⊗1β))�(P2 ·q), which implies that it also in the span of (G⊗1β)�q.
As we are interested in showing which unit vectors are in the span, we do not require the matrices
P1 and P2 to be the same for all unit vectors el ∈ F(k+t−1)β , l ∈ colsupp(q). Instead, it suffices
that for each of these unit vectors there exists a choice of P1 and P2 such that it is a row of the
resulting matrix.
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uniformly distributed over F1×k|ψα(F)| and it follows that

H
( ∑
l∈ψα(F)

(Y[l,N ]⊗ 1β) ? q[l, ψβ(N )]
)

= H
((

1|ψα(F)| · (X[ψα(F), :] ∗ I|ψα(F)|)
)
·
(
(G|N ⊗ 1β)� q[ψα(F), ψβ(N )]

))
= rank

(
(G|N ⊗ 1β)� q[ψα(F), ψβ(N )]

)
= | colsupp(q[ψα(F), ψβ(N )])| ,

where the last equality holds by Lemma 8.3.

One key to the proof of the capacity of full support-rank schemes is that while it
is generally not possible to make a statement on the expected rank of a query solely
based on the requirement that a PIR scheme is t-private, it is possible to make such a
statement on the expected size of the support of the query.

Lemma 8.5. For any PIR scheme, file indices i, i′ ∈ [m], and any F ⊂ [m] it holds
that

E
q∈supp(Qi)

(
| colsupp(q[ψα(F), :])|

)
= E

q∈supp(Qi′ )

(
| colsupp(q[ψα(F), :])|

)
.

Proof. As the scheme is private, the query Qi
j to each individual server j ∈ [n] must be

independent of the index i, i.e., Qi[:, ψβ(j)] and Qi′ [:, ψβ(j)] must have the same proba-
bility distribution. Trivially, this implies that the (|F|α×β)-matrices Qi[ψα(F), ψβ(j)]
and Qi′ [ψα(F), ψβ(j)] also have the same probability distribution and therefore

E
q∈supp(Qi)

(
| colsupp(q[ψα(F), :]) ∩ ψβ(j)|

)
= E

q∈supp(Qi′ )

(
| colsupp(q[ψα(F), :]) ∩ ψβ(j)|

)
.

Writing the column support as a disjoint union, we get

| colsupp(q[ψα(F), :])| =
∑
j∈[n]
| colsupp(q[ψα(F), :]) ∩ ψβ(j)|,

and so by additivity of the expectation we have

E
q∈supp(Qi)

(
| colsupp(q[ψα(F), :])|

)
=
∑
j∈[n]

E
q∈supp(Qi)

(
| colsupp(q[ψα(F), :]) ∩ ψβ(j)|

)
=
∑
j∈[n]

E
q∈supp(Qi′ )

(
| colsupp(q[ψα(F), :]) ∩ ψβ(j)|

)
= E

q∈supp(Qi′ )

(
| colsupp(q[ψα(F), :])|

)
.
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With these technical preliminary lemmas established, we are now ready to show
that subsets of servers of size k + t− 1 treat the desired and undesired files similarly
for full support-rank schemes.

Lemma 8.6. Let N ⊂ [n] with n > k + t − 1 be a set of |N | = k + t − 1 honest
(nonadversarial) servers and F ( [m] be any proper subset of the thick rows of the
MDS-coded storage system. For any optimal linear, full support-rank PIR scheme, and
any i, i′ ∈ [m], it holds that

H(AiN | XF , Qi
N ) = H(Ai′N | XF , Qi′

N ) . (8.8)

Proof. First note that an equivalent problem formulation6 is given by (cf. [CT91,
Section 2.2, Eq. (2.10)])

E
q[:,ψβ(N )]∈supp(QiN )

(
H(AiN | XF ,Qi

N = q[:, ψβ(N )])
)

= E
q[:,ψβ(N )]∈supp(Qi′N )

(
H(AiN | XF , Qi′

N = q[:, ψβ(N )])
)
.

Further, observe that by Definition 8.1 the responses of servers j ∈ [N ] can be ex-
pressed as the star-product (Hadamard product) between rows of the restricted query
matrix Qi[:, ψβ(N )] and the restricted storage matrix with each column repeated β
times, i.e., Y ⊗ 1β, where ⊗ denotes the Kronecker product. Specifically, we have

AiN = Ai[:, ψβ(N )]
=
( 〈

Y[:, j],Qi[:, (j − 1)β + s]
〉 )

s∈[β],j∈N

=
(
Y[:, j]> ·Qi[:, ψβ(j)]

)
j∈N

=
∑

l∈ψα([m])

(
(Y[l, j]⊗ 1β) ?Qi[l, ψβ(j)]

)
j∈N

=
∑

l∈ψα([m])

(
(Y[l,N ]⊗ 1β) ?Qi[l, ψβ(N )]

)
. (8.9)

Next, we show that for every query realization, the entropies only depend on the size

6We choose to refer to the realizations of QiN as q[:, ψβ(N )] to be consistent with notation and
indexing, i.e., we treat the realizations of QiN as a submatrix consisting of k+ t− 1 thick columns
of the realizations q of Qi.

158



8.4 The Capacity of Linear, Full Support-Rank MDS-TPIR

of the support of the query realization as

H(AiN | Xψα(F), Qi
N = q[:, ψβ(N )])

= H
( ∑
l∈ψα([m])

(
(Y[l,N ]⊗ 1β) ? q[l, ψβ(N )]

) ∣∣∣∣ XF , Qi
N = q[:, ψβ(N )]

)

= H
( ∑
l∈ψα([m]\F)

(
(Y[l,N ]⊗ 1β) ? q[l, ψβ(N )]

) ∣∣∣∣ Qi
N = q[:, ψβ(N )]

)
(a)=
∣∣∣ colsupp

(
q[ψα([m] \ F), ψβ(N )]

)∣∣∣ ,
where (a) holds by Lemma 8.4. Taking the expectation over the support of Qi

N gives

E
q[:,ψβ(N )]∈supp(QiN )

(
H(AiN | XF , Qi

N = q[:, ψβ(N )])
)

= E
q[:,ψβ(N )]∈supp(QiN )

(
| colsupp(q[ψα([m] \ F), ψβ(N )])|

)
(a)= E

q[:,ψβ(N )]∈supp(Qi′N )

(
| colsupp(q[ψα([m] \ F), ψβ(N )])|

)
= E

q[:,ψβ(N )]∈supp(Qi′N )

(
H(Ai′N | XF , Qi′

N = q[:, ψβ(N )])
)
,

where (a) follows from Lemma 8.5.

