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Zusammenfassung

In der Antennenmesstechnik wird ein großer Aufwand betrieben, um den Einfluss von Streu-
feldern—eine bedeutende Fehlerquelle—zu minimieren. Das geschieht beispielsweise, indem
die Wände von Antennenmesskammern mit Absorbern ausgekleidet werden, um eine möglichst
reflexionsarme Umgebung zu schaffen. Die Einschränkungen, die ein solcher reflexionsarmer
Messaufbau mit sich zieht, sind erheblich, was die Anwendungsmöglichkeiten von Antennen-
messungen stark beschränkt.

In dieser Arbeit werden Echounterdrückungsmethoden beschrieben, die es ermöglichen, das un-
ter Freiraumbedingungen abgestrahlte Feld einer Testantenne (AUT, engl. antenna under test) aus
echobehafteten Messungen zu bestimmen. Die Ergebnisse dieser Arbeit schaffen damit die Grund-
lage für präzise Vermessungen der von einer AUT abgestrahlten Felder in bisher unerschlossenen
Anwendungsszenarien, darunter auch Messungen in stark reflektierenden Umgebungen.

Ausgehend von einer umfassenden Darstellung der Übertragungsfunktion zwischen Sende-
und Empfangsantenne wird eine formelle Beschreibung des Einflusses von Echos auf das Emp-
fangssignal in unterschiedlichen Messszenarien entworfen. Die formelle Beschreibung erfolgt
sowohl auf Basis von sphärischen Modenentwicklungen als auch mithilfe von äquivalenten
Oberflächenströmen im Zusammenhang mit Greenschen Funktionen. Im Gegensatz zur gängigen
Praxis, werden nicht nur Greensche Funktionen betrachtet, die aus auslaufenden Wellen bestehen,
sondern auch solche, die über einlaufende oder stehende Wellen beschrieben werden. Auf diese
Weise wird eine enge Analogie zwischen der Beschreibung mit sphärischen Moden und mit
äquivalenten Oberflächenströmen ersichtlich.

DieMöglichkeiten, Streufelder anhand ihrer räumlichenVerteilungen von den idealen Freiraum-
feldern der AUT zu trennen, werden für Messszenarien mit stationärer AUT und mit stationärer
Sondenantenne ausführlich analysiert. Dazu werden Quellrekonstruktionsalgorithmen untersucht,
die aus den Messsignalen äquivalente Quellen für das Antennenfeld entweder mit oder ohne
Berücksichtigung zusätzlicher Echoquellen bestimmen sollen.

Es stellt sich heraus, dass für Messszenarien mit stationärer AUT die relative Lage vom Echo-
zum Antennenvolumen maßgeblich ist für die Unterscheidbarkeit der erwünschten und uner-
wünschten Feldanteile. Die absolute Positionierung der AUT ist nicht relevant. Für ausreichend
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große Abstände zwischen Antennen- und Echogebiet—wenn evaneszente Feldeffekte zwischen
beiden Gebieten ausgeschlossen werden können—gelingt es, die Echoeinflüsse eindeutig von
den idealen Antenneneinflüssen zu trennen.

Für Messszenarien mit stationärer Feldsonde und rotierender AUT wird im Rahmen dieser
Arbeit erstmals das torusförmige äquivalente Quellgebiet der hypothetischen Echoquellen identi-
fiziert, mit denen gewisse (jedoch niemals alle) Echoeinflüsse berücksichtigt werden können. Der
Torus für die äquivalenten Echoquellen entfernt sich dabei von den Antennenquellen, je weiter
die AUT vom Drehzentrum entfernt montiert wird. Die Ergebnisse der theoretischen Überle-
gungen für beide Szenarien (rotierende oder stationäre AUT) werden mithilfe von numerischen
Simulationen untermauert. Da die unerwünschten Echoanteile in Szenarien mit rotierender AUT
schwieriger zu entfernen sind als in Szenarien mit stationärer AUT, gilt es hier in besonderem
Maße, die Echoeinflüsse in den Messergebnissen möglichst gering zu halten, was unter anderem
durch das Synthetisieren virtueller Sondenarrays erreicht werden kann.

Schließlich werden die zeitharmonischen Echounterdrückungsmethoden mit Zeitbereichsme-
thoden kombiniert, um effektive Echounterdrückung auch in herausfordernden Umgebungen zu
realisieren. Messungen mit in der Nähe der Antenne montierten Echoobjekten sowie Messkam-
pagnen in der eigens aufgebauten Moskitokammer, die bewusst starke Streufeldeinflüsse erzeugt,
zeigen, dass unter großem Mess- und Datenverarbeitungsaufwand das ideale Freiraumfeld der
AUT mit zufriedenstellender Genauigkeit (ca. −40 dB Abweichung zur Referenzmessung) auch
aus stark echobehafteten Messsignalen rekonstruiert werden kann.
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Abstract

Parasitic echo fields are an influential error source in antenna measurements and their suppression
and control requires a considerable amount of effort. For instance, the walls of antenna measure-
ment chambers are covered with absorbers in order to create an ideally anechoic environment. The
substantial restrictions of such an anechoic measurement setup limit the application of antenna
measurements.

This thesis describes echo suppression methods which make it possible to determine the
free-space radiated fields of an antenna under test (AUT) from echo distorted measurements. The
results of this work are the basis for previously unaccessible application scenarios of antenna
measurements, e.g., measurements in strongly reflective environments.

Starting from a comprehensive representation of the electromagnetic transmission between two
antennas, a formal description of the echo influence on the receiving signal is derived for different
measurement scenarios. The formal description is based on spherical mode expansions on the
one hand, and on equivalent surface currents on the other hand. In contrast to available literature,
not only Green’s functions in the form of outward-radiating fields are considered but also Green’s
functions consisting of inward-traveling or standing waves. In this way, a close analogy between
the descriptions based on spherical modes and equivalent surface currents becomes evident.

The possibilities to separate scattered fields from the desired free-space fields of the AUT are
analyzed in detail for measurement scenarios with a stationary AUT or a stationary probe. Source
reconstruction algorithms are investigated which aim to reconstruct equivalent AUT sources from
the measurement samples either with or without considering additional sources for the echo.

In scenarios with a stationary AUT the relative position between echo and antenna is decisive
for the separability of the desired and the undesired contributions. The absolute AUT position is
irrelevant. For sufficiently large separation distances between the AUT and the echo—when
evanescent fields can be precluded— the echo influences can be unambiguously distinguished
from the ideal AUT influences. A torus shaped source region for the unphysical additional
echo sources is identified for measurement scenarios with a stationary probe for the first time
in this thesis. A certain portion (but not all) of the echo influences can be accounted for by
these additional sources. The separation between the actual AUT sources and the auxiliary echo
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sources increases with an increasing distance of the AUT from the rotation center. The theoretical
results are supported by simulations for both scenarios (rotating or stationary AUT). Since it
is harder to remove the echo influences in stationary probe scenarios than in stationary AUT
scenarios, it is more important to avoid echo influences in the measurement samples. This is
accomplished, e.g., by synthesizing virtual probe arrays.

Finally, frequency domain and time echo suppressionmethods are combined to achieve effective
echo suppression even in challenging environments. Measurements with an echo object mounted
in proximity of the AUT as well as measurements in theMosquito chamber—a strongly reflective
environment built on purpose for the investigation of echo effects— show that with enormous
measurement and processing effort it is possible to determine the ideal free-space radiated field
with satisfactory accuracy (about −40 dB deviation from the reference) even from measurements
in strongly reflective environments.
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1
Introduction

The common purpose of antennas is to enable the interaction of distant objects via electromagnetic
fields, e.g., communication with a distant participant, remote sensing, or surveillance. Thus,
the primary quantity of interest of antennas is their radiation behavior (for reciprocal antennas
this is equivalent to the receiving behavior) under so-called far field (FF) conditions. While
many parameters such as the input reflection or the radiation efficiency can be subject of antenna
measurements, in this thesis, the focus lies on determining the radiated electromagnetic fields
of an antenna under test (AUT). Usually, one is interested in the ideal AUT behavior, i.e., as if
the AUT was placed in free-space without any disturbances from the environment. The ideal
measurement environment, therefore, consists of an anechoic chamber large enough to allow
the probe antenna to be located in the FF of the AUT but the efforts of building a large enough
test range with the required suppression of environmental influences is often not feasible, either
because the FF distance is too large to allow direct FF measurements or because echo influences
cannot be avoided.

The problem of unfeasibly large FF distances can be handled by near field (NF) measurement
techniques, where the desired FF characteristics are determined by a computational NF FF
transformation (NFFFT). However, the problem with undesired environmental influences remains,
as (even small) anechoic chambers are not perfect and echoes from walls or antenna positioning
systems remain one of the major error influences in antenna measurements [Newell 1988]. To
overcome the limitations imposed by the measurement chambers, powerful and flexible echo
suppression algorithms are in need to obtain accurate results. In non-ideal environments, where
absorbers may have a bad performance (e.g., at low frequencies) or are not feasible at all (e.g., in
outdoor measurements, in in-situ measurements, or measurements in standard assembly halls)
echo suppression becomes even more important.

The two key technologies—NFFFTs and echo suppression—are the subject of this thesis.
The goal is to derive a comprehensive formal description of the complex radiation scenarios
which may arise in various measurement setups. Based on this understanding of the physical
mechanisms behind the measurements, algorithms shall be derived which can determine the
free-space FFs of an AUT from (NF) measurements distorted by echoes from the environment.
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1. Introduction

The echo suppression methods must be capable of removing undesired echo contributions from
antenna measurements in arbitrary non-anechoic environments— including strongly reflective
environments1 —with high accuracy. With a history of several decades, a large variety of
algorithms exist to solve the tasks of NFFFT and echo suppression, often specialized to very
particular measurement scenarios. Most of the algorithms are not general enough to handle very
complex or strongly reflective environments and this thesis attempts to close relevant gaps in
the literature to open up the possibility of performing accurate antenna measurements in many
practically relevant applications.

An overview on the landscape of existing literature for NFFFT algorithms and echo suppression
techniques is given in the next section, whereas many of the methods are analyzed in more detail
in the main part of this thesis. A description of the scope and the outline of the thesis is given at
the end of this chapter.

1.1. Overview of Existing Literature

The tasks of echo suppression and field transformation are closely related as both tasks are
fundamentally linked to reconstructing feasible sources for the radiated fields of an AUT. While
the distinction into NF and FF is sensible for an isolated antenna, such a distinction is not so clear
in an echoic environment. In free-space, the antenna radiation in a sufficiently large distance is
well approximated by a single plane wave, thus, the FF can be defined as the region, where the
plane wave approximation of the AUT field is accurate enough for a certain application. Often the
accuracy criterion is based on an estimate for the expected phase error in the FF approximation
dependent on the size of the AUT [Hansen 1988, p. 21], [Balanis 2005, pp. 26ff.]. When
echoes are present, the fields can usually not be approximated well by a single plane wave and
consequently echo suppression techniques are often linked to NF measurement techniques and
the related NFFFT techniques, even if the measurements were obtained in FF distance.

1.1.1. Field Transformation Algorithms

With the availability of computers powerful enough to handle measurements of reasonable
size and with the development of new methods to calculate the FFs from NF samples, antenna
NF measurements began to become popular in the second half of the last century, e.g., [Tice
1955; Johnson 1973]. An excellent overview over the historical development of NF antenna
measurements is given in [Yaghjian 1986]. The basic idea behind NFFFTs is to express the
AUT radiation by equivalent sources, which can consist of equivalent electric and/or magnetic
currents [Petre 1992; Sarkar 1999; Álvarez 2007; Álvarez 2008; Eibert 2010] or coefficients of a
modal field expansion [Sarkar 1997; Hansen 1988; Ludwig 1971; Kerns 1963]. The unknown
coefficients of the equivalent field representation are determined in a way such that they match the
sampled field values at the measurement positions, thereby creating an equivalent field description
valid for the complete region of interest (in this sense, NFFFT algorithms can be interpreted as
interpolating the field at the locations which were not sampled by a field probe).

In general, the coefficient determination step requires to invert a system of equations relating
1This might be interesting for instance in the context of antenna measurements in reverberation chambers [Gruber

2015].
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1.1. Overview of Existing Literature

the unknown source coefficients to the measured field samples. This is the reason, why modal
field transformations were the first to be developed as the inverse of the resulting system of
equations can be found analytically and computed very efficiently by means of fast Fourier
transforms (FFTs) utilizing the orthogonality properties of the field modes in certain coordinate
systems—e.g., planar, spherical or cylindrical coordinates [Yaghjian 1986]. The application of
FFT based methods requires the measurements to be obtained regularly distributed on canonical
measurement surfaces and often also specific properties of the utilized field probes are needed.

The receiving properties of the field probes play an important role in NF measurements. Due
to their non-zero size, field probes do not measure the electric field at a single point but perform
a spatial weighting of the incident fields over the complete probe volume [Eibert 2015]. Taking
the realistic probe behavior into account in the system of equations for the determination of
the source coefficients is called probe correction [Yaghjian 1986; Schmidt 2008a; Larsen 1977;
Larsen 1984] and is generally possible for all above mentioned transformation methods, however,
often the efficiency of the NFFFT method is lost as FFT based methods are no longer directly
applicable, or additional measurement samples are needed [Hansen 2011b]. Certain less regular
sampling strategies—e.g., spiral scans—are possible based on modal expansions [D’Agostino
2011; D’Agostino 2016; D’Agostino 2013].

Equivalent current based approaches are far more flexible concerning the placement of equiva-
lent sources and measurement samples. In current based approaches, equivalent surface currents
can be placed on an arbitrary closed Huygens surface around the AUT and the measurement sam-
ples can be irregularly distributed around the AUT [Quijano 2010a], provided the measurement
samples contain sufficient information to characterize the important AUT radiation [Qureshi
2013b]. With the help of ideas from the multilevel fast multipole method (MLFMM) [Song
1995; Coifman 1993] based on a hierarchical domain decomposition scheme for the source and
observation domains, the matrix-vector products relating source coefficients to the observed
signals can be evaluated very efficiently. These matrix vector products can be used in an iterative
solution of the system of equations for determining the source coefficients. A propagating plane
wave expansion of the translation operator between the source and observation domains is the
basis for the so-called Fast Irregular Antenna Field Transformation Algorithm (FIAFTA) [Eibert
2009; Eibert 2014; Eibert 2010; Eibert 2016b; Schmidt 2008a; Schmidt 2008b; Eibert 2005;
Eibert 2016a], which forms the basis for all surface current based field transformations performed
in this thesis.

1.1.2. Echo Suppression Methods

A variety of methods have been developed to separate undesired echo influences in the measure-
ment data by means of processing techniques and a general summary can be found, e.g., in [Yinusa
2015]. It should be understood that, in order to extract the desired echo free signal from echoic
measurements, the measurements require a certain amount of redundancy. Compared to anechoic
environments, where a non-redundant number of measurements [Bucci 1996; Bucci 1991] can
be used to characterize the AUT radiation, additional measurements are needed to identify and
filter out the echo contributions [Foged 2013]. Redundancy in the measurements can be achieved
by either measuring at more than one frequency, giving rise to time domain echo suppression
techniques [Blech 2010b; Levitas 2006; Burrell 1973], or by obtaining measurement samples in
more measurement positions than needed to obtain the AUT pattern under free-space conditions.
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The additional samples in spatial domain are the basis for frequency-domain methods which
ultimately aim to separate the AUT sources from the echo contributions based on spatial filtering.
Finally, the echoic environment can be characterized in an additional preliminary measurement.
The distortions in the measurements can be compensated by taking the previously measured
chamber fields into account [Pogorzelski 2009; Pogorzelski 2010; Black 1995; Toivanen 2010;
Toivanen 2009; Koh 2011].

Time-domain echo suppression methods utilize the fact that echo signals usually have a longer
traveling time than the line of sight (LOS) signal. The direct path contributions can be separated
from the echo contributions by identifying the different traveling times of the signal components.
The longer traveling time of echo waves can be directly exploited in hardware by finishing the
measurement before the first echo signal arrives at the probe [Levitas 2006; Blech 2008; Blech
2010b; Leibfritz 2006; Henderson 1989; Levitas 1996; Lestari 2005; Morales 2016; Young
1973]. More common is, however, to sample the signals sequentially at distinct frequencies and
to obtain a time domain representation by various reconstruction methods. The most commonly
used method to find a time domain representation of the frequency sequence is by means of
an inverse fast Fourier transforma (IFFT)2 [Loredo 2004; Tian 2008; Loredo 2009; Leather
2004b; Leather 2004a; Oppenheim 2010]. The major drawback of FFT based methods is the
large required bandwidth—about ten times the reciprocal of the anticipated time domain step
width was suggested in [Loredo 2004]. Naturally, several alternative reconstruction methods
have been proposed to overcome the severe bandwidth requirements for time gating [Moon 2009;
Sarkar 2016], most notably the matrix pencil method [Sarkar 1995; Fourestie 1999; Hua 1990a;
Hua 1991; Hua 1990b; Fernández del Rı́o 1996], which matches the frequency domain sequence
to a sequence of exponentials, and a reconstruction of the time domain sequence with a sparsity
constraint [Mauermayer 2016; Mauermayer 2017]. All time domain methods discussed here
were applied directly to the probe output signals and have problems to separate signals with a
similar run time, e.g., when a measurement sample was obtained in the shadow region of the
echo object.

Complementary to time-domain methods, frequency-domain echo suppression methods sepa-
rate the undesired echo contributions by spatial filtering. Frequency domain echo suppression
algorithms can be further subdivided into current reconstruction methods [Quijano 2011a; Qui-
jano 2011b; Cano 2010; Cano-Facila 2011; Garcia-Gonzalez 2011] and modal echo suppression
methods [Hess 2006; Hess 2010a; Hess 2011; Hess 2010b; Gregson 2009; Gregson 2010a;
Gregson 2011a; Gregson 2011b; Gregson 2011d; Gregson 2011c; Gregson 2013; Gregson 2010b;
Gregson 2012a; Gregson 2012b; Gregson 2010c; Gregson 2017a; Gregson 2017b; Tian 2019]
based on the type of equivalent sources for the AUT. In modal echo suppression methods, the
AUT fields are expressed in terms of a field expansion into orthogonal modes [Yaghjian 1986;
Hansen 1988], whereas the fields in current reconstruction methods are expressed by equivalent
surface currents on a Huygens surface enclosing the AUT. The echo suppression in both methods
is based on restricting the AUT fields to fields which can be radiated by an AUT of given size.
The source reconstruction can be augmented by assuming additional sources which account for
the echo distortions [Yinusa 2012b; Yinusa 2012a].

2In this work, the FFT is regarded as a computationally efficient implementation of the discrete Fourier transform,
and likewise for their respective inverses. The terms FFT and discrete Fourier transform are used synonymously
in the following.
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Finally, the beneficial effects of using directive probes shall be mentioned [Hansen 1984]. By
illuminating the echoes as little as possible, the echoes tend to have a small influence on the
measurements. The beneficial effects can under certain circumstances be achieved by combining
the measurement samples from different probe locations to form a virtual receiving array [Yinusa
2014; Dohler 2002; Dohler 2004; Dohler 2009]. These virtual beam forming methods are strongly
related to the field synthesis problem [Clauzier 2015; Bucci 2013; Ford 2013; Laitinen 2010; Hill
1988; Haupt 2003b; Haupt 2003a; Mauermayer 2015; Knapp 2019c] in which a certain desired
field distribution shall be achieved by optimizing the excitation of the elements of an antenna
array.

1.2. Scope and Outline of the Thesis

The main objective of this thesis is the derivation and analysis of echo suppression algorithms
for antenna measurements in arbitrary scattering scenarios. Many different echo suppression
algorithms have already been presented in the literature, but the existing literature in the field
of echo suppression algorithms is confusingly fragmented because usually the algorithms are
only described isolated from each other and are applicable only in special cases. The range
of applicable measurement scenarios for the specialized methods is not always well described
and the requirements for an effective echo suppression are often obscure. The relation between
different echo suppression methods—e.g., current and mode based algorithms— is not clear.

Therefore, the first task of the thesis is a unified description of existing methods based on a
rigorous formal description of the antenna interaction in scattering scenarios. Throughout the
thesis, the attempt is made to clarify the analogies between field descriptions based on spherical
vector field modes and surface current based methods. Some properties of the fields can be
more easily described by one or the other description, but the underlying physics is the same,
independent on how it is described.

When the fields and interactions between theAUT and the probe antenna are correctly described,
the formal expressions can be used to explain the working mechanisms behind existing echo
suppression methods and estimate their expected performance in certain scenarios. Finally,
different echo suppression methods can be combined to complement each other and thereby
achieve field reconstructions with an accuracy beyond previously achieved echo suppression
levels, even in strongly reflective environments.

This thesis is written for an audience with some experience in electromagnetics. Therefore, the
text does not start with Maxwell’s equations but it is assumed that the reader is already familiar
with concepts like the curl-curl-equation for time harmonic fields. Every chapter is concluded
with a chapter summary containing the relevant chore ideas from the chapter and also clarifying
the contribution of this thesis to the literature.

The starting point for the formal description is a description of guided waves and free-space
waves in Chapters 2 and 3, respectively. While the description of guided waves in Chapter 2
follows the paths which can be found in standard text books [Marcuvitz 1951; Collin 1990],
the description of the free-space fields in Chapter 3 includes a discussion of Green’s functions
with an inward-traveling asymptotic boundary condition. These Green’s functions are usually
discarded in text books, as they are related to non-causal fields [Chew 1995; Jin 2015]. However,
the analysis reveals striking similarities to a modal expansion into spherical waves, where both,
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inward- and outward-traveling waves are common [Hansen 1988]. The fields are systematically
characterized into purely radiated, purely absorbed, purely incident, and scattered fields and their
corresponding properties are revisited in terms of equivalent surface currents on the boundary of
the observation volume and in terms of spherical vector waves, respectively.

In Chapter 4, antennas enter the scene as transformers between guided waves and free-space
waves. The transformation between a forward-traveling wave on a waveguide into a trans-
mitted field is described in terms of equivalent surface current based descriptions as well as
in terms of spherical waves. In the same manner, also the reverse operating mode of an an-
tenna— transforming an incident field into a backward-traveling wave on the waveguide— is
revisited. In this regard, the role of an antenna as a scatterer is also briefly addressed.

Based on the results from previous chapters, the interaction between two antennas in the form
of the 𝑆12- and 𝑆21-scattering parameters is treated in Chapter 5. Here, also the principles of
NFFFT algorithms are detailed, both in terms of current reconstruction methods and spherical
mode expansions, however, only for the case of an ideal anechoic environment at this point.

The formal treatment of echoes is introduced in Chapter 6. The echo influence is described by
additional sources dependent on which of the two antennas is in transmitting or receiving mode.
Despite the echo sources are different in both cases, the reciprocity relation 𝑆12 = 𝑆21 still holds
and, therefore, one can switch between the formal descriptions as one wishes. On the one hand,
using the 𝑆12-parameter description is advantageous in scenarios where the probe is stationary
with respect to the echoic environment, because the echo sources can remain the same for all
measurement positions. On the other hand, the 𝑆21-parameter description can be beneficially
employed for stationary AUT scenarios for the same reason.

Chapter 7 describes echo suppression methods in time domain. Although possible [Blech
2008; Blech 2010b; Levitas 2006], it is not common to obtain the measurements directly in time
domain. Measurements are customarily obtained at distinct frequencies and a time domain signal
is generated from the multi-frequency data. Chapter 7 investigates the relationship between
the frequency domain samples of a signal and the resulting time domain representations using
relevant reconstruction methods. Time domain echo suppression methods are usually applied
directly to the measurement data before any further processing. As will be shown in later chapters,
it is also possible to apply time gating at different steps of the processing chain, but the theoretical
investigation in Chapter 7 is abstract enough to be applicable also to those cases.

Apart from providing a comprehensive view on the topic of echoic NF measurements, the main
contribution of this thesis starts with the extensive analysis of frequency domain echo suppression
techniques in Chapter 8. It is shown why it is important to differentiate between stationary probe
and stationary AUT scenarios and both scenarios are investigated in detail. For stationary AUT
scenarios, it is shown how AUT sources can be separated from echo sources and why a perfect
separation of the undesired contributions can be unfeasible if the echo objects are too close to the
AUT. A heuristic argument involving the anticipated degrees of freedom (DoFs) of the complete
system containing AUT and echo is used to explain why echo influences can persist even when
the echo objects are well separated from the AUT. The theoretical investigations are accompanied
by numerical simulations. In the second part of Chapter 8, echoic scenarios with a stationary
probe are investigated, which are historically linked to modal echo suppression techniques. The
description by spherical field modes is particularly well suited to discuss the influences of a
moving AUT. The success of modal echo suppression methods is explained on the basis of an
analysis of the portion of the echo distortion which can be reconstructed by AUT sources. The
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source region of the additional sources accounting for the echoes is identified and shown to have
a larger separation to the AUT sources the further the AUT is mounted away from the rotation
center. Numerical simulations support the findings from the theoretical investigation. The chapter
concludes with describing how the beneficial effect of directive probes can be synthesized by
combining the probe output signals from different probe locations. The combination of probe
signal acts as a virtual probe array which can be used to collect the measurement samples for
a rotating AUT. Since the probe antenna as well as the AUT move in this scenario, it can be
regarded as a hybrid case from the two previous scenarios. The effectiveness of the method is
illustrated with a measurement example.

Two examples of particularly challenging measurement scenarios are presented in Chapter 9.
These examples require a powerful combination of time domain and frequency domain methods
to obtain acceptable reconstruction results for the AUT free-space fields. The first example
consists of an echo object in close proximity to the AUT with a fixed position relative to the AUT.
Since this scenario must be described by a moving probe, it is clear that conventional time gating
cannot be effective for all measurement positions, as for some measurement positions, the probe
is located in the shadow region of the echo object and no path length difference between the LOS
path and the reflected path can be used for time gating. The proposed solution is to reconstruct
equivalent surface currents on a tight Huygens surface around the AUT and the echo in frequency
domain for many frequencies. Following the analysis from Chapter 8, the spatial separation
should be possible if the echoes are not too close, but mutual interactions distort the actual current
distribution on the AUT. These mutual interactions can be treated in a second step by time gating
the reconstructed sources (as opposed to time gating the signals before the reconstruction step as
was the case for all existing time gating techniques in the literature). The effectiveness of the
proposed processing scheme is illustrated with a simulation and also with an actual measurement.
The second example of a challenging measurement scenario consists of a strongly reflective
environment called Mosquito chamber. Inside the anechoic chamber of the Technical University
of Munich (TUM), a smaller chamber was built with walls consisting of a metallic mesh. All four
chamber walls as well as the floor and the ceiling were covered by the metallic mesh, thus, the
AUT and probe positioners were effectively placed inside a strongly reflective environment. The
free-space radiated fields of three different AUTs covering the S-Band and the Ku-Band were
determined from a large number of measurement samples obtained inside the Mosquito chamber.
For example, a complete spherical measurement (by rotating the AUT) was obtained for more
than 100 different probe positions. Time gating was combined with virtual array synthesis for
the probes to achieve the echo suppression in this challenging environment. Finally, Chapter 10
concludes this work and summarizes the main results.

1.3. Notation

Throughout this thesis, a time dependency of e j𝜔𝑡 is assumed and suppressed for all time harmonic
fields and currents, if not stated otherwise. For quantities with a different time dependence, the
time dependence is made explicit, when necessary (e.g., in Chapter 7). Physical vectors which
have a meaningful interpretation in terms of a direction or location in the three-dimensional
world, such as the electric field 𝑬, the surface current density 𝑱, or the location 𝒓 are typeset in a
bold, serif, and italic font. The vector spaces in which these vectors are situated are commonly
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ℝ3 or ℂ3 (or two dimensional surfaces embedded in these spaces). For physical vectors, this
thesis follows standard conventions, where either capital letters or minuscules can be used to
denote a vector. The unit vectors in certain spatial directions are denoted by 𝒆𝑘, where the index
𝑘 indicates the direction (e.g., the vector 𝒆𝑥 is the unit vector in 𝑥-direction).

Vectors in abstract linear algebra spaces which have a meaningful interpretation as either
column or row vectors, such as a coefficient vector x ∈ ℂ𝑁×1 are typeset with minuscules in a
bold, sans serif, and italic font. Notice the subtle difference in their definition space—ℂ𝑁×1

instead of ℂ𝑁 —in contrast to their physical counterparts. Matrices (e.g., A ∈ ℂ𝑀×𝑁 is a matrix)
are written in capital letters in a bold, sans serif, and italic font.

Dyadic quantities such as the dyadic Green’s function 𝓖 are written in a bold calligraphic
font. The noun dyadic refers to a general tensor of order two (e.g., 𝓓 = 𝑐𝑥𝑥 𝒆𝑥𝒆𝑥 + 𝑐𝑥𝑦 𝒆𝑥𝒆𝑦 +
𝑐𝑥𝑧 𝒆𝑥𝒆𝑧 + 𝑐𝑦𝑥 𝒆𝑦𝒆𝑥 + 𝑐𝑦𝑦 𝒆𝑦𝒆𝑦 + 𝑐𝑦𝑧 𝒆𝑦𝒆𝑧 + 𝑐𝑧𝑥 𝒆𝑧𝒆𝑥 + 𝑐𝑧𝑦 𝒆𝑧𝒆𝑦 + 𝑐𝑧𝑧 𝒆𝑧𝒆𝑧 is a dyadic), whereas
the noun dyad specifically refers to a tensor of order two and rank one (e.g., 𝒆𝑥𝒆𝑧 is a dyad). A
dyad is the result of a dyadic product (or tensor product) 𝒂𝒃 between two vectors (the dyadic
product has no multiplication symbol between the vectors in contrast to the scalar product 𝒂 ⋅ 𝒃
or the cross product 𝒂 × 𝒃).

Mathematical constants, such as π, the Euler constant e, the imaginary unit j, or the unit dyadic
I are typeset in upright letters (notice that physical constants such as the speed of light 𝑐0 are
not considered to be mathematical constants and therefore denoted by italic letters). Similarly,
mathematically well defined and established (generalized) functions such as sin(𝑥) or the Dirac-
Delta distribution δ(𝑥) as well as mathematically well defined and established operators such
as the derivative operators d(⋅)/d𝑥, the infinitesimal element d𝑥 or the Laplace operator Δ are
typeset with upright symbols.

The volume element in a volume integral over the spatial variable 𝒓 is denoted by d𝑣 (or d𝑣′ if
the integration variable is 𝒓′) and the corresponding surface element in a surface integral over the
spatial variable 𝒓 is denoted by d𝑎 (or d𝑎′ if the integration variable is 𝒓′). The surface integral
over the Ewald sphere in spectral domain, where the integration is performed over all directions
in space indicated by the short hand notation �̂� has its surface element for the integration (in a
slight abuse of notation) symbolically expressed by d�̂�.
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2
Guided Waves

Antennas are devices which transform guided waves into free-space waves and vice versa. It is
thus convenient to analyze guided waves before going on with the discussion about antennas.
Waveguides1 are structures, which support solutions of Maxwell’s equations in the form

𝑬(𝑥, 𝑦, 𝑧) = 𝑬(𝑥, 𝑦, 0) e±𝛾𝑧 (2.1)

and
𝑯(𝑥, 𝑦, 𝑧) = 𝑯(𝑥, 𝑦, 0) e±𝛾𝑧 , (2.2)

where without loss of generality, the propagation direction was chosen along the 𝑧-axis [Marcuvitz
1951, p. 13]. For the upcoming analysis, the considerations are limited to shielded waveguides
filled with a homogeneous medium. The cross section of the waveguide is surrounded by a
perfect electrically conducting (PEC) enclosure. The limitation to this special case ensures
that free-space waves can couple with the waveguide only via the antenna and that the field
modes are either transverse electromagnetic (TEM) fields where neither the electric nor the
magnetic field has a 𝑧-component, or transverse electric (TE) fields where only the magnetic
field has a 𝑧-component, or transverse magnetic (TM) fields where only the electric field has
a 𝑧-component [Marcuvitz 1951, p. 4]. Some possible cross sections for such waveguides are
depicted in Fig. 2.1.

The finite cross section of the waveguide is defined as the area 𝑆 in the 𝑥𝑦-plane enclosed by
the perfectly conducting hull2. The guided field modes have desirable orthogonality properties
which can be exploited by mode matching techniques. The limitation to shielded waveguides
is not severe, as the guided wave is anyhow eventually guided into a shielded waveguide in
most practical applications, e.g., when the waveguide is connected to a vector network analyzer
(usually by a coaxial cable).

1The term waveguide will be used as an umbrella term for all guiding structures, including tube like hollow
waveguides and transmission lines.

2Open waveguides such as microstrip lines formally require to consider an infinite cross section for the guided
wave. More details on open waveguides may be found for example in [Bladel 2007, pp. 882ff.].
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𝑧
𝑥

𝑦

Hollow waveguide Coaxial cable Two-wire cable Multi-wire cable

Fig. 2.1.: Cross sections of different examples of wave-guiding structures considered in this thesis. All
waveguides have a PEC enclosure to avoid coupling with free-space waves and to ensure the
orthogonality of the guided modes.

As will be shown in the following, the guided waves in the shielded waveguides can be
expressed by a sum of orthogonal modes traveling in positive or negative 𝑧-direction [Marcuvitz
1951, p. 5]. For all waveguide modes, the transversal part of the backward-traveling modes in the
reference plane at 𝑧 = 0 is found from the corresponding transversal part of the forward-traveling
mode by simply changing the sign of the magnetic field.

2.1. Transverse Electromagnetic Modes

The simplest kind of guided field modes are TEM modes. TEM waves which have neither an
H-field nor an E-field component in 𝑧-direction can only exist inside a waveguide if there is at
least one conductor inside the waveguide apart from the enclosing hull [Marcuvitz 1951, p. 4].
Coaxial cables and shielded two-wire cables fall into this category, for example (also multi-wire
cables can be imagined but have little practical relevance). The TEM fields inside the waveguide
can be expressed by [Collin 1990, pp. 174f., pp. 247ff.]

𝑬t(𝑥, 𝑦, 𝑧) = −∇t𝛷(𝑥, 𝑦) e±j𝑘0𝑧 (2.3)
𝑯t(𝑥, 𝑦, 𝑧) = ∓𝑌 𝒆𝑧 × 𝑬t(𝑥, 𝑦, 𝑧) , (2.4)

where ∇t = 𝒆𝑥 ( 𝜕/ 𝜕𝑥)+𝒆𝑦 ( 𝜕/ 𝜕𝑦) is the transverse part of the Nabla operator [Marcuvitz 1951, p.
4], 𝑘2

0 = 𝜔2𝜀𝜇 is the propagation constant, and 𝑌 = √𝜀/𝜇 is the admittance of the homogeneous
medium with permittivity 𝜀 and permeability 𝜇 between the conductors. The subscript “t” in
𝑬t and 𝑯t indicates that the vectors are transverse. No longitudinal field component (parallel
to the 𝑧-axis) exists for TEM modes. The scalar generating function 𝛷(𝑥, 𝑦) is a solution to the
two-dimensional Laplace equation

Δt 𝛷(𝑥, 𝑦) = 0 (2.5)

in the 𝑥𝑦-plane subject to the boundary condition that the value of 𝛷(𝑥, 𝑦) is constant along the
border of any conductor (but the value may change from one conductor to the other) [Marcuvitz
1951, p. 4]. The symbol Δt = 𝜕2/ 𝜕𝑥2 + 𝜕2/ 𝜕𝑦2 denotes the transverse part of the Laplacian.
It is necessary that 𝛷 attains different values on at least two conductors to obtain a non-trivial
solution for the electric field3. The upper signs of the expressions in (2.3) and (2.4) correspond
3Due to the maximum principle of solutions of the Laplace equation, the function 𝛷(𝑥, 𝑦) must be constant if the

same potential is enforced on all boundaries.
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to a wave propagating in negative 𝑧-direction and the lower signs to a wave traveling in positive
𝑧-direction. Losses in the medium can be introduced by letting 𝜀 have a negative imaginary part,
giving rise to an imaginary part in the propagation constant 𝑘0 = 𝛽 − j𝛼.

If the waveguide has 𝑁 separate conductors (including the surrounding tube), there are 𝑁 − 1
possible independent propagating TEM modes, which are obtained by consecutively fixing the
potential on one of the 𝑁 − 1 internal conductors to 𝑉𝑛 ≠ 0 and setting the remaining conductors
to a potential of 0 [Collin 1990, p. 248].

2.2. Transverse Electric Modes

When no additional conductor is present inside the conducting tube, the waveguide is called
hollow waveguide. No TEM mode exists in a hollow waveguide but one can find infinitely many
discrete solutions with a 𝑧-component of the magnetic field and no 𝑧-component of the electric
field. These TE solutions also exist on all other waveguides considered in this work. The electric
and magnetic fields of the TE modes can be expressed by [Collin 1990, pp. 330ff.]

𝑯t,TE = ±𝛾 ∇t𝜓TE e±𝛾𝑧 (2.6)
𝐻𝑧,TE = −Δt𝜓TE e±𝛾𝑧 (2.7)
𝑬t,TE = ±𝑍TE 𝒆𝑧 × 𝑯t,TE (2.8)

with the TE wave impedance

𝑍TE =
j𝑘0𝑍

𝛾
. (2.9)

The subscript “t” means the transverse part (only 𝑥- and 𝑦-component) of the fields and 𝑍 = √𝜇/𝜀
is the material impedance of the material between the conductors.

The involved scalar generating function 𝜓TE is a solution to the two-dimensional scalar
Helmholtz equation

Δt 𝜓TE + 𝑘2
𝑐 𝜓TE = 0 (2.10)

satisfying the boundary condition 𝜕𝜓TE/ 𝜕𝒏 = 0 on the surface of the conductors. Due to the
boundary condition, solutions for 𝜓TE exist only for certain discrete eigenvalues 𝑘𝑐 > 0. The
value for 𝛾 is fixed for every TE solution by the relation

𝑘2
0 + 𝛾2 = 𝑘2

𝑐 , (2.11)

where 𝑘2
0 = 𝜔2𝜀𝜇 is the hypothetical plane wave propagation constant for the material. A

propagating wave is characterized by a purely imaginary 𝛾 in the lossless case, which happens
for 𝑘2

0 > 𝑘2
𝑐 . If 𝑘2

0 < 𝑘2
𝑐 in the lossless case, 𝛾 is purely real and the so-called evanescent wave is

exponentially damped along its direction of propagation. Losses are considered by a negative
imaginary part of 𝜀, such that both, 𝑘0 and 𝛾 become complex valued numbers with real and
imaginary part. A real part of 𝛾 always indicates that the corresponding mode is damped along
its propagation direction (either due to losses or due to the mode being evanescent) [Collin 1990,
pp. 340ff.].

11



2. Guided Waves

2.3. Transverse Magnetic Modes

Similar to the TE modes, a second set of infinitely many discrete solutions exists on a waveguide
with a 𝑧-component of the electric field and no 𝑧-component of the magnetic field. These solutions
are called TM modes and their electric and magnetic fields are expressed as4 [Collin 1990, pp.
332f.]

𝑬t,TM = −𝛾 ∇t𝜓TM e±𝛾𝑧 (2.12)
𝐸𝑧,TM = ±Δt𝜓TM e±𝛾𝑧 (2.13)
𝑯t,TM = ∓𝑌TM 𝒆𝑧 × 𝑬t,TM (2.14)

with the TM wave admittance
𝑌TM =

j𝑘0
𝛾𝑍

. (2.15)

The subscript “t” means the transverse part (only 𝑥- and 𝑦-component) of the fields and 𝑍 = √𝜇/𝜀
is the material impedance of the material between the conductors.

The involved scalar generating function 𝜓TM is a solution to the two-dimensional scalar
Helmholtz equation

Δt𝜓TM + 𝑘2
𝑐𝜓TM = 0 (2.16)

satisfying the boundary condition 𝜓TM = 0 on the surface of the conductors. Due to the boundary
condition, solutions for 𝜓TM exist only for certain discrete eigenvalues 𝑘𝑐 > 0. The value for 𝛾 is
fixed for every TE solution by the relation

𝑘2
0 + 𝛾2 = 𝑘2

𝑐 , (2.17)

where 𝑘2
0 = 𝜔2𝜀𝜇 is the hypothetical plane wave propagation constant for the material. A

propagating wave is characterized by a purely imaginary 𝛾 in the lossless case, which happens
for 𝑘2

0 > 𝑘2
𝑐 . If 𝑘2

0 < 𝑘2
𝑐 in the lossless case, 𝛾 is purely real and the so-called evanescent wave is

exponentially damped along its direction of propagation. Losses are considered by a negative
imaginary part of 𝜀, such that both, 𝑘0 and 𝛾 become complex valued numbers with real and
imaginary part. A real part of 𝛾 always indicates that the corresponding mode is damped along
its propagation direction (either due to losses or due to the mode being evanescent) [Collin 1990,
pp. 340ff.].

2.4. Orthogonality Properties of Waveguide Modes

The field modes of the previous sections have important orthogonality properties. This section
follows the derivation in [Collin 1990, pp. 335ff.] which can be used to derive the orthogonality
between any pair of TE and TM modes but also to derive the orthogonality between a possible
TEM mode and any TE or TM mode.

4Notice that the signs are changed compared to [Collin 1990]. In the sign convention used here, we have for the
transversal fields of the same mode propagating in opposite directions 𝑬t,TM = 𝑬′

t,TM and 𝑯t,TM = −𝑯′
t,TM (The

primed fields denote the mode propagating in opposite direction of the unprimed fields).
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2.4. Orthogonality Properties of Waveguide Modes

Let 𝑬𝑚, 𝑯𝑚 and 𝑬𝑛, 𝑯𝑛 be two independent electromagnetic fields corresponding to non-
degenerate guided wave modes traveling in positive 𝑧-direction on a shielded waveguide. The
corresponding transverse fields are denoted by 𝑬t,𝑚, 𝑯t,𝑚 and 𝑬t,𝑛, 𝑯t,𝑛.

The two waveguide modes have a 𝑧-dependency of e−𝛾𝑚𝑧 and e−𝛾𝑛𝑧, respectively. Because
non-degenerate modes are assumed, 𝛾𝑚 ≠ 𝛾𝑛. Multiplying the four curl equations

∇ × 𝑬𝑚 = −j𝜔𝜇𝑯𝑚 , (2.18)
∇ × 𝑬𝑛 = −j𝜔𝜇𝑯𝑛 , (2.19)

∇ × 𝑯𝑚 = j𝜔𝜀𝑬𝑚 , (2.20)
∇ × 𝑯𝑛 = j𝜔𝜀𝑬𝑛 , (2.21)

with 𝑯𝑛, 𝑯𝑚, 𝑬𝑛, and 𝑬𝑚, respectively, and subtracting two equations each, one obtains

𝑯𝑛 ⋅ ∇ × 𝑬𝑚 − 𝑯𝑚 ⋅ ∇ × 𝑬𝑛 = 0 (2.22)

and
𝑬𝑛 ⋅ ∇ × 𝑯𝑚 − 𝑬𝑚 ⋅ ∇ × 𝑯𝑛 = 0 . (2.23)

Using the identity5 𝑩 ⋅ ∇ × 𝑨 − 𝑨 ⋅ ∇ × 𝑩 = ∇ ⋅ 𝑨 × 𝑩 after adding (2.22) and (2.23) we have

∇ ⋅ (𝑬𝑚 × 𝑯𝑛 − 𝑬𝑛 × 𝑯𝑚) = 0 (2.24)

∇t ⋅ (𝑬𝑚 × 𝑯𝑛 − 𝑬𝑛 × 𝑯𝑚) + 𝒆𝑧 ⋅ 𝜕
𝜕𝑧 (𝑬𝑚 × 𝑯𝑛 − 𝑬𝑛 × 𝑯𝑚) = 0 (2.25)

∇t ⋅ (𝑬𝑚 × 𝑯𝑛 − 𝑬𝑛 × 𝑯𝑚) − 𝒆𝑧 ⋅ (𝛾𝑚 + 𝛾𝑛) (𝑬t,𝑚 × 𝑯t,𝑛 − 𝑬t,𝑛 × 𝑯t,𝑚) = 0 (2.26)

Integrating over the waveguide cross section 𝑆 and exploiting the two-dimensional divergence
theorem we have

∬
𝑆

∇t ⋅ (𝑬𝑚 × 𝑯𝑛 − 𝑬𝑛 × 𝑯𝑚) d𝑎 = (𝛾𝑚 + 𝛾𝑛) ∬
𝑆

𝒆𝑧 ⋅ (𝑬t,𝑚 × 𝑯t,𝑛 − 𝑬t,𝑛 × 𝑯t,𝑚) d𝑎

(2.27)
𝑁

∑
𝑛=0

∮
𝐶𝑛

𝒏 ⋅ (𝑬𝑚 × 𝑯𝑛 − 𝑬𝑛 × 𝑯𝑚) dℓ = (𝛾𝑚 + 𝛾𝑛) ∬
𝑆

𝒆𝑧 ⋅ (𝑬t,𝑚 × 𝑯t,𝑛 − 𝑬t,𝑛 × 𝑯t,𝑚) d𝑎

(2.28)

0 = (𝛾𝑚 + 𝛾𝑛) ∬
𝑆

𝒆𝑧 ⋅ (𝑬t,𝑚 × 𝑯t,𝑛 − 𝑬t,𝑛 × 𝑯t,𝑚) d𝑎 .

(2.29)

The contour integrals vanish since 𝒏 × 𝑬𝑚 = 𝒏 × 𝑬𝑛 = 0 on the contours 𝐶𝑛 which lie on the
surfaces of the perfect conductors (𝒏 is the vector in the 𝑥𝑦-plane which is orthogonal to 𝐶𝑛,
pointing away from the surface enclosed by 𝐶𝑛). The same derivation can be carried out for
the two modes 𝑬𝑚, 𝑯𝑚 and 𝑬′

𝑛, 𝑯 ′
𝑛, where 𝑬′

𝑛, 𝑯 ′
𝑛 is the same mode as above but traveling

5This identity can, e.g., be found in the very good appendix of [Bladel 2007].
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2. Guided Waves

into the opposite direction. Since 𝑯 ′
t,𝑛 = −𝑯t,𝑛, 𝑬′

t,𝑛 = 𝑬t,𝑛 and with the 𝑧-dependency of the
backward-traveling modes being e j𝛾𝑛𝑧 rather than e−𝛾𝑛𝑧, one obtains

0 = (𝛾𝑚 − 𝛾𝑛) ∬
𝑆

𝒆𝑧 ⋅ (−𝑬t,𝑚 × 𝑯t,𝑛 − 𝑬t,𝑛 × 𝑯t,𝑚) d𝑎 . (2.30)

Adding and subtracting (2.29) and (2.30) yields

∬
𝑆

𝒆𝑧 ⋅ (𝑬t,𝑚 × 𝑯t,𝑛) d𝑎 = 0 (2.31)

and

∬
𝑆

𝒆𝑧 ⋅ (𝑬t,𝑛 × 𝑯t,𝑚) d𝑎 = 0 , (2.32)

which are the central orthogonality relations for guided modes on the shielded waveguide. Any
two non-degenerate modes are proven to be orthogonal, even if they travel into opposite directions.
Notice that one only gets insightful insights from this proof if 𝛾𝑚 ≠ ±𝛾𝑛, i.e., this proof only
holds for non-degenerate modes. Losses inside the filling material of the waveguide can be
expressed by an imaginary part of 𝛾 without a problem in the previous derivation, but losses in
the enclosing waveguide walls lead to non-orthogonal waveguide modes in general. If the losses
in the waveguide are small enough, the waveguide modes are approximately orthogonal, which
is sufficient in most applications.

2.5. Degenerate Modes

Some waveguides can support more than one independent field mode with the same propagation
constant 𝛾. These modes are called degenerate. Degenerate modes are possible for example
in multi-wire cables— in this case one can have more than one possible TEM mode—or in
symmetrical hollow waveguides such as square or circular hollow waveguides—which may
support multiple TE or TM waves with the same propagation constant.

Let 𝑬t,𝑛, 𝑯t,𝑛, 𝑛 = 1, … , 𝑁 with 𝑁 < ∞ be a set of degenerate modes traveling in positive
𝑧-direction6. These modes have no obligation to be mutually orthogonal, since the proof given in
the previous section does not apply for degenerate modes.

The non-orthogonal degenerate modes can always be replaced by an orthogonal set �̃�t,𝑛, �̃�t,𝑛,
𝑛 = 1, … , 𝑁 for example by a Gram-Schmidt orthogonalization [Collin 1990, pp. 333f.]

�̃�t,𝑛 = 𝑬t,𝑛 −
𝑛−1

∑
𝑚=1

�̃�t,𝑚

∬
𝑆

𝒆𝑧 ⋅ (𝑬t,𝑛 × �̃�t,𝑚) d𝑎

∬
𝑆

𝒆𝑧 ⋅ (�̃�t,𝑚 × �̃�t,𝑚) d𝑎
, (2.33)

�̃�t,𝑛 = 𝑯t,𝑛 −
𝑛−1

∑
𝑚=1

�̃�t,𝑚

∬
𝑆

𝒆𝑧 ⋅ (�̃�t,𝑚 × 𝑯t,𝑛) d𝑎

∬
𝑆

𝒆𝑧 ⋅ (�̃�t,𝑚 × �̃�t,𝑚) d𝑎
. (2.34)

6The corresponding fields for the modes traveling into the opposite direction are found by reversing the sign of the
magnetic field.
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2.6. Mode Matching

The orthogonalized modes �̃�t,𝑛, �̃�t,𝑛, 𝑛 = 1, … , 𝑁 are still degenerate— they share the same
propagation constant 𝛾—but they also fulfill the orthogonality conditions (2.31) and (2.32). For
the Gram-Schmidt orthogonalization to be applicable the number of degenerate modes must be
finite. This is ensured by the surrounding PEC enclosure which was assumed in the beginning of
the discussion about waveguides. In the following it is thus always assumed that the different
field modes on a waveguide are mutually orthogonal, i.e., (2.31) and (2.32) hold true.

2.6. Mode Matching

The total field inside a waveguide can be expanded into normalized orthogonal forward- and
backward-traveling waveguide modes in the manner of

𝑬(𝑥, 𝑦, 𝑧) =
∞

∑
𝑚=0

(𝛼𝑚�̂�𝑚(𝑥, 𝑦, 0) e−𝛾𝑚𝑧 + 𝛽𝑚�̂�′
𝑚(𝑥, 𝑦, 0) e+𝛾𝑚𝑧) (2.35)

and

𝑯(𝑥, 𝑦, 𝑧) =
∞

∑
𝑚=0

(𝛼𝑚�̂�𝑚(𝑥, 𝑦, 0) e−𝛾𝑚𝑧 + 𝛽𝑚�̂� ′
𝑚(𝑥, 𝑦, 0) e+𝛾𝑚𝑧) . (2.36)

The hat above the field quantities denotes that they are divided by √W, i.e., the normalized electric
fields have units [�̂�𝑚] = √Ω /m, the normalizedmagnetic fields have the units [�̂�𝑚] = 1/(√Ωm),
and the wave amplitudes 𝛼𝑚, 𝛽𝑚 have the units [𝛼𝑚] = [𝛽𝑚] = √W.

Let 𝑬t, 𝑯t be the transversal part of the total field. Using the orthogonality relations (2.31)
and the relations �̂� ′

t,𝑚(𝑥, 𝑦, 0) = −�̂�t,𝑚(𝑥, 𝑦, 0), �̂�′
t,𝑚(𝑥, 𝑦, 0) = �̂�t,𝑚(𝑥, 𝑦, 0) between the forward-

and backward- traveling transversal fields of the same mode, the expansion coefficients are found
by

𝛼𝑚 = 1
2

⎛
⎜
⎜
⎝

∬
𝑆

𝒆𝑧 ⋅ (�̂�t,𝑚 × 𝑯t) d𝑎 + ∬
𝑆

𝒆𝑧 ⋅ (𝑬t × �̂�t,𝑚) d𝑎

∬
𝑆

𝒆𝑧 ⋅ (�̂�t,𝑚 × �̂�t,𝑚) d𝑎

⎞
⎟
⎟
⎠

(2.37)

and

𝛽𝑚 = 1
2

⎛
⎜
⎜
⎝

∬
𝑆

𝒆𝑧 ⋅ (�̂�t,𝑚 × 𝑯t) d𝑎 − ∬
𝑆

𝒆𝑧 ⋅ (𝑬t × �̂�t,𝑚) d𝑎

∬
𝑆

𝒆𝑧 ⋅ (�̂�t,𝑚 × �̂�t,𝑚) d𝑎

⎞
⎟
⎟
⎠

, (2.38)

where 𝑆 is the cross section of the waveguide at an arbitrary fixed 𝑧-coordinate—usually 𝑧 = 0.
Using the auxiliary surface currents

̂𝑱𝑚(𝑥, 𝑦) = 𝒆𝑧 × �̂�𝑚t(𝑥, 𝑦, 0) (2.39)

and
�̂�𝑚(𝑥, 𝑦) = −𝒆𝑧 × �̂�𝑚t(𝑥, 𝑦, 0) (2.40)

we have

𝛼𝑚 = 1
2

1
∬
𝑆

𝒆𝑧 ⋅ ( ̂𝑱𝑚 × �̂�𝑚) d𝑎

⎛
⎜
⎜
⎝
∬
𝑆

[�̂�𝑚 ⋅ 𝑯 + ̂𝑱𝑚 ⋅ 𝑬] d𝑎
⎞
⎟
⎟
⎠

(2.41)
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2. Guided Waves

and

𝛽𝑚 = 1
2

1
∬
𝑆

𝒆𝑧 ⋅ ( ̂𝑱𝑚 × �̂�𝑚) d𝑎

⎛
⎜
⎜
⎝
∬
𝑆

[−�̂�𝑚 ⋅ 𝑯 + ̂𝑱𝑚 ⋅ 𝑬] d𝑎
⎞
⎟
⎟
⎠

, (2.42)

where 𝛼𝑚 and 𝛽𝑚 are the wave coefficients of the mode expansion of the total field in the waveguide
with respect to the reference plane 𝑆 at 𝑧 = 0. The (normalized) auxiliary mode surface currents
have the units [ ̂𝑱𝑚] = 1/(√Ωm) and [�̂�𝑚] = √Ω/m. The normalization integrals

∬
𝑆

𝒆𝑧 ⋅ (�̂�t,𝑚 × �̂�t,𝑚) d𝑎 (2.43)

or equivalently

∬
𝑆

𝒆𝑧 ⋅ ( ̂𝑱𝑚 × �̂�𝑚) d𝑎 (2.44)

are mode specific and do not depend on the total field to be expanded into the field modes.
If the waveguide modes are normalized such that the normalization condition

∬
𝑆

𝒆𝑧 ⋅ (�̂�t,𝑚(𝑥, 𝑦, 𝑧0) × �̂�t,𝑚(𝑥, 𝑦, 𝑧0)) d𝑎 = 1 (2.45)

holds in the reference surface 𝑆 at 𝑧 = 0 then the wave amplitudes can be found by the simplified
equations

𝛼𝑚 = 1
2

⎛
⎜
⎜
⎝
∬
𝑆

[�̂�𝑚 ⋅ 𝑯 + ̂𝑱𝑚 ⋅ 𝑬] d𝑎
⎞
⎟
⎟
⎠

(2.46)

and

𝛽𝑚 = 1
2

⎛
⎜
⎜
⎝
∬
𝑆

[−�̂�𝑚 ⋅ 𝑯 + ̂𝑱𝑚 ⋅ 𝑬] d𝑎
⎞
⎟
⎟
⎠

. (2.47)

In general, the normalization in (2.45) is not directly related to the time averaged power flow [Bladel
2007, p. 866]

𝑃𝑚 = 1
2|𝛼𝑚|

2 Re
⎧⎪
⎨
⎪⎩

∬
𝑆

�̂�t,𝑚 × �̂�∗
t,𝑚 ⋅ 𝒆𝑧 d𝑎

⎫⎪
⎬
⎪⎭

(2.48)

of the 𝑚th mode through the surface 𝑆 (due to the complex conjugation of �̂�t,𝑚).
Only for propagating modes in lossless waveguides (where 𝜀 and 𝜇 are real and positive) the

power normalization and the mode normalization in (2.45) are related [Bladel 2007, p. 866],
[Collin 1990, p. 337]. The propagation constant 𝛾 is purely imaginary for propagating modes in
this case and, thus, the transversal electric and magnetic fields of the waveguide modes in the
reference surface 𝑆 (𝑧 = 𝑧0) can be chosen purely real as can be seen in (2.3) and (2.4) for the
TEM case, in (2.6) and (2.8) for the TE case, and in (2.12) and (2.14) for the TM case. Thus, we
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have

Re
⎧⎪
⎨
⎪⎩

∬
𝑆

𝒆𝑧 ⋅ (�̂�t,𝑚(𝑥, 𝑦, 𝑧) × �̂�∗
t,𝑚(𝑥, 𝑦, 𝑧)) d𝑎

⎫⎪
⎬
⎪⎭

= ∬
𝑆

𝒆𝑧 ⋅ (�̂�t,𝑚(𝑥, 𝑦, 𝑧0) × �̂�t,𝑚(𝑥, 𝑦, 𝑧0)) d𝑎 = 1 . (2.49)

for properly normalized traveling modes in a lossless waveguide7. The expansion coefficients
𝛼𝑚, 𝛽𝑚 associated with the normalized field modes correspond to the definition of power wave
amplitudes8 in the scattering parameter description of 𝑁-ports [Kurokawa 1965]. In the lossless
case, the total time averaged power transported in 𝑧-direction is the sum of the individual mode
powers of the forward-traveling modes minus the sum of individual mode powers of the backward-
traveling modes9 [Kurokawa 1965].

It is often desired to have only one mode traveling on a waveguide (usually the fundamental
mode with 𝑚 = 0). In this case, only the mode coefficients of the operating mode are of interest
and by careful design of the waveguide and the surrounding circuits it is ensured that only one
traveling waveguide mode is traveling in either direction, e.g., by ensuring that all modes apart
from the fundamental mode are evanescent. The derived orthogonality relations will prove to be
very useful for the calculation of the received signal of an antenna impinged by an incident field.
The received signal is exactly the expansion coefficient 𝛽𝑚 of the fundamental mode traveling in
backward direction on the waveguide.

2.7. Chapter Summary

The formal description of guided waves has been revisited in this chapter. The description has
followed the paths which can be found in standard textbooks [Marcuvitz 1951; Collin 1990]. The
guided modes are characterized by their transversal field components. The transversal electric
fields are identical for forward- and backward-traveling field modes whereas the transversal
magnetic field of the backward-traveling mode is the negative of its forward-traveling counter-
part. The commonly measured scattering parameters are defined by the ratios of the expansion
coefficients for forward- and backward-traveling fundamental field modes on the waveguide. The
orthogonality relations in combination with the mode matching technique build the basis for
determining the received signal of a receiving antenna from an arbitrary incident field.

7The expression for the transported power through the waveguide cross section is independent of the 𝑧-coordinate
of the corresponding cross section plane. It holds not only for the reference plane.

8Only modes which correspond to traveling waves can be power normalized since evanescent modes do not
transport a net power (𝑃𝑚 = 0 for evanescent modes), but the normalization (2.45) can also be used for
evanescent waveguide modes.

9In the case of losses, the total transported power is no longer the sum of the powers transported by the individual
modes but the orthogonality relations (2.31) and (2.32) remain valid.
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3
Fields in the Vicinity of an Antenna

With the knowledge about the fields in the waveguide connected to an antenna, in this chapter the
fields on the other end of the antenna— i.e., the free-space fields—are investigated. As such, the
fields in the vicinity of the antenna volume 𝑉int enclosed by the surface 𝑆1 are characterized, as
these are the fields which will be transformed into a guided wave (or vice versa) by the antenna.
The considered situation is depicted in Fig. 3.1. The “vicinity of the antenna” is formally defined
as the volume 𝑉 which is located outside of 𝑉int but may be bounded externally by a surface
𝑆2. Thus, the volume of interest 𝑉 is the volume bounded by the two non-intersecting closed
surfaces 𝑆1 internally and 𝑆2 externally. The volume which is external to 𝑆2 is called 𝑉ext. The
unit normals 𝒏1 and 𝒏2 on the surfaces 𝑆1 and 𝑆2 point toward the volume 𝑉. If desired, the
surface 𝑆2 can be shifted toward infinity in certain cases. Then the “vicinity of the antenna” is
the whole space outside of 𝑉int, i.e., 𝑉 = ℝ3 ⧵ 𝑉int. The region of interest 𝑉 is considered to be
source free and sources may be located only in 𝑉int and 𝑉ext or on the surfaces 𝑆1 and 𝑆2.

The fields in 𝑉 may correspond to a situation in which the fields are radiated from the volume
𝑉int, or are absorbed in the volume 𝑉int, or are scattered in the volume 𝑉int, or they may correspond
to undisturbed incident fields. A precise definition of the terms radiated, absorbed, incident,
and scattered fields will be provided at another point in this chapter. Of course, in general the
total fields in the vicinity of the antenna volume are a superposition of these pure states, i.e.,
they correspond to a sum of radiated and absorbed fields, for example. It is helpful to find the
characteristic properties of the pure (i.e., purely absorbed or purely radiated or purely incident)
fields in 𝑉 before going on with the description of the transformation between guided waves and
these fields. The fields will be expressed in terms of equivalent surface currents on the surfaces
𝑆1 and 𝑆2

1 on the one hand and in terms of a spherical wave expansion2) on the other hand. Both
descriptions are important for the upcoming analysis. Modal expansions or equivalent surface
currents build the basis for most NFFFTs and many echo suppression techniques, and useful
analogies will be found comparing the two formulations.

1In this case, the surfaces 𝑆1 and 𝑆2 may have arbitrary shapes as long as they are sufficiently smooth and do not
intersect.

2In this case, the surfaces 𝑆1 and 𝑆2 should be spherical and concentric.
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𝑉int

𝑉 𝑉ext

𝒏1 𝒏2

𝑆1
𝑆2

𝑴 𝑱

𝑴

𝑱

Fig. 3.1.: Considered situation for the fields in the vicinity of the antenna. The source free volume of
interest 𝑉 is located between two closed surfaces 𝑆1 and 𝑆2. Sources may be located in 𝑉int and 𝑉ext.

3.1. General Fields in Terms of Volume Current Densities

First, the aim is to find expressions for arbitrary fields in the source free and open volume 𝑉
between two non-intersecting closed surfaces 𝑆1 and 𝑆2. A homogeneous background material
with permeability 𝜇 and permittivity 𝜀 is assumed, in which the wavenumber 𝑘 at the frequency
𝜔 can be given as 𝑘 = 𝜔√𝜀 𝜇. Sources might be located in either 𝑉int or 𝑉ext or in both volumes
simultaneously but not in 𝑉, such that the homogeneous curl-curl-equations

∇ × ∇ × 𝑬(𝒓) − 𝑘2𝑬(𝒓) = 𝟎 (3.1)

and
∇ × ∇ × 𝑯(𝒓) − 𝑘2𝑯(𝒓) = 𝟎 (3.2)

hold for all points 𝒓 ∈ 𝑉. The situation is depicted in Fig. 3.1.
As a starting point for the derivations, consider the dyadic Greens functions 𝓖JE(𝒓, 𝒓′),

𝓖JH(𝒓, 𝒓′), 𝓖ME(𝒓, 𝒓′), and 𝓖MH(𝒓, 𝒓′), which are subject to the defining equations [Tai 1994,
p. 59]

∇ × ∇ × 𝓖JE(𝒓, 𝒓′) − 𝑘2𝓖JE(𝒓, 𝒓′) = −j𝜔𝜇 I δ(𝒓 − 𝒓′) , (3.3)
∇ × ∇ × 𝓖JH(𝒓, 𝒓′) − 𝑘2𝓖JH(𝒓, 𝒓′) = ∇ × I δ(𝒓 − 𝒓′) , (3.4)

∇ × ∇ × 𝓖ME(𝒓, 𝒓′) − 𝑘2𝓖ME(𝒓, 𝒓′) = −∇ × I δ(𝒓 − 𝒓′) , (3.5)

and
∇ × ∇ × 𝓖MH(𝒓, 𝒓′) − 𝑘2𝓖MH(𝒓, 𝒓′) = −j𝜔𝜀 I δ(𝒓 − 𝒓′) , (3.6)

where I denotes the unit dyadic. For the moment, no further assumption has to be made about the
Green’s functions except that (3.3) to (3.6) are fulfilled. For all points 𝒓 ≠ 𝒓′, all of the dyadic
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3.1. General Fields in Terms of Volume Current Densities

Green’s functions fulfill the homogeneous curl-curl-equation, such that the integrals

𝑬(𝒓) = ∭
𝑉int

[𝓖JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′

+ ∭
𝑉ext

[𝓖JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.7)

and

𝑯(𝒓) = ∭
𝑉int

[𝓖JH(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖MH(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′

+ ∭
𝑉ext

[𝓖JH(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖MH(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.8)

with arbitrary (integrable) electric and magnetic volume current densities 𝑱(𝒓′) and 𝑴(𝒓′) in
the interior and exterior volumes 𝑉int and 𝑉ext lead to valid solutions of (3.1) and (3.2) at all
points 𝒓 in the source free volume 𝑉 [Jin 2015, p. 67].

