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Abstract Living soft tissues appear to promote the de-

velopment and maintenance of a preferred mechanical

state within a defined tolerance around a so-called set-

point. This phenomenon is often referred to as mechan-

ical homeostasis. In contradiction to the prominent role

of mechanical homeostasis in various (patho)physiolo-

gical processes, its underlying micromechanical mecha-

nisms acting on the level of individual cells and fibers

remain poorly understood, especially, how these mech-

anisms on the microscale lead to what we macroscop-

ically call mechanical homeostasis. Here, we present

a novel finite element based computational framework

that is constructed bottom up, that is, it models key

mechanobiological mechanisms such as actin cytoskele-

ton contraction and molecular clutch behavior of in-

dividual cells interacting with a reconstructed three-

dimensional extracellular fiber matrix. The framework

reproduces many experimental observations regarding

mechanical homeostasis on short time scales (hours), in

which the deposition and degradation of extracellular
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matrix can largely be neglected. This model can serve

as a systematic tool for future in silico studies of the

origin of the numerous still unexplained experimental

observations about mechanical homeostasis.
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1 Introduction

Living soft tissues, in contrast to classical engineer-

ing materials, usually seek to establish and maintain a

mechanical state that is not stress-free. This behavior

of living soft tissues is often referred to as mechani-

cal homeostasis, and it plays a key role in the control

of form and function in health and disease (Lu et al.,

2011; Humphrey et al., 2014; Ross et al., 2013; Cox and

Erler, 2011; Bonnans et al., 2014). Intra-cellular struc-

tures such as the actomyosin cytoskeleton are physically

coupled to the surrounding extracellular matrix (ECM)

via transmembrane protein complexes such as integrins

that can cluster to form focal adhesions (Cavalcanti-

Adam et al., 2007; Lerche et al., 2019). This coupling

allows cells to receive mechanical cues from their en-

vironment, transduce these cues into intra-cellular sig-

nals, and react, for example, by adapting cellular stress

and thereby also the stress of the surrounding ECM.

Physical interactions between cells and ECM have been

shown to control various processes on the cellular scale

such as cell migration (Kim et al., 2020; Xie et al., 2017;

Hall et al., 2016; Grinnell and Petroll, 2010), differentia-

tion (Chiquet et al., 2009; Mammoto et al., 2012; Zemel,

2015; Seo et al., 2020) and survival (Bates et al., 1995;

Zhu et al., 2001; Sukharev and Sachs, 2012; Schwartz,

1995), and are therefore fundamental for health and in

disease of entire tissues and organs.

To study the micromechanical foundations of me-

chanical homeostasis experimentally, tissue culture stud-

ies with cell-seeded collagen or fibrin gels have attracted

increasing interest over the past decades (Eichinger et al.,

2021). Circular free-floating gels, when seeded with fi-

broblasts, exhibit a strong compaction over multiple

days in culture due to cellular contractile forces (Si-

mon et al., 2014, 2012). Studies of such gels whose com-

paction is prevented by boundary constraints typically

show a two-phase response. First, tension in the gels

rapidly increases to a specific value, the so-called home-

ostatic tension (phase I), and then remains largely con-

stant (phase II) for the rest of the experiment (Maren-

zana et al., 2006; Brown et al., 1998; Ezra et al., 2010;

Eichinger et al., 2020; Brown et al., 2002; Courderot-

Masuyer, 2017; Campbell et al., 2003; Dahlmann-Noor

et al., 2007; Karamichos et al., 2007; Sethi et al., 2002).

If the gel is perturbed in phase II, for example, by an ex-

ternally imposed deformation, cells appear to promote

a restoration of the homeostatic state (Brown et al.,

1998; Ezra et al., 2010). Despite substantial research

efforts over decades, the exact interplay between cells

and surrounding tissue that is crucial for mechanical

homeostasis and other related phenomena such as duro-

taxis still remains poorly understood to date (Eichinger

et al., 2021).

Computational studies in this field have focused pri-

marily on decellularized ECM systems to study the mi-

cromechancial and physical properties of networks of

fibers (Heussinger and Frey, 2007; Mickel et al., 2008;

Lindström et al., 2010; Chatterjee, 2010; Broedersz et al.,

2011; Stein et al., 2010; Ronceray et al., 2016; Cy-

ron and Wall, 2012; Cyron et al., 2013b,a; Lang et al.,

2013; Motte and Kaufman, 2013; Müller et al., 2014;

Jones et al., 2014; Lee et al., 2014; Müller et al., 2015;

Mauri et al., 2016; Dong et al., 2017; Humphries et al.,

2018; Zhou et al., 2018; Bircher et al., 2019; Domaschke

et al., 2019, 2020). Current computational models of

cell-ECM interactions often suffer from shortcomings –

most are limited to two dimensions and just one or two

cells (Wang et al., 2014; Abhilash et al., 2014; Notbohm

et al., 2015; Jones et al., 2015; Kim et al., 2017; Grim-

mer and Notbohm, 2017; Burkel et al., 2018; Humphries

et al., 2017). The importance of the third dimension for

the physics of fiber networks is well-known (Baker and

Chen, 2012; Jansen et al., 2015; Duval et al., 2017),

and it can be assumed that collective interactions be-

tween more than just two cells play important roles

in mechanical homeostasis. Moreover, current models

typically rely in many crucial aspects on heuristic as-

sumptions (Nan et al., 2018; Zheng et al., 2019) and

almost all of them assume simple random fiber net-

works (e.g., based on Voronoi tesselations) that do not

match the specific microstructural characteristics of ac-

tual collagen gels or tissues. What remains wanting

is a robust, computationally efficient three-dimensional

model of cell-fiber interactions, where the microstruc-

ture of the fiber network realistically resembles real col-

lagen gels and tissues and which is efficient enough to

enable simulations with several cells. Such a computa-

tional model can be expected to help unravel the mi-

cromechanical and molecular foundations of mechanical

homeostasis.

In this paper, we introduce such a computational

model. It is based on the finite element method and re-

lies on a strong experimental foundation. It can be used

to test various hypotheses with regard to the microme-

chanical principals of mechanical homeostasis. It can

also help to identify promising future experiments. The

model focuses on mechanical aspects of homeostasis by

concentrating on the physical interactions of cells with

surrounding matrix fibers and thus neglects direct mod-

eling of biochemical phenomena. The paper focuses on

a detailed description of the computational framework,

but examples are used to demonstrate the physical va-

lidity of this framework and to illustrate the opportu-

nities it will open up. It will be seen that this frame-
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work captures well key observations from experiments

on short time scales (in which deposition and degrada-

tion of tissue fibers can be neglected) thus helping to

explain the underlying physics.

2 Models and methods

To study the physical foundations of mechanical home-

ostasis in soft biological tissues on short time scales

(hours), our framework models i) interlinked ECM-like

fiber networks whose microstructure closely resembles

that of actual collagen gels, ii) transmembrane proteins

such as integrins which connect extra- to intra-cellular

structures, and iii) the contractile activity of the cy-

toskeleton. In the following we describe the mathemat-

ical and computational details of our model.