While the previous lemma holds for any pair of indices i, i′ ∈ [m], the interesting
case is when i ∈ F , i′ 6∈ F . Intuitively, in this case the statement implies that
(k + t − 1)-tuples of servers handle desired and undesired files equally, which will be
used in the inductive proof of Lemma 8.7. Also note that the property of full support-
rank was needed in the proof of Lemma 8.3, the key technical ingredient to the proof
of Lemma 8.4 and thereby also to Lemma 8.6, as it ensures that the given entropy
expression is equal to the size of the column support of the query restricted to the
respective rows and columns.

Remark 8.2. The formulation of the server responses used in Lemma 8.6 implies a
novel formulation of the PIR problem with linear decoding functions. As shown in
Eq. (2.4) and Lemma 8.4, the received responses are given by (to simplify the notation
we assume α = 1 here)

Ai = (X[1, 1],X[2, 1], . . . ,X[m, 1],X[1, 2],X[2, 2], . . . ,X[m, 2], . . . ,X[m, k]) (8.10)
·
(
(G⊗ 1β)�Qi

)
,

where � denotes the column-wise Khatri-Rao product [KR68] and G is a generator ma-
trix of the storage code. When restricting to linear decoding functions, the application
of a decoder D such that D(A) = Xi, is equivalent to performing linear combinations
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8 Towards the Capacity of PIR from Coded and Colluding Servers

of the received responses Ai, which, in turn, is equivalent to performing linear combi-
nations of the columns of (G⊗ 1β)�Qi. It is easy to see that the l-th symbol of the
information vector can be obtained exactly if the l-th unit vector el is in the column
span of this matrix. Therefore, the problem of linear PIR with linear decoding func-
tions can be defined solely based on operations from linear algebra: For each i ∈ [m]
determine a distribution of query matrices Qi such that

el ∈
〈
(G⊗ 1β)�Qi

〉
col
∀ l ∈ {i,m+ i, 2m+ i, . . . , (k − 1)m+ i}

Pr(Qi
T = q) = Pr(Qi′

T = q) ∀ i, i′ ∈ [m], T ⊂ [n], |T | ≤ t .

The first condition guarantees decodability, as the given set indexes the symbols of file
i in the data vector of Eq. (8.10), while the second condition guarantees t-privacy.

The following lemma will be used to prove the upper bounds on the nonsymmetric
MDS-TPIR capacity.

Lemma 8.7. Consider an optimal linear (S)PIR scheme, and let H ⊂ [n] be a minimal
set (set of smallest possible cardinality) such that the requested file i can be obtained
from the respective responses, i.e.,

H(X i | AiH,Q) = 0 .

For 1 ≤ s ≤ m, let

hs = n

|H|
H(AsH | Q,X [s−1])

and hm+1 = 0. Then, for all 1 ≤ s ≤ m,

hs ≥
n

n− 2b− r

(
H(Xs) + k + t− 1

n
hs+1

)
.

Proof. By Lemma 8.1, we have |H| ≤ n− 2b− r. By Han’s inequality (see Eq. (8.5)),
the average value of H(As+1

N | Q,X [s]) over all sets N ⊆ H with |N | = k + t− 1 is at
least

k + t− 1
|H|

H(As+1
H | Q,X [s]) .

Hence, we can choose a set N ⊆ H with |N | = k + t− 1 such that

H(As+1
N | Q,X [s]) ≥ k + t− 1

|H|
H(As+1

H | Q,X [s])

= k + t− 1
n

hs+1 .
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By independence of the files and the queries, we have

H(Xs | Q,X [s−1]) = H(Xs) .

We thus get

hs = n

|H|
H(AsH | Q,X [s−1])

= n

|H|
(
H(Xs) +H(AsH | Q,X [s])

)
≥ n

|H|
(
H(Xs) +H(AsN | Q,X [s])

)
(a)= n

|H|
(
H(Xs) +H(As+1

N | Q,X [s])
)

≥ n

|H|

(
H(Xs) + k + t− 1

n
hs+1

)

≥ n

n− 2b− r

(
H(Xs) + k + t− 1

n
hs+1

)
,

where (a) follows from Lemma 8.6.

Setting b = r = 0, we are now ready to prove the capacity of linear, full support-rank
MDS-TPIR. Note that this settles Conjecture 8.3 under this technical assumption.

Theorem 8.2 (Capacity of linear, Full Support-Rank MDS-TPIR). Let n, k, t, and
m be integers with n > k + t− 1 and m ≥ 2. The capacity of linear, full support-rank
MDS-TPIR, i.e., PIR from [n, k] MDS-coded storage with t colluding servers where
the queries fulfill Definition 8.2, is

CMDS
FSR−TPIR =

1− k+t−1
n

1−
(
k+t−1
n

)m m→∞
−−−−→ 1− k + t− 1

n
.

Proof. Achievability: An explicit scheme achieving the rate is constructed in [DE19]
by “lifting” the star product scheme of [FGHK17]. To be private, this scheme needs
to fulfill the definition of Definition 8.2, as argued in Section 8.4.2.
Converse: Let H ⊂ [n] be a minimal set such that

H(X i | AiH,Q) = 0,

and for s ∈ [m], let

hs = n

|H|
H(AsH | Q,X [s−1])
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as in Lemma 8.7. Denote L = H(X i) and notice that this is equal for all files i. By
definition and Lemma 8.2, the rate R of the scheme satisfies

1
R

=
∑
j∈[n] H(Asj)

L

≥
∑
j∈[n] H(Asj | Q)

L

≥ h1

L
,

where the last equation follows by minimality of H. It is thus enough to show that

hs
L
≥

1−
(
k+t−1
n

)m−s+1

1− k+t−1
n

(8.11)

holds for all 1 ≤ s ≤ m. We will prove this by backwards induction on s.
As the base case consider s = m and observe that Eq. (8.11) simplifies to hs ≥ L in

this case. Recall that Am is a function of the files X and the queries Q. As we have
b = r = 0, Lemma 8.7 gives

hm = H(AmH | Q,X [m−1]) = H(AmH, Xm | Q,X [m−1]) = H(Xm) = L .

It follows that Eq. (8.11) is correct for s = m. Now assume as an induction hypothesis
that

hs′

L
≥

1−
(
k+t−1
n

)m−s′+1

1− k+t−1
n

,

and let s = s′ − 1. Then Lemma 8.7 yields

hs
L
≥ 1 +

(
k + t− 1

n

hs′

L

)

≥ 1 +
k+t−1
n
−
(
k+t−1
n

)m−s′+2

1− k+t−1
n

=
1−

(
k+t−1
n

)m−s+1

1− k+t−1
n

.

