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Abstract

The numerical simulation of 3D earthquake phenomena is increasingly important in modern-
day seismology. In this work, a time-reversal method, based on the theory of the Time-
Reversal Cavity, was implemented in the simulation software SeisSol. This approach yields
a novel method to determine the epicenter of an earthquake. During the simulation, the
waves in the forward direction were recorded by a set of receivers located at the surfaces of
the examined volume, a (10× 10× 10)m cube. The recorded time evolution of points inside
the volume from both the forward and the time-reversed simulation were then compared
using time-frequency misfit analyses. During these analyses, an improved criterion for the
spacing of receivers on a grid was found that yields consistently small errors, namely, when
receivers are spaced ψP/8 apart, where ψP is the wavelength of the P-wave. In both ho-
mogeneous and inhomogeneous media, an accurate time-reversal was achieved. In addition
to the quantitative analyses, a qualitative analysis was performed in order to determine the
minimum number of receivers required for the accurate observation of a converging wave.
With knowledge of the moment tensor of the source, one receiver on each face of the cube
provided enough information to determine the origin of the source. Finally, the time-reversal
method was successfully applied to the benchmark test WP2_LOH1, visually confirming that
a time-reversal can be achieved in realistic media beyond the (10× 10× 10)m test volume.

Zusammenfassung

Numerische Simulationen von Erdbeben in einem drei-dimensionalem Raum sind von zunehm-
ender Wichtigkeit in moderner Seismologie. Basierend auf der Theorie der Time Reversal Cav-
ity wurde in dieser Arbeit eine Methode zur Zeitumkehrung von seismischen Wellen in der
Simulationssoftware SeisSol implementiert. Dieser Ansatz bietet eine neue Art und Weise,
das Epizentrum von Erdbeben bestimmen zu können. Während einer Simulation werden
die Wellen der Vorwärts- und der zeitumgekehrten Richtung von Empfängern auf der Ober-
fläche des (10×10×10)m Testvolumens aufgenommen. Die aufgenommene Zeitentwicklung
von sowohl der vorwärtslaufenden Welle als auch der Welle aus der Zeitumkehrung wurden
dann mit Hilfe der Zeit-Frequenz Fehleranalyse begutachtet. Durch die Analyse wurde ein
Kriteritum für den Abstand zwischen zwei Empfängern gefunden. Sind Empfänger weniger
als ψp/8 voneinander entfernt, wobei ψp die Wellenlänge der P-Welle ist, ist der Fehler zwis-
chen der Vorwärts- und der zeitumgekehrten Richtung sehr klein. Sowohl in homogenen
als auch in inhomogenen Medien wurden so erfolgreiche Zeitumkehrungen durchgeführt.
Über die quantitativen Analysen hinaus, wurde eine qualitative Analyse zur Bestimmung des
maximalen Abstands zweier Empfänger durchgeführt, sodass eine konvergente Welle immer
noch sichtbar ist. Mit Wissen über den seismischen Momenttensor kann die Position der
Quelle bestimmt werden, selbst wenn nur ein Empfänger pro Würfelseite platziert wurde.
Abschließend wurde die Methode zur Zeitumkehrung von seismischen Wellen auf das Test-
problem WP2_LOH1 angewandt. Damit wurde visuell bestätigt, dass auch in Medien realis-
tischen Ausmaßes eine Zeitumkehrung möglich ist.
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Glossary

EM Envelope misfit between two signals.

Mi j Seismic moment tensor, the unit [Nm] is implicitly assumed.

PM Phase misfit between two signals.

RMS Root-mean-square-error when comparing two signals.

Tfwd End time of the forward simulation.

Ttr End time of the time-reversed simulation.

∆x Distance between two receivers on the grid on the surface, measured in [m].

λ First Lamé parameter. Unless otherwise indicated its unit is always assumed to be [Pa].

µ Second Lamé parameter. Unless otherwise indicated its unit is always assumed to be [Pa].

ψp Wavelength of the P-Wave.

ψs Wavelength of the S-Wave.

ρ Density of a medium. Unless otherwise indicated its unit is always assumed to be [kg/m3].

σi j Stress tensor.

tconv Point in time where the converging wave in the time-reversal is converged.

tmax Point in time where the source function is at its peak.

vp Wavelength of the P-Wave.

vs Wavelength of the S-Wave.

ADER Arbitrary high-order DERivatives.

DG Discontinuous Galerkin.

IDW Inverse Distance Weighting interpolation technique.

TRC Time Reversal Cavity.

TRM Time Reversal Mirror.





Chapter 1

Introduction

Earthquakes, as experienced across the entire globe, are inevitable. They cause both eco-
nomic damage and a large number of human casualties. Studying seismic phenomena helps
to understand where earthquakes are most destructive, and can thus provide a perspective
where e.g. earthquake resistant measures are most necessary.

The recent advances in super-computing have created large-scale possibilities to model
realistic 3D earthquake events, something that 20 years ago was not possible. Modern simu-
lation software relies heavily on numerics. The volume in question is discretized into smaller
elements and numerical solvers are applied in each element in order to obtain a solution
to the entire problem. Numerical methods to solve seismic wave equations range from e.g.
finite difference (FD) schemes ([Mad76]) to spectral element methods (SEM) ([PCS94]).

SeisSol1 is a scientific software both for the simulation of seismic waves and of earthquake
phenomena. Modelling complex 3D geometries is computationally very expensive. Using an
unstructured tetrahedral mesh has proven valuable in these scenarios ([DK06]). A range of
different scenarios can be studied using SeisSol. The material can be adjusted to exhibit elas-
tic, viscoelastic, or viscoplastic properties. SeisSol uses an approach that combines the Dis-
continuous Galerkin (DG) method with a time-integration using Arbirary high-order DERiva-
tives (ADER), resulting in the ADER-DG approach ([Dum03]). Dumbser et al. extended this
approach to solve the elastic wave equations in three dimensions ([DK06]). ADER-DG yields
arbitrary high-order accuracy in both time and space. The solution in each element is approx-
imated by polynomials, where the degrees of freedom are expressed through the coefficients
of the polynomial. During a simulation, these coefficients are advanced in time, allowing for
discontinuities across element boundaries ([KD05]).

In this work, SeisSol is used to create a time-reversal of seismic waves. Time-reversal
methods have been studied in acoustic media, mainly to achieve a focusing of the wave below
the diffraction limit ([Fin+89]). It can e.g. be used to better locate gallstones in the human
body ([Fin97]). The experimental setup used by Fink et al. consists of a cavity surrounded
by transducers that record the outward propagating acoustic pressure. These waves are
distorted by inhomogeneities inside the cavity. In the second step, the same transducers act
as transmitters, resulting in the propagation of a converging wave, focused at the original
source location.

In the simulation environment, the volume in which the wave propagation is calculated
corresponds to the cavity from the experimental setup. Instead of transducers, receiver lo-
cations are set on the surface of the volume, recording the time evolution of the incoming
wave. In the second step, the boundary conditions of the volume are changed, thus creating
sources at the boundary. When successful, the time-reversed wave propagating through the
medium converges towards the original source. This provides a novel approach to determine

1https://github.com/SeisSol/SeisSol (2021, May 10)

https://github.com/SeisSol/SeisSol
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the epicenter of an earthquake. Most commonly, an epicenter is found using a triangulation
approach with signals from at least three seismographs. The time-reversal presented here, is
in its simplest form not applicable in real world scenarios, as seismographs cannot be placed
on all faces of a 3D volume encompassing the source of an earthquake. Nevertheless, show-
ing a successful time-reversal of seismic waves is an instrumental first step.

This thesis is structured as follows. Chapter 2 focuses on the fundamental theory of elastic
wave propagation and the presentation of the numerical ADER-DG scheme used in SeisSol.
The equation of motion in elastic media is derived and the wave equation presented in the
velocity-stress formulation. Chapter 3 is split into two parts. In the first part, the theory of
the time-reversal is presented, which allows us to time-reverse the entire wavefield in the
3-dimensional volume. Subsequently, the latter part details the implementation of the time-
reversal method into the existing SeisSol simulation. In the following chapters, Chapter 4 and
5, the method and the results are presented, beginning by elaborating on the setting used in
the analysis, including the description of the source and the measures used to compare the
forward and time-reversed direction (Chapter 4). Here, the time-frequency representation
of signals is introduced, to serve as a measure to evaluate the goodness-of-fit between the
original and the time-reversed wave. Chapter 5 then displays the results on the background
of the knowledge obtained in previous chapters. At first, a homogeneous acoustic medium
is analysed to obtain a proof of concept. Thereafter, inhomogeneities are added and the
transition to elastic media is performed. In addition, experiments in which the number of
receivers is reduced are conducted. Lastly, the time-reversal procedure is applied to a well
known 3-dimensional test problem composed of a layer over a halfspace, WP2_LOH1. Finally,
the findings are discussed and an outlook to possible future research directions is provided
(Chapter 6).



Chapter 2

Seismic Waves

In this chapter, we will lay the theoretical foundations of this thesis. First, we will derive the
basic equations for elastic wave propagation and show the equation of motion in velocity-
stress formulation. Throughout this thesis, we consider isotropic media only, and make use
of this assumption in certain symmetry arguments. The restriction to isotropic media is
a commonly made simplification, which is also employed in e.g. [DK06]. In view of the
analysis conducted in chapter 5, we will highlight additional simplifications valid in isotropic,
homogeneous, acoustic media.

Subsequently, the simulation software used to obtain the results is presented. SeisSol1 is
used to numerically simulate seismic wave phenomena. SeisSol combines the Discontinuous
Galerkin (DG) Finite Element (FE) method with a time integration scheme based on the
solution of Arbitrary high-order DErivatives Riemann problems (ADER) [Käs+10] [DK06].
Combined, this approach is coined ADER-DG and will be introduced briefly in the following.