Analytic expressions for the dyadic Green’s functions are found by [Tai 1994, p. 60], [Jin
2015, pp. 66f.], [Kong 1986, p. 376]

𝓖JE(𝒓, 𝒓′) = −j𝜔𝜇 [(I + 1
𝑘2 ∇∇) 𝑔0(𝒓, 𝒓′)] , (3.9)

𝓖JH(𝒓, 𝒓′) = ∇𝑔0(𝒓, 𝒓′) × I , (3.10)
𝓖ME(𝒓, 𝒓′) = −∇𝑔0(𝒓, 𝒓′) × I , (3.11)

and

𝓖MH(𝒓, 𝒓′) = −j𝜔𝜀 [(I + 1
𝑘2 ∇∇) 𝑔0(𝒓, 𝒓′)] , (3.12)

where the involved scalar Green’s function 𝑔0(𝒓, 𝒓′) is a fundamental solution for the Helmholtz
operator, i.e., it solves the equation

Δ𝑔0(𝒓, 𝒓′) + 𝑘2𝑔0(𝒓, 𝒓′) = −δ(𝒓 − 𝒓′) . (3.13)

A set of fundamental solutions to (3.13) are well known to be [Sommerfeld 1912], [Stratton 1941,
pp. 404ff.]

𝑔0(𝒓, 𝒓′) = e±j𝑘 |𝒓−𝒓′|

4π|𝒓 − 𝒓′|
. (3.14)

From a mathematical point of view, both solutions with “’+” or “−” in the exponent (or a suitable
combination of them) are equally valid in the sense that either choice will lead to a valid solution
of (3.13), however, subject to different boundary conditions3.
3One can always add a function 𝜙(𝒓), which is a solution to the homogeneous Helmholtz equation Δ𝜙(𝒓)+𝑘2𝜙(𝒓) =

0, to the fundamental solution without affecting the equality in (3.13).
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3. Fields in the Vicinity of an Antenna

Usually the scalar Green’s function

𝑔−
0 (𝒓, 𝒓′) = e−j𝑘 |𝒓−𝒓′|

4π|𝒓 − 𝒓′|
(3.15)

is preferred because it corresponds to outward-traveling waves propagating from a finite location
to infinity4. Other choices lead to inward-traveling waves coming from infinity5, i.e.,

𝑔+
0 (𝒓, 𝒓′) = e+j𝑘 |𝒓−𝒓′|

4π|𝒓 − 𝒓′|
(3.16)

or standing waves [Helmholtz 1860], i.e.,

𝑔(0)
0 (𝒓, 𝒓′) = 1

2 (𝑔+
0 (𝒓, 𝒓′) + 𝑔−

0 (𝒓, 𝒓′)) =
cos(𝑘 |𝒓 − 𝒓′|)

4π|𝒓 − 𝒓′|
. (3.17)

Although it would perhaps make sense intuitively, the function

𝑔(∞)
0 (𝒓, 𝒓′) = 1

2 (𝑔+
0 (𝒓, 𝒓′) − 𝑔−

0 (𝒓, 𝒓′)) =
j sin(𝑘 |𝒓 − 𝒓′|)

4π|𝒓 − 𝒓′|
(3.18)

is not a valid Green’s function of the Helmholtz operator but a source-free solution because

Δ𝑔(∞)
0 (𝒓, 𝒓′) + 𝑘2𝑔(∞)

0 (𝒓, 𝒓′) = 0 ≠ −δ(𝒓 − 𝒓′) . (3.19)

To form valid Green’s function by a linear combination from 𝑔+
0 and 𝑔−

0 , the coefficients of
the linear combination must add up to 1 (otherwise the right hand side of (3.13) is not the
δ-distribution).

The different functions 𝑔+
0 , 𝑔−

0 , 𝑔(0)
0 give rise to different dyadic Green’s functions by replacing

𝑔0 in (3.9) to (3.12) by 𝑔+
0 , 𝑔−

0 , 𝑔(0)
0 , respectively. The respective dyadic Green’s functions are

specified by the same exponent (“−”, “+”, or “(0)”) as their scalar counterpart. If no superscript
is specified, the expression is valid for all types of Green’s functions. Notice that even though any
kind of dyadic Greens function can be used to construct a valid solution of Maxwell’s equation in
𝑉 via (3.7) and (3.8), the solutions obtained with different Green’s functions are not necessarily
the same— they may obey different boundary conditions.

3.2. General Fields in Terms of Surface Current Densities

An important electromagnetic theorem—called the uniqueness theorem— states that the fields
in the source free region 𝑉 are uniquely defined by the tangential fields 𝒏1 × 𝑬, 𝒏1 × 𝑯 and
𝒏2 × 𝑬, 𝒏2 × 𝑯 on the surfaces 𝑆1 and 𝑆2 [Collin 1990, pp. 35f.], [Jin 2015, pp. 90f.], [Stratton
4The scalar Green’s function 𝑔−

0 fulfills the Sommerfeld radiation condition lim
|𝒓|→∞

|𝒓|[𝜕𝑔−
0 (𝒓, 𝒓′)/𝜕|𝒓| +

j𝑘𝑔−
0 (𝒓, 𝒓′)] = 0 for outgoing waves [Sommerfeld 1912; Schot 1992].

5The scalar Green’s function 𝑔+
0 fulfills the Sommerfeld radiation condition lim

|𝒓|→∞
|𝒓|[𝜕𝑔+

0 (𝒓, 𝒓′)/𝜕|𝒓| −
j𝑘𝑔+

0 (𝒓, 𝒓′)] = 0 for incoming waves [Sommerfeld 1912].
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3.2. General Fields in Terms of Surface Current Densities

1941, pp. 486ff.], [Harrington 1961, pp. 100ff.]. Following the derivation6 in [Collin 1990, pp.
35f.] the desired field 𝑬(𝒓) is scalar multiplied with (3.3) to obtain

𝑬(𝒓) ⋅ ∇ × ∇ × 𝓖JE(𝒓, 𝒓′) − 𝑘2𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′) = −j𝜔𝜇𝑬(𝒓) δ(𝒓 − 𝒓′) . (3.20)

Using (3.1) one gets

𝑬(𝒓) ⋅ ∇ × ∇ × 𝓖JE(𝒓, 𝒓′) − ∇ × ∇ × 𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′) = −j𝜔𝜇𝑬(𝒓) δ(𝒓 − 𝒓′) . (3.21)

With the identity7 ∇ ⋅ (𝑭 × 𝓓) = (∇ × 𝑭) ⋅ 𝓓 − 𝑭 ⋅ (∇ × 𝓓) valid for any vector 𝑭 and any
dyadic 𝓓, one obtains

𝑬(𝒓) ⋅∇×∇×𝓖JE(𝒓, 𝒓′) = −∇⋅[𝑬(𝒓) × ∇ × 𝓖JE(𝒓, 𝒓′)]+[∇ × 𝑬(𝒓)]×∇×𝓖JE(𝒓, 𝒓′) (3.22)

and

∇ × ∇ × 𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′) = ∇ × 𝑬(𝒓) ⋅ [∇ × 𝓖JE(𝒓, 𝒓′)] + ∇ ⋅ [∇ × 𝑬(𝒓) 𝓖JE(𝒓, 𝒓′)] (3.23)

for the two expressions on the left hand side of (3.21). Thus, (3.21) becomes

−∇ ⋅ [𝑬(𝒓) × ∇ × 𝓖JE(𝒓, 𝒓′) + ∇ × 𝑬(𝒓) × 𝓖JE(𝒓, 𝒓′)] = −j𝜔𝜇𝑬(𝒓) δ(𝒓 − 𝒓′) . (3.24)

This expression integrated over the volume 𝑉 leads to

∭
𝑉

−∇ ⋅ [𝑬(𝒓) × ∇ × 𝓖JE(𝒓, 𝒓′) + ∇ × 𝑬(𝒓) × 𝓖JE(𝒓, 𝒓′)] d𝑣 = ∭
𝑉

−j𝜔𝜇𝑬(𝒓) δ(𝒓 − 𝒓′) d𝑣 ,

(3.25)

which may be transformed into

∯
𝑆1

[𝒏1 × 𝑬(𝒓) ⋅ ∇ × 𝓖JE(𝒓, 𝒓′) + 𝒏1 × ∇ × 𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] d𝑎

+ ∯
𝑆2

[𝒏2 × 𝑬(𝒓) ⋅ ∇ × 𝓖JE(𝒓, 𝒓′) + 𝒏2 × ∇ × 𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] d𝑎

=
{

−j𝜔𝜇 𝑬(𝒓′) 𝒓′ ∈ 𝑉
𝟎 𝒓′ ∉ 𝑉

(3.26)

by using the divergence theorem and the filter property of the Dirac-Delta distribution. Finally,
from [Tai 1994, p. 57], [Jin 2015, p. 69] ∇ × 𝓖JE(𝒓, 𝒓′) = j𝜔𝜇𝓖ME(𝒓, 𝒓′) and the Maxwell

6This well known derivation is repeated here to show that in fact either type of Green’s functions (i.e., “−”, “+”, or
“(0)”) can be used in the surface equivalence principle.

7This identity can be found, e.g., in the very good appendix in [Bladel 2007].
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3. Fields in the Vicinity of an Antenna

equation ∇ × 𝑬(𝒓) = −j𝜔𝜇𝑯(𝒓) one obtains

∯
𝑆1

[ j𝜔𝜇 𝒏1 × 𝑬(𝒓) ⋅ 𝓖ME(𝒓, 𝒓′) − j𝜔𝜇 𝒏1 × 𝑯(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] d𝑎

+ ∯
𝑆2

[ j𝜔𝜇 𝒏2 × 𝑬(𝒓) ⋅ 𝓖ME(𝒓, 𝒓′) − j𝜔𝜇 𝒏2 × 𝑯(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] d𝑎

=
{

−j𝜔𝜇 𝑬(𝒓′) 𝒓′ ∈ 𝑉
𝟎 𝒓′ ∉ 𝑉

. (3.27)

Exchanging 𝒓 and 𝒓′ and exploiting the fact that 𝓖JE(𝒓′, 𝒓) = 𝓖JE(𝒓, 𝒓′) and 𝓖ME(𝒓′, 𝒓) =
−𝓖ME(𝒓, 𝒓′) are (anti-) symmetric dyadics [Tai 1994, p. 74] leads to the desired final result

∯
𝑆1

[𝓖ME(𝒓, 𝒓′) ⋅ (𝑬(𝒓′) × 𝒏1) + 𝓖JE(𝒓, 𝒓′) ⋅ (𝒏1 × 𝑯(𝒓′))] d𝑎′

+ ∯
𝑆2

[𝓖ME(𝒓, 𝒓′) ⋅ (𝑬(𝒓′) × 𝒏2) + 𝓖JE(𝒓, 𝒓′) ⋅ (𝒏2 × 𝑯(𝒓′))] d𝑎′ =
{

𝑬(𝒓) 𝒓 ∈ 𝑉
𝟎 𝒓 ∉ 𝑉

.

(3.28)

An analogous derivation for the magnetic field leads to

∯
𝑆1

[𝓖MH(𝒓, 𝒓′) ⋅ (𝑬(𝒓′) × 𝒏1) + 𝓖JH(𝒓, 𝒓′) ⋅ (𝒏1 × 𝑯(𝒓′))] d𝑎′

+ ∯
𝑆2

[𝓖MH(𝒓′, 𝒓) ⋅ (𝑬(𝒓′) × 𝒏2) + 𝓖JH(𝒓′, 𝒓) ⋅ (𝒏2 × 𝑯(𝒓′))] d𝑎′ =
{

𝑯(𝒓) 𝒓 ∈ 𝑉
𝟎 𝒓 ∉ 𝑉

.

(3.29)

Since the derivation is valid for general Green’s functions, either the Green’s functions of type
“+”, “−”, or “(0)” can be used to evaluate (3.28) and (3.29) (as long as used consistently and
Green’s functions of different types are not mixed). The Green’s functions for outward-traveling
waves (type “−”) are often considered to be the only sensible choice for unbounded regions. The
fields tend toward zero at infinity under the assumption of arbitrarily small losses (other types of
Green’s functions lead to fields which increase toward infinity) [Harrington 1961, p. 78] and the
“−”-type of Greens functions are the only type of Green’s functions which do not require any
sources in 𝑉ext if 𝑆2 is moved to infinity. In this work, 𝑉ext is not necessarily source free and the
region of interest 𝑉 is not necessarily unbounded, thus, also other types of Green’s functions are
considered8.
8The combined use of “advanced” and “retarded” Green’s functions has been introduced in Quantum physics by
Wheeler and Feynman in the so-called absorber theory [Wheeler 1945; Wheeler 1949]. Nevertheless, in classical
electrodynamics, usually the advanced Green’s functions are omitted due to causality arguments [Schwebel
1970].
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𝑉int

𝑉 𝑉ext

𝒏1 𝒏2

𝑆1
𝑆2

𝑱

𝑴

𝑱

𝑴

Fig. 3.2.: The source free volume of interest 𝑉 is located between two closed surfaces 𝑆1 and 𝑆2. Source
may be located on 𝑆1 and 𝑆2.

More generally, valid field solutions in 𝑉 can be expressed by

𝑬(𝒓) = ∯
𝑆1

[𝓖JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′

+ ∯
𝑆2

[𝓖JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.30)

and

𝑯(𝒓) = ∯
𝑆1

[𝓖JH(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖MH(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′

+ ∯
𝑆2

[𝓖JH(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖MH(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.31)

with arbitrary (integrable) surface current densities9 𝑱(𝒓′) and 𝑴(𝒓′) on the surfaces 𝑆1 and 𝑆2
as denoted in Fig. 3.2. The statement that the fields in the source free region can be expressed
by equivalent surface currents 𝑱 and 𝑴 is called Huygens principle (or sometimes just surface
equivalence principle). The surfaces 𝑆1, 𝑆2 and the corresponding surface currents 𝑱, 𝑴 are
accordingly named Huygens surfaces and Huygens currents.

The field solutions which are obtained by evaluating arbitrary Huygens currents on the surfaces
𝑆1and 𝑆2 with different types of Green’s functions differ from each other in general and we have

9If the context eliminates any possible confusion, the symbols 𝑱 and 𝑴 are used for either surface current densities
or volume current densities, dependent on the integral type.
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𝑉int

𝑉 𝑉ext

𝒏1 𝒏2

𝑆1

𝑆2

Fig. 3.3.: Considered situation for the spherical wave expansion: The volume 𝑉 is enclosed by two
concentric spherical surfaces surfaces 𝑆1 and 𝑆2.

in particular

∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′

+ ∯
𝑆2

[𝓖−
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′

≠ ∯
𝑆1

[𝓖+
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖+

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′

+ ∯
𝑆2

[𝓖+
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖+

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.32)

for general surface currents 𝑱 and 𝑴. Only if the currents 𝑱 and 𝑴 are directly related to the
fields at the surface by 𝑴 = −𝒏 × 𝑬 and 𝑱 = 𝒏 × 𝑯—as was the case in (3.28) and (3.29)— the
Green’s functions from different types lead to the same fields in 𝑉. If the equivalent currents are
related to the tangential components of the electric and magnetic fields via 𝑴 = −𝒏 × 𝑬 and
𝑱 = 𝒏 × 𝑯 they are called Love currents [Love 1901].

3.3. General Fields in Terms of a Spherical Vector Wave Expansion

The spherical wave expansion of the fields in 𝑉 exhibits some remarkable parallels with the
already discussed formulation. For convenience with the spherical wave expansion, it is assumed
that 𝑆1 and 𝑆2 are concentric spherical surfaces and the origin of the spherical wave expansion is
set into the center of the two surfaces. The interest lies in the field solutions in the enclosed source
free volume 𝑉, which has the form of a spherical shell in this case. The scenario is depicted in
Fig. 3.3. The basis of the considered modal field transformations is an expansion of the electric
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3.3. General Fields in Terms of a Spherical Vector Wave Expansion

field in eigensolutions of the curl-curl-equation

∇ × ∇ × 𝑬 − 𝑘2𝑬 = 𝟎 (3.33)

in spherical coordinates. The solutions of this eigenvalue problem are well known and are derived
in this section, mainly to clarify the notation and the sign and normalization conventions used in
this work.

Solutions of (3.33) are given by10 [Stratton 1941, p. 393]

𝑴 = ∇𝑓 × 𝒆𝑟 (3.34)

and
𝑵 = 1

𝑘
∇ × 𝑴 , (3.35)

where 𝒆𝑟 is the unit vector in radial direction and 𝑓 is a solution to the homogeneous scalar
Helmholtz equation

Δ𝑓 + 𝑘2𝑓 = 0 . (3.36)

The general solution to (3.36) is a superposition of functions from the set11 [Stratton 1941, pp.
398ff.], [Harrington 1963, pp. 264ff.]

⎧
⎪
⎨
⎪
⎩

j𝑛(𝑘𝑟)
n𝑛(𝑘𝑟)
h(1)

𝑛 (𝑘𝑟)
h(2)

𝑛 (𝑘𝑟)

⎫
⎪
⎬
⎪
⎭

P𝑚
𝑛 (cos 𝜗)

⎧
⎪
⎨
⎪
⎩

sin(𝑚 𝜑)
cos(𝑚 𝜑)
e j𝑚 𝜑

e−j𝑚 𝜑

⎫
⎪
⎬
⎪
⎭

, (3.37)

with 𝑛 = 1, 2, 3, … and 𝑚 = 0, 1, 2, … , 𝑛 and where P𝑚
𝑛 are the associated Legendre func-

tions [Abramowitz 1964, pp. 332ff.] of 𝑛th degree and 𝑚th order, j𝑛 are the spherical Bessel
functions, n𝑛 are the spherical Neumann functions and h(1)

𝑛 = j𝑛 + j n𝑛, and h(2)
𝑛 = j𝑛 − j n𝑛 are

the spherical Hankel functions of the first and second kind, respectively [Abramowitz 1964, pp.
437ff.]. For most antenna applications, the choice of the particular 𝜑-dependence is not important
(most of the time, periodic boundary conditions have to be considered, which are fulfilled by
all of the functions presented here) and, thus, the considerations are limited to exp( j𝑚 𝜑) and
exp(−j𝑚 𝜑). This choice leads to the well known spherical harmonics

𝑌𝑛𝑚(𝜗, 𝜑) = (
−𝑚
|𝑚|)

𝑚

√
(2𝑛 + 1)

4π
(𝑛 − 𝑚)!
(𝑛 + 𝑚)!

P|𝑚|
𝑛 (cos 𝜗) e j𝑚 𝜑 (3.38)

10The vector function 𝑴 must not be confused with a magnetic current density. After this section, the spherical
vector function will always be accompanied with two indices and one superscript denoting the mode numbers,
leading to an unambiguous notation.

11For every 𝑛 either two of the radial functions j𝑛, n𝑛, h
(1)
𝑛 , h(2)

𝑛 are linearly independent, while the other two functions
are linear combinations of the first two as is expected for a differential equation of second order. The same is true
for every 𝑚 for the 𝜑-dependent functions sin(𝑚 𝜑), cos(𝑚 𝜑), exp( j𝑚 𝜑), exp(−j𝑚 𝜑). For the 𝜗-dependency,
there also exist linearly independent solutions 𝑄𝑚

𝑛 (cos 𝜗) for every combination of indices 𝑛, 𝑚 but this solutions
are singular at cos 𝜗 = ±1, thus they are omitted for all physically relevant cases.
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3. Fields in the Vicinity of an Antenna

for the angular dependency of the solution set. The factor √(2𝑛 + 1) (𝑛 − 𝑚)!/ [4π (𝑛 + 𝑚)!]
ensures that the spherical harmonics are orthonormal, i.e.,

2π

∫
𝜑=0

π

∫
𝜗=0

𝑌𝑛𝑚(𝜗, 𝜑) 𝑌 ∗
𝑛′𝑚′(𝜗, 𝜑) sin 𝜗 d𝜗 d𝜑 = δ𝑚𝑚′ δ𝑛𝑛′ , (3.39)

where δ𝑚𝑚′ is the Kronecker-Delta and the sign convention follows [Hansen 1988]. The starting
point for the derivation of the corresponding (normalized) vector wave functions are the scalar
solutions of the homogeneous Helmholtz equation

𝑓 (𝑐)
𝑚𝑛 =

𝑧(𝑐)
𝑛 (𝑘𝑟)

√𝑛 (𝑛 + 1)
𝑌𝑛𝑚(𝜗, 𝜑) (3.40)

with 𝑛 = 1, 2, 3, …, and 𝑚 = −𝑛, … , 𝑛, where the index 𝑐 ∈ {1, 2, 3, 4} is a short hand notation
for choosing one of the radial functions with 𝑧(1)

𝑛 = j𝑛, 𝑧(2)
𝑛 = n𝑛, 𝑧(3)

𝑛 = h(1)
𝑛 and 𝑧(4)

𝑛 = h(2)
𝑛 for

the field expansions. Letting the index 𝑚 take on positive and negative numbers ensures to have
the two independent types of 𝜑-functions covered. An alternative form of the scalar solutions
which makes use of the the normalized associated Legendre functions [Abramowitz 1964, p.
332]

P|𝑚|
𝑛 (cos 𝜗) =

√
2𝑛 + 1

2
(𝑛 − 𝑚)!
(𝑛 + 𝑚)!

P|𝑚|
𝑛 (cos 𝜗) (3.41)

is given by [Hansen 1988, p. 13]

𝑓 (𝑐)
𝑚𝑛 = 1

√2π
1

√𝑛 (𝑛 + 1) (
−𝑚
|𝑚|)

𝑚
𝑧(𝑐)

𝑛 (𝑘𝑟)P|𝑚|
𝑛 (cos 𝜗) e j𝑚𝜑 . (3.42)

The vector functions have the form [Hansen 1988, p. 13]

𝑴 (𝑐)
𝑚𝑛 = ∇𝑓 (𝑐)

𝑚𝑛 × (𝑟 𝒆𝑟)

=
𝑧(𝑐)

𝑛 (𝑘𝑟)

√𝑛 (𝑛 + 1)
(∇t𝑌𝑛𝑚(𝜗, 𝜑)) × (𝑟 𝒆𝑟)

=
𝑧(𝑐)

𝑛 (𝑘𝑟)

√𝑛 (𝑛 + 1) (
1
𝑟

𝜕𝑌𝑛𝑚(𝜗, 𝜑)
𝜕𝜗

𝒆𝜗 + 1
𝑟 sin 𝜗

𝜕𝑌𝑛𝑚(𝜗, 𝜑)
𝜕𝜑

𝒆𝜑) × (𝑟 𝒆𝑟)

= 1
√2π

1
√𝑛 (𝑛 + 1) (

−𝑚
|𝑚| )

𝑚

(
𝑧(𝑐)

𝑛 (𝑘𝑟)
j𝑚P|𝑚|

𝑛 (cos 𝜗)
sin 𝜗

e j𝑚𝜑𝒆𝜗

−𝑧(𝑐)
𝑛 (𝑘𝑟)

d P|𝑚|
𝑛 (cos 𝜗)
d𝜗

e j𝑚𝜑𝒆𝜑)
, (3.43)

where ∇t = ∇ − 𝜕
𝜕𝑟

𝒆𝑟 = 1/𝑟 𝜕
𝜕𝜗

𝒆𝜗 + 1/(𝑟 sin 𝜗) 𝜕
𝜕𝜑

𝒆𝜑 means the tangential part of the ∇-operator
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3.3. General Fields in Terms of a Spherical Vector Wave Expansion

and

𝑵 (𝑐)
𝑚𝑛 = 1

𝑘
∇ × 𝑴 (𝑐)

𝑚𝑛

= 1
√2π

1
√𝑛 (𝑛 + 1) (

−𝑚
|𝑚|)

𝑚

(
𝑛 (𝑛 + 1)

𝑘𝑟
𝑧(𝑐)

𝑛 (𝑘𝑟)P|𝑚|
𝑛 (cos 𝜗) ej𝑚𝜑𝒆𝑟

+ 1
𝑘𝑟

d
d 𝑘𝑟 {𝑘𝑟 𝑧(𝑐)

𝑛 (𝑘𝑟)}
d P|𝑚|

𝑛 (cos 𝜗)
d𝜗

e j𝑚𝜑𝒆𝜗

+ 1
𝑘𝑟

d
d 𝑘𝑟 {𝑘𝑟 𝑧(𝑐)

𝑛 (𝑘𝑟)}
j𝑚 P|𝑚|

𝑛 (cos 𝜗)
sin 𝜗

e j𝑚𝜑𝒆𝜑)
. (3.44)

For a condensed notation, this thesis follows the notation of [Hansen 1988], writing 𝑭 (𝑐)
1𝑚𝑛 =

𝑴 (𝑐)
𝑚𝑛 and 𝑭 (𝑐)

2𝑚𝑛 = 𝑵 (𝑐)
𝑚𝑛 to avoid having different symbols for the spherical vector wave functions.

The fields in any source free region can be expanded into linear combinations12 of 𝑴 (𝑐)
𝑚𝑛 and

𝑵 (𝑐)
𝑚𝑛 . We have

𝑬 = 𝑘√𝑍F

4

∑
𝑐=3

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

(𝛼(𝑐)
1𝑚𝑛𝑴 (𝑐)

𝑚𝑛 + 𝛼(𝑐)
2𝑚𝑛𝑵 (𝑐)

𝑚𝑛)

= 𝑘√𝑍F

2

∑
𝑠=1

4

∑
𝑐=3

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(𝑐)
𝑠𝑚𝑛𝑭 (𝑐)

𝑠𝑚𝑛 (3.45)

and

𝑯 = j 𝑘
√𝑍F

4

∑
𝑐=3

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

(𝛼(𝑐)
1𝑚𝑛𝑵 (𝑐)

𝑚𝑛 + 𝛼(𝑐)
2𝑚𝑛𝑴 (𝑐)

𝑚𝑛)

= j 𝑘
√𝑍F

2

∑
𝑠=1

4

∑
𝑐=3

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(𝑐)
𝑠𝑚𝑛𝑭 (𝑐)

3−𝑠,𝑚𝑛 , (3.46)

where 𝛼(𝑐)
𝑠𝑚𝑛 ∈ ℂ√W are the expansion coefficients. Inward- (𝑐 = 3) and outward-traveling

(𝑐 = 4) waves are chosen for this expansion, but any two different values for 𝑐 will lead to a valid
field expansion (e.g., a linear combination of incident fields with 𝑐 = 1 and outward-traveling
waves with 𝑐 = 4 is well suited to describe scattering). In certain special cases, only one type of
radial functions may suffice to expand the fields.

In the remainder of this work, spherical wave expansions will be used side by side with field
expressions based on equivalent spatial current distributions to analyze the field behavior. The
formulation which is more appropriate to highlight the specific aspect of the current discussion
will be used, having in mind that both formulations are representations of the very same fields.
Any field properties which are easily found in one representation must also hold in the other
representation (even if it is not obvious in there).

12The third type of vector wave functions 𝑳 = ∇𝑓 is only needed to express the fields in the source regions and not
used in this work.
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3. Fields in the Vicinity of an Antenna

3.4. Purely Radiated Fields

Since it is known from the previous sections how arbitrary fields in the volume 𝑉 can be expressed
by either equivalent currents or a spherical mode expansion, the focus is now turned toward the
characterization of some special fields with certain characteristic properties. The first type of
interesting fields are purely radiated fields. As the name suggests, purely radiated fields transport
power away from the interior volume 𝑉int toward the exterior volume 𝑉ext. Purely radiated fields
consist only of outward-traveling waves. If the surface 𝑆2 is moved to infinity, purely radiated
fields fulfill the Silver-Müller radiation conditions [Silver 1949; Müller 1948]

lim
|𝒓|→∞

|𝒓| (𝑬rad + √
𝜇
𝜀

𝒆𝑟 × 𝑯rad) = 𝟎 , (3.47)

lim
|𝒓|→∞

|𝒓| (𝑯rad − √
𝜀
𝜇

𝒆𝑟 × 𝑬rad) = 𝟎 (3.48)

for outward-traveling waves. With the suitable choice of Greens functions 𝓖−
JE, 𝓖−

JH , 𝓖−
ME, 𝓖−

MH
the surface integral over the surface 𝑆2 at infinity in (3.28) and (3.29) becomes zero. The integral
at infinity vanishes only because the Greens functions of the “−”-type fulfill the same radiation
conditions as the radiated fields at infinity [Collin 1990, pp.98f].

To see this more clearly, consider with the integral

∯
𝑆2

[𝒏2 × 𝑬(𝒓) ⋅ ∇ × 𝓖JE(𝒓, 𝒓′) + 𝒏2 × ∇ × 𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] d𝑎 (3.49)

which was used in (3.26) for the derivation of (3.28), where the surface 𝑆2 has not yet been moved
to infinity. Next, one can take the limiting process of this integral, such that 𝑆2 is a spherical
surface with radius approaching infinity. Making use of the Maxwell equation ∇ × 𝑬 = −j𝜔𝜇𝑯
the radiation condition (3.48) is restated for the electric field as [Collin 1990, p.98]

lim
𝑟→∞

∇ × 𝑬 + j𝑘𝒆𝑟 × 𝑬 = 𝑭 (3.50)

where lim
𝑟→∞

𝑟 𝑭 = 𝟎. Since the Green’s function 𝓖−
JE was constructed from the scalar Green’s

function 𝑔−
0 fulfilling the Sommerfeld radiation condition

lim
|𝒓|→∞

|𝒓|
(

𝜕𝑔−
0 (𝒓, 𝒓′)
𝜕|𝒓|

+ j𝑘𝑔−
0 (𝒓, 𝒓′))

= 0 , (3.51)

it can be verified that 𝓖−
JE fulfills the radiation condition [Collin 1990, p. 99]

lim
𝑟→∞

𝑟 (∇ × 𝓖−
JE + j𝑘𝒆𝑟 × 𝓖−

JE) = 𝟎 (3.52)

or equivalently
lim
𝑟→∞

∇ × 𝓖−
JE + j𝑘𝒆𝑟 × 𝓖−

JE = 𝓕 (3.53)
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3.4. Purely Radiated Fields

with lim
𝑟→∞

𝑟𝓕 = 𝟎. In the limiting process we have

lim
𝑟→∞ ∯

𝑆2

[𝒏2 × 𝑬(𝒓) ⋅ ∇ × 𝓖JE(𝒓, 𝒓′) + 𝒏2 × ∇ × 𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] d𝑎

= lim
𝑟→∞

π

∫
0

2π

∫
0

[−𝒆𝑟 × 𝑬(𝒓) ⋅ ∇ × 𝓖JE(𝒓, 𝒓′) − 𝒆𝑟 × ∇ × 𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] 𝑟 sin(𝜗) d𝜑 d𝜗

=

π

∫
0

2π

∫
0

lim
𝑟→∞ [−𝒆𝑟 × 𝑬(𝒓) ⋅ ∇ × 𝓖JE(𝒓, 𝒓′) − 𝒆𝑟 × ∇ × 𝑬(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] 𝑟 sin(𝜗) d𝜑 d𝜗

=

π

∫
0

2π

∫
0

lim
𝑟→∞ [−𝒆𝑟 × 𝑬(𝒓) ⋅ (𝓕(𝒓, 𝒓′) − j𝑘𝒆𝑟 × 𝓖JE(𝒓, 𝒓′))

−𝒆𝑟 × (𝑭(𝒓) − j𝑘𝒆𝑟 × 𝑬(𝒓)) ⋅ 𝓖JE(𝒓, 𝒓′)] 𝑟 sin(𝜗) d𝜑 d𝜗

=

π

∫
0

2π

∫
0

lim
𝑟→∞ [−𝒆𝑟 × 𝑬(𝒓) ⋅ 𝓕(𝒓, 𝒓′) − 𝒆𝑟 × 𝑭(𝒓) ⋅ 𝓖JE(𝒓, 𝒓′)] 𝑟 sin(𝜗) d𝜑 d𝜗

= 𝟎 , (3.54)

since lim
𝑟→∞

𝑟 𝑭 = 𝟎 and lim
𝑟→∞

𝑟 𝓕 = 𝟎.
The fields in 𝑉 = ℝ3 ⧵ 𝑉int can therefore be expressed by outward-radiating Greens functions

𝓖−
JE, 𝓖−

JH , 𝓖−
ME, 𝓖−

MH evaluating only the tangential fields on 𝑆1. We have

𝑬rad = ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ (𝒏1 × 𝑯rad(𝒓′)) + 𝓖−

ME(𝒓, 𝒓′) ⋅ (𝑬rad(𝒓′) × 𝒏1)] d𝑎′ (3.55)

and

𝑯rad = ∯
𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ (𝒏1 × 𝑯rad(𝒓′)) + 𝓖−

MH(𝒓, 𝒓′) ⋅ (𝑬rad(𝒓′) × 𝒏1)] d𝑎′ . (3.56)

The fields in (3.55) and (3.56) are the unique fields with given boundary values 𝒏1 × 𝑬rad(𝒓′)
and 𝒏1 × 𝑯rad(𝒓′) on 𝑆1 and the radiating Silver-Müller conditions at infinity. The solution is
valid in the complete unbounded region 𝑉 = ℝ3 ⧵ 𝑉int no matter whether 𝑆2 is located at infinity
as assumed in the derivation or not. Thus, using the Green’s functions of the “−”-type, one does
not need to evaluate the tangential integrals on the outer surface 𝑆2 to find the correct values for
the outward-traveling fields in 𝑉 even if 𝑆2 is not located at infinity13. More generally, arbitrary
13In general, one needs to evaluate all integrals on 𝑆1 and 𝑆2 to find the correct fields in 𝑉. Only if the utilized

Green’s functions match with field properties of the fields in 𝑉—i.e., if the fields fulfill the same boundary
conditions as the utilized Green’s function on one of the surfaces—one can avoid having to evaluate the integrals
on one of the surfaces. Thus, it can be seen as the defining property of purely radiated fields that they have to
fulfill the same boundary conditions on 𝑆2 → ∞ as the corresponding Green’s functions 𝓖−

JE, 𝓖−
JH , 𝓖−

ME, 𝓖−
MH .
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3. Fields in the Vicinity of an Antenna

radiated fields may be constructed by placing surface currents (not necessarily related to the
tangential fields) 𝑱 and 𝑴 on the surface 𝑆1 and evaluating them with the “−”-type Greens
functions. We have

𝑬rad = ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.57)

and analogously for the magnetic field. It is clear that by using the “−”-type Greens functions,
all fields generated by currents on 𝑆1 are purely outward-traveling.

In terms of a spherical wave expansion, the functions with 𝑐 = 4 correspond to outward-
traveling waves with the time convention e j𝜔𝑡 used in this work. They fulfill the Silver-Müller
radiation conditions (3.47) and (3.48) for outward-traveling waves. Radiated fields can be
expressed purely in terms of 𝑐 = 4 type functions and we have

𝑬rad = 𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛𝑭 (4)

𝑠𝑚𝑛 (3.58)

and

𝑯rad = j 𝑘
√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛𝑭 (4)

3−𝑠,𝑚𝑛 . (3.59)

3.5. Radiated Far-Fields

Antennas are devices which are often intended to radiate electromagnetic waves over large
distances and, therefore, one is usually interested in how the radiated antenna fields look like at
far distances. Arbitrary purely radiated fields are considered which can be expressed by (3.57).
At far away distances with 𝑟 = |𝒓| ≫ |𝒓′| = 𝑟′, the term 𝑅 = |𝒓 − 𝒓′| can be approximated by
[Collin 1990, p. 98]

lim
𝑟→∞ |𝒓 − 𝒓′| = 𝑟 − 𝒆𝑟 ⋅ 𝒓′ , (3.60)

where 𝒆𝑟 = 𝒓/𝑟 denotes the unit vector pointing into the direction of the FF observation location 𝒓.
For a condensed notation, often the vector 𝒌 = 𝑘 𝒆𝑟 is used together with its normalized version
�̂� = 𝒌/𝑘 = 𝒆𝑟. The dyadic Green’s functions for outward-traveling waves take the asymptotic
forms [Collin 1990, pp. 98f], [Jin 2015, p. 74]

lim
𝑟→∞

𝓖−
JE(𝒓, 𝒓′) = −j𝜔𝜇e

−j𝑘 𝑟

4π𝑟 (I − 𝒆𝑟𝒆𝑟) e j𝒆𝑟⋅𝒓′
= −j𝜔𝜇e

−j𝑘 𝑟

4π𝑟 (I − �̂��̂�) e j𝒌⋅𝒓′
, (3.61)

lim
𝑟→∞

𝓖−
JH(𝒓, 𝒓′) = −j𝑘e

−j𝑘 𝑟

4π𝑟
𝒆𝑟 × I e j𝑘 𝒆𝑟⋅𝒓′

= −je
−j𝑘 𝑟

4π𝑟
𝒌 × I e j𝒌⋅𝒓′

, (3.62)

lim
𝑟→∞

𝓖−
ME(𝒓, 𝒓′) = j𝑘e

−j𝑘 𝑟

4π𝑟
𝒆𝑟 × I e j𝑘 𝒆𝑟⋅𝒓′

= je
−j𝑘 𝑟

4π𝑟
𝒌 × I e j𝒌⋅𝒓′

, (3.63)

and

lim
𝑟→∞

𝓖−
MH(𝒓, 𝒓′) = −j𝜔𝜀e

−j𝑘 𝑟

4π𝑟 (I − 𝒆𝑟𝒆𝑟) e j𝑘 𝒆𝑟⋅𝒓′
= −j𝜔𝜀e

−j𝑘 𝑟

4π𝑟 (I − �̂��̂�) e j𝒌⋅𝒓′
. (3.64)
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3.5. Radiated Far-Fields

The radiated fields asymptotically far away from the sources have no components in radial
direction and depend on the radial variable 𝑟 only by the term e−j𝑘𝑟/𝑟. We have

lim
𝑟→∞

𝑬(𝑟, 𝜗, 𝜑) = lim
𝑟→∞ ∯

𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.65)

= e−j𝑘 𝑟

4π𝑟 ∯
𝑆1

[−j𝜔𝜇 (I − �̂��̂�) e j𝒌⋅𝒓′
⋅ 𝑱(𝒓′) + j𝒌 × 𝑴(𝒓′) e j𝒌⋅𝒓′

] d𝑎′ (3.66)

= e−j𝑘 𝑟

𝑘 𝑟
𝑬FF(𝜗, 𝜑) (3.67)

= e−j𝑘 𝑟

𝑘 𝑟
𝑬FF(�̂�) (3.68)

and

lim
𝑟→∞

𝑯(𝑟, 𝜗, 𝜑) = lim
𝑟→∞ ∯

𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.69)

= e−j𝑘 𝑟

4π𝑟 ∯
𝑆1

[−j𝒌 × 𝑱(𝒓′) e j𝒌⋅𝒓′
− j𝜔𝜀 (I − �̂��̂�) e j𝒌⋅𝒓′

⋅ 𝑴(𝒓′)] d𝑎′ (3.70)

= e−j𝑘 𝑟

𝑘 𝑟
𝑯FF(𝜗, 𝜑) (3.71)

= e−j𝑘 𝑟

𝑘 𝑟
𝑯FF(�̂�) (3.72)

where

𝑬FF(�̂�) = 𝑘
4π ∯

𝑆1

[−j𝜔𝜇 (I − �̂��̂�) e j𝒌⋅𝒓′
⋅ 𝑱(𝒓′) + j𝒌 × 𝑴(𝒓′) e j𝒌⋅𝒓′

] d𝑎′ (3.73)

and

𝑯FF(�̂�) = 𝑘
4π ∯

𝑆1

[−j𝒌 × 𝑱(𝒓′) e j𝒌⋅𝒓′
− j𝜔𝜀 (I − �̂��̂�) e j𝒌⋅𝒓′

⋅ 𝑴(𝒓′)] d𝑎′ (3.74)

are the electric and magnetic FF patterns, respectively. Since the coordinates 𝜗 and 𝜑 are
uniquely defined by the direction of the radial unit vector 𝒆𝑟 = �̂� one may use the compact
notation 𝑬FF(𝜗, 𝜑) = 𝑬FF(�̂�) and 𝑯FF(𝜗, 𝜑) = 𝑯FF(�̂�). It is clear that the electric and the
magnetic FFs are related by [Collin 1990, p. 98]

𝑍F 𝑯FF(�̂�) = �̂� × 𝑬FF(�̂�) , (3.75)

where 𝑍F = √𝜇/𝜀 is the free-space wave impedance.

33



3. Fields in the Vicinity of an Antenna

In terms of spherical waves, the FF patterns can easily be evaluated by using the asymptotic
form of the spherical wave functions. We have

𝑬FF(�̂�) = lim
𝑟→∞

𝑘 𝑟
e−j𝑘 𝑟 𝑬(𝑟, 𝜗, 𝜑) = 𝑘√𝑍F

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 lim

𝑟→∞
𝑘 𝑟
e−j𝑘 𝑟 𝑭 (4)

𝑠𝑚𝑛(𝑟, 𝜗, 𝜑)

= 𝑘√𝑍F

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑲 (4)

𝑠𝑚𝑛(�̂�) (3.76)

and

𝑯FF(�̂�) = lim
𝑟→∞

𝑘 𝑟
e−j𝑘 𝑟 𝑯(𝑟, 𝜗, 𝜑) =

j 𝑘

√𝑍F

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 lim

𝑟→∞
𝑘 𝑟
e−j𝑘 𝑟 𝑭 (4)

3−𝑠,𝑚𝑛(𝑟, 𝜗, 𝜑)

=
j 𝑘

√𝑍F

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑲 (4)

3−𝑠,𝑚𝑛(�̂�)

=
j 𝑘

√𝑍F

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 (�̂� × 𝑲 (4)

𝑠𝑚𝑛(�̂�)) . (3.77)

Formal expressions for the FF pattern functions 𝑲𝑠𝑚𝑛 are found by replacing the radial functions
in (3.43) and (3.44) by their asymptotic behaviors [Hansen 1988, p. 315]

lim
𝑘𝑟→∞

𝑧(4)
𝑛 (𝑘𝑟) = j𝑛+1 e−j𝑘 𝑟

𝑘 𝑟
(3.78)

and

lim
𝑘𝑟→∞

1
𝑘𝑟

d
d(𝑘𝑟) (𝑘𝑟𝑧(4)

𝑛 (𝑘𝑟)) = j𝑛 e−j𝑘 𝑟

𝑘 𝑟
. (3.79)

This gives14

𝑲 (4)
1𝑚𝑛(�̂�) = lim

𝑘𝑟→∞
𝑘 𝑟
e−j𝑘 𝑟 𝑭 (4)

1𝑚𝑛(𝑟, 𝜗, 𝜑)

= lim
𝑘𝑟→∞

𝑘 𝑟
e−j𝑘 𝑟

𝑧(𝑐)
𝑛 (𝑘𝑟)

√𝑛 (𝑛 + 1)
(∇t𝑌𝑛𝑚(𝜗, 𝜑)) × (𝑟 𝒆𝑟)

=
j𝑛+1

√𝑛 (𝑛 + 1)
(∇t𝑌𝑛𝑚(𝜗, 𝜑)) × (𝑟 𝒆𝑟)

=
j𝑛+1

√𝑛 (𝑛 + 1)
1

√2π (
−𝑚
|𝑚|)

𝑚
e j𝑚𝜑

(
j𝑚 𝑃|𝑚|

𝑛 (cos 𝜗)
sin 𝜗

𝒆𝜗 −
d𝑃|𝑚|

𝑛 (cos 𝜗)
d𝜗

𝒆𝜑)
(3.80)

14The spherical FF functions 𝐾 (4)
𝑠𝑚𝑛 used in this work differ by a factor of (−1)𝑛+𝑠/√4π from the ones in [Hansen

1988] due to a different normalization and the different time convention.
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3.6. Purely Absorbed Fields

and

𝑲 (4)
2𝑚𝑛(�̂�) = lim

𝑘𝑟→∞
𝑘 𝑟
e−j𝑘 𝑟 𝑭 (4)

2𝑚𝑛(𝑟, 𝜗, 𝜑)

= lim
𝑘𝑟→∞

𝑘 𝑟
e−j𝑘 𝑟

1
𝑘

∇ × 𝑭 (4)
1𝑚𝑛(𝑟, 𝜗, 𝜑)

= −j �̂� × 𝑲 (4)
1𝑚𝑛(�̂�)

=
j𝑛

√𝑛 (𝑛 + 1)
1

√2π (
−𝑚
|𝑚|)

𝑚
e j𝑚𝜑

(
d𝑃|𝑚|

𝑛 (cos 𝜗)
d𝜗

𝒆𝜗 +
j𝑚 𝑃|𝑚|

𝑛 (cos 𝜗)
sin 𝜗

𝒆𝜑)
. (3.81)

3.6. Purely Absorbed Fields

Similar to purely radiated fields, one can characterize purely absorbed fields by duality consider-
ations. As the name suggests, fields which are absorbed in 𝑉int transport power from 𝑉ext to 𝑉int
15. If the surface 𝑆2 is moved to infinity, purely absorbed fields fulfill the Silver-Müller radiation
conditions [Silver 1949; Müller 1948]

lim
|𝒓|→∞

|𝒓| (𝑬ab − √
𝜇
𝜀

̂𝒓 × 𝑯ab) = 𝟎 (3.82)

and

lim
|𝒓|→∞

|𝒓| (𝑯ab + √
𝜀
𝜇

̂𝒓 × 𝑬ab) = 𝟎 (3.83)

for inward-traveling waves. In a fully analogous reasoning as for purely radiated waves, it may
be found that purely absorbed fields can be expressed by evaluating only the tangential fields on
𝑆1 using the inward-radiating Greens functions 𝓖+

JE, 𝓖+
ME, 𝓖+

JH , 𝓖+
MH . We have

𝑬ab = ∯
𝑆1

[𝓖+
JE(𝒓, 𝒓′) ⋅ (𝒏1 × 𝑯ab(𝒓′)) + 𝓖+

ME(𝒓, 𝒓′) ⋅ (𝑬ab(𝒓′) × 𝒏1)] d𝑎′ (3.84)

and

𝑯ab = ∯
𝑆1

[𝓖+
JH(𝒓, 𝒓′) ⋅ (𝒏1 × 𝑯ab(𝒓′)) + 𝓖+

MH(𝒓, 𝒓′) ⋅ (𝑬ab(𝒓′) × 𝒏1)] d𝑎′ . (3.85)

Using the Green’s functions for inward-traveling waves, the tangential fields on 𝑆2 are not needed
for the evaluation of the absorbed fields in 𝑉16. More generally, arbitrary absorbed fields may be
constructed by placing arbitrary surface currents (not necessarily related to the tangential fields)
𝑱 and 𝑴 on the surface 𝑆1 and evaluating them with the “+”-type Greens functions. We have

𝑬ab = ∯
𝑆1

[𝓖+
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖+

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ (3.86)

15The text does not differentiate between absorption due to losses and absorption due to, e.g., a receiving antenna
placed in 𝑉int at this point.

16This may be used as the defining property of purely absorbed fields.
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3. Fields in the Vicinity of an Antenna

and analogously for the magnetic field. It is clear that by using the “+”-type Greens functions,
all fields generated by currents on 𝑆1 are purely inward-traveling.

In the spherical wave expansion, the functions with 𝑐 = 3 correspond to inward-traveling
waves fulfilling the Silver-Müller radiation conditions (3.82) and (3.83) for inward-traveling
waves. Absorbed fields can be expressed purely in terms of 𝑐 = 3 type functions and we have

𝑬ab = 𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(3)
𝑠𝑚𝑛𝑭 (3)

𝑠𝑚𝑛 (3.87)

and

𝑯ab = j 𝑘
√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(3)
𝑠𝑚𝑛𝑭 (3)

3−𝑠,𝑚𝑛 . (3.88)

3.7. Purely Incident Fields

Purely incident fields are characterized by the fact that no sources (neither radiating sources, nor
absorbing sources nor scattering sources) are present in 𝑉 and 𝑉int. All incident fields are due
to sources in 𝑉ext (thus the fields are incident on the volume 𝑉). The incident fields in 𝑉 can be
expressed by only evaluating the integrals on 𝑆2. Additional evaluation of the integrals on 𝑆1
only makes the volume 𝑉int free of fields without affecting the fields in 𝑉. We have

𝑬inc = ∯
𝑆2

[𝓖JE(𝒓, 𝒓′) ⋅ (𝒏2 × 𝑯inc(𝒓′)) + 𝓖ME(𝒓, 𝒓′) ⋅ (𝑬inc(𝒓′) × 𝒏2)] d𝑎′ (3.89)

and

𝑯inc = ∯
𝑆2

[𝓖JH(𝒓, 𝒓′) ⋅ (𝒏2 × 𝑯inc(𝒓′)) + 𝓖MH(𝒓, 𝒓′) ⋅ (𝑬inc(𝒓′) × 𝒏2)] d𝑎′ , (3.90)

where any type of Green’s function (“−”, “+”, or “(0)”) can interchangeably be used to find the
correct incident fields in 𝑉 (but Green’s functions of different type must not be mixed). The
fields are finite in 𝑉, the net power absorption (or power generation) in 𝑉 and 𝑉int is zero and no
distortion of the fields occurs in Vint.

Instead of expressing the incident fields by currents on 𝑆2, one can also use arbitrary pseudo
currents ̃𝑱, �̃� (not related to the tangential fields) on the surface 𝑆1 which yield purely incident
fields if evaluated with an appropriate convolution kernel. To this end, consider the pseudo
Green’s functions

𝓖(∞)
JE (𝒓, 𝒓′) = 1

2 [𝓖+
JE(𝒓, 𝒓′) − 𝓖−

JE(𝒓, 𝒓′)] = −j𝜔𝜇
[(I + 1

𝑘2 ∇∇)
j sin(𝑘 |𝒓 − 𝒓′|)

4π|𝒓 − 𝒓′| ]
,

(3.91)

𝓖(∞)
JH (𝒓, 𝒓′) = 1

2 [𝓖+
JH(𝒓, 𝒓′) − 𝓖−

JH(𝒓, 𝒓′)] = ∇
j sin(𝑘 |𝒓 − 𝒓′|)

4π|𝒓 − 𝒓′|
× I , (3.92)

𝓖(∞)
ME (𝒓, 𝒓′) = 1

2 [𝓖+
ME(𝒓, 𝒓′) − 𝓖−

ME(𝒓, 𝒓′)] = −∇
j sin(𝑘 |𝒓 − 𝒓′|)

4π|𝒓 − 𝒓′|
× I , (3.93)
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3.7. Purely Incident Fields

and

𝓖(∞)
MH (𝒓, 𝒓′) = 1

2 [𝓖+
MH(𝒓, 𝒓′) − 𝓖−

MH(𝒓, 𝒓′)] = −j𝜔𝜀
[(I + 1

𝑘2 ∇∇)
j sin(𝑘 |𝒓 − 𝒓′|)

4π|𝒓 − 𝒓′| ]
.

(3.94)
Similar to the scalar Helmholtz equation, the pseudo Green’s functions 𝓖∞

JE, 𝓖(∞)
JH , 𝓖∞

ME and
𝓖∞
MH are no Green’s functions because they fulfill the homogeneous curl-curl equations (the right

hand side is zero and not the Dirac-Delta distribution)

∇ × ∇ × 𝓖(∞)
JE (𝒓, 𝒓′) − 𝑘2𝓖(∞)

JE (𝒓, 𝒓′) = 𝟎 , (3.95)

∇ × ∇ × 𝓖(∞)
JH (𝒓, 𝒓′) − 𝑘2𝓖(∞)

JH (𝒓, 𝒓′) = 𝟎 , (3.96)

∇ × ∇ × 𝓖(∞)
ME (𝒓, 𝒓′) − 𝑘2𝓖(∞)

ME (𝒓, 𝒓′) = 𝟎 , (3.97)

and
∇ × ∇ × 𝓖(∞)

JE (𝒓, 𝒓′) − 𝑘2𝓖(∞)
JE (𝒓, 𝒓′) = 𝟎 (3.98)

everywhere, including the “source location” 𝒓′. Due to the linearity of the curl-curl equation, a
valid solution of

∇ × ∇ × 𝑬(𝒓) − 𝑘2𝑬(𝒓) = 𝟎 (3.99)

in the complete ℝ3 can be constructed by

𝑬inc = ∯
𝑆1

[𝓖(∞)
JE (𝒓, 𝒓′) ⋅ ̃𝑱 (𝒓′) + 𝓖(∞)

ME (𝒓, 𝒓′) ⋅ �̃�(𝒓′)] d𝑎′ (3.100)

and analogously for the magnetic field. This might be surprising at first glance, because the
incident field in the region 𝑉 which is external to the surface 𝑆1 can be expressed in terms of
“sources” on the inner surface 𝑆1. Since the incident fields in (3.100) are generated by subtracting
a radiated field from an absorbed field with the same generating surface currents, the so found
electromagnetic fields can be regarded as a superposition of an absorbed and a radiated field,
which are carefully adjusted such that their generating currents cancel (thus the term pseudo
currents for the “generating sources” ̃𝑱 and �̃�). Using the “∞”-type pseudo Green’s functions,
it becomes obvious that all incident fields contain equal parts of absorbed and radiated fields.
Furthermore, all types of source free fields in the source free volume 𝑉 (i.e., absorbed, radiated
or incident fields) can be expressed by a convolution integral over equivalent currents (or pseudo
currents) on 𝑆1 evaluated with convenient convolution kernels (i.e., Green’s functions or pseudo
Green’s functions, respectively). This is a nice analogy to the corresponding spherical wave
expansion of the fields in the source free region.

For the spherical wave expansion of incident fields it may be noted that the spherical Bessel
function j𝑛 is the only of the four 𝑧(𝑐)

𝑛 functions which is finite at 𝑟 = 0. This means that all
incident fields can be expressed purely in terms of 𝑐 = 1 type functions in a spherical wave
expansion. If expressed in terms of inward- and outward-traveling waves, we can use the fact
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3. Fields in the Vicinity of an Antenna

that j𝑛 = (h(1)
𝑛 + h(2)

𝑛 )/2 to derive the fact that 𝛼(3)
𝑠𝑚𝑛 = 𝛼(4)

𝑠𝑚𝑛 for incident waves. We have

𝑬inc = 𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 𝑭 (1)

𝑠𝑚𝑛

= 1
2

𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 (𝑭 (3)

𝑠𝑚𝑛 + 𝑭 (4)
𝑠𝑚𝑛) (3.101)

and

𝑯inc = j 𝑘
√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 𝑭 (1)

3−𝑠,𝑚𝑛

= 1
2
j 𝑘
√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 (𝑭 (3)

3−𝑠,𝑚𝑛 + 𝑭 (4)
3−𝑠,𝑚𝑛) . (3.102)

Using the spherical wave expansion of an arbitrary incident field 𝑬inc, one can argue that the
integral expression (3.100) must exist for every incident field which transports a finite amount
of power. To this end, consider a purely radiated field 𝑬rad first, for which the spherical wave
expansion

𝑬rad = 𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛 (3.103)

converges everywhere in the volume of interest 𝑉 (and analogously for the magnetic field).
According to Section 3.4, the same field can be expressed in terms of an integral over the surface
𝑆1 via

𝑬rad = ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ , (3.104)

where

𝑱(𝒓) = 𝑘√𝑍F 𝒏1 ×
(

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝒓)
)

(3.105)

and

𝑴(𝒓) =
−j𝑘

√𝑍F
𝒏1 ×

(

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝒓)
)

. (3.106)

There exists a unique purely absorbed field, which yields a purely incident field when added
to the purely radiated field. To see this, consider the spherical wave expansion

𝑬ab = 𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(3)
𝑠𝑚𝑛 𝑭 (3)

𝑠𝑚𝑛 (3.107)

of an arbitrary purely absorbed field. In order for the sum 𝑬rad + 𝑬ab to yield a purely incident
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field, we must have

𝑬rad + 𝑬ab = 𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛 + 𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(3)
𝑠𝑚𝑛 𝑭 (3)

𝑠𝑚𝑛

= 1
2

𝑘√𝑍F

2

∑
2=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 (𝑭 (3)

𝑠𝑚𝑛 + 𝑭 (4)
𝑠𝑚𝑛) . (3.108)

Clearly, the only purely absorbed field which fulfills this requirement is characterized by the
expansion coefficients 𝛼(3)

𝑠𝑚𝑛 = 𝛼(4)
𝑠𝑚𝑛. In other words, there exists a unique purely absorbed field,

which results in a purely incident field if added to the purely radiated field given in (3.104) and
the integral representation of this absorbed field must have the form

𝑬ab = − ∯
𝑆1

[𝓖+
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) + 𝓖+

ME(𝒓, 𝒓′) ⋅ 𝑴(𝒓′)] d𝑎′ , (3.109)

where the currents 𝑱 and 𝑴 are the same as for the corresponding radiated field. However,
through the spherical wave expansion (3.101), every purely incident field is uniquely associated
with a purely radiated field.

Therefore, one can find the integral representation (3.100) for an arbitrary incident field, as
long as the associated radiated field does not become singular17. To represent an arbitrary incident
field by (3.100), the key task is to identify the associated purely radiated field. The coefficients
𝛼(4)

𝑠𝑚𝑛 of the spherical wave expansion of the associated radiated field are related to the expansion
coefficients 𝛼(1)

𝑠𝑚𝑛 of the incident field by 𝛼(4)
𝑠𝑚𝑛 = 1/2 𝛼(1)

𝑠𝑚𝑛. Once the associated radiated fields
𝑬rad, 𝑯rad are found, the pseudo currents ̃𝑱, �̃� for (3.100) are easily obtained— they correspond
to any currents (e.g., the Love currents ̃𝑱 = 𝒏𝟏 × 𝑯rad, �̃� = −𝒏𝟏 × 𝑬rad) which generate the
radiated fields if evaluated with the “−”-type Green’s functions.

3.8. Scattered Fields

The total fields in a scattering scenario are neither purely radiated fields nor purely absorbed
fields nor purely incident fields, and, therefore, must be described by a combination of inward-
and outward-traveling waves or a combination of incident fields and outward-traveling waves,
respectively (the surface integrals on both surfaces 𝑆1 and 𝑆2 must be evaluated to find the
correct total fields in 𝑉 independent of which type of Green’s functions (“−”, “+”, or “(0)”) is
used.). If the outward-traveling parts of the total fields depend linearly on the incident fields (or
alternatively the inward-traveling fields) then the outward-traveling portion of the total field is
called scattered field18.
17Notice, that the associated purely radiated field of an incident plane wave does not have a convergent spherical

wave expansion (the coefficients grow with increased mode number). However, an arbitrarily close approximation
of the plane wave by finitely many spherical waves can be expressed by (3.100) in any finite observation volume.

18The term scattered fields is used in a really broad sense, here. It includes all scenarios, where the outward-
traveling fields depend linearly on the incident fields. For example, this definition includes “active” scattered
fields, where the total field has a time averaged power flow toward the external volume 𝑉ext. If the inward- and
outward-traveling fields are independent from each other, one would not speak of scattered fields, however.
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3. Fields in the Vicinity of an Antenna

Using the terminology of [Hansen 1988, pp. 46ff.], a description which splits the total fields as

𝑬tot = 𝑬inc + 𝑬sca (3.110)

into an incident field 𝑬inc and a scattered field 𝑬sca is called source scattering description. The
(purely radiating) scattered fields 𝑬sca are linearly related to the incident fields 𝑬inc in this
description. Sometimes a different description is used relating the outward-traveling portion of
the total fields to the inward-traveling portion 𝑬inw of the incident fields19. This description is
called classical scattering description and it splits the total field according to

𝑬tot = 𝑬inw + 𝑬′
sca . (3.111)

The scattered fields 𝑬sca of the source scattering description differ from the scattered fields
𝑬′
sca of the classical scattering description because the latter also includes the outward-traveling

portion of the incident fields (this leads to the counter intuitive situation that one must include
scattered fields for free-space in the classical scattering description).

3.8.1. Scattering Dyadics

For the formal analysis of the scattering scenario in terms of current representations of the fields,
consider the scattering scenario in Fig. 3.4. Some incident field 𝑬inc impinges a scattering object
which is totally enclosed by the surface 𝑆1. Equivalent surface currents 𝑱1, 𝑴1 account for the
scattered field. Any incident field can be expressed solely by equivalent surface currents 𝑱2, 𝑴2
on the outer surface 𝑆2 (which may be moved to infinity, e.g., for a plane wave excitation), while
the scattered fields are described by equivalent currents 𝑱1, 𝑴1 on the inner surface 𝑆1. We thus
have for the total electric field in 𝑉

𝑬tot(𝒓) =𝑬sca(𝒓) + 𝑬inc(𝒓) (3.112)

= ∯
𝑆1

[𝓖−
ME(𝒓′, 𝒓) ⋅ 𝑴1(𝒓′) + 𝓖−

JE(𝒓′, 𝒓) ⋅ 𝑱1(𝒓′)] d𝑎′

+ ∯
𝑆2

[𝓖−
ME(𝒓′, 𝒓) ⋅ 𝑴2(𝒓′) + 𝓖−

JE(𝒓′, 𝒓) 𝑱2(𝒓′)] d𝑎′. (3.113)

According to their definition, the scattered fields must depend linearly on the incident fields
(which are uniquely defined by the their tangential components on 𝑆1). Consequently, the
tangential fields 𝒏 × 𝑬sca and 𝒏 × 𝑯sca of the scattered fields depend linearly on the tangential
fields 𝒏 × 𝑬inc and 𝒏 × 𝑯inc of the incident fields. Therefore, it is always possible to express
the tangential components of the scattered fields with the help of scattering dyadics 𝓢EJ(𝒓, 𝒓′),
𝓢EM(𝒓, 𝒓′), 𝓢HJ(𝒓, 𝒓′), and 𝓢HM(𝒓, 𝒓′) in the manner of20 [Saxon 1955; Martin 1995; Martin
19Notice the subtle difference between 𝑬inc and 𝑬inw. While 𝑬inc denotes the complete incident field— including

equal inwardly and outwardly traveling parts— the field 𝑬inw denotes only the inwardly traveling portion of the
incident field.

20The here employed form of the scattering dyadics in terms of surface integrals is not commonly found in the
literature. More common are scattering dyadics in volume integrals [Martin 1995; Martin 1998] or modal
expansions of the scattering dyadic in form of spherical modes [Waterman 1965; Hansen 1988] or plane
waves [Neitz 2020].
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𝑉int

𝑉

𝑉ext

𝒏 𝒏

𝑆1
𝑆2

𝑬inc

𝑱1

𝑴1

Fig. 3.4.: The scattered fields in 𝑉 are expressed
by the scattering currents 𝑱1 and 𝑴1 which
depend linearly on the incident field.

𝒏

𝒕1

𝒕2

Fig. 3.5.: Small surface element with normal vector
𝒏 and two orthogonal tangential vectors 𝒕1
ans 𝒕2.

1998; Korotkova 2007]

𝒏 × 𝑯sca(𝒓) |𝒓∈𝑆1

= ∯
𝑆1

[𝓢EJ(𝒓, 𝒓′) ⋅ 𝑬inc(𝑟′) + 𝓢HJ(𝒓, 𝒓′) ⋅ 𝑯inc(𝑟′)] d𝑎′ (3.114)

and

−𝒏 × 𝑬sca(𝒓) |𝒓∈𝑆1

= ∯
𝑆1

[𝓢EM(𝒓, 𝒓′) ⋅ 𝑬inc(𝑟′) + 𝓢HM(𝒓, 𝒓′) ⋅ 𝑯inc(𝑟′)] d𝑎′ , (3.115)

where the scattering dyadics 𝓢EJ , 𝓢HJ , 𝓢EM , and 𝓢HM do not contain any components along
the surface normal 𝒏 but relate the tangential currents to tangential fields only. In general, the
scattered field response −𝒏 × 𝑬sca(𝒓) |𝒓∈𝑆1

and 𝒏 × 𝑯sca(𝒓) |𝒓∈𝑆1
at the location 𝒓 ∈ 𝑆1 can

depend on the incident field at all locations of the surface 𝑆1 simultaneously and is not limited to
depend on the incident field at the location 𝒓, thus, the use of a second spatial variable 𝒓′ for the
incident fields in (3.114) and (3.115).