This proves Eq. (8.11) for all 1 ≤ s ≤ m by induction. The case s = 1 is the statement
of the theorem.
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Remark 8.3. By similar techniques, we get an upper bound

CMDS
FSR−TBPIR ≤

(
1− 2b+ r

n

)
·

1− k+t−1
n

1−
(
k+t−1
n

)m (8.12)

for the case where we also have adversarial and nonresponsive servers. However, we
believe this to be a loose upper bound. If the bound Eq. (8.12) were to be tight, the
result of [WS17a; WS17b] (see Theorem 8.3) would imply that in this setting sym-
metric PIR has a strictly lower capacity than PIR even as the number of files goes
to infinity. This would be in sharp contrast to the known cases of TPIR/TSPIR and
MDS-PIR/MDS-SPIR with and without adversarial/nonresponsive servers, where the
nonsymmetric capacity converges (from above) to the symmetric capacity as the num-
ber of files increases.

8.4.2 Known PIR Schemes and the Definition of Full
Support-Rank

With the capacity of full support-rank PIR schemes established, we now discuss two
schemes related to this result, beginning with the approach of refinement and lifting
introduced in [DE19], a method for increasing the rate of a class of PIR schemes. Next,
we discuss the only known scheme that exceeds the rate achievable by full support-rank
schemes.

Lifted PIR Schemes

In this section we aim to clarify some of the details of the refinement operation of
[DE19]. This operation is based on choosing vectors such that their respective inner
product with the stored vectors are “linearly independent random variables”. Given
the application of these rules in [DE19, Example 7], this appears to mean that the
corresponding columns in the column-wise Khatri-Rao product of the matrix of storage
vectors and the matrix of the query vectors are linearly independent. However, as we
discuss in the following, this is not sufficient for the scheme to be private.
We consider [DE19, Example 7] for the setting n = 4 and k = t = 2. There and in

the following, file 1 is assumed to be desired by the user. The storage code is a [4, 2]
MDS code over F3 with generator matrix (cf. [DE19, Table VII])

G =
(

1 0 1 1
0 1 1 2

)
.

Following the notation of [DE19], the linear combinations used to obtain x2
3 and x2

4
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8 Towards the Capacity of PIR from Coded and Colluding Servers

can be written as

[x2
1,x2

2,x2
3,x2

4] = [x2
1,x2

2] ·G (8.13)

and we therefore also refer to the code generated by G as the query code7. For the
desired file 1, the vectors x1

j are chosen uniformly at random from all query vectors of
Fα2×1

3 supported only on file 1 (cf. [DE19, Definition 1]) and such that the
〈
Yj,x1

j

〉
are “linearly independent random variables”. For the undesired file 2, the vectors x2

1
and x2

2 are chosen uniformly at random from all query vectors supported only on file 2
and such that 〈Y1,x2

1〉 and 〈Y2,x2
2〉 are “linearly independent random variables”. The

vectors x2
3 and x2

4 are given by Eq. (8.13).
We set the subpacketization to be α = 2, i.e., the storage is a length 4 vector, where

the first two positions correspond to file 1 and the other two positions to file 2. Now
assume the following realizations of x1 and x2 (the j-th column of xl gives xlj)

x1 =


1 2 0 0
0 0 1 2
0 0 0 0
0 0 0 0

 x2 =


0 0 0 0
0 0 0 0
1 2 0 2
0 0 0 0

 .

By [DE19, Lemma 1] and written in terms of our notation8, the query is then given
by

q =


1 0 2 0 0 0 0
0 0 0 0 1 0 2
0 1 0 2 0 0 2
0 0 0 0 0 0 0

 ,

where server j receives the j-th thick column, as indicated by the dashed lines. We
make the following observations:

• The
〈
Yj,x1

j

〉
, j = 1, 2, 3, 4, are indeed linearly independent, as any two columns

of the storage code are linearly independent.

• By the same argument, 〈Y1,x2
1〉 and 〈Y2,x2

2〉 are linearly independent.

• The third and fourth columns of x2, i.e., x2
3 and x2

4, are as in Eq. (8.13).

As x1 and x2 are chosen uniformly at random such that these properties are ful-
filled, this is a query realization with nonzero probability. However, since 〈Y3,x2

3〉 =
〈Y3,0〉 = 0, the query x2

3 is not a valid query if file 2 is the desired file. Hence,
7In general, the storage and query code do not need to be the same.
8Here, the fourth server only receives one query, so the fourth "thick" column is only one column
wide.
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upon receiving the queries x1
3 and x2

3, server 3 is able to deduce that file 2 is not
the desired file. Further, observe that here we have x1[{1, 2}, 1] = x2[{3, 4}, 1] and
x1[{1, 2}, 2] = x2[{3, 4}, 2], so simply excluding this case for the undesired file is not
an option, as this would allow servers one and two to deduce that file 1 is the desired
file.
It is easy to see the problem here is that while 〈Y1,x2

1〉 and 〈Y2,x2
2〉 give linearly

independent random variables, the vectors x2
1 and x2

2 themselves are not linearly in-
dependent. This leads to an x2

3 that trivially results in a “linearly dependent random
variable”. One solution to this problem is requiring the vectors x2

1 and x2
2 themselves to

be linearly independent. In this case, assuming the query code is MDS9, any t-subset
of columns in x2 is linearly independent, which guarantees that it is also a valid choice
for the desired file. In other words, the submatrix of x2 corresponding to file 2, i.e.,
the two bottom rows, has to be chosen as a (random) basis of the MDS query code.
Obviously, the privacy requirement implies that x1 also needs to be chosen such that
any t-subset of columns is linearly independent.
In conclusion, a “fix” to this ambiguity, which ensures the privacy of this scheme,

is given by requiring that the supported columns of any subset of t thick columns
of xj are linearly independent, exactly as required in Definition 8.2. Note that, our
proposed fix allows the scheme to achieve the highest rate possible (for this specific
scheme, not necessarily in general). Hence, albeit it might be possible to find a different
distribution that also results in a private scheme, there is no advantage to be gained
in terms of rate for this class of lifted schemes.

A Scheme that does not fulfill Definition 8.2

In [SJ18a], a linear PIR scheme from [n = 4, k = 2] MDS-coded storage with t = 2
colluding servers and m = 2 files was presented, achieving a PIR rate 3/5. This rate
exceeds the one in Conjecture 8.3, thereby providing a counter-example that disproves
it in its full generality. In the following, we briefly introduce this counter-example with
a focus on the query construction and show that it does not fulfill Definition 8.2.
Each of the two files is assumed to be comprised of 12 symbols from Fp for a large

prime p and the subpacketization level is set to α = 6. Let
V1
V2
...

V6

 ,


U0
U1
...