2.1 Construction of representative volume

elements (RVE)

Computational modeling of soft tissues on the level

of discrete fibers and individual cells remains intractable

for large tissue volumes, noting that 1 ml of ECM may

contain over one million cells. Therefore, we use RVEs

as structurally typical samples of the considered tissue

(Fig. 1 A). Building on our previous work on biopoly-

mer networks (Cyron and Wall, 2012; Cyron et al.,

2013b,a; Grill et al., 2020), we constructed physically

realistic three-dimensional fiber networks from confo-

cal microscope images of actual collagen gels (Fig. 1
A). Following Lindström et al. (2010) and Davoodi-

Kermani et al. (2021), we assumed that the mechan-

ical properties of collagen fiber networks are predom-

inantly governed by three descriptors, namely, the va-

lency (number of fibers connected to a network node),

the free-fiber lengths between adjacent nodes (herein

also referred to as fiber length), and the angles between

the fibers joining at the nodes (which can be quanti-

fied by the cosine of the angles between any pair of

fibers joining at a node). These descriptors vary in the

network across the fibers and nodes by following cer-

tain statistical distributions. Using the computational

procedure described in Appendix A1, which is moti-

vated by Lindström et al. (2010); Yeong and Torquato

(1998) and briefly illustrated in Fig. 1, we ensured that

the statistical distributions of valency, free-fiber length

and inter-fiber cosines closely matched those of actual

collagen fiber networks. The computational procedure

to produce such networks has been implemented in a

short C++ program which is available under the BSD

3-Clause License as the repository bionetgen hosted at

https://github.com/bionetgen/bionetgen.

2.2 Mechanical network model

We used the finite element method to model the

mechanics of our fibrous RVE. Individual fibers were

modeled as geometrically exact beam finite elements

based on the non-linear Simo-Reissner theory (Reiss-

ner, 1981; Simo, 1985; Simo and Vu-Quoc, 1986) and

a hyperelastic material law. This beam theory captures

the modes of axial tension, torsion, bending and shear

deformation and is appropriate for large deformations.

Thus, our finite element model of the fiber network can

capture all essential modes of mechanical deformation.

If not stated otherwise, covalent bonds between fibers

were modeled as rigid joints coupling both translations

and rotations. We chose the dimensional and constitu-

tive parameters to mimic collagen type I fibers as the

most abundant structural protein of the ECM. Fibers

are assumed to have circular cross-sections with a di-

ameter of Df = 180 nm (Van Der Rijt et al., 2006) and

elastic moduli of Ef = 1.1 MPa (Jansen et al., 2018).

Assuming curvilinear fibers with circular cross-section

of diameter Df , the average mass density of collagen ρc
in the network RVE was calculated as

ρc =
LtotDf

2π

V4RVEvc
(1)

according to Stein et al. (2008), where Ltot is the sum

of all individual fiber lengths, VRVE the volume of the

RVE, and vc = 0.73 ml/g the specific volume of colla-

gen fibers (Hulmes, 1979).

2.3 Fiber-to-fiber cross-linking

A native ECM consists of myriad structural con-

stituents, including collagen and elastin, which usually

form networks to provide mechanical support to the

resident cells. To form these networks, covalent cross-

links are formed via the action of enzymes such as lysol

oxidase and transglutaminase, which can be produced

by the cells (Simon et al., 2014). In addition to cova-

lent bonds, transient hydrogen bonds or van-der-Waals

bonds contribute further to the mechanical integrity of

the ECM (Kim et al., 2017; Ban et al., 2018).

To model initially existing covalent bonds between

fibers, we permanently connect individual fibers join-

ing at nodes of our initially generated network by rigid

joints. To model the formation of additional transient

and covalent bonds, we define so called binding spots

on all fibers (Fig. 2). If during the simulation it happens

bionetgen
https://github.com/bionetgen/bionetgen
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Fig. 1 Schematic of the network construction process. (A) Random fiber network geometries based on Voronoi tesselation are
used as the initial configuration. Valency, length and cosine distribution are used as descriptors of the network geometry for
which target distributions are given. (B) By iterative random displacements of arbitrary nodes in the network and accepting
these displacements based on their impact on the system energy, which penalizes deviations of the geometric descriptors from
their target distributions, one arrives after a number of stochastic steps at a configuration with the desired distribution of the
geometric descriptors of interest. (C) Microscope images of collagen gels are used to determine the target distributions for the
descriptors of the network.

that the distance between two binding spots on distinct

filaments falls within a certain critical interval, a new

bond between the two filaments is established accord-

ing to a Poisson process with an on-rate kf−fon . That is,

within a subsequent time step ∆t, a bond is assumed

to form with a probability

pf−fon = 1− exp (−kf−fon ∆t). (2)

Newly established bonds are modeled by initially stress-

free beam elements. Bonds established this way during

the simulation can also dissolve. This process is again

modeled by a Poisson process with an off-rate kf−foff ,

yielding in each time step ∆t an unbinding probability

pf−foff (F ) = 1− exp (−kf−foff (F ) ·∆t). (3)

The off-rate is in general affected by the force F acting

on the bond because transient chemical bonds under

mechanical loading are typically less (though in certain

regimes more) stable than load-free bonds (Bell, 1980).

This phenomenon can be modeled by a force-dependent

off-rate

kf−foff (F ) = kf−foff,0 exp

(
F∆x

kBT

)
, (4)

with ∆x a characteristic distance, kB the Boltzmann

constant, and T the absolute temperature (Bell, 1980).

∆x > 0 was chosen so that the bond weakens under

tension, a bond behavior that is often referred to as

slip-bond behavior. By choosing kf−foff,0 = 0, we can re-

semble new covalent bonds formed during our simula-

tions, whereas kf−foff,0 > 0 mimics transient bonds.

2.4 Cell-ECM interaction

Cells in soft tissues can mechanically connect to sur-

rounding fibers by integrins and exert stress on them

by focal adhesions. A focal adhesion usually includes an

actin stress fiber bundle in the cytoskeleton that con-

nects the nucleus of the cell with the integrins of a clus-

ter and can actively contract. Based on experimental

observations, we restricted the maximal number of fo-

cal adhesions per cell to NFA,max = 65 (Horzum et al.,

2014; Kim and Wirtz, 2013; Mason et al., 2019) (Fig.

3 B on the left shows 3 focal adhesions). It has been

shown experimentally that roughly Ni,FA,max = 1000

integrins are involved in one focal adhesion (Wiseman,

2004; Elosegui-Artola et al., 2014). These integrins are

organized in so-called integrin clusters of roughly 20−50

integrins (Changede et al., 2015; Cheng et al., 2020)

(Fig. 3 C). We thus assume for each focal adhesion 50

integrin clusters containing a maximum of Ni,ic,max =

20 integrins each.