Referring to Fig. 3.5 for a clarification of the orientation of the respective vectors, the dyadics
have the form

𝓢EJ(𝒓, 𝒓′) =
2

∑
𝑘=1

2

∑
ℓ=1

𝑠(EJ)
𝑘,ℓ (𝒓, 𝒓′) 𝒕𝑘(𝒓) 𝒕ℓ(𝒓′) , (3.116)

𝓢HJ(𝒓, 𝒓′) =
2

∑
𝑘=1

2

∑
ℓ=1

𝑠(HJ)
𝑘,ℓ (𝒓, 𝒓′) 𝒕𝑘(𝒓) 𝒕ℓ(𝒓′) , (3.117)

𝓢EM(𝒓, 𝒓′) =
2

∑
𝑘=1

2

∑
ℓ=1

𝑠(EM)
𝑘,ℓ (𝒓, 𝒓′) 𝒕𝑘(𝒓) 𝒕ℓ(𝒓′) , (3.118)
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3. Fields in the Vicinity of an Antenna

and

𝓢HM(𝒓, 𝒓′) =
2

∑
𝑘=1

2

∑
ℓ=1

𝑠(HM)
𝑘,ℓ (𝒓, 𝒓′) 𝒕𝑘(𝒓) 𝒕ℓ(𝒓′) , (3.119)

where 𝑠(EJ)
𝑘,ℓ (𝒓, 𝒓′), 𝑠(HJ)

𝑘,ℓ (𝒓, 𝒓′), 𝑠(EM)
𝑘,ℓ (𝒓, 𝒓′), and 𝑠(HM)

𝑘,ℓ (𝒓, 𝒓′) are scalar scattering functions relat-
ing the 𝒕ℓ-field component at 𝒓′ to the 𝒕𝑘-current component at 𝒓. As the tangential components
of the scattered fields 𝒏 × 𝑯sca = 𝑱sca and −𝒏 × 𝑬sca = 𝑴sca can be identified with the equivalent
Love currents, the scattering dyadics express the linear relationship between the incident field
and the scattering currents on the scatterer 21. The scattering dyadics are analogous to the
spherical wave source scattering matrices and completely characterize the scattering behavior
of the object under consideration. However, they are usually not known explicitly for even
moderately complicated scattering geometries but one can find some helpful properties from
general considerations.

Reciprocity can be directly incorporated into the dyadics by assuming symmetry22. We have

𝑠(AB)
𝑘,ℓ (𝒓, 𝒓′) = 𝑠(AB)

ℓ,𝑘 (𝒓′, 𝒓) (3.120)

with indices 𝑘, ℓ ∈ {1, 2}, 𝐴 ∈ {𝐸, 𝐻}, and 𝐵 ∈ {𝐽, 𝑀}—or in short

𝓢AB(𝒓, 𝒓′) = 𝓢T
AB(𝒓′, 𝒓) (3.121)

such that every dyad 𝓢AB is completely defined by three scalar functions 𝑠(AB)
1,1 (𝒓, 𝒓′), 𝑠(AB)

1,2 (𝒓, 𝒓′),
𝑠(AB)

2,2 (𝒓, 𝒓′), respectively. On a PEC scatterer 𝓢EM = 𝓢MH = 𝟎 and analogously, 𝓢EM = 𝓢JH =
𝟎 on a perfect magnetically conducting (PMC) scatterer.

3.8.2. Spherical Wave Scattering Matrix

The scattering dyadics can be expanded into spherical field modes. Often, the total electric field
in the vicinity of a scatterer is then expressed by the classical scattering representation

𝑬tot = 𝑘√𝑍F

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

(𝛼(3)
𝑠𝑚𝑛𝑭 (3)

𝑠𝑚𝑛 + 𝛼(4)
𝑠𝑚𝑛𝑭 (4)

𝑠𝑚𝑛) (3.122)

as the sum of inward- and outward-traveling waves23 (as opposed to a sum of incident and
outward-traveling waves).
21In this work, a form of the scattering dyadics is used which relates both types of incident fields (i.e., electric and

magnetic) to both types of scattering currents (i.e., electric and magnetic). Note, however, that the incident
magnetic field is the curl of the incident electric field, thus, it would also be possible to define scattering dyadics
which only depend on the incident electric field (and its curl). Similarly, only equivalent electric currents
are sufficient to represent all possible scattered fields such that in principle, the complete scattering can be
characterized by a single scattering dyadic 𝓢𝐽𝐸.

22If one works with all four types of scattering dyadics, symmetry is not required for the individual dyadics but can
be ensured by suitable combinations of dyadics. It is, however, convenient (and necessary if only one type of
dyadics is used in the formal description) to have symmetric scattering dyadics.

23Formally, this summation must be carried out over infinitely many modes (𝑁 → ∞). However, for all practical
purposes to represent the fields with any desired accuracy, the summation may be truncated at a finite 𝑁 (this
means that extremely superdirective effects are neglected). See Chapter 4 for details.
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The linear relationship between the coefficients 𝛼(4)
𝑠𝑚𝑛 of the outward-traveling waves and the

coefficients 𝛼(3)
𝑠𝑚𝑛 of the inward-traveling fields may be formally expressed by [Montgomery 1948,

pp. 322ff.], [Hansen 1988, pp. 27 ff.]

𝜶(4) = S 𝜶(3) , (3.123)

where 𝜶(4) ∈ ℂ2𝑁(𝑁+2) × 1 √W is the vector storing the coefficients of the outward-traveling
waves, 𝜶(3) ∈ ℂ2𝑁(𝑁+2) × 1 √W is the vector storing the coefficients if the inward-traveling
and S ∈ ℂ2𝑁(𝑁+2) × 2𝑁(𝑁+2) is the classical scattering matrix. The eigenvalues of the classi-
cal scattering matrix of a passive scatterer are always smaller or equal than one, such that
the outward-traveling waves carry at most the same power as the inward traveling waves, i.e.,
‖𝜶(4)‖

2
2 ≤ ‖𝜶(3)‖

2
2 for a passive scatterer. Lossless scattering is characterized by a unitary scat-

tering matrix, i.e., SHS = 𝟏 with the unit matrix 𝟏 [Montgomery 1948, pp. 323ff.]. No net
power is generated or absorbed in either of the volumes 𝑉int or 𝑉ext in this case. purely in-
cident fields consist of equal coefficients for inward-and outward-traveling waves (because of
z(1)

𝑛 = (z(3)
𝑛 + z(4)

𝑛 )/2), and we have 𝜶(4) = 𝜶(3) for free-space and the “scattering” matrix of empty
space (really denoting the absence of scattering here) is the unit matrix.

In the source scattering description (which is more closely related to the scattering dyadics
from the previous section) the total electric field is expressed by [Yaghjian 1977], [Hansen 1988,
pp. 46ff.]

𝑬tot = 𝑘√𝑍F

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

(𝛼′(1)
𝑠𝑚𝑛𝑭 (1)

𝑠𝑚𝑛 + 𝛼′(4)
𝑠𝑚𝑛𝑭 (4)

𝑠𝑚𝑛) (3.124)

as a linear combination of incident fields (𝑐 = 1) and outward-traveling fields (𝑐 = 4). Of course
the coefficients 𝛼′(4)

𝑠𝑚𝑛 are different from the coefficients 𝛼(4)
𝑠𝑚𝑛 because the incident fields 𝛼′(1)

𝑠𝑚𝑛 in
(3.124) also contain an outward-traveling part int contrast to the purely inward-traveling waves
𝛼(3)

𝑠𝑚𝑛 in (3.122). For (3.122) and (3.124) to be equal, one must have

1
2

𝛼′(1)
𝑠𝑚𝑛 + 𝛼′(4)

𝑠𝑚𝑛 = 𝛼(4)
𝑠𝑚𝑛 (3.125)

and
1
2

𝛼′(1)
𝑠𝑚𝑛 = 𝛼(3)

𝑠𝑚𝑛 (3.126)

for all combinations of 𝑠, 𝑚, and 𝑛.
One can use the source scattering matrix24 S′ ∈ ℂ[2𝑁(𝑁+2)] × [2𝑁(𝑁+2)] to describe the linear

relation [Yaghjian 1977]
𝜶′(4) = S′ 𝜶′(1) (3.127)

between the coefficients of the incident field stored in the vector 𝜶′(1) ∈ ℂ2𝑁(𝑁+2) × 1 √W and
the coefficients of the outward-traveling waves stored in the vector 𝜶′(4) ∈ ℂ2𝑁(𝑁+2) × 1 √W.
The source scattering matrix is related to the classical scattering matrix by [Hansen 1988, p. 46]

S′ = 1
2

(S − 𝟏) . (3.128)
24See [Hansen 1988, pp. 46ff.] for details about the differences between the descriptions involving S and S′.
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3.9. Chapter Summary

In this chapter, the fields in the environment of an antenna have been described in terms of
spherical waves or alternatively by equivalent surface currents on the boundary of the observation
volume 𝑉. By using different types of dyadic Green’s functions—which are not commonly
encountered in the literature about classical electrodynamics— one can characterize and express
purely radiated, absorbed, or incident fields by equivalent sources only on the inner surface 𝑆1 of
the observation domain. Scattered fields have been described as a linear response to the incident
fields in terms of scattering dyadics and spherical scattering matrices. The description of the
fields in terms of spherical field modes is similar to the derivations which can be found in the
corresponding textbooks [Hansen 1988]. The description of the fields in terms of equivalent
current densities in this thesis is different from usual approaches. The general theorems have
been adapted from existing literature [Collin 1990; Jin 2015] but Green’s functions with an
inward-traveling asymptotic boundary condition have not been ruled out in contrast to customary
practice. In this way, purely radiated fields, purely absorbed fields, and even purely incident fields
are described by sources only on the interior surface 𝑆1 of the observation domain (and evaluated
with the corresponding dyadic (pseudo) Green’s functions). This completes the analogy between
the field description in terms of equivalent surface currents and a spherical expansion (where
purely absorbed and incident fields are prominently included by the corresponding field modes)
of the field. The knowledge about the formal description of the various field types is needed for
finding the characteristic transmit and receive fields of an antenna in later chapters.
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The transformation between guided waves and free-space fields taking place in an antenna is
investigated in this chapter. Without loss of generality, the waveguide is oriented along the 𝑧-axis
with guided waves propagating in positive 𝑧-direction exciting the antenna in transmit mode. The
waveguide cross section at 𝑧 = 0 is chosen as the reference plane. For simplicity, it is assumed
that all but one waveguide modes (i.e., the fundamental mode) are evanescent and that the
antenna and the excitation source are matched to the characteristic impedance of the fundamental
waveguide mode1. This implies that for the transmitting antenna only the forward-propagating
fundamental mode is present on the waveguide. For the receiving antenna all modes but the
backward-traveling fundamental waveguide mode can be neglected at the reference plane if the
waveguide length is long enough to sufficiently attenuate the evanescent modes before reaching
the reference plane.

It will be shown that the transmitted fields2 are essentially bandlimited (i.e., they consist of
a limited number of spherical modes) dependent on the size of the antenna. An equivalent
description of the antenna transmit behavior is obtained by equivalent surface currents on a
Huygens surface enclosing the antenna.

For receiving antennas, one may be interested in one of two aspects. First and most important
is the question of how to determine the received signal for an arbitrary incident field. To find
the received signal, the same equivalent surface currents as for the transmit case can be used to
test any given incident field. Second, one may be interested in how the total field outside the
antenna volume is affected by the presence of the antenna. Most incident fields are only partially

1Most of the statements in this chapter would still be true for a mismatched antenna, if the source impedance
was power-matched to the apparent input impedance at the reference plane such that all power provided by
the source is accepted by the transmitting antenna. However, the description of the waveguide fields is more
complicated in this case. For instance, the received signal is no longer directly proportional to the coefficient
of the backward-traveling wave. Forward- and backward-traveling modes are present on the waveguide for
mismatched transmitting and receiving antennas and the reflections at the source impedance have to be taken
into account to correctly determine the total field on the waveguide.

2While the term radiated fields may be used for any outward-traveling field as defined in the previous chapter, the
term transmitted field means the specific field distribution generated by a certain antenna in transmit mode.
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transformed into guided waves by the receiving antenna, some parts of the incident fields may be
scattered back toward the external volume 𝑉ext. The scattered fields are hard to determine, since
the full antenna geometry has to be taken into account, but some information can be deduced for
the received portion of the incident field. It is useful to split the incident fields into two parts.
One part—called the characteristic incident field3 —is transformed into the received signal at
the antenna port and another part— called the residual incident field—does not contribute at all
to the received signal4.

4.1. Transmitting Antennas

In order to obtain a characterization of the transmit behavior of the antenna, consider the problem
depicted in Fig. 4.1. A well defined guided mode on the waveguide is excited by impressing the
mode currents on the closed surface5 𝑆0. The mode excitation currents

𝑱0(𝑥, 𝑦) = 𝒆𝑧 × 𝑯0t(𝑥, 𝑦, 0) (4.1)

and
𝑴0(𝑥, 𝑦) = −𝒆𝑧 × 𝑬0t(𝑥, 𝑦, 0) (4.2)

correspond to the transversal fields 𝑬0t(𝑥, 𝑦, 0), 𝑯0t(𝑥, 𝑦, 0) of the fundamental waveguide mode
discussed in Chapter 2. The guided wave is transformed into the transmitted fields 𝑬tra, 𝑯tra
in the volume 𝑉. The transmit fields consist only of pure radiated fields but the particular field
distribution depends on the antenna geometry and it is inconvenient to solve Maxwell’s equations
for the complicated structure for every evaluation of the transmit fields.

4.1.1. Expressing the Transmit Fields by Currents on a Huygens Surface

It is more convenient to express the transmit fields in the volume 𝑉 by equivalent free-space
currents. Because every radiated field can be expressed by surface currents on 𝑆1 alone—no
currents are needed on 𝑆2 when the fields are evaluated with the “−” type Green’s functions
(see Section 3.4)— it is clear that there exist some surface currents 𝑱tra, 𝑴tra on the Huygens
surfaces 𝑆1 in Fig. 4.2 which generate exactly the transmitted fields of the antenna. One can see
from (3.28) and (3.29) that for example the equivalent so-called Love currents 𝑱tra = 𝒏 × 𝑯tra,
𝑴tra = −𝒏 × 𝑬tra generate the desired transmit fields [Love 1901].

We have
𝑬tra = ∯

𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ 𝑱tra(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ 𝑴tra(𝒓′)] d𝑎′ (4.3)

3The term characteristic incident field is used to denote the undistorted incident field. The total field in presence
of the receiving antenna corresponding to the characteristic incident field is called receive field. The receive
field is a purely absorbed field.

4The residual incident field can include an incident field portion which does not interact with the antenna at all.
5A closed surface 𝑆0 is considered in order to have a well defined volume 𝑉0,int in which the power of the guided
waves may be generated or consumed. Of course, the mode currents need only to be impressed in the reference
plane at 𝑧 = 0. No excitation currents are placed on other parts of 𝑆0 which are located inside the PEC walls of
the waveguide or in negative 𝑧-direction.
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𝑉 𝑉ext

𝑬tra

𝑧 = 0

𝑱0

𝑴0

𝒏0

𝒏2

𝑆0

𝑆2

Fig. 4.1.: The transmitted fields in 𝑉 are generated
by impressing the modal currents 𝑱0 and 𝑴0
on 𝑆0 for the fundamental guided mode. The
whole antenna geometry must be considered.

𝑉int

𝑉 𝑉ext

𝒏1

𝒏2𝑆1
𝑆2

𝑬tra

𝑱tra

𝑴tra

Fig. 4.2.: Equivalent problem with equivalent free-
space currents impressed on 𝑆1. No equiv-
alent currents are needed on 𝑆2 to evaluate
the pure radiated fields with the “−”-type
Green’s functions.

and

𝑯tra = ∯
𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ 𝑱tra(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ 𝑴tra(𝒓′)] d𝑎′ . (4.4)

The complicated antenna geometry can be removed because the equivalent currents already
define the fields in 𝑉 appropriately, independent from the materials in 𝑉int.

The equivalent surface currents are not unique, however. There exist infinitely many different
distributions of electric and magnetic surface current densities 𝑱tra and 𝑴tra on the surface 𝑆1,
which produce the exact same fields 𝑬tra and 𝑯tra in 𝑉 as the original sources [Rengarajan 2000;
Yaghjian 2002], [Collin 1990, pp. 35ff.], [Jin 2015, p. 108], [Harrington 1961, pp. 106ff.].
Among these infinitely many surface current densities on 𝑆1 which generate the same fields
in 𝑉, there are surface current densities consisting of only electric currents or only magnetic
currents [Martini 2008; Quijano 2010a; Schelkunoff 1936; Schelkunoff 1951] so the same fields
can be expressed by electric or magnetic currents alone [Bladel 2007, pp. 320ff.]. This ambiguity
immediately implies that there exist non-radiating surface current densities which do not generate
any field in 𝑉. This non-uniqueness of the surface current representation of the fields in 𝑉 does
not impose a problem at the moment—any valid surface current density 𝑱tra and 𝑴tra may be
used—but it will have implications for equivalent current based NFFFTs which will be discussed
in Chapter 5.

Once suitable surface current densities 𝑱tra and 𝑴tra have been found, which represent the
fields in 𝑉 appropriately, many antenna characteristics can be readily derived from them. One
may compute the FF radiation pattern, the radiated NF at any point of interest, the radiated
power and so forth. The surface currents are particularly useful if they are normalized to the
excitation power wave amplitude 𝑎 ∈ √W at the antenna port. The normalized surface currents

̂𝑱tra = 𝑱tra /𝑎 and �̂�tra = 𝑴tra /𝑎 can be used to determine the radiated fields per unit excitation,
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i.e., they may be used to determine the radiation efficiency or the gain of the antenna [Neitz 2017].
The unnormalized surface current densities 𝑱tra and 𝑴tra have units [𝑱tra] = A/m and [𝑴tra] =
V/m, respectively, and the units of the normalized surface currents are [ ̂𝑱tra] = 1/(√Ωm) and
[�̂�tra] = √Ω/m.

4.1.2. Expressing the Transmit Fields by Spherical Vector Waves

The transmit behavior of the antenna can also be described in terms of a spherical wave expansion.
The transmitted fields consist purely of outward-traveling waves and we have [Hansen 1988, p.
14]

𝑬tra = 𝑎 𝑘√𝑍0

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

�̂�(4),tra
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛 (4.5)

and

𝑯tra = 𝑎 j 𝑘
√𝑍0

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

�̂�(4),tra
𝑠𝑚𝑛 𝑭 (4)

3−𝑠,𝑚𝑛 , (4.6)

where 𝑎 ∈ ℂ√W is the excitation signal at the port and �̂�(4),tra
𝑠𝑚𝑛 ∈ ℂ are the normalized expansion

coefficients for the transmit fields outside the source volume 𝑉int which is assumed to be a sphere
for the spherical wave expansion.

The normalized expansion coefficients can be found from volume current densities 𝑱vol and
𝑴vol by [Hansen 1988, p. 333]

�̂�(4),tra
𝑠𝑚𝑛 = (−1)𝑚+1

∭
𝑉1

[
𝑘√𝑍0 𝑭 (1)

𝑠,−𝑚,𝑛 ⋅
𝑱vol

𝑎
− j 𝑘

√𝑍0
𝑭 (1)

3−𝑠,−𝑚,𝑛 ⋅
𝑴vol

𝑎 ]
d𝑎 , (4.7)

where 𝑎 is the power wave amplitude which has been used to excite the currents in the volume.
As the radiated fields in this thesis are usually expressed by equivalent surface current densities
and not by volume current densities, it is intriguing to use the equation

�̂�(4),tra
𝑠𝑚𝑛 = (−1)𝑚+1

∯
𝑆1

[
𝑘√𝑍0 𝑭 (1)

𝑠,−𝑚,𝑛 ⋅ ̂𝑱tra − j 𝑘
√𝑍0

𝑭 (1)
3−𝑠,−𝑚,𝑛 ⋅ �̂�tra]

d𝑎 (4.8)

for calculating the coefficients from the normalized equivalent surface current densities ̂𝑱tra
and �̂�tra. The surface current formulation (4.8) might be derived from (4.7) by considering a
limiting process which confines the volume currents in a continuously decreasing volume, thus,
approaching a surface current density in the limit. However, (4.8) can suffer from a resonance
problem. The roots of 𝑭 (1)

𝑠𝑚𝑛 lie on concentric spheres, due to the behavior of the spherical
Bessel functions and its derivatives. The behavior of some spherical Bessel functions and their
derivatives are depicted in Fig. 4.3 and Fig. 4.4. If the surface 𝑆1 coincides with the spherical
surface where a particular function 𝑭 (1)

𝑠,−𝑚,𝑛 is zero, then any finite and purely electric surface
current density on 𝑆1 leads to a zero coefficient �̂�(4),tra

𝑠𝑚𝑛 according to (4.8) (and analogously for
magnetic currents). Therefore, one cannot use (4.8) with arbitrary surface current densities on
surfaces which show interior (electric or magnetic) resonances at the frequency of interest. The
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Fig. 4.3.: Behavior of the spherical Bessel func-
tions of varying order.

−100
−80
−60
−40
−20

0
𝑛 = 1

−100
−80
−60
−40
−20

0
𝑛 = 2

−100
−80
−60
−40
−20

0
𝑛 = 5

−100
−80
−60
−40
−20

0
𝑛 = 10

20
lo
g 1

0
(

1 𝑘𝑟
d d
𝑘𝑟

{j
𝑛(

𝑘𝑟
) }

)

−100
−80
−60
−40
−20

0
𝑛 = 20

−100
−80
−60
−40
−20

0
𝑛 = 50

100 101 102 103
−100
−80
−60
−40
−20

0
𝑛 = 100

𝑘𝑟

Fig. 4.4.: Behavior of the derivatives of spheri-
cal Bessel functions of varying order.

49



4. Antennas

problem can be circumvented by using Love currents 𝑱Love = 𝒏 × 𝑯tra and 𝑴Love = −𝒏 × 𝑬tra
because either the magnetic or the electric part of the Love currents will always have a non-zero
contribution to any given mode coefficient [Santiago 2019]. Alternatively, arbitrary (non-Love)
surface current densities can still be used if the FFs

�̂�FF(�̂�) = 𝑘
4π ∯

𝑆1

[−j𝜔𝜇 (I − �̂��̂�) e j𝒌⋅𝒓′
⋅ ̂𝑱tra(𝒓′) + j𝒌 × �̂�tra(𝒓′) e j𝒌⋅𝒓′

] d𝑎′ (4.9)

from the equivalent surface currents are calculated first. The expansion coefficients

�̂�(4),tra
𝑠𝑚𝑛 = (−1)𝑠+𝑚+𝑛

∯ �̂�FF(�̂�) ⋅ 𝑲 (4)
𝑠,−𝑚,𝑛(�̂�) d�̂� (4.10)

are then found from the resulting FFs using convenient orthogonality relations6.
Due to the orthogonality of the modes, the total power radiated by the transmit fields is the

sum of the powers transported by each mode and we have 𝑃tra = 1/2 ∑𝑠𝑚𝑛 |𝑎 �̂�(4),tra
𝑠𝑚𝑛 |2. Similar

to the representation by surface current densities, the representation of the transmit fields by
normalized expansion coefficients �̂�(4),tra

𝑠𝑚𝑛 contains all relevant information to determine relevant
antenna parameters. The normalized fields (i.e., the fields per unit excitation) can readily be
computed by setting 𝑎 = 1 in (4.5) and (4.6). With the normalized expansion coefficients the
radiation efficiency, the gain normalized FF pattern and so forth can easily be computed.

Apart from being useful as a characterization for the antenna parameters, the spherical wave
expansion can be used as a powerful tool in the analysis of the transmitted fields. The spherical
Bessel functions j𝑛(𝑘𝑟) and their derivatives 1/(𝑘𝑟) d{𝑘𝑟 j𝑛(𝑘𝑟)} /(d𝑘𝑟) appearing as radial de-
pendencies of the spherical modes 𝑭 (1)

𝑠𝑚𝑛 in (4.8) all show a characteristic behavior as can be seen
in Fig. 4.3 and Fig. 4.47. The values of the radial functions of different order 𝑛 are negligible for
small values of 𝑘𝑟 and become significant once 𝑘𝑟 reaches a critical value of about 𝑘𝑟 ≈ 𝑛. With
the 𝑭 (1)

𝑠𝑚𝑛-functions having a low magnitude, the integral expressions in (4.8) become very small
for current distributions ̂𝑱tra, �̂�tra with a bounded magnitude. Consequently, the �̂�(4),tra

𝑠𝑚𝑛 decrease
rapidly for increasing mode orders.

The transmit fields of any finite sized antenna with minimum sphere radius 𝑟0 can therefore
effectively be expressed by a limited number of DoFs [Bucci 1987; Bucci 1989; Bucci 1991;
Bucci 1998; Piestun 2000; Stupfel 2008; Hansen 2019]. Although formally, infinitely many field
modes are needed for the field expansion in (4.5) and (4.6), it is sufficient in practice to limit the
summation to mode indices 𝑛 = 1, … , 𝑁. Due to unavoidable measurement errors, e.g., by noise,
the transmit fields can only be measured up to a certain accuracy. For all practical applications it
is therefore sufficient to find an expression for the fields which is slightly more accurate than the
measurements. In practice, the mode expansion of the radiated fields may be truncated at some
𝑛 = 𝑁 with

𝑁 = ⌊𝑘𝑟0⌋ + 𝑛buf , (4.11)
6Inversely, the normalized transmit currents ̂𝑱tra, �̂�tra can always be found from known spherical expansion
coefficients �̂�(4),tra

𝑠𝑚𝑛 by evaluating the fields on the hull surface 𝑆1 (which is no longer required to be a sphere
for the spatial equivalent current representation) via (4.5) and (4.6). The equivalent currents are then given by

̂𝑱tra = 𝒏1 × 𝑯tra and �̂�tra = 𝑬tra × 𝒏1.
7In this discussion, it is assumed that the surface 𝑆1 does not lead to any resonance problems.
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where 𝑟0 is the radius of the minimum sphere around the antenna and some buffer 𝑛buf may be
chosen in the order of [Jensen 2004]

𝑛buf = 0.045 3√𝑘𝑟0 10 log10(
1
𝜖 ) , (4.12)

where

𝜖 = 1
2

2

∑
𝑠=1

∞

∑
𝑛=𝑁+1

𝑛

∑
𝑚=−𝑛

|�̂�
(4),tra
𝑠𝑚𝑛 |

2
(4.13)

is the anticipated power of the neglected higher order modes (i.e., an estimate for the error of the
truncated field expansion)8.

4.1.3. Superdirectivity

The previous discussion may easily lead to the conclusion that the maximum directivity of an
antenna pattern is directly limited by the antenna size and that higher directivities call for larger
antennas [Chu 1948; Harrington 1960] , because the maximum directivity of an antenna is bound
to the maximum mode number 𝑛max by [Hansen 1988, pp. 55ff.]

𝐷max = 𝑛2
max + 2𝑛max . (4.14)

Theoretically, however, one can construct an antenna of finite size (minimum sphere radius 𝑟0)
which predominantly excites higher order modes with 𝑛 > 𝑟0/𝑘 and arbitrary directivities can
in principle be obtained with antennas of limited size [Oseen 1922; Schelkunoff 1943; Uzkov
1946; Harrington 1965; Salt 1977], [Hansen 2011a, pp. 181ff.]. To obtain this effect, the
higher-order mode contribution in surface current densities must be several orders of magnitude
larger than their lower-order counterparts to balance the effect of the vanishing magnitudes of
𝑭 (1)

𝑠𝑚𝑛 for 𝑛 > 𝑟0/𝑘 in (4.8). The higher-order mode currents generate large reactive fields in
the direct proximity of the antenna which decay rapidly with increasing 𝑟 until they reach the
critical distance of around 𝑘𝑟 ≈ 𝑛. The described behavior can be observed in Figs. 4.5 and 4.6,
where the magnitudes of the functions h(2)

𝑛 (𝑘𝑟) and 𝑅𝑛 = 1/(𝑘𝑟) d{𝑘𝑟 h(2)
𝑛 (𝑘𝑟)}/(d𝑘𝑟) (i.e., the

radial dependencies of the functions 𝑭 (4)
𝑠𝑚𝑛) are plotted normalized to their value at 𝑘𝑟 = 10. It

can be seen that the modes with 𝑛 ≤ 10 have approximately the same magnitude outside the
distance 𝑘𝑟 = 10, while the higher order modes are further damped and result in several orders
of magnitude weaker amplitudes at some distance away from the antenna.

Since the field patterns of such antennas exceeds the performance which is usually observed
with an antenna of given size, these antennas are called superdirective antennas9. Strongly
pronounced superdirective properties are rarely observed experimentally, however, because the
8Choosing the buffer in the order of 𝑛buf = 10 is good enough for an accuracy of better than −80 dB for the radiated

fields of most antennas up to 100𝜆 diameter [Hansen 1988, p. 21].
9If a strict distinction between superdirective and non-superdirective antennas is required, it can be found in terms
of feasible modes per antenna radius 𝑟0. For a given antenna with minimum sphere radius 𝑟0, a spherical field
mode may be called feasible, if its mode number 𝑛 ≤ 𝑟0/𝑘 and unfeasible otherwise. For a non-superdirective
antenna, the fields in the region of interest can be expressed exclusively by feasible modes (up to the desired
accuracy). If unfeasible modes are needed in the field expansion, the radiating antenna is superdirective. With
this definition, a small amount of superdirectivity is allowed if the field expansion is truncated at a mode index
𝑁 = ⌊𝑘𝑟0⌋ + 𝑛buf, slightly larger than the superdirectivity threshold 𝑁 = ⌊𝑘𝑟0⌋.

51



4. Antennas

100 101 102 103

−100

−50

0

50

𝑛 = 1

𝑛 = 2

𝑛 =
5

𝑛 = 10
𝑛 = 15

𝑛 = 20

𝑘𝑟

20
lo
g 1

0
(

|h
(2

)
𝑛

( 𝑘
𝑟)

/h
(2

)
𝑛

( 1
0)

|)

Fig. 4.5.: Radial dependence of the magnitude
of the spherical Hankel functions of sec-
ond kind of varying order normalized to
their value at 𝑘𝑟 = 10. A similar plot can
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have been added in this work.
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in [Hansen 1988, p. 18], but the graphs
for the orders 𝑛 = 1 and 𝑛 = 2 have been
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necessary current distributions in the antenna volume are extremely high in amplitude, very
rapidly oscillating along the spatial coordinate, and extremely sensible to small variations [Yaru
1951; Hansen 1981; Cox 1986; Haskou 2017], [Hansen 2011a, p. 210]. The presence of losses
or disturbances due to noise can easily break the strange but fragile superdirective behavior of
the fields. Although playing a minor role in practical applications, superdirectivity effects are the
cause of many problems in numerical algorithms.

Chapter 5 will reveal that superdirectivity effects can cause problems in NFFFTs because the
reconstructed currents may have some contributions which barely generate observable fields on a
measurement surface in some distance to the antenna.

4.2. Receiving Antennas

In the broad definition of Section 3.8, the term scattering applies to all changes of the incident
field caused by induced currents in the antenna volume 𝑉int or on its surface 𝑆1. By this definition,
also the receiving behavior of the antenna can be regarded as a form of (lossy) scattering. We
have

𝑬tot(𝒓) = 𝑬inc(𝒓) + ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ 𝑱sca(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ 𝑴sca(𝒓′)] d𝑎′ (4.15)
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and analogous for the magnetic field. As discussed in Section 3.8, the scattering currents depend
linearly on the incident field and can be expressed by

𝑱sca(𝒓) = ∯
𝑆1

[𝓢JE(𝒓, 𝒓′) ⋅ 𝑬inc(𝒓′) + 𝓢JH(𝒓, 𝒓′) ⋅ 𝑯inc(𝒓′)] d𝑎′ (4.16)

and
𝑴sca(𝒓) = ∯

𝑆1

[𝓢ME(𝒓, 𝒓′) ⋅ 𝑬inc(𝒓′) + 𝓢MH(𝒓, 𝒓′) ⋅ 𝑯inc(𝒓′)] d𝑎′ (4.17)

using the scattering dyadics 𝓢JE(𝒓, 𝒓′), 𝓢JH(𝒓, 𝒓′), 𝓢ME(𝒓, 𝒓′), and 𝓢MH(𝒓, 𝒓′), respectively.
In the antenna receiving case, the incident fields 𝑬inc, 𝑯inc are altered by the scattering currents
𝑱sca, 𝑴sca such that a portion of the outward-traveling fields are canceled, leaving only their
inward-traveling counterpart as a remainder (remember that pure incident fields contain equal
parts of inward- and outward-traveling waves). As a result, the total fields 𝑬tot, 𝑯tot produce a
net power flow into the antenna volume 𝑉int, which of course corresponds to the power of the
received signal at the antenna port—parasitic losses are neglected at this point10.

4.2.1. Calculating the Received Signal by Testing the Incident Field

Stressing the reciprocity relations, the received signal can be easily calculated if the transmit
fields are known on a surface 𝑆1 enclosing the antenna11. The starting point of the discussion
is the equivalence between the situations depicted in Fig. 4.7 and Fig. 4.8. In Fig. 4.7, the
(normalized) surface current densities ̂𝑱0 and �̂�0 on the waveguide ( corresponding to the wave
traveling in positive 𝑧-direction, would generate the (normalized) transmit fields �̂�tra and �̂�tra
see Section 4.1) on the one hand and the total fields 𝑬tot and 𝑯tot (with the scattering effects of
the receiving antenna included) are generated by the (equivalent) volume current densities 𝑱ext,
𝑴ext in the volume 𝑉ext on the other hand. If no antenna would be present, the volume current
densities 𝑱ext, 𝑴ext would generate a purely incident field in the volume 𝑉. However, with the
antenna being present, scattering at the antenna will change the field distribution in 𝑉. The whole
antenna geometry is taken into account for the calculation of either the transmit fields �̂�tra, �̂�tra
from the currents ̂𝑱0, �̂�0 or the total fields 𝑬tot, 𝑯tot due to the currents 𝑱ext, 𝑴ext. We have the
reciprocity relation [Jin 2015, pp. 101ff.], [Collin 1990, pp. 49f.], [Bladel 2007, p. 407]

∬
𝑆

( ̂𝑱0 ⋅ 𝑬tot − �̂�0 ⋅ 𝑯tot) d𝑎 = ∭
𝑉ext

(𝑱ext ⋅ �̂�tra − 𝑴ext ⋅ �̂�tra) d𝑣 , (4.18)

where 𝑆 is the cross section of the waveguide at 𝑧 = 0 serving as reference plane for the waveguide
modes.
10In general, the scattering at the antenna may be divided into structural scattering and reradiation. Reradiation

happens, because of a mismatched load (𝛤 ≠ 0). The received waveguide mode is partially reflected at the
mismatched load, giving rise to a waveguide mode traveling in positive 𝑧-direction. This waveguide mode
traveling in positive 𝑧-direction is transformed into a transmitted field by the antenna. Reradiation does not
contribute to the received signal. Since only matched antennas (𝛤 = 0) are considered in this work, only
structural scattering is of interest. In the following, if not stated otherwise, it is assumed that no forward-traveling
wave exists on the antenna waveguide in receiving mode.

11This is true even if losses are considered.
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Fig. 4.8.: Equivalent problem with normalized
equivalent free-space currents ̂𝑱tra and �̂�tra
testing the undistorted incident fields 𝑬ext on
𝑆1. The antenna geometry is removed.

Due to the equivalence of the configurations in Fig. 4.7 and Fig. 4.8, the expression in (4.18)
can be written as

∯
𝑆1

( ̂𝑱tra ⋅ 𝑬ext − �̂�tra ⋅ 𝑯ext) d𝑎 = ∭
𝑉ext

(𝑱ext ⋅ �̂�tra − 𝑴ext ⋅ �̂�tra) d𝑣 , (4.19)

where 𝑬ext, 𝑯ext are the undistorted free-space incident fields generated by 𝑱ext and 𝑴ext.
From (2.42) it is known that the desired received signal 𝑏 is obtained by testing12 the total

fields in a cross section 𝑆 of the waveguide in the manner of

𝑏 = 1
2

1
∬
𝑆

𝒆𝑧 ⋅ ( ̂𝑱0 × �̂�0) d𝑎
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐aut

⎡
⎢
⎢
⎣
∬
𝑆

( ̂𝑱0 ⋅ 𝑬tot − �̂�0 ⋅ 𝑯tot) d𝑎
⎤
⎥
⎥
⎦

, (4.20)

where ̂𝑱0, �̂�0 are the normalized mode excitation currents for the fundamental mode traveling in
positive (!) 𝑧-direction and 𝑬tot and 𝑯tot are the total fields in the waveguide. The constant

𝑐aut = 1
∬
𝑆

𝒆𝑧 ⋅ (�̂�0 × ̂𝑱0) d𝑎
(4.21)

12The procedure of generating a scalar quantity from a continuously distributed field by taking a weighted mean
over the field in a certain domain is called testing, borrowing the terminology from the method of moments [Jin
2015, pp. 505ff.].
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is independent of the incident field and can be regarded as an antenna gain calibration factor.
Since the right hand sides of (4.18) and (4.19) are identical, one finds that the received signal

can also be computed by the much more convenient expression

𝑏 =
𝑐aut
2 ∯

𝑆1

( ̂𝑱tra ⋅ 𝑬ext − �̂�tra ⋅ 𝑯ext) d𝑎 , (4.22)

where the incident fields 𝑬ext, 𝑯ext are tested with the normalized free-space surface currents ̂𝑱tra
and �̂�tra. These are the same currents which are also used to characterize the transmit properties
of the antenna.

All relevant properties of the receiving antenna required for determining the received signal
can be found from the transmitting antenna by using reciprocity considerations13.

However, the testing currents ̂𝑱tra and �̂�tra must not be mistaken to account for the scattered
fields in the vicinity of the antenna. In particular the total fields are not the sum of the incident
fields 𝑬ext, 𝑯ext and the fields �̂�tra, �̂�tra

14. Determining the total field in the vicinity of the
antenna is more complicated and the normalized currents ̂𝑱tra and �̂�tra serve only as a calculation
tool for the receive signal at this point but cannot be used to determine the resulting fields in the
vicinity of the antenna.

4.2.2. Calculating the Received Signal in Terms of Spherical Wave Receiving

Coefficients

A complete description of the total fields in the vicinity of a receiving antenna and on the waveg-
uide connected to it may be given by extending the spherical source scattering description (3.124)
to also include the waveguide modes [Hansen 1988, pp. 27ff.], [Yaghjian 1977]. We have

[
𝑏

𝜶′(4)] = [
𝛤 ( ̂𝜷(1),rec)

T

�̂�(4),tra S′ ] [
𝑎

𝜶′(1),ext] . (4.23)

The vectors 𝜶′(1),ext and 𝜶′(4) are the known vectors from Section 3.8 describing the total fields in
the vicinity of the antenna and the vector �̂�(4),tra ∈ ℂ2𝑁(𝑁+2)×1 contains the normalized transmit
coefficients known from Section 4.1. The reflection coefficient 𝛤 ∈ ℂ relates the backward-
traveling wave on the waveguide to the forward-traveling wave. In this thesis, all antennas are
assumed to be matched, i.e., 𝛤 = 0. Finally, the vector ̂𝜷(1),rec ∈ ℂ2𝑁(𝑁+2)×1 contains the
receiving coefficients ̂𝛽(1),rec

𝑠𝑚𝑛 ∈ ℂ relating the received signal 𝑏 to the coefficients 𝛼′(1)
𝑠𝑚𝑛 of the

incident field such that15

𝑏 = ( ̂𝜷(1),rec)T 𝜶′(1),ext =
2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

̂𝛽(1),rec
𝑠𝑚𝑛 𝛼′(1),ext

𝑠𝑚𝑛 . (4.24)

13Since there is no incident field in the analysis of a transmitting antenna, the antenna scattering properties do not
play any role for the transmitting case. Naturally, not all aspects of the receiving behavior of the antenna can be
found from reciprocity considerations alone. No information about the residual scattering can be obtained from
the transmitting case.

14Such a sum would be meaningless since the different terms of the sum have different units due to the normalization
of �̂�tra and �̂�tra.

15Formally, this summation must be carried out over infinitely many modes (𝑁 → ∞). However,to represent the
fields with any desired accuracy, the summation may be truncated at a finite 𝑁 for all practical purposes (this
means that extreme supergain effects are neglected).
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The characteristic incident field is therefore characterized by the portion of the vector 𝜶′(1),ext,
which is parallel to the receiving coefficient vector ̂𝜷(1),rec (i.e., parallel with respect to the
product ( ̂𝜷(1),rec)T 𝜶′(1),ext). The portion of 𝜶′(1),ext which is orthogonal to ̂𝜷(1),rec leads to residual
scattering, not contributing to the received signal16.

The receiving coefficients ̂𝛽(1),rec
𝑠𝑚𝑛 are directly related to the transmit coefficients �̂�(4),tra

𝑠𝑚𝑛 . Using
reciprocity on (4.22), it may be shown that testing the incident fields with the normalized currents

̂𝑱tra, �̂�tra on 𝑆1 can be replaced by testing the incident fields with the normalized fields �̂�tra,
�̂�tra on a second surface 𝑆2, where the surface 𝑆2 is assumed to be spherical with radius 𝑟2, such
that the surface 𝑆1 is completely enclosed by 𝑆2 with inward-directed normal vector 𝒏2 (see
Fig. 4.8). We have

𝑏 =
𝑐aut
2 ∯

𝑆1

[ ̂𝑱tra ⋅ 𝑬ext − �̂�tra ⋅ 𝑯ext] d𝑎

=
𝑐aut
2 ∯

𝑆2

[�̂�tra × 𝑯ext − 𝑬ext × �̂�tra] ⋅ 𝒏2 d𝑎 . (4.25)

Expanding the fields in (4.25) into spherical field modes leads to (see Appendix A)

𝑏 =
𝑐aut
2

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

(−1)𝑚 �̂�(4),tra
𝑠,−𝑚,𝑛 𝛼′(1),ext

𝑠𝑚𝑛 . (4.26)

Due to the orthogonality of the incident field modes, the receiving coefficients ̂𝛽(1),rec
𝑠𝑚𝑛 can by

found by a term-by-term comparison of (4.24) with (4.26) and we have17

̂𝛽(1),rec
𝑠𝑚𝑛 =

𝑐aut
2

(−1)𝑚 �̂�(4),tra
𝑠,−𝑚,𝑛 . (4.27)

4.2.3. Receive Scattering and the Characteristic Incident Fields

For a more detailed analysis of the total fields in the vicinity of the receiving antenna, it makes
sense to separate the receive scattering from the other parts of the scattering, which might be
called residual scattering. The scattering description with spherical waves in (4.23) suggests that
only the portion of the incident field which has a coefficient vector 𝜶′(1)

∥ parallel to ̂𝜷(1),rec (with
respect to the scalar product ( ̂𝜷(1),rec)T𝜶′(1),ext ) is responsible for the received signal, while the
remaining portion of the incident field has a coefficient vector 𝜶′(1)

⟂ , which is perpendicular to
the receiving vector ̂𝜷(1),rec and does not contribute to the received signal.

It is therefore convenient, to split the incident field into two parts as (analogously for the
magnetic field)

𝑬inc = 𝑏 �̂�cha + 𝑬res , (4.28)

where 𝑏 ∈ ℂ√W is the received signal at the waveguide port of the antenna, �̂�cha is the normalized
characteristic incident field responsible for the received signal, and 𝑬res is the residual incident
16Residual scattering may include incident fields which are not affected by the presence of the receiving antenna.
17The receiving coefficients differ from [Hansen 1988] by a factor of 1/2. This is because [Hansen 1988] uses the

receiving coefficients with respect to inward-traveling waves (𝑐 = 3), while in this work the receiving coefficients
are defined with respect to incident fields (𝑐 = 1).
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4.2. Receiving Antennas

field which has no influence at all on the received signal. The characteristic incident fields 𝑬cha,
𝑯cha have a spherical wave expansion with the coefficients 𝛼′(1)

𝑠𝑚𝑛,∥ contained in the portion of the
coefficient vector for the incident field which is parallel to the vector ̂𝜷(1),rec. They are transformed
into purely absorbed fields through scattering at the matched receiving antenna18 [Montgomery
1948, p. 326]. If the antenna is lossless, the perfect receive fields are the only possible incident
fields which are transformed into purely absorbed fields as the only absorption of a lossless
antenna is due to reception. If the appropriately scaled characteristic fields are subtracted from
an arbitrary incident field, the remaining residual fields 𝑬res, 𝑯res are such that they will not
produce any received signal when the receiving antenna is placed into them19.

The scattering currents 𝑱sca, 𝑴sca are split in the same manner into

𝑱sca = 𝑏 ̂𝑱cha + 𝑱res (4.29)

and
𝑴sca = 𝑏 �̂�cha + 𝑴res , (4.30)

where the corresponding characteristic and residual scattering currents are given by

̂𝑱cha(𝒓) = ∯
𝑆1

[𝓢EJ(𝒓, 𝒓′) ⋅ �̂�cha(𝒓′) + 𝓢HJ(𝒓, 𝒓′) ⋅ �̂�cha(𝒓′)] d𝑎′ (4.31)

and
𝑱res(𝒓) = ∯

𝑆1

[𝓢EJ(𝒓, 𝒓′) ⋅ 𝑬res(𝒓′) + 𝓢HJ(𝒓, 𝒓′) ⋅ 𝑯res(𝒓′)] d𝑎′ , (4.32)

respectively (analogous for the magnetic currents). The complete information about the changes
of the field distribution in the proximity of the receiving antenna due to scattering for every
given incident field is contained in the scattering dyadics 𝓢EJ(𝒓, 𝒓′), 𝓢HJ(𝒓, 𝒓′), 𝓢EM(𝒓, 𝒓′),
and 𝓢HM(𝒓, 𝒓′). While all receiving antennas must produce some scattering currents ̂𝑱cha(𝒓)
for the characteristic incident field— the field must be altered such that a certain amount of
power flows into the antenna— it is possible that certain residual incident fields do not cause any
scattering currents at all. The antenna is practically invisible for these fields.

If no scattering currents appear on the antenna for all possible residual incident fields (i.e.,
incident fields, which produce a zero received signal at the receiving antenna port, do not
produce any scattering currents on the antenna), the antenna is called a minimum scattering
antenna [Montgomery 1948, pp. 329ff.]. The only possible scattering currents of a minimum
scattering antenna are scaled versions of the characteristic receiving currents ̂𝑱rec, �̂�rec.

Since the residual scattering does not contribute to the received signal, it is often neglected
when receiving antennas are analyzed 20. This does not lead to any problems in most cases, as
18If a mismatched load is connected to the waveguide at the reference plane, some portion of the backward-traveling

fundamental mode will be reflected, which leads to reradiation.
19The residual fields do not cause any wave traveling on the waveguide attached to the antenna. For this reason, the

residual fields do not cause any reradiation, even for a mismatched antenna.
20This can lead to unfortunate misconceptions such as the assumption that half of the incident power must be scattered

by a receiving antenna [Balanis 2005, p.85]. This misconception has been the center of heated arguments in the
past [Green 1966; de Hoop 1974; Van Bladel 2002; Collin 2003a; Andersen 2003; Love 2003; Collin 2003b; Su
2003; Pozar 2004; Geyi 2004; Van Bladel 2007; Best 2009; Kwon 2009; Alu 2010; Steyskal 2010; Schejbal
2011; Gustafsson 2012; Hoop 2013; Socher 2013; Socher 2015; Socher 2014; Štumpf 2016].
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one is often not interested in the total fields in the environment of the receiving antenna but only
in the signal which is received at the antenna port.

The remainder of this section covers the problem of finding the (normalized) characteristic
incident fields �̂�cha, �̂�cha and the corresponding receiving scattering currents ̂𝑱cha, �̂�cha for a
given antenna21. Of course, the received fields are proportional to the received signal 𝑏 and for
convenience in the remainder of this section, all fields and currents are normalized to the wave
amplitude 𝑏 ∈ ℂ √W of the backward-traveling field mode. The normalization will be denoted
by a hat over the corresponding quantity. To avoid confusion, the resulting purely absorbed
fields (i.e., the resulting fields with the receiving antenna present) will be denoted by �̂�rec, �̂�rec
(receive fields), whereas the corresponding characteristic incident fields (i.e., the unperturbed
free-space fields without the antenna being present) are denoted by �̂�cha, �̂�cha.

The (normalized) characteristic incident fields �̂�cha, �̂�cha and the corresponding (normalized)
characteristic scattering currents ̂𝑱cha, �̂�cha, which transform the incident fields into purely
absorbed fields, are found in a two step procedure. In a first step, the resulting purely absorbed
receive fields �̂�rec, �̂�rec are found by solving Maxwell’s equations for the situation depicted in
Fig. 4.9. In a second step, the receive fields �̂�rec, �̂�rec are represented by equivalent currents
on the surfaces 𝑆1 and 𝑆2 as depicted in Fig. 4.10. In the representation using the conventional
“−”-type Green’s functions, the scattered fields are expressed only by the currents 𝑱1, 𝑴1 on 𝑆1
(they correspond to the desired characteristic scattering currents), while the incident fields are
due to the currents 𝑱2, 𝑴2 on 𝑆2 (the fields generated by 𝑱2, 𝑴2 correspond to �̂�rec, �̂�rec, i.e.,
the characteristic incident fields of interest).

The desired solution for the purely absorbed receive fields �̂�rec, �̂�rec can be found from the
arrangement in Fig. 4.9 by enforcing the following boundary conditions on the surfaces 𝑆0
and 𝑆2. The tangential fields on 𝑆0 must correspond to the tangential fields of the waveguide
mode traveling in negative 𝑧-direction. They are denoted by their equivalent Love currents
− ̂𝑱0 = 𝒏0 × (−�̂�0) (the tangential magnetic field of the backward-traveling mode is the negative
of the corresponding forward-traveling mode) and �̂�0 = −𝒏0 × �̂�0 (the tangential electric field
of the backward-traveling mode is equal to the corresponding forward-traveling mode). The
correct tangential fields on 𝑆2 are not known in advance, but the Silver-Müller conditions

lim
|𝒓|→∞

|𝒓| (�̂� − √
𝜇
𝜀

̂𝒓 × �̂�) = 𝟎 , (4.33)

and

lim
|𝒓|→∞

|𝒓| (�̂� + √
𝜀
𝜇

̂𝒓 × �̂�) = 𝟎 , (4.34)

for inward-traveling waves must be fulfilled if 𝑆2 is moved toward infinity. The situation is
analogous to the radiating case, but instead of radiating power away from the antenna volume,
all power flows into 𝑉int. The asymptotic boundary condition is readily fulfilled by the inward-
traveling Green’s functions 𝓖+

JE, 𝓖+
ME, 𝓖+

JH , 𝓖+
MH and, therefore, the characteristic received fields

can be calculated in a manner perfectly dual to the calculation of the transmit fields in Section
4.1. The duality transformation between the transmitted fields and the received fields involves
21The characteristic incident fields are already determined by the coefficient vector 𝜶′(1)

∥ but they can also be
determined without the help of the spherical wave expansion.
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𝑉 𝑉ext

𝑬rec

𝑧 = 0

− ̂𝑱0

�̂�0

𝒏0

𝒏2

𝑆0

𝑆2

Fig. 4.9.: Boundary conditions for finding the per-
fectly absorbed receive fields.

𝑉int

𝑉 𝑉ext

𝒏1

𝒏2𝑆1
𝑆2

𝑬rec

̂𝑱rec,1

�̂�rec,1

̂𝑱rec,2

�̂�rec,2

Fig. 4.10.: Equivalent currents on 𝑆1 and 𝑆2 are
used to represent the receive field.

exchanging the “−”-type Green’s functions with the “+”-type Green’s functions and exchanging
the tangential fields in the waveguide to account for the wave traveling into the opposite direction
(�̂�0 → �̂�0, �̂�0 → −�̂�0 or �̂�0 → �̂�0, ̂𝑱0 → − ̂𝑱0, respectively).

Once the receive fields �̂�rec, �̂�rec are known, one may use the tangential fields (or equivalently
the corresponding Love currents ̂𝑱rec,1/2 = 𝒏1/2 × �̂�rec, �̂�rec,1/2 = −𝒏1/2 × �̂�rec) on two surfaces
𝑆1 and 𝑆2 to represent the fields in 𝑉 uniquely as depicted in Fig. 4.10. Using the equivalent
currents ̂𝑱1/2 = 𝒏1/2 × �̂�rec and �̂�1/2 = −𝒏1/2 × �̂�rec, we have

�̂�rec = ∯
𝑆1

[𝓖+
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖+

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ (4.35)

and
�̂�rec = ∯

𝑆1

[𝓖+
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖+

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ (4.36)

using the “+”-type Greens functions or

�̂�rec = ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′

+ ∯
𝑆2

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱2(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�2(𝒓′)] d𝑎′ (4.37)

and

�̂�rec = ∯
𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′

+ ∯
𝑆2

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱2(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�2(𝒓′)] d𝑎′ (4.38)
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using the “−”-type Greens functions22. With the insights from Section 3.8, the currents ̂𝑱2(𝒓′),
�̂�2(𝒓′) on 𝑆2 in (4.37) and (4.38) are responsible for the incident fields and the currents ̂𝑱1(𝒓′),
�̂�1(𝒓′) on 𝑆1 are responsible for the purely outward-traveling scattered fields.

The characteristic incident fields �̂�cha, �̂�cha are found by subtracting the scattered fields, i.e.,

�̂�cha = �̂�rec − ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ (4.39)

and

�̂�cha = �̂�rec − ∯
𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ . (4.40)

These are the fields, which are transformed into purely absorbed fields when scattered at the
antenna.

With (4.37) and (4.38) we have

�̂�cha = ∯
𝑆2

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱2(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�2(𝒓′)] d𝑎′ (4.41)

and

�̂�cha = ∯
𝑆2

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱2(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�2(𝒓′)] d𝑎′ (4.42)

using the “−”-type Green’s functions. Equations (4.35) and (4.36) substituted into (4.39) and
(4.40) lead to

�̂�cha = ∯
𝑆1

[𝓖+
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖+

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′

− ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ (4.43)

=2 ∯
𝑆1

[𝓖(∞)
JE (𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖(∞)

ME (𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ (4.44)

22Since the total fields are purely absorbed fields, they can be expressed by only evaluating the surface currents
on 𝑆1 with the “+”-type Green’s functions. The description with the “+”-type Green’s functions is useful
because it leads to a condensed representation of the fields. Note that only the usage of the “−”-type Green’s
functions gives rise to a simple interpretation of the fields associated with currents on 𝑆1 in terms of purely
outward-traveling fields. When other types of Green’s functions are used, the currents on 𝑆1 do not generate
purely outward-traveling waves.
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and

�̂�cha = ∯
𝑆1

[𝓖+
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖+

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′

− ∯
𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ (4.45)

=2 ∯
𝑆1

[𝓖(∞)
JH (𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖(∞)

MH (𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ , (4.46)

respectively, where the shorthand notations

𝓖(∞)
JE (𝒓, 𝒓′) = 1

2 [𝓖+
JE(𝒓, 𝒓′) − 𝓖−

JE(𝒓, 𝒓′)] = −j𝜔𝜇
[(I + 1

𝑘2 ∇∇)
j sin(𝑘|𝒓 − 𝒓′|)

4π |𝒓 − 𝒓′| ]
, (4.47)

𝓖(∞)
ME (𝒓, 𝒓′) = 1

2 [𝓖+
ME(𝒓, 𝒓′) − 𝓖−

ME(𝒓, 𝒓′)] = −∇
(
j sin(𝑘|𝒓 − 𝒓′|)

4π |𝒓 − 𝒓′| )
× I , (4.48)

𝓖(∞)
JH (𝒓, 𝒓′) = 1

2 [𝓖+
JH(𝒓, 𝒓′) − 𝓖−

JH(𝒓, 𝒓′)] = ∇
(
j sin(𝑘|𝒓 − 𝒓′|)

4π |𝒓 − 𝒓′| )
× I , (4.49)

and

𝓖(∞)
JE (𝒓, 𝒓′) = 1

2 [𝓖+
JE(𝒓, 𝒓′) − 𝓖−

JE(𝒓, 𝒓′)] = −j𝜔𝜀
[(I + 1

𝑘2 ∇∇)
j sin(𝑘|𝒓 − 𝒓′|)

4π |𝒓 − 𝒓′| ]
(4.50)

have been used23. This is a remarkable result. In order to calculate the characteristic incident
fields �̂�cha, �̂�cha for a receiving antenna, one only needs to know the tangential fields of the
resulting absorbed fields �̂�rec, �̂�rec (or equivalently the corresponding Love currents 𝑱1, 𝑴1) on
the surface 𝑆1. The problem of finding the tangential fields of �̂�rec, �̂�rec becomes particularly
simple in the lossless case.

For a lossless antenna in a lossless environment (𝜀 = 𝜀∗, 𝜇 = 𝜇∗), the receive fields �̂�rec, �̂�rec
are the perfectly time reversed copies of the transmitted fields. The Green’s functions fulfill the
relations

𝓖+
JE = − (𝓖−

JE)
∗ (4.51)

𝓖+
ME = (𝓖−

ME)
∗ (4.52)

𝓖+
JH = (𝓖−

JH)
∗ (4.53)

and

𝓖+
MH = − (𝓖−

MH)
∗ . (4.54)

23Despite the fact that the scalar function 𝑔(∞)
0 is not a fundamental solution of the Helmholtz equation (see Section

3.2) it is still useful for some calculations.
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The received fields are directly related to the transmit fields of the antenna by

�̂�rec = �̂�∗
tra , (4.55)

�̂�rec = −�̂�∗
tra . (4.56)

In this case, the transmit fields of the antenna can directly be used to determine the receive
scattering of the antenna (but not the residual scattering).

4.3. Chapter Summary

In this chapter the bridge between guided waves and free-space fields has been built with the
formal description of the antenna behavior in terms of spherical waves and equivalent surface
currents. In transmit mode, the radiated fields can be expressed by equivalent free-space surface
currents, scaled by the excitation 𝑎 ∈ ℂ√W. The same free-space current distribution can be used
to find the coefficient of the backward-traveling waveguide mode in the receiving case. Similarly,
the radiated fields can be expressed by spherical modes. In the receiving case, the incident field
must be weighted by a vector of receiving coefficients, related to the transmit coefficients via
a reciprocity relation. The receiving antennas have been treated in greater detail than in most
textbooks [Balanis 2005], where the receiving case is covered by just referring to reciprocity
and where the received signal is often only reduced to a description of voltages and currents in a
infinitesimally small gap. In contrast to this, in this thesis, all interactions between the antenna
and its environment are expressed in terms of waveguide modes—a description which is much
more suitable for radio frequency devices. Furthermore, the characteristic incident fields, which
are completely transformed into purely absorbed fields by the receiving antenna, have been also
described in terms of equivalent surface currents as opposed to existing literature [Montgomery
1948; Hansen 1988], where only the mode expansions of these special fields are discussed. The
formal description of the transmitted fields and the received signal from an arbitrary incident
field are the basis for the derivation of a transmission equation between two antennas, which will
finally lead to the desired field transformation algorithms in the following.
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5
Antenna Near-Field Measurements

In order to characterize or to verify the performance of an AUT, relevant antenna properties are
determined by measurements. Mostly, one is interested in the antenna performance in the FF.
However, often the measurement setups are easier to realize in the NF because of limited space
requirements. For the determination of the desired FF quantities, the measured fields are then
processed in an NFFFT.

This chapter describes how a model of the AUT fields is obtained from field samples in the
NF of the AUT1. Based on a formal description of the measured 𝑆21- or 𝑆12-parameter between
an AUT and a probe antenna in terms of equivalent surface current densities or a spherical wave
expansion, a linear system of equations is derived to find the equivalent sources modeling the
AUT radiation. The derived AUT model can be used to calculate the NF and the FF at arbitrary
locations outside of the AUT volume.

5.1. Interaction Between Antennas

The basis of source reconstruction methods applicable for NF measurements is a formal descrip-
tion of the interaction between two arbitrary antennas. In the context of antenna measurements,
one of the antennas is a known probe antenna while the derived description can be used to
characterize the unknown AUT.

5.1.1. Interaction Between Antennas in Terms of Equivalent Surface Currents

The radiated fields and the receiving behavior of an antenna can be characterized by the same
equivalent surface current distributions on a Huygens surface enclosing the antenna. For calcu-
lating the transmitted signal of one of two arbitrary antennas enclosed by the Huygens surfaces
𝑆1 and 𝑆2, respectively, it is thus sufficient to know the characteristic equivalent surface current
1The interaction between two antennas is more complicated in the NF. In principle, the same formulations are also
valid in the FF, but the description can often be simplified by FF approximations. The NF description is more
general.
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𝒏2

𝑆2

𝑉2

𝒏1

𝑆1 𝑉1

𝑉ext

Fig. 5.1.: Two antennas enclosed by individual Huygens surfaces 𝑆1 and 𝑆2.

distributions on the respective Huygens surface of each antenna, if mutual interactions between
the two antennas can be neglected. An exemplary situation is depicted in Fig. 5.1. Here, the
normalized equivalent currents accounting for the free-space radiation of antenna 1 are denoted
by ̂𝑱1, �̂�1 and the normalized equivalent currents accounting for the free-space radiation of
antenna 2 by ̂𝑱2, �̂�2. Of course, the currents ̂𝑱1, �̂�1 are located on 𝑆1 and the currents ̂𝑱2, �̂�2
are located on 𝑆2.

The transmitted fields 𝑬1,𝑯1 of antenna 1 in any observation location 𝒓 outside the volume 𝑉1
can be expressed by

𝑬1(𝒓) = 𝑎1 ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ (5.1)

and

𝑯1(𝒓) = 𝑎1 ∯
𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ , (5.2)

where 𝑎1 ∈ ℂ √W is the power wave amplitude of the excitation at the port of antenna 1.
According to (4.22), the power wave amplitude 𝑏2 of the receive signal at the port of antenna

2 due to the incident fields generated by antenna 1 is given by2

𝑏2 = 1
2 ∯

𝑆2

[𝑬1(𝒓) ⋅ ̂𝑱2(𝒓) − 𝑯1(𝒓) ⋅ �̂�2(𝒓)] d𝑎 . (5.3)

Expanding the terms for 𝑬1 and 𝑯1 yields

𝑏2 =
𝑎1
2 ∯

𝑆2

⎡
⎢
⎢
⎣
∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ ⋅ ̂𝑱2(𝒓)

− ∯
𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ ⋅ �̂�2(𝒓)
⎤
⎥
⎥
⎦
d𝑎 . (5.4)

2The antenna constants 𝑐aut are assumed to be equal to 1.

64



5.1. Interaction Between Antennas

The 𝑆21-parameter which is given by the ratio 𝑆21 = 𝑏2/𝑎1 is therefore given by

𝑆21 = 1
2 ∯

𝑆2

∯
𝑆1

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ d𝑎 . (5.5)

An analogous derivation yields for the 𝑆12-parameter

𝑆12 = 1
2 ∯

𝑆1

∯
𝑆2

[ ̂𝑱1(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱2(𝒓′) + ̂𝑱1(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�2(𝒓′)

− �̂�1(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱2(𝒓′) − �̂�1(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�2(𝒓′)] d𝑎′ d𝑎 . (5.6)

Since the reciprocity relations

𝓖−
JE(𝒓, 𝒓′) = (𝓖−

JE(𝒓′, 𝒓))
T (5.7)

𝓖−
JH(𝒓, 𝒓′) = − (𝓖−

ME(𝒓′, 𝒓))
T (5.8)

and
𝓖−
MH(𝒓, 𝒓′) = (𝓖−

MH(𝒓′, 𝒓))
T (5.9)

hold for the Green’s functions [Tai 1994, p. 77], the expressions for 𝑆12 and 𝑆21 are identical.

5.1.2. Interaction Between Antennas in Terms of Spherical Wave Expansions

One can also describe the interaction between the two antennas in term of spherical modes. The
two volumes 𝑉1 and 𝑉2 are assumed to be spherical for a description of the antenna transmission
in terms of a spherical wave expansion. The two spherical volumes have centers 𝒓01 and 𝒓02,
respectively. The geometric situation is clarified in Fig. 5.2. The transmitted fields 𝑬1,𝑯1 of
antenna 1 outside 𝑉1 can be expressed purely in terms of outward-traveling waves (𝑐 = 4) and
we have

𝑬1(𝒓) |𝒓∉𝑉1

= 𝑎1 𝑘 √𝑍F

2

∑
𝑠=1

𝑁1

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

�̂�(4), ant1
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟, 𝜗, 𝜑) (5.10)

and

𝑯1(𝒓) |𝒓∉𝑉1

= 𝑎1 j
𝑘

√𝑍F

2

∑
𝑠=1

𝑁1

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

�̂�(4), ant1
𝑠𝑚𝑛 𝑭 (4)

3−𝑠,𝑚𝑛(𝑟, 𝜗, 𝜑) , (5.11)

where the spherical wave expansion is given with respect to the origin of the primary coordinate
system at 𝒓01.