U5


be two random full-rank 6 × 6 matrices over Fp. Without loss of generality, suppose

9Note that, while it is unclear whether this is strictly necessary, this assumption does not lower
the PIR rate, as can be seen from applying the refinement/lifting operation of [DE19] to the
star-product scheme of [FGHK17] utilizing Reed–Solomon codes.
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that the first file is desired. The queries to servers 1 and 2 are, respectively,

Q1
1 =

(
L11(V>1 ,V>2 ,V>3 ) L12(V>1 ,V>2 ,V>3 ) L13(V>1 ,V>2 ,V>3 )

L11(U>0 ,U>6 ,U>8 ) L12(U>0 ,U>6 ,U>8 ) L13(U>0 ,U>6 ,U>8 )

)
,

and

Q1
2 =

(
L21(V>1 ,V>4 ,V>5 ) L22(V>1 ,V>4 ,V>5 ) L23(V>1 ,V>4 ,V>5 )

L21(U>0 ,U>7 ,U>9 ) L22(U>0 ,U>7 ,U>9 ) L23(U>0 ,U>7 ,U>9 )

)
,

where Lij(a,b, c) denotes some linear combinations of a,b, c (see P1 and P2 in [SJ18a,
Pg. 1004] for more details on the requirements on the coefficients of the involved linear
combinations), and

U6 = U1 + U2, U7 = U1 + 2U2,

U8 = U3 + U4, U9 = U3 + 2U4.

Note that this definition includes the processing step done at the servers in [SJ18a]
as part of the query, which is necessary to describe the scheme as a linear scheme
as in Definition 8.1. Then, in our notation for the query, we have for F = {1} and
T = {1, 2}

q[ψα(F), ψβ(T )] = q[ψα(1), ψβ({1, 2})] = q[[6], [12]] =
( L11(V>1 ,V>2 ,V>3 ) L12(V>1 ,V>2 ,V>3 ) 06×2 L13(V>1 ,V>2 ,V>3 ) L21(V>1 ,V>4 ,V>5 ) L22(V>1 ,V>4 ,V>5 ) 06×2 L23(V>1 ,V>4 ,V>5 ) ) ,

where 06×2 denotes the 6 × 2 zero matrix. The matrix q[ψα(1), ψβ({1, 2})] is a
6 × 10 matrix with 6 nonzero columns that are linear combinations of the 5 vectors
V>1 ,V>2 ,V>3 ,V>4 , and V>5 . Therefore, we have

rank(q[ψα(1), ψβ({1, 2})]) ≤ 5 < 6 = | colsupp(q[ψα(1), ψβ({1, 2})])| ,

and conclude that the PIR scheme in [SJ18a] does not fulfill Definition 8.2.

While it might seem excessive to describe a scheme that does not fall into the class of
full support-rank PIR schemes in this much detail, we would like to point out that this
in fact further motivates our definition. The results presented in Section 8.4 show that
the distinguishing feature of this scheme is in fact the low rank of the queries, when
restricting to a subset of thick columns and rows, thereby strongly hinting at what a
scheme for general parameters and of a PIR rate that exceeds the one in Conjecture 8.3
and Theorem 8.2 must fulfill.
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8.5 Capacity of MDS-coded TBSPIR for Schemes with
Additive Randomness

In this section, we prove the capacity of MDS-coded TBSPIR for the specific system
model considered in [WS19]. Recent works [WSS19; WS19] have shown that it is cru-
cial to specify the distribution of the randomness shared by the servers when deriving
the capacity of such systems. We begin by shortly reviewing the results presented in
these works. In [WSS19] the authors derive the capacity of MDS-coded SPIR with
mismatched randomness, meaning that they assume the complete randomness to be
available to all servers. It is shown that this assumption of sharing of the complete
randomness among the servers leads to a strictly larger rate than when the randomness
is also coded with the MDS storage code, referred to as matched randomness. The
resulting capacity approaches the capacity of coded, matched SPIR when the number
of files tends to infinity and is always strictly lower than the capacity of coded PIR
without the symmetry requirement.
In [WS19] the authors derive the capacity of MDS-coded SPIR with and without

collusion for the case of matched randomness, i.e., where the randomness is also en-
coded with the MDS storage code. Further, they consider the special case of schemes
with additive randomness independent of the queries. Specifically, the authors show

• the capacity of SPIR from [n, k] MDS-coded storage, where for any k servers the
randomness is independent (matched randomness), to be

CMDS
matched−SPIR = 1− k

n
.

• the capacity of uncoded TSPIR, i.e., symmetric PIR from n servers encoded with
a repetition code (k = 1) where up to t servers (TSPIR) can collude, to be

CRep
TSPIR = 1− t

n
.

• the capacity of [n, k] MDS-coded TSPIR, for schemes where the servers add the
randomness to the responses and the randomness is independent of the queries,
to be

CMDS
add.−TSPIR = 1− k + t− 1

n
.

In this section we consider the extension of the results from [WS19] to the MDS-
TBSPIR setting, i.e., to symmetric PIR from coded databases in the presence of up
to b adversarial servers and r nonresponsive servers.
We begin by formally defining the considered setting.
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8 Towards the Capacity of PIR from Coded and Colluding Servers

Definition 8.7 (Matched SBPIR [WS19]). We say a BSPIR scheme is matched if
the randomness shared by the servers is independent for every subset of k servers.

Definition 8.8 (Additive randomness TBSPIR [WS19]). We define a scheme to be
an additive randomness TBSPIR scheme if the responses are of the form

Aij = fj(Qi
j, Yj) + Sj ,

where fj is an arbitrary function and Sj is independent of the received query Qi
j.

In Lemma 8.1 we have shown that the desired file must be recoverable from any
subset of ≥ n− 2b− r honest and responsive servers. The following lemma establishes
the final ingredient required for proving the converse of Theorem 8.3.

Lemma 8.8. For any MDS-TBSPIR scheme and for any set of honest (nonadversar-
ial) servers N ⊂ [n] with |N | = k + t− 1 it holds that

H(AiN | X i, Qi
N ) = H(AiN | Qi

N ) ,

if the randomness is additive as in Definition 8.8 or t = 1.

Proof. The proof for the case of additive randomness follows directly from the proof
of [WS19, Lemma 8], as it is independent of the total number of servers and, by
definition, all servers in N are honest. By the same argument the proof of [WS19,
Lemma 7] also applies here for the case of t = 1.

We are now ready to present the main statement of this section, the capacity of
linear MDS-TSPIR for the shared randomness distributions of Definition 8.8 and Def-
inition 8.7.

Theorem 8.3. The capacity of linear MDS-TBSPIR, i.e., PIR from [n, k] MDS-coded
storage with t colluding, b adversarial, and r nonresponsive servers, is

CMDS
TBSPIR = 1− k + t+ 2b+ r − 1

n
,

if the randomness is additive as defined in Definition 8.8 or, for t = 1, as in Defini-
tion 8.7.