To model cell-mediated active mechanical processes

in soft tissues, we model the cell centers as point-like

particles. When these particles approach predefined in-

tegrin binding spots (with a distance of di−f = 50nm

to each other (López-Garćıa et al., 2010)) on the fibers

within ±∆R around the cell radius R, a physical con-
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Collagen fiber

Cell and nucleus

Cell Binding range

Actin-integrin 
complex

Finite element 
node Cell binding Spot

Covalent bond

Transient bond

Fiber-to-fiber binding spot

𝑅

𝑅 + ∆𝑅

Fig. 2 Fiber network model: collagen fibers are modeled as beam-like mechanical continua discretized by beam finite elements.
Nearby collagen fibers are connected by permanent (covalent) chemical bonds modeled as rigid joints. During the simulation
additional transient bonds may stochastically form and dissolve between nearby binding spots of the fibers. These bonds are
also modeled by short beam-elements transmitting forces and moments. Cells of radius R can attach to nearby collagen fibers
if certain predefined cell binding spots on the surrounding fibers are within R−∆R and R+∆R around the cell.

nection between cells and fibers is assumed to form by a

Poisson process similar to the one in Eq. (2), but with a

specific on-rate kc−fon (see also Fig. 3 A). The actin stress

fibers connecting the cell nucleus with the fibers sur-

rounding the cells are modeled as elastic springs (Fig.

3 B and C) whose stress-free length evolves at some

predefined rate ċ that can be calculated to match ex-

perimental data of different cell types. These stress fiber

contract at a rate of ċ = 0.1µms (Choquet et al., 1997;

Moore et al., 2010). The force acting on a single integrin

Fi can be computed according to

Fi =
FSF

Ni,bonded
, (5)

with FSF being the force acting in the respective stress

fiber and Ni,bonded the number of currently bound inte-

grins in the integrin cluster associated with the respec-

tive stress fiber.

In contrast to many previous approaches in which

displacements have been prescribed in the neighbor-

hood of cells to model their contraction, we are able to

model a true two-way feedback loop between cell and

ECM. Integrins have been shown experimentally to ex-

hibit a so-called catch-slip bond behavior (Kong et al.,

2009) whose unbinding can be modeled by a Poisson

process with a force-dependent off-rate

kc−foff (F ) = a1exp

(
−
(
F − b1
c1

)2
)

+a2exp

(
−
(
F − b2
c2

)2
) (6)

whose parameters were determined via fits to the ex-

perimental data (Kong et al., 2009; Weng et al., 2016)

(Fig. 3 D) and can be found in Table A2. While the av-

erage lifetime of most chemical bonds decreases mono-

tonically with increasing force transmitted by the bond,

catch-slip bonds exhibit a regime where the bond sta-

bilizes as the force increases. As illustrated in Fig. 3 D,

this makes integrin bonds particularly stable for values

of Fi in a range around 30pN . Recall that we model

an integrin cluster as a system of 20 parallel integrins

whose bonds form and dissolve according to the above

specified on- and off-rates (Fig. 3 C). If at a certain

point all bonds happen to have broken at the same

time, the related integrin cluster is assumed to dissolve.

It may, however, reform on the basis of a new (not yet

contracted) stress fiber shortly thereafter with a bind-

ing rate kc−fon . If all clusters of a certain focal adhesion

happen to dissolve at the same time, the focal adhesion

as a whole is dissolved.

This model implies that many binding and unbind-

ing events of integrins occur during the lifetime of a

focal adhesion. This way, our model captures the chem-

ical dynamics of the connection between cells and ECM

fibers on different scales ranging from individual inte-

grins to whole focal adhesions (Stehbens and Wittmann,

2014). Thereby, our model bots captures typical life-

times of focal adhesions on the order of minutes and

turnover rates of most proteins involved in the adhe-

sion complex on the order of seconds.

2.5 Boundary conditions

As mentioned before, simulations of complete tis-

sues on the cm-scale are computationally expensive with

discrete fiber models; hence we have to study RVEs. A

major challenge in the context of discrete fiber simu-

lations is the imposition of deformations on the RVE

to study its response to certain strains. To this end,

most previous work of other groups requires that the

nodes of the finite elements used to discretize fibers are

located exactly on the boundary surfaces of the RVE
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𝑘𝑜𝑛
𝑘𝑜𝑓𝑓(𝐹𝑖)
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𝑖 = 2

C D

Nucleus

Nucleus

Focal adhesion Contraction

𝐹𝑖

Fig. 3 (A) If cells lie within a certain distance from integrin binding spots on fibers, a focal adhesion can from with a certain
probability. (B) A focal adhesion consists of around 1000 integrins connecting the intra-cellular actin cytoskeleton to the ECM
fibers. Actin stress fibers connect the cell nucleus to the focal adhesions and are modeled as elastic springs that contract over
time. (C) Each focal adhesion consists of numerous so-called integrin clusters, each formed by 20 − 50 integrins. We assume
that each integrin cluster is connected to one actin stress fiber. Integrins are modeled as molecular clutches, i.e., they bind and
unbind according to specific binding kinetics. (D) Experiments have determined a catch-slip bond behavior for single integrins
where the life time does not monotonically decrease with the mechanical force transmitted through the bonds but where there
exists a regime where increasing forces increase the average life time of the bond. To avoid infinite off-rates in case of low
forces, we chose a slightly higher life time for low forces compared to the experimental data of Kong et al. (2009).

where displacements are prescribed (Stein et al., 2010;

Humphries et al., 2018; Abhilash et al., 2014; Burkel

et al., 2018; Ban et al., 2018; Liang et al., 2016; Ban

et al., 2019). Other approaches prescribe the displace-

ments of nodes close to these surfaces (Lee et al., 2014).

These methods share the problem that they do not en-

sure full periodicity across the boundaries where dis-

placements are prescribed. To overcome this limitation,

we developed a novel form of fully periodic boundary

conditions for fiber networks that allows the imposition

of complex multiaxial loading states. This approach en-

sures full periodicity across all surfaces of the RVE and

thereby minimizes computational artifacts due to finite-

volume effects. The computational details of our algo-

rithm are summarized in Appendix A2.

2.6 Search algorithm and parallel computing

To yield meaningful computational results, our RVEs

have to be much larger than the characteristic microstruc-

tural features such as the free-fiber length between ad-

jacent nodes. Using values for the cell density and colla-

gen concentration in a physiologically reasonable range

typically leads to a system size of the RVE that can be
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solved only by parallel computing, including an efficient

parallel search algorithm for the evaluation of all inter-

actions between cells and fibers. We implemented such

a search algorithm based on a geometrical decomposi-

tion of the computational domain in uniform cubic sub-

domains. The computational details of our paralleliza-

tion are summarized in Appendix A3. Importantly, our

approach does not require any fully redundant informa-

tion on all processes, which enables a highly efficient

parallelization on even a very large number of proces-

sors.