In the secondary coordinate system with origin 𝒓02, only the fields inside the volume 𝑉2 are of
interest. They can be expressed purely in terms of incident fields (𝑐 = 1) and we have

𝑬1(𝒓′) |𝒓∈𝑉2

= 𝑎1 𝑘 √𝑍F

2

∑
𝑠=1

𝑁2

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

̂𝛼′(1), ant1
𝑠𝑚𝑛 𝑭 (1)

𝑠𝑚𝑛(𝑟′, 𝜗′, 𝜑′) (5.12)
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𝑹𝑹

𝑟, 𝜗, 𝜑
𝑟′, 𝜗′, 𝜑′

Fig. 5.2.: Two antennas enclosed by their respective minimum spheres. The coordinates 𝑟, 𝜗, 𝜑 and
𝑟′, 𝜗′, 𝜑′ are defined with respect to the center of the respective minimum sphere.

and

𝑯1(𝒓′) |𝒓∈𝑉2

= 𝑎1 j
𝑘

√𝑍F

2

∑
𝑠=1

𝑁2

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

̂𝛼′(1), ant1
𝑠𝑚𝑛 𝑭 (1)

3−𝑠,𝑚𝑛(𝑟′, 𝜗′, 𝜑′) , (5.13)

where the primed indices, primed coefficients, and primed location vectors denote the fact that
the spherical wave expansion is obtained with respect to spherical coordinates (𝑟′, 𝜗′, and 𝜑′)
with the origin at 𝒓02.

The primed coefficients ̂𝛼′ ant1
𝜎𝜇𝜈 in the secondary coordinate system are found from the transmit

coefficients �̂�ant1
𝑠𝑚𝑛 in the primary coordinate system by

�̂�′(1), ant1
𝑠𝑚𝑛 =

2

∑
𝜎=1

𝑁1

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝒓02 − 𝒓01) �̂�(4), ant1

𝜎𝜇𝜈 , (5.14)

making use of the spherical wave translation coefficients 𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹), for which several expressions

have been derived [Cruzan 1962; Stein 1961; Danos 1965; Borghese 1980; Felderhof 1987;
Wittmann 1988; Chew 1995; Chew 2001; Chew 1993; Chew 2007; Haynes 2011; Kim 1996; He
2008; Chew 2008; Dufva 2008], e.g., in the spectral form3

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹)

= (−1)𝑠+𝑚+𝑛
∞

∑
ℓ=0

ℓ

∑
𝑞=−ℓ

4π (−j)ℓ h(2)
ℓ (𝑘|𝑹|) ∯ 𝑲 (4)

𝜎𝜇𝜈(�̂�) ⋅ 𝑲 (4)
𝑠,−𝑚,𝑛(�̂�)Y∗

ℓ,𝑞(�̂�)Yℓ,𝑞(�̂�) d�̂�

= (−1)𝑠+𝑚+𝑛
∯ 𝑲 (4)

𝜎𝜇𝜈(�̂�) ⋅ 𝑲 (4)
𝑠,−𝑚,𝑛(�̂�) (

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘|𝑹|)Pℓ(�̂� ⋅ �̂�))

d�̂�

(5.15)

based on [Chew 2008; He 2008; Dufva 2008], where

𝑲 (4)
𝑠𝑚𝑛(�̂�) = lim

𝑘𝑟→∞
𝑘𝑟
e−j𝑘𝑟 𝑭 (4)

𝑠𝑚𝑛(𝑟, 𝜗, 𝜑) (5.16)

are the spherical vector mode far-field functions and the integration is performed over the complete
Ewald sphere. A derivation of the expressions for the translation coefficients 𝒯 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) can be
3In slight abuse of notation, the surface element of the integration over all directions the complete Ewald sphere is

denoted by d�̂�. The symbol d�̂� should be understood as a shorthand notation for the spherical surface element
sin 𝜗 d𝜗 d𝜑. The integration domain is implied to be over the complete sphere with 0 ≤ 𝜗 ≤ π and 0 ≤ 𝜑 ≤ 2π.
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found in Appendix B. Strictly speaking, exchanging the order of integration and summation in
(5.15) is not valid since the series

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘|𝑹|)Pℓ(�̂� ⋅ �̂�) (5.17)

diverges, but if the sum is understood in a distributional sense and appears only under an integral
together with suitable functions, the integral value is well defined [Chew 2008]. In a numerical
implementation, the summation will be truncated after a finite number of terms and the question
about the convergence of the series is circumvented.

Combining (5.14) with (4.24), we have

𝑏2 = 𝑎1

2

∑
𝑠=1

𝑁2

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

̂𝛽′(1),ant2
𝑠𝑚𝑛 ̂𝛼′(1),ant1

𝑠𝑚𝑛

= 𝑎1

2

∑
𝑠=1

𝑁2

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

̂𝛽′(1),ant2
𝑠𝑚𝑛

2

∑
𝜎=1

𝑁1

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝒓02 − 𝒓01) �̂�(4), ant1

𝜎𝜇𝜈 , (5.18)

where the receiving coefficients ̂𝛽′(1),ant2
𝑠𝑚𝑛 of antenna 2 are expressed in terms of the spherical wave

expansion with origin at 𝒓02 (denoted by the primed coefficients). The 𝑆21-parameter therefore is
given by

𝑆21 =
2

∑
𝑠=1

𝑁2

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

̂𝛽′(1),ant2
𝑠𝑚𝑛

2

∑
𝜎=1

𝑁1

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝒓02 − 𝒓01) �̂�(4), ant1

𝜎𝜇𝜈 , (5.19)

since 𝑆21 = 𝑏2/𝑎1. This equation corresponds to the commonly encountered spherical wave
transmission formula [Hansen 1988, pp. 62ff.].

A similar derivation for the 𝑆12-parameter results in

𝑆12 =
2

∑
𝑠=1

𝑁1

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

̂𝛽(1),ant1
𝑠𝑚𝑛

2

∑
𝜎=1

𝑁2

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝒓01 − 𝒓02) ̂𝛼′(4), ant2

𝜎𝜇𝜈 (5.20)

and the reciprocity relation 𝑆12 = 𝑆21 can be verified using the identity4

𝑲 (4)
𝑠𝑚𝑛(−�̂�) = (−1)𝑠+𝑛 𝑲 (4)

𝑠,−𝑚,𝑛(�̂�) (5.21)

4It is straightforward to verify that 𝑲 (4)
𝑠𝑚𝑛(−�̂�) = (−1)𝑠+𝑛 𝑲 (4)

𝑠,−𝑚,𝑛(�̂�) by using the definitions (3.80) and (3.81) and
basic properties of the associated Legendre polynomials.
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together with the reciprocity relations from (4.27). From (5.15) we have

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (−𝑹)

= (−1)𝑠+𝑚+𝑛
∯ 𝑲 (4)

𝜎𝜇𝜈(�̂�) ⋅ 𝑲 (4)
𝑠,−𝑚,𝑛(�̂�) (

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘|𝑹|)Pℓ(−�̂� ⋅ �̂�))

d�̂�

= (−1)𝑠+𝑚+𝑛
∯ 𝑲 (4)

𝜎𝜇𝜈(−�̂�) ⋅ 𝑲 (4)
𝑠,−𝑚,𝑛(−�̂�) (

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘|𝑹|)Pℓ(�̂� ⋅ �̂�))

d�̂�

= (−1)𝑚
∯ (−1)𝜎+𝜈 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) ⋅ 𝑲 (4)
𝑠,𝑚,𝑛(�̂�) (

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘|𝑹|)Pℓ(�̂� ⋅ �̂�))

d�̂�

= (−1)𝜇+𝑚 𝒯 𝑠𝑚𝑛
𝜎𝜇𝜈 (𝑹) (5.22)

and therefore

𝑆12 =
2

∑
𝑠=1

𝑁1

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

̂𝛽(1),ant1
𝑠𝑚𝑛

2

∑
𝜎=1

𝑁2

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝒓01 − 𝒓02) ̂𝛼′(4), ant2

𝜎𝜇𝜈

=
2

∑
𝑠=1

𝑁1

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

2

∑
𝜎=1

𝑁2

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

�̂�(4),ant1
𝑠𝑚𝑛 𝒯 𝑠𝑚𝑛

𝜎𝜇𝜈 (𝒓02 − 𝒓01) ̂𝛽′(1), ant2
𝜎𝜇𝜈

= 𝑆12 . (5.23)

5.2. Near-Field Far-Field Transformations

In contrast to FF measurements, the output signal of a field probe in the NF is not directly
proportional to the electric field at a single point in space, but the probe antenna performs a
weighting of the NFs in a certain volume (or equivalently over a certain surface, see Section 4.2).
Therefore, the Huygens principle is not directly applicable and the NFFFT must take the probe
influences into account. This so-called probe correction is especially important if the incident
field at the probe antenna is composed from components coming from different directions, as it
is the case in the echoic environments which will be discussed later in this thesis.

The general idea behind (most) NFFFTs lies in the fact that the DoFs for the radiated fields
of an antenna with a certain size are essentially limited. Thus, an unambiguous description of
the radiated fields in the whole region of interest, including the NF and the FF region, may be
obtained from a finite number of measurement samples.

5.2.1. Field Transformation Based on Spatial Current Distributions

The transmit and receive behavior of an antenna can both be characterized by an equivalent surface
current description on a closed Huygens surface enclosing the antenna. A logical approach to
characterize an antenna is therefore to obtain an equivalent current distribution for the antenna.
The fields at any location in space in the NF as well as in the FF can be computed from the
retrieved sources in these so-called current reconstruction methods [Petre 1992; Petre 1996;
Taaghol 1996; Sarkar 1999; Persson 2005; Las-Heras 2002; Álvarez 2006; Schmidt 2008b;
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Eibert 2010; Foged 2012]. Due to their great flexibility in the placement of the source and
measurement locations, surface current reconstruction based methods are ideal for processing
irregularly sampled NF measurements, e.g., with unmanned aerial vehicles [Knapp 2018d]. The
surface currents have to be discretized and the unknown coefficients of the discretized currents
have to be determined by relating them to the measurement samples.

An arbitrary Huygens surface can be discretized by triangles with readily available meshing
software. Rao-Wilton-Glisson (RWG)-basis functions can be used to discretize either electric
or magnetic currents5 [Rao 1982; Caorsi 1993]. The RWG-basis functions are defined on any
pair of adjacent triangles to discretize the surface currents, so there is one current unknown per
current type associated with every edge of the mesh (provided one has a closed mesh, containing
only internal edges). Of course, if both current types (electric and magnetic) are used together,
one has two unknowns associated with every edge of the mesh—one for each current type. The
size of the triangles must be chosen small enough to be able to represent the spatial variations of
the expected surface currents. Since highly oscillating currents do not contribute much to the
radiated fields (see Section 4.1.3), it is usually sufficient to have triangles with an edge length
of about 𝜆/4 depending on the wavelength of the monofrequent signal under consideration, in
particular if the Huygens surface has a certain separation from the actual AUT.

Let 𝑁edg be the number of internal edges of the mesh used to discretize the Huygens surface.
For the electric and magnetic currents together, one has 𝑁 = 2 𝑁edg unknowns in total. For the
discretized and normalized electric and magnetic surface current densities we have

̂𝑱 (𝒓) = A/ (√Wm)

𝑁/2

∑
𝑛=1

𝑥𝑛 𝜷𝑛(𝒓) (5.24)

and

�̂�(𝒓) = V/ (√Wm)

𝑁

∑
𝑛=1+𝑁/2

𝑥𝑛 𝜷𝑛−𝑁/2(𝒓) , (5.25)

where 𝜷𝑛(𝒓) is the RWG-basis function associated with the 𝑛th edge of the mesh and 𝑥𝑛 ∈ ℂ is
the expansion coefficient for the corresponding electric or magnetic current element, respectively.

The goal of the NFFFT is to find the unknown coefficients 𝑥𝑛 such that the resulting equivalent
currents generate the same fields as the AUT. To this end, the interaction between the current
elements and a measurement probe with known equivalent currents ̂𝑱pro(𝒓), �̂�pro(𝒓) is expressed
by

𝑆21 = ∯
𝑆pro

∯
𝑆aut

[ ̂𝑱pro(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱 (𝒓′) + ̂𝑱pro(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�(𝒓′)

− �̂�pro(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱 (𝒓′) − �̂�pro(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�(𝒓′)] d𝑎′ d𝑎 , (5.26)

where 𝑆pro is a Huygens surface around the probe and 𝑆aut is the discretized Huygens surface

5The described procedure is the same for other discretizations of the equivalent surface currents, e.g., electric and
magnetic dipoles [Paulus 2018b].
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around the AUT. Substituting (5.24) and (5.25) into (5.26), we have

𝑆21

= A
√Wm

𝑁/2

∑
𝑛=1

𝑥𝑛 ∯
𝑆pro

∯
𝑆aut

[ ̂𝑱pro(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) − �̂�pro(𝒓) ⋅ 𝓖−

JH(𝒓, 𝒓′)] ⋅ 𝜷𝑛(𝒓′) d𝑎′ d𝑎

+ V
√Wm

𝑁

∑
𝑛=1+ 𝑁

2

𝑥𝑛 ∯
𝑆pro

∯
𝑆aut

[ ̂𝑱pro(𝒓) ⋅ 𝓖−
ME(𝒓, 𝒓′) − �̂�pro(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′)] ⋅ 𝜷𝑛− 𝑁
2

(𝒓′) d𝑎′ d𝑎 .

(5.27)

When the field is sampled with different probes or the same probe at different measurement
locations, the interaction between the 𝑚th probe (or the probe at the 𝑚th measurement location)
and the basis functions is given by

𝑆21,𝑚 =
𝑁

∑
𝑛=1

𝐴𝑚𝑛 𝑥𝑛 , (5.28)

with

𝐴𝑚𝑛 = A
√Wm ∯

𝑆pro,𝑚

∯
𝑆aut

[ ̂𝑱pro,𝑚(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) − �̂�pro,𝑚(𝒓) ⋅ 𝓖−

JH(𝒓, 𝒓′)] ⋅ 𝜷𝑛(𝒓′) d𝑎′ d𝑎

(5.29)

for the electric current elements stored at the indices 𝑛 ≤ 𝑁/2 and

𝐴𝑚𝑛 = V
√Wm ∯

𝑆pro,𝑚

∯
𝑆aut

[ ̂𝑱pro,𝑚(𝒓) ⋅ 𝓖−
ME(𝒓, 𝒓′) − �̂�pro,𝑚(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′)] ⋅ 𝜷𝑛− 𝑁
2

(𝒓′) d𝑎′ d𝑎

(5.30)

for the magnetic current elements stored at the indices 𝑛 > 𝑁/2. Here, 𝑆pro,𝑚 is the Huygens
surface around the 𝑚th probe and ̂𝑱pro,𝑚, �̂�pro,𝑚 are the normalized equivalent surface currents
on 𝑆pro,𝑚 for that probe.

Naturally, one ends up with a linear system of equations of the form

b = Ax , (5.31)

where the vector b ∈ ℂ𝑀×1 stores the measured 𝑆21-values for the 𝑀 different probes (or the
probe at the 𝑀 different locations), the vector x ∈ ℂ𝑁×1 stores the expansion coefficients 𝑥𝑛 and
the matrix A ∈ ℂ𝑀×𝑁 describes the linear relationship between the source coefficients and the
measured signals with the elements of A being defined by (5.29) and (5.30).

Generally, the DoFs for the radiated antenna fields are basically limited by the antenna size
and the number 𝑁DoF of practically relevant DoFs for the radiated fields. The number 𝑁DoF
depends on the desired accuracy of the field description (see Section 4.1) which should always
be better than the measurement accuracy due to the noise floor to avoid significant additional
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5.2. Near-Field Far-Field Transformations

errors being introduced by the field transformations. The number 𝑁DoF may be estimated by
counting the relevant spherical vector wave modes of the antenna with given size. From (4.11)
in Section 4.1.2 it is known that the summation over radiating modes can be truncated at some
𝑁max = ⌊𝑘𝑟0⌋ + 𝑛buffer, where 𝑟0 is the minimum sphere around the AUT and 𝑛buffer is a small
buffer to allow for moderate superdirectivity effects (see Section 4.1.3) leading to a total count
of 2𝑁max (𝑁max + 2) possible spherical modes [Hansen 1988, p. 128]. This estimation is an
upper limit for the DoFs and the bound is only tight for antennas which fill the complete spherical
volume. For non-spherical antennas, more accurate bounds have been derived [Toraldo di Francia
1969; Gori 1973; Bucci 1989; Bucci 1996; Bucci 1998; Piestun 2000; Bucci 2012; D’Agostino
2011; Fischer 2011] but in in the following spherical modes are used to estimate the DoFs
due to their simplicity. The number of measurement samples 𝑀 must of course be at least as
large as 𝑁DoF to be able to resolve all DoFs of the field6. Usually one has a certain degree
of redundancy in the sampling (i.e., 𝑀 > 𝑁DoF), which helps to diminish the influence of
measurement noise, therefore, the overestimation of 𝑁DoF by the spherical mode expansion does
not hurt. Apart from the required number of measurement samples also their spatial distribution
and the choice of the measurement probe matters. A lot of research has been put into optimizing
the location of the measurement samples [Bucci 1998; Qureshi 2013b; Qureshi 2013c; Qureshi
2013a; Solimene 2013; D’Agostino 2013; Giordanengo 2014; Khare 2007; Solimene 2019]. As
a rule of thumb, the fields are sufficiently sampled if—when projected to the smallest possible
convex hull enclosing the AUT—there is a measurement sample approximately every 𝜆/2 (in
every direction on the hull) for the two linearly independent polarizations [Bucci 1998]. The
number of singular values of the matrix A which have a magnitude above a certain accuracy
threshold coincides well with the DoFs in the field, as long as enough measurement samples are
obtained and the discretization of the surface currents is fine enough to allow for all relevant
fields modes to be radiated [Peterson 1988; Stupfel 2008; Stupfel 2004; Vipiana 2007; Hansen
2019; Kornprobst 2019c; Kornprobst 2021a; Kornprobst 2019b]. To support well-conditioned
systems of linear equations, it is beneficial to use a measurement probe which illuminates the
probe with a homogeneous field. Successful transformations of measurement signals from
probes without a main beam toward the AUT or even probes with a null toward the AUT have
been demonstrated [Knapp 2018b] but the conditioning of the system matrix suffers from using
inconvenient probes.

Assuming that the equivalent sources and the measurement samples were picked appropriately
to represent all relevant DoFs of the radiated fields, solving (5.31) is still not straightforward.
First of all, the matrix A ∈ ℂ𝑀×𝑁 is not square, in general and therefore, a direct inverse A−1

does not exist. Often the normal-residual system of equations

AHAx = AHb (5.32)

is solved if A is overdetermined (𝑁 > 𝑀) [Saad 2003, p. 259] or the normal-error system of
equations

AAHy = b (5.33)

is used if A is underdetermined (𝑁 < 𝑀, the desired x can be found by x = AHy ) [Saad 2003,
p. 259]. If the matrix A is overdetermined but has full column rank (rank(A) = 𝑀) the inverse
6If 𝑀 < 𝑁DoF, one must rely on additional assumptions on the radiated field such as that the field representation

in terms of spherical modes is sparse [Hofmann 2019].
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of the normal-residual matrix AHA exists and x is found by multiplying both sides of (5.32) with
(AHA)

−1. If the matrix A is underdetermined but has full row rank (rank(A) = 𝑁) the inverse
of the normal-error matrix AAH exists and y is found by multiplying both sides of (5.32) with
(AAH)

−1.
Unfortunately, the NF matrices A describing the NF measurement scenario do neither have

full column rank nor full row rank (i.e., rank(A) < 𝑀 and rank(A) < 𝑁)7. This happens
because usually the number of measurement samples exceeds the DoFs of the radiated fields and
the equivalent sources have non-radiating and weakly radiating contributions. As discussed in
Section 4.1.1, the representation of radiated fields by equivalent electric and magnetic currents
is not unique, implying that there exist some current distributions, which do not generate any
fields outside the Huygens surface. In addition to the non-radiating currents, some current
distributions radiate a field which becomes negligibly small already at small distances to the AUT.
The fields of these weakly radiating currents correspond to higher-order spherical modes and are
associated with the superdirectivity effects discussed in Section 4.1.3. The singular values in
A corresponding to non-radiating currents or weakly radiating currents are zero or at least very
small.

The ambiguity in the currents associated to the strictly non-radiating portions can be overcome
by using only one type of currents (only electric or only magnetic) [Petre 1992; Quijano 2010b]
or by enforcing a fixed relation between both types. In the context of field transformations the
most notably current constraints are combined source formulations [Mautz 1979; Harrington
1989; Kornprobst 2018] enforcing a fixed ratio between electric and magnetic currents and Love
current formulations which force the fields on the inside of the Huygens surface to zero8 [Qui-
jano 2009; Quijano 2010a; Jørgensen 2010]. Although the ambiguities due to non-radiating
currents are eliminated by imposing constraints on the currents, the problem associated with
the superdirectivity effects of weakly radiating currents persists. The matrix A is similarly ill-
conditioned for all constraint or unconstrained current types [Kornprobst 2021a]. The weakly
radiating currents can not be reconstructed consistently with either method and the additional
effort or the slowed convergence behavior associated with the constraints on the currents is often
not justified [Kornprobst 2021a; Kornprobst 2019c]. The accuracy of the reconstructed fields
depends more crucially on the method used to invert (5.32) or (5.33).

In principle, a truncated singular value decomposition (SVD) [Hansen 1990; Li 2011] of the
matrix A can be used to eliminate all singular vectors associated with non-radiating or weakly
radiating currents. All singular values below a certain accuracy threshold associated with the
measurement error are neglected and the inversion of the resulting matrix only includes the
relevant singular vectors [Sarkar 1999]. The high computational burden associated with an
SVD prevents to use it directly for larger problems but iterative solvers such as the Generalized
Minimal Residual (GMRES) [Saad 1986], [Saad 2003, pp. 171 ff.] algorithm show similar
regularization properties if the iteration process is stopped at the right time [Calvetti 2002; Elden
2012]. To this end, using the normal-error system (5.33) is to be preferred over the normal-

7Technically, the singular values will not exactly be equal to zero, but the numerical rank is defined as the number
of singular values above a certain accuracy threshold.

8The combined source constraints do not increase the computational and implementation effort for the source
reconstruction whereas the implementation of the Love constraint can require to implement a singularity
cancellation method or to invert a Gram matrix [Kornprobst 2021a; Kornprobst 2019a].

72



5.2. Near-Field Far-Field Transformations

residual formulation (5.32), because it minimizes the the error ‖b − ̃b‖ directly linked to the
observation vector b rather than the artificial residual ‖AHb − AH ̃b‖ ( ̃b denotes the estimate
for the measurement vector in each iteration). The reconstructed solution after a fixed number
of iterations is almost identical for both formulations but the correct stopping criterion is not
clear for an iterative solver if the normal-residual equation (5.32) is used. With the normal-error
equation (5.33), however, the iteration process can be stopped once the residual reaches a level
comparable to the measurement error [Kornprobst 2019b; Kornprobst 2019c; Kornprobst 2019d;
Kornprobst 2021a].

5.2.2. Field Transformation Based on Spherical Wave Expansions

The basic idea behind the field transformation based on spherical wave expansions is similar
to the field transformation based on spatial current distributions. A linear model of the form
b = Ax is established to find the unknowns—here the AUT receive coefficients (which are
of course directly related to the expansion coefficients of the radiated field)— from measured
𝑆12-values. The expression in (5.20) may in principle be used to determine the elements of the
system matrix A. The coefficients in x could be found by inverting the system of equations
in the same manner as for the spatial currents based transformation and, thus, the spherical
wave expansion transformation could be used for arbitrary measurement setups, but the field
transformation becomes particularly efficient when the measurements are obtained on a canonical
measurement surface. First of all, it is desirable to sample the fields on a spherical measurement
surface with constant radius 𝑅 such that the same incident field coefficients �̃�′(1), pro

𝑠 ̃𝜇𝑛 (𝑹) can be
used for all measurement samples. Second, a probe with rotationally symmetric pattern around
the main beam direction is preferable, such that it is sufficient to consider the 𝑚′ = ±1 probe
modes, simplifying the translation of the probe fields into the AUT region. Probes which meet
this requirement are sometimes called first-order probes9. Finally, having the probe positions at
equiangular sampling steps in 𝜗- and 𝜑-direction is extremely useful to decrease the computational
complexity of the NFFFT algorithm. To make full use of the efficient spherical transformation, it
is assumed here that the AUT (antenna 1) is rotated around the rotation center 𝒓01 and the probe
antenna (antenna 2, centered at 𝒓02) is positioned at a fixed distance 𝑅 = ‖𝒓01 − 𝒓02‖ from the
AUT rotation center.

The unknown AUT receive coefficients are expressed in a local coordinate system fixed to the
AUT and the known probe transmit coefficients are expressed in another local coordinate system
fixed to the probe antenna. The probe coordinate system is parallel to the global coordinate
system but shifted by an amount 𝑅 = 𝒓01 − 𝒓02 in positive direction along the 𝑧-axis. Several
𝑆12 measurement samples are obtained with the AUT rotated against the global coordinate
system. The position of the 𝑀 measurement samples is defined by the Euler angles 𝜑𝑚, 𝜗𝑚,
and 𝜒𝑚 with 𝑚 = 1, … , 𝑀. In order to find an expression for the 𝑆12 in dependency of the
unknown AUT coefficients, one must transform the AUT receive coefficients and the probe
transmit coefficients into a common coordinate system. To this end, in a first step, the test zone
field which is created by the probe antenna is found by translating the radiated probe fields into

9Conical horn antennas can be considered as first-order probes. Rectangular horn antennas are not perfect first-order
probes but they approximate a 𝜇′ = ±1 probe with good accuracy as long as the measurement location is not
too close to the AUT [Hansen 1988, p. 107].
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incident field modes centered at 𝒓01. The 𝑆12-parameter for every AUT rotation angle is then
found by testing the incident field modes with the rotated AUT receive coefficients. Substituting
rotated AUT receiving coefficients and translated probe field coefficients into (5.23), we have

𝑆12(𝜗𝑚, 𝜑𝑚, 𝜒𝑚)

=
2

∑
𝑠=1

𝑁aut

∑
𝑛=1

𝑛

∑̃
𝜇=−𝑛

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑛

∑
𝜇=−𝑛

( ̂𝛽(1),aut
𝑠𝜇𝑛 e j𝜇𝜑𝑚 d𝑛

̃𝜇𝜇(𝜗𝑚) e j ̃𝜇𝜒𝑚)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

rotated AUT receiving coefficients

2

∑
𝜎=1

𝑁pro

∑
𝜈=1

𝜈

∑
𝜇′=−𝜈

𝒯 𝜎𝜇′𝜈
𝑠 ̃𝜇𝑛 (𝑹) �̂�(4), pro

𝜎𝜇′𝜈
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

translated probe field coefficients

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
2

∑
𝑠=1

𝑁aut

∑
𝑛=1

𝑛

∑̃
𝜇=−𝑛

𝑛

∑
𝜇=−𝑛

̂𝛽(1),aut
𝑠𝜇𝑛 e j𝜇𝜑𝑚 d𝑛

̃𝜇,𝜇(𝜗𝑚) e j ̃𝜇𝜒𝑚 �̃�′(1), pro
𝑠 ̃𝜇𝑛 (𝑹) , (5.34)

where

�̃�′(1), pro
𝑠 ̃𝜇𝑛 (𝑹) =

2

∑
𝜎=1

𝑁pro

∑
𝜈=1

𝜈

∑
𝜇′=−𝜈

𝒯 𝜎𝜇′𝜈
𝑠 ̃𝜇𝑛 (𝑹) �̂�(4), pro

𝜎𝜇′𝜈 (5.35)

are the (normalized) expansion coefficients of the (normalized) incident fields in the AUT region
(i.e., the translated probe field coefficients), which can be precomputed as they are the same for all
measurement positions (as long as the measurement distance 𝑅 does not change)10. Expressions
for the translation coefficients 𝒯 𝜎𝜇′𝜈

𝑠 ̃𝜇𝑛 (𝑹), which translate the outgoing 𝑐 = 4-type transmit
coefficients into incident 𝑐 = 1-type coefficients, can be found in Appendix B. The Wigner-d-
function d𝑛

̃𝜇,𝜇(𝜗) involved in the rotation is defined by [Wigner 1931, pp. 179ff.], [Hansen 1988,
p. 345]

d𝑛
̃𝜇,𝜇(𝜗) =

√
(𝑛 + ̃𝜇)! (𝑛 − ̃𝜇)!
(𝑛 + 𝜇)! (𝑛 − 𝜇)!

×
𝑛− ̃𝜇

∑
𝑝=0

(
𝑛 + 𝜇

𝑛 − ̃𝜇 − 𝑝) (
𝑛 − 𝜇

𝑝 ) (−1)𝑛− ̃𝜇−𝑝
(cos

𝜗
2 )

2𝑝+ ̃𝜇+𝜇

(sin
𝜗
2 )

2𝑛−2𝑝− ̃𝜇−𝜇
(5.36)

where the symbol

(
𝑖
𝑗) = 𝑖!

(𝑖 − 𝑗)!𝑗!
(5.37)

is the binomial coefficient. Notably, the Wigner-d-functions have a finite Fourier series expansion
of the form [Hansen 1988, p. 346]

d𝑛
̃𝜇,𝜇(𝜗) = j ̃𝜇−𝜇

𝑛

∑
𝜇′=−𝑛

𝛥𝑛
𝜇′, ̃𝜇 𝛥𝑛

𝜇′,𝜇 e
−j𝜇′𝜗 , (5.38)

10Because the translation direction 𝑹 is parallel to the 𝑧-axis, all translation coefficients with ̃𝜇 ≠ 𝜇′ are equal to zero
and we have �̃�′(1), pro

𝑠 ̃𝜇𝑛 (𝑹) = ∑2
𝜎=1 ∑

𝑁pro
𝜈=| ̃𝜇|
𝜈≠0

𝒯 𝜎 ̃𝜇𝜈
𝑠 ̃𝜇𝑛 (𝑹) �̂�(4), pro

𝜎 ̃𝜇𝜈 . There exist efficient formulations for the translation

coefficients if the translation is parallel to the 𝑧-axis [Hansen 1988, pp. 356ff.], [Stein 1961; Cruzan 1962].
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5.2. Near-Field Far-Field Transformations

𝜑

𝜗 𝜒

Fig. 5.3.: The probe is moved toward a certain 𝜗-
and 𝜑-position, and rotated around its own
axis by the angle 𝜒.

−𝜑

−𝜗 −𝜒

Fig. 5.4.: The AUT is rotated in reverse direction
around the 𝜗- and 𝜑-axes. Thereafter, the
AUT is rotated by −𝜒 around the global 𝑧-
axis.

where the 𝛥𝑛
𝜇′, ̃𝜇 are given by [Hansen 1988, p. 346]

𝛥𝑛
𝜇′, ̃𝜇 = d𝑛

𝜇′, ̃𝜇(
π
2) (5.39)

as the Wigner-d-function with argument π/2.
The rotations around 𝜗𝑚, 𝜑𝑚, and 𝜒𝑚 can theoretically be achieved by either rotating the AUT

or moving the probe as can be seen in the two equivalent scenarios depicted in Figs. 5.3 and 5.4,
respectively. In many measurement setups, the probe will perform only the 𝜒𝑚-rotation, whereas
the AUT performs the 𝜗- and 𝜑-rotations. In anechoic measurement environments it is irrelevant
for the formal description which antenna performs the rotations—e.g., the factor e j𝜇𝜒𝑚 can easily
be shifted from the AUT coefficients to the probe coefficients—but it will make a difference
when echoes are considered in the formal description.

The total of 2𝑁 (𝑁 + 2) unknowns ̂𝛽(1),aut
𝑠𝑚𝑛 are stored in the vector x ∈ ℂ2𝑁(𝑁+2). Having 𝑀

measurements of the 𝑆12-parameter obtained with the 𝑘th probe position defined by 𝜗𝑚, 𝜑𝑚, and
𝜒𝑚 we have

𝑆12,𝑚 =
2𝑁(𝑁+2)

∑
ℓ=1

𝐴𝑚ℓ𝑥ℓ , (5.40)

with

𝐴𝑚ℓ =
𝑛

∑̃
𝜇=−𝑛

(e
−j ̃𝜇𝜑𝑚 d𝑛

̃𝜇,𝜇(−𝜗𝑚) e−j𝜇𝜒𝑚) �̃�′(1), pro
𝑠𝜇𝑛 (𝑹) , (5.41)
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5. Antenna Near-Field Measurements

where the triple sum ∑2
𝑠=1 ∑𝑁

𝑛=1 ∑𝑛
𝜇=−𝑛 is replaced by a single index summation ∑2𝑁(𝑁+2)

ℓ=1 . The
triple (𝑠, 𝜇, 𝑛) is found from ℓ as follows [Hansen 1988, p. 314]: 𝑠 = 1 for odd ℓ and 𝑠 = 2 for
even ℓ, 𝑛 is the integer part of √(ℓ − 𝑠) /2 + 1, and 𝜇 is then given by 𝜇 = (𝑗 − 𝑠) /2+1−𝑛 (𝑛 + 1).
Naturally, one ends up with a system of equations of the form

b = Ax , (5.42)

where the vector b ∈ ℂ𝑀×1 stores the measured 𝑆12-values for the 𝑀 different probes positions,
the vector x ∈ ℂ2𝑁(𝑁+2)×1 stores the receive coefficients ̂𝛽(1),aut

𝑠 ̃𝜇𝑛 , and thematrixA ∈ ℂ𝑀×2𝑁(𝑁+2)

describes the linear relationship between the receive coefficients and the measured signals with the
elements ofA being defined by (5.41). Of course, the expansion coefficients �̂�(4),aut

𝑠 ̃𝜇𝑛 for describing
the transmit behavior of the AUT can be obtained by the reciprocity relationship (4.27). In fact,
the same formulas can be directly used with 𝑆21-parameter measurements by simply exchanging
the AUT receiving coefficients ̂𝛽(1),aut

𝑠𝜇𝑛 with the corresponding transmit coefficients �̂�(4),aut
𝑠𝜇𝑛 and

exchanging the probe transmit coefficients �̂�(4), pro
𝜎𝜇′𝜈 with their corresponding receiving coefficients

̂𝛽(1), pro
𝜎𝜇′𝜈 .
In principle, the system of equations (5.42) can be readily solved for x with any of the methods

described in Section 5.2.1, but particularly efficient implementations of the inversion of the
system of equations (5.42) are based on the orthogonality relations [Hansen 1988, p. 111]

π

∫
0

d𝑛
̃𝜇,𝜇(𝜗) d𝑛′

̃𝜇,𝜇(𝜗) sin(𝜗) d𝜗 = 2
2𝑛 + 1

δ𝑛𝑛′ (5.43)

for the Wigner-d-functions and
2π

∫
0

e j (𝜇−𝜇′) 𝜑 d𝜑 = 2π δ𝜇,𝜇′ (5.44)

for the exponential functions. Regarding the 𝑆12-parameter from (5.34) as continuous function
of the variables 𝜗, 𝜑, and 𝜒, one obtains [Laitinen 2005, p. 25]

1
4π2

2𝑛 + 1
2

π

∫
0

2π

∫
0

2π

∫
0

e−j𝜇𝜑 e−j ̃𝜇𝜒 d𝑛
̃𝜇,𝜇(𝜗) 𝑆12(𝜗, 𝜑, 𝜒) d𝜒 d𝜑 d𝜗 =

2

∑
𝑠=1

̂𝛽(1),aut
𝑠𝜇𝑛 �̃�′(1), pro

𝑠 ̃𝜇𝑛 (𝑹)

(5.45)
by applying the corresponding orthogonality integrals to (5.34). Each mode number ̃𝜇, for
which the corresponding incident probe field coefficients �̃�′(1), pro

𝑠 ̃𝜇𝑛 are non-zero, constitutes a new
equation for the pair of unknowns ̂𝛽(1),aut

1𝜇𝑛 and ̂𝛽(1),aut
2𝜇𝑛 [Hansen 1988, p. 107]. Usually, one will

use two arbitrary values for ̃𝜇 ( ̃𝜇 = ±1 is common as these are the only two non-zero choices for
a first-order probe) to obtain a 2 × 2 matrix equation for the two unknowns ̂𝛽(1),aut

1𝜇𝑛 and ̂𝛽(1),aut
2𝜇𝑛 .

The integrals in (5.45) are Fourier-type integrals which can be solved with an IFFT from a
finite number of samples due to the band limitation of the involved angular dependencies11.
11The IFFT can be directly applied for the 𝜑- and 𝜒-dependencies but the dependencies in 𝜗-direction have to be

extended into the domain π < 𝜗 < 2π first [Hansen 1988, pp. 111ff.]. A detailed description of all steps involved
in the efficient evaluation of the integrals can be found in [Hansen 1988].
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5.2. Near-Field Far-Field Transformations

The reduction of the computational cost comes along with an increased amount of measurement
samples. The required number of sampling points in 𝜗 and 𝜑 can be derived from the Nyquist
sampling theorem [Hansen 1988, pp. 128f.]. Since the modal expansion is truncated at the
mode number 𝑁 = 𝑘𝑟0 + 𝑛buffer, the 𝜑-dependency of the 𝑆12-parameter includes harmonics
from e−j𝑁𝜑 to e+j𝑁𝜑, a total of 2𝑁 + 1 measurement samples must be obtained for every value
of 𝜒 along every ring with constant 𝜗 such that the data can be processed with an FFT. The
equiangular sampling step is 𝛥𝜑 = 𝛥𝜗 = 2π/(2𝑁) which leads to a maximum distance of 𝜆/2 if
the sampling points are projected to the minimum sphere. In 𝜗-direction, one must have 𝑁 + 1
sampling locations. In general, 2𝑁pro + 1 different samples for 𝜒 are required to evaluate the
integral along 𝜒 exactly, since in principle ̃𝜇 may have any value between −𝑁pro and 𝑁pro. Only
for first-order probes for which all probe coefficients with ̃𝜇 ≠ ±1 = 0, the integral can be
evaluated with only two 𝜒-samples (usually 𝜒 = 0 and 𝜒 = π/2) [Hansen 1988, pp. 108ff.]. This
is the reason, why first-order probes are very popular for spherical measurement setups despite
having a small bandwidth. For a first-order probe measurement setup, thus, the total number
of measurement samples is 𝑀 = 2 (2𝑁 + 1) (𝑁 + 1) [Hansen 1988, p. 129]. Obviously, the
number of measurements 𝑀 is about twice the number of unknown mode coefficients which is
given by 2𝑁 (𝑁 + 2). The redundancy comes from the high sampling density near the poles.
Alternative sampling schemes with 𝑀 ≈ 2𝑁 (𝑁 + 2) can be used on spherical surfaces, for
example by thinning the samples near the poles with a sin 𝜗-taper. However, to be able to use the
efficient FFT implementation, the samples on the equiangular grid have to be interpolated in an
intermediate processing step [Hansen 1988, p. 129].

In contrast to equivalent surface current based approaches, the NFFFT based on spherical
vector wave expansions does not suffer from the same source ambiguities (if the mode expansions
are truncated appropriately). There are no non-radiating sources and the weakly radiating currents
are strictly separated from the source coefficients of interest. This comes with a reduced flexibility
in the placement of equivalent currents. The effective reconstruction surface in the spherical
vector wave expansion is always a sphere while surface current based approaches can distribute
the sources on an arbitrarily shaped Huygens surface. Thus, the possible radiated fields can be
constrained more tightly by the surface current approach. Due to the larger source domain for
the equivalent sources, a larger portion of the observation error may be mapped to the source
coefficients in spherical-expansion based reconstruction methods than in equivalent current based
reconstructions with a tight Huygens surface.

All spherical wave based based algorithms have been implemented in this thesis with a direct
implementation (without FFT acceleration) of the matrix vector product (and its Hermitian
transpose) in (5.42) to avoid any implementation artifacts as the spherical wave expansions are
considered as a reference for the analysis of frequency domain echo suppression algorithms in
this thesis. The inversion was performed using the iterative GMRES method with comparable
stopping criteria as for the equivalent current based transformation algorithms.

5.2.3. Fast Multipole Method and Fully Probe Corrected Fast Irregular Antenna

Field Transformation Algorithm

When the probe locations are not distributed on a spherical surface, but arbitrarily irregularly dis-
tributed, it is advisable to reduce the number of required operations which involve the translation
operator 𝒯 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) from (5.35). This can be accomplished by performing translations from the
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5. Antenna Near-Field Measurements

𝑹

𝒓𝑚 − 𝑹

Fig. 5.5.: The centers of the AUT volume and of the observation volume are separated by 𝑹. The locations
of the probe centers can be expressed as 𝒓𝑚. The arrows indicate the respective translations for the
spherical coefficients.

AUT volume into a spherical observation volume which contains multiple probe locations (here
it is customary to describe the scenario with a radiating AUT) and thereafter perform a secondary
translation from the center of the observation region into the probe centers. The situation is
depicted in Fig. 5.5.

The translation between the AUT center and the center of the spherical observation vol-
ume—separated by the translation vector 𝑹—transforming outward-traveling AUT coefficients
�̂�(4),aut

𝑠𝑚𝑛 into incident spherical wave coefficients �̂�(1),obs
𝜎𝜇𝜈 in the observation volume is accomplished

by a translation using the translation coefficients (see Appendix B)

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹)

= −4π
∞

∑
ℓ=0

(−1)𝜎+𝜇+𝜈
∯ (−j)ℓ (2ℓ + 1) h(2)

ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) 𝑲 (4)
𝑠𝑚𝑛(�̂�) ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂� .

(5.46)

In a numerical implementation, the sum over ℓ is truncated at a finite index ℓ = 𝐿, allowing
to switch the order of the sum and the integral in (5.46). The translation coefficient can then be
expressed in a compact notation as

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) ≈ −4π (−1)𝜎+𝜇+𝜈

∯ 𝑇𝐿(𝑘𝑅, �̂� ⋅ �̂�) 𝑲 (4)
𝑠𝑚𝑛(�̂�) ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂� (5.47)

with the the so-called propagating plane-wave translation operator

𝑇𝐿(𝑘𝑅, �̂� ⋅ �̂�) =
𝐿

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) , (5.48)

which is known from the MLFMM and related methods. The approximation in (5.47) becomes
exact in the limiting case of12 𝐿 → ∞.
12The diverging series for 𝑇∞ is still well defined if the resulting expression is interpreted in a distributional

sense [Chew 2007].
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The coefficients �̂�(1),inc,pro
𝜎′𝜇′𝜈′ of the incident fields in the probe centered coordinate systems can be

found by a secondary translation involving the translation coefficients (see Appendix B and [Chew
2007].)

𝑇 𝜎′𝜇′𝜈′

𝜎𝜇𝜈 (𝒓𝑚 − 𝑹) = (−1)𝜎′+𝜇′+𝜈′

∯ 𝑲 (4)
𝜎𝜇𝜈(�̂�) e−j𝒌⋅(𝒓𝑚−𝑹) ⋅ 𝑲 (4)

𝜎′,−𝜇′,𝜈′(�̂�) d�̂� . (5.49)

Analogous to (5.20), the received probe signal (i.e., the 𝑆21-parameter, as the description
deals with normalized expansion coefficients) can be computed by weighting the incident field
coefficients �̂�(1),inc,pro

𝜎′𝜇′𝜈′ expressed in the probe centered coordinate system by the probe receive

coefficients ̂𝛽(1),pro
𝜎′𝜇′𝜈′ and one obtains13

𝑆21 =
2

∑
𝜎′=1

𝑁pro

∑
𝜈′=1

𝜈′

∑
𝜇′=−𝜈′

̂𝛽(1),pro
𝜎′𝜇′𝜈′ �̂�(1),inc,pro

𝜎′𝜇′𝜈′

=
2

∑
𝜎′=1

𝑁pro

∑
𝜈′=1

𝜈′

∑
𝜇′=−𝜈′

̂𝛽(1),pro
𝜎′𝜇′𝜈′ (

2

∑
𝜎=1

𝑁obs

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝑇 𝜎′𝜇′𝜈′

𝜎𝜇𝜈 (𝒓𝑚 − 𝑹) �̂�(1),obs
𝜎𝜇𝜈 )

=
2

∑
𝜎′=1

𝑁pro

∑
𝜈′=1

𝜈′

∑
𝜇′=−𝜈′

̂𝛽(1),pro
𝜎′𝜇′𝜈′

×
[

2

∑
𝜎=1

𝑁obs

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝑇 𝜎′𝜇′𝜈′

𝜎𝜇𝜈 (𝒓𝑚 − 𝑹) (

2

∑
𝑠=1

𝑁aut

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) �̂�(4),aut

𝑠𝑚𝑛 )]

= 1
2

2

∑
𝜎′=1

𝑁pro

∑
𝜈′=1

𝜈′

∑
𝜇′=−𝜈′

(−1)𝜇′
�̂�(4),pro

𝜎′,−𝜇′,𝜈′

×
[

2

∑
𝜎=1

𝑁obs

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝑇 𝜎′𝜇′𝜈′

𝜎𝜇𝜈 (𝒓𝑚 − 𝑹) (

2

∑
𝑠=1

𝑁aut

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) �̂�(4),aut

𝑠𝑚𝑛 )]
,

(5.50)

where the reciprocity relation (4.27) was used. Inserting (5.47) and (5.49) into (5.50) one ends
up with the equation

𝑆21

= −2π ∑
𝜎′𝜇′𝜈′

(−1)𝜇′
�̂�(4),pro

𝜎′,−𝜇′,𝜈′ ∯ [∑
𝜎𝜇𝜈

(−1)𝜎′+𝜇′+𝜈′
𝑲 (4)

𝜎𝜇𝜈(�̂�′) e−j𝒌′⋅(𝒓𝑚−𝑹) ⋅ 𝑲 (4)
𝜎′,−𝜇′,𝜈′(�̂�′)

× (∯ ∑
𝑠𝑚𝑛

�̂�(4),aut
𝑠𝑚𝑛 (−1)𝜎+𝜇+𝜈 𝑇𝐿(𝑘𝑅, �̂� ⋅ �̂�) 𝑲 (4)

𝑠𝑚𝑛(�̂�) ⋅ 𝑲 (4)
𝜎,−𝜇,𝜈(�̂�)) d�̂�] d

̂𝒌′ ,

(5.51)
13It is understood that the probe location and rotation is different for every sample of the 𝑆21-parameter. This

dependency is implicitly incorporated into the probe receive coefficients. The index 𝑚 of the probe location 𝒓𝑚
must not be confused with a mode order 𝑚 of the spherical expansion.
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which can be further simplified by

∑
𝜎𝜇𝜈

𝑲 (4)
𝜎𝜇𝜈(�̂�′) (−1)𝜎+𝜇+𝜈

∯ 𝑲 (4)
𝜎,−𝜇,𝜈(�̂�) ⋅ 𝑬FF(�̂�) d�̂� = 𝑬FF(�̂�′) , (5.52)

which holds for an arbitrary FF pattern function14 𝑬FF(�̂�). One obtains

𝑆21 = −2π
2

∑
𝜎′=1

𝑁pro

∑
𝜈′=1

𝜈′

∑
𝜇′=−𝜈′

(−1)𝜇′
�̂�(4),pro

𝜎′,−𝜇′,𝜈′ ∯ [
(−1)𝜎′+𝜇′+𝜈′

e−j𝒌′⋅(𝒓𝑚−𝑹) 𝑲 (4)
𝜎′,−𝜇′,𝜈′(�̂�′)

×
(

2

∑
𝑠′=1

𝑁aut

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

�̂�(4),aut
𝑠𝑚𝑛 𝑇𝐿(𝑘𝑅, �̂�′ ⋅ �̂�) 𝑲 (4)

𝑠𝑚𝑛(�̂�′))]
d ̂𝒌′ ,

(5.53)

The final expression is obtained by substituting the FF pattern of the AUT

�̂�(4),aut
FF (�̂�) =

2

∑
𝑠=1

𝑁aut

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

�̂�(4),aut
𝑠𝑚𝑛 𝑲 (4)

𝑠𝑚𝑛(�̂�) (5.54)

and the inverted FF pattern (−�̂� instead of �̂�) of the equivalent probe sources15

�̂�(4),pro
FF (−�̂�) =

2

∑
𝜎′=1

𝑁pro

∑
𝜈′=1

𝜈′

∑
𝜇′=−𝜈′

(−1)𝜎′+𝜈′
�̂�(4),pro

𝜎′,−𝜇′,𝜈′𝑲 (4)
𝜎′,−𝜇′,𝜈′(�̂�) . (5.55)

into (5.53) to find the spectral domain transmission equation

𝑆21 = −2π ∯ �̂�(4),pro
FF (−�̂�) e−j𝒌′⋅(𝒓𝑚−𝑹) 𝑇𝐿(𝑘𝑅, �̂�′ ⋅ �̂�) ⋅ �̂�(4),aut

FF (�̂�) d�̂� , (5.56)

which coincides with the gain normalized transmission equations in [Neitz 2017; Neitz 2020] if
one considers the differently scaled definitions of FF patterns in this thesis. This transmission
equation is the key for the efficient evaluation of the interaction between an AUT and arbitrarily
located probes. It is closely related to the fast multipole method (FMM) [Rokhlin 1993; Darve
2000; Coifman 1993] but has full probe correction incorporated.

Noticeably, only the FF patterns of the AUT and the probe are needed to be able to evaluate the
transmission equation (5.56), even if the probes are located in the NF. The only limitation comes
from the fact that the spherical observation volume must not interfere with the minimum sphere
around the AUT. The transmission equation (5.56) unifies the different descriptions of the AUT
14The term 𝛼𝜎,𝜇,𝜈 = (−1)𝜎′+𝜇′+𝜈′

∯ 𝑲 (4)
𝜎,−𝜇,𝜈(�̂�) 𝑬FF(�̂�) d�̂� can be easily identified as the spherical wave expansion

for 𝑬FF(�̂�), thus, the summation in (5.52) yields ∑
𝜎𝜇𝜈

𝛼𝜎,𝜇,𝜈𝑲 (4)
𝜎𝜇𝜈(�̂�′) = 𝑬FF(�̂�′). If the summation of 𝜈 is

truncated at some finite value 𝑁obs, only the low-order modes (up to the mode order 𝜈 = 𝑁obs) of the resulting
𝑬FF(�̂�′) will agree with the original function 𝑬FF(�̂�), but this is sufficient for the current discussion because
the low-order modes suffice to accurately describe the field in the complete observation volume.

15The same identity for the spherical expansion of the inverted FF pattern has already been used in (5.21) to derive
reciprocity.
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fields by either equivalent currents or spherical waves, as it is in principle irrelevant by which
kind of equivalent source description the AUT and probe FF patterns �̂�(4),aut

FF and �̂�(4),pro
FF are

obtained. As long as an FF pattern can be computed from the sources, it can be used with (5.56).
Adapting the ideas from the MLFMM [Song 1995; Song 1997] and refining the evaluation of

the spectral domain integrals and translations [Eibert 2016b; Eibert 2004; Eibert 2005; Eibert
2016a] has led to a very powerful algorithm called FIAFTA. A detailed discussion of FIAFTA
is out of the scope of this thesis and the interested reader may refer to, for instance, [Schmidt
2011b; Schmidt 2008a; Schmidt 2008b; Schmidt 2007] for details. The AUT FF pattern which is
translated toward the observation volume can efficiently be calculated in a hierarchical manner
from a domain decomposition of the AUT volume. The AUT is decomposed in many small,
non-intersecting source domains and the equivalent FF patterns are calculated for each small
source domain separately, requiring only a small computational effort for every domain as few
FF samples are sufficient to represent the fields accurately [Chew 2001]. The FF spectra of
neighboring source domains are then subsequently combined in a hierarchical scheme until one
finds the FF pattern of the complete source domain before it is translated toward the observation
volume16. This procedure is called aggregation. An analogous procedure (in reverse order of the
operations) distributes the incident field in the observation region from a large observation region
to smaller and smaller observation volumes until each observation volume only contains a single
probe. This procedure is called disaggregation. The hierarchical aggregation and disaggregation
allows to evaluate the matrix vector product Ax and its Hermitian transpose with a complexity of
𝑁 log(𝑁), where 𝑁 is the number of unknowns for the equivalent AUT description. This allows
to use iterative equation solvers such as GMRES to invert the arising systems of equations in
inverse source problems even for large problems.

FIAFTA has been used in this thesis to evaluate the interactions between the AUT and the
probe for all current-based AUT representations. Due to its beneficial regularization properties,
the GMRES solver is used whenever an NFFFT related system of equations is to be solved in this
work (including all transformations with FIAFTA and the spherical expansion based methods).
The normal-error equation (5.33) is preferred when an a priori estimate for the reconstruction
deviation (e.g., based on the noise level) exists. If no estimate for the reconstruction deviation
can be used as a stopping criterion (e.g., when it is known that the chosen source model is
not sufficient to recreate the measurements), the normal-residual equation (5.32) is used with a
stopping criterion for the residual in the order of 10−6, which has shown to be a good choice in
many practical situations.

5.2.4. A Note on Phaseless Field Transformation Algorithms

In general, fully coherent (i.e., magnitude and phase) measurement samples have to be collected at
sufficiently many sampling locations on a closed measurement surface around the AUT in order to
be able to transform the NF measurements into the FF. The requirement for measuring the phase
can be relaxed, if the phase information can be reconstructed from the available measurement
samples [Yaccarino 1999; Isernia 1994a; Migliore 2000; Schnattinger 2014; Schmidt 2009;
Schmidt 2010; Razavi 2006; Candes 2013]. Naturally, additional information (as compared to

16The translations can also be performed on lower source box levels. Then multiple translations must be performed
before the complete incident field in the observation volume is obtained.
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a coherent measurement) is required for the phase reconstruction [Knapp 2019b] which may
be provided by field measurements on multiple measurement surfaces [Bucci 1990], by using
multiple or specialized probes [Pierri 1999; Costanzo 2002; Costanzo 2005; Paulus 2017a], by
increased sampling rates [Álvarez 2018; Álvarez 2015], by using local coherence [Knapp 2017b;
Paulus 2017c; Kornprobst 2021b; Paulus 2021] or by combining the measurements at different
frequencies [Paulus 2020b; Paulus 2020a; Knapp 2021]. For most phase reconstruction methods,
the success of the reconstruction depends on the measurement data, as usually an underlying
non-convex minimization problem must be solved [Balan 2015; Isernia 1994b; Isernia 1995;
Candes 2015; Knapp 2017a; Paulus 2018a; Paulus 2017b; Paulus 2016; Paulus 2018c]. Convex
formulations of the phase retrieval problem require the measurement data to be obtained in
a special form [Kornprobst 2021b], have a high computational complexity [Candes 2013], or
rely on very high numbers of measurement samples (around the square of the number which is
required in fully coherent measurements) [Knapp 2018c; Knapp 2019d].

Phase reconstruction methods require redundancy in the data to be able to determine the
missing phase of the measurement samples. Echo suppression methods—which are subject of
this thesis— require redundancy in the data to be able to separate the undesired echo influences
from the free-space AUT signals. Consequently, there is a conflict of interest about the usage
of the redundant data if the post-processing has to perform echo suppression as well as phase
reconstruction. The optimal trade-off in this regard is subject of future research and phaseless
NFFFT algorithms are not further investigated in this thesis.

5.3. Chapter Summary

In this chapter, NFFFTs have been revisited. Their formal description has been based on the
transmission equation for a transmitted signal between two antennas in terms of spherical waves
or equivalent surface currents. The spherical-wave based NFFFT is particularly efficient for a
spherical measurement surface with a first-order probe, whereas the equivalent current based
approach is much more flexible with the location of the equivalent sources which can be placed on
an arbitrarily shaped Huygens surface. The FMM-inspired FIAFTA has been shown to unify the
different approaches and yields an efficient NFFFT algorithm for arbitrary probes with possibly
irregular locations. FIAFTA is used for all current based NFFFTs in this thesis, whereas a naive
implementation of the direct matrix inversion is used for all spherical expansion based transfor-
mations. The NFFFTs presented in this thesis can already be found in the literature [Hansen
1988; Álvarez 2006; Schmidt 2008b]. The spectral domain transmission equation (5.56) has
been derived slightly differently in this thesis (starting from the spherical wave expansion) than
for example in [Neitz 2017]. Spherical and current based NFFFTs are the core of the frequency
domain echo suppression techniques discussed in this thesis.
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This chapter presents the formal description of the interaction between two antennas in presence
of echo objects. The situation is depicted in Fig. 6.1. The echo object alters the total field
distribution by scattering or absorption. The influence of the echo object on the total field can be
represented by equivalent surface currents on the surface 𝑆ech enclosing the echo object and by
commonly less important additional equivalent surface currents at the probe or AUT to account
for mutual interactions between the antennas and the echo object.

The scattered fields generated by the equivalent currents on 𝑆ech depend only (ignoring multiple
reflections) on the incident fields around the echo object. Different incident fields cause different
scattered fields and, therefore, the equivalent currents on 𝑆ech differ if antenna 1 or antenna 2 is
transmitting. Reciprocity between antenna 1 and antenna 2 still holds (𝑆12 = 𝑆21) and one can
use either by the 𝑆12- or the 𝑆21-parameter depending on which one is more convenient.

The receiving antenna (either the AUT or the probe may be receiving) alters the total field
distribution by absorbing some of the incident fields and by structural scattering (a perfectly
matched antenna is assumed such that no reradiation occurs). Theoretically, the changed total
fields may have an influence on the equivalent currents on the radiating antenna and the echo
object. The effect of these distortions of equivalent current distributions on the 𝑆21- or the
𝑆12-parameter is neglected in this section.

6.1. Transmitting Antenna Under Test

First, consider a radiating AUT (antenna 1). The radiating AUT model is convenient for all
situations, in which the relative position of the echo object with respect to the AUT does not
change1. Neglecting the probe antenna, the radiated fields of the AUT (normalized to the
1This situation may occur if the echo is due to scattering at AUT mounting structures which are fixed to the AUT

or if the AUT is stationary in an echoic environment while the probe antenna is moved to different locations to
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𝒏2

𝑆2

𝑉2

𝒏1

𝑆1 𝑉1
𝑉ext

𝑆ech

𝒏ech

Fig. 6.1.: Two antennas enclosed by two Huygens surfaces 𝑆1 and 𝑆2 in proximity of an echo object.

excitation 𝑎1) in presence of the echo object may be expressed by

𝑬(𝒓)
𝑎1

= ∯
𝑆1

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1̃(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1̃(𝒓′)] d𝑎′

+ ∯
𝑆ech

[𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱ech1(𝒓′) + 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�ech1(𝒓′)] d𝑎′ , (6.1)

𝑯(𝒓)
𝑎1

= ∯
𝑆1

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1̃(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1̃(𝒓′)] d𝑎′

+ ∯
𝑆ech

[𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱ech1(𝒓′) + 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�ech1(𝒓′)] d𝑎′ , (6.2)

where ̂𝑱ech1, �̂�ech1 are the (normalized) equivalent currents expressing the field scattered by the
echo object due to the incident field generated by the transmitting antenna 1. Notice that the
equivalent currents

̂𝑱1̃ = ̂𝑱1 + ̂𝑱1,dis , (6.3)

�̂�1̃ = �̂�1 + �̂�1,dis , (6.4)

differ from the undistorted AUT currents ̂𝑱1, �̂�1 by a distortion ̂𝑱1,dis, �̂�1,dis because some
portion of the scattered field is incident on the AUT, causing a distortion in the current distribution.
The equivalent currents ̂𝑱1̃, �̂�1̃ not only account for the AUT radiation but also for the scattering
at the AUT. Finally the currents on the AUT and the scattering object represent the steady state
with all multiple interactions included.

Under the assumption that the presence of a probe antenna (antenna 2) does not alter the total

sample the radiated field (e.g., in a planar measurement setup or when the AUT is measured in-situ).
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field distribution decisively2, the 𝑆21-parameter between the AUT and the probe is given by

𝑆21 = ∯
𝑆2

∯
𝑆1

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1̃(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1̃(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1̃(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1̃(𝒓′)] d𝑎′ d𝑎

+ ∯
𝑆2

∯
𝑆ech

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱ech1(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�ech1(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱ech1(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�ech1(𝒓′)] d𝑎′ d𝑎 .
(6.5)

To highlight the deviation to the anechoic case, one substitutes (6.3) and (6.4) into (6.5) to get

𝑆21 = ∯
𝑆2

∯
𝑆1

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1(𝒓′)] d𝑎′ d𝑎

+ ∯
𝑆2

∯
𝑆1

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1,dis(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1,dis(𝒓′)

−�̂�2(𝒓) ⋅𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1,dis(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1,dis(𝒓′)] d𝑎′ d𝑎

+ ∯
𝑆2

∯
𝑆ech

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱ech1(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�ech1(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱ech1(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�ech1(𝒓′)] d𝑎′ d𝑎 .
(6.6)

The expression (6.6) for the 𝑆21-parameter in presence of an echo object differs from the
free-space radiation in two additive integral terms. The term

∯
𝑆2

∯
𝑆1

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1,dis(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1,dis(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1,dis(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1,dis(𝒓′)] d𝑎′ d𝑎 (6.7)

accounts for deviations of the current distribution of the AUT in presence of echoes and

∯
𝑆2

∯
𝑆ech

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱ech1(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�ech1(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱ech1(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�ech1(𝒓′)] d𝑎′ d𝑎 (6.8)

2That means that the absorption and the scattering at the probe changes the total field distribution only in a way
such that the subsequent changes of the equivalent current distributions at the AUT and the scattering object do
not lead to a significant change of the incident fields in the probe volume.
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accounts for the influence of the echo object currents on the receive signal. Very conveniently,
all currents accounting for the distortions in the field (i.e., ̂𝑱1,dis, �̂�1,dis and ̂𝑱ech1, �̂�ech1) are
independent of the probe position and the probe receive currents ̂𝑱2, �̂�2 are identical to the
free-space receive currents (i.e., they are known).

Thus, if the echo object position is fixed with respect to the AUT, the echo influence can be
expressed by additional equivalent AUT currents—not only present in the original AUT volume
𝑉1 but also on the surface of the echo object. The probe is treated as in free-space.

6.2. Transmitting Probe

An expression for the 𝑆12-parameter for a radiating probe analogous to (6.6) is also possible. We
have

𝑆12 = ∯
𝑆1

∯
𝑆2

[ ̂𝑱1(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱2(𝒓′) + ̂𝑱1(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�2(𝒓′)

− �̂�1(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱2(𝒓′) − �̂�1(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�2(𝒓′)] d𝑎′ d𝑎

+ ∯
𝑆1

∯
𝑆2

[ ̂𝑱1(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱2,dis(𝒓′) + ̂𝑱1(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�2,dis(𝒓′)

−�̂�1(𝒓) ⋅𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱2,dis(𝒓′) − �̂�1(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�2,dis(𝒓′)] d𝑎′ d𝑎

+ ∯
𝑆1

∯
𝑆ech

[ ̂𝑱1(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱ech2(𝒓′) + ̂𝑱1(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�ech2(𝒓′)

− �̂�1(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱ech2(𝒓′) − �̂�1(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�ech2(𝒓′)] d𝑎′ d𝑎 .
(6.9)

Here, the equivalent currents in the probe region may differ from the free-space probe currents
(this difference is accounted for by ̂𝑱2,dis and �̂�2,dis) and the currents ̂𝑱ech2, �̂�ech2 on the echo
object account for the scattering due to the illumination by the probe. All echo influences are
expressed by additional equivalent probe currents—not only present in the original probe volume
𝑉2 but also on the surface of the echo object. The AUT is treated as in free-space.

The echo currents on the echo object differ dependent on whether the AUT or the probe is
illuminating the object, but for reciprocal antennas in reciprocal media we have 𝑆12 = 𝑆21 and the
expressions (6.6) and (6.9) may be used interchangeably. The expression in (6.9) has advantages
over (6.6) in a moving AUT scenario, where the position of the echo object is fixed to the probe.