2.1 Elastic Wave Equation

An elastic medium is characterized by an undeformed state, in which stresses and strains
are zero, to which it will return to in the absence of outer forces. If the stresses and strains
the medium experiences are infinitesimal, the theory of linear elasticity applies. We define
the displacement vector U describing the shortest distance between the initial and current
position of a point. The particle velocities u, v and w in x-, y- and z-direction, respectively,
can then be defined as the temporal derivative of U

∂

∂ t
Ux = U̇x = u

∂

∂ t
Uy = U̇y = v

∂

∂ t
Uz = U̇z = w,

(2.1)

where the subscript indicates the coordinate direction and a dot over a variable refers to the
partial time derivative. In short, we can thus write

∂

∂ t
Ui = ∂t Ui = U̇i = Vi , (2.2)

where we introduced the velocity vector V.

1https://github.com/SeisSol/SeisSol

https://github.com/SeisSol/SeisSol
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In linear elasticity the following generalization of Hooke’s law is valid

σi j = ci jklεkl , (2.3)

with the medium specific constants ci jkl . Note that we are using the Einstein summation
convention, i.e. when an index appears twice, we sum over all possible values. Here and in
the following σi j refers to the stress tensor and εkl to the strain tensor. Hooke’s law therefore
states that components of the stress tensor are a linear combination of components of the
strain tensor. Continuing with infinitesimal small perturbations, the components of the strain
tensor εkl are defined as

εkl =
1
2
(∂kUl + ∂l Uk) , (2.4)

where ∂k is the spatial derivative in k-direction and Ui the displacement in i-direction. As
mentioned earlier, our interest lies in the velocity-stress formulation, as opposed to the dis-
placement -stress formulation. Hence, in order to eliminate the displacements Ui, we used
the velocities Vi as introduced in eq. 2.2. Thus yielding the time derivative of the strain
tensor

ε̇kl =
1
2
(∂kVl + ∂l Vk), (2.5)

dependent on the spatial derivatives of the velocities Vi. Thereupon, it is trivial to express the
time derivative of the stress tensor, keeping in mind that ci jkl are constant over time

σ̇i j = ci jkl ε̇kl . (2.6)

Returning to the forth-order tensor ci jkl in equation 2.3, symmetry considerations can
reduce the number of independent components from 81 to 21 (cf. [AR02] Chapter 2). In
isotropic media only two constants remain to define the entire tensor. Its general form is then

ci jkl = λδi jδkl +µ(δikδ jl +δilδ jk), (2.7)

where δi j is the Kronecker-delta and constants λ and µ are known as the Lamé moduli. De-
pending on the context, other expressions can be used instead of the Lamé parameters, i.e.
µ is equal to the shear modulus G. Here, we kept the constants µ and λ as is common in
seismology.

Following the derivation laid out in [AR02] we will now derive the equation of motion
in a given volume V with surface S. The rate of change of momentum of particles inside the
volume is equal to the forces acting on those particles. Thus, the forces acting on a particle
consist of the body force and a surface force, which arises due to normal and shear stresses.
Combined this leads to

∂

∂ t

∫

V
ρ
∂U
∂ t

dV =

∫

V
fdV +

∫

S
T(n)dS, (2.8)

where
∫

v ρ
∂U
∂ t dV , with mass density ρ, is the momentum of the particles in volume V , and T

the traction vector which Cauchy’s stress theorem relates to the stress tensor by

T j(n) = σi jni , (2.9)
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with the normal vector ni. Replacing T in the rightmost term in the equation above with the
newfound expression and applying Gauss’s divergence theorem yields

∫

S
T j dS =

∫

S
σi jni dS =

∫

V
∂iσi j dV. (2.10)

By rearranging and inserting this result into equation 2.8, we obtain
∫

V
(ρÜi − fi − ∂ jσi j)dV = 0, (2.11)

where we have exploited the symmetry of the stress tensor2 and a variant of Fubini’s theorem
that allows us to swap the time derivative and integration. Finally, since this is true for a
general volume V , the integrand must be zero wherever is continuous, otherwise a volume
violating eq. 2.11 could be found ([AR02]). Therefore,

ρÜi = fi + ∂ jσi j , (2.12)

where we tacitly made use of the Einstein summation convention, i.e.

ρ
∂

∂ t
Vi = fi + ∂xσx i + ∂yσyi + ∂zσzi , (2.13)

and again expressed the displacements Ui in terms of the velocities Vi. The body force fi will
later be accounted for in the source term.

Combining the previous results from equations 2.6, 2.7, and 2.13, we arrive at the 3D
elastic wave equation for an isotropic medium in velocity-stress formulation

∂

∂ t
σx x − (λ+ 2µ)

∂

∂ x
u−λ

∂

∂ y
v −λ

∂

∂ z
w= S1,

∂

∂ t
σy y −λ

∂

∂ x
u− (λ+ 2µ)

∂

∂ y
v −λ

∂

∂ z
w= S2,

∂

∂ t
σzz −λ

∂

∂ x
u−λ

∂

∂ y
v − (λ+ 2µ)

∂

∂ z
w= S3,

∂

∂ t
σx y −µ

�

∂

∂ x
v +

∂

∂ y
u
�

= S4,

∂

∂ t
σyz −µ

�

∂

∂ z
v +

∂

∂ y
w
�

= S5,

∂

∂ t
σxz −µ

�

∂

∂ z
u+

∂

∂ x
w
�

= S6,

ρ
∂

∂ t
u−

∂

∂ x
σx x −

∂

∂ y
σx y −

∂

∂ z
σxz = ρS7,

ρ
∂

∂ t
v −

∂

∂ x
σx y −

∂

∂ y
σy y −

∂

∂ z
σyz = ρS8,

ρ
∂

∂ t
w−

∂

∂ x
σxz −

∂

∂ y
σyz −

∂

∂ z
σzz = ρS9,

(2.14)

where Sp(x, t), p = 1, . . . , 9, is a vector containing the space-time dependent source terms.
It should be pointed out that the time and space dependencies are skipped throughout this

2That σi j = σ ji can easily be shown starting with the conservation of angular momentum and again applying
Gauss’s divergence theorem.



10 2 Seismic Waves

thesis. The stresses and velocities will in general be functions of both time t ∈ R and space
x = (x , y, z)T ∈ R3, although the space dependency disappears when fixing the evaluation of
stresses and velocities at a specific point. In addition, λ, µ, and ρ are functions of space, but
constant in time.

Before drawing further conclusions from this system of equations, one more parameter,
the propagation velocity of elastic waves, needs to be taken into account. In elastic media
we will later observe two distinct waves, a compression (or longitudinal) and a shear (or
transverse) wave, later to be called P- and S-waves, respectively.

Inserting the definition of σi j (eq. 2.3) and the constants ci jkl from equation 2.7 into the
equation of motion (2.12), one simply verifies that

ρÜi = (λ+µ)∂i∂ ju j +µ∂ j∂ jui , (2.15)

where the source term was set to zero. To convert this equation to a matrix equation, we
make use of the following vector identity

∇× (∇×U) =∇(∇ ·U)−∇2U. (2.16)

Notice that the last term on the right hand side already contains the derivatives present in
the last term in eq. 2.15. Recalling that

∇(∇ ·U) =





∂x x U1 + ∂x y U2 + ∂xzU3
∂y x U1 + ∂y y U2 + ∂yzU3
∂zx U1 + ∂z y U2 + ∂zzU3



 , (2.17)

we can easily identify it with the first part of eq. 2.15. Combining these results yields:

ρÜ= (λ+µ)∇(∇ ·U) +µ∇2U

= (λ+µ)∇(∇ ·U)−µ∇× (∇×U) +µ∇(∇ ·U),
(2.18)

which then finally can be combined to

ρÜ= (λ+ 2µ)∇(∇ ·U)−µ∇× (∇×U). (2.19)

In order to derive the propagation velocities, we will now distinguish between an irro-
tational (i.e. curl-free) and a solenoidal (i.e. divergence-free) displacement. Firstly, for a
displacement that is irrotational we, by definition, have ∇×Up = 0. Thus, the matrix equa-
tion above simplifies to

∂ 2Up

∂ t2
=
λ+ 2µ
ρ
∇(∇ ·Up). (2.20)

Rearranging the vector identity from eq. 2.16, we obtain the basic wave equation

∂ 2Up

∂ t2
=
λ+ 2µ
ρ
∇2Up = v2

p∇
2Up, (2.21)

where we introduced the propagation velocity

vp =

√

√λ+ 2µ
ρ

. (2.22)

Analogously, we proceed with the next distinction, a solenoidal displacement Us, i.e. ∇·Us =
0. Thus, the vector identity from eq. 2.16 reduces to ∇ × (∇ × Us) = −∇2Us; simplifying
equation 2.19 similarly to before yields

∂ 2Us

∂ t2
=
µ

ρ
∇2Us = v2

s ∇
2Us, (2.23)
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again introducing a propagation velocity,

vs =
√

√µ

ρ
. (2.24)

As already hinted at earlier, these two velocities are the propagation velocities of the longi-
tudinal P-wave (also called the primary wave) and the transverse S-wave (also known as the
secondary or shear wave), respectively.

The theory of elastic wave propagation is easily simplified to the acoustic case by setting
µ = 0 in all equations. In order to provide a proof of concept, we will later begin by time-
reversing acoustic waves (cf. sec. 5.1), before moving on to the elastic case. The important
simplifications are therefore stated in the following. One of the main differences between
elastic and acoustic media is the phenomenon of shear waves. These S-waves do not occur in
acoustic media. This can easily be seen from equation 2.24, where, when µ = 0, also vs = 0.
Thus following our intuition that sound waves propagate solely as longitudinal waves in e.g.
air and water. We therefore expect a single wave travelling with the velocity

vp, acoustic =

√

√λ

ρ
. (2.25)

Further simplifications can be made when examining the system 2.14. Immediately, one
observes that the time derivative of the off-diagonal elements of σi j is zero. Looking at the
displacement-stress formulation, we can conclude even more, that is

σi j = 0, for i 6= j. (2.26)

Continuing to look at system 2.14 in displacement-stress formulation3, we find that all three
equations describing the diagonal elements can be condensed to one, namely σii = λ∂ ju j,
implying that

p := σx x = σy y = σzz = λ∂iui , (2.27)

where we again make use of Einstein’s summation convention. Finally, the equation of motion
can be rewritten to

ρ
∂ 2ui

∂ t2
− ∂i p = 0. (2.28)

2.2 ADER-DG

In this section, we will elaborate on the basic elements of the ADER-DG method, a fundamen-
tal part in SeisSol. The intention is to give the reader an overview over the most important
aspects, focusing on what will later be relevant in the implementation of the time-reversal.
For a thorough presentation of ADER-DG and its roots in generalised Riemann problems, the
interested reader is referred to [TMN01], [TT02], [DM05], [KD05], [DK06], [Käs+10].