3 Results and discussion

The presented computational framework was implemen-

ted in our in-house research finite element code BACI

(BACI, 2021). To ensure robustness, scalability and es-

pecially validity, we performed various computational

simulations and compared the results with available ex-

perimental data. The default parameters used in our

simulations can be found in Table A2.

3.1 Network construction

We first validated the network generation method

described in Section 2. To this end, we created net-

works with different collagen concentrations and tar-

get descriptor distributions as observed by confocal mi-

croscopy in tissue culture experiments with collagen

type I gels (Lindström et al., 2010; Nan et al., 2018).

As shown in Fig. 4, our stochastic optimization method

successfully generates networks with the desired distri-

butions of valency, free-fiber length and direction co-

sine. Fig. 5 A demonstrates that our simulated anneal-

ing converged well toward the desired solution with an

increasing number of random iteration steps.

3.2 Passive mechanical properties: stiffness

Next, we verified that our constructed, still acellu-

lar, networks have similar mechanical properties as ac-

tual collagen networks. To this end, we simulated sim-

ple uniaxial tensile tests with different collagen con-

centrations and compared the resulting values for the

stiffness with values that have been collected in uniax-

ial experiments with collagen type I gels (Joshi et al.,

2018; Alcaraz et al., 2011; Miroshnikova et al., 2011).

We stretched a cubic simulation box with edge length

L = 245µm in one direction by applying displacement

boundary conditions as described in Appendix A2 at a

slow loading rate of 0.01µm/s up to a strain of 1.0%;

strains around 1% have been shown to be the relevant

range when studying active, cell-mediated force devel-

opment (Eichinger et al., 2020). Fig. 5 C demonstrates

that the Young's moduli of the constructed networks

match well with the values observed in tissue culture

experiments. In our artificial RVE we found a power

law dependence between the Young’s modulus and the

collagen concentration with an exponent of 1.33, very

similar to the exponent of 1.22 found experimentally

(Joshi et al., 2018).

3.3 Active mechanical properties: homeostatic

tension

In this section we consider cell-seeded fiber networks

to study the active mechanics of soft tissues. The ten-

sion that develops in constrained gels stems from the

contractile forces exerted by the cells on the surround-

ing fibers. In initially stress-free collagen gels seeded

with fibroblasts, the tension builds up over a couple of

hours until it has reached a plateau value, the so-called

homeostatic value (Marenzana et al., 2006; Brown et al.,

1998; Ezra et al., 2010; Eichinger et al., 2020; Brown

et al., 2002; Courderot-Masuyer, 2017; Campbell et al.,

2003; Dahlmann-Noor et al., 2007; Karamichos et al.,

2007; Sethi et al., 2002). Tissue culture experiments

(Eichinger et al., 2020; Delvoye et al., 1991) have shown

that the homeostatic tension depends on both cell and

collagen concentration in the gel. We used this obser-

vation to validate our computational model. We cre-

ated RVEs with an edge length of L = 245µm and

three different cell densities and collagen concentrations

as studied experimentally in Eichinger et al. (2020).

To increase the complexity of the RVE only gradu-

ally by adding cells, we still solely considered covalent

bonds between matrix fibers. We then compared the

cell-mediated active tension over time of our simula-

tions to the one observed experimentally.

It is important to note that a direct (quantitative)

comparison between experimental data and simulation

results is difficult due to differing boundary conditions.

Tissue culture experiments have at least one (traction-

) free boundary (uniaxial gels have two, circular discs

three), while we performed our simulations with RVEs

with periodic boundary conditions applied in all direc-

tions (note also that a free boundary in a microscopic

RVE would not resemble a free boundary of a macro-

scopic specimen). It has been shown, however, that the

number of fixed boundaries has a crucial impact on

the homeostatic plateau value (Eichinger et al., 2020).

In the following, we compare the first Piola-Kirchhoff

stresses, as the thickness of the gel samples over time

is unknown. We assumed Ainitial = 1.6mm (knowing
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A B C

Fig. 4 Results of the network construction process for a collagen concentration of 2.5mg/ml. (A) valency distribution, (B)
free-fiber length distribution and (C) cosine distribution fit well the target distributions defined on the basis of experimental
data taken from Nan et al. (2018) in (A) and from Lindström et al. (2010) in (B) and (C).

A B C

Fig. 5 (A) In the stochastic network construction with a collagen concentration of 0.8mg/ml in a cube of edge length 245µm,
the energy-type objective function according to Eq. (A5) is reduced during simulated annealing (in the studied range even
superquadratically) by multiple orders of magnitude; (B) this optimization process yields RVE with a desired microstructure;
(C) the effective Young’s modulus at strains < 1% of RVE constructed this way match well with the ones observed in
experiments (Joshi et al., 2018; Alcaraz et al., 2011; Miroshnikova et al., 2011).

it to be between 1.5mm and 2mm) to fit best to our

simulation data.

3.3.1 Variation of cell density

In this section we consider gels with a constant colla-

gen density of 1.5mg/ml. Cell densities of 0.2·106 cells/ml,

0.5·106 cells/ml and 1.0 ·106 cells/ml studied in Eichinger

et al. (2020) translate in our simulations into 3, 8 and 15

cells per RVE, respectively. Fig. 6 A shows the evolution

of the first Piola-Kirchhoff stress (true force/original

area) generated in uniaxially constrained, dog-bone sha-

ped collagen gels as observed experimentally. The gra-

dient during the first 10h of the experiment and the

homeostatic plateau level of stress increase with the cell

density. Both features are observed also in our simula-

tions and fit quantitatively well (Fig. 6 B and C). We

can therefore conclude that actin cytoskeleton contrac-

tion along with the focal adhesion dynamics described

in Section 2.4 are sufficient mechanisms to reproduce

this non-trivial relationship.

A crucial difference between experiments and simu-

lations is the time scale. Whereas mechanical homeosta-

sis develops over a couple of hours in the experiments,

it does so within a couple of minutes in the simula-

tion. Interestingly, this time scale of our simulations

agrees well with that for which single cells in experi-

ments on purely elastic substrates reach a homeostatic

state (Weng et al., 2016; Hippler et al., 2020). Thus, a

possible explanation for the difference between our sim-

ulations and the experimental data from Eichinger et al.

(2020) may be that in tissues with numerous cells, com-

plex interactions between the cells substantially delay

the homeostatic state. Such interactions remain poorly
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understood and are not yet accounted for in our com-

putational framework. Another possible explanation for

the different time scales in Fig. 6 A and B may be vis-

coelasticity due to collagen fibers moving within culture

media, which is not included in our model in detail,

and due to an increasing stiffness of the gel due to pro-

gressed polymerization when being placed in an incuba-

tor of 37°C for longer times. Finally, subtle aspects on

the sub-cellular scale that are not included in our model

may affect the time to reach the homeostatic state sub-

stantially because it is well-known that this time differs

considerably for different cell types (Eichinger et al.,

2021).