6.3. Chapter Summary

The transmission equation has been extended to account for the influence of an echo object in this
chapter. Additional currents were introduced at the echo and antenna locations. The additional
echo currents differ dependent on which antenna radiates but the interaction described by either
the 𝑆12- or the 𝑆21-parameter remains the same. The more convenient formulation can be used
to describe the interaction but different scenarios call for different representations.
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7
Echo Suppression Methods
in Time Domain

Echo suppression techniques based on the time-domain representation of a signal1 exploit the
fact that in conventional measurement setups, the direct AUT contributions2 usually have shorter
path lengths than the scattered contributions, as can be seen in Fig. 7.1 [Henderson 1989;
Waiyapattanakorn 1993; Jough 1997; Hsiao 2003; Mauermayer 2016; Mauermayer 2017; De
Porrata-Doria i Yague 1998; Lestari 2005; Levitas 1996; Blech 2010a; Tian 2008; Young 1973].
The signal of interest3 may therefore be truncated before the influences of the scattered paths
become visible in the signal. Of course, to end up with a useful signal after truncation, it is
desirable to keep the portion of the signal belonging to the LOS part of the signal unaltered.

In theory, a viable method to measure the signal would be to feed antenna 1 with a short impulse
and record the received signal in time-domain at antenna 2. If everything works as planned, one
can see distinct maxima in the signal for the desired LOS paths and for the scattered paths. By
choosing a suitable truncation window, one can get rid of the undesired signal contributions
occurring at later times. Filtering signal portions based on their occurrence in time is called time
gating, but the term time gating is used rather broadly in this work and includes the process of
deducing the time-domain signal from frequency samples as well as windowing the reconstructed
time-domain signal appropriately. Hardware time gating— i.e., measuring and truncating the
signal directly in time-domain— requires specialized hardware and is rarely encountered in
practice [Blech 2010a; Blech 2010b; Hartmann 1998]. The discussion of time gating is therefore

1Here, the term signal represents a certain scalar quantity of interest, which may vary in time and/or frequency.
Time-varying signals have a representation in frequency-domain, related by the Fourier transform. A typical
signal is the output of a probe (i.e., the voltage or the wave amplitude of the guided mode at the probe antenna
port). However, one can also apply time-gating to other signals such as the source coefficients of the AUT.

2The term LOS path will be used in the following for the direct AUT contributions, in the style of FF scenarios
although it is clear that in NF scenarios the image of a single path connecting the AUT to the probe is not
accurate.

3In this chapter the signal of interest is the output signal of the probe, other signals are time gated in later chapters.
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Fig. 7.1.: Line of sight path (green, solid line) and scattered path (red, dashed line) between antenna 1 and
antenna 2.

limited to software time gating in this thesis— i.e., measuring the signal at discrete frequencies
in the frequency-domain and deducing and windowing a time-domain signal from there. The
truncated time-domain signal is then transformed into frequency-domain, where all further
processing (e.g., an NFFFT) takes place.

In practice, several difficulties complicate the situation. The signal is distorted on its way
“over the air”. The transmit channel between the antenna ports has a frequency dependency and
also depends on the relative position of the two antennas to each other (after all, this frequency
dependent behavior of the transmission channel is what one wants to measure). Even though the
excitation signal may have been a sharply time limited impulse, the measurement signal to be
time gated can span over a much longer duration. It is therefore hard to guarantee in practice
that the time signal of the desired signal contribution does not interfere with the time signal
corresponding to the scattered paths. Finding a suitable time-domain representation and choosing
an effective gating window which suppresses as much as possible of the echo contributions and
preserves as much as possible of the desired portion is a delicate task.

Commonly, a (sampled) time-domain signal is obtained by directly applying the inverse discrete
Fourier transform to the measured frequency-domain signal components. Possible interpretations
of the resulting time-domain sequences are discussed first, before the impact of altering the time-
domain sequence—e.g., by windowing or frequency-domain extrapolation— is investigated in
this chapter.

7.1. Estimating the Time-Domain Signal From Frequency-Domain

Measurements

Since often, the signal is measured at discrete samples in frequency-domain, a corresponding
time signal must be estimated. To this end, the measured samples at different frequencies
are interpreted as samples of the frequency response 𝐻(𝜔) of a transfer function of a linear,
time-invariant system.

The time-domain impulse response ℎ(𝑡) of a linear, time-invariant system is related to its
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spectral representation 𝐻(𝜔) via the Fourier transformation

𝐻(𝜔) = ℱ {ℎ(𝑡)} = 1
√2π

∞

∫
−∞

ℎ(𝑡) e−j𝜔𝑡 d𝑡 (7.1)

and the inverse Fourier transformation

ℎ(𝑡) = ℱ −1{𝐻(𝜔)} = 1
√2π

∞

∫
−∞

𝐻(𝜔) e j𝜔𝑡 d𝜔 . (7.2)

Of course, the spectrum 𝐻(𝜔) is only known at several discrete measurement frequencies 𝜔𝑘,
𝑘 = 0, … , 𝑁 − 1. The time-domain signal ℎ(𝑡) is not uniquely defined by the few measurement
samples in frequency-domain. In principle infinitely many time-domain signals ℎest(𝑡) can have
the measured spectral components at the measured frequencies but different spectral components
at frequencies which have not been measured. Formally, different estimates

ℎest(𝑡) = 1
√2π

∞

∫
−∞

𝐻est(𝜔) e j𝜔𝑡 d𝜔 (7.3)

of the time-domain function can be obtained by using different estimates 𝐻est(𝜔) for the frequency-
domain functions. The frequency-domain estimates solely have to agree with the measured
spectral components at the measured frequencies, i.e., 𝐻est(𝜔𝑘)

!
= 𝐻(𝜔𝑘) for all 𝑘 ∈ {0, … , 𝑁−

1}. It is therefore in general not possible to reconstruct the true time-domain signal ℎ(𝑡) from
measurements of a finite number of spectral component samples at discrete frequencies.

Since the true time-domain signal cannot be found with certainty from the finite number
of measurement samples, the question arises, how one can at least recover a reasonable or
helpful time-domain signal from the limited spectral information. Certain useful assumptions
on reasonable time-domain signals are helpful to find a useful time-domain signal which may
be used for time gating. The time-domain impulse response signal should be causal and time
limited, i.e., ℎest(𝑡) = 0 for 𝑡 < 0 and 𝑡 > 𝑇 for some finite duration 𝑇. For practical purposes,
it is sufficient that the signal has decayed to a small enough value below the noise limit of the
measurement hardware after the duration 𝑇.

To simplify the upcoming discussion, it is assumed that the spectrum 𝐻(𝜔) is known at 𝑁
equispaced frequencies 𝜔𝑘 = 𝜔min + 𝑘 𝛥𝜔, 𝑘 = 0, … , 𝑁 − 1 with a constant frequency step
𝛥𝜔 = 𝜔𝑘+1 −𝜔𝑘. The samples of the spectrum 𝐻(𝜔) at the discrete frequencies 𝜔𝑘 are denoted by
𝐻[𝑘] = 𝐻(𝜔𝑘), where the square brackets indicate that 𝐻[𝑘] corresponds to a frequency-discrete
function.

7.1.1. Estimating the Time-Domain Signal as a Periodic Function with the

Inverse Fast Fourier Transform

A straightforward way to generate a time-domain signal in accordance with the measured
frequency-domain samples is to assign an exponential time dependency of the form e j𝜔𝑘 𝑡 to
every measured spectral component 𝜔𝑘.
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7. Echo Suppression Methods in Time Domain

This is equivalent to estimating the spectrum as 𝐻est(𝜔) = ∑𝑁−1
𝑘=0 δ(𝜔 − 𝜔𝑘) 𝐻[𝑘]—not a

very realistic estimate, as one would expect a continuous spectrum, but it can serve as a starting
point for the analysis. The corresponding time-domain signal can be found as [Oppenheim 2010]

ℎest(𝑡) = 1
√2π

𝑁−1

∑
𝑘=0

𝐻[𝑘] e j𝜔𝑘 𝑡 = 1
√2π

e j𝑡 𝜔min

𝑁−1

∑
𝑘=0

𝐻[𝑘] e j𝑘 𝛥𝜔 𝑡 . (7.4)

The estimated time-domain function ℎest is periodic with periodicity 𝑇 = 2π/𝛥𝜔. This means
that the estimated time-domain function ℎest(𝑡) is strictly band limited (𝐻est(𝜔) = 0 for 𝜔 < 𝜔min
and for 𝜔 > 𝜔min + (𝑁 − 1) 𝛥𝜔) and, thus, not time limited. This time-domain signal does not
meet the criteria of a reasonable time-domain estimate, but it serves as a starting point for the
discussion. The inverse discrete Fourier transform ℱ −1[⋅] defined as4

𝑓[𝑛] = ℱ −1 [𝐹 [𝑘]] = 1
𝑁

𝑁−1

∑
𝑘=0

𝐹 [𝑘] e j
2π
𝑁 𝑘𝑛 (7.5)

between a time-discrete function 𝑓[𝑛] and a frequency-discrete function 𝐹 [𝑛] can be used to
calculate the value of the estimated time-domain signal at the discrete times 𝑡𝑛 = 2π 𝑛/ (𝛥𝜔𝑁) =
𝑛 𝛥𝑡, spaced with a regular time step 𝛥𝑡 = 2π/(𝑁 𝛥𝜔). We have

ℎest[𝑛] = 1
√2π

e j𝑡𝑛 𝜔min

𝑁−1

∑
𝑘=0

𝐻[𝑘] e j𝑘 𝛥𝜔 𝑡𝑛

= 𝑁
√2π

e j2π 𝜔min𝑛
𝛥𝜔 𝑁 ℱ −1 [𝐻[𝑘]]

= 𝑁
√2π

e j𝛥𝑡 𝜔min𝑛 ℱ −1 [𝐻[𝑘]] , (7.6)

where ℎest[𝑛] = ℎest(𝑡𝑛) is the estimated time-domain signal sampled at the discrete times 𝑡𝑛.
Since the time-domain signal is known to be periodic, one only needs to know the values of
ℎest[𝑛] in the interval 𝑛 = 1, … , 𝑁 − 1 to be able to deduce ℎest[𝑛] for all integers 𝑛.

Efficient implementations of the discrete Fourier transform and the inverse discrete Fourier
transform are provided by the FFT and IFFT, respectively5. Often it is useful to consider the
corresponding baseband signal

ℎest,BB[𝑛] = ℎest[𝑛]
√2π

𝑁
e−j2π 𝜔min𝑛

𝛥𝜔 𝑁 = ℱ −1 [𝐻[𝑘]] (7.7)

and its continuous counterpart

ℎest,BB(𝑡) = e−j𝜔min 𝑡ℎest(𝑡) (7.8)

4The discrete Fourier transform ℱ [⋅] and its inverse ℱ −1[⋅] can be distinguished from their continuous counterparts
ℱ {⋅} and ℱ −1{⋅} by the square brackets instead of the curly brackets.

5As all discrete Fourier transforms (and their inverses) have been evaluated by means of FFTs and IFFTs, the term
“FFT” is used synonymously with “discrete Fourier transform” in this work (analogous for the IFFT).
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to simplify some calculations. The information in the (downconverted) complex base band signal
ℎest,BB(𝑡) is equivalent to the information in the original time-domain sequence ℎest(𝑡) and one
expression can easily be obtained from the other. Therefore, in the following the text will switch
between the expressions whenever convenient.

Dealing with a properly sampled, strictly band limited signal, one can exactly interpolate the
continuous base band signal ℎest,BB(𝑡) from its samples at the discrete times by6 [Oppenheim
2010, pp. 192ff.]

ℎest,BB(𝑡) =
∞

∑
𝑛=−∞

ℎest,BB[𝑛] sinc(
𝑡 − 𝑛𝛥𝑡

𝛥𝑡 ) (7.10)

with the sinc-function sinc(𝑥) = sin(π 𝑥)/(π 𝑥). In practice, the interpolation of the time-domain
data can be performed by “zero padding” the frequency-domain data [Smith 2010]. By attending
zeros to the frequency-domain sequence 𝐻[𝑘], the effective length of the sequence is increased
from 𝑁 to 𝑁pad and, consequently, the time-domain samples

ℎest,padded[𝑛] =
𝑁pad

√2π
e
j2π 𝜔min𝑛

𝛥𝜔 𝑁pad ℱ −1 [𝐻pad[𝑘]] (7.11)

are now sampled at the discrete times 𝑡𝑛 = 2π 𝑛/ (𝛥𝜔𝑁pad) = 𝑛 𝛥𝑡pad. By changing the number
of zeros which are appended to the frequency-domain sequence, one can generate time-domain
samples which are arbitrarily close to any desired time 𝑡. One should remember that zero padding
in the frequency domain corresponds to the cyclic (the underlying time-domain signal is assumed
to be periodic) interpolation (7.10) of the corresponding time-domain signal when the domains
are related by an IFFT. Also the “true” resolution of the time-domain signal (i.e., the capabilty of
separating two peaks) is not affected by zero padding. Zero padding is only a method to re-sample
the same slowly varying time-domain signal ℎest(𝑡).

The spectral samples 𝐻[𝑘] at the discrete frequencies 𝜔𝑘 can be obtained from the sampled
time-domain signal ℎest[𝑛] with the help of the discrete Fourier transform ℱ [⋅] (or the FFT),
defined as

𝐹 [𝑘] = ℱ [𝑓[𝑛]] =
𝑁−1

∑
𝑘=0

𝑓[𝑛] e−j 2π
𝑁 𝑘𝑛 . (7.12)

We have

𝐻[𝑘] =
√2π

𝑁
ℱ [ℎest[𝑛] e−j2π 𝜔min𝑛

𝛥𝜔 𝑁 ] (7.13)

or in terms of the corresponding base band signal

𝐻[𝑘] = ℱ [ℎest,BB[𝑛]] . (7.14)
6Luckily, the infinite sum can be exactly evaluated by the finite sum [Schanze 1995]

ℎest,BB(𝑡) = sin(π𝑡)
2𝑁

𝑀−1

∑
𝑛=−𝐿

ℎest[𝑛](−1)𝑛
[(−1)𝑁+1 tan(π𝑡 − 𝑛

2𝑁 ) + cot(π𝑡 − 𝑛
2𝑁 )] , (7.9)

where 𝐿 + 𝑀 = 𝑁 because the discrete signal ℎest[𝑛] is 𝑁-periodic. For a detailed discussion and derivation
see [Schanze 1995; Cavicchi 1992; Yaroslavsky 1996; Candocia 1998; Dooley 2000] and references therein.
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7. Echo Suppression Methods in Time Domain

7.1.2. Estimation of the Time-Domain Signal as a Time-Limited Function with

the Inverse Fast Fourier Transform

As mentioned previously, the time-domain impulse response should fulfill certain causality and
energy conservation properties and thus it is inconvenient to estimate ℎ(𝑡) as a periodic function
(periodic functions in time-domain are neither causal nor finite in their energy content). Thus, a
causal and time limited estimate

ℎest(𝑡) = rect(
𝑡
𝑇

− 𝑇
2 ) ℎest(𝑡) (7.15)

for the time-domain signal can be obtained by windowing the periodic estimate ℎest(𝑡) from the
previous section with a properly scaled and shifted rectangular function

rect(𝑡) =
⎧⎪
⎨
⎪⎩

0 for |𝑡| > 1/2
1 for |𝑡| < 1/2
1/2 for |𝑡| = 1/2

. (7.16)

For 0 < 𝑡 < 𝑇, the functions ℎest(𝑡) and ℎest(𝑡) are identical but ℎest(𝑡) is zero outside this interval.
As for the periodic time-domain estimate we must have (since the time-domain estimates are
identical in the interval 0 < 𝑡 < 𝑇)

ℎest[𝑛] = 𝑁
√2π

e j2π 𝜔min𝑛
𝛥𝜔 𝑁 ℱ −1 [𝐻[𝑘]] , (7.17)

where ℎest[𝑛] is the estimated time-domain signal at the discrete times 𝑡𝑛 = 2π 𝑛/ (𝛥𝜔𝑁), with
𝑛 = 0, … , 𝑁 − 1. Correspondingly, we have for the discrete base band signal

ℎest,BB[𝑛] = ℱ −1 [𝐻[𝑘]] . (7.18)

Since the two time-domain signals ℎest(𝑡) and ℎest(𝑡) are identical in the interval 0 < 𝑡 < 𝑇, one
can use the identical methods to find and interpolate the time-domain signals in this interval.

However, the estimates for the corresponding frequency-domain signals differ. While in the
previous section the frequency-domain signal was discontinuous, the frequency-domain signal
𝐻est(𝜔) corresponding to the time limited time-domain estimate ℎest(𝑡) is a continuous function
in 𝜔. Since the Fourier transform of the involved rectangular window is given by

ℱ {rect(
𝑡
𝑇

− 𝑇
2 )} = e

−j
𝜔𝑇
2 𝑇

√2π
sinc(

𝜔𝑇
2π ) , (7.19)

with the sinc-function sinc(𝑥) = sin(π 𝑥)/(π 𝑥), the frequency-domain function corresponding to
ℎest(𝑡) is given by

𝐻est(𝜔) = ℱ {ℎest(𝑡)}

= 𝑇
√2π

∞

∫
−∞

𝐻est(𝜈) e−j 𝑇 (𝜔−𝜈)
2 sinc(

𝑇
2π

(𝜔 − 𝜈)) d𝜈

= 𝑇
√2π

𝑁−1

∑
𝑘=0

𝐻[𝑘] e−j 𝑇 (𝜔−𝜔𝑘)
2 sinc(

𝑇
2π (𝜔 − 𝜔𝑘)) . (7.20)
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7.1. Estimating the Time-Domain Signal From Frequency-Domain Measurements

By analogy to the Whittaker-Shannon interpolation [Shannon 1998; Marks 1991] of a time-
domain signal, it is clear that 𝐻est(𝜔𝑘) agrees with the spectral components 𝐻(𝜔𝑘) at themeasured
frequencies, i.e., 𝐻est(𝜔𝑘) = 𝐻[𝑘] = 𝐻(𝜔𝑘). We therefore have

𝐻[𝑘] =
√2π

𝑁
ℱ [ℎest[𝑛] e−j2π 𝜔min𝑛

𝛥𝜔 𝑁 ] (7.21)

or in terms of the corresponding base band signal

𝐻[𝑘] = ℱ [ℎest,BB[𝑛]] . (7.22)

This means that not only the (periodic) time-periodic estimate ℎest(𝑡) from the previous section
is identical to the time limited estimate ℎest(𝑡) in the interval 0 < 𝑡 < 𝑇 but also their corresponding
spectral components are identical and equal to the measured spectral components 𝐻est(𝜔𝑘) =
𝐻est(𝜔𝑘) = 𝐻(𝜔𝑘). The discretized versions ℎest[𝑛] = ℎest[𝑛] and 𝐻est[𝑘] = 𝐻est[𝑘] are identical
for 𝑛 = 0, … , 𝑁 − 1 and 𝑘 = 0, … , 𝑁 − 1. One can interpret either of the two time-domain
functions ℎest(𝑡) or ℎest(𝑡) as the result obtained from applying the IFFT directly to the measured
frequency-domain sequence 𝐻[𝑘].

For the practical application of the FFT (and its inverse) in time gating, one should have the
following relations in mind. The duration 𝑇 of the time-domain sequence (or the periodicity if
the time-domain sequence is interpreted as part of a periodic signal)— sometimes called the
unambiguous interval— is governed by the spacing 𝛥𝜔 of the spectral sampling points of the
originally measured frequency-domain 𝐻[𝑘] sequence by

𝑇 = 2π
𝛥𝜔

. (7.23)

To avoid aliasing errors, the true time-domain impulse response ℎ(𝑡) should have decayed to
a sufficiently small value within the duration 𝑇. Longer impulse responses require a longer
unambiguous interval and consequently a smaller spectral step width 𝛥𝜔. The temporal resolution
𝛥𝑡 of the resulting time-domain signal using an IFFT is determined by the bandwidth 𝐵 = 𝑁𝛥𝜔
of the originally measured frequency-domain sequence 𝐻[𝑘] via

𝛥𝑡 = 2π
𝐵

. (7.24)

If one wants to separate two peaks which follow shortly after each other in time-domain, a large
measurement bandwidth 𝐵 is required. If the two peaks overlap in the true time-domain signal
ℎ(𝑡), they are fundamentally inseparable in time-domain.

Another important property inherited by using the FFT and its inverse to relate the frequency-
domain sequence 𝐻est[𝑘] with the time-domain sequence ℎest[𝑛] is the inherent (implicitly
assumed) periodicity of both sequences [Oppenheim 2010, p. 669]. Because the representation
is discrete in each domain, it must be periodic in the respective other domain. A periodic impulse
train in frequency-domain is related to a periodic impulse train in time-domain by the FFT and
IFFT. The impulse train representation in both domains is only useful because under certain
assumptions there exist continuous time- or frequency-domain signals which coincide with the
impulse trains at the sampled points. However, when the discrete data is altered by processing
the data it is important to keep in mind that all alterations are effectively performed periodically
on the infinitely long impulse trains, and operations such as convolutions must be interpreted in
cyclic manner.
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7.2. Time Windowing and Alternative Time-Domain Signals by

Frequency-Domain Extrapolation

In this work, the purpose of finding the time-domain representation of the measured signal is
to identify and remove the echoic contribution which ideally manifests itself as a second peak
(or multiple peaks) after the direct AUT contribution in the time-domain signal. If the (first)
echo peak follows shortly after the LOS signal it is desirable to be able to effectively truncate the
time-domain function in a fine temporal resolution.

Zero padding the discretized frequency-domain signal (i.e., appending a sequence of zeroes
to 𝐻[𝑘] or adding a zero sequence between the two spectral components in the center of the
measured frequency band) can increase the number of samples 𝑁 and lead to a denser sampling
of the sampled time-domain signal ℎest[𝑛] computed by the IFFT. The true resolution of the
time-domain signal (i.e., the separability of two peaks) is, however, governed by the respective
continuous time-domain signal ℎest(𝑡) [Luo 2016]. If the time-domain signal is windowed between
two samples of the non-zero-padded time-domain representation ℎest[𝑛] for example, this has
the same effect on the measured frequency components as windowing ℎest[𝑛] exactly on the
nearest sampling point of the non-zero-padded time-domain representation (only the unimportant
frequency samples which were added by zero padding are affected in this case).

This means that zero padding does not help with increasing the time-domain resolution for
time gating. Also repeating the measured spectral sequence several times does not help as this
only introduces additional zero samples between the original time-domain samples ℎest[𝑛]. The
thereby constructed base band signal ℎest,BB[𝑛] is not continuous and does not adequately recreate
the expected physics for an impulse response (one would expect a single more or less continuous
impulse). To find a more useful time-domain signal with a high temporal resolution, a more
meaningful way to extrapolate the frequency-domain sequence 𝐻[𝑘] is needed.

It has to be stressed here that one cannot expect that “guessing” additional frequency samples
can be rigorously justified from a theoretical point of view. For all extrapolation methods,
additional assumptions about the signals are (at least implicitly) incorporated in the extrapolation
process. Rigorous time gating is only possible if the frequency-domain sequence 𝐻[𝑘] contains
enough samples that the spectral sequence as well as the corresponding time-domain sequence
can be regarded to be zero outside the observed interval7. Such a strict requirement exceeds the
feasibility of most measurement setups.

7.2.1. Parametric Signal Representation

In the decades around the year 2000 it was en vogue to extrapolate time and frequency-domain
signals using parametric models of either the time-domain or the frequency-domain signal [Adve
1997; J. 2007; Rao 1999; Adve 1998; Sarkar 1995; Fernández del Rı́o 1996; Fourestie 2001].
Here, the matrix pencil method [Hua 1989; Hua 1990a; Sarkar 1995; Fernández del Rı́o 1996]
is described as an example of a parametric representation of the frequency-domain sequence.
Although a detailed examination of parametric extrapolations is out of the scope of this thesis,

7Of course a strictly band limited signal cannot be strictly time limited and vice versa. However, a signal can be
approximately time and band limited simultaneously. The value of the signal in both domains should reach a
value below the noise level at the ends of the sampling intervals in both domains.
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the matrix pencil method has a certain importance in this respect because it was used at several
occasions for echo suppression in the available literature [Leon Fernandez 2009; Fourestie 1999].

In the matrix pencil method the assumed base band frequency-domain signal 𝐻est,BB(𝜔) takes
the form

𝐻est,BB(𝜔) =
𝑀

∑
𝑖=1

𝑐𝑖e−𝛾𝑖𝜔 𝑢(𝜔) (7.25)

of a sum of 𝑀 exponentials limited to positive frequencies by the Heaviside unit step function

𝑢(𝑥) =
⎧
⎪
⎨
⎪
⎩

0 for 𝑥 < 0
1
2

for 𝑥 = 0

1 for 𝑥 > 0

. (7.26)

The parameters 𝑐𝑖 ∈ ℂ, 𝛾𝑖 ∈ ℂ (and sometimes also the number 𝑀 of exponentials) have to be
estimated to fit the measured spectral components. The assumed number 𝑀 of exponentials
should match the number of expected impulses due to scattering. The truncation of 𝐻est(𝜔)
to positive frequencies with the step function 𝑢(𝜔) has no influence on the measured spectral
components 𝜔𝑘 (and is often neglected in the literature) but is required to be able to compute the
corresponding estimated time-domain signal given by

ℎest,BB(𝑡) = ℱ −1 {𝐻est,BB(𝜔)} =
𝑀

∑
𝑖=1

𝑐𝑖

𝛼𝑖 − j (𝑡 − 𝛽𝑖)
, (7.27)

where 𝛼𝑖 > 0 is the real part of 𝛾𝑖 and 𝛽𝑖 ∈ ℝ is the imaginary part. It can be argued if such a
signal model represents the physics of the real signal accurately but the the above model has
been successfully applied in several cases [Fourestie 1999].

Using this signal model, the base band frequency-domain sequence 𝐻[𝑘] can be expressed
as [Fourestie 1999]

𝐻[𝑘] =
𝑀

∑
𝑖=1

𝑐𝑖e−𝛾𝑖(𝑘−1)𝛥𝜔 . (7.28)

The spectral sequence 𝐻[𝑘] is split into several vectors y0, y1, ..., y𝐿 of length 𝐿 according
to [Hua 1989]

y𝑖 =
⎡
⎢
⎢
⎢
⎣

𝐻[𝑖]
𝐻[𝑖 + 1]

⋮
𝐻[𝑖 + 𝑁 − 𝐿 − 1]

⎤
⎥
⎥
⎥
⎦

(7.29)

to build the two matrices
Y1 = [y0 y1 … y𝐿−1] (7.30)

and
Y2 = [y1 y2 … y𝐿] . (7.31)

For noisy data, the value for 𝐿 should be chosen as 𝐿 = 𝑛/2 [Hua 1989].
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Finally, when the complex numbers 𝜆𝑖 = e−𝛾𝑖𝜔 are introduced for the exponential terms, the
problem of estimating the parameters 𝛾𝑖 can be recast into a generalized eigenvalue problem [Hua
1989]

(Y2 − 𝜆𝑖Y1) v𝑖 = 𝟎 . (7.32)

The complex numbers 𝜆𝑖 are called eigenvalues of the matrix pencil (Y2, Y1) , hence the name
for the reconstruction method. Once the 𝜆𝑖 (and thereby the 𝛾𝑖) are known, the 𝑐𝑖 can be found by
solving a linear system of equations.

The parametric representation of 𝐻est,BB(𝜔) can be used to extrapolate the spectral sequence
𝐻[𝑘] to generate a highly resolved time-domain sequence ℎ[𝑛] via an IFFT for time gating. Al-
ternatively, the parametric representation can directly be used to truncate the data by removing all
exponential terms except the one with the largest magnitude (thereby fitting a simple exponential
model to the measured data).

Compared to the direct FFT method, the matrix pencil method needs less measured bandwidth
for a comparable temporal resolution and seems to be more accurate at the edges of the measured
frequency band [Leon Fernandez 2009; Fourestie 1999]. This comes at the cost of an increased
processing effort (an eigendecomposition is required). If the procedure must be repeated multiple
times for many signals, this can be problematic, in particular if many echo sources can lead to a
large number 𝑀 of required exponentials.

7.2.2. Sparsity Based Time-Domain Reconstruction

Another approach to reconstruct a time-domain sequence with increased resolution from the
frequency-domain sequence 𝐻[𝑘] data is based on a sparsity assumption for the time-domain
sequence. The sparsity based reconstruction of the time-domain signal for time gating was
introduced in [Mauermayer 2016; Mauermayer 2017] and also used in [Knapp 2020] for time
gating of reconstructed currents as described later in Section 9.1.

Samples for the estimated (base band) time-domain sequence ℎest,BB are assumed at the times
𝑛𝛥 ̃𝑡, where 𝛥 ̃𝑡 = 𝛥𝑡/𝐿 with 𝐿 ∈ ℕ is an integer fraction of the time step 𝛥𝑡 which would result
by applying the IFFT directly to the measured spectral sequence. Consequently, the time-domain
sequence ℎest,BB[𝑛], 𝑛 = 0, … , 𝐿 𝑁 − 1 has the length 𝐿 𝑁, with 𝑁 being the length of the
original frequency-domain sequence. The corresponding frequency-domain sequence

𝐻est,BB[𝑘] = ℱ [ℎest,BB[𝑛]] with 𝑘 = 0, … , 𝐿 𝑁 − 1 (7.33)

is related to the time-domain sequence by an FFT and is extended by the same factor 𝐿 as
compared to the original frequency-domain sequence. Formally this can be expressed as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐻est,BB[0]
𝐻est,BB[1]

⋮
𝐻est,BB[𝑁 − 1]

⋮
𝐻est,BB[𝐿 𝑁 − 1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 ⋯ 1
1 𝛺 𝛺2 ⋯ 𝛺𝐿𝑁−1

⋮ ⋮ ⋮ ⋱ ⋮
1 𝛺𝑁−1 𝛺2(𝑁−1) ⋯ 𝛺(𝐿𝑁−1)(𝑁−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 𝛺𝐿𝑁−1 𝛺2(𝐿𝑁−1) ⋯ 𝛺(𝐿𝑁−1)(𝐿𝑁−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

D

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ℎest,BB[0]
ℎest,BB[1]

⋮
ℎest,BB[𝑁 − 1]

⋮
ℎest,BB[𝐿 𝑁 − 1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.34)
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with the help of the FFT matrix D ∈ ℂ𝐿 𝑁×𝐿 𝑁, where 𝛺 = e−j2π/(𝐿𝑁).
Only the first 𝑁 values of the frequency-domain sequence 𝐻est,BB[𝑘] must agree with the

measured spectral components, i.e.,

𝐻est,BB[𝑘]
!
= 𝐻[𝑘] for 𝑘 = 0, … 𝑁 − 1 , (7.35)

whereas the remaining values of 𝐻est,BB[𝑘] are unrestricted. This leads to a highly underdeter-
mined system

⎡
⎢
⎢
⎢
⎣

𝐻est,BB[0]
𝐻est,BB[1]

⋮
𝐻est,BB[𝑁 − 1]

⎤
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

hfreq∈ℂ𝑁×1

=
⎡
⎢
⎢
⎢
⎣

1 1 1 ⋯ 1
1 𝛺 𝛺2 ⋯ 𝛺𝐿𝑁−1

⋮ ⋮ ⋮ ⋱ ⋮
1 𝛺𝑁−1 𝛺2(𝑁−1) ⋯ 𝛺(𝐿𝑁−1)(𝑁−1)

⎤
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

D′∈ℂ𝑁×𝐿 𝑁

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ℎest,BB[0]
ℎest,BB[1]

⋮
ℎest,BB[𝑁 − 1]

⋮
ℎest,BB[𝐿 𝑁 − 1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

htime∈ℂ𝐿 𝑁×1

(7.36)

with a broad matrix D′ ∈ ℂ𝑁×𝐿 𝑁. Out of the infinitely many possible solutions for the time-
domain sequence, the sparsest (i.e., with the lowest amount of non-zero entries) is desired as
the assumption is that the time-domain sequence can be expressed as a sum of few impulses
corresponding to the direct AUT contribution and few scattered paths. Formally, one tries to
solve the minimization problem

min
htime∈ℂ𝐿𝑁×1 ‖htime‖1 s.t. ‖D′htime − hfreq‖

2
2 ≤ 𝜎 , (7.37)

known from compressive sensing as the so-called basis pursuit denoising method where 𝜎 is a
relaxation parameter which should be chosen in the order of the noise level. The solution of the
basis pursuit denoising problem is computationally tractable—- e.g., by the readily available
SPGL1 solver [Friedlander 2008]—and leads to an approximately sparse solution, where only
few elements are significantly larger than zero.

Because the thereby found time-domain sequence contains 𝐿 𝑁 samples and is related to
𝐿 𝑁 spectral components via the FFT, the sparsity based reconstruction of a highly resolved
time-domain sequence can be interpreted as a frequency-domain extrapolation method. The
highly resolved time-domain sequence can be used for time gating, where the effective temporal
resolution is increased compared to the direct IFFT approach.

7.3. Chapter Summary

In this chapter, existing time-domain echo suppression methods have been revisited. Only the
interpretation of the time-domain reconstruction methods in terms of frequency-domain signal
extrapolation and the explicit derivation of an expression for the time-domain signal (7.27) for the
matrix pencil method can be regarded as original contributions of this thesis. All time-domain
methods consist of a two step procedure (hardware time gating has not been considered). In the
first step, the time-domain signal is reconstructed from the measured spectral components, and in
the second step, the time-domain signal is truncated to exclude the undesired echo influences and
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7. Echo Suppression Methods in Time Domain

transformed back into frequency-domain. The direct FFT based reconstruction of the time-domain
signal has the disadvantage of requiring a large bandwidth for a certain temporal resolution of
the time-domain signal, thus frequency-domain extrapolation methods have been presented. In
this thesis, the FFT-based and the sparsity-based time-domain reconstruction methods have been
adapted for time gating, whereas the remaining methods have been described only to deliver a
comprehensive picture of the available methods.
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8
Echo Suppression Methods
in Frequency Domain

In this chapter, echo suppression methods are investigated which work with single-frequency
measurements to separate the undesired echo contributions from the desired free-space AUT
contributions in a quantity of interest (usually the AUT-FF pattern or an equivalent AUT source
model). Fields generated by sources in different source regions have distinct features in their
spatial distribution allowing to differentiate the source location of different field contributions.
The spatial analysis can be applied to measurements at a single frequency, thus, giving rise to
frequency domain echo suppression methods. The drawback is, however, that more measurement
samples in spatial domain—meaning more AUT or more probe positions—are needed.

The particular measurement setup determines how effectively the undesired echo contributions
can be separated from the AUT sources. In general, the scenario is characteristically different for
the echo being stationary with respect to the AUT or the probe.

8.1. Stationary Antenna Under Test

Consider the case of a stationary AUT first1. The AUT is enclosed by a minimum sphere (surface
𝑆aut, radius 𝑟aut) centered at 𝒓0,a. The measurement probe moves to different locations around the
AUT. All measurement locations lie in the volume 𝑉 between the two spherical surfaces 𝑆1 with
radius 𝑟1 and 𝑆2 with radius 𝑟2. The AUT center does not necessarily coincide with the center of
the measurement surface. Figures 8.1 and 8.2 depict the stationary AUT measurement scenario
with an echo object placed inside or outside the measurement region, respectively.

With a stationary AUT, the situation is described best by letting the AUT radiate and the probe
receive2. The AUT radiation is described by equivalent currents in the AUT region and the echo
1The term “stationary” means that the AUT is stationary with respect to the scattering environment, i.e., the relative

position between the echo objects and the AUT does not change throughout the whole measurement.
2Due to reciprocity,one can always consider the more convenient case for the analysis.
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8. Echo Suppression Methods in Frequency Domain

𝑆aut

𝑆1
𝑉

𝑆2

Fig. 8.1.: Echoic measurement scenario with mov-
ing probe and a scatterer outside the measure-
ment sphere. Inward and outward directed
probes are depicted at different measurement
positions. The AUT is not required to sit in
the center of the measurement surfaces.

𝑆aut

𝑆0

𝑆ech
𝑆1

𝑉
𝑆2

Fig. 8.2.: Echoic measurement scenario with mov-
ing probe and a scatterer within the measure-
ment sphere. The inward directed probe is
depicted at different measurement positions.
The AUT is not required to sit in the center
of the measurement surfaces.

is described by equivalent scattering currents in the echo region3. Due to the stationary AUT, the
relative position between the echo object and the AUT never changes. The success of frequency
domain echo suppression technique with a stationary AUT is related to the question whether it is
possible to unambiguously separate the total field 𝑬(𝒓) = 𝑬aut(𝒓) + 𝑬ech(𝒓) into two parts 𝑬aut(𝒓)
and 𝑬ech(𝒓) with different source regions.

8.1.1. Echoes From Outside the Measurement Surface

If the echo object is located outside of 𝑆2, as shown in Fig. 8.1, it is in theory straightforward
to separate the AUT fields from the echo fields. The total fields in 𝑉 can be expressed as a
superposition of outward-traveling waves of the 𝑐 = 4 type and incident waves of the 𝑐 = 1 type.
Placing the origin for the spherical wave expansion into the center of the measurement sphere,
we have

𝑬(𝒓) |𝒓∈𝑉
=𝑘 √𝑍F

2

∑
𝑠=1

𝑁max

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

(𝛼(4),aut
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟, 𝜗, 𝜑))

+ 𝑘 √𝑍F

2

∑
𝜎=1

𝑁′
max

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

(𝛼(1),ech
𝜎𝜇𝜈 𝑭 (1)

𝜎𝜇𝜈(𝑟, 𝜗, 𝜑)) , (8.1)

3Because of mutual interactions with the echo object, the equivalent currents in the AUT region may differ from
the free-space case. These distortions cannot be removed by frequency domain echo suppression techniques
with a stationary AUT.
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8.1. Stationary Antenna Under Test

where the coefficients 𝛼(4),aut
𝑠𝑚𝑛 of the outward-traveling waves belong to the AUT and the coeffi-

cients 𝛼(1),ech
𝜎𝜇𝜈 of the incident fields must be attributed to the echoes. The expansion of the total

fields into outward-traveling fields and incident fields is uniquely defined, once the coordinate ori-
gin is fixed. Accordingly, the expansion coefficients 𝛼(4),aut

𝑠𝑚𝑛 and 𝛼(1),ech
𝜎𝜇𝜈 are also uniquely defined

by the total fields and can be found if enough field samples are obtained in the observation volume
𝑉. To be able to separate the incident waves from the outward-traveling waves, it is no longer
sufficient to sample the field with one probe type oriented toward the antenna. Either the electric
and magnetic field have to be sampled independently, or inward and outward oriented probes
must be used to obtain the required information about the total fields in 𝑉 [Yinusa 2013; Yinusa
2015]. Heuristically, on can understand that the additional measurements are required because
the total fields are no longer uniquely defined by the tangential electric fields on the surface 𝑆1
alone (as would be the case for purely outward-traveling fields). Different total fields are possible
with the same tangential electric fields on 𝑆1 and varying tangential electric fields on 𝑆2. Thus,
the tangential electric field on both surfaces (𝑆1 and 𝑆2) must be known to uniquely define the
total fields in 𝑉 (up to internal resonances which are neglected in this heuristic explanation).

The maximum mode index 𝑁max = 𝑘 𝑟aut + 𝑛buf only depends on the AUT size, while the
maximum mode index 𝑁′

max = 𝑘 𝑟2 + 𝑛buf for the incident fields depends on the size of the
measurement surface 𝑆2. Without a more precise knowledge of the echo location, the number of
measurement samples in the volume 𝑉 must be sufficient to resolve all outward-traveling modes
up to the mode number 𝑁max and all incident modes up to the mode number 𝑁′

max. If the echo
location is approximately known, this knowledge can be used by restricting those fields which
might be incident on 𝑉, e.g., by expressing the echo fields in terms of a spherical wave expansion
with its origin in the center of an echo object (if several echo objects are present, one might use a
linear combination of several spherical mode expansions with different origins).

In principle, perfect4 echo suppression is possible if the echo is completely outside the mea-
surement surface. However, if the echo location is not known—not even approximately—a
huge number 𝑁′

max of incident field modes must be assumed. If the number of measurement
samples is not sufficient to resolve all field modes, it is possible that the reconstructed AUT
coefficients still contain some echo contributions due to aliasing.

It is not sufficient to assume only AUT sources 𝛼(4),aut
𝑠𝑚𝑛 and neglect the echo coefficients 𝛼′(1),ech

𝜎𝜇𝜈 .
It may happen that some echo contributions in the observations may actually be mapped to the
source coefficients in the reconstruction process. The relation between source models with and
without assumed echo sources is analogous to the problem in the next section, where the situation
is analyzed in greater detail.

8.1.2. Echoes From Inside the Measurement Surface

The situation is more complicated if the AUT and all echo objects are placed inside 𝑆1. The total
fields in the measurement volume 𝑉 consist only of outward-traveling waves of the 𝑐 = 4 type.
This obstructs the distinction between echo fields and AUT fields, as both contributions consist
of the same field type. It is unclear at this point of the current discussion if it is always possible to
separate the echo influences from the AUT influences. To illustrate the complications, consider

4The field reconstruction is exact except for the effects of evanescent field portions and mutual coupling, which are
neglected.
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the situation depicted in Fig. 8.2. The AUT sources are enclosed by a sphere 𝑆aut centered at
𝒓0,a, the echo sources are enclosed by a sphere 𝑆ech centered at 𝒓0,e, and both spheres are again
enclosed by a third sphere 𝑆0 centered at 𝒓0. For the moment, 𝑆0 can be an arbitrary sphere
enclosing both the AUT and the echo sources.

The total fields at the observation locations can be expressed by5

𝑬tot(𝒓) |𝒓∈𝑉
= 𝑬aut(𝒓) + 𝑬ech(𝒓) , (8.2)

where

𝑬aut(𝒓) = 𝑘 √𝑍F

2

∑
𝑠=1

𝑁aut

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼′(4),aut⋆
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟′, 𝜗′, 𝜑′) (8.3)

is the expansion of the fields generated by the sources6 inside 𝑆aut, expressed in an AUT centered
coordinate system (denoted by the primed coordinates 𝑟′,𝜗′, and 𝜑′) and

𝑬ech(𝒓) = 𝑘 √𝑍F

2

∑
𝜎=1

𝑁ech

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝛼″(4),ech⋆
𝜎𝜇𝜈 𝑭 (4)

𝜎𝜇𝜈(𝑟″, 𝜗″, 𝜑″) (8.4)

is the expansion of the echo fields originating from the sources inside 𝑆ech, expressed in an echo
centered coordinate system (denoted by the doubly-primed coordinates 𝑟″,𝜗″, and 𝜑″). Since the
individual expansions are intended to represent only the AUT fields or the echo fields respectively,
the truncation indices 𝑁aut = 𝑘𝑟aut + 𝑛buf and 𝑁ech = 𝑘𝑟ech + 𝑛buf depend only on the radii 𝑟aut
and 𝑟ech of the corresponding spheres 𝑆aut and 𝑆ech (see Fig. 8.2).

8.1.3. Source Reconstruction and Source Separation

How well can the echo influences in the measured fields be separated from the true AUT fields?
The objective of this section is an analysis of the performance of different reconstruction schemes
concerning their capabilities to find the true AUT expansion coefficients 𝛼′(4),aut⋆

𝑠𝑚𝑛 . The general
analysis will be based on spherical wave expansions whereas similar conclusions are drawn for
equivalent current based field reconstruction methods by analogy. The analysis revolves around
the situation depicted in Fig. 8.3. Two distinct source regions— the AUT source region and
the echo source region—are enclosed by their respective minimum spheres 𝑆aut and 𝑆ech. The
centers of the minimum spheres are denoted by 𝒓0,a and 𝒓0,e, respectively. The smallest sphere
enclosing all AUT and echo sources simultaneously is called 𝑆0 and its center 𝒓0. In the following,
different spherical expansions are investigated, with their coordinate origins at 𝒓0,a, 𝒓0,e, and 𝒓0.
The respective spherical expansions include either only one source region (i.e., only the AUT
sources or only the echo sources) or both source regions simultaneously. The overall goal is to
extract the “true” AUT coefficients 𝛼′(4),aut⋆

𝑠𝑚𝑛 from the measured echo distorted 𝑆21-values.

5Here and in the following, the ⋆-symbol denotes the “true” solution. Alternative expansions are also possible but
the “true” AUT contribution can not always easily be extracted from them.

6The AUT sources can differ from the purely anechoic case due to mutual interactions with the environment. These
distortions cannot be cured by pure frequency domain methods and for the moment it is assumed that the source
distortions due to environmental interactions are negligible in the AUT volume.
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𝒓0

𝑎0𝒓0,a
𝑆′

0

𝑎′
0

𝒓0,e

𝑆″
0

𝑎″
0

𝑆aut

𝑆0

𝑆ech

Fig. 8.3.: Minimum spheres with different centers enclosing all sources. The radiated fields expressed by
a spherical wave expansion with its origin in either center are practically the same.

Choosing 𝒓0 as the origin for the spherical wave expansion, we have

𝑬tot(𝒓) |𝒓∈𝑉
= 𝑘 √𝑍F

2

∑
𝑠=1

𝑁tot

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4), tot
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟, 𝜗, 𝜑) (8.5)

for the total fields in 𝑉. Here, 𝑁tot = 𝑘0 𝑎0 + 𝑛buf denotes the largest mode number which is
generated either by the AUT or the echo, with 𝑎0 being the radius of the sphere 𝑆0 enclosing all
sources.

Alternatively, the total fields in 𝑉 can be expressed as7

𝑬tot(𝒓) |𝒓∈𝑉
= 𝑘 √𝑍F

2

∑
𝑠=1

𝑁′
tot

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼′(4),aut
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟′, 𝜗′, 𝜑′) (8.6)

in terms of a single mode expansion with respect to the coordinate origin at 𝒓0,a. Because the
expansion (8.6) considers AUT sources and echo sources simultaneously, the highest mode order
𝑁′

tot in the expansion (8.6) exceeds the highest mode order 𝑁aut which is required to represent
only the true AUT fields in (8.3). Finally, it is also possible to represent the total fields as

𝑬tot(𝒓) |𝒓∈𝑉
= 𝑘 √𝑍F

2

∑
𝑠=1

𝑁″
tot

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼″(4),ech
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟″, 𝜗″, 𝜑″) (8.7)

in terms of a single mode expansion with respect to the coordinate origin at 𝒓0,e.

7The symbol 𝒓 is a coordinate-free description of a location in space. The vector 𝒓 can have several different
coordinate representations and can thus either be described by the triple (𝑟, 𝜗, 𝜑) or by the triple (𝑟′, 𝜗′, 𝜑′),
depending on the respective coordinate system in use. Here, it is understood that the primed coordinates (and
also the primed expansion coefficients) correspond to the coordinate system with origin 𝒓0,a
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In the region outside of all minimum spheres, the fields of expansion in (8.5), (8.6), or (8.7)
are practically the same8. In principle, the fields could be generated by sources either in the echo
volume or the AUT volume9. Consequently, one cannot uniquely identify the source location of
the fields by (noisy) observations at some distance to the sources. Many expansions of the form

𝑬tot(𝒓) |𝒓∈𝑉
= 𝑘 √𝑍F

2

∑
𝑠=1

𝑁′
tot

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼′(4),aut
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟′, 𝜗′, 𝜑′)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

expansion centered at 𝒓0,a

+ 𝑘 √𝑍F

2

∑
𝜎=1

𝑁″
tot

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝛼″(4),ech
𝜎𝜇𝜈 𝑭 (4)

𝜎𝜇𝜈(𝑟″, 𝜗″, 𝜑″)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

expansion centered at 𝒓0,e

+ 𝑘 √𝑍F

2

∑
𝑠=1

𝑁tot

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4), tot
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟, 𝜗, 𝜑)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

expansion centered at 𝒓0

(8.8)

are possible as a sum of expansions with coordinate origin at 𝒓0,a, 𝒓0,e, or 𝒓0, respectively10.
As detailed in Chapter 5, the 𝑆21-parameter can be expressed by testing the total field �̂�tot

(normalized to the AUT excitation 𝑎1 ∈ ℂ√W) with the normalized probe currents. Thus, the
measured 𝑆21-parameter for the ℓth probe position can be modeled by

𝑆21,ℓ = ∯
𝑆pro,ℓ

̂𝑱pro,ℓ ⋅ �̂�tot d𝑎 =𝑘 √𝑍F

𝐽 ′
tot

∑
𝑗′=1

�̂�′(4),aut
𝑗′ ∯

𝑆pro,ℓ

̂𝑱pro,ℓ ⋅ 𝑭 (4)
𝑗′ (𝑟′, 𝜗′, 𝜑′) d𝑣 ,

+ 𝑘 √𝑍F

𝐽 ″
tot

∑
𝑗″=1

�̂�″(4),ech
𝑗″ ∯

𝑆pro,ℓ

̂𝑱pro,ℓ ⋅ 𝑭 (4)
𝑗″ (𝑟″, 𝜗″, 𝜑″) d𝑎 ,

+ 𝑘 √𝑍F

𝐽tot

∑
𝑗=1

�̂�(4), tot
𝑗 ∯

𝑆pro,ℓ

̂𝑱pro,ℓ ⋅ 𝑭 (4)
𝑗 (𝑟, 𝜗, 𝜑) d𝑎 , (8.9)

8This is only exactly true, when 𝑁tot, 𝑁′
tot and 𝑁″

tot go to infinity, allowing superdirective effects. This may lead to
pointwise divergence (in particular inside the source region) [Yaghjian 2000]. If one truncates the expansions,
the external fields will differ by higher-order modes which are negligible at some distance to the sources.

9This statement holds true if the fields can be measured with a finite accuracy only. For every arbitrary finite 𝜀 > 0,
one can find finite summation indices 𝑁′

aut < ∞ and 𝑁″
ech < ∞ such that

∭
𝑉

|
|
||
𝑘 √𝑍F

2

∑
𝑠=1

𝑁″
ech

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼″(4), tot
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟″, 𝜗″, 𝜑″) − 𝑘 √𝑍F

2

∑
𝑠=1

𝑁′
aut

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼′(4), au
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟′, 𝜗′, 𝜑′)
|
|
||

2

d𝑣 < 𝜖 .

With infinite measurement accuracy, it should be possible to uniquely determine the source locations [Klinken-
busch 2008; Klinkenbusch 2009].

10Many expansions with different coordinate origins could be considered, but the presented ones suffice for the
following discussion. With more than one echo object being present, one may use additional expansions.
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8.1. Stationary Antenna Under Test

where ̂𝑱pro,ℓ are the normalized equivalent probe surface currents for the ℓth probe position and
�̂�′(4),aut

𝑗′ , �̂�″(4),ech
𝑗″ , and �̂�(4), tot

𝑗 are the normalized (normalized to the AUT excitation 𝑎1) expansion
coefficients of the respective mode expansions centered at 𝒓0,a, 𝒓0,e, and 𝒓0, with the multi index
𝑗 = {𝑠𝑚𝑛} which uniquely maps every 𝑗 to a triplet {𝑠𝑚𝑛} by the indexing rule [Hansen 1988, p.
313] 𝑗 = 2 [𝑛 (𝑛 + 1) + 𝑚 − 1] + 𝑠. The maximum summation indices 𝐽tot = 2𝑁tot (𝑁tot + 2),
𝐽 ′
tot = 2𝑁′

tot (𝑁′
tot + 2), and 𝐽 ″

tot = 2𝑁″
tot (𝑁″

tot + 2) depend on the maximum mode numbers
𝑁tot, 𝑁′

tot, 𝑁″
tot of the respective modal expansions. Equation (8.9) leads to a matrix equation of

the form11

b = Ax ′
aut +Bx″

ech + Cxtot , (8.10)

where b ∈ ℂ𝑀×1 is the vector storing the measured 𝑆21-samples, x ′
aut ∈ ℂ𝐽 ′

tot×1 is the vector of
normal expansion coefficients �̂�′(4),aut

𝑗′ of the AUT centered modal expansion, x″
ech ∈ ℂ𝐽 ″

tot×1 is
the vector of normalized expansion coefficients �̂�″(4),ech

𝑗′ of the echo centered modal expansion,
and xtot ∈ ℂ𝐽tot×1 stores the normalized coefficients �̂�(4), tot

𝑗 of the expansion with origin 𝒓0. The
elements12 of the matrix A ∈ ℂ𝑀×𝐽 ′

tot are given by

𝐴ℓ𝑗′ = 𝑘
√𝑍F

∯
𝑆pro,ℓ

̂𝑱pro,ℓ ⋅ 𝑭 (4)
𝑗′ (𝑟′, 𝜗′, 𝜑′) d𝑎 , (8.11)

the elements of the matrix B ∈ ℂ𝑀×𝐽 ″
tot are given by

𝐵ℓ𝑗″ = 𝑘
√𝑍F

∯
𝑆pro,ℓ

̂𝑱pro,ℓ ⋅ 𝑭 (4)
𝑗″ (𝑟″, 𝜗″, 𝜑″) d𝑎 , (8.12)

and the elements of the matrix C ∈ ℂ𝑀×𝐽tot are given by

𝐶ℓ𝑗 = 𝑘
√𝑍F

∯
𝑆pro,ℓ

̂𝑱pro,ℓ ⋅ 𝑭 (4)
𝑗 (𝑟, 𝜗, 𝜑) d𝑎 . (8.13)

Notice that the “true” expansion (8.2) has a maximummode index of 𝑁aut for the AUT centered
expansion and a maximum mode index 𝑁ech as opposed to 𝑁′

tot > 𝑁aut and 𝑁″
tot > 𝑁ech in

(8.9). Consequently, the first 𝐽aut = 2𝑁aut (𝑁aut + 2) entries of the vector x ′
aut and the first

𝐽ech = 2𝑁ech (𝑁ech + 2) entries of the vector x″
ech play a special role and it makes sense to split

these vectors according to

x ′
aut = [

x ′
aut,low
x ′
aut,high] x″

ech = [
x ′
ech,low
x ′
ech,high] (8.14)

11The primed and double primed vectors remind us that the corresponding coefficients belong to modal expansions
centered at 𝒓0,a and 𝒓0,e, respectively.

12While it is formally possible to express the matrix elements with the spatial weighting by a normalized current
as shown here, an actual implementation will more likely utilize equivalent expressions similar to those found
in Section 5.2.2. Since it is more tedious to express the matrix elements in this way, the spatial weighting is
used here, keeping in mind that the expression is not necessarily implemented in the given form in an actual
algorithm.
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𝑆′
0

𝑆″
0

𝑆aut

𝑆0

𝑆ech B

Blow

C

Alow

A

Fig. 8.4.: Different source regions denoted by the spheres 𝑆aut, 𝑆ech, 𝑆0, 𝑆′
0 , and 𝑆″

0 and corresponding
forward operators A, B, C, Alow, Blow.

into low-order parts x ′
aut,low ∈ ℂ𝐽aut×1, x″

ech,low ∈ ℂ𝐽ech×1 and high-order parts x ′
aut,high ∈

ℂ(𝐽 ′
tot−𝐽aut)×1, x″

ech,low ∈ ℂ(𝐽 ″
tot−𝐽ech)×1. Accordingly, the matrices A and B are as well split into

low-order parts Alow ∈ ℂ𝑀×𝐽aut, Blow ∈ ℂ𝑀×𝐽ech1 and high-order parts Ahigh ∈ ℂ𝑀×(𝐽 ′
tot−𝐽aut),

Bhigh ∈ ℂ𝑀×(𝐽 ″
tot−𝐽ech) according to

A = [Alow Ahigh] B = [Blow Bhigh] . (8.15)

The meaning of the matrices A, B, C, Alow, Blow is summarized in Fig. 8.4. They represent
the linear operators between the sources of the different source regions—defined by the surfaces
𝑆aut, 𝑆ech, 𝑆0, 𝑆′

0, and 𝑆″
0 —to the measurement samples.

Different reconstruction methods are compared in the following, which all attempt to find
the “true” AUT coefficients 𝛼′(4),aut⋆

𝑠𝑚𝑛 appearing in (8.2). The vector containing the “true” AUT
coefficients is denoted by x ′

aut⋆ ∈ ℂ𝐽aut×1 and the vector containing the “true” echo coefficients
is denoted by x″

ech⋆ ∈ ℂ𝐽ech×1. The different algorithms can be easily expressed in terms of the
matrices A and B whereas the matrix C is only needed in an intermediate step in some cases.
The reconstruction methods are based on different models of the total fields, where the AUT is
modeled alone or together with some echo sources.

A close analogy can be drawn to a representation of radiated fields by equivalent surface
currents instead of spherical wave expansions. If discretized surface currents are placed on the
surfaces 𝑆aut, 𝑆ech, 𝑆0, 𝑆′

0, or 𝑆″
0 (for the equivalent currents the surface are not bound to be

spherical), the linear relationships between the current coefficients and the measured samples
are expressed by the matrices Acur, Bcur, Ccur, Acur,low, Bcur,low (see Section 5.2). The following
discussion of reconstruction methods is in essence also true for equivalent currents, where in
particular a direct analogy is used between the matrices Acur,low=̂Alow and Bcur,low=̂Blow. It is
therefore expected that equivalent current based methods perform similar as spherical expansion
based methods concerning their echo suppression capabilities—with the major difference coming
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8.1. Stationary Antenna Under Test

from the fact that the radiated fields can be more accurately constrained to the actual (possibly
not spherically shaped) source regions of the AUT and the echo object.

Reconstructing Sources Only for the Antenna Under Test

A direct approach to reconstruct the AUT sources is to find the vector of AUT coefficients x ′
aut

which solves the minimization problem

min
x′
aut∈ℂ𝐽′

tot×1
‖b − Ax ′

aut‖ , (8.16)

formally expressed as
x ′
aut = A† b , (8.17)

with the pseudo inverse A†. The echoes are accounted for by the higher-order mode coefficients,
which would not be needed if only the AUT radiation was considered. The reconstructed solution
for the free-space AUT radiation consists of the low-order part x ′

aut,low of x ′
aut, i.e., its first 𝐽aut

entries. This may be expressed as

x ′
aut,low = [𝟏𝐽aut 𝟎𝐽 ′

tot−𝐽aut] x
′
aut

= [𝟏𝐽aut 𝟎𝐽 ′
tot−𝐽aut]A

† b , (8.18)

where 𝟏𝐽aut is the 𝐽aut×𝐽aut unit matrix and 𝟎𝐽 ′
tot−𝐽aut is the (𝐽 ′

tot − 𝐽aut)×(𝐽 ′
tot − 𝐽aut) zero matrix.

The pseudo inverse of a (full rank) block matrix can be expressed as [Cline 1964; Baksalary
2007]

[Alow Ahigh]
† =

⎡
⎢
⎢
⎣

(𝑃high,⟂Alow)
†

(𝑃low,⟂Ahigh)
†

⎤
⎥
⎥
⎦

, (8.19)

where 𝑃low,⟂ and 𝑃high,⟂ are the projection matrices in the orthogonal complements of the column
spaces of Alow and Ahigh, respectively. Using the matrix separation into low-order and high-order
parts the reconstructed vector x ′

aut,low can, thus, formally be expressed as

x ′
aut,low = (𝑃high,⟂Alow)

†
b (8.20)

where 𝑃high,⟂ = 𝟏𝑀 − (AhighAhigh†) is the projection matrix into the orthogonal complement
of the column space of the higher-order matrix Ahigh. This fact will be useful when comparing
(8.18) to other implementations of the reconstruction method.

The solution vector x ′
aut,low not only contains the desired coefficients �̂�′(4),aut⋆

𝑠𝑚𝑛 but also the echo
contribution which is mapped onto the AUT coefficients. Using the translation coefficients

𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) = (−1)𝑚+𝑛+𝑠

∯ 𝑲𝜎𝜇𝜈(�̂�) ⋅ 𝑲𝑠,−𝑚,𝑛(�̂�) e−j𝒌⋅𝑹 d�̂� , (8.21)

which are derived in Appendix B, the relation between the reconstructed coefficients �̂�′(4),aut
𝑠𝑚𝑛 and

the desired true AUT coefficients �̂�′(4),aut⋆
𝑠𝑚𝑛 can be found to be

�̂�′(4),aut
𝑠𝑚𝑛 = �̂�′(4),aut⋆

𝑠𝑚𝑛 +
2

∑
𝜎=1

𝑁ech

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

�̂�″(4),ech⋆
𝜎𝜇𝜈 𝑇 𝑠𝑚𝑛

𝜎𝜇𝜈 (𝒓0,a − 𝒓0,e) , (8.22)
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where the additional sum in the right hand side of (8.22) is the portion of the echo contribution
which is mapped onto the AUT coefficient �̂�′(4),aut

𝑠𝑚𝑛 . The coefficients of the echo fields—originally
expressed by low-order modes in the echo centered coordinate system—are mapped to AUT
coefficients of varying orders, dependent on the translation distance ‖𝑹‖. The complete13, echo
influence is distributed over the AUT modes which correspond to a non-negligible magnitude of
the translation operator. For small translation distances, the translation operator is significant
only for the low-order AUT modes, consequently the low-order echo contributions from the echo-
centered coordinate system are translated toward only low-order coefficients in the AUT-centered
coordinate system. This leads to a significant distortion in the reconstructed AUT coefficients
(which consist of only the low-order AUT modes). The magnitude of the translation operator
𝑇 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) can be found in Fig. 8.5 for varying translation distances for modes up to the mode
number 𝑛 = 14. For short translation distances ‖𝑹‖ ≤ 0.5𝜆 (see Fig. 8.5 (a) and (b) ), the
low-order coefficients �̂�″(4),ech⋆

𝜎𝜇𝜈 in the echo centered coordinate system only influence the AUT
coefficients �̂�′(4),aut

𝑠𝑚𝑛 of relatively low orders (e.g., the echo coefficients of orders 𝜈 ≤ 4 only have
a significant influence on the AUT coefficients up to a mode order of 𝑛 ≤ 10 in Fig. 8.5 (a) and
(b) ).

With increasing translation distance ‖𝑹‖, the echo influence is distributed over a larger number
of AUT coefficients and—assuming that the echo influence is more or less evenly distributed
over all coefficients— the amount of echo distortions which is mapped into the critical range of
low-order mode indices 𝑛 ≤ 𝑁aut in the AUT-centered coordinate system decreases. The echo
distortion which is still contained in the reconstructed solution can be quantified by (8.22). The
(squared) deviation ‖x ′

aut,low − x ′
aut⋆‖2 between the reconstructed vector x ′

aut,low and the vector
x ′

aut⋆ ∈ ℂ𝐽aut×1 containing the true AUT coefficients 𝛼′(4),aut⋆
𝑠𝑚𝑛 is given by 14

‖x
′
aut,low − x ′

aut⋆‖
2

=
2

∑
𝑠=1

𝑁aut

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

|�̂�
′(4),aut
𝑠𝑚𝑛 − �̂�′(4),aut⋆

𝑠𝑚𝑛 |
2

=
2

∑
𝑠=1

𝑁aut

∑
𝑛=1

𝑛

∑
𝑚=−𝑛 |

2

∑
𝜎=1

𝑁ech

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

�̂�″(4),ech⋆
𝜎𝜇𝜈 𝑇 𝑠𝑚𝑛

𝜎𝜇𝜈 (𝒓0,a − 𝒓0,e)|

2

. (8.23)

Other implementations based on modeling only the AUT sources lead to arguably very similar
results. Instead of reconstructing the complete x ′

aut in (8.18) and truncating it afterwards, one
can directly solve the minimization problem

min
̃x′
aut,low∈ℂ𝐽aut×1 ‖b − Alow ̃x ′

aut,low‖ , (8.24)

only involving the low-order contributions in the first place. This can be formally expressed as

̃x ′
aut,low = A†

low b , (8.25)

13One must say all but a negligible small portion of the echo contributions, because the translation operator is only
approximately unitary if only finitely many modes are considered.

14This way of quantifying the echo distortion is essentially equal to determining the scattered pseudo-power, i.e.,
determining the hypothetical power which is radiated toward infinity by the field distortion alone.
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Fig. 8.5.: Magnitude of the translation operator 𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) with varying translation distance. With growing

distance, a certain coefficient 𝛼(4)
𝑠𝑚𝑛 from the original coordinate system is distributed over more

coefficients 𝛼(4)
𝜎𝜇𝜈 in the translated coordinate system.
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with the pseudo inverse A†
low. A comparison with (8.20) reveals that the result of (8.25) is very

similar and provides identical results if the columns of Alow are orthogonal to the columns of
Ahigh. Since the columns of Alow and Ahigh correspond to the (sampled) fields of orthogonal field
modes, they can indeed be expected to be nearly orthogonal in many cases.