3The displacement-stress formulation can easily be obtained by following the same process outlined above
with σi j = ci jklεkl instead of the using σ̇i j .
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2.2.1 Discontinuous Galerkin Method

As we have seen in the previous section, we want to solve the elastic wave question formu-
lated as a linear hyperbolic system. In 1973, Reed and Hill ([RH73]) first used the Discon-
tinuous Galerkin (DG) Finite-Element method to obtain a solution of this kind of problem.
In 2001, Toro et al. developed the idea of arbitrary high order generalized Riemann solvers
in a finite volume framework and coined the approach ADER (Arbitrary high-order schemes
using DERivatives). Here, we will present the combination of solving generalized Riemann
problems with Discontinuous Galerkin methods, resulting in the ADER-DG approach [DM06].
We allow piecewise polynomial approximations in order to reuse the theory of fluxes across
element boundaries from the finite volume methods. The ADER-DG scheme provides, similar
to the original ADER idea, an explicit, one-step scheme. That is, to advance the solution by
a full time step, only the computation of inter-cell fluxes is required. To achieve arbitrary
high-order accuracy in both space and time, the time derivatives are replaced with space
derivatives using the Cauchy-Kowalevski or Lax-Wendroff procedure.

In the following, we will present the ADER-DG approach to solve the 3D elastic wave
equation on tetrahedral meshes (cf. [DK06]). We begin by transforming the system of equa-
tions 2.14 into the more compact form

∂Qp

∂ t
+ Apq

∂Qq

∂ x
+ Bpq

∂Qq

∂ y
+ Cpq

∂Qq

∂ z
= 0, (2.29)

where Q is the vector containing the stresses and velocities, i.e.

Qp = (σx x ,σy y ,σzz ,σx y ,σyz ,σxz , u, v, w)T (2.30)

and Apq, Bpq, and Cpq are space-dependent Jacobian matrices. It can be easily verified that

Apq =





























0 0 0 0 0 0 −(λ+ 2µ) 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −µ
− 1
ρ 0 0 0 0 0 0 0 0

0 0 0 − 1
ρ 0 0 0 0 0

0 0 0 0 0 − 1
ρ 0 0 0





























. (2.31)

Matrices Bpq and Cpq are similar, the non-zero entries are just shifted around (all three matri-
ces are explicitly stated in [DK06]).

We begin by dividing the computational domain Ω ∈ R3 into tetrahedral elements T (m),
with unique indices m ∈ N. The above mentioned matrices Apq, Bpq, and Cpq are assumed to
be piecewise constant inside each T (m). In addition, we introduce (ξ,η,ζ) as a new coordi-
nate frame of a reference tetrahedron TE (cf. fig. 2.1)

Thus, we require a transformation Tpq to transform the vector Qp, here p = 1, . . . , 9 ex-
presses the unknowns of the governing equation, from the global Cartesian system to the
vector Qn

p in the normal, face-aligned frame, such that

Qp = TpqQn
q. (2.32)
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Figure 2.1: Transforming the physical tetrahedron T (m) to the canonical reference tetrahedron TE using the trans-
formation matrix Tpq. (Figure taken from Figure 1 in [DK06])

It is given by

Tpq =





























n2
x s2

x t2
x 2nx sx 2sx t x 2nx t x 0 0 0

n2
y s2

y t2
y 2nysy 2sy t y 2ny t y 0 0 0

n2
z s2

z t2
z 2nzsz 2sz tz 2nz tz 0 0 0

ny nx sysx t y t x nysx + nx sy sy t x + sx t y ny t x + nx t y 0 0 0
nzny szsy tz t y nzsy + nysz sz t y + sy tz nz t y + ny tz 0 0 0
nznx szsx tz t x nzsx + nx sz sz t x + sx tz nz t x + nx tz 0 0 0

0 0 0 0 0 0 nx sx t x
0 0 0 0 0 0 ny sy t y
0 0 0 0 0 0 nz sz tz





























, (2.33)

where n = (nx , ny , nz)T are the components of the normal vector, and s = (sx , sy , sz)T and
t= (t x , t y , tz)T are two tangential vectors, which lie in the plain determined by the boundary
face of the tetrahedron. It is common to define the vector s such that it points from face
node 1 to face node 2 (node numbers can also be seen in fig. 2.1). Of course, n, s, and t are
orthogonal to each other. In addition, the physical coordinates (x , y, z) need to be mapped to
the coordinates in the reference element (ξ,η,ζ) with

Q(m)p (x , y, z, t) = Q̂(m)pl (t)Ψl(x , y, z), (2.34)

where Ψl(x , y, z) are pure spatial polynomial basis functions, defined on the physical element.
With a suitable coordinate transformation M , equation 2.34 can now be expressed in the
frame of the reference element

Q(m)p (x , y, z, t) = Q̂(m)pl (t)Ψl(M(ξ,η,ζ)). (2.35)

We can now define spatial polynomial basis functions on the reference element Φl(ξ,η,ζ).
The coordinate transformation is applied to make the implementation more efficient, as inte-
grals in the reference system can be computed beforehand. In order to express the numerical
solution Qh by a linear combination of pure spatial and pure time-dependent functions, the
time-dependent degrees of freedom Q̂m

pl(t) are introduced. As Φl is defined with support T m,
we can approximate Qh in each tetrahedron

[Q(m)h ]p(ξ,η,ζ, t) = Q̂m
pl(t)Φl(ξ,η,ζ), (2.36)

where l denotes the lth basis function. Multiplying eq. 2.29 with the test function Ψk (as
given in [CKS11]) and integrating over a tetrahedral element T (m) yields

∫

T (m)
Ψk
∂Qp

∂ t
dV +

∫

T (m)
Ψk

�

Apq
∂Qq

∂ x
+ Bpq

∂Qq

∂ y
+ Cpq

∂Qq

∂ z

�

dV = 0, (2.37)
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thus moving over to a weak formulation. Introducing the flux Fh
p , to take discontinuities in

Qh at element boundaries into account and integrating by parts, yields
∫

T (m)
Ψk
∂Qp

∂ t
dV+

∫

∂ T (m)
ΨkFh

p dS−
∫

T (m)

�

∂Ψk

∂ x
ApqQq +

∂Ψk

∂ y
BpqQq +

∂Ψk

∂ z
CpqQq

�

dV = 0. (2.38)

The flux for tetrahedron T (m) with boundary extrapolated numerical solution Q̂(m)sl Ψ
(m)
l across

the boundary of one of the neighbouring tetrahedra T (m j) with j = 1, 2,3, 4, and Q̂
(m j)
sl Ψ

(m j)
l , in

the global, Cartesian system can then be computed with the Jacobian matrix Apq (eq. 2.31)

Fh
p =

1
2

Tpq

�

A(m)qr + | A
(m)
qr |

�

(Trs)
−1Q̂(m)sl Ψ

(m)
l +

1
2

Tpq

�

A(m)qr + | A
(m)
qr |

�

(Trs)
−1Q̂

(m j)
sl Ψ

(m j)
l . (2.39)

It remains to be clarified that

| A(m)qr |= RA
qp | Λps | (RA

sr)
−1, (2.40)

where Λ is a diagonal matrix containing the eigenvalues of Apq and Rpq a matrix containing
the nine right eigenvectors of Apq. We can now insert the flux calculation from eq. 2.39
and the definition of the numerical solution Qh from eq. 2.36 into the weak formulation in
eq. 2.38. Since the basis functions Φl are defined in (ξ,η,ζ)-space we additionally need to
transform the resulting equation using

dxdydz =| J | dξdηdxζ (2.41)

and special linear combinations of the Jacobians

A∗pq = Apq
∂ ξ

∂ x
+ Bpq

∂ ξ

∂ y
+ Cpq

∂ ξ

∂ z
,

B∗pq = Apq
∂ η

∂ x
+ Bpq

∂ η

∂ y
+ Cpq

∂ η

∂ z
,

C∗pq = Apq
∂ ζ

∂ x
+ Bpq

∂ ζ

∂ y
+ Cpq

∂ ζ

∂ z
.

(2.42)

Then, finally yielding the ODE system describing the semi-discrete DG formulation in the
reference element TE

∂

∂ t
Q̂(m)pl | J |

∫

TE

ΦkΦldξdηdζ

+
4
∑

j=1

T j
pq

1
2

�

A(m)qr + | A
(m)
qr |

�

(T j
rs)
−1Q̂(m)sl | S j | F

−, j
kl

+
4
∑

j=1

T j
pq

1
2

�

A(m)qr + | A
(m)
qr |

�

(T j
rs)
−1Q̂

(m j)
sl | S j | F

−, j,i,h
kl

− A∗pqQ̂(m)ql | J |
∫

TE

∂Φk

∂ ξ
Φldξdηdζ− B∗pqQ̂(m)ql | J |

∫

TE

∂Φk

∂ η
Φldξdηdζ− C∗pqQ̂(m)ql | J |

∫

TE

∂Φk

∂ ζ
Φldξdηdζ

= 0,

(2.43)

with the area of tetrahedron face j, | S j |.
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2.2.2 ADER-DG Time Discretization

Instead of now applying the Runge-Kutta method to the DG formulation to obtain a Runge-
Kutta DG scheme, which essentially is limited to the fourth order, we apply the ADER ap-
proach to achieve arbitrary high-order accuracy in both space and time. Runge-Kutta schemes
of order higher than 4 become increasingly inefficient as the required number of calculation
steps supersedes the order of accuracy. These are the so-called Butcher barriers ([But87]).
Applying the ADER scheme to the DG formulation above results in the ADER-DG scheme.
The key is to use the Cauchy-Kovalewski procedure to replace the time-derivatives by pure
space derivatives. As a result, the Cauchy-Kovalewski procedure gives the kth time-derivative
in the face-aligned coordinate system

∂ kQp

∂ tk
= (−1)k

�

A∗pq
∂

∂ ξ
+ B∗pq

∂

∂ η
+ C∗pq

∂

∂ ζ

�k

Qq. (2.44)

Qp can then be developed in a Taylor series in time, and the time derivatives replaced by
space derivatives using the above equation (cf. Section 3.2 in [DK06]). By doing so, we
achieve arbitrary high-order accuracy in both space and time. As mentioned earlier, the
ADER-DG schemes perform time integration in a single time step, taking into account the
current element and its j neighbours only, thus making the method ideal for parallelization.
It has also been shown that ADER-DG is faster than e.g. a RK-DG scheme ([DM05].