Fig. 7 A shows that the deformation of the matrix

fibers around the cells in our simulations are on the or-

der of 10µm, which agrees well with experiments (Not-

bohm et al., 2015; Malandrino et al., 2019). Our sim-

ulation framework also reproduces the ability of cells

to communicate via long-range mechanical interactions

over several cell diameters (Fig. 7 B), which has also

been observed experimentally (Kim et al., 2017; Ma

et al., 2013; Shi et al., 2013; Baker et al., 2015; Mann

et al., 2019).

3.3.2 Variation of collagen concentration

It is well-known that interactions between cells and

their environment crucially depend on the stiffness of

the environment. This holds in particular for the prolif-

eration, survival, migration, and differentiation of cells

(Wang et al., 2012; Nguyen et al., 2018; Balcioglu et al.,

2020). A simple way of testing the impact of stiffness on

cellular behavior in tissue culture studies is to change

the collagen concentration of the tested gels (Hall et al.,

2016; Joshi et al., 2018; Alcaraz et al., 2011; Mirosh-

nikova et al., 2011). As shown in Fig. 8 A, tissue cul-

ture studies with a cell density of 0.5 · 106 cells/ml re-

vealed that the cell-mediated first Piola-Kirchhoff stress

increases in collagen gels with the collagen concentra-

tion (Eichinger et al., 2020; Delvoye et al., 1991). This

behavior is both qualitatively and quantitatively repro-

duced well by our simulations as shown in Fig. 8 B. In-

terestingly, both experiments and simulations exhibit a

nearly linear relation (with a slope of ∼ 9/2) between

collagen concentration and the homeostatic stress (Fig.

8 C). Moreover, the slope of the increase of stress up to

the homeostatic stress was largely independent of the

collagen concentration compared to the cell density in

both the experiments and our simulations. We know

from our simulations that an increased fiber density

in case of higher collagen concentrations in combina-

tion with a constant distance between integrin bind-

ing spots on fibers of 50nm (López-Garćıa et al., 2010)

leads to more cell-matrix links per cell over time (data

not shown) even when only the mechanisms presented

in Section 2 are considered. If one assumes that cells

stress fiber after fiber up to a certain level, this process

takes longer if more fibers are present and can explain

the observed nearly linear relationship between home-

ostatic stress and collagen concentration as well as the

similar initial slope for all three collagen concentrations.

3.4 Residual matrix tension

Mechanical homeostasis in soft tissues is closely lin-

ked to growth (changes in mass) and remodeling (chan-

ges in microstructure) (Cyron and Humphrey, 2017).

In particular, a reorganization of the microstructure of

tissues includes a change in the mechanical links be-

tween tissue fibers and of the constituent-specific nat-

ural (stress-free) configurations. Experimental studies

have revealed that remodeling of collagen gels induced

by cellular forces is time-dependent and inelastic (Kim

et al., 2017; Ban et al., 2018). Recent computational

work suggested that the inelastic nature of cell-mediated

remodeling is induced by force-dependent breaking of

weak inter-fiber connections followed by the formation

of bonds in new configurations leading to altered con-

nections between tissue fibers (Kim et al., 2017; Ban

et al., 2019; Nam et al., 2016; Cao et al., 2017) (Fig.

9 A). This implies that after cell-mediated remodeling,

a part of the matrix tension remains in the tissue even

after the elimination of all active cellular forces (e.g.

by disrupting the actomyosin apparatus via addition

of cytochalasin D or by cell lysis). This part is often

referred to as residual matrix tension (RMT) (Simon

et al., 2014; Marenzana et al., 2006).

To date, our quantitative understanding of how an

altered state of the matrix is entrenched during remod-

eling and how RMT develops is limited. Even the exact

kind of cross-linking which occurs when matrix tension

is entrenched is unknown. An inelastic change of the

stress-free configuration of the tissue could emerge from

newly formed, transient bonds between collagen fibers

(such as hydrogen bonds or van der Waals forces) as a

result of fiber accumulation in the surroundings of con-

tractile cells (Kim et al., 2017; Ban et al., 2018). How-

ever, RMT could also be entrenched by cells produc-

ing covalent cross-links via the actions of tissue trans-

glutaminase or lysyl oxidase, which can also form new

bonds between deformed matrix fibers. The impact of

these enzymes on matrix remodeling has been shown

experimentally in free-floating collagen gels (Simon et al.,

2014). To study RMT, we simulated the experimen-

tal protocol presented in Marenzana et al. (2006) and

eliminated active cellular forces from the simulated sys-



10 Jonas F. Eichinger et al.

A B C

Fig. 6 For a collagen concentration of 1.5mg/ml, we compare the development of the first Piola-Kirchhoff stress in (A)
experiments (Eichinger et al., 2020) and (B) simulations. A good semi-quantitative agreement of the expected cell-mediated
steady state with non-zero tension (last data points of (A) and (B)) is observed (C), however, also a significant difference of
the time scales.

A B C

Fig. 7 Cells mechanically interact with surrounding matrix fibers. (A) Cells attach to nearby fibers, contract and thereby
deform the matrix. The simulated, cell-mediated matrix displacements are in a realistic range when compared to experimental
data (Notbohm et al., 2015; Malandrino et al., 2019). (B) Contracting cells can mechanically interact with other cells over a
distance of several cell diameters via long-range mechanical signaling through matrix fibers, a phenomenon observed also in
experiments (Kim et al., 2017; Ma et al., 2013; Shi et al., 2013; Baker et al., 2015; Mann et al., 2019). (C) Cells, visualized
with reconstructed cell membrane around stress fibers, develop different shapes when pulling on the ECM.

tem in the homeostatic state by dissolving all existing

cell-ECM bonds at a certain time (by setting kc−fon =

0, which led to a rapid dissolution of the remaining

bonds). We then tracked tension over time in the RVE.

We first studied RMT in a purely covalently cross-

linked network, implying that all existing bonds be-

tween fibers remained stable and no new bonds were

formed during the simulation. After deactivating ac-

tive cellular forces, we observed a (viscoelastic) decline

of tension to zero in the RVE (Fig. 9 B bottom curve).

This finding suggested that networks that lack the abil-

ity to form new, at least temporary stable, bonds can-

not entrench a residual tension in the matrix, which

was however shown in the aforementioned experimen-

tal studies (Simon et al., 2014; Marenzana et al., 2006).

In a second step, transient linkers (which could, for

example, be interpreted as un-bonded, freely floating

collagen molecules or hydrogen bonds) were allowed to

form between fiber-to-fiber binding spots with a cer-

tain on-rate kf−fon ; they were able to be dissolved with

a certain off-rate kf−foff . If two binding spots resided at

some point in close proximity to two nearby fibers, a

new, initially tension-free bond was formed according

to Eq. (2). We found that introduction of newly formed,

transient bonds enables the entrenchment of matrix

remodeling and thus some RMT (Fig. 9 B, kf−foff =

1.0e−04 s−1, kf−foff = 3.0e−04 s−1, kf−foff = 1.0e−03 s−1)
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A B C

Fig. 8 Mechanical homeostasis for a cell concentration of 0.5 · 106 cells/ml and different collagen concentrations in (A)
experiments (Eichinger et al., 2020) and (B) our simulations. (C) In both cases the relation between homeostatic first Piola-
Kirchoff stress (last data points were taken respectively) and collagen concentration is approximately linear.

at least for a prolonged period. The transient nature of

the cross-links between the fibers resulted, however, in

a slow decrease of RMT over time. This decrease hap-

pened faster, the higher the off-rate kf−foff (Fig. 9 B). If

kf−foff was chosen above a certain threshold, we did not

observe any RMT.