Proof. Achievability: The symmetric version of the scheme introduced in [TGK+19],
which generalizes the scheme of [FGHK17], achieves the presented upper bound on the
PIR rate. Note that this scheme fulfills both Definition 8.7 and Definition 8.8, since
the symmetry is achieved by adding a random codeword of the [n, k] MDS storage
code to the answers.
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Converse: Let H ⊂ [n] and N ⊂ H be sets of honest, responsive servers with |H| =
n− 2b− r and |N | = k + t− 1. Then

H(X i) (a)= H(X i | Q)
(b)= H(X i | Q)−H(X i | AiH,Q)
= I(X i;AiH | Q)
= H(AiH | Q)−H(AiH | X i,Q)
(c)
≤ H(AiH | Q)−H(AiN | X i,Q, Qi

N )
(d)= H(AiH | Q)−H(AiN | X i, Qi

N )
(e)= H(AiH | Q)−H(AiN | Qi

N )
≤ H(AiH | Q)−H(AiN | Q) ,

where equality (a) holds because the files are independent of the queries, (b) holds
by Lemma 8.1, (c) holds because N ⊂ H, (d) holds by Lemma 8.2, and (e) holds by
Lemma 8.8.

Averaging over all sets N gives

H(X i) ≤ H(AiH | Q)− 1(
n−2b−r
k+t−1

) ∑
N⊂H

|N|=k+t−1

H(AiN | Q)

and by Han’s inequality (see Eq. (8.5))

1(
n−2b−r
k+t−1

) ∑
N⊂H

|N|=k+t−1

H(AiN | Q) ≥ k + t− 1
n− 2b− rH(AiH | Q).

Hence, there exists an h ∈ H such that

H(X i) ≤ H(AiH | Q)− k + t− 1
n− 2b− rH(AiH | Q)

= n− k − 2b− r − t+ 1
n− 2b− r H(AiH | Q)

≤ n− k − 2b− r − t+ 1
n− 2b− r (n− 2b− r)H(Aih | Q) .

Since the adversaries could otherwise be easily identified, we can assume that the an-
swers of the adversarial servers are of the same entropy as the nonadversarial answers.
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We conclude that in this setting the PIR rate is bounded by

H(X i)∑n
j=1H(Aij)

= H(X i)
n ·H(Aih | Q) (8.14)

≤ H(X i)
n

· n− k − 2b− r − t+ 1
H(X i)

= n− k − 2b− r − t+ 1
n

.

Remark 8.4. Similar to Conjectures 8.1 and 8.2, the denominator in the rate expres-
sion in [TGK+19] is n−r instead of n (see also Remark 8.1) because the nonresponsive
servers are not included in the calculation of the download cost. Here, we also include
the nonresponsive servers in the calculation, but note that this can be modified by
changing the upper limit of the sum in Eq. (8.14) to n− r.

Finally, we derive the secrecy rate of TBSPIR, i.e., the minimal amount of shared
randomness required by the servers for symmetry to be achievable. We combine the
proofs of [WS17a, Theorem 7] and [WS17b, Theorem 1].

Theorem 8.4. The secrecy rate of a linear TBSPIR scheme from [n, k] MDS-coded
storage fulfills

ρ ≥ k + t− 1
n− k − t− 2b− r + 1 ,

if the randomness is additive as defined in Definition 8.8 or, for t = 1, as in Defini-
tion 8.7.

Proof. Let H ⊂ [n] and N ⊂ H be sets of honest, responsive servers with |H| =
n− 2b− r and |N | = k + t− 1. First, observe that

H(AiH | Q) = H(X i) +H(AiH | X i, Q)
≥ H(X i) +H(AiN | X i, Q)
≥ H(X i) +H(AiN | Q).

Averaging over all sets N ⊂ H with |N | = k + t− 1 we get

H(AiH | Q) ≥ H(X i) + k + t− 1
n− 2b− rH(AiH | Q). (8.15)

Let H ⊂ [n] and N ⊂ H be sets of honest, responsive servers with |H| = n − 2b − r
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and |N | = k + t− 1. By server privacy,

0 = I(X [m]\i;AH | Q)
= H(X [m]\i | Q)−H(X [m]\i | AiH,Q)
= H(X [m]\i | X i,Q)−H(X [m]\i | AiH, X i,Q)
= I(X [m]\i;AiH | Q, X i)
≥ I(X [m]\i;AiN | Q, X i)
= H(AiN | X i,Q)−H(AiN | X [m],Q) +H(AiN | S,X [m],Q)
= H(AiN | X i,Q)− I(S;AiN | X [m],Q)
≥ H(AiN | X i, Qi

N ,Q)−H(S)
= H(AiN | Qi

N )−H(S)
≥ H(AiN | Q)−H(S) .

Averaging over all sets N , we get by Eq. (8.15) that

H(S) ≥ 1(
n−2b−r
k+t−1

) ∑
N⊂H

|N|=k+t−1

H(AiN | Q)

≥ k + t− 1
n− 2b− rH(AiH | Q)

≥ k + t− 1
n− k − t− 2b− r + 1H(X i) ,

Thus, the bound on the secrecy rate is given by

ρ = H(S)
H(X i) ≥

k + t− 1
n− k − t− 2b− r + 1 .

8.6 Strongly-Linear PIR Capacity
We have seen that, for a symmetric linear scheme as in Theorem 8.3 and regardless
of the number of files, the rate cannot be larger than that obtained by the scheme
in [TGK+19], a generalization of the star-product scheme of [FGHK17]. Further,
Theorem 8.2 shows that as the number of files grows, the rate of the star product
scheme in [FGHK17] approaches the full support-rank capacity. We will now show
that, under stronger linearity assumptions, this is also true for a finite number of
files and without assuming server privacy. In essence, we define a PIR scheme to be
strongly linear if all interference cancellation is linear and deterministic, and where
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8 Towards the Capacity of PIR from Coded and Colluding Servers

every computation uses only one response symbol from each server. This is a highly
natural assumption, that also has practical implications as it allows for decoding at
the user to occur without delay, even when queries are sent sequentially. However, the
assumption is not true for schemes achieving the capacity for a finite number of files,
such as those in [SJ18b; BU18].

Definition 8.9 (Strongly Linear PIR). We say that a linear PIR scheme is strongly
linear if each symbol of the desired file is obtained as a deterministic linear function
over F of a response vector consisting of one response symbol from each server(

A[:, (j − 1)β + s]
)
j∈[n]

,

for some s ∈ [β]. Specifically, the reconstruction function does not depend on the
randomness used to produce the queries.