2.2.3 Boundary Conditions

To conclude this section, some considerations about boundary conditions are made. Bound-
ary conditions will be important again in the next section, where we impose Dirichlet bound-
ary conditions on the surface of our volume to initialize the time-reversal.

Absorbing Boundaries

In the forward direction, the physical volume will be enclosed by absorbing boundaries, i.e.
no waves are entering the computational domain and outgoing waves pass the boundary
without being reflected. A closer look at eq. 2.39 reveals that the first term on the right-
hand-side corresponds to the outflow from the current element, while the second term on
the right-hand-side corresponds to the inflow from neighboring elements. Thus, not allowing
for incoming waves corresponds to setting the second term to zero. Hence, the flux at all
absorbing faces of the respective tetrahedral elements is set to

FAbsorbBC
p =

1
2

Tpq

�

A(m)qr + | A
(m)
qr |

�

(Trs)
−1Q̂(m)sl Ψ

(m)
l . (2.45)

Free-Surface Boundaries

At a free-surface boundary the elastic medium is in contact with surrounding air or void.
Since there are no external forces on the outside of the elastic medium, normal and shear
stresses have to vanish at the free surface. This is achieved by creating ghost cells, where
we mirror the stresses, i.e. the values have the same magnitude, but opposite sign. This is
realized by using the flux function (cf. [DK06])

FFreeBC
p =

1
2

Tpq

�

A(m)qr + | A
(m)
qr |

�

(Trs)
−1Q̂(m)sl Ψ

(m)
l

+
1
2

Tpq

�

A(m)qr + | A
(m)
qr |

�

Γrs(Trs)
−1Q̂(m)sl Ψ

(m)
l ,

(2.46)
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where Γrs = diag(−1, 1,1,−1,1,−1,1, 1,1) is the matrix implementing the mirroring of normal
and shear stresses.

Inflow Boundaries

At inflow boundaries, waves entering the computational domain are handled. Similar to
Hermann’s approach in [Her10], we define the incoming wave at each quadrature point n
as up,inflow,(m)

n (ξ,η,ζ, t) for each component p. However, contrary to Hermann, we do not
integrate over all Gaussian points, but rather define a flux F Inflow

p,n at each point. The flux at
an inflow boundary is then given by

F Inflow
p,n =

1
2

Tpq

�

A(m)qr + | A
(m)
qr |

�

(Trs)
−1Q̂(m)sl Ψ

(m)
l

+
1
2

Tpq

�

A(m)qr + | A
(m)
qr |

�

(Trs)
−1up,Inflow,(m)

n .
(2.47)

Comparing this equation to the above mentioned flux for absorbing boundary conditions, it
is apparent that this flux also acts as an absorbing boundary for outgoing waves.



Chapter 3

Time-Reversal

Time-reversal methods are concerned with mirroring the propagation of waves in time. After
a successful time-reversal the resulting wave should converge at the source. There are mainly
two different ways in which a time-reversal can be achieved ([FF17]). Time-reversal mirrors
(TRMs) rely on the so-called Cauchy Boundary Conditions. If the wavefield and its normal
derivative are known at the entire surface S surrounding the volume for all times t, the
wavefield inside the entire volume can be calculated. Thus, the time-reversal is achieved by
initially recording the outgoing wave on S, then time-reversing it, and finally emitting the
time-reversed field from S.

Instead of examining boundary conditions, one can also achieve a time-reversal that relies
on Cauchy Initial Conditions. Here, the wavefield and its normal derivative are known in the
entire volume, but only for a specific time. Consider a N particle system, where each particle
is described by a position and velocity vector {ri ,vi}. Using Lohschmidt daemons, the velocity
of each particle can be reversed instantaneously, i.e. {ri ,−vi}, also yielding a time-reversed
wave. This approach is called the instantaneous time-reversal mirror (ITM).

In this thesis, the focus lies on the approach of the TRM, as the wavefield can easily
be recorded at the surface of a volume. To develop the theory, we will primarily focus on
the so-called time-reversal cavity, which is an idealized version of the TRM, where the wave
is recorded continuously on S. Almost 30 years ago, Fink et al. wrote a series of papers
examining the theory and presenting experimental results on the time-reversal of ultrasonic
fields ([Fin92], [WTF92], [CF92b]). In the first part of this chapter, we will follow the
theoretical foundation laid out in [CF92b], where Cassereau and Fink discuss the theory of
the closed time-reversal cavity, pointing out changes when necessary. Note that although
the derivation of Casserau and Fink is limited to acoustic waves, the time-reversal method
is equally applicable to elastic waves ([FP01]). In the latter part of this chapter (sec. 3.2),
we will present the implementation of the time-reversal in the numerical simulation software
SeisSol. The description of the implementation remains as general as possible, such that this
chapter provides a comprehensive understanding of the method. Details regarding the exact
settings analysed in this thesis will be provided in the next chapter (4).

3.1 Theory of Time-Reversals

The concept of the time-reversal is a two step process. First, in the recording step, the wave
field originating from a point source propagates through the volume and is recorded at the
surface of the volume. The recording step is illustrated in fig. 3.1a. Receivers at the surface S
record the time evolution of all entries of Qp, as defined in eq. 2.30. Should inhomogeneities
or material boundaries be present in the medium, a distorted wave front will be recorded
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(a) Recording step: The wavefront originating from a point
source propagates throughout the medium and is then
recorded by receivers at the surface surrounding the volume.

(b) Reconstruction step: The recorded signals are time-
reversed and the receivers now act as sources. Now the time-
reversed field propagates in the medium and converges to the
location of the initial source

Figure 3.1: Visualization of the recording and reconstruction step in the time-reversal process (adapted from fig.
1 in [FF17]).

by the receivers. Second, in the reconstruction step, the passive receivers from the first step
become sources and emit the recorded field in a time-reversed manner, ideally creating a
wave that converges back to the initial source position, as seen in fig. 3.1b.

The theory of the time-reversal is thus based on two fundamental principles. Firstly, the
wave equation needs to be reversible in time. Examining the elastic wave equation from the
previous chapter (2.19)

ρÜ(x, t)− (λ+ 2µ)∇(∇ ·U(x, t)) +µ∇× (∇×U(x, t)) = S(x, t), (3.1)

with the source function S(x, t), it is evident that the wave equation only contains second-
order time derivatives. Therefore, if Ũ(x, t) is a solution, we know that Ũ(x,−t) also has to be
a solution to the equation, if S is symmetric in time. Secondly, a slightly modified version of
the Helmholtz-Kirchhoff integral theorem is employed, that allows the recovery of the entire
wave field at any time in the given volume, only knowing the outgoing wave field along the
2D surface S for a sufficient amount of time ([CF92b]).

One differentiates between the closed time-reversal cavity and the TRM. The closed time-
reversal cavity is an idealized concept, where the surface S, enclosing the entire volume in
question, can continuously record the propagating wave field. That is, both time and space
dimensions are recorded continuously. In the TRM, the receivers are spaced on a discrete
grid. Fink claims in [FP01] that it suffices to space receivers ψmin/2 apart, where ψmin is the
smallest wavelength of the wave field, and a temporal resolution of Tmin/8 with Tmin being
the minimum period. In contrast to Fink et al., who are mainly concerned with experimental
setups, we can take advantage of conducting experiments in a simulation environment. That
is, a mixture of both methods is employed, in the sense that a discrete number of receivers
is placed on S, but the surface can be continuously sampled using interpolation techniques.
Nonetheless, it is instructive to inspect the theory in the ideal case.

In order for the time-reversal to make sense, in the recording step, the outgoing wave
field needs to be recorded long enough, such that the wave actually passes through S. We
define Tfwd as the end time of the forward simulation, i.e. the outgoing wave field is recorded
during the finite time interval [0, Tfwd]. Tfwd should be chosen large enough to allow the
entire wave field to propagate out of the volume enclosed by S. In mathematical terms we
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define the function

H(t) =

¨

1 if 0≤ t ≤ Tfwd,

0 otherwise,
(3.2)

such that the recorded wave field is Qp(x, t)H(t). Contrary to the velocity-stress formulation
depicted in Chapter 2, it should be noted that we use the differential equation describing
the displacements to show the analogy to the acoustic wave equation. Note also that the
receivers on the surface record Qp and not the displacements U. That is, after the recording
step the recorded data contain the time evolution of the stress tensor σi j and the velocities vi
in all three coordinate directions.

The second step in the time-reversal process is the reconstruction step. Our goal is to
create a wave that propagates from the boundary of the volume to the origin of the source
inside the volume. In order to set a consistent wave field at the surface, we either set the
six independent entries of σi j or the three velocities Vi at the surface. The results obtained
are identical, up to a multiplication of −1 of the entire wave field, due to the fact that σi j
is dependent on the spatial derivatives of the displacement, while Vi is dependent on the
temporal derivative, thus adding a factor of −1 in the time-reversal.