In a third study, we allowed covalent cross-linker

molecules to form between two nearby collagen fibers

when they were within a certain distance to each other

and Eq. (2) was fulfilled. By setting kf−foff = 0, a newly

set bond could not be dissolved and was therefore cova-

lent (permanent). In this case, we observed a substan-

tial RMT that apparently did not decrease over time

(Fig. 9 B, kf−foff = 0.0 s−1).

It thus appears that both transient and covalent

cross-links play roles in inelastic matrix remodeling.
Our study suggests that RMT crucially depends on the

ability of cells to entrench the deformation they impose

on their neighborhood by covalent, permanent cross-

links. Such a permanent entrenchment appears ener-

getically favorable because it releases cells from the ne-

cessity of maintaining matrix tension over prolonged

periods by active contractile forces, which consume con-

siderable energy.

4 Conclusion

To date, our understanding of the governing principles

of mechanical homeostasis in soft tissues on short time

spans especially on the scale of individual cells remains

limited (Eichinger et al., 2021). To address some of the

many open questions in this area, we developed a novel

computational framework for modeling cell-ECM inter-

actions in three-dimensional RVEs of soft tissues. Our

computational framework generates random fiber net-

works whose geometric characteristics resemble those

of actual collagen type I gels, that is, they exhibit a

similar distribution of valency, free-fiber length, and

orientation correlation (direction cosine) between adja-

cent fibers. These microstructural characteristics have

been shown to be the primary determinants of the me-

chanical properties of fiber networks (Davoodi-Kermani

et al., 2021). To model the mechanics of the collagen

fibers in the network, our framework discretizes these

fibers with geometrically exact nonlinear beam finite

elements, which were shown in Section 3 to reproduce

the elastic properties of collagen fiber networks. Our

framework enables efficient parallel computing and can

thus be used to simulate RVEs of tissues with realistic

collagen concentrations and cell densities.

The physical interactions of cells with surround-

ing fibers through stress fibers in the cytoskeleton and

transmembrane proteins (integrins) are modeled by con-

tractile elastic springs whose binding and unbinding dy-

namics closely resemble the situation in focal adhesions.

We used the non-trivial, experimentally determined re-

lations of both cell density and collagen concentration

to the homeostatic stress to show that the mechanisms

accounted for in our computational framework are suf-

ficient to capture theses relationships. We also demon-

strated how our framework can help to (quantitatively)

examine the micromechanical foundations of inelastic

cell-mediated matrix remodeling and RMT, which per-

sists in the tissue even after active cellular forces have

been removed.

Despite its advantages and broad experimental foun-

dation, the proposed computational framework has some

limitations that remain to be addressed. First, our model

does not yet capture mass turnover, that is, the de-

position and degradation of fibers, which are assumed

to be crucial for mechanical homeostasis on long time

scales (Cyron and Humphrey, 2017; Humphrey and Ra-
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A B

Cell mediated matrix remodeling

Collagen fiber (remodeled)

Cell and nucleus Actin stress fiber

Integrin Pre-existing cross-link

Newly set cross-link

Fig. 9 (A) Cells actively remodel their surroundings, reorganizing the network and establishing new cross-links between its
fibers. This way, cell-mediated tension can be entrenched in the network. (B) When removing active cellular forces suddenly,
the matrix tension quickly drops. However, if cells have entrenched their reorganization of the network structure by permanent
(covalent) cross-links (with kf−foff = 0.0), a residual tension persists in the network. By setting transient cross-links with a
sufficiently low off-rate, the cells can ensure an RMT at least over the periods considered.

jagopal, 2002; Ambrosi et al., 2011; Cyron et al., 2016;

Braeu et al., 2017). Moreover, it models integrins but

not other proteins playing a key role in the interac-

tions between cells and surrounding matrix such as talin

and vinculin (Ziegler et al., 2008; Das et al., 2014; Yao

et al., 2014, 2016; Austen et al., 2015; Truong et al.,

2015; Davidson et al., 2015; Zhu et al., 2016; Ringer

et al., 2017; Grashoff et al., 2010; Carisey et al., 2013;

Dumbauld et al., 2013). Also the model of cellular con-

tractility is simplistic and should be endowed with ad-

ditional biological details (Mogilner and Oster, 2003;

Murtada et al., 2010, 2012). Finally, we did not con-

sider contact forces between fibers or between cells and

fibers (assuming that cells and fibers mainly interact via

integrins). While this reduces the computational cost

substantially, a comprehensive incorporation of contact

mechanics could also help to make our computational

framework more realistic.

An important field of application for our computa-

tional framework will be in silico studies in which one

can test step by step which additional features have to

be incorporated in the framework to capture more and

more phenomena observed in vitro and in vivo. Like

this, it may contribute to uncover the micromechani-

cal foundations of mechanical homeostasis on the level

of individual cells and fibers and help to understand

how these microscopic processes lead to what we call

mechanical homeostasis on the macroscale.
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Appendix

A1 Construction of random fiber networks by

simulated annealing

In this appendix, we present the computational details

of the algorithm we used for constructing network RVEs

as an input for our simulations. Our algorithm closely

follows the approach of Lindström et al. (2010), using

the stochastic optimization method of simulated an-

nealing for constructing random heterogeneous media

introduced by Yeong and Torquato (1998). Thereby,

one assumes that the geometry of a fiber network can

be characterized by some descriptors xi, with i ∈ {l, c},
in our case representing the fiber length and the direc-

tion cosine, respectively. These descriptors can be un-

derstood as random variables taking on specific values

at certain nodes or fibers and characterize the network

microstructure. The descriptors are assumed to follow

some statistical distribution P i(xi) across the differ-

ent fibers and nodes. These distributions can be deter-

mined, for example, from confocal microscopy images of

real networks, see also Fig. A1. According to Lindström

et al. (2010), this yields for collagen type-I networks

P l(l) =
1

lσ
√

2π
exp

(
− [µ− ln(l)]2

2σ2

)
, (A1)

where l denotes the fiber length normalized by (N/VRV E)
1
3 ,

with VRV E being the volume of the RVE and N rep-

resenting the total number of network nodes in it. The

parameters σ and µ denote a standard deviation and

mean value that may vary from network to network.

Typical parameters are given in Table A1. The cumu-

lative probability distribution associated with P l(l) is

given by

Cl(l) =
1

2
+

1

2
erf

(
ln(x)− µ√

2σ

)
(A2)

and will be used below in Eq. (A7).