From a practical point of view
(
A[:, (j−1)β+s]

)
j∈[n]

can be considered the response
obtained in the s-th iteration of the PIR scheme.

Remark 8.5. Note that a full support-rank PIR scheme does not have to be strongly
linear. However, the rate of every optimal strongly linear scheme is upper bounded
by the rate of the star product scheme [FGHK17], which agrees with the asymptotic
capacity of a full support-rank PIR scheme with corresponding parameters. This result
is proved in Theorem 8.5. Hence, a full support-rank scheme can always be replaced by
a strongly linear scheme (e.g., a star product scheme) without a loss in the asymptotic
rate.

Remark 8.6. We would like to emphasize that strongly linear schemes form a very
relevant and practical case, namely the respective capacity result is known to be achiev-
able [FGHK17; TGK+19] by a small field size q ≥ n, which is that of a GRS code.
Moreover, the subpacketization level is independent of m and is (at most) quadratic
in n [FGHK17, Eq. (17)]. This is in contrast to the schemes in [SJ18b; SJ17; BU18;
ZX18], where each file is assumed to be subdivided into a number of packets that grows
exponentially with the number of files m. It was shown in [ZX18] that an exponential
(in m) number of packets per file is necessary for a PIR scheme with optimal download
rate, under the assumption that all servers respond to the queries and the responses
have the same size. In [ZTSL20] a scheme was presented that achieves the capacity
with only O(n) packets by making a weaker assumption on the size of the responses
than in [ZX18].

Lemma 8.9. Consider a strongly linear PIR scheme from a linear storage code C, and
fix an index s ∈ [β]. For all l ∈ [m], let Di,l ⊆ Fn be the linear span of the row vectors
that can occur as the l-th row of the s-th iteration of a query matrix Qi, i.e.,

Di,l =
〈
{q[l, {s, β + s, . . . , (n− 1)β + s}] | q ∈ supp(Qi)}

〉
row

.
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8.6 Strongly-Linear PIR Capacity

Then the rate of the PIR scheme is at most

1−
dim(C ? (∑l 6∈ψα(i)Di,l))

dim(C ? (∑lDi,l))
.

If the download from each server is of the same size, then the PIR rate is at most

dim(C ? (∑j Di,j))− dim(C ? (∑l 6∈ψα(i)Di,j))
n

.

Proof. By Eq. (8.9) the responses in a linear PIR scheme as in Definition 8.1 can be
described as the sum of the star product (Hadamard product) of rows of the query
matrix and rows of the storage by

(
A[:, (j − 1)β + s]

)
j∈[n]

=
αm∑
l=1

(
Y[l, (j − 1)β + s]

)
j∈[n]

?Qi[l, (j − 1)β + s]
)
j∈[n]

)
∈

αm∑
l=1
Di,l ? C .

Let

Φ :
(
A[:, (j − 1)β + s]

)
j∈[n]
7→ x ∈ Fγ

be the deterministic map from the responses in iteration s to γ coordinates of the
desired file X . Then for each l 6∈ ψα(i), Φ must be constant on each coset of Di,l ? C,
because otherwise changing the query matrix or the l-th row of Y would affect the
value of Φ

((
A[:, (j− 1)β+ s]

)
j∈[n]

)
. As this holds for every l 6= i, Φ must be constant

on each coset of ∑j 6=iDi,j ? C. Thus, the dimension of the range of Φ is

γ = dim
(∑

j

Di,j ? C
)
− dim

(
ker(Φ)

)
≤ dim

(∑
j

Di,j ? C
)
− dim

( ∑
j 6∈ψα(i)

Di,j ? C
)
.

The n symbols
(
A[:, (j − 1)β + s]

)
j∈[n]

can be reconstructed from the responses of

dim
(∑

j Di,j ? C
)
servers, or from n servers if we require to download equally much

from each server. Dividing the number |I| of downloaded q-ary symbols from the
desired file by the number of q-ary symbols in

(
A[:, (j − 1)β + s]

)
j∈[n]

, we get the
claimed bounds on the PIR rate. This concludes the proof.

For simplicity, we only consider schemes downloading the same number of symbols
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8 Towards the Capacity of PIR from Coded and Colluding Servers

from all the servers in each iteration.
Before proceeding to the proof of the capacity of MDS-coded TBPIR under the

assumption of strong linearity, we briefly recapitulate the star product PIR scheme
of [FGHK17; TGK+19], which will be used to show the achievability of the provided
upper bound on the PIR rate. Consider a DSS storing m files encoded with an [n, k]
MDS storage code C and a user looking to retrieve file i privately in the presence of up
to t colluding servers. For simplicity, we assume n = 2k+ t+2b+r−1 and α = 1 here,
as this allows the recovery of the file in one iteration10. Further, for ease of notation,
we only consider the case of all servers being responsive, i.e., r = 0. The extension to
the case of nonresponsive servers is trivial. The star product scheme consists of the
following steps:

1. The user chooses a query code DQ with dD⊥Q ≥ t + 1, where dD⊥Q denotes the
minimum distance of the dual code D⊥Q. From this code, she generates a matrix
D ∈ Fm×n whose m rows are codewords of DQ chosen i.i.d. at random11.

2. The query matrix is given by

Qi = D + E ,

where E is all-zero, except for the i-th row E[i, :], which is chosen to be the basis
of an [n, 1] code12 E .

3. The user sends the j-th column of Qi to the j-th server. The server replies with

Ai[1, j] =
〈
Qi[:, j],Y[:, j]

〉
+ z[1, j] ,

where z[1, j] = 0 if the server is honest and arbitrary if the server is adversarial
(z can be thought of as the received error vector).

10We would like to emphasize that the scheme discussed here is a special case of the star product
PIR scheme of [FGHK17; TGK+19], with parameters chosen for an illustrative purpose. The full
scheme is not limited to this specific choice of n. For more details, see [FGHK17; TGK+19].

11The fact that dD⊥
Q
≥ t+ 1 implies that any t positions in a codeword of DQ are an information set.

Hence, by choosing random codewords of DQ as the rows, any t columns of D are i.i.d. distributed
over Fm×t.

12Here and for the general scheme it is convenient to view this as a code instead of a vector. Note
that for a different choice of n and α the dimension of this code could be larger than 1.
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4. By Eq. (8.9), the user receives

Ai =
( ∑
l∈[m]

Y[l, :] ?Qi[l, :]
)

+ z

=
( ∑
l∈[m]

Y[l, :] ?
(
D[l, :] + E[l, :]

))
+ z

=
( ∑
l∈[m]

Y[l, :] ?D[l, :]
)

︸ ︷︷ ︸
∈C?DQ

+
(
Y[i, :] ? E[i, :]

)
︸ ︷︷ ︸

∈C?E

+z .