In the following, when mentioning Qp, we imply a lower dimensional object that guaran-
tees the description of a well defined wave field, in our case

Qp = (σx x ,σy y ,σzz ,σx y ,σyz ,σxz). (3.3)

Naturally, the time-reversed displacement UTR also has to obey the elastic wave equation,
with two modifications. Trivially, the original source is no longer present in the volume, i.e.
S(x, t) = 0. Thereby yielding

ρÜTR(x, t)− (λ+ 2µ)∇(∇ ·UTR(x, t)) +µ∇× (∇×UTR(x, t)) = 0. (3.4)

Secondly, the boundary conditions (BCs) have changed. In the forward direction absorbing
BCs were applied, in order to eliminate the reflection of waves back into the physical volume.
In the time-reversed direction we require inflow BCs, thereby enabling the wave to propagate
into the volume. The inflow is achieved by creating surface sources SS on S that are charac-
terized by Qp(xi , Tfwd − t)H(Tfwd − t), where receivers are located at points x i. Conceptually
this is equal to playing the recorded receiver file backwards. Performing the time-reversal
transformation from t to Tfwd − t on the equation of motion (3.1) yields

ρÜ(x, Tfwd − t)− (λ+ 2µ)∇(∇ ·U(x, Tfwd − t) +µ∇× (∇×U(x, t)) = S(x, Tfwd − t); (3.5)

not only has the wave field on S been time-reversed, but also the source S.
Fink et al. go on to find an equation for the time-reversed field by assuming an impulsive

source

S(x, t) = S(x)δD(t), (3.6)

where δD is the Dirac delta. In this thesis we however employ a source time function S(t)
located at a specific point. The source function is thus

S(x, t) = S(t)δD(x− x0), (3.7)

a point source, but not impulsive in time. This is where we deviate from the theory of Fink et
al. and move in a slightly different direction. The ultimate goal of Fink et al. is to achieve a
focusing of waves below the diffraction limit. Our goal, however, is to determine the center
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of an earthquake, i.e. the origin of the source, based on a recorded wave field. In addition,
the theory for an impulsive diverging wave can be derived in a straight-forward fashion using
a free-space Green’s function. Finding a similar expression for a source as described by eq.
3.7 goes beyond the scope of this thesis. Hence, in the following we present an informal
argument to obtain the time-reversed entries of Qp, QTR

p , which agrees with the experimental
results obtained in chapter 5.

It has been established that the recording time Tfwd has to be sufficiently large to allow
most of the wave field to propagate out of the volume. In other words, when the simulation
time approaches Tfwd the source function should be close to zero, otherwise a larger Tfwd
should have been chosen. We define a new parameter τ that describes exactly this interval
where the source function is close to zero. Namely, the time the wave takes to travel from the
origin of the point source to the outermost point on S. Evidently, the smallest propagation
velocity has to be taken into account. We can thus assume that

S(t) = 0 ∀Tfwd −τ < t < Tfwd, (3.8)

or expressed for the time-reversed source

S(Tfwd − t) = 0 ∀0< t < τ. (3.9)

Hence, eq. 3.4 holds for all 0< t < τ. We have thus found a description of the time-reversed
elements of QTR

p dependent on the original vector Qp

QTR
p (x, t) =Qp(x, Tfwd − t) if t < τ. (3.10)

Obviously, the backwards propagating wave will not magically disappear. Consider a source
that is symmetric in time relative to the peak of the source function tmax (see fig. 3.2a). In
the time-reversed direction the peak will arrive at the origin of the point source exactly at
time Tfwd− tmax. The peak of the wave will then immediately start diverging, independent of
the starting time of the original source function. This behavior is illustrated in fig. 3.2b. Now
consider a receiver that is placed at some distance to the source. In the forward direction it
will record a wave field, peaking at some time T ′ > tmax. Fig. 3.2c shows the propagating
wave field. The same receiver will record two signals in the time-reversal step (see fig. 3.2d).
The first field is reversed in time compared to the original field. The second one however is
merely translated in time. Since the converging wave immediately starts diverging at time
Tfwd − tmax, a factor of 2 is present in the description of the diverging wave field

QTR
p (x, t) =Qp(x, t − (Tfwd − 2 · tmax)) ∀t > Tfwd − tmax. (3.11)

We here express the diverging time-reversed wave in terms of the original wave field. Notice,
if tmax = 0, the diverging wave would be expressed by Qp(t − Tfwd), a simple translation in
time.

In order to obtain a more concise relationship for the time-reversal field QTR
p , we assume

that the source time function is a narrow peak in time compared to Tfwd, and we limit the
validity of the following equation to points that are far enough away from the source. Here,
far enough means that the converging and diverging waves can be resolved separately in time
(cf. fig. 3.2d). With these assumptions, we can artificially increase τ, such that we finally
obtain

QTR
p (x, t) =

¨

Qp(x, Tfwd − t) if t ≤ Tfwd − tmax,

Qp(x, t − (Tfwd − 2 · tmax)) if t ≥ Tfwd − tmax.
(3.12)

This is an important observation. It implies that the time-reversed field shows two wave-
fronts. At first, the time-reversed wave U(x, Tfwd − t) converges from the surface towards the
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(a) Time evolution at the source point in the forward direction. (b) Time evolution at the source point in the time-reversed di-
rection.

(c) Time evolution in the forward direction at a receiver point
located somewhere in the volume.

(d) Time evolution in the time-reversed direction at the same
receiver location as in fig. 3.2c.

Figure 3.2: Time evolution of Qp of both forward (left) and time-reversed (right) direction at two different receiver
points. Naturally, in the time-reversed field at the source a distinction between the converging and diverging wave
is not possible. However, further away from the source the converging and diverging wave field can be resolved
separately.
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point source inside the volume. After converging, the wave will then diverge and propagate
through the medium again, as described by U(x, t−(Tfwd−2 · tmax)). Since we in principle can
record the wave field at any point inside the volume in the forward direction, this equation
enables us to compare the results from the time-reversal to the forward simulation.

The entries of Qp are limited to the independent quantities of the stress tensor (cf. eq.
3.3). The equations above, relating QTR

p to Qp are meant to describe the entries of σi j. Evi-
dently, we can also compare the velocities Vi from both the initial and time-reversed wave. By
doing so, the propagation direction of the wave has to be considered, yielding an additional
factor of −1 in the description of the convergent wave in eq. 3.12. Thus taking into account
that the converging wave is not only time-reversed in comparison to the original propagating
wave, but that the propagation direction is also reversed.

To summarize, we have modified the theory presented by Cassereau and Fink ([CF92a])
to accommodate a source of the form S(x, t) = s(t)δD(x − x0). We have not presented a
rigorous derivation using Green’s functions, but instead presented an argument that agrees
with the experimental results obtained in Chapter 5. The core part of the theory, however,
remains unchanged. The converging part of eq. 3.12 is identical to the one presented in
[FF17]; that is, we expect the time-reversed wave to be a mirror of the original forward
propagating wave. Analogously to Fink et al. we find a diverging wave in our experiments,
i.e. the second part of eq. 3.12. It differs from the description obtained by Fink et al., which
can be attributed to the use of a different type of source function.

We have thus successfully established the theory of the time-reversal in a way that allows
us to compare the forward simulation with the time-reversal. Thereby, we will be able to
make assessments on the validity of the time-reversal and on the accuracy of time-reversed
waves in SeisSol. The exact setup of the experiments is detailed in Chapter 4. However, prior
thereof, the implementation in SeiSol shall be presented.

3.2 Implementation

In this section, the additions made to SeisSol that allow the simulation of time-reversed
waves are presented.1 The implementation is kept as general as possible to allow future
experiments to reuse the current code.

As is evident from the description above, SeisSol remains unchanged in the forward di-
rection. The goal of the recording step is to record the outgoing wave on the surface S. In
order to achieve this, recording points are specified on S. While simulating, SeisSol writes all
entries from Qp into so-called receiver files. A receiver file contains the time evolution of all
values Qp at a given point. The sample rate in time can be adjusted with the parameters of
the simulation. Naturally, the number of recording points can be varied. Nonetheless, S will
only be sampled discretely by the recording points, in both space and time. This is the first
step in the time-reversal process.

The interesting part of the implementation is the reconstruction step. During the initial-
ization phase of SeisSol the receiver files obtained from the forward simulation are read.
That is, the position of each receiver file and the relevant entries of Qp are stored. Relevant
here means the first six entries of Qp, i.e. the entries of the stress tensor. As mentioned in
the previous section, one can alternatively choose to set the velocities instead of the σi j at S.
Therefore, when referring to Qp in the following we address the first six components men-
tioned in eq. 3.3. During the time-reversal simulation, the values at the physical boundary
need to be set. That is, we need to properly specify the sources on S. This is a two-step

1The code it its entirety can be found here: https://github.com/pwendland/SeisSol/tree/
time-reversal-master-thesis

https://github.com/pwendland/SeisSol/tree/time-reversal-master-thesis
https://github.com/pwendland/SeisSol/tree/time-reversal-master-thesis
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process. At first, an interpolation in space and time is performed to obtain appropriate values
for Qp at any point on S for any time t with 0≤ t ≤ T . Subsequently, the actual time-reversal
is implemented and the appropriate boundary conditions set.

3.2.1 Interpolation

The receiver files are both discrete in time and space. A high sampling rate in time is easily
achievable, which is why a linear interpolation in time is appropriate. That is, for each entry
Qp of Q we calculate the linear interpolation at time τ

QLinInterpol
p =Qp(t0) +

(τ− t0) · (Qp(t1)−Qp(t0))

t1 − t0
, (3.13)

where t0 < τ < t1. That is, we find recorded timestamps t0 and t1 as close to τ as possible
where the values of Q are known. This interpolation is performed as a first step for all
elements Qp.

In space, the inverse distance weighting (IDW) interpolation technique is used. As men-
tioned earlier, each receiver captures the incoming wave locally. With IDW the importance of
a given data point decreases with its distance to the unknown point. The number of known
points N taken into account in the calculations is variable. We choose N = 4, as the receivers
are placed at regular intervals, which allows for a sufficiently accurate local approximation.

Here, the basic form of Shephard’s method is used; given a set of known points ri, i ∈
[1, N], in Cartesian coordinates, with the recorded value at each point Qi

p, we can interpolate
the value Qu at an unknown point xu by computing:

Qu
p =







∑N
i=1 wi(xu,x i)Qi

p
∑N

i=1 wi(xu,x i)
if d(xu, x i) 6= 0,∀i,

Qi
p if ∃i : d(xu, x i) = 0,

(3.14)

with

wi(xu, x i) =
1

d(xu, x i)k
, (3.15)

where k ∈ R+ is the so-called power-parameter. We choose k = 2, such that points that are
further away contribute quadratically less to the result, a similar dependence as Newtonian
gravity (∝ 1

r2 ).
We chose IDW over e.g. nearest neighbor interpolation, since it provides a smoother

approximation of the actual wave field.