The distribution of the direction cosine β of fibers

adjacent to the same node has been described by Lind-

ström et al. (2010) by a truncated power series

P c(β) =

3∑
k=1

bk (1− β)
2k−1

, (A3)

with the associated cumulative distribution function

Cc(β) = 1 +

3∑
k=1

− bk
2k

(1− β)
2k−1

. (A4)

Again, typical values for the parameters bk are given in

Table A1. To describe the valency distribution of the

networks, we relied on the data reported in Nan et al.

(2018).

Our target was to construct artificial random fiber

networks as an input for our simulations whose descrip-

tor distributions matched the ones defined above. To

this end, we started from some random initial network.

This network was then evolved in a number of discrete

random steps according to the concept of simulated an-

nealing (Kirkpatrick et al., 1983), until the descriptor

distributions matched the desired target distributions.

To define the random initial configuration, we started

by generating networks based on three-dimensional Vo-

ronoi tesselations (Rycroft, 2009) with periodic bound-

ary conditions applied in all directions. Subsequently,

we randomly removed and added fibers until the va-

lency distribution matched its target distribution. Only

then we started the actual simulated annealing, where

only fiber length and direction cosine distributions still

had to be matched to their target distributions. The

simulated annealing was performed following the con-

cept introduced by Kirkpatrick et al. (1983). The idea

is to iteratively select random nodes in the network and

apply random displacements to them (Fig. 1 B). Like

this, the length of all fibers attached to the respective

node and the angles between these fibers change. Im-

portantly, only movements of nodes are accepted which

do not lead to fiber lengths larger than one third of the

smallest edge length of the RVE to ensure that it stays

representative. Note, that a movement of a node does

not affect its connectivity, which ensures that the ini-

tially created valency distribution remains unaffected

during the whole simulated annealing.

For stochastic optimization according to the simu-

lated annealing concept, it is helpful to define an objec-

tive (energy-type) function E

E = wl · El + wc · Ec. (A5)

where the El and Ec become minimal if the length and

direction cosine distribution exactly match their target

distributions and where the wi > 0 are weights that can

be adapted to tune the importance of a specific distribu-

tion function. Having defined the objective function E,

simulated annealing can be understood as a stochastic

minimization of E. Once the minimum is found, El and

Ec must be minimal and thus the length and direction

cosine distributions match their target distributions. To

perform a stochastic minimization of E, a Metropolis

algorithm is applied during the simulated annealing. It

consists of a sequence of random steps. For each of these

steps the associated change of E is computed, that is,

∆E. Then, the step is actually performed only with a

likelihood
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A B C

Fig. A1 Random initial descriptor distributions in a network generated by Voronoi tesselation vs. target distributions fitted
by Lindström et al. (2010) and Nan et al. (2018) to experimental data (collagen concentration 2.5mg/ml). Simulated annealing
alters the initial network until its descriptor distributions match the required target distributions.

Table A1 Parameters for length, valency and cosine distribution functions according to Lindström et al. (2010) and parameters
used for simulated annealing process

Parameter Description Value [-]

wl weight for free-fiber length distribution in Eq. (A5) 1.0
wc weight for direction cosine distribution in Eq. (A5) 1.0
µ mean in Eq. (A1) and (A2) −0.3000
σ standard deviation in Eq. (A1) and (A2) 0.6008
b1 parameter for truncated power series in Eq. (A3) and (A4) 0.6467
b2 parameter for truncated power series in Eq. (A3) and (A4) −0.1267
b3 parameter for truncated power series in Eq. (A3) and (A4) 0.0200
bl number of bins for free-fiber length distribution in Eq. (A7) 1000
bc number of bins for direction cosine distribution in Eq. (A7) 1000
T0 initial temperature 0.05
- resulting average node valency of constructed networks 3.3

paccept(∆E) =

{
1, ∆E ≤ 0

exp(−∆ET ), ∆E > 0,
(A6)

where T denotes a temperature-like parameter. In our

simulated annealing, we slowly decreased T as the num-

ber random steps increased, using at the annealing step

k the value T = 0.95k · T0 (according to Nan et al.

(2018)). We chose T0 such that the probability for ac-

cepting a random step with ∆E > 0 was approximately

0.5 in the beginning. In practice, the simulated anneal-

ing was stopped if either the total energy of the system

was below a predefined threshold or a maximal number

of iterations was reached.

Remark A1: It is worth noting, that for construct-

ing RVEs with different collagen concentrations, we as-

sumed the same target distributions for the valency,

direction cosine and normalized fiber length. Only the

normalization factor of the fiber length was changed.

Moreover, an increased collagen concentration automat-

ically also implies a higher number N of network nodes

in the RVE.

Remark A2: While there exists a variety of simple

and obvious choices for the Ei in (A5), these mostly

suffer from a computational cost on the order of O(ni)

with ni being the number of instances of a descrip-

tor. This makes the generation of large random net-

works practically infeasible. To overcome this problem,

we adopted the idea of Lindström et al. (2010) to use

a binning algorithm and define the Ei as Cramer-von

Mises test statistics, which reduces the computational

cost to the order of O(b) with b being the number of

bins. To this end, we divided the range of xi in bi dis-

joint intervals (bins) and assigned each instance of a

descriptor at a fiber or node of a random network to

its associated bin. The resulting histogram is a discrete

approximation of P i(xi). The center of the j-th bin is

denoted by xij . The number of instances of descrip-

tor xi assigned to the j-th bin is mij . The Cramer-von
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Mises test statistics can then be computed as

Ei =
1

n2i

bi∑
j=1

mij

[
1

6
(mij + 1)(6Sij + 2mij + 1) + S2

ij

]
(A7)

with Sij = Mi(j−1) − nCi(xij) − 1
2 , Mij =

∑j
k=1mik,

and Ci the cumulative distribution of xi.

A2 Boundary conditions

In this appendix, we briefly summarize how we applied

fully periodic boundary conditions to our simulation do-

mains. Let these domains be cuboids with edge length

Li in the i-th coordinate direction. In a fully periodic

network, the part of a fiber sticking out across one pe-

riodic boundary must have a counterpart entering the

RVE at the opposite side (Fig. A2 A). One can inter-

pret the element part sticking out of the domain at

one boundary and the element part entering the RVE

at the opposite boundary also as a fictitious single ele-

ment (Fig. A2 B, state II) cut into two parts (Fig. A2

B, state I). Thereby, state I as delineated in Fig. A2 B

can be used to evaluate interactions with other fibers

or cells, and state II for evaluating strains and stresses

on element level. If the element is cutting through a

boundary in the i-th coordinate direction, the i-th co-

ordinate of the nodal positions in state I and state II are

shifted by Li relative to each other. Importantly, only

the translational degrees of freedom of the beam finite

element nodes are affected by the periodic boundaries,

rotational degrees of freedom remain unaffected.