Recall that the Hamming weight of z is at most b, the number of adversarial
servers. Hence, if the code C ?DQ + C ? E is of distance dC?DQ+C?E ≥ 2b+ 1, the
errors can be decoded and the user obtains( ∑

l∈[m]
Y[l, :] ?D[l, :]

)
︸ ︷︷ ︸

∈C?DQ

+
(
Y[i, :] ? E[i, :]

)
︸ ︷︷ ︸

∈C?E

.

As E is chosen by the user, we only require that the codes C ? DQ and C ? E
intersect trivially to recover the vector Y[i, :] ?E[i, :] ∈ C ? E . Finally, the file X i

can be recovered from this vector, given that C ? E is of dimension k.

It remains to determine codes C, DQ, and E that fulfill the required properties for the
given n. Conveniently, it has been shown [FGHK17; TGK+19] that GRS codes (see
Definition 2.3) provide such codes, however, these details are beyond the scope of this
short summary.
We are now ready to show that any strongly linear scheme can be replaced by a star

product scheme for the same privacy model, without losing in the PIR rate.

Theorem 8.5 (Capacity of Strongly Linear PIR). The capacity of strongly linear
MDS-TBPIR, i.e., strongly linear PIR from [n, k] MDS-coded storage with t colluding,
b adversarial, and r nonresponsive servers, is

CMDS
SL−TBPIR = 1− k + t+ 2b+ r − 1

n

for any number of files m.

Proof. Consider an arbitrary strongly linear PIR scheme. Like in Lemma 8.9, fix an
iteration s ∈ [β] and define

Di,l =
〈
{q[l, {s, β + s, . . . , (n− 1)β + s}] | q ∈ supp(Qi)}

〉
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for l ∈ [n], and D = ∑
l 6=iDi,l. Let E ∈ Fαm×n be a matrix such that E[ψα(i), :] is

an arbitrary realisation of Qi[ψα(i), {s, s+ β, . . . , s+ (n− 1)β}], and all other entries
are zero. Let D ∈ Fαm×n be a random matrix whose rows are selected uniformly at
random from D.
Now consider the star product scheme with query matrix D + E. This scheme has

a set of feasible query matrices that is more restrictive in the row of the desired file,
but less restrictive in the rows of the unwanted files, than the original strongly linear
scheme. Thus, whatever privacy constraints were satisfied by the original scheme,
including robustness against nonresponsive and adversarial servers, are also respected
by the star product scheme. By design, all symbols that were decoded in the s-th
iteration of the strongly linear scheme are also decoded in the star product scheme.
Moreover, by construction the rate of the star product scheme is

1− dim(D)
dim(∑lDi,l)

,

which is at least the rate of the original strongly linear scheme by Lemma 8.9. So the
rate of any strongly linear scheme is bounded from above by the rate of a star product
scheme with the same privacy constraints, which is in turn bounded by 1− k+2b+r+t−1

n

as shown in [TGK+19]. The paper also presents a scheme achieving this bound via
the star-product construction.

Note that the capacity of strongly linear PIR is independent of the number of files.
Hence, the above theorem also yields a proof for Conjecture 8.1 in the strongly linear
case. The capacity of a strongly linear scheme also matches the asymptotic rate of
Conjecture 8.3, hence proving the asymptotic expression for such schemes.

Remark 8.7. Here, to simplify the notation, we have assumed that all the servers
respond with equal size responses. However, by loosening this assumption, improve-
ments for finite m are possible, along the same lines as in [ZTSL20]. The proof of the
above theorem shows that, among strongly linear schemes as in Definition 8.9, the star
product scheme [FGHK17; TGK+19] is optimal if the responses are of equal size.

8.7 Summary and Open Problems
This chapter introduced the practical notions of full support-rank PIR and strongly
linear PIR. The capacity of MDS-coded, linear, full support-rank PIR with colluding
servers was proved as well as the capacity of symmetric linear PIR with MDS-coded,
colluding, adversarial, and nonresponsive servers for the case of matched/additive
randomness.
The results on full support-rank PIR are a significant step towards the general proof

of the capacity of PIR from MDS-coded storage with colluding servers. Meanwhile,
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the results on strongly linear PIR bear high practical interest in that these schemes
allow for small field sizes and low subpacketization levels. These simpler schemes
also achieve the same asymptotic capacity as the full support-rank schemes. The
main open problem that remains is proving the capacity of (linear) PIR with MDS-
coded and colluding servers without the assumption of full support-rank. As explained
in Section 8.1, the presented definition of full support-rank PIR isolates a property
required for a scheme to achieve this capacity for general linear, MDS-coded PIR,
namely for the restrictions of its queries to not be of full support-rank. Thereby, the
results in this chapter provide a good starting point for both giving upper bounds on
the PIR rate and constructing achieving schemes.
Another open problem is determining the capacity of TPIR for transitive storage

codes, along the lines of [FGH+19], by adapting the proofs of Lemma 8.3 Lemma 8.4
accordingly.
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9
Other Results on PIR

This chapter briefly summarizes a selection of other works on PIR. For more details
the interested reader is referred to the respective publications.

9.1 Private Streaming with Convolutional Codes
This abstract summarizes the results of [HFWH20] published in the IEEE Transactions on Informa-
tion Theory. In part, the results have been published in the proceedings of the 2018 IEEE Information
Theory Workshop (ITW) [HFWH18].

Recently, information-theoretic PIR from coded storage systems [CGKS95; SJ17]
has gained a lot of attention. In this setting, the goal of the user is to retrieve a
file from a database without revealing its index. However, in applications such as
video streaming, the user is commonly interested in decoding parts of the file while
the retrieval is still on-going. Such applications require low latency decoding of the
received data blocks and it has been shown that, under such constraints, convolutional
codes perform well [BKTA13; KB16] for different channels.
To fulfill this requirement in a private setting, this work studies the problem of

private streaming. To this end, the star-product scheme of [FGHK17; TGK+19] is
adapted by introducing memory into the retrieval process. Specifically, a scheme for
streaming from a database encoded with an RS code is proposed, where the user de-
signs the queries such that the set of all replies received by from the servers has a block
convolutional structure. Two schemes are proposed and shown to improve the resis-
tance against erroneous decoding under two channel models related to nonresponsive
(block erasure channel) and adversarial (AWGN-channel) servers, both in the baseline
case as well as with colluding servers. The schemes can operate on the same database
and the user can adapt the queries according to the current channel conditions.
The achieved PIR rates are derived and for the block erasure scheme shown to be

either asymptotically optimal, or, for cases where the capacity is unknown, shown to
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coincide with conjectures on the asymptotic capacity. For the adversarial server model,
the introduced scheme is shown to outperform the alternative scheme of downloading
stripes of the desired file separately without memory.