Another implementation variant which is important to discuss due to its widespread use in
literature [Gregson 2010a; Gregson 2011b; Gregson 2013; Gregson 2010b; Gregson 2012a;
Gregson 2012b; Gregson 2010c; Gregson 2009; Gregson 2017a; Gregson 2017b; Newell 2008;
Hess 2010b; Hess 2008; Hess 2006; Hess 2011] computes the AUT coefficients via a detour
involving the matrix C. First, the expansion coefficients �̂�(4), tot

𝑗 of the total field— stored in the
vector xtot ∈ 𝕔𝐽tot×1 —are reconstructed in a coordinate system centered at 𝒓0 by solving the
minimization problem

min
xtot∈ℂ𝐽tot×1 ‖b − C xtot‖ , (8.26)

which can be alternatively expressed as

xtot = C† b , (8.27)

with the pseudo inverse C†. Using the translation operator 𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝒓0,a − 𝒓0), the expansion

coefficients �̂�′(4),aut
𝑗 of the total field— stored in the vector ̃x ′

aut —in terms of a single expansion
with coordinate origin 𝒓0,a are found from there. This procedure is totally analogous to the
well known modal echo suppression methods known under the names Mathematical Absorber
Reflection Suppression (MARS) [Gregson 2010a; Gregson 2011b; Gregson 2013; Gregson 2010b;
Gregson 2012a; Gregson 2012b; Gregson 2010c; Gregson 2009; Gregson 2017a; Gregson 2017b]
or IsoFilterTM [Hess 2006; Hess 2010a; Hess 2011; Hess 2010b], which can be regarded as state
of the art frequency domain echo suppression algorithms.

Since the expansion of total fields in terms of a single spherical mode expansion centered at 𝒓0,a
is unique, the reconstructed vector ̃x ′

aut should in theory be identical to the vector x ′
aut obtained in

(8.18). Deviations may only come from aliasing errors if the number of modes 𝐽tot was chosen
too small to represent the total fields correctly or due to truncation errors introduced with the
numerical implementation of the translation operator 𝑇 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝒓0,a − 𝒓0). The reason why (8.27)
with a subsequent translation of spherical modes to the coordinate origin in the center of the AUT
can be found in literature rather than the direct evaluation of (8.18) lies in the fact that the pseudo
inverse C† can be computed efficiently if 𝒓0 is located in the center of a spherical measurement
surface which does often not coincide with the center of the AUT. Placing the AUT outside of
the center of the measurement sphere has benefits in the stationary probe scenario (as discussed
later) whereas the placement of the AUT is irrelevant in the stationary AUT case—only the
relative separation between the AUT and the echo object matters here.

Reconstructing AUT and Echo Sources Simultaneously

So far the echo has been neglected in modeling the total fields leading to suboptimal solutions
as shown by the error estimate (8.23). The solution can be improved by assuming echo sources
simultaneously to the AUT sources. In agreement with (8.2), only low-order modes have to be
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8.1. Stationary Antenna Under Test

considered for both, the AUT and the echo yielding the minimization problem

min
x ′
aut,low ∈ ℂ𝐽aut×1

x″
ech,low ∈ ℂ𝐽ech×1

‖b − (Alow x
′
aut,low +Blow x

″
ech,low)‖ , (8.28)

which can be formally expressed as

[
x ′
aut,low
x″
ech,low] = [Alow Blow]

†
b . (8.29)

By the same token as for (8.20), one can express the reconstructed AUT coefficients as

x ′
aut,low = (Pech,low⟂Alow)

† , (8.30)

where Pech,low⟂ = 𝟏𝑀 −BlowB
†
low is the projection into the orthogonal complement of the column

space of Blow.
Of course, taking echo sources into account can only improve the reconstruction of the AUT

coefficients, but it is not necessarily perfect. The solution of (8.29) is unique, if the echo fields
are unambiguously distinguishable from the AUT fields, i.e., if the columns of the combined
matrix [Alow Blow] are linearly independent, i.e., if the columns of the matrix Blow are linearly
independent from the columns of Alow (i.e., if the fields from the different source regions are
linearly independent ).

8.1.4. A Minimum Surface Argument

To reveal possible undesired ambiguities in (8.2) (and related to that: in the reconstruction
(8.29)), it is necessary to answer the question under which circumstances it is possible to find a
combination of non-zero spherical mode coefficients 𝛼′(4),aut

𝑠𝑚𝑛 and 𝛼″(4),ech
𝑠𝑚𝑛 for the AUT and the

echo, respectively, such that the resulting total field is zero at the sampling locations. Possible
non-trivial zero fields in the region external to the common enclosure 𝑆0 of AUT and echo
sources are problematic as they can be superimposed to any retrieved solution for the 𝛼′(4),aut

𝑠𝑚𝑛
and 𝛼″(4),ech

𝜎𝜇𝜈 coefficients without changing the fields at the observation locations. If non-trivial
zero fields exist, it is impossible to unambiguously determine the desired isolated AUT fields
from measurements of the total fields. The situation of interest is depicted in Fig. 8.6. AUT and
echo sources are located in two well separated regions enclosed by the two spheres 𝑆aut and 𝑆ech,
respectively.

Non-trivial AUT and echo sources can cancel identical to zero in the exterior region outside
𝑆0 only, if the fields are zero everywhere in the source free region [Klinkenbusch 2008; Klinken-
busch 2009]— including the source free-space inside 𝑆0. This follows directly from the unique
continuation property, which holds for the scalar Helmholtz equation. If a solution 𝜑(𝒓) to the
homogeneous Helmholtz equation

Δ𝜑(𝒓) + 𝑘2𝜑(𝒓) = 0 𝒓 ∈ 𝛺 (8.31)
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𝑆aut

𝑆0

𝑆ech

Fig. 8.6.: AUT and echo sources enclosed by two well separated spheres 𝑆aut and 𝑆ech, respectively. Can
there be a zero field outside 𝑆0 for non-zero echo and AUT sources?

is identical to zero in a finite open subdomain 𝑉 ⊂ 𝛺, it must be identical to zero in the complete
region 𝛺, as long as 𝑉 and 𝛺 are sufficiently regular domains (i.e., connected, with sufficiently
continuous borders, etc.)15 [Müller 1954; Kenig 1989].

Non-trivial non-radiating fields which cancel identical to zero in the exterior region are therefore
impossible and with infinite measurement accuracy it should always be possible to distinguish
the echo fields from the AUT fields. This finding holds not only true for spherical surfaces as
depicted in Fig. 8.6 but also for more general enclosing surfaces. This does not resolve the issue
in practical terms, however, because weakly radiating fields which decay rapidly on their way
from the source region toward the measurement locations pose similar problems to any practically
relevant measurement setup as strictly non-radiating currents because of unavoidable accuracy
limitations of real measurements.

The original question must therefore be modified to take a limited measurement accuracy into
account: under which circumstances is it possible to find a combination of non-zero (low-order)
spherical mode coefficients 𝛼′(4),aut

𝑠𝑚𝑛 and 𝛼″(4),ech
𝜎𝜇𝜈 for the AUT and the echo, respectively, such

15Every cartesian component of the electric field 𝑬 must necessarily fulfill the Helmholtz equation. This is a
necessary but not sufficient condition for the electric field in the source free region to fulfill Maxwell’s equations.
To be a correct solution to Maxwell’s equations, the electric field must also have a zero divergence ∇ ⋅ 𝑬 = 0 in
the source free region. This result is not a contradiction to the fact that the external field outside of 𝑆0 can also
exactly be expressed by two different series expansions (with infinitely many terms)

𝑬tot(𝒓) |𝒓∈𝑉
= 𝑘 √𝑍F

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼′(4),aut
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟′, 𝜗′, 𝜑′)

in terms of a mode expansion with respect to the coordinate origin at 𝒓0,a or

𝑬tot(𝒓) |𝒓∈𝑉
= 𝑘 √𝑍F

2

∑
𝑠=1

∞

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼″(4),ech
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝑟″, 𝜗″, 𝜑″)

in terms of a mode expansion with respect to the coordinate origin at 𝒓0,e, respectively. Outside their respective
convergence radius, both expansions converge exactly to the correct field but inside the convergence radius, the
expansions show a singular behavior and cannot be used to express the field correctly [Bleistein 1977; Bates
1975; Yaghjian 1997; Yaghjian 2000].

112



8.1. Stationary Antenna Under Test

𝑅 𝑅

𝑦

𝑥

𝑑

Fig. 8.7.: Minimum area surface enclosing two separated spherical source regions of identical shape.

that the resulting total field is negligibly small at the sampling locations? The effective DoFs
of the total source distributions would be less than the sum of DoFs for each individual source
distribution.

A plausible way to estimate an upper bound for the DoFs which can be radiated by a certain
source distribution is to consider the surface area of an enclosing Huygens surface16 (i.e., the DoFs
appear to be more closely related to the surface area of a source region than to the volume [Bucci
1998]). If one can find a surface enclosing both source regions simultaneously with a total surface
area less than the sum of the surface areas enclosing each source domain separately, it is expected
that also the DoFs of the total field are less than the sum of DoFs for each separate source region.

Consider the two identical separated spherical source regions depicted in Fig. 8.7 as an
illustrative example. Both spheres have the radius 𝑅 and the sphere centers are separated by the
distance 𝑑. The geometry is rotationally symmetric around the 𝑥-axis. This symmetry can be
exploited to simplify the computation of surface areas. A surface of revolution is created by
rotating a curve 𝑓(𝑥) around the 𝑥-axis. The surface area 𝐴 of such a surface of revolution is
readily found by

𝐴 = 2π

𝑏

∫
𝑎

𝑓(𝑥) √1 + (
d𝑓(𝑥)
d𝑥 )

2
d𝑥 . (8.32)

If the two spheres are not too far separated, it is possible to find a surface connecting both spheres
which has a total surface area less than the sum of the two spherical surface areas. Finding
the minimum area surface enclosing the two spheres can be expressed as a variational calculus
problem, minimizing the quantity in (8.32). If the two spheres are not too far apart, the minimum
enclosing hull takes the shape of a catenoid between the two spheres. The curve forming the
catenoid surface between the spheres for this symmetric configuration is given by [Arfken 2005,
pp. 931ff.], [Goldstein 1980, p.42], [Isenberg 1992]

𝑓(𝑥) = 𝑎 cosh(
𝑥
𝑎) , (8.33)

16All possibly radiated fields can be expressed by equivalent surface currents on the Huygens surface. The DoFs can
be estimated by the number of surface current elements which are necessary to represent the equivalent currents
accordingly. Experience has shown that for reasonably smooth surfaces, surface currents can be appropriately
discretized by triangular elements of approximately constant shape. One can therefore expect an upper bound
for the DoFs which is approximately proportional to the surface area of the smallest hull enclosing all sources.
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where 𝑎 > 0 is a real valued parameter which has to be adjusted such that the catenoid touches
the spheres but does not intersect them.

With a positive parameter 𝑎 (such that the catenoid surface does not intersect itself) it is easy to
verify that 𝑎 cosh(𝑥/𝑎) > 𝑐 𝑥, with a constant 𝑐 ≈ 1.508880. A catenary solution to the surface
minimization problem thus only exists if the tangent on the sphere through the coordinate origin
has a slope which is at least 𝑐. The slope of this tangent is given by the expression tan( sin(2𝑅/𝑑))
and if the distance between the two spheres increases such that 2𝑅/𝑑 < sin( tan−1(𝑐)) ≈ 0.833557,
no catenary solution exists anymore and the smallest enclosing hull of the sources consists just
of the two separate spherical surfaces.

This means that the total fields of the two source regions have less DoFs than the sum of the
DoFs of the individual source regions if the distance between the spheres 𝑑 < 2.399357𝑅—i.e.,
if the minimum distance between the two spheres is smaller than 0.399357𝑅. In this case one
can expect that some non-observable fields— these are fields which have a large magnitude
in the source free region between the individual source regions but a weak magnitude at the
observation locations outside a common enclosure—exist and an accurate source localization
for the observed fields is not possible.

Similar considerations hold also for different source geometries as for example two cubical
source regions. It should be understood that the minimum surface argument presented in this
section can be used to justify the existence of fields with an evanescent behavior if two source
regions are located too close together. However, the estimate for the total DoFs derived from
the surface area of the enclosure is a heuristic, approximate upper bound. It cannot be used to
predict exactly at which separation distance the radiated fields from the two source regions can
be clearly distinguished— the argument from this section gives a qualitative not a quantitative
explanation of the situation.

8.1.5. Numerical Investigations with Stationary Antennas Under Test

In this section, numerical experiments are carried out to support the claims which have been
made in the previous sections. More specifically, the following five statements are confirmed

• The reconstruction methods from (8.20), (8.25), and (8.27) are practically equivalent
concerning their echo suppression.

• Reconstructing only AUT sources is inferior to reconstructing AUT and echo sources
simultaneously.

• Equivalent current based methods behave similar to spherical expansion based methods
concerning their capability to separate AUT fields from echo fields but may have benefits
because the source regions can be confined more precisely according to the true source
geometries.

• When two source regions are well separated (i.e., not intersecting) but too close to each
other, they can excite evanescent waves despite each source region only radiating low-order
modes.

• In a stationary AUT scenario, the absolute position of the AUT is irrelevant—only the
relative position with respect to the echo is important.
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The numerical experiments have been carried out at a symbolic frequency of 1GHz, but due to
the scale invariance of Maxwell’s equations the results are generally valid for all frequencies and
all dimensions are given in terms of wavelengths to reflect this fact. Two identical source regions
are considered— representing the AUT region and the echo region, respectively—each with
two square shaped current sheets placed in front of each other with a separation in 𝑥-direction of
0.25 𝜆. Two simulation campaigns have been carried out with two different sizes for the current
sheets. In the first campaign, every current sheet had the dimensions 1.403 122 𝜆 × 1.403 122 𝜆
in the 𝑦-𝑧-plane such that all AUT sources and all echo sources were confined in a minimum
sphere of radius 𝑟aut = 𝑟ech = 1.0𝜆, respectively. In the second campaign, every current sheet
had the dimensions 2.822 897 𝜆 × 2.822 897 𝜆 in the 𝑦-𝑧-plane such that all AUT sources and
all echo sources were confined in a minimum sphere of radius 𝑟aut = 𝑟ech = 2.0𝜆, respectively.
Hertzian dipoles were regularly distributed on the current sheets with a separation of 0.1𝜆 in 𝑦-
and 𝑧-direction. The dipole excitation is constant along the 𝑧-direction, follows a half-wave of a
sine curve along the 𝑦-direction, and has a phase shift according to e j𝑘0𝑥 to form a main beam
into the positive 𝑥-direction, following the procedure described in [Schmidt 2011a].

The considered situation is depicted in Fig. 8.8. The two source regions were placed with a
varying separation (in 0.2 𝜆 steps) from 𝑑 = 0.0𝜆 to 𝑑 = 10.0 𝜆(such that the same scenarios
can be simulated later with the AUT in the center of the measurement sphere without letting the
echo sources collide with the measurement sphere) in 𝑦-direction to each other. Their separation
is quantified by the minimum distance 𝑑 between the two enclosing minimum spheres (see
Fig. 8.8). The tangential components of the total field radiated by all sources were sampled on a
measurement sphere with radius 𝑟meas = 14.0 𝜆 (𝑟meas = 16.0 𝜆 for the larger scenario) centered
in the common center of the AUT and the echo sources. The measurement sphere has been
sampled with equiangular step sizes of 𝛥𝜗 = 𝛥𝜑 = 2.5∘.

For every measurement constellation, the AUT fields have been reconstructed with the dif-
ferent modal and current based reconstruction methods discussed previously. Eight different
reconstruction methods are considered— four modal methods and four surface current based
methods— leading to the following reconstructed AUT fields

• The field 𝑬a is the reconstructed AUT field according to (8.20) where spherical coefficients
(high-order and low-order according to the measurement sphere enclosing all sources) were
reconstructed only for the AUT but the reconstructed higher-order modes were discarded
for finding the AUT fields. The reconstructed (truncated to low-order) AUT coefficients
are stored in the vector x ′

a .

• The field 𝑬a,low is the reconstructed AUT field according to (8.25), where only low-order
spherical coefficients (according to the measurement sphere enclosing only AUT sources)
were reconstructed for the AUT. The reconstructed AUT coefficients are stored in the
vector x ′

a,low. The difference to x ′
a is that no high-order AUT coefficients were involved in

the reconstruction process.

• The field 𝑬MARS is the reconstructed AUT field according to (8.27), where—as in the
MARS procedure— spherical coefficients were reconstructed in the center of the measure-
ment sphere and thereafter translated to the AUT center. The reconstructed higher-order
modes were discarded before computing the AUT fields. The reconstructed AUT coeffi-
cients are stored in the vector x ′

MARS.
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𝑑

𝑟aut

𝑟ech

true minimum sphere

measurement sphere

AUT centered
minimum
sphere

Fig. 8.8.: Echoic measurement scenario with a stationary probe and echo object. The rotating AUT is
depicted at different measurement positions. With the AUT placed at the rotation center, the size of
the test zone is equal to the minimum sphere around the AUT.

• The field 𝑬a+e is the reconstructed AUTfield according to (8.30), where low-order spherical
coefficients were reconstructed for the AUT and the echo, simultaneously. The recon-
structed echo modes were discarded for finding the AUT fields. The reconstructed AUT
coefficients are stored in the vector x ′

a+e.

• The field 𝑬sph is the reconstructed AUT obtained by reconstructing surface currents on
a Huygens surface. The Huygens surface for the reconstruction was a single spherical
surface (radius 𝑟aut) enclosing only the AUT sources.

• The field 𝑬2sph is the reconstructed AUT obtained by reconstructing surface currents on
two Huygens surfaces. The Huygens surfaces for the reconstruction were two spherical
surfaces (radii 𝑟aut and 𝑟ech) enclosing the AUT sources and the echo sources, respectively.
The reconstructed currents on the echo surface were discarded before computing the AUT
fields.

• The field 𝑬box is the reconstructed AUT obtained by reconstructing surface currents on a
Huygens surface. The Huygens surface for the reconstruction was a single cuboid surface
(1.5 𝜆 × 1.5 𝜆 × 0.3 𝜆 for the first scenario and 2.9 𝜆 × 2.9 𝜆 × 0.3 𝜆 for the second scenario)
enclosing only the AUT sources.

• The field 𝑬2box is the reconstructed AUT obtained by reconstructing surface currents on
two Huygens surfaces. The Huygens surfaces for the reconstruction were two cuboid
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surfaces (1.5 𝜆 × 1.5 𝜆 × 0.3 𝜆 for the first scenario and 2.9 𝜆 × 2.9 𝜆 × 0.3 𝜆 for the second
scenario) enclosing the AUT sources and the echo sources, respectively. The reconstructed
currents on the echo surface were discarded for finding the AUT fields.

The reconstructed AUT fields are compared to the true AUT field generated by the AUT
dipoles. The reconstruction error 𝜖 is quantified as

𝜖 =

√√√√√

⎷

∯ [|𝐸FF,𝜗(𝜗, 𝜑) − 𝐸FF,𝜗,ref(𝜗, 𝜑)|
2 + |𝐸FF,𝜑(𝜗, 𝜑) − 𝐸FF,𝜑,ref(𝜗, 𝜑)|

2
] d�̂�

∯ [|𝐸FF,𝜗,ref(𝜗, 𝜑)|
2 + |𝐸FF,𝜑,ref(𝜗, 𝜑)|

2
] d�̂�

, (8.34)

i.e., the root mean square error between the reference FF and the reconstructed FF. For the
coefficients of a spherical wave expansion, this is equivalent to

𝜖 =

√√√√√√√

⎷

2
∑
𝑠=1

∞
∑
𝑛=1

𝑛
∑

𝑚=−𝑛 |𝛼
′(4),aut
𝑠𝑚𝑛 − 𝛼′(4),aut⋆

𝑠𝑚𝑛 |
2

2
∑
𝑠=1

∞
∑
𝑛=1

𝑛
∑

𝑚=−𝑛 |𝛼
′(4),aut⋆
𝑠𝑚𝑛 |

2

= ‖x ′
rec − x ′

aut⋆‖

‖x ′
aut⋆‖

, (8.35)

where 𝛼′(4),aut⋆
𝑠𝑚𝑛 are the true spherical coefficients of the radiated AUT field stored in the vector

x ′
aut⋆ and 𝛼′(4),aut

𝑠𝑚𝑛 are the reconstructed coefficients stored in the vector x ′
rec (the vector x ′

rec can
represent either x ′

a , x ′
a,low, x

′
MARS, or x

′
a+e ). This corresponds to the relative 𝐿2-error of the

reconstructed coefficient vector. As no spherical coefficients are available for the surface current
based reconstruction methods, one must rely on (8.34).

The retrieved errors for the different reconstruction methods can be seen in Fig. 8.9 for the
source size 𝑟aut = 𝑟ech = 1 𝜆 and in Fig. 8.10 for the source size 𝑟aut = 𝑟ech = 2 𝜆. The truncation
indices for all spherical mode expansions are based on the minimum sphere around the sources
with a small mode buffer of 𝑛buf = 2, thus, the reconstruction accuracy of the reconstructed fields
are limited by the truncation of higher-order modes in favor of a more localized source model.

As can be expected from the analysis in Section 8.1.3, all methods which only reconstruct
AUT sources without considering echo sources (i.e., 𝜖a, 𝜖a,low, 𝜖MARS, 𝜖sph, and 𝜖box) show a very
similar performance as long as they do not face numerical stability problems. Such numerical
problems arise for the reconstruction of x ′

a once the distance 𝑑 becomes large enough that the AUT
centered minimum sphere enclosing all AUT and echo sources interferes with the measurement
sphere. In this case, some of the considered high-order mode fields have an extensively large
magnitude at some of the measurement locations, concealing the influence of the other modes to
the total fields. As a consequence, the mode coefficients can no longer be reconstructed accurately,
once the minimum sphere around the sources interferes with the measurement sphere. These
interference problems occur for the reconstruction of x ′

a at a distance of 𝑑 ≈ 7 𝜆 for the scenario
with the smaller source radii 𝑟aut = 𝑟ech = 1 𝜆 and at a distance of 𝑑 ≈ 5 𝜆 for the larger source
radii 𝑟aut = 𝑟ech = 2 𝜆. Apart from this numerical instability, the reconstruction error curve for
𝜖a is very similar to 𝜖a,low, 𝜖MARS, 𝜖sph, and 𝜖box, verifying the first of the five statements from
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Fig. 8.9.: Reconstruction error of different recon-
struction methods dependent on the distance
𝑑 between echo and AUT with source radii
𝑟aut = 𝑟ech = 1 𝜆.
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Fig. 8.10.: Reconstruction error of different recon-
struction methods dependent on the dis-
tance 𝑑 between echo and AUT with source
radii 𝑟aut = 𝑟ech = 2 𝜆.

the beginning of this section. The slow but steady decrease of the reconstruction error is in
agreement with the prediction from (8.23) where it was claimed that with increasing distance
between the AUT and the echo a larger portion of the echo distortion is mapped onto higher-order
modes in the AUT centered coordinate system, thus, being removed by modal filtering.

Reconstructing AUT sources simultaneously with echo sources drastically improves the recon-
struction quality compared to only reconstructing the AUT sources. After the separation between
AUT and the echo exceeds a critical distance—around 𝑑 = 2 𝜆 for the 1 𝜆-sized sources and
around 𝑑 = 3 𝜆 for the 2 𝜆-sized sources— the reconstruction of the AUT sources is successful
up to the maximum achievable accuracy (see the curves for 𝜖a+e in Figs. 8.9 and 8.10). This
confirms the second of the five statements from the beginning of this section. The achievable
accuracy of around −55 dB for the truncated spherical wave expansion is due to the source
model. The truncated modal expansion (𝑛buf = 2) is only capable to represent the true AUT field
up to −52 dB, which was independently verified by a direct calculation of the spherical wave
coefficients for the AUT from the source distribution via

�̂�(4),tra
𝑠𝑚𝑛 = (−1)𝑚+1

∭
𝑉aut

𝑘√𝑍0 𝑭 (1)
𝑠,−𝑚,𝑛 ⋅ ̂𝑱trad𝑣 . (8.36)

When the spherical wave expansion is truncated at a larger mode index (e.g., 𝑛buf = 3, 4, …),
the AUT can be more accurately represented and error levels in the order of the current based
methods are reached. This comes with the drawback that ambiguities due to evanescent waves
persist for larger distances, as will become clear from the discussion below.

For all reconstructions, the results of the spherical expansion based methods are comparable
to the corresponding results obtained with surface currents, as long as the reconstruction surface
for the currents is comparable to the spherical equivalent source region for the modal expansion.
With no echo sources considered in the reconstruction, the error curves of the spherical expansion
methods (see the curves for 𝜖a, 𝜖a,low, and 𝜖MARS in Figs. 8.9 and 8.10) are very similar to the
corresponding error curves for the current based methods with only one Huygens surface (see
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Fig. 8.11.: Difference between the 𝑧-component of the reference field and the reconstructed field using
spherical wave expansions for the AUT and echo simultaneously (𝑟aut = 𝑟ech = 2 𝜆 and 𝑑 = 2.6 𝜆).

the curves for 𝜖sph and 𝜖box in Figs. 8.9 and 8.10). The error curve for the reconstruction of
spherical mode coefficients with two expansion centers (𝜖a) resembles the error curve for the
current reconstruction on two spherical surfaces (𝜖a+e). The higher achievable accuracy of around
−70 dB for the surface currents is determined by the stopping criterion of the solver for the linear
system of equations (and no hard mode threshold limits the accuracy of the reconstructed fields).

The tight box-shaped Huygens surface does not bring any clear advantages as compared to
the spherical surface if the echo is excluded from the reconstruction. The error curve for 𝜖sph
is similar to the error curve for 𝜖box for both source sizes. In contrast to this, the tight Huygens
surface shows clear benefits when echo sources are reconstructed simultaneously with the AUT
sources. Restricting the AUT and echo sources to a tightly confined surface can help with
avoiding ambiguities due to evanescent fields. Consequently, the reconstruction error 𝜖2box is
below −40 dB even for small separation distances 𝑑. The separation parameter 𝑑 is related to the
minimum spheres around the sources, thus, the box-shaped Huygens surfaces do not touch even
for 𝑑 = 0. More important is, however, that the cross sections of the the opposing faces of the
AUT box and the echo box are rather flat and no standing waves can be generated between them.
Since no evanescent waves obscure the reconstruction process, the reconstructed AUT fields
agree well with the true AUT fields even for small separation distances 𝑑. This confirms the
third of the five initial statements from the beginning of this section, which stated that equivalent
current based reconstruction methods perform similar as spherical expansion based methods, but
the current based methods may be able to confine the reconstructed currents more precisely.

When the separation between the echo and the AUT is below the critical distance, the AUTfields
are reconstructed with the same (insufficient) accuracy for the methods involving the additional
echo sources as for theMARS-like reconstructionmethods (despite the total fields were excellently
reconstructed in the methods which considered the echo sources). The reconstruction deviation

̃𝜖 = ‖b − brec‖/‖b‖ was below ̃𝜖 < 0.0002 for all separation distances 𝑑 for all reconstruction
methods which included the echo in the source model. This leads to the conclusion, that different
source distributions (i.e., the true and the reconstructed ones) can lead to practically the same
fields at the measurement sphere. This conclusion is further confirmed in Fig. 8.11, showing the
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𝑑

𝑟aut

𝑟ech

true minimum sphere

measurement sphere

AUT centered
minimum
sphere

Fig. 8.12.: Echoic measurement scenario with a
stationary probe and echo object. The
rotating AUT is depicted at different
measurement positions. With the AUT
placed outside the rotation center.
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Fig. 8.13.: Reconstruction error of spherical AUT co-
efficients dependent on the distance 𝑑 between
echo and AUT with source radii 𝑟aut = 𝑟ech =
1 𝜆, with the AUT in the center of the measure-
ment sphere. The deviations from the previous
scenario are shown with dotted lines.

difference between the dominant 𝑧-component of the reference field and the reconstructed field,
where spherical wave expansions for the AUT and echo were used simultaneously for the source
radii 𝑟aut = 𝑟ech = 2 𝜆 with distance 𝑑 = 2.6 𝜆. The depicted difference is normalized to the
maximummeasured field value on the measurement sphere (i.e., normalized to the maximum field
value on the measurement sphere generated by the original sources ) to verify that this difference
is negligible at the measurement distance (denoted by the blue circle). Reconstructing the total
fields simultaneously with AUT and echo sources yields practically ambiguous results— the total
fields of different source distributions, i.e., the true source distribution and the reconstructed one,
have negligibly small deviation at the observation surface. One can observe the behavior which
has been predicted in Section 8.1.4. Evanescent modes are generated despite only low-order field
modes were reconstructed for the AUT and echo centered spherical expansions, respectively.
This confirms the fourth of the five statements from the beginning of this section.

Finally, the simulations were repeated for the configuration shown in Fig. 8.12 and compared
to the results from the previous scenario from Fig. 8.8. In contrast to the previous case, the AUT
was fixed to the center of the measurement sphere, while the echo was moved in 𝑦-direction to
obtain varying separation distances 𝑑 between the AUT and the probe. This way, the distance
can only be increased until 𝑑 = 6.6666 𝜆 before the echo minimum sphere interferes with the
measurement surface. The retrieved errors for the spherical expansion based methods can be
seen in Fig. 8.13. Since the AUT center coincides with the center of the measurement sphere, no
translation of the retrieved coefficients is required in the MARS procedure and the reconstructed
coefficients x ′

MARS are therefore identical to x ′
a and, thus, not shown in the figure.

The error curves (denoted with a superscript “(center)” to highlight that here the AUT was
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𝜑
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AUT minimum sphere
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Fig. 8.14.: Schematic drawing of a spherical measurement range with an AUT rotation stage. The probe
position is fixed.

in the center of the measurement surface) for the spherical coefficients in Fig. 8.13 are almost
identical to the ones in Fig. 8.9. The relative 𝐿2-norm deviations between the coefficient vectors
are given by the dotted lines. The deviations between the corresponding reconstructed coefficient
vectors is well below their deviation from the true AUT fields and one can certainly say that
the absolute AUT position does not matter in the reconstruction of the AUT fields—only the
distance between the AUT and the echo object is important in stationary AUT scenarios. This
confirms the last of the five statements from the beginning of this section.

8.2. Stationary Probe

Now the situation with a stationary probe is analyzed. The echo object has a fixed position relative
to the probe and the AUT is rotated such that the AUT field can be observed from different angles.
Such scenarios are encountered in many spherical measurement ranges as depicted in Fig. 8.14.

The whole AUT positioner rotates around the global 𝑦-axis. The global stationary coordinate
system denoted by 𝑥TZ, 𝑦TZ, 𝑧TZ is also depicted in Fig. 8.14. The index “TZ” stands for test
zone as it is convenient to consider the situation from the point of view of a radiating probe
creating a certain incident field in the so-called test zone around the AUT. The receiving AUT is
then rotated through this field. The rotation around 𝜒 is performed by the probe rotating around
the global 𝑧-axis. In theory, the 𝜒-rotation can also be performed by the AUT, e.g., with the
help of a robotic arm. The following description is general enough to include the case where the
𝜒-rotation is performed by the AUT as a special case.

The test zone is a spherical volume 𝑉1 enclosed by the surface 𝑆1. The center of the test zone
coincides with the rotation center of the AUT and the radius of the test zone is determined by
the maximum distance of any AUT part to the rotation center. The test zone may coincide with
the AUT minimum sphere if the AUT is centered at the rotation center as depicted in Fig. 8.14.
When the AUT is displaced from the rotation center, in general the test zone will be increased as
the AUT traverses a larger volume when being rotated. The scenario is depicted in Fig. 8.15 for
an AUT placed at the rotation center and in Fig. 8.16 for an AUT placed away from the rotation
center. The AUT is depicted with a solid line in its original position and with a dashed line in a
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𝑆1

Fig. 8.15.: Echoic measurement scenario with a sta-
tionary probe and echo object. The rotating
AUT is depicted for different measurement
positions. With the AUT placed at the rota-
tion center, the size of the test zone is equal
to the minimum sphere around the AUT.

𝑆1

Fig. 8.16.: Echoic measurement scenario with a sta-
tionary probe and echo object. The rotating
AUT is depicted for different measurement
positions. With the AUT placed outside the
rotation center, the size of the test zone is
larger than the minimum sphere around the
AUT.

rotated position.
The test zone field, consists of two parts. One part of the test zone field is generated by the

radiating probe as if it was in free space. This part is known due to the known probe characteristics.
The second part of the test zone field is due to the echoes. This part is generally not known. The
test zone field may, thus, be expressed as

𝑬TZ(𝒓) = 𝑘 √𝑍F

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇′=−𝑛

(𝛼(1),pro
𝑠𝜇′𝑛 + 𝛼(1),ech

𝑠𝜇′𝑛 ) 𝑭 (1)
𝑠𝜇′𝑛(𝒓) , (8.37)

where 𝛼(1),pro
𝑠𝜇′𝑛 are the known expansion coefficients of the probe portion of the test zone field and

𝛼(1),ech
𝑠𝜇′𝑛 are the unknown expansion coefficients of the echo portion of the test zone fields. The

limit for the summation is as usual given by 𝑁TZ = 𝑘0 𝑟1 + 𝑛buf, where 𝑟1 denotes the radius of
the test zone field.

When the probe is rotated around its axis to perform the 𝜒-rotation, the coefficients of the
incident probe field are transformed according to 𝛼(1),pro

𝑠𝜇′𝑛 → e j𝜇
′𝜒𝛼(1),pro

𝑠𝜇′𝑛 , but the echo coefficients
𝛼(1),ech

𝑠𝜇′𝑛 transform in a rather unpredictable manner because the rotated probe illuminates the
echo objects differently. It is, therefore, convenient to describe the incident echo field by varying
expansion coefficients 𝛼(1),ech

𝑠𝜇′𝑛 (𝜒) which depend on 𝜒 [Pogorzelski 2009; Pogorzelski 2010].
A convenient description of the 𝑆12-parameter for the AUT rotated to different positions

described by the angles 𝜗𝑚, 𝜑𝑚, 𝜒𝑚, 𝑚 = 1, … , 𝑀 is given by

𝑆12(𝜗𝑚, 𝜑𝑚, 𝜒𝑚) =
2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

𝛽(1),aut
𝑠𝜇𝑛 e j𝜇𝜑𝑚 d𝑛

𝜇′𝜇(𝜗𝑚) (𝛼(1),pro
𝑠𝜇′𝑛 e j𝜇

′𝜒𝑚 + 𝛼(1),ech
𝑠𝜇′𝑛 (𝜒𝑚)) ,

(8.38)
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where 𝛽(1),aut
𝑠𝜇,𝑛 are the unknown AUT receiving coefficients of the unrotated AUT with respect to

the center of the test zone field and d𝑛
𝜇′𝜇(𝜗𝑚) is the Wigner-d-function.

8.2.1. Extended Probe Calibration and Test Zone Field Compensation

Having an appropriate formal description of the 𝑆12(𝜗𝑚, 𝜑𝑚, 𝜒𝑚), one can attempt to account
for the undesired echo influences. The unknown incident echo field coefficients 𝛼(1),ech

𝑠𝜇′𝑛 (0∘) and
𝛼(1),ech

𝑠𝜇′𝑛 (90∘) for 𝜒 = 0∘ and 𝜒 = 90∘ can be determined in preliminary measurements with two
known test antennas17 [Pogorzelski 2009; Pogorzelski 2010]. The corresponding method was
named extended probe instrument calibration. The measured 𝑆12-parameters for the two test
antennas in different orientations have the form

𝑆aut1
12 (𝜗𝑚, 𝜑𝑚, 0∘) =

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

𝛽(1),aut1
𝑠𝜇𝑛 e j𝜇𝜑𝑚 d𝑛

𝜇′𝜇(𝜗𝑚) (𝛼(1),pro
𝑠𝜇′𝑛 + 𝛼(1),ech

𝑠𝜇′𝑛 (0∘)) ,

(8.39)

𝑆aut2
12 (𝜗𝑚, 𝜑𝑚, 0∘) =

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

𝛽(1),aut2
𝑠𝜇𝑛 e j𝜇𝜑𝑚 d𝑛

𝜇′𝜇(𝜗𝑚) (𝛼(1),pro
𝑠𝜇′𝑛 + 𝛼(1),ech

𝑠𝜇′𝑛 (0∘)) ,

(8.40)

𝑆aut1
12 (𝜗𝑚, 𝜑𝑚, 90∘) =

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

𝛽(1),aut1
𝑠𝜇,𝑛 e j𝜇𝜑𝑚 d𝑛

𝜇′𝜇(𝜗𝑚) (j
𝜇′

𝛼(1),pro
𝑠𝜇′𝑛 + 𝛼(1),ech

𝑠𝜇′𝑛 (90∘)) ,

(8.41)

and

𝑆aut2
12 (𝜗𝑚, 𝜑𝑚, 90∘) =

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

𝛽(1),aut2
𝑠𝜇,𝑛 e j𝜇𝜑𝑚 d𝑛

𝜇′𝜇(𝜗𝑚) (j
𝜇′

𝛼(1),pro
𝑠𝜇′𝑛 + 𝛼(1),ech

𝑠𝜇′𝑛 (90∘)) .

(8.42)

The only unknowns in these equations are the incident echo field coefficients 𝛼(1),ech
𝑠𝜇′𝑛 (0∘) and

𝛼(1),ech
𝑠𝜇′𝑛 (90∘) and they can be found by solving the system of equations defined by (8.39) to (8.42)

in a least squares manner.
After the incident echo field coefficients are known, they can be used in a subsequent mea-

surement to find the coefficients 𝛽(1),aut
𝑠𝜇,𝑛 of an unknown AUT by solving another linear system of

equations defined by (8.38) for different measurement angles 𝜗𝑚, 𝜑𝑚 and 𝜒𝑚 ∈ {0∘, 90∘}. Note
that although the equations obtained from the 𝑆12-measurements at the different angles suffice
to form a non-singular system of equations for the 𝛽(1),aut

𝑠𝜇,𝑛 coefficients in general, the efficient
FFT-based method cannot be used for the inversion of this system because the 𝜒-dependency
of the fields does not meet the requirements of a first-order probe and, thus, the orthogonality
integral for the 𝜒-dependency cannot be calculated from the discrete samples.

A similar idea is followed in the so-called test zone field compensation method [Black 1995],
where also spherical expansion coefficients of the incident field have to be determined in a
17The two test antennas are not required to be physically different antennas but the same antenna mounted in different

orientations to the AUT rotation stage may also suffice.
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preliminary step. The difference to the previously described method lies in the reconstruction
for the unknown AUT coefficients. While in [Pogorzelski 2009; Pogorzelski 2010] the system
of equations is solved taking full probe correction into account (and, therefore, loosing the
efficiency of the spherical setup), in [Black 1995] the system of equations is repeatedly solved
with only a first-order probe correction. By iteratively removing all portions in the reconstructed
𝑆12-parameter, which do not match the low-order probe model, acceptable accuracy levels are
reported.

Related algorithms have been formulated by expressing the previously measured total incident
fields in terms of plane waves instead of spherical modes [Koh 2011], but all these methods
have in common that the complete incident field must be characterized with the use of known
test antennas. This procedure must be repeated, whenever the probe antenna or its position is
changed or when any significant change happens in the echoic environment. Thus, the chamber
calibration methods requiring a preliminary measurement of the echo influence are not treated in
further detail in this thesis.

8.2.2. Accounting for the Echo Distortion by Unphysical Auxiliary Sources

When the echoic environment is not characterized in a preliminary measurement, one can account
for the echo by additional unknowns. The correct physical description would consist of assigning
unknowns for the AUT receive coefficients as well as for the incident field but this is not very
convenient.

If possible, it would be much more convenient, to just work with unknowns for the AUT.
This idea is at the core of modal echo suppression algorithms [Hess 2006; Hess 2010a; Hess
2011; Hess 2010b; Gregson 2009; Gregson 2010a; Gregson 2011a; Gregson 2011b; Gregson
2011d; Gregson 2011c; Gregson 2013; Gregson 2010b; Gregson 2012a; Gregson 2012b; Gregson
2010c; Gregson 2017a; Gregson 2017b; Tian 2019], but it is clear from the discussion of the
previous section, that current reconstruction methods behave in a similar manner18 [Quijano
2011a; Quijano 2011b; Quijano 2011b; Cano 2010; Cano-Facila 2011; Garcia-Gonzalez 2011].
At this point of the current discussion, it is unclear if it is possible to find an equivalent source
model for the AUT, which can account for the echo influences. Furthermore, if the AUT model
shall be extended to account for the echo influences one should have an understanding of where
to locate these additional sources.

To this end, assume an AUT model consisting of spherical receiving coefficients ̃𝛽𝑠𝜇𝑛 =
𝛽aut

𝑠𝜇′𝑛 + 𝛽gho
𝑠𝜇𝑛, where 𝛽gho

𝑠𝜇𝑛 are additional AUT receiving coefficients (they will be called ghost
coefficients) which are intended to account for the echo contributions. With the additional
receiving coefficients, the 𝑆12-parameter from (8.38) can be modeled as

𝑆′
12(𝜗𝑚, 𝜑𝑚, 𝜒𝑚) =

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

̃𝛽𝑠𝜇𝑛 ej𝜇𝜑𝑚 d𝑛
𝜇′𝜇(𝜗𝑚) ej𝜇

′𝜒𝑚 𝛼(1),pro
𝑠𝜇′𝑛

=
2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

(𝛽aut
𝑠𝜇𝑛 + 𝛽gho

𝑠𝜇𝑛) ej𝜇𝜑𝑚 d𝑛
𝜇′𝜇(𝜗𝑚) ej𝜇

′𝜒𝑚 𝛼(1),pro
𝑠𝜇′𝑛 , (8.43)

18Differences may occur because higher-order modes are not as stringently suppressed in current reconstruction
methods as in spherical wave expansions and since the reconstruction surfaces can be non-spherical in current
reconstruction methods.
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where now all the echo influences shall be expressed by the additional ghost AUT coefficients
𝛽gho

𝑠𝜇𝑛. Notice, that the expressions (8.38) and (8.43) agree with their description of the direct
contribution

𝑆direct
12 (𝜗𝑚, 𝜑𝑚, 𝜒𝑚) =

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

𝛽aut
𝑠𝜇𝑛 ej𝜇𝜑𝑚 d𝑛

𝜇′𝜇(𝜗𝑚) ej𝜇
′𝜒𝑚 𝛼(1),pro

𝑠𝜇′𝑛 (8.44)

between the AUT and the probe, but the description of the echo influence differs in both expres-
sions— in (8.38) the echo influences are (correctly) modeled by additional incident fields in
the test zone, whereas in (8.43) the echoes are modeled by additional (unphysical) AUT receive
coefficients. The echoic part of (8.38) is given by19

𝑆ech
12 (𝜗𝑚, 𝜑𝑚, 𝜒𝑚) =

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

𝛽aut
𝑠𝜇𝑛 ej𝜇𝜑𝑚 d𝑛

𝜇′𝜇(𝜗𝑚) 𝛼(1),ech
𝑠𝜇′𝑛 (𝜒𝑚) , (8.45)

whereas the echoic part in (8.43) is expressed by

𝑆′ech
12 (𝜗𝑚, 𝜑𝑚, 𝜒𝑚) =

2

∑
𝑠=1

𝑁TZ

∑
𝑛=1

𝑛

∑
𝜇=−𝑛

𝑛

∑
𝜇′=−𝑛

𝛽gho
𝑠𝜇𝑛 ej𝜇𝜑𝑚 d𝑛

𝜇′𝜇(𝜗𝑚) ej𝜇
′𝜒𝑚 𝛼(1),pro

𝑠𝜇′𝑛 . (8.46)

When the AUT coefficients are determined via an inverse problem, one can regard any deviations
from the true solution to be concentrated in the ghost coefficients 𝛽gho

𝑠𝜇𝑛.
The first question is now, whether the ghost coefficients 𝛽gho

𝑠𝜇𝑛 can account for the echo influences
in such a way that the 𝑆12-parameter in (8.38) is equal to the 𝑆′

12-parameter in (8.43) for all
measurement positions 𝑚 = 1, … , 𝑀. Obviously, this implies to make (8.46) equal to (8.45).
The second question is whether it is possible to find appropriate locations of the equivalent ghost
sources corresponding to the 𝛽gho

𝑠𝜇𝑛 coefficients. The latter question of defining a restricted source
region for the ghost contributions is relevant for the investigation of the separability of AUT and
ghost contributions, similar to the discussion for a stationary AUT from the previous sections.

Echo Influences Along a Latitude Circle (constant 𝜗)

Is it possible to find some ghost coefficients 𝛽(1),gho
𝑠𝜇𝑛 which establish the equality between (8.45)

and (8.46) for all angles 𝜗𝑚, 𝜑𝑚, and 𝜒𝑚? The answer to this question depends on the properties
of the echo contribution in the truly measured 𝑆21-parameters and the echo contribution which
can be reconstructed by the unphysical additional ghost coefficients in (8.46). At any arbitrary
fixed 𝜗𝑚 and for a fixed 𝜒𝑚, the 𝜑-dependency of the echo influence in the physically correct
description of the 𝑆21-parameter in (8.45) is given by the finite Fourier series

𝑆ech
12 (𝜗𝑚, 𝜑, 𝜒𝑚) =

𝑁TZ

∑
𝜇=−𝑁TZ

𝛾𝜇(𝜃𝑚, 𝜒𝑚) e j𝜇𝜑 , (8.47)

19The echo contribution of the incident field can have a complicated dependency on rotations about 𝜒 if the probe
performs the 𝜒 rotations. When the probe is rotated, the environment is illuminated differently, and the echoes
can change. However, if the AUT performs the 𝜒- rotation, we have 𝛼(1),ech

𝑠𝜇𝑛 (𝜒𝑚) = ej𝜇
′𝜒𝑚 𝛼(1),ech

𝑠𝜇𝑛 (0∘).
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with the Fourier coefficients

𝛾𝜇(𝜃𝑚, 𝜒𝑚) =
2

∑
𝑠=1

𝑁TZ

∑
𝑛=|𝜇|
𝑛≠0

𝑛

∑
𝜇′=−𝑛

𝛽aut
𝑠𝜇𝑛 d𝑛

𝜇′𝜇(𝜗𝑚) 𝛼(1),ech
𝑠𝜇′𝑛 (𝜒𝑚) . (8.48)

Note that 𝛾𝜇(𝜃𝑚, 𝜒𝑚) will generally be non-zero for |𝜇| ≤ 𝑁TZ independent of the values of the
fixed angles 𝜗𝑚 and 𝜒𝑚, because the 𝛼(1),ech

𝑠𝜇′𝑛 (𝜒𝑚) are generally non-zero for all |𝜇′| ≤ 𝑁TZ
The echo contribution which is modeled by (8.46) for the same 𝜑-circle at a fixed 𝜗𝑚 and for a

fixed 𝜒𝑚 is given by the finite Fourier series

𝑆′ech
12 (𝜗𝑚, 𝜑, 𝜒𝑚) =

𝑁𝜗𝑚

∑
𝜇=−𝑁𝜗𝑚

𝛾′
𝜇(𝜃𝑚, 𝜒𝑚) e j𝜇𝜑 , (8.49)

with the Fourier coefficients

𝛾′
𝜇(𝜃𝑚, 𝜒𝑚) =

2
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𝑠=1

𝑁TZ

∑
𝑛=|𝜇|
𝑛≠0

𝑛

∑
𝜇′=−𝑛

𝛽gho
𝑠𝜇𝑛 d𝑛

𝜇′𝜇(𝜗𝑚) ej𝜇
′𝜒𝑚 𝛼pro

𝑠𝜇′𝑛 . (8.50)

The largest mode number 𝑁𝜗𝑚
which must be considered in the Fourier series (8.49) depends on

𝜗𝑚 and can be estimated by 𝑁𝜗𝑚
≈ ⌈𝑁TZ sin(𝜗𝑚)⌉ for first-order probes, where ⌈⋅⌉ denotes the

rounding operation to the next higher integer [Hansen 1988, p. 23 and p.129]. For higher-order
probes, 𝑁𝜗𝑚

will be slightly larger in the order of ⌈𝑁TZ sin(𝜗𝑚) + 𝑁pro⌉, where 𝑁pro is the
largest non-zero mode order |𝜇′| for the direct probe contribution to the incident field. The
reason for this can be found in the behavior of the Wigner-d-functions d𝑛

𝜇′𝜇(𝜗𝑚), which tend
toward [Hansen 1988, p. 346]

d𝑛
𝜇′𝜇(0∘) = δ𝜇𝜇′ (8.51)

and
d𝑛

𝜇′𝜇(180∘) = (−1)𝑛+𝜇 δ−𝜇,𝜇′ (8.52)

at 𝜗𝑚 = 0∘ and 𝜗𝑚 = 180∘. This means that while the echo contribution at 𝜗 = 90∘ can be
completely represented by the unphysical model (8.46) (at 𝜗 = 90∘ we have 𝑁𝜗𝑚

≈ 𝑁TZ in
(8.49)), only a small portion of the echo contribution can be represented at 𝜗 = 0∘ by the
model (8.46). Only the lowest order modes of the corresponding Fourier expansion (8.47) can
be represented toward 𝜗 = 0∘ and 𝜗 = 90∘ (at 𝜗 = 0∘ and 𝜗 = 90∘ we have 𝑁𝜗𝑚

≈ 𝑁pro).
This shows that the formulation (8.43) cannot reproduce all of the echo influences. This can

be a desired effect because it means that some portions of the undesired echoes are removed
automatically if AUT sources are reconstructed from the measurements without caring for echoes.

Recommendations for Antenna Mounting

While it is hard to predict which percentage of the echo is removed by the formulation (8.43) (this
depends on the unknown AUT radiation pattern and the unknown characteristics of the echo),
the insights from the previous discussion can be used to formulate specific recommendations
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for the measurement setup concerning the location and orientation in which the AUT should be
mounted to the AUT rotation stage.

Concerning the AUT location, it is recommended that the AUT is moved as far away from the
𝑧-axis as possible. If the AUT is rotated by a full circle along the 𝜑-coordinate, it is irrelevant if
the translation is performed along the 𝑥- or the 𝑦-axis. The further the AUT is mounted away
from the rotation center, a larger portion of the echo influences is mapped toward higher-order
mode contributions which cannot be recreated by additional ghost sources. Furthermore, a larger
portion of echo influences is mapped toward ghost sources, which are not compatible with a
localized AUT model.

Concerning the AUT orientation, it is if course advisable to orient the AUT in such a way
that it does not point directly into the direction of the echo, if possible. For example, if the echo
object is located along the 𝑦-axis of the test zone coordinate system, aligning the AUT parallel to
the 𝑧-axis ensures that the AUT does not point directly toward the echo (see Fig. 8.14). If the
echo object is located along the 𝑥-axis, then the direction of the 𝜗-rotation of the AUT positioner
matters (assuming that only the range 0 ≤ 𝜗 ≤ π is sampled). Dependent on the rotation direction,
the AUT will point only in one of the half spaces with 𝑥 ≤ 0 or 𝑥 ≥ 0. If it cannot be avoided that
the AUT eventually points into the direction of the echo, one should mount the AUT such that it
points directly toward the echo when the AUT rotation stage is in the position 𝜗 = 0, 𝜑 = 0. It
may appear counter intuitive to mount the AUT such that it points toward the echo but (8.50)
shows that the largest echo suppression capabilities are given for 𝜗 = 0. Therefore, one should
aim for a measurement setup in which the maximum of the echo influence is expected for polar
angles around 𝜗 = 0.

8.2.3. Numerical Investigations for the Reconstruction of Spherical Coefficients

for the Antenna Under Test

In this section, numerical experiments are carried out to support the recommendations for antenna
mounting. Ideally the AUT never points toward the echo. If the measurement setup cannot avoid
that the AUT eventually points into the direction of the echo, it is beneficial if this undesired
case happens for 𝜗 = 𝜑 = 0∘. The numerical experiments have been carried out at a symbolic
frequency of 1GHz, but due to the scale invariance of Maxwell’s equations the results are
generally valid for all frequencies and all dimensions are given in terms of wavelengths to reflect
this fact.

The simulated measurement setup is depicted in Fig. 8.17 along with the directions of the
unit vectors in the test zone coordinates (the origin lies in the AUT rotation center). The AUT
is rotated through the test zone by the AUT rotation stage, which is indicated in the figure but
was not part of the simulations. The incident field in the test zone is composed of the probe field
plus an echo field from one of the five depicted echo locations. All echoes were located at 32 𝜆
distance from the AUT rotation stage. The echo locations 1 and 2 are on the 𝑥-axis, whereas the
echo locations 3 and 4 are rotated 30∘ away from the 𝑥-axis toward the 𝑧-axis. The echo location
5 lies on the 𝑦-axis. The probe location is at 16 𝜆 away from the AUT rotation center. The AUT
is translated away from the rotation center along the positive 𝑥-axis by a translation distance 𝑑
which has been varied from 0 to 8 𝜆. The 𝜒-rotation is assumed to be performed by the probe.
This was accomplished by considering two Hertzian dipole probes along the positive 𝑦- and
negative 𝑥-direction indicated by the two perpendicular arrows. The echo fields are simulated
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Fig. 8.17.: Simulated stationary probe scenario (not to scale). The incident field in the test zone is composed
of the probe field plus an echo field from one of the five depicted echo locations.

by Hertzian dipoles as well, all with unit excitation. To simulate the varying echo influence
dependent on the probe orientation 𝜒, also two polarizations have been considered for the echoes,
dependent on which of the two probe dipoles was active.

The same AUT with a 2 𝜆 minimum sphere as in Section 8.1.5 was considered. Two square
shaped current sheets are placed in front of each other with a separation in 𝑧-direction of 0.25 𝜆.
Every current sheet had the dimensions 2.822 897 𝜆 × 2.822 897 𝜆 in the 𝑥-plane such that all
AUT sources were confined in a minimum sphere of radius 𝑟aut = 2.0 𝜆, respectively. Hertzian
dipoles were regularly distributed on the current sheets with a separation of 0.1 𝜆 in 𝑥- and
𝑦-direction. The dipole excitation is constant along the 𝑦-direction, follows a half-wave of a sine
curve along the 𝑥-direction, and has a phase shift according to e j𝑘0𝑧 to form a main beam toward
the positive 𝑧-direction, following the procedure described in [Schmidt 2011a].

For every scenario, two measurements were simulated, with the AUT in one of two orientations,
pointing either in 𝑧-direction or toward the echo in the initial position at 𝜗 = 𝜑 = 0. This means
that for every translation distance 𝑑, a total of ten spherical measurements were obtained— in
every measurement, only the echoes at one of the five locations were active, yielding five different
echo scenarios and for each echo scenario two AUT orientations were considered.

The spherical measurements were obtained by rotating the AUT around 𝜗 and 𝜑 along the
directions indicated in Fig. 8.17. The rotation along 𝜑 was performed in the range 0 ≤ 𝜑 < 360∘

and a measurement sample was obtained every 𝛥𝜑 = 2∘. The rotation along 𝜗 was performed in
the range 0 ≤ 𝜗 ≤ 180∘ and a measurement sample was obtained every 𝛥𝜗 = 2∘. This means
that the AUT rotation stage did never point toward the echo locations 1, 3, and 5. Thus the AUT
orientation along the 𝑧-direction should be beneficial for the scenarios involving these echoes,
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according to the recommendations from above.
In contrast to this, the AUT rotation stage does eventually point toward the echo positions 2

and 4 and if the AUT is mounted pointing in 𝑧-direction it will, thus, also eventually point toward
the echo locations. In the echo scenarios 2 and 4 it is, therefore, recommended to mount the AUT
with its orientation toward the probes, according to the discussion above.

Two sets of spherical wave coefficients are independently reconstructed from each echoic
measurement: The spherical wave coefficients ̃𝛽(1),TZ

𝑠𝜇𝑛 corresponding to a large spherical wave
expansion in a coordinate system centered at the AUT rotation center (i.e., the center of the test
zone)—ṫhese coefficients will hereafter be referred to as the test zone field coefficients—and
the spherical wave coefficients ̃𝛽(1),aut

𝑠𝜇𝑛 which correspond to a smaller spherical wave expansion
centered at the center of the AUT minimum sphere20 —these coefficients will be called AUT field
coefficients. The tilde over the coefficients hints to the fact that both sets of retrieved coefficients
are potentially distorted by the echo influences.

For the test zone field coefficients, mode orders with 𝑛 ≤ 𝑁TZ = 𝑟TZ 𝑘0 + 𝑛buf are considered,
where 𝑟1 is the radius of the test zone and 𝑛buf = 2 has been chosen in this simulation campaign.
The test zone field coefficients correspond to a very large source region. They are intended to
include the true AUT contributions as well as all possible ghost contributions. Furthermore, the
deviation of the reconstructed test zone field coefficients from the ideal test zone field coefficients
(i.e., the free-space AUT coefficients translated into a spherical wave expansion centered at the
rotation center) can be regarded as a measure of the total distortion caused by the echoes in the
complete spherical measurement.

For the AUT field coefficients, only mode orders with 𝑛 ≤ 𝑁aut = 𝑟aut 𝑘0 + 𝑛buf are considered,
based on the radius 𝑟aut of the minimum sphere around the AUT sources. The retrieved AUT field
coefficients are an approximation to the free-space AUT coefficients. Notice that retrieving the
AUT field coefficients is exactly equivalent to the MARS technique (e.g., [Gregson 2010b])21.

In the following, the AUT reconstruction error will be quantified by the mean square deviation

𝜖aut =

√√√√√√√

⎷

2
∑
𝑠=1

∞
∑
𝑛=1

𝑛
∑

𝜇=−𝑛 | ̃𝛽(1),aut
𝑠𝜇𝑛 − 𝛽(1),aut⋆

𝑠𝜇𝑛 |
2

2
∑
𝑠=1

∞
∑
𝑛=1

𝑛
∑

𝜇=−𝑛 |𝛽
(1),aut⋆
𝑠𝜇𝑛 |

2
(8.53)

of the reconstructed coefficients ̃𝛽(1),aut
𝑠𝜇𝑛 from the true free-space coefficients 𝛽(1),aut⋆

𝑠𝜇𝑛 . This is
equivalent to the root mean square deviation

𝜖aut =

√√√√√

⎷

∯ [|𝐸𝜗,aut(𝜗, 𝜑) − 𝐸𝜗,ref(𝜗, 𝜑)|
2 + |𝐸𝜑,aut(𝜗, 𝜑) − 𝐸𝜑,ref(𝜗, 𝜑)|

2
] d�̂�

∯ [|𝐸𝜗,ref(𝜗, 𝜑)|
2 + |𝐸𝜑,ref(𝜗, 𝜑)|

2
] d�̂�

(8.54)

20In the actual implementation, the corresponding transmit coefficients �̃�(4),TZ
𝑠𝜇𝑛 and �̃�(4),aut

𝑠𝜇𝑛 were reconstructed, but it
is clear that these relate to the receiving coefficients by a simple reciprocity relationship.

21The AUT field coefficients can as well be found from the test zone field coefficients by performing a translation
between the coordinate origins and truncating the resulting mode expansion at 𝑁aut (This is the reconstruction
procedure of MARS). The equivalence between directly reconstructing the AUT field coefficients and taking the
detour via the test zone field coefficients was discussed at length in Section 8.1.3.
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Fig. 8.18.: Reconstruction error for ̃𝛽(1),TZ
𝑠𝜇𝑛 depen-

dent on the AUT translation distance 𝑑 with
the AUT pointing toward the 𝑧-direction.
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Fig. 8.19.: Reconstruction error for ̃𝛽(1),TZ
𝑠𝜇𝑛 depen-

dent on the AUT translation distance 𝑑 with
the AUT pointing toward the echo.

of the reconstructed FF pattern 𝑬FF,aut(𝜗, 𝜑) from the true AUT FF 𝑬FF,ref(𝜗, 𝜑). The recon-
structed FF is obtained from the AUT transmission coefficients �̃�(1),aut

𝑠𝜇𝑛 = 2 (−1)𝜇 ̃𝛽(1),aut
𝑠,−𝜇,𝑛, which

are reciprocal to the receiving coefficients (see (4.27)).
Analogously, the error in the test zone field coefficients is quantified by the deviation

𝜖TZ =

√√√√√√√

⎷
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(8.55)

of the reconstructed coefficients ̃𝛽(1), TZ
𝑠𝜇𝑛 from the true free-space coefficients 𝛽(1), TZ⋆

𝑠𝜇𝑛 .
The resulting reconstruction errors for the test zone field coefficients in the different echo

scenarios (denoted by 𝜖TZ,1 to 𝜖TZ,5 ) are shown in Fig. 8.18 for the AUT being mounted pointing
into the 𝑧-direction (i.e., for 𝜗 = 𝜑 = 0∘, the AUT points in 𝑧-direction) and in Fig. 8.19 for the
AUT being mounted pointing toward the echo (i.e., for 𝜗 = 𝜑 = 0∘, the AUT points toward the
echo object). The reconstruction deviation of the test zone field coefficients ̃𝛽(1),aut

𝑠𝜇𝑛 is dominated
by the echo perturbation collected by the AUT traversing through the test zone. It can be seen
that the total influence of the echo on the test zone field coefficients is approximately constant
with respect to the translation distance 𝑑 of the AUT (which should not be surprising given the
approximately homogeneous echo field in the test zone and thus the same echo influences are
collected by the AUT). The scenarios 1, 3, and 5 with the AUT mounted in 𝑧-direction show the
lowest reconstruction error for the test zone coefficients. These are the scenarios, where the AUT
never points directly toward the echo and thereby collects the least amount of echo signals. In all
other scenarios, the AUT is eventually oriented directly toward the echo for some positions of
the AUT rotation stage. The total echo influence in the scenarios 2 and 4 is smaller when the
AUT was initially pointing directly into the echo direction (Fig. 8.19) than for the corresponding
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the AUT pointing toward the 𝑧-direction.
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dent on the AUT translation distance 𝑑 with
the AUT pointing toward the echo.

scenario when the AUT was initially pointing in 𝑧-direction (Fig. 8.18), showing the importance
of orienting the AUT optimally. If it cannot be avoided that the AUT eventually points to the
echo during the measurement, it is beneficial to let this happen for 𝜗 = 𝜑 = 0∘.

The reconstruction error for the AUT field coefficients is shown in Fig. 8.20 for the AUT being
mounted pointing in 𝑧-direction and in Fig. 8.21 for the AUT being mounted pointing toward
the echo. In contrast to the test zone field coefficients, the AUT coefficients are more accurately
reconstructed the further the AUT is translated from the rotation center. This implies that the
equivalent sources which correspond to the additional ghost coefficients 𝛽gho

𝑠𝜇𝑛 move away from
the location of the true AUT sources the further the AUT is dislocated from the rotation center.
With increasing separation between the ghost sources and the true AUT sources, the portion of
the ghost sources which is mapped onto the real AUT sources decreases. This effect has been
investigated in detail in Section 8.1.3.

In the scenarios 1, 3, and 5, the AUT does never point toward the echo when it is originally
oriented toward the 𝑧-axis (Fig. 8.20). Naturally, this way of mounting the AUT is preferred over
orienting it toward the echoes (Fig. 8.21), because less echo influences are overall collected while
traversing the test zone if the AUT does never point toward the echo. In the scenarios 2 and 4, it
cannot be avoided that the AUT eventually points toward the echo. As predicted, it is beneficial
to mount the AUT pointing toward the echo in these cases.

The results support the recommendations for antenna mounting. The reconstruction errors
are at a minimum for those measurement scenarios, where the AUT does never point directly
into the echo direction (scenarios 1,3, and 5 in Figs. 8.18 and 8.20). If it cannot be avoided
that the AUT points eventually into the direction of the echo, it is beneficial to let this happen
at the measurement angle 𝜗 = 0 (The error curves in Figs. 8.19 and 8.21 for scenarios 2 and
4, where the AUT points toward the echo in the measurement position 𝜗 = 0 are below the
corresponding error curves in Figs. 8.18 and 8.20, where the AUT points toward the echo for
some other 𝜗-angle). Mounting the AUT further away from the rotation center leads to less echo
contributions being mapped to the reconstructed AUT coefficients.
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Fig. 8.22.: Incident field on the AUT consisting
of two plane waves from the probe and
echo direction, respectively. The total
received signal is the sum of the received
signals from each plane wave.
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Fig. 8.23.: Equivalent model with incident field
being a single plane wave from the probe
direction. The total received signal is the
sum of the signals from the true AUT
and the ghost antenna.