It is a major challenge to impose periodic Dirich-

let boundary conditions on fiber networks in a manner

that is fully periodic. Note that most of the literature

(Stein et al., 2010; Lee et al., 2014; Humphries et al.,

2018; Abhilash et al., 2014; Burkel et al., 2018; Ban

et al., 2018; Liang et al., 2016; Ban et al., 2019) by-

passes this difficulty by fixing nodes on or close to the

periodic boundary in a manner that actually unfortu-

nately cannot ensure periodicity in a rigorous manner.

To overcome this deficiency, we used the following ap-

proach. Dirichlet boundary conditions of RVE can be

represented by normal or shear strains. These strains

can be converted into a relative displacement of oppo-

site periodic boundaries by components ∆dj in the j-th

coordinate direction. We accounted for this displace-

ment by stretching (Fig. A2 C) or shearing (Fig. A2 D)

the RVE as a whole. The nodal positions in state I and

II were then no longer converted into each other in the

above described simple manner, that is, by a relative

shift by Li in the i-the direction. Rather all coordinates

of the nodal positions were additionally shifted relative

to each other by the components ∆dj . Note that this

approach can account also for complex multi-axial load-

ing by applying the described procedure at all periodic

boundaries. Moreover, this approach can account also

for large strains.

A3 Search algorithm and parallel computing

In this appendix we describe how we ensured efficient

parallel computing for the presented modeling frame-

work in our in-house finite element solver BACI (BACI,

2021). Parallelization of the finite element discretization

of the fibers can be handled with standard libraries such

as the Trilinos libraries that formed the basis of our

in-house code. Therefore, we focus herein on the paral-

lelization of cell-fiber interactions and chemical bonds

between fibers. Both require search algorithms to iden-

tify cell-fiber or fiber-fiber pairs that may interact at

a certain point in time. We implemented a search al-

gorithm based on a geometrical decomposition of the

computational domain (RVE) in uniform cubic contain-

ers. For simplicity, these were aligned with the axes

of our coordinate system (see Fig. A3). Cells and fi-

nite beam elements are assigned to all containers with

which they overlap. We chose the minimal size of the

containers such that all possible interaction partners

were certainly located within one layer of neighboring

containers. Hence, evaluating the possible interactions

of a single cell or beam finite element simply required

searching within one layer of containers around the con-

tainers to which the cell or element was assigned.

The content of the containers had to be updated

over time as cells and matrix fibers moved during our

simulations. Depending on the time step size of our sim-

ulations, container size and effective physical interac-

tion distance, it was feasible to update our containers

only every n-th time step.

The potentially large domain considered in our sim-

ulations typically required a distribution of the above

described containers on several processors. To this end,

each processor was assigned a set of containers forming

a connected sub-domain. In addition to these contain-

ers, each processor was also provided full information

about one layer of so-called ghost containers surround-

ing its specific sub-domain (Fig. A3 B). The compu-

tational cost of sharing the information about ghost

containers was negligible compared to the the overall

computational cost of our simulations.

To always allow an effective search algorithm based

on a rectangular Cartesian domain, we used a coor-

dinate transformation to the undeformed domain in
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element 
(FE)

Fiber
chain

𝑥1𝑥2
RVE

A C

∆𝑑𝑗
Periodic

boundary

FE 
nodes

D

∆𝑑𝑗
B

State I

State II

Fig. A2 Illustration of periodic boundary conditions using the example of a single fiber in the network: (A) any fraction of an
element sticking out of a periodic boundary must have a counterpart entering at the opposite side; (B) both element fractions
together define what is physically present within the RVE (state I). To compute strains and stresses in both element fractions,
it is convenient to use a fictitious state II (shifted rightwards in the figure for illustration purposes only), which represents
the part of the cut element within the simulated RVE and the part located in an adjacent domain periodically continuing the
RVE; (C) application of fully periodic normal strain boundary condition in vertical direction; (D) application of fully periodic
shear strain boundary condition in the drawing plane.

container 
size

processor 1processor 0

ghost layer proc 1

ghost layer proc 0

A B

Fig. A3 (A) Our computational domain (top) was divided into a large number of cubic containers (middle). Sets of numerous
such containers (highlighted by different colors, bottom) were distributed to different processors. (B) All fibers discretized
by beam finite elements as well as all cells were assigned to all containers with which they overlapped. Each processor was
provided not only information about its own containers but also about a layer of ghost containers with whose elements the
elements in its own container may interact.

case boundary conditions imposing a deformation of the

computational domain.

It is worth mentioning that in our parallelization

framework no data (except some uncritical parameters

such as the current time step) need be stored fully re-

dundantly on all processors, which would drastically

limit the problem sizes.

A4 Simulation parameters
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Table A2 List of parameters and default values of computational model

Parameter Description Value Reference

a1 Integrin catch-slip bond parameter 2.2 to fit data of Kong et al. (2009)
b1 Integrin catch-slip bond parameter 29.9 to fit data of Kong et al. (2009)
c1 Integrin catch-slip bond parameter 8.4 to fit data of Kong et al. (2009)
a1 Integrin catch-slip bond parameter 1.2 to fit data of Kong et al. (2009)
b2 Integrin catch-slip bond parameter 16.2 to fit data of Kong et al. (2009)
c3 Integrin catch-slip bond parameter 37.8 to fit data of Kong et al. (2009)
R Cell radius 12 µm typical value
∆R Linking range around cell ±3µm -
Df Diameter of collagen fibers 180 nm Van Der Rijt et al. (2006)
Ef Young's Modulus of collagen fibers 1.1MPa Jansen et al. (2018)

ċ Contraction rate stress fiber 0.1µm
s

Choquet et al. (1997)
Moore et al. (2010)

kBT Thermal energy 4.28 · 10−3 aJ at 37℃
Li RVE edge length in i-th coordinate direction 245µm -

kf−fon Chemical association rate for fiber linker 0.0001s−1 -

kf−foff Chemical dissociation rate for fiber linker 0.0001s−1 -

∆x Bell parameter 0.5nm -

NFA,max Maximal number of focal adhesion per cell 65
Horzum et al. (2014)

Kim and Wirtz (2013)
Mason et al. (2019)

Ni,FA,max Maximal number of integrins per focal adhesion 1000
Wiseman (2004)

Elosegui-Artola et al. (2014)

Ni,ic,max Maximal number of integrins per cluster 20
Changede et al. (2015)

Cheng et al. (2020)

kc−fon Chemical association rate for integrin 0.1s−1 slightly modified Zhu et al. (2016)
di−f Distance between binding spots for integrin-fiber links 50nm López-Garćıa et al. (2010)
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Kong, F., Garćıa, A. J., Mould, A. P., Humphries, M. J.,

and Zhu, C. (2009). Demonstration of catch bonds

between an integrin and its ligand. J. Cell Biol.,

185(7):1275–1284.

Lang, N. R., Münster, S., Metzner, C., Krauss, P.,
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Lang, N. R., Schürmann, S., Krauss, P., Fabry, B.,

Metzner, C., Münster, S., Metzner, C., Krauss, P.,
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