9.2 Computational Code-Based Single-Server Private
Information Retrieval

This abstract summarizes the results of the work [HHW20] published in the proceedings of the 2020
IEEE International Symposium on Information Theory (ISIT).

Considerable attention has been directed towards the problem of private information
retrieval in recent years. Chor et al.’s seminal paper [CGKS95] showed that perfect
information-theoretic privacy cannot achieved with a single server. This lead to two
main research directions—information-theoretic privacy from more than one server
and computational privacy from a single server. While the former allows for high
rates and computationally simple schemes, the underlying assumption that not all
servers collude severely limits its use cases. Single-server PIR schemes, such as those
proposed in [YKPB12; AG07; KLL+15; ABFK16; LP17; GH19; ABFK16; ACLS18]
do not require this assumption, but their practicality is limited by their computational
complexity on the server side.

This work proposes the first known computational PIR scheme based on codes,
which can be seen as a counterpart to the lattice-based scheme of [AG07] along the
same lines as code-based and lattice-based cryptography are connected in general. The
query to the sever is a matrix whose rows contain corrupted codewords of a secret code,
i.e., each row is similar to a ciphertext in the well-known McEliece cryptosystem. The
server then responds with the scalar product of the query matrix and the files and the
user can recover the requested file by erasure decoding. Depending on the parameters,
the achieved PIR rates are comparable to the existing computational PIR schemes of
[YKPB12; AG07]. The complexity, which is the bottleneck of current computational
schemes, benefits from the fact that all calculations can be conducted over binary
extension fields, which is advantageous for implementation.

Note that this computational PIR scheme has recently been broken for all relevant
parameters. For details see [BL21].
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9.3 Quantum Private Information Retrieval from
Coded and Colluding Servers

This abstract summarizes the results of [AHPH20a] published in the IEEE Journal on Selected Ar-
eas in Information Theory and the results of [ASH+22], which has been accepted for publication in
the IEEE Journal on Selected Areas in Communications. In part, the results of [AHPH20a] have
been published in the proceedings of the 2020 IEEE International Symposium on Information Theory
(ISIT) [AHPH20b] and parts of the results of [ASH+22] in the proceedings of the 2021 IEEE Inter-
national Symposium on Information Theory (ISIT) [AHPH21].

In the classical PIR setup, as introduced by Chor et al. [CGKS95], a user wants to
retrieve a file from a database or a distributed storage system (DSS) without reveal-
ing the file identity to the servers holding the data. To achieve information-theoretic
privacy, the user poses queries to a number of servers, which the (set of colluding)
servers can read without learning any information. This problem has also been con-
sidered in the context of quantum communication [KDW04; Gal11; GLM08]. More
recently, Song et al. [SH20b] proposed a PIR scheme based on the properties of quan-
tum communication. Under this model the user poses classical queries to the servers,
which respond with quantum systems. By exploiting the quantum theoretic guarantee
that such a system can only be measured once, the authors are able to show that
this scheme achieves a rate of one, i.e., induces no communication overhead to ensure
privacy. In [SH19] the same authors considered the case of replicated storage where
all but one servers collude, showing that the retrieval rate can be essentially doubled
compared to the classical setting.
In the work [AHPH20b] the quantum PIR protocol of [SH19] is generalized to allow

for the private retrieval of a file from a storage system encoded with an MDS code.
The proposed protocol works for any linear MDS code of length n and dimension k
while tolerating up to t colluding servers, with the restriction that t = n−k (note that
t = n − 1 and k = 1 corresponds to the setting of [SH19]). Similar to the quantum
PIR schemes for replicated storage, the rates achieved are approximately double of the
classical counterparts. Further, it is demonstrated how the protocol can be adapted
to achieve significantly higher retrieval rates from DSSs encoded with an LRC with
disjoint repair groups, each of which is an MDS code.
The work [ASH+22] relaxes the parameter restrictions to allow for high-rate quan-

tum PIR for any length n, dimension k, and collusion resistance t with t ≤ n− k. For
this setting the capacity of a subclass of quantum PIR schemes is proved. To show
the achievability a new quantum PIR scheme is introduced, which combines the quan-
tum PIR scheme of [SH20a] for replicated storage with the classical PIR scheme of
[FGHK17] for coded storage, both with collusion, through the use of (weakly) self-dual
GRS codes.

181





10
Conclusion and Outlook

This work investigated different aspects of algebraic coding theory with a focus on
concepts related the distributed data storage.
Part I considered codes with different locality properties, starting with MR codes

for grid-like topologies. While the understanding of (MR) LRCs has improved sig-
nificantly in recent years, this class of codes still offers exciting research possibilities,
as highlighted by the presented negative result on the set of correctable erasure pat-
terns. This interest is not purely theoretical though, as MR codes are, by definition,
the best choice to lessen the effects of the main downside of using codes with local-
ity in distributed storage systems—their reduced overall erasure correction capability
compared to MDS codes. The complexity of storage systems can be expected to in-
crease with the growth of online services and the presented results take a step towards
accommodating such more complex requirements in a coding theoretic framework.
The next challenged addressed in this part of the work is the combination of codes

with locality and codes that offer bandwidth-efficient node repair, i.e., regenerating
codes. Both concepts are motivated by distributed storage applications and the pre-
sented constructions of locally and globally regenerating PMDS codes combine them
to provide classes of codes which are optimal in terms of their repair bandwidth and
erasure correction capability, given the locality constraints. In this regard, an opportu-
nity for future research is the construction more practical classes of codes, in particular
regarding the subpacketization.
The final chapter in this first part highlighted the versatility of locality properties

beyond the application in distributed storage. By exploiting the particularly strong
locality and availability of lifted affine-invariant codes, a new, simple BD decoder for
this class of codes was introduced. Further, the correction capability of this class of
codes in the high-error regime was proved.
In Part II the first known bound on the success probability of decoding interleaved

alternant codes was derived. Among these subcodes of RS codes are some of the most
popular classes of codes over small alphabets, such as BCH and Goppa codes. While
the remaining gap to the newly introduced lower bound leaves room for improvement,
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the utilized approach has potential to lead to even stronger bounds by means of a
better understanding of the distribution of dimensions among alternant codes.
Finally, Part III addressed the problem of PIR in a DSS encoded with an MDS code.

Some progress on the long-standing open problem of determining the capacity in this
setting was made by introducing to new notions of PIR and proving their capacities.
Aside from the implications for the considered class of schemes, these results also
enhance the understanding of the requirements for any scheme to improve upon their
rate.
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