8.2.4. Spatial Distribution of the Ghost Sources

Is it possible to find a suitable source region for the equivalent currents corresponding to the
additional ghost coefficients 𝛽gho

𝑠𝜇𝑛? Identifying the source region for the additional sources could
be beneficial for two reasons. First of all, knowledge about the spatial distribution of the equivalent
sources can lead to valuable insights about the echo scenario. Second, echo suppression can be
more effective in some cases, if equivalent sources for the echo are considered simultaneously
with the AUT sources in the source reconstruction process, as was shown in section 8.1. In this
section it is argued that a suitable source region for the additional ghost sources corresponding to
𝛽gho

𝑠𝜇𝑛 is a certain torus-shaped region. Two arguments are made to support this statement. First, a
heuristic explanation is given why the equivalent sources may be found in a torus shaped region.
Thereafter, numerical experiments show that the reconstructed fields by the equivalent sources
in the torus together with the AUT currents are the same fields as the reconstructed fields from
sources which are located on a large sphere enclosing the complete test zone (and also the same
fields as the reconstructed fields using a spherical wave expansion for the complete test zone).

Heuristic Argument about the Location of the Additional Ghost Sources

To build an intuition about why a torus-shaped region is a good candidate for a possible spatial
support for the additional ghost sources, consider the following situation. Both, the probe antenna
and the echo object, are located in FF distance from the AUT such that the incident field can
be regarded as a superposition of two plane waves from different directions spanning the angle
𝜗ech as depicted in Fig. 8.22 (the same argument would apply as long as the echo fields can be
regarded as a scaled and rotated version of the probe fields in the complete test zone region). The
aim is to find an equivalent scenario without the echo portion of the incident field (i.e., only the
unperturbed probe field is incident on the AUT). In the equivalent scenario, the echo influence is
accounted for by adding the received signal of an additional ghost antenna to the received signal
of the AUT. To correctly account for the echo influence in the measured 𝑆12-parameter in the
equivalent scenario, the ghost antenna must be a (scaled and) rotated version of the true AUT.
This scenario is depicted in Fig. 8.23. Knowing the echo rotation angle 𝜗ech, one can rotate the
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Fig. 8.24.: When the true AUTmoves along the sur-
face of the test zone (blue coordinate sys-
tem), the ghost antenna performs the corre-
sponding movement in the rotated (orange)
coordinate system.
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Fig. 8.25.: The spherical surface denotes the sur-
face of the test zone. The probe and the
echo object remain at their respective posi-
tion. The circle around the AUT clarifies
possible locations of the center of the ghost
antenna for the given AUT position.

ghost antenna into the appropriate position for any AUT position.
When the AUT moves to different positions on the surface of the test zone sphere, the ghost

antenna must appear at different positions relative to the AUT to ensure that the relative position
between the ghost antenna and the incident probe field remains equal to the relative position
between the true AUT and the incident echo field in the original scenario. In fact, for every
movement of the AUT, the ghost antenna has to perform a corresponding movement in a rotated
coordinate system as depicted in Fig. 8.24. The angle between corresponding points in the blue
and orange coordinate systems in Fig. 8.24 is always 𝜗ech.

This means that for all AUT positions, the ghost antenna can be found somewhere on a well
defined circle around the AUT, such that it spans the angle 𝜗ech to the AUT (measured from the
AUT rotation center), ensuring that the 𝑆12-parameter of the equivalent scenario is the same as
in the original scenario. The constellation is depicted in Fig. 8.25 for an AUT which is mounted
outside the rotation center and rotates through the test zone. The gray sphere in Fig. 8.25 denotes
the surface of the test zone, which may be traversed by the AUT (the AUT does not always
traverse the complete test zone surface in a complete spherical measurement, dependent on the
mounting of the AUT). The orange circle on the surface of the sphere denotes the possible center
locations for the ghost antenna. No matter, where the AUT is rotated on the gray sphere, the
ghost antenna is found on the indicated circle (which moves along with the AUT).

It is plausible that the combined influence of all ghost antennas for the different AUT positions
can be represented by some current distribution performing a weighted mean of the corresponding
ghost antennas. This leads to the conclusion that the suitable region for the ghost sources is a
torus around the orange circle in Fig. 8.25 (the orange circle in Fig. 8.25 denotes the major radius
of the torus). Since the ghost AUT in this scenario consists of a rotated version of the true AUT,
the minor radius of the torus must be large enough to fit around the complete AUT, thus, the
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Fig. 8.26.: A torus with indicated major radius as the distance between the center of mass and the central
ring of the torus and the minor radius as the “thickness of the tube”.

minor radius is equal to the radius of the minimum sphere around the AUT. See Fig. 8.26 for a
clarification of the terms major radius and minor radius.

All points on the major radius of the torus must enclose the fixed angle 𝜗ech with the rotation
center and the AUT center. Therefore, the major radius of the torus is larger, the further the AUT
is mounted outside the rotation center. As a consequence, the separation between the actual AUT
sources and the unphysical ghost contributions is increased for an AUT which is placed further
away from the rotation center. If the antenna is placed exactly in the rotation center, the locations
of the AUT sources and the unphysical ghost sources coincide. For small translation distances,
the torus will still intersect the AUT region, but if the AUT translation becomes large enough,
the ghost torus is well separated from the AUT sources.

This argument for the locations of the ghost sources is based on assumption that the incident
echo field can be approximately regarded as as scaled and rotated version of the incident probe
fields. For more complicated echo scenarios, one must consider a torus with a larger minor and
major radius because the ghost sources must be distributed over a larger region, dependent on the
minimal and maximal angular 𝜗-separation between the echo and the probe, and consequently
the source region for the ghost sources gets “smeared” in a larger region.

Certainly, the presented argument for the location of the ghost sources is not very rigorous. The
argument itself cannot be used to convincingly prove that sources can be found in the described
toroidal region which are equivalent to the ghost coefficients of the spherical wave expansion.

Numerical Investigations for the Reconstruction of Surface Currents for the

Antenna Under Test

Numerical simulations have been performed in order to support the suspicion that one can find
the ghost sources from Section 8.2.3 in a toroidal source region. The same simulated data as in
Section 8.2.3 has been used in this section, but the reconstruction of the AUT fields is carried out
with equivalent surface current based methods instead of spherical wave expansions. Equivalent
currents were reconstructed on three different Huygens surfaces from the simulated 𝑆12-values
with the AUT at the translation distances 𝑑 = 4 𝜆, 𝑑 = 8 𝜆, and 𝑑 = 10𝜆 (see Fig. 8.17). The
three different Huygens surfaces are

• a spherical surface 𝑆aut with radius 𝑟aut = 2 𝜆 centered at the AUT center for each AUT
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(a) 𝜗ech = 90∘

(b) 𝜗ech = 60∘

Fig. 8.27.: Huygens surface for
the AUT (blue) and ghost
(orange) sources for the
translation distance 4 𝜆.

(a) 𝜗ech = 90∘

(b) 𝜗ech = 60∘

Fig. 8.28.: Huygens surface for
the AUT (blue) and ghost
(orange) sources for the
translation distance 8 𝜆.

(a) 𝜗ech = 90∘

(b) 𝜗ech = 60∘

Fig. 8.29.: Huygens surface for
the AUT (blue) and ghost
(orange) sources for the
translation distance 10 𝜆.

translation distance, respectively. The reconstructed FFs from this reconstruction surface
are indicated by an index “A”.

• a composed surface 𝑆com = 𝑆aut ∪ 𝑆gho consisting of the combination of two parts— the
AUT surface 𝑆aut and a toroidal surface 𝑆gho with its major radius spanning an angle of
either 90∘ or 60∘ to the AUT (as seen from the center of the test zone, i.e., the rotation center
of the AUT) to account for the echoes coming from different directions. The reconstructed
FFs obtained by only considering the reconstructed currents on the AUT surface from
this two-part surface (the reconstructed currents on the torus are neglected for the FF
calculation) are indicated by an index “B” in the following. The complete FFs obtained
from the currents on both reconstruction surfaces are denoted by an index “C”.

• a spherical surface 𝑆TZ with radius 𝑟TZ = 12 𝜆 centered at the AUT rotation center (i.e., the
stationary center of the test zone). The FFs are obtained from this large spherical surface
and are denoted by the index “D”.

The aim is to show that the reconstructed fields from case “C” are practically the same as the
reconstructed fields from case “D”. The fields from case “D” should be equivalent to the fields
from the spherical test zone coefficients ̃𝛽(1), TZ

𝑠𝜇𝑛 . The results obtained in the case “A” are expected
to be very similar to the results from the spherical-mode based reconstruction and the results
of case “B” are used to investigate if the explicit consideration of the ghost sources brings any
advantages for the source reconstruction.

The meshed surfaces for the AUT and the ghost sources (serving as reconstruction surface
for the FFs 𝑬FF,B and 𝑬FF,C) are depicted in Figs. 8.27 to 8.29 for the AUT translation distances
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Fig. 8.30.: Error𝑬FF,C−𝑬FF,ref with the AUT point-
ing into 𝑧-direction. Dashed lines denote
the deviation 𝑬FF,C − 𝑬FF,D. Background
lines are from Fig. 8.18 for comparison.
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Fig. 8.31.: Error𝑬FF,C−𝑬FF,ref with the AUT point-
ing toward the echo. Dashed lines denote
the deviation 𝑬FF,C − 𝑬FF,D. Background
lines are from Fig. 8.19 for comparison.

𝑑 = 4 𝜆, 𝑑 = 8 𝜆, and 𝑑 = 10𝜆, respectively. Each AUT sphere has the radius 𝑟aut = 2 𝜆 which is
also the minor radius of the torus. It can be clearly seen how a larger AUT translation distance 𝑑
leads to a larger separation between the AUT and the ghost torus.

The solid lines in Fig. 8.30 show the root mean square error 𝜖𝐶,1 (i.e., the deviation from the
ideal free-space AUT fields, see (8.54)) of the retrieved FFs from reconstructed surface currents
on 𝑆com = 𝑆aut ∪ 𝑆gho (index “C”) for the different echo scenarios with the AUT mounted to
initially point in 𝑧-direction. The faint lines in the background show the corresponding error
curves of the spherical test zone coefficients ̃𝛽(1), TZ

𝑠𝜇𝑛 from Fig. 8.18, where a spherical expansion
with a large minimum sphere was used. The error curves for the equivalent current based
reconstruction of the case “C” show a good agreement with the results for the test zone field
coefficients ̃𝛽(1), TZ

𝑠𝜇𝑛 obtained in the spherical expansion. The error curves are shown in Fig. 8.31
for the same configurations but the AUT mounted toward the echoes. Again, the curves show a
good agreement with the results obtained from the spherical expansion. This indicates that the
reconstructed currents on the ghost and AUT surfaces (case “C”) generate the same fields as the
reconstructed spherical test zone coefficients 𝛽gho

𝑠𝜇𝑛 because the error curves are the same for both
cases (compare the solid lines in Figs. 8.30 and 8.31 to their respective counterparts in Figs. 8.18
and 8.19, which are also shown as gray lines in the background.)

The dotted lines show the root mean square deviation ̃𝜖𝑘 between the retrieved FFs from the
reconstructed surface currents on the surface 𝑆com (case “C”) and the retrieved FFs from the
reconstructed surface currents on the large surface 𝑆TZ (case “D”) for the 𝑘th echo position.
The deviation between the reconstructed fields from case “C” and case “D” is well below
their individual deviations from the actual reference22. These results show, that practically the
same fields are generated by the reconstructed currents on the large sphere (case “D”) and the

22The root mean square error curves for case “D” are, thus, not depicted because the curves are not visibly
distinguishable from the already plotted lines for the case “C”.

136



8.2. Stationary Probe

−180° −90° 0° 90° 180°

0
−10
−20
−30
−40
−50
−60
−70
−80

𝑑 = 8 𝜆𝑑 = 8 𝜆 AUT toward 𝑧AUT toward 𝑧

𝜗

Re
la
tiv

e
|𝐸

𝜗(
𝜗,

0∘ ) |
in

dB

Ref. 𝐸𝜗,FF,C,4
𝐸𝜗,FF,D,4 𝐸𝜗,FF,C,4 − 𝐸𝜗,FF,D,4

Fig. 8.32.: Co-polar pattern of 𝑬FF,C and 𝑬FF,D in
the 𝜑 = 0∘-cut for the echo in position 4.
The AUT was 8 𝜆 away from the 𝑧-axis and
mounted toward the 𝑧-direction.
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Fig. 8.33.: Co-polar pattern of 𝑬FF,C and 𝑬FF,D in
the 𝜑 = 90∘-cut for the echo in position 4.
The AUT was 8 𝜆 away from the 𝑧-axis and
mounted toward the echo direction.

reconstructed currents on the torus and the AUT surface (case “C”)23.
The error curves alone are not well suited to support the statement that the fields generated

by the reconstructed currents on the torus and the AUT surface (case “C”) are the same as the
fields generated by the reconstructed currents on a Huygens surface enclosing the complete test
zone (case “D”). To further supplement the idea that the ghost sources are located in the torus,
Fig. 8.32 shows the 𝜑 = 0∘-cut of the co-polar component of the reconstructed FF from either the
sources on the combined surface 𝑆com (index “C”), or the sources on the large spherical surface
𝑆TZ (index “D”) for the exemplary case of the echo scenario 4 with the AUT translated 8 𝜆 away
from the rotation center and mounted toward the 𝑧-axis24. The gray curve in the background
denotes the ideal free-space AUT fields for comparison. The corresponding 𝜑 = 90∘-cuts are
shown in Fig. 8.33. Apart from a small angular region around 𝜗 = ±60∘ in Fig. 8.33, a very good
agreement25 is found between the reconstructed fields from the equivalent surface currents on
the torus together with the sources on the AUT (index “C”) and the sources on a large spherical
surface (index “D”). The depicted FFs correspond to the (worst case) scenario 4, where according
to Fig. 8.30 the largest deviations occur between the fields of case “C” and the fields of case
“D” (compare the dotted lines in Fig. 8.30). The agreement between the reconstructed fields of
case “C” and the reconstructed fields of case “D” is even better in the other scenarios. The fields
generated by the surface currents on the large spherical surface (case “D”) are very similar to the
corresponding fields from the reconstructed test zone field coefficients ̃𝛽(1), TZ

𝑠𝜇𝑛 (maximum FF
deviation < −40 dB for all cases, but the spherical coefficients ̃𝛽(1), TZ

𝑠𝜇𝑛 were only reconstructed
up to a maximum AUT translation distance of 𝑑 = 8 𝜆), thus, the comparison to the spherical
expansion is not shown here to avoid unnecessary repetition. The results support the suspicion

23A possible explanation for the larger deviation for the echo positions 2 and 4 in Fig. 8.18 is that the echo fields
are not exactly a rotated version of the probe fields in the test zone and therefore the argument about the torus
shaped ghost source region is not exactly accurate. These unideal influences are more prominent in cases 2 and
4, where the echo distortions are strongest.

24The situation is very similar for all other cases.
25The echo fields are not exactly a rotated version of the probe fields in the test zone. The argument about the torus

shaped ghost source region is not exactly accurate. This may explain the deviations in the small angular region
around 𝜗 = ±60∘ in Fig. 8.33.
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Fig. 8.34.: Error 𝑬FF,A/B − 𝑬FF,ref with the AUT
pointing toward the echo. Background lines
are from Fig. 8.20 for comparison.
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Fig. 8.35.: Error 𝑬FF,A/B − 𝑬FF,ref with the AUT
pointing toward the echo. Background lines
are from Fig. 8.21 for comparison.

that all ghost fields do in fact correspond to fields generated in the proposed torus.
Can this knowledge about the location of the ghost sources be utilized to separate them better

from the desired AUT contributions as was the case for a static AUT? This question can be
answered by neglecting the reconstructed sources on the torus for the FF calculation (case “B”)
and comparing the results to the case, where no torus shaped ghost source region is considered
for the reconstruction (case “A”). The root mean square errors of the relevant reconstruction
scenarios are found in Fig. 8.34 for the echoic measurement scenarios with the AUT mounted in
𝑧-direction and in Fig. 8.35 for the AUT mounted toward the echo. The solid lines denote the
errors in the reconstructed FFs when currents are only reconstructed on the AUT surface (case
“A”). These lines are again in good agreement with the lines from Figs. 8.20 and 8.21, which
are shown faintly in the background, indicating that the surface current based methods perform
similar to the spherical wave based methods, if no additional sources for the echo are considered.
The dotted lines denote the error corresponding to the retrieved FFs from the currents on the
AUT surface, where for the reconstruction also currents on the torus were assumed (index “B”,
the currents on the torus were discarded for the FF calculation). Some scenarios benefit from
modeling the ghost sources simultaneously with the AUT sources (the dotted lines are below
the corresponding solid lines), but a beneficial behavior cannot be claimed in general. For many
scenarios the achieved mean square error is lower for case “A”, where only AUT sources have
been modeled without the ghost sources. Apparently, the mutual coupling effects between the
AUT sphere and the torus which have been described qualitatively in Section 8.1 cannot be
avoided in the reconstruction case “B”, even for large separation distances 𝑑 of the AUT. The
problem is that even though the absolute separation between the AUT and the torus increases,
also the size of the torus increases with the same rate. The AUT radiation into the direction of
the torus cannot be reconstructed with certainty, as the radiated field portions into this direction
cannot unambiguously be assigned to either source region.
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8.3. Directive Probes and Virtual Probe Arrays

Getting rid of the echo influence in measurement scenarios with a static probe is particularly
challenging. Perfectly removing the echoes in post-processing is often not possible even if the
locations of the equivalent sources accounting for the distortion are known. Therefore, the goal
must be to obtain measurement samples, which have as little echo contamination as possible. A
simple, yet effective method to avoid the negative influence of echoes in stationary probe as well
as in stationary AUT measurement scenarios is to use directive probes. If the probe does not
illuminate the echoes in the first place, no echo currents are induced and the incident fields on the
AUT are the same as in a completely anechoic environment. More precisely, according to (6.5),
the 𝑆21-parameter between the radiating AUT (antenna 1) and the receiving probe (antenna 2)
can be expressed by

𝑆21 = ∯
𝑆2

∯
𝑆1

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱1̃(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�1̃(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱1̃(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�1̃(𝒓′)] d𝑎′ d𝑎

+ ∯
𝑆2

∯
𝑆ech

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) ⋅ ̂𝑱ech,1(𝒓′) + ̂𝑱2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′) ⋅ �̂�ech,1(𝒓′)

− �̂�2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) ⋅ ̂𝑱ech,1(𝒓′) − �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′) ⋅ �̂�ech,1(𝒓′)] d𝑎′ d𝑎 ,
(8.56)

where ̂𝑱2, �̂�2 are the normalized equivalent probe currents, ̂𝑱ech,1, �̂�ech,1 are the scattering
currents induced on the echo object due to the AUT fields and ̂𝑱1̃, �̂�1̃ are the equivalent currents
on the AUT, which contain the distortions from multiple interactions between the AUT and
the probe but distortions due to multiple interactions between the AUT and the echo object are
neglected for the moment. With the identity (compare (3.10) to (3.11))

𝓖−
JH(𝒓, 𝒓′) = −𝓖−

ME(𝒓, 𝒓′) (8.57)

for the dyadic Green’s functions and by observing that the normalized probe fields are found by

�̂�2(𝒓′) = ∯
𝑆2

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JE(𝒓, 𝒓′) + �̂�2(𝒓) ⋅ 𝓖−

ME(𝒓, 𝒓′)] d𝑎 (8.58)

and
�̂�2(𝒓′) = ∯

𝑆2

[ ̂𝑱2(𝒓) ⋅ 𝓖−
JH(𝒓, 𝒓′) + �̂�2(𝒓) ⋅ 𝓖−

MH(𝒓, 𝒓′)] d𝑎 (8.59)

one finds for the 𝑆21-parameter

𝑆21 = ∯
𝑆1

[�̂�2(𝒓′) ⋅ ̂𝑱1̃(𝒓′) − �̂�2(𝒓′) ⋅ �̂�1̃(𝒓′)] d𝑎′

+ ∯
𝑆1

[�̂�2(𝒓′) ⋅ ̂𝑱ech,1(𝒓′) − �̂�2(𝒓′) ⋅ �̂�ech,1(𝒓′)] d𝑎′ , (8.60)
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i.e., the 𝑆21-parameter is obtained by weighting the equivalent AUT and echo currents by the
incident probe fields and adding both contributions. The magnitude of the probe fields at the
location of the corresponding equivalent currents can be interpreted as the probe sensitivity of
the corresponding currents [Jin 2015, p. 103]. If the probe fields have a much lower magnitude at
the echo location than the AUT location, the measured 𝑆21-parameter is much more sensitive for
the AUT currents than for the echo currents. Due to antenna reciprocity, it is irrelevant whether
the probe antenna was radiating or receiving in the actual measurement. The echo distortions do
not influence the 𝑆21-parameter measurement (or the 𝑆12-parameter measurement) if the probe
does not illuminate the echo, thus, directive probes are desired to suppress the echo influences.

However, (highly) directive probes bring certain disadvantages with them. In order to shape
the directive beam, they are electrically large and thus prone to multiple interactions with the
AUT. These drawbacks can be mitigated to some extend if virtual probe arrays [Yinusa 2014;
Dohler 2002; Dohler 2004; Dohler 2009] are used. The received signal of a probe array consisting
of several antenna elements can be synthesized by a coherent linear combination of measured
samples from different probe positions. In this way the beneficial effects of a highly directive
probe can be achieved also with probes of smaller size. In particular if the individual probe
positions used to form the virtual array vary their distance to the AUT, one can increase the
directivity toward the AUT while simultaneously decreasing the influence of multiple interactions.
Simply speaking, the reason for this can be found in the fact that the path length of the first-order
scattered field (i.e., the field distortion caused by a scatterer at the receiving antenna, which
is again scattered at the transmitting antenna) is three times the path length of the direct LOS
contribution. Thus the phase of the direct LOS signal varies approximately by e−j𝑘0 𝑟 with the
distance 𝑟 between the AUT and the probe while the the phase of the 𝑛th order multiple scattering
(i.e., the signal contribution which is characterized by bouncing 𝑛 times back and forth between
the AUT and the probe) varies approximately by e−j(1+2𝑛)𝑘0 𝑟. Consequently, multiple scattering
leads to variations in the measurement signal dependent on the distance between the AUT and the
probe with a period of 𝜆/(2𝑛) [Hansen 1988, p.208]. While the coherent sum of the measurement
signal with the correct phase leads to constructive interference of the desired LOS contribution,
the contribution from multiple scattering is mitigated by destructive interference.

The principle of virtual array measurements is explained for a specific measurement example
in the following.

8.3.1. Measurement with a Virtual Array

To investigate the effectiveness of synthesizing virtual probe arrays for echo suppression, mea-
surements have been obtained in the anechoic antenna measurement chamber of the Chair of
High-Frequency Engineering at TUM. Preliminary results from this measurement set have been
presented at conferences [Knapp 2016; Knapp 2017c]. Spherical measurements have been con-
ducted with a dual-ridged horn DRH400 as an AUT and a dual-ridged horn DRH18 as a probe
at 2.5GHz. An echo influence was created by putting a metal plate into the chamber. The size
of the plate was 80 cm × 55 cm with about 5mm thickness. The plate was mounted on a tripod
and placed into the chamber with an approximate distance between the plate center to the probe
center of 1.20m in 𝑥-direction, 1.88m in 𝑦-direction and 0.04m in 𝑧-direction.

The AUT was rotated and the 𝑆12-parameter was sampled every 1.5∘ in 𝜗- and 𝜑-direction
with two orthogonal probe polarizations, yielding a total of 241 ⋅ 121 ⋅ 2 = 58 322 measurement
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Fig. 8.36.: Schematic drawing of the measurement
setup for the virtual array measurements (not
to scale).

Fig. 8.37.: Photo of the measurement setup for
the virtual array measurements.

samples per spherical measurement. The distance between the AUT rotation center was varied
from 𝑟1 = 2.664m to 𝑟8 = 2.839m in steps of 0.025m and a complete spherical measurement
was obtained with every probe distance such that in the end eight spherical measurements with
identical AUT angles were available. A schematic drawing and a photo of the measurement setup
are depicted in Fig. 8.36 and Fig. 8.37, respectively.

To get an idea of the impact of the echo on NF measurements, first, the NF data from each
measurement surface is transformed into the FF by FIAFTA, where in an intermediate step
the equivalent surface currents on an enclosing hull were reconstructed for the AUT. The echo
object has a considerable impact and the retrieved FFs from the perturbed measurements deviate
from the reference FF which are obtained from an anechoic NF measurement. The co-polar
component of the reconstructed FF from the spherical measurements at the closest of the eight
measurement distances 𝑟1 = 2.664m is shown in Fig. 8.38 for the 𝜑 = 0∘-cut and in Fig. 8.39 for
the 𝜑 = 90∘-cut. All FFs are normalized to their respective co-polar component in main beam
direction and the logarithmic deviation is calculated component wise as

𝜖𝜗/𝜑,dB(𝜗, 𝜑) = 20 log10(|
𝐸FF,𝜗/𝜑(𝜗, 𝜑)

𝐸FF,max
−

𝐸refFF,𝜗/𝜑(𝜗, 𝜑)
𝐸refFF,max |) , (8.61)

where 𝐸FF,𝜗 is the 𝜗-component of the echo contaminated retrieved FF with 𝐸FF,max its co-polar
component in main beam direction and 𝐸FF,𝜑 the corresponding 𝜑-component. Correspondingly,
𝐸refFF,𝜗 and 𝐸refFF,𝜑 are the 𝜗- and 𝜑-components of the reference FF with 𝐸refFF,max being the
co-polar component in main beam direction. The maximum deviation of the echoic FF from the
reference is larger than −20 dB showing a clear impact of the echo object. In fact, the influence
of the echo perturbation varies with different probe positions (because the total incident field on
the AUT consisting of the LOS probe field plus the reflected field at the echo changes when the
probe illuminates the echo differently) and the retrieved FF looks different when retrieved from
echo perturbed NF measurements with a different measurement distance.

The varying influence of the echo for different measurement distances is shown exemplarily in
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Fig. 8.38.: Co-polar component in the 𝜑 = 0∘-cut of
the retrieved FF from NF measurements at
𝑟1 = 2.664m.
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Fig. 8.39.: Co-polar component in the 𝜑 = 90∘-cut
of the retrieved FF from NF measurements
at 𝑟1 = 2.664m.
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Fig. 8.40.: Co-polar component in the 𝜑 = 0∘-cut of
the retrieved FF from NF measurements at
𝑟8 = 2.839m.
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Fig. 8.41.: Co-polar component in the 𝜑 = 90∘-cut
of the retrieved FF from NF measurements
at 𝑟8 = 2.839m.

Figs. 8.40 and 8.41, where the co-polar components of the retrieved FF from measurements at
the furthest distance 𝑟8 = 3.299m are shown for comparison. The maximum deviation from the
reference FF pattern is larger than −20 dB—just as it was the case for the retrieved FF from the
closer NF distance— but the shapes of the retrrieved FFs from different measurement distances
differ. It can be concluded that the NF measurements from all eight distances (only the furthest
and closest distance are shown here, but similar deviations can be observed for all other distances)
are contaminated by undesired echo influences which results in considerable deviations from the
anechoic reference when the FF pattern is computed from the distorted NF measurements.

In order to mitigate the undesired echo influences, hypothetically measured 𝑆12-values of a
virtual probe array—called 𝑆12,arr —were synthesized by forming a linear combination of the
different measured 𝑆12-values with different probe positions according to

𝑆12,arr(𝜗, 𝜑, 𝑟0) =
𝑁arr

∑
𝑘=1

𝛼𝑘𝑆12(𝜗, 𝜑, 𝑟𝑘) (8.62)

where the angles 𝜗 and 𝜑 denote the AUT position and 𝑟𝑘 = 2.664m + (𝑘 − 1) 0.025m is
the radius of the 𝑘th measurement sphere— the number of array elements is 𝑁arr = 8 in the
considered example. The distance 𝑟0 denotes an arbitrary reference distance for the virtual array,
which should be chosen between 𝑟1 and 𝑟8. The significance of the reference distance 𝑟0 is
that it specifies the reference point 𝒓0=̂ (𝑟0, 𝜗, 𝜑) for the virtual array which is used for probe
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8.3. Directive Probes and Virtual Probe Arrays

correction. The FF pattern 𝑬arrFF(�̂�) of the virtual array can be computed from the known FF
pattern 𝑬DRH18,FF(�̂�) of the DRH18 probe via [Balanis 2005, pp. 283ff.]

𝑬arrFF(�̂�) =
𝑁arr

∑
𝑘=1

𝛼𝑘𝑬DRH18,FF(�̂�) e−j𝑘0 �̂�⋅(𝒓𝑘−𝒓0) (8.63)

as the weighted sum of the individual element patterns with respect to the reference point at 𝑟0. In
this way, synthetic measurement samples are obtained for the virtual array as if theyweremeasured
by an antenna with the synthesized FF pattern in the first place. The NF measurements from the
virtual array probe were then transformed into the FF via FIAFTA, in a similar manner as for the
previous case, with the only difference being the pattern used for probe compensation— instead
of the DRH18 pattern, the pattern of the virtual array is used.

A large variety of different array patterns can be synthesized in principle by adjusting the
𝛼𝑘 ∈ ℂ. The overall goal is to synthesize an array field which has much larger magnitude at the
AUT location than at the echo location, such that the virtual array is much less sensitive for the
echo contribution than for the AUT contribution. A very general but laborious method to find
appropriate coefficients 𝛼𝑘 for the linear combination of 𝑁arr array elements is to solve a field
synthesis problem [Dohler 2002; Dohler 2004; Dohler 2009; Clauzier 2015; Bucci 2013; Ford
2013; Laitinen 2010; Hill 1988; Haupt 2003b; Haupt 2003a; Mauermayer 2015; Knapp 2019c]

min
𝛼𝑘

𝛾 ∬
𝑆aut

‖(
𝑬tar −

𝑁arr

∑
𝑘=1

𝛼𝑘𝑬pro,𝑘)|
tan

‖

2

d𝑎 + (1 − 𝛾) ∬
𝑆ech

‖

𝑁arr

∑
𝑘=1

𝛼𝑘𝑬pro,𝑘|
tan

‖

2

d𝑎 , (8.64)

where 𝛾 ∈ [0; 1] is a weighting factor, 𝑬pro,𝑘 denotes the radiated field from the probe at the 𝑘th
position, 𝑬tar is the target field distribution one wants to synthesize—e.g., a plane wave—and
𝑆aut and 𝑆ech are surfaces denoting the AUT and echo location, respectively.

In contrast to this, a relatively simple method to achieve an increased focus toward the AUT
without explicitly taking any a priori knowledge about the echo into account is to adjust the
array coefficients 𝛼𝑘 in a way such that the fields of the individual array elements interfere
constructively toward the AUT. The virtual array becomes more directive than its single elements
and therefore less sensitive for fields coming from other directions than the AUT. Consequently,
the array coefficients are chosen as

𝛼𝑘 = e j𝑘0 (𝑟𝑘−𝑟0) . (8.65)

This choice of array coefficients will be referred to as conventional beamforming. The co-polar
components of the FF patterns for the single DRH18 probe and the virtual array with two, five,
and eight elements is shown in Fig. 8.42 for the 𝜑 = 0∘-cut and in Fig. 8.43 for the 𝜗 = 90∘-cut,
respectively. The echo object appears in the approximate angular range26 of 45∘ ≤ 𝜑 ≤ 90∘ in
the probe centered coordinate system (with the main beam of the probe in positive 𝑥-direction) in
the considered measurement setup. With increasing number of array elements, the array pattern
becomes more directive and thus less sensitive to the echo object in general but in the particular
example it can be noted that the five-element array and the eight-element array radiate a field
with similar magnitude toward the echo (i.e., 45∘ ≤ 𝜑 ≤ 90∘, see Fig. 8.43).
26The exact view angle spanned by the echo object depends on the exact location in the virtual array.
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Fig. 8.42.: Co-polar component in the 𝜑 = 0∘-cut
of the DRH18 probe pattern and the virtual
array pattern with two, five, and eight ele-
ments, respectively.
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Fig. 8.43.: Co-polar component in the 𝜗 = 90∘-cut
of the DRH18 probe pattern and the virtual
array pattern with two, five, and eight ele-
ments, respectively.

The reconstructed FFs corresponding to the probe array with varying number of array elements
can be found in Figs. 8.44 to 8.49. Fig. 8.44 and Fig. 8.45 show the co-polar component of the
retrieved FF from NF measurements with a two-element virtual array in the 𝜑 = 0∘-cut and
the 𝜑 = 90∘-cut, respectively. The deviation from the reference pattern is— if at all—only
slightly smaller than for the retrieved FFs obtained from NF measurements with a single DRH18
probe ( see Figs. 8.38 and 8.39), with a maximum deviation from the reference of about −20 dB,
while the typical deviation is well above the −30 dB line for most angles. The two-element array
pattern is only slightly more directive than the single DRH18 pattern (see Figs. 8.42 and 8.43)
and, thus, it is understandable that the two-element array is similarly sensitive for echo influences
as the single probe.

The co-polar components in the 𝜑 = 0∘ and 𝜑 = 90∘-cuts of the retrieved FFs can be seen
in Figs. 8.46 and 8.47 for the five-element array, and Figs. 8.48 and 8.49 for the eight-element
array. With the virtual array having more elements, the influence of the echo gradually decreases.
The maximum deviation from the reference is about −22 dB with a typical deviation varying
around the −28 dB line for the five-element array. For the eight-element array, the maximum
deviation from the reference case is about −25 dB while for most angles, the deviation is well
below −30 dB. Apparently, doubling the number of array elements brings about 3 dB increase
in the dynamic range of the reconstructed FF pattern in this experiment. One would expect the
same accuracy improvement if the oversampling factor is doubled in a noise contaminated signal.
Certainly there exists a similarity between noise (and echo) filtering capabilities of oversampled
measurements and the echo suppression of the presented virtual beamforming method.

8.3.2. Similarity Between Conventional Beamforming and Processing of

Oversampled Measurements

From the observations in the previously described measurement, a close similarity between form-
ing a virtual array and processing all measurement samples simultaneously is expected. In fact,
the resulting FF patterns from the virtual arrays with conventional beamforming element weights
are almost identical to the FF patterns obtained by using a single DRH18 probe and processing
all measurement samples with the corresponding measurement distances simultaneously. The
maximum deviation between the FF from the two-element virtual array measurement and the
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Fig. 8.44.: Co-polar component in the 𝜑 = 0∘-cut of
the retrieved FF fromNFmeasurements with
a virtual array consisting of two elements.
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Fig. 8.45.: Co-polar component in the 𝜑 = 90∘-cut
of the retrieved FF from NF measurements
with a virtual array consisting of two ele-
ments.
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Fig. 8.46.: Co-polar component in the 𝜑 = 0∘-cut of
the retrieved FF fromNFmeasurements with
a virtual array consisting of five elements.
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Fig. 8.47.: Co-polar component in the 𝜑 = 90∘-cut
of the retrieved FF from NF measurements
with a virtual array consisting of five ele-
ments.

−180° −90° 0° 90° 180°

0
−10
−20
−30
−40
−50
−60
−70
−80

𝜗

Re
la
tiv

e
|𝐸

𝜑
(𝜗

,0
∘ ) |

in
dB

Ref. Ret. Dev.

Fig. 8.48.: Co-polar component in the 𝜑 = 0∘-cut of
the retrieved FF fromNFmeasurements with
a virtual array consisting of eight elements.
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Fig. 8.49.: Co-polar component in the 𝜑 = 90∘-cut
of the retrieved FF from NF measurements
with a virtual array consisting of eight ele-
ments.
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FF obtained from processing the measurement samples of the corresponding two measurement
spheres with radii 𝑟1 and 𝑟2 is below −74 dB. The maximum deviation between the FF from the
five-element virtual array measurement and the FF obtained from processing the measurement
samples of the corresponding five measurement spheres with radii 𝑟1 to 𝑟5 is below −58 dB. The
maximum deviation between the FF from the eight-element virtual array measurement and the
FF obtained from processing the measurement samples of the corresponding eight measurement
spheres with radii 𝑟1 to 𝑟8 is below −53 dB. In all cases, the deviation between the FFs of the
virtual array and of the oversampled measurements of a single DRH18 is well below the echo
contribution27. This can be explained by the following observation. Let b𝑘 ∈ ℂ58322×1 be the
vector storing the measured 𝑆12-samples measured with the DRH18 probe at the 𝑘th measurement
distance 𝒓𝑘 and A𝑘 ∈ ℂ58322×𝑁 the discretized forward operator relating the 𝑁 AUT source
coefficients to the measurement samples. Using a single DRH18 as a probe and processing the
measurement samples from the first 𝐾 measurement distances simultaneously, the linear system
of equations to solve is given by

⎡
⎢
⎢
⎣

A1
⋮
A𝐾

⎤
⎥
⎥
⎦
x =

⎡
⎢
⎢
⎣

b1
⋮
b𝐾

⎤
⎥
⎥
⎦

. (8.66)

Since the radiated fields from the AUT propagate approximately as spherical waves with
a radial dependency of e−j𝑘0𝑟/𝑟 we have Aℓ ≈ A𝑘e−j𝑘0(𝑟ℓ−𝑟𝑘) 𝑟ℓ/𝑟𝑘. If (𝑟ℓ − 𝑟𝑘) ≪ 𝑟ℓ, then
𝑟ℓ/𝑟𝑘 ≈ 1 and Aℓ ≈ A𝑘e−j𝑘0(𝑟ℓ−𝑟𝑘). This approximation becomes exact if all measurement radii
are in FF distance of the AUT. Applying these approximations to (8.66) gives

⎡
⎢
⎢
⎣

𝟏
⋱

e−j𝑘0 (𝑟𝐾−𝑟1)𝟏

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

A1
⋮
A1

⎤
⎥
⎥
⎦
x =

⎡
⎢
⎢
⎣

b1
⋮
b𝐾

⎤
⎥
⎥
⎦

⇒
⎡
⎢
⎢
⎣

A1
⋮
A1

⎤
⎥
⎥
⎦
x =

⎡
⎢
⎢
⎣

b1
⋮

e j𝑘0 (𝑟𝐾−𝑟1) b𝐾

⎤
⎥
⎥
⎦

, (8.67)

where 𝟏 ∈ ℂ58322×58322 is the identity matrix.
Compare the result from (8.67) to the processing with a virtual array. Choosing the measure-

ment distance 𝑟1 of the first element for the array reference distance, i.e., 𝑟0 = 𝑟1, the linear
system of equations for the measurement with the 𝐾 element virtual array with conventional
beamforming is given by

(A1 + … + e j𝑘0 (𝑟𝐾−𝑟1)A𝐾) x = b1 + … + e j𝑘0 (𝑟𝐾−𝑟1) b𝐾 . (8.68)

Using the approximation Aℓ ≈ A𝑘e−j𝑘0(𝑟ℓ−𝑟𝑘), the linear system (8.68) for the virtual array
measurement simplifies to

𝐾A1x = b1 + … + e j𝑘0 (𝑟𝐾−𝑟1) b𝐾 . (8.69)

The normal residual equations are identical for (8.67) and (8.69) and it can be concluded that
the measurement with the conventional beamforming virtual array leads to very similar results
as processing all measurement distances with a single probe at once if the approximation Aℓ ≈
A𝑘e−j𝑘0(𝑟ℓ−𝑟𝑘) holds between the forward operator at different measurement radii.
27For the sake of avoiding unnecessary repetition, no plots are shown here, because the curves would not be

distinguishable from the curves in Figs. 8.48 and 8.49.
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𝜖DRH18 𝜖arr
two distances 0.0664 0.0544
five distances 0.1045 0.0541
eight distances 0.1299 0.0539

Tab. 8.1.: Reconstruction deviation for a single probe processing multiple positions or a virtual array.

Nevertheless, using the virtual array has benefits over processing all measurements at once
with a single probe. The processing effort is reduced. The forward operator for the virtual
array has essentially the same computational cost as the forward operator for a single probe at a
single measurement distance—much less than the added computational cost for the 𝐾 distances.
Since the measurement samples of the virtual array do not contain a strong echo influence, the
reconstruction deviation is in the order of an anechoic measurement and can, thus, be used
effectively as a stopping criterion for iterative solvers. The reconstruction deviations for a single
DRH18 probe processing multiple distances at once and the reconstruction deviation for the
corresponding virtual array are shown in Tab 8.1.

8.4. Chapter Summary

This chapter has presented an extensive analysis of frequency domain echo suppression algorithms.
First, echo scenarios with a stationary AUT have been investigated. The echo suppression
capability is linked to be able to separate the fields from sources in different source domains. It
has been found that it depends only on the relative separation between the source domains, how
well the corresponding fields can be separated in this scenario. Ambiguities can persist even
for well separated source domains because of evanescent fields which are excited by standing
waves between the source domains. Once the separation between the source domains becomes
large enough that the standing waves can be ruled out, the fields can be unambiguously assigned
to the correct source domain and the echoes influence can be removed, if the echo sources are
modeled simultaneously with the AUT sources. If only the AUT sources are modeled, some part
of the echo influence is mapped to the AUT sources, leaving a remaining echo distortion in the
reconstructed sources. This analysis has been presented for the first time in this thesis.

Second, echo suppression algorithms with a stationary probe have been analyzed. As a formal
analysis of the chamber calibration methods in the literature revealed, the echo influence can be
described correctly by additional sources assigned to the probe (as opposed to the sources assigned
to the AUT). If the echo influence is nevertheless accounted for by (unphysical) additional AUT
sources, it has been found that not all echo influences on the measured S-parameters can be
reproduced by the extended model (at least for low-order probes). This consideration has given
an illustrative insight why the translation of the AUT away from the rotation center leads to an
increased separation between the echo sources and the AUT sources, but due to the large size
of the torus, mutual interactions can persist and distort the reconstructed sources. While modal
suppression methods such as MARS are well known in the literature, the rigorous analysis which
has been presented in this chapter explains the success in echo suppression for the first time by
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identifying the source location of the additionally reconstructed ghost sources.
To overcome the limits of the echo suppression in stationary probe scenarios, virtual beam

forming has been proposed as a solution. Virtual beam forming has been used for echo sup-
pression before [Yinusa 2014], but in this thesis, the crucial distinction between stationary echo
and stationary AUT scenarios has been introduced first. It is an important realization that these
virtual beam forming algorithms are particularly well suited to serve in stationary echo suppres-
sion scenarios (where under certain circumstances they are equivalent to a more cumbersome
simultaneous consideration of all probe positions in the NFFFT).
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9
Hybrid Echo Suppression Methods
for Strongly Echoic Environments

The most effective echo suppression methods are obtained when frequency domain and time
domain methods are combined and tailored to the requirements of the situation at hand. Echoes
behave differently when either the AUT or the probe moves and so should the echo suppression
methods. In this chapter several examples are presented in which the previously discussed echo
suppression methods were combined to achieve unprecedented echo suppression in antenna
measurements—even in challenging echoic environments.

9.1. Time Gating of Reconstructed Currents

In scenarios with a stationary AUT1, conventional time gating of the measured signal is often not
feasible because for some measurement positions the probe is in the shadow region of the echo
object. For these measurement positions, there is no noticeable path length difference between
the LOS path and the first reflected path which can be exploited in time gating. Frequency domain
methods can to a certain extent separate the source locations of the AUT and the echo objects (if
they are well separated) but the distortions of the AUT currents due to multiple reflections remain
in this case. In this section, frequency domain source reconstruction is combined with time
gating where time gating is not applied to the measured signals but to the reconstructed source
coefficients at several frequencies with the goal of mitigating the mutual coupling influences,
which remain after the spatial separation of the AUT sources from the echo sources. The results
of the Feko [Altair 2021] simulations of the horn antenna in this Section 9.1.1 were first presented
in [Knapp 2019e] with FFT-based time gating and in [Knapp 2020] with sparsity based time
gating.

1I.e., the AUT is stationary with respect to the echo objects. If the echo is mounted in a fixed relative position with
respect to a rotating AUT, it is still referred to as a scenario with a stationary AUT.
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Fig. 9.1.: AUT configuration simulated in Feko [Altair 2021].

The measurement results in Section 9.1.2 were first presented in the conference presentation
of [Knapp 2020]. They appear for the first time in printed form, here.

9.1.1. Simulation Result

Before coming to actual measurements, simulated results for a horn antenna with a PEC sphere
in close proximity are considered first. The scenario depicted in Fig. 9.1 has been simulated in
Feko [Altair 2021]. The sphere was placed in approximately 0.3m distance to the AUT aperture,
asymmetrically offset from the 𝑥-axis. The fields generated by the currents on the AUT and the
scattering sphere have been evaluated on a spherical surface with distance 1.5m to the coordinate
origin in the AUT center in a frequency range from 1.7GHz – 5.7GHz with a frequency step
of 𝛥𝑓 = 50MHz to form the synthetic measurements. The radiated fields are reconstructed
in a two-step process. First equivalent electric and magnetic surface currents (coupled with
a combined source condition to yield an unambiguous solution) are reconstructed for every
frequency by FIAFTA on two Huygens surfaces enclosing the AUT and the echo, respectively.
The Huygens surface for the source reconstruction was larger than the mesh from the Feko
simulation with about 1 cm space between the original Feko mesh and the new Huygens surface.
In a second step the electric and magnetic current coefficients were time gated to remove the
undesired mutual coupling effects. Note that due to the stationary AUT scenario, a direct time
gating of the measurement samples is not feasible for all measurement positions because for
some of the measurement samples the probe is located in the shadow region of the echo object.
After the time-gating step, the radiated fields are calculated thereafter from the reconstructed and
time gated sources only on the AUT (any reconstructed currents on the echo sphere are neglected
for the FF calculation) and compared to the reference generated by Feko without the PEC sphere.

Two cases are considered for the source reconstruction step. The equivalent currents are
either reconstructed on a Huygens surface only enclosing the AUT or on two separate Huygens
surfaces, enclosing the AUT and the echo sphere, respectively. The corresponding AUT FFs
are calculated using only the reconstructed currents on the AUT in both cases. The co-polar
𝜗-component of the reconstructed FF at the center frequency of 3.7GHz can be seen in Fig. 9.2 for
the 𝜑 = 0∘-cut and in Fig. 9.3 for the 𝜗 = 90∘-cut, respectively, where during the reconstruction
equivalent sources were reconstructed only on the Huygens surface enclosing the AUT. In this
case the spatial filtering is not very successful and a part of the echo contribution is mapped onto
the reconstructed AUT sources, leading to a maximum deviation of about −10 dB between the
reconstructed FF and the reference.
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Fig. 9.2.: Co-polar component in the 𝜑 = 0∘-cut
of the reconstructed AUT pattern at 3.7GHz.
Only the AUT Huygens surface was used for
the source reconstruction.
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Fig. 9.3.: Co-polar component in the 𝜗 = 90∘-cut
of the reconstructed AUT pattern at 3.7GHz.
Only the AUT Huygens surface was used for
the source reconstruction.
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Fig. 9.4.: Co-polar component in the 𝜑 = 0∘-cut
of the reconstructed AUT pattern at 3.7GHz.
Huygens surfaces around the AUT and the
echo were used for the source reconstruction.
Figure adapted from [Knapp 2020].
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Fig. 9.5.: Co-polar component in the 𝜗 = 90∘-cut
of the reconstructed AUT pattern at 3.7GHz.
Huygens surfaces around the AUT and the
echo were used for the source reconstruction.

In contrast to this, the co-polar 𝜗-component of the reconstructed FF at the center frequency of
3.7GHz can be seen in Fig. 9.4 for the 𝜑 = 0∘-cut and in Fig. 9.5 for the 𝜗 = 90∘-cut, respectively,
where during the reconstruction the equivalent sources were reconstructed on the AUT and on
the echo hull simultaneously, while the echo currents were discarded for the FF calculation. The
spatial echo filtering process is very successful in this case as a maximum deviation between the
reconstructed FF and the reference is approximately −28 dB near the backlobe (around 𝜗 = −80∘)
in the 𝜑 = 0∘-cut. For most other directions the deviation is less than −40 dB. The remaining
distortions must be due to mutual interactions between the AUT and the echo object. The current
density on the AUT is distorted as the scattered wave from the PEC sphere is incident on the AUT
causing scattering currents on its surface which superimpose with the original AUT radiation
currents. The FF deviations in Fig. 9.4 appearing in the backlobe of the AUT (around 𝜗 = −80∘)
agree well with a distortion caused by a scattered wave from the sphere.

The mutual interactions are even more evident in a time domain representation of the currents.
The source coefficients which are retrieved by FIAFTA on the discretized Huygens surface at all
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Fig. 9.6.: Sum over source coefficients in time domain. The different curves denote the source coefficients
present on both objects—echo and AUT—or the AUT alone.

simulated frequencies are transformed into the time domain with an FFT. The (squared) sum of
all resulting source coefficients at every time step can be seen in Fig. 9.6, where the different
curves denote the sum of all coefficients—on the AUT and on the echo—or the sum of only
the AUT coefficients, respectively. The peak at 1.0 ns corresponds to the free-space currents
on the AUT. At around 2.5 ns to 3.0 ns, some currents appear on the echo sphere. These echo
currents are only visible as a peak in the curve for both objects, visualizing the spatial filtering
effect of the source reconstruction on separate surfaces. Further peaks between 4.0 ns and 6.5 ns
correspond to currents appearing on the AUT. These peaks correspond to the undesired mutual
interactions which change the current distribution on the AUT. These distortions of the current
distribution on the AUT are responsible for the deviations between the reconstructed FF and the
reference FF in Fig. 9.4. For a more accurate reconstruction of the free-space AUT currents, this
mutual interaction contribution must be eliminated by time gating. To this end, a rectangular
time-gating window was applied to force the value of all time samples later than 3.1 ns (i.e.,
2.0 ns after the peak) to zero. The gated time sequences were transformed back into frequency
domain with an FFT to the corresponding frequencies, before the FF was computed from the
time gated frequency domain source coefficients. The time gated time-domain signal is also
depicted in Fig. 9.6. Its value is not exactly zero at times 𝑡 > 3.1 ns, because the resolution of
the time-domain signal used for time gating was much higher than what can be obtained from
the frequency samples directly (the time-domain signal was interpolated, by appending flipped
versions of the frequency domain data multiple times and time shifted before being gated). When
the frequency samples are recovered from the oversampled time domain data, all frequency
points which do not match a measured frequency were discarded. The visualized time domain
representation of the gated signal was obtained from the gated frequency samples at only the
measured frequencies, explaining the slight discrepancy between the originally gated time domain
data and the shown curve.

The reconstructed FF from the time gated source coefficients at 3.7GHz are shown in Fig. 9.7
for the 𝜑 = 0∘-cut and in Fig. 9.8 for the 𝜗 = 90∘-cut, respectively. The final reconstructed FF
has a good agreement with the reference. The maximum deviation is well below −40 dB, while
the typical deviation is well below −50 dB for most directions, often even below −60 dB. A key
for the success of echo suppression in this example has been the well separated nature of the
AUT and the echo volume such that the spatial filtering of the reconstructed currents was very
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Fig. 9.7.: Co-polar component in the 𝜑 = 0∘-cut
of the reconstructed AUT pattern at 3.7GHz.
Time gated versions of the source coefficients
on the AUT Huygens surface were used for
the FF calculation.
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Fig. 9.8.: Co-polar component in the 𝜗 = 90∘-cut
of the reconstructed AUT pattern at 3.7GHz.
Time gated versions of the source coefficients
on the AUT Huygens surface were used for
the FF calculation.

effective, before the remaining distortions could be filtered in time domain.

9.1.2. Measurement Results

The same post processing as in the numerical example has been applied to a measurement setup
where an obstacle has been mounted in proximity to the AUT. The measurement setup is depicted
in Fig. 9.9. A DRH18 horn antenna served as an AUT and an open ended WR-187 waveguide
served as a probe. The AUT was mounted with a vertical offset to the rotation center (as depicted
in Fig. 9.9 for the AUT position at 𝜑 = 0∘, 𝜗 = 0∘). With the same vertical offset in opposite
direction, a metallic plate is mounted to the same base plate as the AUT with the help of three
metallic rods such that the metal plate is positioned in front of the AUT with a fixed relative
position to the AUT. Although not clearly visible in the photo, the metal plate is rotated by about
20∘around its own axis and the complete setup of AUT and obstacle does not have a symmetry
plane. Since the echo obstacle position is fixed with respect to the AUT, the measurement
scenario is considered to have a stationary AUT. Spherical NF measurements at a distance of
2.651m with equiangular sampling (𝛥𝜗 = 𝛥𝜑 = 0.5∘ stepsize) in 𝜗- and 𝜑-direction have been
obtained in this constellation from 3.95GHz to 5.85GHz in 𝛥𝑓 = 50MHz steps. The Huygens
surfaces for the reconstruction of AUT and echo currents are depicted in Fig. 9.10. A trade-off
had to be made between an accurate modelling of the echo sources (which would include also the
metal rods in the model) and an unambiguous solution for the reconstructed currents (only if the
Huygens surfaces for AUT and echo are well separated, one can distinguish the source locations
by their respective radiated currents).

The co-polar 𝜗-component of the reconstructed FF after the source reconstruction step at the
center frequency of 5.0GHz can be seen in Fig. 9.11 for the 𝜑 = 0∘-cut and in Fig. 9.12 for
the 𝜑 = 90∘-cut, respectively. No time gating has been applied to the source coefficients, yet.
In the 𝜑 = 90∘-cut, i.e., the cut in which the echo obstacle is located, large deviations can be
observed between the reconstructed FF and the reference. In this cut, the 𝜗 = 45∘ and 𝜗 = −135∘

directions are influenced by the echo most. These are the directions toward the echo plate and
opposite of it. It can be assumed that in particular the deviation in the direction opposite to the
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Fig. 9.9.: Photo of the measurement setup between the DRH18 horn
antenna as an AUT and an open ended waveguide probe with
a metallic obstacle fixed to the rotating AUT.

Fig. 9.10.: Huygens surfaces
around the AUT and the
echo objects in the source
reconstruction.
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Fig. 9.11.: Co-polar component in the 𝜑 = 0∘-cut of
the reconstructed AUT pattern at 5.0GHz.
Only the reconstructed source coefficients
on the AUT Huygens surface were used for
the FF calculation.
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Fig. 9.12.: Co-polar component in the 𝜑 = 90∘-cut
of the reconstructed AUT pattern at 5.0GHz.
Only the reconstructed source coefficients
on the AUT Huygens surface were used for
the FF calculation.

echo is due to mutual interactions changing the true current distribution on the AUT.
The co-polar 𝜗-component of the reconstructed FF at the center frequency of 5.0GHz after

the time gating step can be seen in Fig. 9.13 for the 𝜑 = 0∘-cut and in Fig. 9.14 for the 𝜑 = 90∘-
cut, respectively. For all directions where no obstacle is located, the reconstructed FF deviates
less than −30 dB from the reference. Only those directions, in which the echo was present
remain distorted even after time gating the sources. A probable cause for this is the fact that the
spatial filtering (i.e., the source reconstruction step) was not successful for the currents which are
responsible for radiation toward these directions. The relevant AUT currents on the top of the
AUT are not properly illuminated by the probe in this measurement setup and the close proximity
to the echo object makes it impossible to differentiate between echo or AUT source location for
the radiated fields. Time gating can only cure the current mutual coupling distortions for the
currents which are already correctly reconstructed in the AUT volume. The deviations of the
reconstructed pattern in the direction opposite to the echo obstacle are therefore successfully
removed and the AUT radiation is correctly determined for all directions other than those directly
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Fig. 9.13.: Co-polar component in the 𝜑 = 0∘-cut of
the reconstructed AUT pattern at 5.0GHz.
Time gated versions of the source coeffi-
cients on the AUT Huygens surface were
used for the FF calculation.
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Fig. 9.14.: Co-polar component in the 𝜑 = 90∘-cut
of the reconstructed AUT pattern at 5.0GHz.
Time gated versions of the source coeffi-
cients on the AUT Huygens surface were
used for the FF calculation.

covered by the echo object. This example shows the capabilities but also the limitation of echo
suppression methods which combine frequency- and time-domain methods. To be successful,
the spatial filtering step must succeed to separate the source locations for the AUT and echo
contributions of the total field. After successful spatial filtering, the remaining distortions due to
mutual coupling can be effectively removed by echo suppression.

9.2. The Mosquito Chamber: Processing Data from Strongly

Reflective Environments

When frequency domain and time domain methods are combined, the resulting processing
methods can provide excellent echo suppression capabilities. The measurement samples must
in principle suffice to characterize the unknown echoes simultaneously with the unknown AUT.
The more echo sources are contaminating the measurement samples, the more “redundant” (with
respect to the free-space AUT) measurements have to be collected and processed as a consequence
if one wants to succeed in removing the undesired distortions. To demonstrate that antenna
pattern measurements can be reasonably successful even in strongly reflective environments if
only enough measurement samples are collected, a laborious measurement campaign has been
carried out in the antenna measurement chamber at TUM involving three different AUTs covering
different frequency bands. The measurement results shown in this section involving the DRH400
AUT were first presented in [Knapp 2018a], and more thoroughly analyzed in in [Knapp 2019a]
concerning the influence of time gating and usage of various probe configurations for virtual
beam forming. The measurement results shown in this section, involving a RUAG S-band antenna
and a RUAG Ku-band antenna as AUT, were first presented in [Knapp 2019c].

The previously anechoic chamber was transformed into a strongly reflective measurement
environment. To this end, the four walls, the floor, and the ceiling were covered with an aluminum
net mounted on a wooden frame of size 7.5m × 4.0m × 3.5m. Due to its visual appearance,
the resulting strongly echoic environment is called Mosquito chamber. The moving parts inside
the chamber, i.e., the AUT and probe positioners were covered with absorbers whereas all other
absorbing materials were removed from the Mosquito chamber. The moving rail on which the
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Fig. 9.15.: Photograph of the assembled
Mosquito chamber inside the ane-
choic chamber at TUM [Knapp
2019c]. ©2019, IEEE
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Fig. 9.16.: Layout of the Mosquito chamber assem-
bly [Knapp 2019c]. ©2019, IEEE

AUT positioner is mounted to be able to adjust the distance between AUT and the probe was
not used in this measurement campaign and consequently covered by 0.33m high wooden boxes
with the metallic mesh on top. To allow a free movement of the probe positioning system, only
two openings in the metallic mesh—about 1m broad—had to be left open at the back and the
ceiling of the back wall behind the probe. A photograph of the Mosquito chamber setup can be
seen in Fig. 9.15. The schematic layout of the Mosquito chamber and the locations of AUT and
probe are shown in Fig. 9.16, including the probe coordinate system 𝑥pro, 𝑦pro, 𝑧pro and the AUT
coordinate system 𝑥aut, 𝑦aut, 𝑧aut for the reference position 𝜗 = 𝜑 = 0∘.

The AUT is placed approximately in the middle of the chamber. Full spherical measurements
can be obtained by rotating the two axes of the AUT. The probe can be moved along the 𝑥-, 𝑦-,
and 𝑧-axis which is useful for building virtual arrays. All measurements in this section were
obtained with a DRH18 probe. Its usable frequency easily covers all frequencies between the
S-band and the Ku-band but its pattern varies with frequency. Consequently, an accurate probe
correction is required, in particular when signals from different probe positions are combined in
a virtual array.

An a priori simulation of the aluminum net led to the conclusion that the reflection coefficient
for incident plane waves is larger than 0.99 for all frequencies up to 15GHz. The chamber
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𝑄-factor and the corresponding time constant 𝜏 were determined by fitting an exponential model

𝑥(𝑡) = 𝑥maxe−𝑡/𝜏 (9.1)

to the measured impulse response between two antennas mounted inside the chamber, where the
𝑄-factor can be estimated from the recovered 𝜏 by [Hill 2009, p. 11]

𝑄 = 𝜔𝜏 . (9.2)

The resulting value of 𝜏 = 0.1116 µs suggests a chamber 𝑄-factor of 𝑄 = 1402 at 2GHz or
𝑄 = 9116 at 13GHz. It is important to know the chamber time constant because it determines
the maximum frequency step 𝛥𝑓 which can be used for sampling the signal such that no aliasing
effects occur in time gating. To avoid aliasing, the impulse response corresponding to the IFFT
of the measured frequency sequence should have decayed to a value below −40 dB. A smaller
frequency step 𝛥𝑓 yields a longer time sequence in the corresponding impulse response, leading
to more decay. The spacing of the frequency samples has been set to 𝛥𝑓 = 2MHz for all
measurements in this section.

9.2.1. Measurements with the RUAG S-Band Antenna

In [Knapp 2019c], measurements were considered for the circularly polarized RUAG S-band helix
antenna in the Mosquito Chamber. For the RUAG S-band antenna, full spherical measurements
with equiangular sampling steps of 𝛥𝜗 = 𝛥𝜑 = 3∘ were obtained with 120 probe locations
distributed in four planes with distances 𝑧1 = 2.664m, 𝑧2 = 2.704m, 𝑧3 = 2.784m, and
𝑧4 = 2.914m to the AUT rotation center. The exact probe positions in the respective planes are
depicted in Fig. 9.17. The top four probe locations (labeled “30”, “31”, “32”, and “33”) were
obtained only in the first measurement plane with distance 𝑧1, whereas in the remaining three
planes only the first 29 probe positions were used. Overall, 120 full spherical measurements
were performed. The 𝑆12-parameter between the probe and the AUT was measured for all
combinations of probe and AUT positions in the frequency range from 1.5GHz to 3.5GHz.

Processing of themeasured signals involves several steps. First, the signals at eachmeasurement
position2 are time gated. The time gated signals of the 120 different probe positions are then
combined to synthesize a virtual probe array. As the virtual array signal is thereby determined
for every AUT position, a conventional NFFFT is carried out as if the measurements had been
obtained with the virtual array probe in the first place.

For time gating, the standard FFT based method was used here for simplicity because a large
number of measurement samples—each featuring 1001 frequency samples—had to be processed.
The time-domain signal was obtained by directly applying the IFFT to the measured frequency
sequence for every measurement position. The time domain sequence was then truncated using a
Hamming window. The truncation times were chosen according to the distance 𝑑 of the probe
from the AUT rotation center to acknowledge that the traveling times of the signal varies when the
probe is further away from the AUT. Four probe regions were introduced based on the distances
𝑑1 = 2.7030m, 𝑑2 = 2.7815m, 𝑑3 = 2.899m. The signals of all probes in the first region defined
by 𝑑 < 𝑑1 were truncated at 𝑡1 = 34 ns, the signals of the second region with 𝑑1 < 𝑑 < 𝑑2 were
2The term measurement position here denotes a certain combination of a fixed AUT position and a fixed probe

position. If either the AUT position or the probe position is changed, it counts as a new measurement position.
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Fig. 9.17.: Positions of the probes in the four measurement planes of the RUAG S-band measure-
ments [Knapp 2019c].

truncated at 𝑡1 = 35 ns, signals in the third region with 𝑑2 < 𝑑 < 𝑑3 were truncated at 𝑡3 = 36 ns,
and the remaining signals with 𝑑 > 𝑑3 were truncated at 𝑡1 = 38 ns.

The virtual array signal was synthesized according to

𝑆12,array =
120

∑
𝑘=1

𝛼𝑘𝑆12,𝑘 , (9.3)

where 𝑆12,𝑘 is the measured signal of the probe at the 𝑘th probe position. The linear coefficients
𝛼𝑘 ∈ ℂ were found by solving the minimization problem [Mauermayer 2015]

min
𝛼𝑘

1
2 ∬

𝑆aut
‖(

𝑬tar −
120

∑
𝑘=1

𝛼𝑘𝑬pro,𝑘)|
tan

‖

2

d𝑎 + 1
2 ∬

𝑆ech
‖

120

∑
𝑘=1

𝛼𝑘𝑬pro,𝑘|
tan

‖

2

d𝑎 , (9.4)

where 𝑬pro,𝑘 denotes the radiated field from the probe at the 𝑘th position, 𝑬tar is the target field
distribution one wants to synthesize and 𝑆aut and 𝑆ech are surfaces denoting the AUT and echo
location, respectively. The target field at the AUT resembles a plane wave incident from the
central probe position. At the echo location, the magnitude of the target field is set to zero. The
resulting array field pattern is shown in Fig 9.18 and compared to a single DRH18 probe and a
virtual array resulting from a “matched filter” choice of coefficients according to

𝛼𝑘 = e j𝑘0𝑑𝑘

𝑑𝑘
, (9.5)

where 𝑑𝑘 is the distance of the 𝑘th probe position to the measurement sphere center. The matched
filter coefficients are very similar to the standard beam forming coefficients from Section 8.3.
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Fig. 9.18.: Synthesized virtual array field in the AUT coordinate system in (a) and (b) compared to the
array field with matched filter coefficients in (c) and (d) and the single DRH18 patterm in (e) and
(f). The AUT is positioned around the coordinate origin. [Knapp 2019c]. ©2019, IEEE

It can be seen that the synthesized virtual array has a well focused beam toward the AUT volume
and the metallic walls located at the borders of the depicted spatial region are not illuminated
much. In contrast to this, the single DRH18 probe illuminates the AUT as well as the echoes and
the matched filter virtual array shows a directive beam toward the AUT but has many side lobes.