3.2.2 Setting Sources at the Surface

After the initialization steps, all entries of Qp are stored in vectors with associated position
and timestamp for each value. Since the receiver files were recorded during the entire for-
ward simulation, we obtain the end time Tfwd of the initial simulation simply by extracting
the last recorded timestamp. In a loop over the quadrature points on the surface S, we set the
sources which radiate the time-reversed wave. At first, we obtain the entries of Qp after the
interpolation at a node position in a time-reversed manner. The time-reversal of the receiver
files is achieved by simply reversing the time dimension

t → Tfwd − t, (3.16)
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with the current simulation time t. This approach results in

Qtr
p (x, t) =Qp(x, Tfwd − t)H(T − t). (3.17)

Note that once the simulation time t exceeds the recording time Tfwd from the forward simu-
lation, the receiver files cannot return a sensible value, hence it is set to zero by multiplying
with

H(t) =

¨

1 if t ≥ 0,

0 otherwise.
(3.18)

Alternatively, this can be achieved implicitly by defining Qp(t) = 0∀t < 0.
Before actually setting the time-reversed field, we need to apply the transformation from

the global Cartesian system to the local normal system, as described by the transformation
matrix in eq. 2.33. The receiver files record Qp in the global Cartesian frame, while the
boundary conditions are evaluated in the normal frame. Transforming eq. 2.32 yields

Qn
p = T−1

pq Qp, (3.19)

where we use the inverse of the transformation matrix Tpq. It should be noted that we are
only setting the stresses at the surface, thus only require to invert a 6× 6 submatrix of Tpq.
Both Tpq and its inverse are precomputed as they are also needed for flux computations. The
values Qn

p are now set on S and act as sources in the time-reversal.

In this section, we provided a general implementation of the time-reversal in SeisSol
independent of the volume and the material parameters used. The result is dependent on
different hyperparameters that need to be set before running a simulation.

The end time Tfwd can be determined by considering the extent of the volume and the
source characteristics. In order to create a satisfactory time-reversal, the receivers on S
ideally need to record the entire outgoing wave. Choosing a smaller Tfwd results in a less
accurate time-reversal, while larger values require unnecessary computation time.

The far harder choice is to determine the number of receivers needed on S. As proposed
by Fink et al. in [FP01], the receivers should not be placed at a distance greater than ψmin/2
apart, where ψmin is the smallest wavelength of the propagating wave field. Depending on
the number of receivers, the parameters for the interpolation can also be adjusted. Increasing
the power parameter k will ultimately result in the mosaic pattern of the nearest neighbor
interpolation. But in our case k = 2 remains constant.



Chapter 4

Method

We shall now move from the general considerations in previous chapters to the details of how
the analysis in Chapter 5 was conducted. Firstly, we will define the mesh and its material
parameters. Thereafter, the source function is examined more closely. Lastly, we will present
the misfit criteria Kristekova et al. use for the quantitative comparison of seismograms in
[Kri+06] and any general pre-processing steps needed before moving on to the analysis.

Note that the content presented in sections 4.1 and 4.2 is not applicable in the last test
case presented in sec. 5.3. The important parameters for the WP2-LOH1 test case are intro-
duced at the beginning of said section.

4.1 Mesh and Material

In order to successfully start a simulation in SeisSol, several initial properties have to be
specified. The volume in which the simulation is run is determined by the mesh geometry.
The volume of interest is a (10x10x10)m cube with origin at (0,0,−5), i.e. x- and y-ranges
are [−5,5] and the z-range is [−10, 0]. Using the transfinite algorithm in gmsh1 we create
a structured, regular tetrahedral mesh with approximately 100k elements (see fig. 4.1).
We intentionally choose a regular grid over a locally refined mesh. Consider the regions
of interest in our approach. Obviously, the source region, i.e. the origin of the cube, is a
region of interest. Furthermore, the entire surface of the cube is important, since the data
for the time-reversal is collected there. Finally, in order to analyse the differences between
forward and time-reversed direction, receivers are placed throughout the volume to record
both directions. This implies that any point inside the volume where a receiver is located
should also be surrounded by a refined mesh. Since the points of interest are spread out over
the entire volume and vary in the different test cases, using a regular mesh is the best choice.

This mesh is used for both the forward and the time-reversed direction, different only in
the physical boundaries. As discussed above, in the forward direction we employ absorbing
boundary conditions, while in the time-reversal inflow boundary conditions are applied.

The experiments are split into two main parts; providing a proof-of-concept in the simpli-
fied acoustic case, i.e. µ = 0, and then further analyzing the capabilities of the time-reversal
by moving to an elastic medium. As we are conducting the simulations in a mock environ-
ment, simple, and thus unrealistic material parameters are chosen. Changing the material
parameters to more realistic values does not add a significant weight to the results and is,
therefore, not taken into account in further considerations. Nevertheless, a qualitative study
of the benchmark scenario WP2-LOH1 (Wave Propagation 2 - Layer Over Halfspace) is con-

1https://gmsh.info/

https://gmsh.info/
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Figure 4.1: Regular structured mesh on the (10, 10,10) cube with approximately 100k elements.

ducted as a final test. Here, realistic parameters inside a volume spanning multiple kilometers
are used.

In the elastic case the material parameters are chosen in such a way that both P- and
S-waves can be seen separately in the recorded receiver files. In the acoustic case simple con-
siderations on the propagation velocity and the resulting wavelength are sufficient. In order
to introduce inhomogeneities into the medium, we will later vary the material parameters
slightly.

4.2 Point Source

In the previous chapter assumptions about the source were made, which will be explored
further here. The simulations are performed with a point source located at the center of the
cube, i.e. (0, 0,−5). Additionally, we require a smooth and differentiable function, that is
symmetric in time and with a reasonable width. The Ricker wavelet is often used in seismic
analysis ([Wan15]) and is ideal for our purposes. It is obtained by solving the Stokes dif-
ferential equation and is mathematically equivalent to the second derivative of a Gaussian
function. It is thus smooth and differentiable. The amplitude of the Ricker wavelet at time t
is given by

A( f , t) = (1− 2π2 f 2 t2)e−π
2 f 2 t2

, (4.1)

where f is the peak frequency. This general form is symmetric around t = 0. For our purposes
this is inadequate, as we require the source to be smooth in the time interval [0, Tfwd]. Hence,
the entire wavelet is shifted in the direction of positive time by 4 s and the peak frequency
is set to f = 0.75Hz (see fig. 4.2). The frequency choice balances the width of the wavelet
and the wavelengths of the resulting wave field. The chosen frequency directly influences the
wavelengths ψp/s =

vp/s

f for the propagation speeds vp and vs, of P- and S-wave respectively,
and thus the minimum resolution for the grid of receivers.

The same source function is applied in both the acoustic and the elastic test cases. The
Ricker wavelet is sampled with a timestep of ∆t = 0.001 s for a total of 30 s. In our simulated
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Figure 4.2: The Ricker wavelet as given by A( f , t) = (1−2π2 f 2(t− tmax)2e−π
2 f 2(t−tmax)2 , with f = 0.75 Hz and

tmax = 4 s.

environment strike, dip and rake angles are set to 0. The most important difference between
the acoustic and the elastic case is the moment tensor of the source. In the acoustic case, an
isotropic explosive source is used, thus yielding the moment tensor of the acoustic source

MAcoustic
i j =





1 0 0
0 1 0
0 0 1



 . (4.2)

In the elastic case, we use a moment tensor associated with a vertical strike-slip fault

MElastic
i j =





0 1 0
1 0 0
0 0 0



 , (4.3)

thereby setting a focus on the x y-plane in the analysis.

4.3 Comparison of Receiver Data

A major part of this thesis is the comparison between the wave fields obtained through the
forward and the time-reversed simulation. As elaborated in the previous chapter, the time-
reversed direction consists of a converging and a diverging wave, which both depend on
the result from the forward direction. In order to assess the quality and correctness of the
time-reversal, Qp and QTR

p of the two simulations needed to be compared and their difference
qualified. Analogously to receivers placed on the surface S, recording points can be defined
throughout the volume to record Qp as a function of time. In Chapter 5, we will elaborate
how these points are chosen in a representative fashion. In this section, we shall first discuss
the general criteria used to compare two signals, after which we will detail the pre-processing
steps needed to actually obtain two matching signals. Hence, for now we define the signal
s(t) and the reference signal sref(t). Consider the reference signal to hold the time evolution
from the forward simulation and s(t) the information from the time-reversal. Note that the
space dependency is omitted here, since it is obvious that we consider the signals obtained
from one receiver at a specific point in space.
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We make use of two different criteria to quantify the difference between the two seis-
mograms. Firstly, the commonly known root-mean-square error is introduced, after which
the more specialized time-frequency misfit as discussed by Kristekova et al. ([Kri+06]) is
presented.

A commonly used misfit criterion is the root mean square (RMS). It is defined as

RMS =

√

√

√

∑

t | s(t)− sref(t) |2
∑

t | sref(t) |2
. (4.4)

In [Kri+06], Kristekova et al. introduce more precise misfit criteria based on the time-
frequency representation of the seismograms. Apart from time- and frequency-dependent
criteria, single-valued envelope misfit EM and phase misfit PM, respectively, are introduced.
Kristekova et al. show that if s only differs from sref in amplitude, EM and RMS values are
identical. However, if a phase difference is present the RMS misfit is significantly larger than
EM. Hence, in the error analysis we will mostly focus on EM and PM.