Figures 9.19 and 9.20 show the retrieved co- and cross-polar circular polarizations of the
retrieved FF magnitude pattern of the RUAG S-band antenna in the 𝜑 = 0∘-cut at 2.3GHz after
all processing steps compared to a reference measurement obtained in the anechoic chamber after
the Mosquito chamber had been disassembled. The componentwise magnitude deviation

𝜖(𝜗, 𝜑) =
|
|𝐸ret.(𝜗, 𝜑)|

|𝐸ret.,max|
− |𝐸ref.(𝜗, 𝜑)|

|𝐸ref.,max| |
(9.6)

does not exceed −25 dB and is below −30 dB for most directions in the co-polar as well as the
cross-polar component, showing that the FF pattern can be reconstructed reasonably well given
the harsh measurement conditions in the strongly reflective environment.

In comparison, Figs. 9.21 and 9.22 show the retrieved (circular) co- and cross-polar FF
magnitude patterns of the RUAG S-band antenna in the 𝜑 = 0∘-cut at 2.3GHz after time gating
only (single probe in the center of the first measurement plane) and Figs. 9.23 and 9.24 show
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Fig. 9.19.: Co-polar component in the 𝜑 = 0∘-cut
retrieved FF of the RUAG S-band antenna
after time gating and virtual array beam
forming [Knapp 2019c]. ©2019, IEEE
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Fig. 9.20.: Cross-polar component in the 𝜑 = 0∘-
cut retrieved FF of the RUAG S-band an-
tenna after time gating and virtual array
beam forming [Knapp 2019c]. ©2019,
IEEE
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Fig. 9.21.: Co-polar component in the 𝜑 = 0∘-cut
retrieved FF of the RUAG S-band antenna
after time gating [Knapp 2019c]. ©2019,
IEEE
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Fig. 9.22.: Cross-polar component in the 𝜑 = 0∘-
cut retrieved FF of the RUAG S-band an-
tenna after time gating [Knapp 2019c].
©2019, IEEE
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Fig. 9.23.: Co-polar component in the 𝜑 = 0∘-cut
retrieved FF of the RUAG S-band antenna
after virtual array beam forming [Knapp
2019c]. ©2019, IEEE

−180° −90° 0° 90° 180°

0
−10
−20
−30
−40
−50
−60

𝜗

Re
la
tiv

e
|𝐸

cr
os
s(

𝜗,
0∘ ) |

in
dB

Ungated Ref. Ret. Dev.

Fig. 9.24.: Cross-polar component in the 𝜑 =
0∘-cut retrieved FF of the RUAG S-band
antenna after virtual array beam form-
ing [Knapp 2019c]. ©2019, IEEE
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the retrieved co- and cross-polar circular polarizations of the retrieved FF magnitude pattern in
the 𝜑 = 0∘-cut at 2.3GHz after virtual array beam forming only (the measured 𝑆12-parameters
were utilized directly without the time gating step). Both methods show a clear improvement
in the accuracy of the retrieved patterns as compared to the case without any particular echo
suppression3. Time gating only yields better results than virtual array beam forming only. This
is no surprise, as 1001 frequency samples were used for time gating, as compared to only 120
different probe positions for building the virtual array. Nevertheless, if only time gating is
used, the deviation between the retrieved FF magnitude and the reference is up to −20 dB – i.e.,
approximately 10 dB worse than the largest deviation for the retrieved FFs when time gating
was combined with virtual array beam forming in Figs. 9.19 and 9.20. The best results are only
obtained, when time gating of the measured signals is combined with virtual array beam forming.

9.2.2. Measurements with the DRH400 Antenna

The reconstruction process turns out to be very sensitive to the exact choices of the parameters
for beam forming or time gating. The problem with beam forming in this strongly reflective
environment is that the location of the echo sources which contribute the most to the distortions
are not known and can in principle be arbitrarily located over the metallic walls. Thus, it is
not easily possible to predict where it is best to enforce deep nulls in the shaped beam of the
synthesized array. Forcing the pattern to zero everywhere on the wall is not exactly possible
and modest adjustments of the pattern can lead to several dB difference in the deviation of the
reconstructed patterns from the reference.

The problem with time gating is to delicately balancing the truncation of useful and undesired
signal components. If the signal is truncated too early, useful signal components which belong to
the desired free-space impulse response may be removed. When the truncation time is too late,
the signal is already distorted by the echoes. For every probe position, the traveling time of the
LOS signal between the AUT and the probe varies as well as the arrival time of the first echo
contribution. The path length difference between the useful and the scattered signals depends on
the probe position, making the determination of the best time gate a hard task.

For an investigation of the influences of different virtual arrays and different time gates on
the reconstructed pattern, measurements with a DRH400 horn antenna were carried out in the
Mosquito chamber and reported in [Knapp 2019a]. The measurements were obtained in the same
frequency band— from 1.5GHz to 3.5GHz—as the RUAG S-band measurements.

Influence of Different Time Gates

First, the influence of different time gates was investigated. To this end, a full spherical mea-
surement with an equiangular sampling step of 𝛥𝜗 = 𝛥𝜑 = 2.5∘ was obtained with the probe
at a distance 𝑧1 = 2.664m from the AUT rotation center. The measured 𝑆12-parameter at all
measurement positions was time gated before the data was further processed. The time gating
method used for the processing of the DRH400 measurements is a slightly modified version of

3Of course, even if no particular echo suppression method is applied, echo contributions are effectively filtered
by the localized source model of the AUT. Only fields which are in agreement with currents on the conformal
Huygens surface around the AUT are reconstructed.
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Fig. 9.25.: Comparison between conventional zero padded frequency domain signal and the altered fre-
quency domain signal used in this measurement [Knapp 2019a]. ©2019, IET

the direct IFFT-based method and was heuristically motivated4.
Before the frequency-domain sequence for every measurement point was transformed into time

domain, a linear phase term of the form ej𝜔𝑡shift was multiplied to the measured frequency-domain
samples, leading to an effective time shift of the resulting time domain sequence. The shift time
𝑡shift was determined in a preliminary step from a highly oversampled time-domain sequence
(obtained by a zero-padded frequency domain sequence, where the zero sequence was 49 times
longer than the originally measured spectral sequence), such that the maximum peak of the time
domain sequence appears at 𝑡 = 0. The same time shift was thereafter used for all measurement
positions with the same probe position. Furthermore, the frequency sequence was appended to
itself in reversed order, before it was zero padded and repeated in the end. The relation between a
conventional zero padding of the frequency domain data and the altered frequency domain signal
which was used for this measurement is shown in Fig. 9.25.

After the reconstructed time-domain signal was truncated after the truncation time 𝑡stop, the
spectral samples at the measured frequencies were retrieved, using an FFT and the phase shift
was reversed. The resulting frequency domain data for the measurement position 𝜗 = 𝜑 = 0∘

before and after time gating with the conventional and the altered time gating method can be seen
in Fig. 9.26 for an exemplary rectangular time gate which was non-zero for times between 17 ns
to 38 ns. Away from the band edges, both time gating methods yield very similar results, while
the conventional time gating method shows ringing effects at the band edges. The corresponding
time-domain signal (related to the frequency domain data by an IFFT) is shown in Fig. 9.27,
where it can be seen that both time gating methods lead to a similar time domain sequence, in
particular in the neighborhood of the first peak. The time domain sequence from both time
gating methods is not exactly zero outside the gating window because the sampling rate for the
gating was different as the sampling in Fig. 9.27 and in the process, the data at the uninteresting
frequencies was discarded. The alternative time gating does not suppress the signal outside the
time window as much as the conventional time gating, but the ringing effects at the band edges
are not as prominent.

The stop time 𝑡stop of the time gate was varied from 41 ns to 47 ns, while the start time was
kept at 17 ns (i.e., 15.5 ns before the signal peak at 32.5 ns). The influence of the time gate was
quantified by reconstructing equivalent AUT currents on a conformal Huygens surface from the

4The resulting time gated version of the samples did not show a prominent ringing effect at the band edges for
these particular data and was, thus, preferred over conventional time gating for this measurement. Apart from
the differences at the band edges, the altered and the conventional time gating methods perform very similar.
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Fig. 9.28.: Maximum FF magnitude deviation and reconstruction deviation dependent on the truncation
time of the time gate. The plot is based on the data of Table 1 in [Knapp 2019a].

time gated signals at 3.4GHz, which is relatively close to the largest measured frequency (i.e.,
3.5GHz) and comparing the resulting FFs to a reference obtained in an anechoic environment.
The frequency of 3.4GHz is close to the edge of the measured frequency band and can be regarded
as a particularly tough challenge for time gating. The maximum magnitude deviation according
to (9.6) for the co-polarized (𝜖co) and cross-polarized (𝜖cross) component for the different time
gates can be seen in Fig. 9.28 along with the reconstruction deviation ‖b − Ax‖/‖b‖ of the
GMRES solver after 50 iterations. Since no good estimate for the expected error level is known
a priori due to the unknown echo influence, a suitable stopping criterion cannot be based on the
reconstruction deviation alone. A stopping criterion based on the residual ‖AHb − AHAx‖ often
leads to unnecessary many iterations. A fixed number of 50 iterations is therefore reasonable and
usually more than sufficient for measurements of an AUT of this size. The curves in Fig. 9.28 show
the trade-off which has to be made with time gating. On the one hand, when the time sequence is
truncated too late— the effect is particularly visible for truncation times later than 45 ns in this
example—echo influences distort the measurements leading to signal contributions which cannot
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Fig. 9.29.: Co-polar component in the 𝜑 = 0∘-cut
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Fig. 9.30.: Co-polar component in the 𝜑 = 90∘-cut
of the retrieved FF of the DRH400 antenna
after time gating [Knapp 2019a]. ©2019,
IET

be reconstructed by the sources in the limited AUT volume. Consequently, the reconstruction
deviation 𝜖rec increases for later truncation times. On the other hand, when the truncation time is
too early, the reconstruction deviation 𝜖rec is lower, indicating that the measurements can be more
accurately expressed by currents in the AUT volume, but the deviations 𝜖co to the anechoic case
in the co-polar FF components are larger for too early truncation times (𝑡stop < 43 ns), indicating
that significant portions of the free-space impulse response of the AUT were discarded. Similar
trends can be found at the other frequencies more in the center of the measured frequency band,
where also the conventional time gating method leads to comparable results.

The resulting co-polar components of the retrieved FF at 3.4GHz in the 𝜑 = 0∘- and 𝜑 = 90∘-
cuts are compared to the reference in Figs. 9.29 and 9.30 after time gating with a stop time 𝑡stop =
43.5 ns, which led to the smallest maximum deviation. Compared to the ungated reconstruction,
where the measured data at 3.4GHz was directly fed into FIAFTA, the reconstruction of the
radiated fields after time gating is relatively successful with a maximum deviation of around
−21 dB in the regions of 𝜗 = ±90∘ in the 𝜑 = 0∘-cut. In particular the obvious deviations at
𝜗 = ±90∘ in the 𝜑 = 0∘ cut were successfully removed by the virtual array spatial filtering.

Influence of Different Virtual Arrays

In Section 9.2.1, it has already been shown that combining time gating with virtual beam
forming from Section 8.3 can lead to acceptable reconstruction results, even in strongly reflective
environments such as the Mosquito chamber. In this section, the role of the number of array
elements for the virtual beam forming is investigated. This investigation has first been presented
in [Knapp 2019a].

To be able to form virtual receiving arrays for every measurement position, full spherical
measurements were obtained not only with the probe in its central position but with a total of
different 110 probe positions distributed over four measurement planes with distances 𝑧1 =
2.664m, 𝑧2 = 2.704m, 𝑧3 = 2.784m, and 𝑧4 = 2.914m to the AUT rotation center. The 35
different probe positions in the first plane with 𝑧1 = 2.664m were differently distributed than
the 25 different probe positions in the remaining three planes. The probe positions in the first
plane at 𝑧1 = 2.664m are depicted in Fig. 9.31 and the probe positions in the remaining three
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planes are depicted in Fig. 9.32, where the probe position number 1 lies on the 𝑧-axis of the AUT
coordinate system for the reference position 𝜗 = 𝜑 = 0∘ in every plane.

For every probe position, the 𝑆12-parameter was sampled with an equiangular sampling step
of 𝛥𝜗 = 𝛥𝜑 = 2.5∘. The measured 𝑆12 were time gated with a gating window dependent on the
probe position. The gating window was chosen with respect to the AUT reference position at
𝜗 = 𝜑 = 0∘ for every probe position such that the time-domain signal was set to zero for times
earlier than 10 ns before the strongest peak or later than 15 ns after the strongest peak in the
time-domain signal of the co-polar component. The same time gate was used for all measurement
positions with the same probe location. The time gate was deliberately chosen to be non-zero for
a longer duration than in the previous case to collect more of the useful AUT free-space response
(but also more undesired echo contributions). Ideally, the additional undesired echo influences
can be cured with the additional help of spatial filtering being supported by virtual array beam
forming.

Different collections of probes from the four planes were used to form a virtual array with
matched filter coefficients

𝛼𝑘 = e j𝑘0𝑑𝑘

𝑑𝑘
(9.7)

for the synthesis of the virtual array. Table 9.1 summarizes the residual of the iterative solver
and the achieved deviations from the reference with the different probe configurations, where
the numbers denote, how many probes were used from each plane, respectively (e.g., “17/9/5/1”
means that 17 probes were used in plane 𝑧1, nine probes were used in plane 𝑧1, five probes were
used in plane 𝑧3, and one probe was used in plane 𝑧4.). In every plane, the probe positions closer to
the center position were considered first, according to the numbering scheme in Figs. 9.31 and 9.32.
The data from Tab. 9.1 is also visualized in Fig. 9.33. The reconstruction accuracy does not
always benefit from a larger number of probe locations. While the “25/17/17/17”-configuration
(76 probe locations) shows the smallest maximum error in the co-polar component, the accuracy
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Measurement Number Maximum Maximum Reconstruction
configuration of probes co-polar cross-polar deviation

FF deviation 𝜖FF FF deviation 𝜖FF ‖b − Ax‖/‖b‖

1/0/0/0 1 −20 dB −31 dB 0.0520
5/0/0/0 5 −25 dB −34 dB 0.0320
9/0/0/0 9 −26 dB −37 dB 0.0267

17/0/0/0 17 −26 dB −36 dB 0.0263
25/0/0/0 25 −25 dB −30 dB 0.0342
31/0/0/0 31 −23 dB −31 dB 0.0299
35/0/0/0 35 −24 dB −30 dB 0.0312
1/1/1/1 4 −26 dB −38 dB 0.0288
5/5/0/0 10 −25 dB −34 dB 0.0331
5/5/5/5 20 −25 dB −39 dB 0.0246
9/1/1/1 12 −26 dB −38 dB 0.0254
9/5/0/0 14 −26 dB −36 dB 0.0289
9/5/1/0 15 −26 dB −34 dB 0.0280
9/5/5/5 24 −24 dB −40 dB 0.0242
9/9/9/9 36 −25 dB −39 dB 0.0243

17/9/5/1 34 −26 dB −39 dB 0.0270
17/9/9/9 46 −26 dB −36 dB 0.0258

25/17/17/17 76 −28 dB −36 dB 0.0294
35/25/25/25 110 −23 dB −34 dB 0.0259
Tab. 9.1.: Reconstruction deviation for different probe configurations [Knapp 2019a].
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Fig. 9.33.: Reconstruction deviation for different probe configurations dependent on the number of
probes [Knapp 2019a].
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Fig. 9.34.: Co-polar component in the 𝜑 = 0∘-cut of
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Fig. 9.35.: Co-polar component in the 𝜑 = 90∘-cut
of the retrieved FF of the DRH400 antenna
after time gatingand virtual array beam form-
ing [Knapp 2019a]. ©2019, IET

of the “35/25/25/25” (110 probe locations) is among the worst. Also the reconstruction deviation
‖b − Ax‖/‖b‖ is not a reliable indicator for an accurate reconstruction of the AUT radiation.
The reconstruction deviation is around −30 dB for all probe configurations, independent of the
achieved FF reconstruction. The overall lower reconstruction deviation indicates that the signal
to echo ratio is increased in the measurement samples of the virtual array as compared to the
only time gated case but the lower reconstruction deviation does not automatically translate into
a better agreement of the reconstructed AUT fields and the reference. Using more probes for
building a virtual array requires a better precision in the measurement setup as, e.g., the influence
of positioning errors can increase with more probe positions. Furthermore, the more probes are
used, the closer some of the probes come to the reflective chamber walls, making time gating
less effective. Furthermore it has to be mentioned that neither the time gate nor the virtual array
coefficients were optimally chosen. The chamber walls are inhomogeneously illuminated by the
virtual array, similar to Figs. 9.20 (c) and (d). Using varying numbers of probes for the virtual
array, it is hard to predict, where local intensity maxima of the array radiation coincide with
locations of significant echo currents, thus, the influence of the echoes can vary in unpredictable
manner.

The resulting co-polar components of the retrieved FF at 3.4GHz in the 𝜑 = 0∘- and 𝜑 = 90∘-
cuts are compared to the reference in Figs. 9.34 and 9.35 after time gating and virtual array beam
forming with the “25/17/17/17”-configuration, which led to the smallest maximum deviation.

9.2.3. Measurements with the RUAG Ku-Band Antenna

Reconstructing the correct AUT pattern from measurements in the Mosquito chamber (or any
comparable strongly reflective environment) becomes easier with increasing frequency (but
obtaining accurate measurement samples and positioning data becomes more challenging). The
reason for this can be found in the facts that antennas working in higher frequency bands usually
have a larger absolute operational bandwidth and the separation between the AUT and the chamber
walls in terms of wavelengths is larger. Furthermore, if two antennas have a comparable size, the
antenna operating at the higher frequency usually has a more directive pattern.

To verify this intuition, spherical measurements of the RUAG Ku-Band antenna were obtained
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Fig. 9.36.: Co-polar component in the 𝜑 = 0∘-cut
retrieved FF of the RUAG Ku-band antenna
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in the Mosquito chamber from 11GHz to 13GHz with an equiangular sampling step of 𝛥𝜗 =
𝛥𝜑 = 3∘ [Knapp 2019c]. The probe locations were located in four planes with distances
𝑧1 = 2.664m, 𝑧2 = 2.670m, 𝑧3 = 2.714m, and 𝑧4 = 2.814m. In every plane, nine probe
locations were used with an equidistant spacing of 𝛥𝑥 = 𝛥𝑦 = 0.025m around the probe center
position.

First, time gating was applied to the measurement data at every measurement position by
truncating the time-domain signal which was obtained directly with an IFFT from the frequency
sequence at 32.5 ns for probe locations with a distance 𝑑 < 2.72m to the AUT rotation center
and at 33 ns for probe locations with 𝑑 > 2.72m.

A virtual probe array was formed at using the time gated 𝑆12-parameters at 12.75GHz with
matched filter coefficients

𝛼𝑘 = e j𝑘0𝑑𝑘

𝑑𝑘
. (9.8)

Due to the small number of probe coefficients, there was no considerable benefit of solving the
minimization problem (9.4) because the resulting pattern was similar to the pattern obtained with
the matched filtering coefficients. The measurement data of the virtual array was subsequently
transformed into the FF. The resulting co-polar and cross-polar components for the 𝜑 = 0∘ FF
cuts can be seen in the Figs. 9.36 and 9.37, respectively.

The magnitude deviation does not much exceed −40 dB for the co-polar component and −35 dB
for the cross-polar component despite the relatively small number (36) of utilized probe positions.
This supports the intuition that the the separation of the desired AUT sources is simpler at higher
frequencies.

9.3. Chapter Summary

In this chapter, time gating and frequency domain echo suppression capabilities have been
combined in hybrid procedures to suppress the echo influences in challenging environments.
First, time gating has been applied to the reconstructed AUT currents in a stationary AUT scenario
to tackle mutual coupling effects between the AUT and the echo object. Conventional time gating
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of measured probe signals is not directly feasible in stationary AUT scenarios. Second, laborious
measurement campaigns have been carried out in the anechoic chamber at TUM, which was
transformed into the strongly reflective Mosquito chamber. It has been shown that the free-space
radiation pattern of the AUT can be obtained with a reasonable accuracy if high effort is put into
the collection and processing of large amounts of measurement data. The performed measurement
campaign shows the possibilities of specialized echo suppression algorithms but also the price
one has to pay in terms of measurement and processing effort.
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Conclusion

Antenna measurements in echoic environments need a careful consideration of the specific
characteristics of the scenario. In ideal anechoic measurement scenarios it makes no difference
whether the individual measurement positions are reached by rotating the AUT or moving the
probe whereas such a subtle difference has significant impact on measurements with echoes
being present in the environment. The various scattering scenarios encountered in antenna
NF measurements have been formally described in terms of spherical vector expansions and
equivalent surface current formulations. A close analogy between both types of formulations for
the fields in the antenna environment could be established which was essential for the unified
discussion of the manifold echo suppression algorithms.

Based on the formal understanding of the underlying physics, it was shown that the echo
influence differs in antenna measurement scenarios with either a stationary AUT or a stationary
probe. In antenna measurements with a stationary AUT, the separability of the echo contributions
from the desired AUT fields is determined mainly by the separation between the AUT and the
echo volume. The dislocation of the AUT from the center of the measurement sphere does not
influence the obtained results. Modal reconstruction methods are in many regards equivalent to
current based approaches, but the current based approaches are much more flexible concerning
the definition of the source geometry. Providing good a priori information about the AUT in
form of a Huygens surface can help to filter all field contributions which are not in agreement
with the limited source volume. Explicitly modeling the echo sources by introducing further
source locations is almost always a good idea as long as no evanescent fields are generated by
mutual interactions between the source domains (this implies a large enough separation between
the respective source domains).

If the additional sources are assumed to be fixed to the AUT, the echo distortion in antenna
measurement scenarios with a stationary probe can only partially be accounted for by additional
sources1. The portion of the echo influence which can be accounted for by additional sources was
called ghost contribution as it leads to additional unphysical sources being reconstructed (similar

1In chamber calibration techniques the additional echo influences are correctly and completely accounted for by
additional sources for the probe.
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to ghost targets in imaging applications). The ghost contributions can be unambiguously localized
inside a certain torus spanning the same angle form the test zone center to the AUT as the probe
spans to the echo location. If these ghost sources are explicitly reconstructed simultaneously
with the AUT sources, improvements can be found in some cases but the reconstructed AUT
fields into the direction of the torus may remain highly distorted due to unavoidable mutual
interactions between the torus currents and the AUT currents. Moving the AUT further away
from the rotation center leads to a larger separation between the AUT volume and the ghost torus
and consequently to a (slow) decrease of the echo influences when the AUT is further dislocated
from the rotation center. The orientation of the AUT plays an important role and sometimes the
best way to mount an antenna is to point it directly toward the echo object.

Echo suppression algorithms must be carefully adapted to the situation at hand to be effective.
The theoretical analysis culminated in the investigation of time and frequency domain echo
suppression techniques, which were effectively combined to complement each other in order to
enable antenna measurements even in challenging scattering scenarios. The developed methods
are very flexible as they can efficiently handle irregularly distributed measurement samples
and full probe correction thanks to the underlying equivalent current reconstruction based on
FIAFTA. However, the main focus of this thesis was not laid on computational efficiency but
on bringing the echo suppression capabilities to their limits. Aside from many numerical and
real measurement examples which illustrate the theoretical analysis throughout the thesis, in
particular the measurement campaign inside the Mosquito chamber—a purposefully challenging
measurement— is of interest for the evaluation of the capabilities of post processing echo
suppression methods. It was shown that under enormous measurement and post processing
effort one can reconstruct the free-space radiated fields of an AUT from measurements in an
essentially metallic chamber to accuracy levels which are almost comparable with anechoic
measurements. This delicate reconstruction task was only possible by combining time gating
and frequency-domain echo suppression methods.

This thesis can serve as the theoretical foundation for antenna measurements in almost arbitrary
echoic measurement scenarios. It is now understood and has been demonstrated on examples
how the different scenarios with either a stationary AUT or a stationary probe can be correctly
modeled and how the undesired echo influences can be removed in rather general circumstances.
Certainly, the field of echo suppression will see further advancements in the future, enabling
a variety of new applications. For instance the possibility of combining phaseless antenna
measurement techniques with echo suppression algorithms [Loredo 2011] can possibly lead
to an even greater flexibility for antenna measurement applications. In any case, the powerful
and flexible echo suppression methods come at the right time to supplement newly emerging
measurement techniques such as unmanned aerial vehicle based antenna measurements, where
the AUT fields are measured in-situ in the real working environment of the AUT, where echo
suppression techniques are necessary to be able to translate the measured NFs into the desired
FF distance.
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A
Reciprocity Relation for the
Antenna Receive Coefficient

In this Appendix, it is shown that the receive signal 𝑏 of an antenna can be expressed as
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𝑐aut
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where 𝛼′(1)
𝑠𝑚𝑛 are the expansion coefficients for the incident field and �̂�(4),tra

𝑠,−𝑚,𝑛 are the normalized
transmission coefficients for the transmitting antenna1.

The starting point is the relation
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with a spherical surface 𝑆2 with radius 𝑟2 and the normal vector 𝒏2 is pointing inwards (see
Fig. 4.8.). The fields in the integral may be expanded using their spherical wave expansion
leading to

𝑏 =
𝑐aut
2 ∯

𝑆2
[(

𝑘√𝑍0

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

�̂�(4),tra
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛)
×

(
j 𝑘
√𝑍0

2

∑
𝜎=1

𝑁

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝛼′(1)
𝜎𝜇𝜈𝑭 (1)

3−𝜎,𝜇𝜈)

−
(

𝑘√𝑍0

2

∑
𝜎=1

𝑁

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝛼′(1)
𝜎𝜇𝜈𝑭 (1)

𝜎𝜇𝜈)
×

(
j 𝑘
√𝑍0

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

�̂�(4),tra
𝑠𝑚𝑛 𝑭 (4)

3−𝑠,𝑚𝑛)]
⋅ 𝒏2 d𝑎

(A.3)
1Even though a similar derivation can be found in [Hansen 1988], it is worth to go through the derivation because

of the different time convention which was used in this work.
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=j𝑘2 𝑐aut
2

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

2

∑
𝜎=1

𝑁

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

�̂�(4),tra
𝑠𝑚𝑛 𝛼′(1)

𝜎𝜇𝜈

× ∯
𝑆2

[𝑭 (4)
𝑠𝑚𝑛 × 𝑭 (1)

3−𝜎,𝜇𝜈 − 𝑭 (1)
𝜎𝜇𝜈 × 𝑭 (4)

3−𝑠,𝑚𝑛] ⋅ 𝒏2 d𝑎

=j𝑘2 𝑐aut
2

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

2

∑
𝜎=1

𝑁

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

�̂�(4),tra
𝑠𝑚𝑛 𝛼′(1)

𝜎𝜇𝜈

×

2π

∫
𝜑=0

π

∫
𝜗=0

[𝑭 (4)
𝑠𝑚𝑛 × 𝑭 (1)

3−𝜎,𝜇𝜈 − 𝑭 (1)
𝜎𝜇𝜈 × 𝑭 (4)

3−𝑠,𝑚𝑛] ⋅ 𝒏2 (𝑟2)
2 sin 𝜗 d𝜗 d𝜑 .

(A.4)

Using the identity [Hansen 1988, p. 331]
2π

∫
𝜑=0

π

∫
𝜗=0

[𝑭 (𝑐)
𝑠𝑚𝑛(𝑟, 𝜗, 𝜑) × 𝑭 (𝛾)

3−𝜎,𝜇𝜈(𝑟, 𝜗, 𝜑)] ⋅ 𝒆𝑟 sin 𝜗 d𝜗, d𝜑

=
⎧⎪
⎨
⎪⎩

δ𝑠𝜎 δ𝑚,−𝜇 δ𝑛𝜈 (−1)𝑚 𝑧(𝑐)(𝑘𝑟) 1
𝑘𝑟

d
d (𝑘𝑟) (𝑘𝑟 𝑧(𝛾)

𝑛 (𝑘𝑟)) if 𝑠 = 1

−δ𝑠𝜎 δ𝑚,−𝜇 δ𝑛𝜈 (−1)𝑚 𝑧(𝛾)(𝑘𝑟) 1
𝑘𝑟

d
d (𝑘𝑟) (𝑘𝑟 𝑧(𝑐)

𝑛 (𝑘𝑟)) if 𝑠 = 2
(A.5)

one obtains

𝑏 = −j𝑘2 𝑐aut
2

2

∑
𝑠=1

𝑁

∑
𝑛=1

�̂�(4),tra
𝑠,−𝑚,𝑛𝛼′(1)

𝑠𝑚𝑛 (−1)𝑚 (𝑟2)
2

× [𝑧(1)
𝑛 (𝑘𝑟) 1

𝑘𝑟
d

d (𝑘𝑟) (𝑘𝑟 𝑧(4)
𝑛 (𝑘𝑟)) − 𝑧(4)

𝑛 (𝑘𝑟) 1
𝑘𝑟

d
d (𝑘𝑟) (𝑘𝑟 𝑧(1)

𝑛 (𝑘𝑟))] |𝑟=𝑟2
(A.6)

where the Wronskian is given as [Abramowitz 1964, p. 437] [Hansen 1988, p. 316]

⎡
⎢
⎢
⎣

𝑧(1)
𝑛 (𝑘𝑟)

𝑘𝑟

d(𝑘𝑟 𝑧(4)
𝑛 (𝑘𝑟))

d (𝑘𝑟)
−

𝑧(4)
𝑛 (𝑘𝑟)

𝑘𝑟

d(𝑘𝑟 𝑧(1)
𝑛 (𝑘𝑟))

d (𝑘𝑟)

⎤
⎥
⎥
⎦

=
[
j𝑛(𝑘𝑟)

dh(2)
𝑛 (𝑘𝑟)
d (𝑘𝑟)

− h(2)
𝑛 (𝑘𝑟)

d j𝑛(𝑘𝑟)
d (𝑘𝑟) ]

= (−j) [j𝑛(𝑘𝑟)
dn𝑛(𝑘𝑟)
d (𝑘𝑟)

− n𝑛(𝑘𝑟)
dj𝑛(𝑘𝑟)
d (𝑘𝑟) ]

=
−j

(𝑘𝑟)2 . (A.7)

Finally, we have

𝑏 =
𝑐aut
2

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

(−1)𝑚 �̂�(4),tra
𝑠,−𝑚,𝑛 𝛼′(1)

𝑠𝑚𝑛 . (A.8)
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B
Translation Coefficients for the
Spherical Wave Expansion

In this appendix, diagonalized spectral expressions for the spherical translation coefficients
𝑇 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) and 𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) are derived which provide the relationships between the spherical wave

coefficients of an electromagnetic field in two coordinate systems, centered at 𝒓01 and 𝒓02,
respectively. The coordinate system centered at 𝒓01 is denoted as the primary coordinate system
and the spherical expansion coefficients are assumed to be known in this coordinate system in
the first place. The secondary coordinate system is shifted by 𝑹 against the primary coordinate
system, i.e., 𝑹 = 𝒓02 − 𝒓01 and the spherical expansion coefficients in this secondary coordinate
system shall be determined from the primary coefficients with the help of the translation operators.

Such expressions have been derived multiple times [Chew 2007; Wittmann 1988; Stein 1961;
Kim 1996; Cruzan 1962; Dufva 2008; Chew 1993; Borghese 1980; Felderhof 1987; Danos
1965; He 2008; Chew 2008; Devaney 1974] and although the derivation shown here may be
less rigorous than for example in [Chew 2008; He 2008; Dufva 2008], it is hopefully more
approachable.

Two different cases depicted in Fig. B.1 and Fig. B.2 must be distinguished. In the first
case depicted in Fig. B.1, the coordinate origins 𝒓01 and 𝒓02 of the primary and the secondary
coordinate system are both located in the same spherical volume 𝑉1 and the sources are either
completely inside or outside of 𝑉1. If the sources are all inside 𝑉1, than the spherical expansion
of the radiated fields is valid only in the source free region external to 𝑉1 and will consist of
purely outwards traveling waves (of type 𝑐 = 4). We have

𝑬(𝒓) |𝒓∉𝑉1

= 𝑘 √𝑍F

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝒓) (B.1)

for the primary expansion and

𝑬(𝒓) |𝒓∉𝑉1

= 𝑘 √𝑍F

2

∑
𝜎=1

�̃�

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

�̃�(4)
𝜎𝜇𝜈 𝑭 (4)

𝜎𝜇𝜈(𝒓 − 𝑹) (B.2)

175



B. Translation Coefficients for the Spherical Wave Expansion

𝒓02

𝑹

𝒓01

𝑉1

Fig. B.1.: The coordinate origins 𝒓01 and 𝒓02 of the
primary and the secondary coordinate sys-
tem are both located int the same spherical
volume 𝑉1. The sources for the considered
fields are either completely inside or outside
𝑉1.

𝑹
𝒓01 𝒓02

𝑉2
𝑉1

Fig. B.2.: The coordinate origins 𝒓01 and 𝒓02 of the
primary and secondary coordinate system
are the centers of two non-interacting spher-
ical volumes 𝑉1 and 𝑉1. The sources for the
considered fields are completely inside 𝑉1.

for the secondary expansion. Naturally, both expansions are exactly true only if 𝑁 → ∞ and
�̃� → ∞, but for all practically relevant cases, the mode expansions can be truncated at finite
values. The expansion coefficients in (B.1) and (B.2) are related by

�̃�(4)
𝜎𝜇𝜈 =

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑇 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) (B.3)

and consequently

𝑭 (4)
𝑠𝑚𝑛(𝒓) =

2

∑
𝜎=1

�̃�

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) 𝑭 (4)

𝜎𝜇𝜈(𝒓 − 𝑹) . (B.4)

If all sources are located outside 𝑉1 then the field expansion is only valid in the source free
region 𝑉1 and consists of purely incident fields (of type 𝑐 = 1), i.e.,

𝑬(𝒓) |𝒓∈𝑉1

= 𝑘 √𝑍F

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 𝑭 (1)

𝑠𝑚𝑛(𝒓) (B.5)

or

𝑬(𝒓) |𝒓∈𝑉1

= 𝑘 √𝑍F

2

∑
𝜎=1

�̃�

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

�̃�(1)
𝜎𝜇𝜈 𝑭 (1)

𝜎𝜇𝜈(𝒓 − 𝑹) . (B.6)

The expansion coefficients in (B.5) and (B.6) are related by

�̃�(1)
𝜎𝜇𝜈 =

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 𝑇 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) (B.7)
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and consequently

𝑭 (1)
𝑠𝑚𝑛(𝒓) =

2

∑
𝜎=1

�̃�

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) 𝑭 (1)

𝜎𝜇𝜈(𝒓 − 𝑹) . (B.8)

In both of the previous cases, the translation operator to translate the expansion coefficients
from the primary to the secondary coordinate system (both have their origin in 𝑉1) is given by
the same expression 𝑇 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹).
If the coordinate origins 𝒓01 and 𝒓02 of the primary and the secondary coordinate system are

the centers of two different non-intersecting spherical volumes 𝑉1 and 𝑉2 as depicted in Fig. B.2,
the translation operator has a different form. Sources are assumed only in 𝑉1. In this case, the
field expansion in the primary coordinate system consists of only outwards traveling waves (type
𝑐 = 4) and is valid only in the region external to 𝑉1. The field expansion in the secondary
coordinate system consists of only incident fields (type 𝑐 = 1) and is valid only inside the source
free volume 𝑉2. We have

𝑬(𝒓) |𝒓∉𝑉1

= 𝑘 √𝑍F

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑭 (4)

𝑠𝑚𝑛(𝒓) (B.9)

and

𝑬(𝒓) |𝒓∈𝑉2

= 𝑘 √𝑍F

2

∑
𝜎=1

�̃�

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

�̃�(1)
𝜎𝜇𝜈 𝑭 (1)

𝜎𝜇𝜈(𝒓 − 𝑹) (B.10)

for the expansions in the primary and secondary coordinate systems, respectively.
The translation operator between the spherical expansion coefficients in both coordinate system

takes the form

𝛼(1)
𝜎𝜇𝜈 =

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝒯 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) (B.11)

in this case, where 𝛼(4)
𝑠𝑚𝑛 are the expansion coefficient of the radiated field in the primary coordinate

system—centered at 𝒓01 —and 𝛼(1)
𝜎𝜇𝜈 are the expansion coefficients of the incident field in 𝑉2

with respect to the coordinate origin at 𝒓02. Consequently tho field modes in the primary and
secondary coordinate system are related by

𝑭 (4)
𝑠𝑚𝑛(𝒓) =

2

∑
𝜎=1

�̃�

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) 𝑭 (1)

𝜎𝜇𝜈(𝒓 − 𝑹) . (B.12)

B.1. Preliminaries

Before going into the derivations for the formal expressions of 𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) and 𝒯 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹), some
preparation is needed. First, it is noted that any incident field can be represented in terms of an
incident plane wave spectrum by

𝑬(𝒓) = ∯ �̃�in(�̂�) e−j𝒌⋅𝒓 d�̂� , (B.13)
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or by an expansion into incident spherical waves [Devaney 1974] [Hansen 1988, p. 341]

𝑬(𝒓) = 𝑘 √𝑍F

2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛𝑭 (1)

𝑠𝑚𝑛(𝑟, 𝜗, 𝜑) . (B.14)

The spherical wave expansion coefficients 𝛼(1)
𝜎𝜇𝜈 can be directly computed from the plane wave

spectrum �̃�in(�̂�) of the incident fields by

𝛼(1)
𝜎𝜇𝜈 =

j 4π

√𝑍F 𝑘
(−1)𝜎+𝜇+𝜈

∯ �̃�in(�̂�) ⋅ 𝑲 (4)
𝜎,−𝜇,𝜈(�̂�) d�̂� (B.15)

and conversely, the plane wave spectrum �̃�in(�̂�) is obtained from the spherical wave expansion
by

�̃�in(�̂�) =
𝑘 √𝑍F

j 4π

2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑚

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛𝑲 (4)

𝑠𝑚𝑛(�̂�) . (B.16)

The transformation between the spherical wave expansion and the plane wave spectral domain
will be the core of the derivations in the subsequent subsections.

In addition to the transformation between spherical and plane wave domain, the derivations
will make use of the fact that

∇∇ e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
= ∇′∇′ e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
∀𝒓 ≠ 𝒓′ . (B.17)

The validity of this identity will be shown in the following by explicitly working out the analytical
expressions for the two expressions in (B.17). The derivation starts in a coordinate system where
𝒓′ = 𝟎 and the general solution is obtained by shifting the derived solution along the vector 𝒓′

afterwards. We have

∇∇ e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′| |
𝒓′=𝟎

= ∇∇ (
e−j𝑘 |𝒓|

4π |𝒓| )

= ∇∇e−j𝑘 𝑟

4π 𝑟

= ∇ [(−j𝑘 − 1
𝑟 )

e−j𝑘 𝑟

4π 𝑟
𝒆𝑟]

= ∇ [(−j𝑘 − 1
𝑟 )

e−j𝑘 𝑟

4π 𝑟 ] 𝒆𝑟 + [(−j𝑘 − 1
𝑟 )

e−j𝑘 𝑟

4π 𝑟 ] ∇𝒆𝑟

= (
2
𝑟2 +

2 j𝑘
𝑟

− 𝑘2
)

e−j𝑘 𝑟

4π 𝑟
𝒆𝑟𝒆𝑟 − [(j𝑘 + 1

𝑟 )
e−j𝑘 𝑟

4π 𝑟 ]
1
𝑟 (I − 𝒆𝑟𝒆𝑟)

= (
3
𝑟2 +

3 j𝑘
𝑟

− 𝑘2
)

e−j𝑘 𝑟

4π 𝑟
𝒆𝑟𝒆𝑟 − (

j𝑘
𝑟

+ 1
𝑟2 )

e−j𝑘 𝑟

4π 𝑟
I , (B.18)

for the special case 𝒓′ = 𝟎. In the derivation above, the identity ∇𝒆𝑟 = (I − 𝒆𝑟𝒆𝑟) /𝑟 has been
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used1. The general solution is obtained from this special case by a translation along 𝒓′. To this
end, one has to perform the substitutions 𝑟 → |𝒓 − 𝒓′| and 𝒆𝑟 → (𝒓 − 𝒓′) / (|𝒓 − 𝒓′|). Using the
shorthand notations 𝑹 = 𝒓 − 𝒓′ and 𝑅 = |𝑹|, one obtains

∇∇ e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
= (

3
𝑅2 +

3 j𝑘
𝑅

− 𝑘2
)

e−j𝑘𝑅

4π 𝑅
𝑹𝑹
𝑅2 − (

j𝑘
𝑅

+ 1
𝑅2 )

e−j𝑘𝑅

4π 𝑅
I . (B.19)

An almost identical derivation leads to

∇′∇′ e−j𝑘 |𝒓′−𝒓|

4π |𝒓′ − 𝒓||
𝒓=𝟎

= (
3

𝑟′2 +
3 j𝑘
𝑟′ − 𝑘2

)
e−j𝑘 𝑟′

4π 𝑟′ 𝒆𝑟′𝒆𝑟′ − (
j𝑘
𝑟′ + 1

𝑟′2 )
e−j𝑘 𝑟′

4π 𝑟′ I , (B.20)

for the special case 𝒓 = 𝟎. The general solution is again obtained by a translation along the vector
𝒓. One has to perform the substitutions2 𝑟 → |𝒓′ − 𝒓| and 𝒆′

𝑟 → (𝒓′ − 𝒓) / (|𝒓′ − 𝒓|) = −𝑹/𝑅.
Thus, we have for the general solution

∇′∇′ e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
= (

3
𝑅2 +

3 j𝑘
𝑅

− 𝑘2
)

e−j𝑘𝑅

4π 𝑅
𝑹𝑹
𝑅2 − (

j𝑘
𝑅

+ 1
𝑅2 )

e−j𝑘𝑅

4π 𝑅
I , (B.21)

establishing the equality in (B.17) at least for all observation points 𝒓 which are well separated3
from the source locations 𝒓′ (this limitation is irrelevant in the current discussion as the interest
lies in expressing the fields outside the source volume 𝑉1).

Next, the scalar Green’s function e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
in (B.42) is replaced by its well known spherical

expansion4 [Stratton 1941, p.414], [Abramowitz 1964, p.440], [Jin 2015, p.362], [Wittmann
1988]

e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
=

⎧
⎪
⎨
⎪
⎩

−j𝑘
∞
∑

ℓ=0

2ℓ + 1
4π

jℓ(𝑘 |𝒓′|) hℓ(𝑘 |𝒓|)Pℓ( ̂𝒓′ ⋅ ̂𝒓) for |𝒓′| < |𝒓|

−j𝑘
∞
∑

ℓ=0

2ℓ + 1
4π

jℓ(𝑘 |𝒓|) hℓ(𝑘 |𝒓′|)Pℓ( ̂𝒓′ ⋅ ̂𝒓) for |𝒓| < |𝒓′|
(B.22)

1In spherical coordinates we have for the gradient of a vector field [Reddy 2013, p. 52] ∇𝑭 =
𝜕𝐹𝑟

𝜕𝑟
𝒆𝑟𝒆𝑟 +

𝜕𝐹𝜗

𝜕𝑟
𝒆𝑟𝒆𝜗 +

𝜕𝐹𝜑

𝜕𝑟
𝒆𝑟𝒆𝜑 + 1

𝑟 (
𝜕𝐹𝑟

𝜕𝜗
− 𝐹𝜗) 𝒆𝜗𝒆𝑟 + 1

𝑟 (𝐹𝑟 +
𝜕𝐹𝜗

𝜕𝜗 ) 𝒆𝜗𝒆𝜗 + 1
𝑟

𝜕𝐹𝜑

𝜕𝜗
𝒆𝜗𝒆𝜑 + 1

𝑟 sin 𝜗 (
𝜕𝐹𝑟

𝜕𝜑
− 𝐹𝜑 sin 𝜗) 𝒆𝜑 𝒆𝑟 +

1
𝑟 sin 𝜗 (

𝜕𝐹𝜗

𝜕𝜑
− 𝐹𝜑 cos 𝜗) 𝒆𝜑 𝒆𝜗 + 1

𝑟 sin 𝜗 (𝐹𝑟 sin 𝜗 + 𝐹𝜗 cos 𝜗 +
𝜕𝐹𝜑

𝜕𝜑 ) 𝒆𝜑 𝒆𝜑 .

2Notice the subtle difference in the substitutions for 𝒆𝑟 → 𝑹/𝑅 and 𝒆𝑟′ → −𝑹/𝑅. Therefore, while ∇ e−j𝑘 |𝒓′−𝒓|

4π |𝒓′ − 𝒓|
≠

∇′ e−j𝑘 |𝒓′−𝒓|

4π |𝒓′ − 𝒓|
it is nevertheless true that ∇∇ e−j𝑘 |𝒓′−𝒓|

4π |𝒓′ − 𝒓|
= ∇′∇′ e−j𝑘 |𝒓′−𝒓|

4π |𝒓′ − 𝒓|
.

3Since the 𝒆𝑟 vector is not well defined at the origin, the derivation breaks down if 𝒓 = 𝒓′.
4With

ℓ
∑

𝑝=−ℓ
Y∗

ℓ𝑝(𝜗′, 𝜑′)Yℓ𝑝(𝜗, 𝜑) = 2ℓ + 1
4π

Pℓ( ̂𝒓′ ⋅ ̂𝒓) one can also find the alternative representation

e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
=

⎧
⎪
⎨
⎪
⎩

−j𝑘
∞
∑
ℓ=0

ℓ
∑

𝑝=−ℓ
jℓ(𝑘 |𝒓′|) h

(2)
ℓ (𝑘 |𝒓|)Y∗

ℓ𝑝(𝜗′, 𝜑′)Yℓ𝑝(𝜗, 𝜑) for |𝒓′| < |𝒓|

−j𝑘
∞
∑
ℓ=0

ℓ
∑

𝑝=−ℓ
jℓ(𝑘 |𝒓|) h(2)

ℓ (𝑘 |𝒓′|)Y∗
ℓ𝑝(𝜗′, 𝜑′)Yℓ𝑝(𝜗, 𝜑) for |𝒓| < |𝒓′|

.
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B. Translation Coefficients for the Spherical Wave Expansion

With [Stratton 1941, p. 410], [Rahola 1996]

jℓ(𝑘 |𝒓|)Pℓ( ̂𝒓′ ⋅ ̂𝒓) = −1
4π

(−j)𝑛
∯ e j𝒌⋅𝒓Pℓ(�̂� ⋅ ̂𝒓′) d�̂� (B.23)

one obtains the useful identity

e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
=

⎧
⎪
⎨
⎪
⎩

j𝑘
4π

∞
∑

ℓ=0
(−j)ℓ (2ℓ + 1) h(2)

ℓ (𝑘 |𝒓|) ∯ e j𝒌⋅𝒓′
Pℓ(�̂� ⋅ ̂𝒓) d�̂� for |𝒓′| < |𝒓|

j𝑘
4π

∞
∑

ℓ=0
(−j)ℓ (2ℓ + 1) h(2)

ℓ (𝑘 |𝒓′|) ∯ e j𝒌⋅𝒓 Pℓ(�̂� ⋅ ̂𝒓′) d�̂� for |𝒓′| > |𝒓|
,

(B.24)
which is sometimes called Gegenbauer addition theorem5.

B.2. Translations Between Coordinate Origins in the Same Volume

Next, a diagonal spectral representation of the 𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) translation coefficient will be derived

corresponding to a translation of coordinate systems depicted in Fig. B.1, where the origins 𝒓01
and 𝒓02 of the primary and secondary coordinate system are both located in the same spherical
volume 𝑉1. First, the expression will be derived with sources being exclusively outside of 𝑉1,
such that the spherical wave expansions in both coordinate systems involve only incident field
modes (type 𝑐 = 1). Second, the expression for the translation coefficients will be derived for the
radiated fields with all sources being located in 𝑉1. The spherical wave expansion will only need
outwards traveling waves (type 𝑐 = 4) in both coordinate systems and although it turns out that
the expression is the same as in the previous case, the derivation is considerably different.

B.2.1. Transformation of Incident Fields

Consider an incident field 𝑬 in volume 𝑉1 with a spherical wave expansion given by

𝑬(𝒓) = 𝑘 √𝑍F

2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛𝑭 (1)

𝑠𝑚𝑛(𝑟, 𝜗, 𝜑) , (B.25)

where 𝛼(1)
𝑠𝑚𝑛 are the known expansion coefficients of the spherical wave expansion in the primary

coordinate system centered at 𝒓01. Using a propagating plane wave expansion, the same incident
field is expressed by

𝑬(𝒓) = ∯ �̃�in,01(�̂�) e−j𝒌⋅(𝒓−𝒓01) d�̂� , (B.26)

where

�̃�in,01(�̂�) =
𝑘 √𝑍F

j 4π

2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑚

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛𝑲 (4)

𝑠𝑚𝑛(�̂�) (B.27)

5The name appears to originate from the fact that the Legendre polynomials are closely related to the Gegenbauer
polynomials such that the addition theorem can be equivalently stated in terms of Gegenbauer polynomials.
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is the plane wave spectrum of the incident field with respect to the origin at 𝒓01 (this is indicated
by the subscript “01”). An alternative plane wave representation of the incident field can be given
by

𝑬(𝒓) = ∯ �̃�in,02(�̂�) e−j𝒌⋅(𝒓−𝒓02) d�̂� , (B.28)

where the plane wave spectrum �̃�in,02 is now expressed with respect to the origin at 𝒓02 (this is
indicated by the subscript “02”). The two alternative plane wave representations yield the same
result for

�̃�in,02 = �̃�in,01 e−j𝒌⋅(𝒓02−𝒓01) = �̃�in,01 e−j𝒌⋅𝑹 , (B.29)

such that a translational shift of the coordinate system along 𝒓02 − 𝒓01 = 𝑹 is established by
multiplying the spectral components of the incident plane wave spectrum with e−j𝒌⋅𝑹.

Finally, the plane wave representation of the incident field in the secondary coordinate system
can be transformed into a spherical wave expansion having its origin at 𝒓02. The spherical
expansion coefficients in the secondary coordinate system are given by

𝛼(1)
𝜎𝜇𝜈 =

j 4π

√𝑍F 𝑘
(−1)𝜎+𝜇+𝜈

∯ �̃�in,02(�̂�) ⋅ 𝑲 (4)
𝜎,−𝜇,𝜈(�̂�) d�̂�

=
j 4π

√𝑍F 𝑘
(−1)𝜎+𝜇+𝜈

∯ �̃�in,01(�̂�) e−j𝒌⋅𝑹 ⋅ 𝑲 (4)
𝜎,−𝜇,𝜈(�̂�) d�̂�

=
j 4π

√𝑍F 𝑘
(−1)𝜎+𝜇+𝜈

∯
𝑘 √𝑍F

j 4π

2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑚

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛𝑲 (4)

𝑠𝑚𝑛(�̂�) e−j𝒌⋅𝑹 ⋅ 𝑲 (4)
𝜎,−𝜇,𝜈(�̂�) d�̂�

=
2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑚

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛 (−1)𝜎+𝜇+𝜈

∯ 𝑲 (4)
𝑠𝑚𝑛(�̂�) e−j𝒌⋅𝑹 ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂�

=
2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑚

∑
𝑚=−𝑛

𝛼(1)
𝑠𝑚𝑛𝑇 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) . (B.30)

Therefore, the translation coefficient from the primary to the secondary coordinate system is
given by

𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) = (−1)𝜎+𝜇+𝜈

∯ 𝑲 (4)
𝑠𝑚𝑛(�̂�) e−j𝒌⋅𝑹 ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂� (B.31)

for the two coordinate origins placed in the same source free volume 𝑉1.

B.2.2. Transformation of Radiated Fields

Consider a field radiated by an arbitrary electric volume current density 𝑱, which is completely
inside 𝑉1. The electric FF pattern of this current distribution with respect to the coordinate center
at 𝒓01 is given by (see Section 3.5)

𝑬FF,01(�̂�) =
−j𝜔𝜇𝑘

4π (I − �̂��̂�) ∭
𝑉1

e j𝒌⋅(𝒓′−𝒓01) ⋅ 𝑱(𝒓′) d𝑣′ . (B.32)
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B. Translation Coefficients for the Spherical Wave Expansion

In the secondary coordinate system, with origin at 𝒓02, the electric FF pattern is given by

𝑬FF,02(�̂�) =
−j𝜔𝜇𝑘

4π (I − �̂��̂�) ∭
𝑉1

e j𝒌⋅(𝒓′−𝒓02) ⋅ 𝑱(𝒓′) d𝑣′ . (B.33)

and clearly
𝑬FF,02(�̂�) = 𝑬FF,01(�̂�) e j(𝒓01−𝒓02) = 𝑬FF,01(�̂�) e−j𝒌⋅𝑹 . (B.34)

Both FF functions may alternatively expressed by their spherical wave expansions. We have

𝑬FF,01(�̂�) = 𝑘√𝑍F

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑲 (4)

𝑠𝑚𝑛(�̂�) , (B.35)

where 𝛼(4)
𝑠𝑚𝑛 are the expansion coefficients of the radiated fields in the primary coordinate system

and

𝑬FF,02(�̂�) = 𝑘√𝑍F

2

∑
𝜎=1

𝑁′
aut

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝛼(4)
𝜎𝜇𝜈 𝑲 (4)

𝜎𝜇𝜈(�̂�) , (B.36)

where 𝛼(4)
𝜎𝜇𝜈 are the expansion coefficients of the radiated fields in the primary coordinate system.

From (B.34) it follows that

2

∑
𝜎=1

𝑁′
aut

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝛼(4)
𝜎𝜇𝜈 𝑲 (4)

𝜎𝜇𝜈(�̂�) = e−j𝒌⋅𝑹
2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑲 (4)

𝑠𝑚𝑛(�̂�) . (B.37)

Applying the orthogonality relation [Hansen 1988, p. 330]

∯ 𝑲 (4)
𝑠𝑚𝑛(�̂�) ⋅ 𝑲 (4)

𝜎𝜇𝜈(�̂�) d�̂� = (−1)𝜎+𝜇+𝜈 δ𝑠𝜎δ𝑚,−𝜇δ𝑛𝜈 (B.38)

leads to the final result

𝛼(4)
𝜎𝜇𝜈 =

2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑚

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 (−1)𝜎+𝜇+𝜈

∯ 𝑲 (4)
𝑠𝑚𝑛(�̂�) e−j𝒌⋅𝑹 ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂�

=
2

∑
𝑠=1

𝑁obs

∑
𝑛=1

𝑚

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝑇 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) , (B.39)

with the translation coefficient from the primary to the secondary coordinate system being given
by

𝑇 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹) = (−1)𝜎+𝜇+𝜈

∯ 𝑲 (4)
𝑠𝑚𝑛(�̂�) e−j𝒌⋅𝑹 ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂� (B.40)

for the two coordinate origins placed in the same source volume 𝑉1.
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B.3. Translations Between Coordinate Origins in Different

Volumes

Now, the situation of Fig. B.2 is considered, featuring the spherical source volume 𝑉1 and a
second spherical source free volume 𝑉2. The volume 𝑉1 has its center at 𝒓01 and the volume
𝑉2 has its center at 𝒓02. The two centers are separated by the vector 𝑹 = 𝒓02 − 𝒓01. An electric
volume current density 𝑱 in the source volume 𝑉1 generates radiated fields which are incident on
the source free observation volume 𝑉2.

Employing (B.17), the fields in the source free region external to 𝑉1 are given by

𝑬(𝒓) = ∭
𝑉1

𝓖−
JE(𝒓, 𝒓′) ⋅ 𝑱(𝒓′) d𝑣′

= −j𝜔𝜇 ∭
𝑉1

(I + 1
𝑘2 ∇∇)

e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
⋅ 𝑱(𝒓′) d𝑣′

= −j𝜔𝜇 ∭
𝑉1

(I + 1
𝑘2 ∇′∇′

)
e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
⋅ 𝑱(𝒓′) d𝑣′ (B.41)

= −j𝜔𝜇 ∭
𝑉1

e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′| (I + 1
𝑘2 ∇′∇′

) ⋅ 𝑱(𝒓′) d𝑣′ . (B.42)

If the current functions are not sufficiently regular such that differentiation on them is not well
defined, the differential operators have to be interpreted in in a distributional sense [Jin 2015,
p. 65] (i.e., by using (B.41) instead of (B.42)). The shift of the differential operators from the
unprimed to the primed coordinates is valid in this particular case since

∇∇ e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
= ∇′∇′ e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
∀𝒓 ≠ 𝒓′ . (B.43)

The substitutions 𝒓 → 𝒓02 − 𝒓01 = 𝑹 and 𝒓′ → (𝒓′ − 𝒓01) − (𝒓 − 𝒓02) in the branch of the
Gegenbauer addition theorem (B.24) for |𝒓′| < |𝒓| lead to the well known identity [Coifman
1993]

e−j𝑘 |𝒓−𝒓′|

4π |𝒓 − 𝒓′|
=

j𝑘
4π

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|) ∯ e−j𝒌⋅(𝒓−𝒓02) e j𝒌⋅(𝒓′−𝒓01) Pℓ(�̂� ⋅ �̂�) d�̂� ,

(B.44)
valid for |(𝒓′ − 𝒓01) − (𝒓 − 𝒓02)| < |𝑹|. Plugging this identity into (B.42), one obtains

𝑬(𝒓) =
𝜔𝜇𝑘
4π

∞

∑
ℓ=0

∯ (−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|) e−j𝒌⋅(𝒓−𝒓02) Pℓ(�̂� ⋅ �̂�)

× ∭
𝑉1

e j𝒌⋅(𝒓′−𝒓01) (I + 1
𝑘2 ∇′∇′

) ⋅ 𝑱(𝒓′) d𝑣′ d�̂� . (B.45)
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Using partial integration, the term

𝑬FF(�̂�) =
−j𝜔𝜇𝑘

4π ∭
𝑉1

e j𝒌⋅(𝒓′−𝒓01) (I + 1
𝑘2 ∇′∇′

) ⋅ 𝑱(𝒓′) d𝑣′

=
−j𝜔𝜇𝑘

4π ∭
𝑉1

(I + 1
𝑘2 ∇′∇′

) e j𝒌⋅(𝒓′−𝒓01) ⋅ 𝑱(𝒓′) d𝑣′

=
−j𝜔𝜇𝑘

4π (I − 1
𝑘2 𝒌𝒌) ∭

𝑉1

e j𝒌⋅(𝒓′−𝒓01) ⋅ 𝑱(𝒓′) d𝑣′ (B.46)

can be easily identified as the FF pattern of the current distribution 𝑱 with respect to the coordinate
origin at 𝒓01 (see Section 3.5) and we have

𝑬(𝒓) = j
∞

∑
ℓ=0

∯ (−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|) e−j𝒌⋅(𝒓−𝒓02) Pℓ(�̂� ⋅ �̂�) 𝑬FF(�̂�) d�̂� . (B.47)

The FF pattern of the source distribution can alternatively be expressed in terms of its spherical
wave expansion by

𝑬FF(�̂�) = 𝑘√𝑍F

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛𝑲 (4)

𝑠𝑚𝑛(�̂�) , (B.48)

where 𝛼(4)
𝑠𝑚𝑛 are the expansion coefficients of the radiated fields in the primary coordinate system

(centered at 𝒓01). This leads to

𝑬(𝒓) = j𝑘√𝑍F

∞

∑
ℓ=0

∯ (−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|) e−j𝒌⋅(𝒓−𝒓02) Pℓ(�̂� ⋅ �̂�)

×
(

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛𝑲 (4)

𝑠𝑚𝑛(�̂�))
d�̂� . (B.49)

Notice that (B.49) takes the form of a summation partial incident fields 𝑬ℓ, i.e.,

𝑬(𝒓) =
∞

∑
ℓ=0

𝑬ℓ(𝒓) . (B.50)

Each individual partial incident field 𝑬ℓ is given in terms of a plane wave representation with
respect to a coordinate origin at 𝒓02 by

𝑬ℓ(𝒓) = ∯ �̃�in,ℓ(�̂�) e−j𝒌⋅e−j𝒌⋅(𝒓−𝒓02) d�̂� , (B.51)

where the plane wave spectra �̃�in,ℓ(�̂�) are given by

�̃�in,ℓ(�̂�) = j (−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) 𝑬FF(�̂�) . (B.52)
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The partial incident fields 𝑬ℓ each have a spherical wave expansion

𝑬ℓ(𝒓) = 𝑘√𝑍F

2

∑
𝜎=1

𝑁obs

∑
𝜈=1

𝜈

∑
𝜇=−𝜈

𝛼(1)
𝜎𝜇𝜈,ℓ𝑭 (1)

𝜎𝜇𝜈( ̃𝑟, ̃𝜗, �̃�) , (B.53)

of which the expansion coefficients can be computed according to (B.15) by

𝛼(1)
𝜎𝜇𝜈,ℓ =

j 4π

√𝑍F 𝑘
(−1)𝜎+𝜇+𝜈

∯ �̃�in, ℓ(�̂�) ⋅ 𝑲 (4)
𝜎,−𝜇,𝜈(�̂�) d�̂�

= −4π (−1)𝜎+𝜇+𝜈
∯

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 (−j)ℓ (2ℓ + 1) h(2)

ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�)

× 𝑲 (4)
𝑠𝑚𝑛(�̂�) ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂� . (B.54)

The final result is obtained by summing over all partial expansion coefficients. We have

𝛼(1)
𝜎𝜇𝜈 = −4π

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛

∞

∑
ℓ=0

(−1)𝜎+𝜇+𝜈
∯ (−j)ℓ (2ℓ + 1) h(2)

ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�)

× 𝑲 (4)
𝑠𝑚𝑛(�̂�) ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂� . (B.55)

This equation must be equal to

𝛼(1)
𝜎𝜇𝜈 =

2

∑
𝑠=1

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

𝛼(4)
𝑠𝑚𝑛 𝒯 𝜎𝜇𝜈

𝑠𝑚𝑛 (𝑹) (B.56)

and by a term-by-term comparison one obtains

𝒯 𝜎𝜇𝜈
𝑠𝑚𝑛 (𝑹)

= −4π
∞

∑
ℓ=0

(−1)𝜎+𝜇+𝜈
∯ (−j)ℓ (2ℓ + 1) h(2)

ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) 𝑲 (4)
𝑠𝑚𝑛(�̂�) ⋅ 𝑲 (4)

𝜎,−𝜇,𝜈(�̂�) d�̂� .

(B.57)

The order of the summation and integration must not be changed (i.e., the infinte series must
not be evaluated before the integration over the plane wave spectra), because the series

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) (B.58)

diverges— the expression ∑∞
ℓ=0 (−j)ℓ (2ℓ + 1) h(2)

ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) is no proper function but
a distribution. The series must be interpreted in a distributional sense, having in mind that it is
only well defined under an integral together with a sufficiently smooth function 𝑓 [Chew 2007].
Formally, one can write the symbolic integral

∯

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) 𝑓(�̂�) d�̂� (B.59)
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remembering that this is not an integral which can be evaluated in the conventional (i.e., Riemann
or Lebesgue) sense. Instead, one falls back to defining this symbolic (distributional) integral as6

∯

∞

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) 𝑓(�̂�) d�̂�

∶=
∞

∑
ℓ=0

∯ (−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) 𝑓(�̂�) d�̂� . (B.60)

These problems are of course avoided in any numerical implementation because the series is
truncated after a finite number of terms and the finite sum is guaranteed to converge.

An empirical rule for choosing the truncation index 𝐿 of the summation in the so-called
propagating plane-wave translation operator

𝑇𝐿(𝑘𝑅, �̂� ⋅ �̂�) =
𝐿

∑
ℓ=0

(−j)ℓ (2ℓ + 1) h(2)
ℓ (𝑘 |𝑹|)Pℓ(�̂� ⋅ �̂�) (B.61)

is given by [Song 2001]

𝐿 = 𝑘𝑟0 + 1.8 (log10(
1
𝜖 ))

2
3 3√𝑘𝑟0 , (B.62)

where 𝑟0 is the radius of the minimum sphere enclosing all sources and log10(1/𝜖) is the number
of desired decimal digits of accuracy. Naturally, the rule (B.62) for choosing a sensible truncation
index in the translation of spherical waves has striking similarities to the rule in (4.12) for choosing
a sensible truncation index for the spherical expansion of a radiated field.

6This is similar to how integrals involving the Dirac-Delta distribution cannot be evaluated in the conventional
sense but must be interpreted as symbolic integrals which get their meaning only through a separate definition.
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