Following the derivation in [Kri+06], we obtain the definitions of EM and PM respectively.
Initially, consider the continuous wavelet transform (CWT) of a signal s(t)

CW T(a,b) {s(t)}=
1

p

| a |

∫ ∞

−∞
s(t)θ ∗

�

t − b
a

�

dt. (4.5)

Here, t is the time, a a scaling parameter related to the frequency f by f = ω0
2πa , b a trans-

lational time parameter, and θ ∗ the complex conjugate of the analyzing wavelet. We then
define the time-frequency (TF) representation W (t, f ) of a signal s(t) as

W (t, f ) = CW T(a,b) {s(t)}; a =ω0/2π f , b = t. (4.6)

Using the TF representation of the reference signal Wref(t, f ), we can now define the local TF
envelope difference

∆E(t, f ) =|W (t, f ) | − |Wref(t, f ) |, (4.7)

and the local TF phase difference

∆P = Arg
�

W (t, f )
Wref(t, f )

�

. (4.8)

Extending Eqs. 4.7 and 4.8 to a global, single-value misfit yields for the envelope misfit EM

EM =

√

√

√

∑

f

∑

t |∆E(t, f ) |2
∑

f

∑

t |Wref(t, f ) |2
, (4.9)

and analogously for the phase misfit PM

PM =

√

√

√

∑

f

∑

t |∆P(t, f ) |2
∑

f

∑

t |Wref(t, f ) |2
. (4.10)

The global single-valued envelope misfit is a single value that describes how well the ampli-
tudes of the reference and the original signal match. Evidently, if there is no phase difference,
EM and the RMS-error will yield the same result, as both are comparing amplitudes. The
important difference arises if the two signals exhibit a phase difference in addition to an am-
plitude mismatch. Since the RMS-error does not take the phases of the signal into account, it
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(a) Receiver output from the forward simulation (cf. fig. 3.2c). (b) Receiver output from the time-reversal (cf. fig. 4.3d).

(c) The convergent wave, i.e. the first wave field in fig. 4.3b,
is time-reversed in the interval [0, tconv], which corresponds to
times [tmax, Tfwd] in the forward direction.

(d) The divergent wave, i.e. the second wave field in fig. 4.3b, is
translated in time, such that it coincides with the original forward
propagating wave field, i.e. t∗conv is equivalent to tmax.

Figure 4.3: The top row shows, similar to fig. 3.2, the forward and the time-reversed receiver output at a fixed
position. The bottom row shows the modified converging and diverging wave from the time-reversal.

will significantly over-estimate the error ([Kri+06]). Hence, we introduced the global single-
valued phase misfit that together with the envelop misfit will give a more detailed insight
when comparing the two signals. Lastly, the pre-processing steps required to actually obtain
two signals we expect to be identical in their time evolution need to be detailed.

It is incidental, that the following considerations are made assuming a point source as
described in Section 4.2, and only taking points far enough from the origin into account
where the converging and diverging wave are reasonably separated. Based on the details
given in Section 3.1, we know that the time-reversed signal consists of a converging and a
diverging wave. We are thus presented with two different waveforms that can be compared
to the forward direction. Again, the process is illustrated with the help of a figure (fig. 4.3).
In the upper row the already familiar plots of the forward direction (cf. fig. 4.3a) and the
time-reversal (cf. fig. 4.3b) are shown. For the sake of clarity, we introduce tconv as the point
in time the wave field converged

tconv = Tfwd − tmax, (4.11)

and the translation parameter t ′

t ′ = Tfwd − 2 · tmax. (4.12)

We now apply the pre-processing steps solely to the time-reversed waveform; the initial
wave field stays unmodified. Consider the converging wave first. We know that the converg-
ing wave is the time-reversed equivalent of the initial forward propagating wave. By design,
the first entry of the time-reversal recording corresponds to the last entry of the forward di-
rection. Thus, we simply identify the first entry of the recording of the time-reversal with the
last entry in the initial recording. In fig. 4.3c this point in time is marked by 0∗. Evidently,
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this waveform can only be reversed up until tconv, as for all times t > tconv the receiver in the
time-reversal step already records the diverging wave. Again tconv is marked with an asterisk
to indicate the equivalent value in the time-reversal, at the new time, such that a comparison
with the forward direction is possible. Thus, we compare the original signal sref(t) with the
mirrored time-reversed signal s(Tfwd − t), but ignore all values for t < tmax after the reversal
of the data.

Analogously, we consider the diverging wave. As stated in Section 3.1 the diverging wave
is equal to the forward propagating wave, up to a translation in time. The modified wavefield
is shown in fig. 4.3d. It is a simple translation in time by t ′ as defined in eq. 4.12. Again, we
only take values at times t ≥ tconv from the time-reversal into account. Additionally, the end
time of the comparison tend can be specified as

Tend =min(Tfwd − tmax, Ttr − tconv) + tmax, (4.13)

which is identical to the interval the convergent wave is compared in, if Ttr, the end time
of the time-reversed simulation, is chosen sufficiently large. We thus compare sref(t) with
s(t + t ′), since the time-reversed field is translated to the left, in the interval [tmax, Tend].

To summarize, we have now established two different misfit criteria: the simple RMS-
error and the time-frequency misfit consisting of an envelope and a phase misfit. Subse-
quently, we defined the modifications to the time-reversed wave field needed in order to
enable a comparison. Thereby defining two different ways that the forward and the time-
reversed wave field can be compared in qualitatively.
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Analysis of Time-Reversed Waves

This chapter presents and analyses the results obtained from time-reversing seismic waves.
The source time function is given by the Ricker wavelet with a frequency of f = 0.75Hz (cf.
Chapter 4). The source is a point source located at the origin of the cube, i.e. (0,0,−5).
Unless otherwise stated, the geometry is defined by a 100k-element mesh extending from
([−5,5], [−5,5], [−10,0]) in x-, y- and z-direction, respectively. In the recording step, the
forward simulation is recorded by receivers on the surface. In the base case, receivers are
spaced ∆x = 0.5m apart, this is justified later on. In the reconstruction step, the time-
reversed wave will converge to the location of the source, after which a diverging wave will
be observed. Both the time-reversed converging wave, as well as the translated diverging
wave should be equal to the original forward propagating wave (cf. sec. 3.1).

This section is split into three parts. As a starting point, the time-reversal is analysed in
acoustic media, followed by the analysis in elastic media. Initially, the simplest of cases, a
homogeneous medium is examined. Subsequently, more complicated structures are added,
by dividing the medium into two parts with distinct material properties, thus creating a
material boundary. In addition, a localized inhomogeneity with a high density parameter is
introduced, thus creating a predominantly reflecting boundary.

We will conduct both a qualitative and a quantitative analysis. The quantitative analysis
focuses on the comparison of receiver files from the forward direction with those obtained
in the time-reversal. Thus, we can investigate the entries of Qp at specific points in the
volume to determine if forward and time-reversed signals coincide. In addition to studying
the recordings at discrete locations, considering the entire wave field will give insight into
the global behavior of the time-reversal. A descriptive analysis of the entire wave field is
provided by displaying the 3-dimensional wave propagation graphically.

The homogeneous case is intended to deliver on a sound proof of concept, and showcase
the validity of our approach. In the acoustic medium, the contact between two halfspaces is
used to examine the grid spacing of receivers on the surface. In addition to the error analysis,
a resolution analysis is conducted in the elastic medium, in order to determine the minimum
number of receivers needed for a time-reversal. All simulations record Qp every ∆t = 0.002 s.

Finally, the time-reversal method is applied to a benchmark test problem, WP2-LOH1, in
order to showcase the time-reversal outside the (10× 10× 10)m test volume.

5.1 Acoustic Media

The acoustic case is a simplification of propagation in elastic media. The crucial difference is
the second Lamé parameter, which in acoustics is zero. From eq. 2.27 it then follows that σi j
only has non-zero diagonal entries. The property that all diagonal elements are identical (cf.
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eq. 2.27) is verified in the homogeneous case and later utilized to simplify the analysis.

5.1.1 Homogeneous Volume

We shall start our analysis with the simplest of cases, a homogeneous, isotropic, acoustic
medium. The medium is characterized by the following parameters

ρ1 = 1 , λ1 = 2.25 , µ1 = 0. (5.1)

The propagation velocity vp,1 can thus be calculated using eq. 2.25:

vp,1 =

√

√λ1

ρ1
= 1.5

m
s

. (5.2)

The wavelength ψp,1 is given in terms of the frequency f = 0.75Hz of the Ricker wavelet (cf.
sec. 4.2) and the propagation velocity

ψp,1 =
vp,1

f
= 2.0m. (5.3)

A grid of step size ∆x = 0.5m is defined on the surface of the (10× 10× 10)m volume.
This is amounts to placing 2402 receivers on S. Additionally, a total of 14 receivers are
placed inside the volume. We differentiate between receivers set halfway between the source
and the surface, in the different coordinate directions, and others located 1m away from
the surface boundary in each of eight quadrants of the cube. The source time function is a
Ricker wavelet, translated to peak at time t = 4 s, i.e. tmax = 4 s. The end time of the forward
simulation is Tfwd = 20 s.

If a time-reversal is indeed achieved, it can most simply be verified by examining the wave
field output (cf. fig 5.1 1). With Tfwd = 20 s, tmax = 4 s and eq. 4.11 it follows that

tconv = 16s. (5.4)

At t = 12 s the time-reversed wave is starting to propagate from the surface of the volume
towards the center (cf. fig. 5.1a). With vp,1 = 1.5 m

s , the peak of the wave is expected to
begin propagating inside the volume with a delay of

1
2ψp,1

vp,1
= 0.67 s. (5.5)

This time needs to be added to the time the wavefront takes to travel from the boundary
to the origin along the x-direction,

vp,1

5m = 3.33 s, as the convergence calculations are made
considering the peak of the wave field. Further advancing in time, the wave field can be
seen to start converging to the center (cf. fig. 5.1b), and finally, at t = 16 s the wave field is
entirely converged at the location of the original source (cf. fig. 5.1c). This agrees with the
propagation time calculated previously, since 12+ 3.33+ 0.47 = 16 s. Directly afterwards, an
outward propagating (diverging) wave is observed (cf. fig. 5.1d).

To justify the limitation of only considering σx x , instead of all entries of the stress ten-
sor, and to verify that the time-reversed wave field indeed observes the acoustic properties
mentioned at the end of Section 2.1, we examine the entries of σi j. A general receiver, i.e. a
receiver located in a general position, is considered. As expected, all off-diagonal entries are

1 The 2D wave field output of the entire time-reversal simulation is published as a video: https://youtu.be/
w7k3fZkQ5rY.

https://youtu.be/w7k3fZkQ5rY
https://youtu.be/w7k3fZkQ5rY
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(a) σx x at t = 12 s. (b) σx x at t = 14 s.

(c) σx x at t = 16 s. (d) σx x at t = 18 s.

Figure 5.1: Snapshots ofσx x of the time-reversed wave field in the homogeneous acoustic case at different times,
in the interval [−150,150], where blue and red correspond the most negative and positive values, respectively.
The video displaying the entire simulation is available here1.

close to zero and the diagonal entries are identical (cf. fig. 5.2). To provide a proof beyond
the visual, the RMS error (see eq. 4.4) is calculated. Comparing each pair yields an error of
less than 4 · 10−15, thus confirming the acoustic nature of the wave field. This allows us to
limit our analysis to the σx x entry of the stress tensor without loss of generality.

We shall furthermore limit the following analysis to points with interesting differences.
For the sake of completeness, comprehensive results are listed in App. A.1. In order to gain
an overview over the data, the time evolution of σx x of both the forward and the time-
reversed wave is plotted over Tfwd and Ttr, respectively (fig. 5.3). As expected, one wavefront
is observed in the forward direction. This wavefront arrives later at receivers further away
from the source. The time evolution of the time-reversed wave also agrees with the behavior
seen in the visualization. Two wavefronts are recorded, that are spaced further apart, the
further away the receiver is from the source. Focusing on the time evolution of the receiver
located at (−4.0,−4.0,−9.0), the first wavefront can be identified as the time-reversed signal
from the intial forward propagating wave, while the second wavefront is equal to the original
wave, except for a translation in time (cf. last row in fig. 5.3).

These two wavefronts can be compared to the original wave. To stay concise, the resulting
plots while calculating the envelope and phase misfits of only one receiver, at (2.5,2.5,−2.5)
are shown in fig. 5.4. According to the criteria defined by Kristekova et al. in [KKM09], an
envelope misfit of less than ±0.16 and a phase misfit of less than ±0.15 can be classified as
an excellent fit. The RMS error, including EM and PM are calculated for each receiver (cf.
tab. 5.1, and App. A.1 for the misfits of all 14 receivers). None of the calculated values
are above these thresholds. We observe that the phase misfit is consistently smaller than the
envelope misfit, which is largest around the peaks of the wave (cf. fig. 5.4). We refrain from
analysing the error differences between the receivers here, as this will be discussed in more
detail in the following section. This is justified by treating the homogeneous acoustic case
as a proof of concept. Thereby, we have established that the time-reversal method indeed
reverses the original wave within an acceptable margin of error. This section thus provides a
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Figure 5.2: The six independent entries of σi j as recorded by the receiver located at (2.5,2.5,−2.5), over the
entire simulation time of the time-reversal in the homogeneous acoustic case.

Figure 5.3: σx x is shown as a function of time for both the forward direction (left) and the time-reversed direction
(right) for four different receiver locations. Note the time axis is scaled differently on the left and the right side.
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Figure 5.4: Time-frequency misfits of both the converging and diverging wave field. In order to obtain comparable
wave fields, the time-reversed signal was modified according to the theory described in Section 4.3. The receiver
is located at (2.5, 2.5,−2.5), i.e. on the space diagonal.

Table 5.1: Homogeneous medium (acoustic): RMS, EM , and PM values obtained by comparing the σx x entry
from both the convergent and the divergent wave with the forward simulation. For each receiver, both the error
calculations for the converging and the diverging wave are presented in the first and second row, respectively.

Receiver Position RMS EM PM

(−2.5,0.0,−5.0)
0.08331 0.02110 0.01785
0.08855 0.04896 0.01998

(2.5,2.5,−5.0)
0.12207 0.09395 0.00807
0.10377 0.07081 0.01539

(2.5,2.5,−2.5)
0.15008 0.12281 0.01073
0.12588 0.09689 0.02372

(−4.0,−4.0,−9.0)
0.13796 0.11422 0.01120
0.10620 0.08887 0.01940

basic understanding of the data and the methodology applied to determine the goodness-of-
fit.
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5.1.2 Contact of two Halfspaces

The cube is separated into two halfspaces with distinct materials properties. Since the source
is located at the origin, we offset the medium boundary slightly. That is, for all x < 0.25 the
medium has the same properties as in the homogeneous test case, whereas for all x ≥ 0.25
the following new material parameters are set

ρ2 = 0.25 , λ2 = 2.25 , µ2 = 0. (5.6)

Changing the material parameters affects both the propagation velocity and the wavelength
of the wave. Thus, in the modified medium the wave has a wavelength of

ψp,2 =
vp,2

f
= 4.0m, (5.7)

and propagates with the velocity

vp,2 =

√

√λ

ρ
= 3.0

m
s

. (5.8)

Observing the 3D wave field in the x y-plane, the medium boundary is clearly visible (cf.
fig. 5.52). At time t = 13 s, the propagating wave is only visible for negative x (cf. fig.5.6a).
We know from before that the wave converges at the origin at t = 16 s. With a velocity of
vp,2, the wave needs 2.35 s to travel on the diagonal from (x , y) = (5,5) to the origin. Thus,
at t = 13 s no perturbation is seen in the medium for positive x . Analogously, the wavefront
requires 1.7 s to travel on a straight line from x = 5 to x = 0 in 1.7 s. In fig. 5.6b the wave
field is seen at time t = 14.3 s, where the wavefront is almost entirely visible in the volume.
1.7 s later, at t = 16 s the converged wave field can be observed (cf. fig. 5.6c). Analogously
to the previous case, for times t > 16 s the diverging wave is seen (cf. fig. 5.6d).

Throughout the medium, receivers are placed at meaningful locations. This includes
points located on the medium boundary at x = 0.25, and receivers both closer to the source
and further away.3 As previously explained, in the error calculations both the converging and
the diverging wave of the time evolution of σx x are examined (tab. 5.2). It is apparent that
both EM and PM values are below the threshold of ±0.16. A noticeable observation is the
fact that receivers located in the second medium, i.e. x > 0.25, show considerably better fits
than receivers in medium 1. As can be seen in App. A.2 this is not only true for a selected
number of receivers, but instead is a consistent result throughout all receivers. Resulting
from the distinct material parameters, is a change in wavelength and propagation velocity.
Fink et al. use an array pitch smaller than ψp/2 in [FP01]. With receivers spaced ∆x = 0.5m
apart and wavelengths of ψp,1 = 2.0m and ψp,2 = 4.0m, this criterion is fulfilled. In order to
find an explanation for the difference in the resulting errors, further analyses are conducted.

Before considering the wavelengths in more detail, the mesh is examined to ensure the
reason for an increased error is not due to a limited resolution in the mesh. Simulating the
homogeneous acoustic case with a 500k-element mesh, instead of the previously used mesh
with 100k elements, yields no significant improvement in the misfits (cf. tab. A.2 in App.
A.1). Thus, confirming that the characteristics of the wave itself seem to be crucial. As a first
investigation step, an additional time-reversal experiment with a modified grid of receivers,
spaced ∆x = 1.0m apart, was conducted. This amounts to 602 receivers spaced over all six
faces on a regular grid. It is instructive to examine the 2D visualization of the wave field

2 The 3D wave field output of the entire time-reversal simulation is published as a video: https://youtu.be/
uq6Eetvf4EE.

3Error calculations for all receivers can be reviewed in App. A.2

https://youtu.be/uq6Eetvf4EE
https://youtu.be/uq6Eetvf4EE
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(a) σx x at t = 13 s. (b) σx x at t = 14.3 s.

(c) σx x at t = 16 s. (d) σx x at t = 17 s.

Figure 5.5: Snapshots of σx x of the time-reversed wave field at different times, in the interval [−200,200],
where blue and red correspond the most negative and positive values, respectively. The video displaying the
entire simulation is available here2.

Table 5.2: Contact between two halfspaces (acoustic): RMS, EM , and PM values obtained by comparing the
σx x entry from both the convergent and the divergent wave with the forward simulation. For each receiver, both the
error calculations for the converging and the diverging wave are presented in the first and second row, respectively.

Receiver Position RMS EM PM

(0.25,−2.5,−7.5)
0.13443 0.09686 0.01577
0.10462 0.07874 0.01281

(−2.5,0,−5.0)
0.08924 0.03301 0.01544
0.12246 0.04274 0.03279

(2.5, 0,−2.5)
0.09383 0.03662 0.00827
0.07620 0.04914 0.01819

(−2.5,2.5,−7.5)
0.16287 0.13699 0.01216
0.14695 0.11748 0.02346

(2.5,2.5,−7.5)
0.04501 0.02033 0.00718
0.07015 0.05748 0.00507

(−4.0,4.0,−1.0)
0.14794 0.12472 0.01448
0.12094 0.10085 0.02002

(4.0,4.0,−1.0)
0.05918 0.04588 0.00600
0.05091 0.03803 0.00378
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(a) σx x at t = 13 s. (b) σx x at t = 14.3 s.

(c) σx x at t = 16 s. (d) σx x at t = 17 s.

Figure 5.6: Snapshots ofσx x of the time-reversed wave field at different times, in the interval [−200, 200], where
blue and red correspond the most negative and positive values, respectively. Similar to fig. 5.5 with receivers
spaced ∆x = 1.0 m apart.

first (fig. 5.6). It is immediately obvious that the wave field propagating in medium 1, with
ψp,1 = 1.0m exhibits spurious oscillations. Comparing fig. 5.5 and fig. 5.6, we conclude that
receivers spaced ψp,1/2 = 1.0m apart do not provide a resolution that is accurate enough
to assure small misfits. The calculated errors for the same receivers as above are listed in
tab. 5.3. The envelope misfit for receivers located in negative x-direction have increased as
much as from 0.14, in the simulation with ∆x = 0.5, to 0.48. Thus significantly exceeding
the threshold defined previously. Furthermore, even for receivers in positive x-direction large
differences can be observed between the errors obtained from the converging and diverging
wave. This can be explained by spurious oscillations that are clearly visible in the time
evolution of the time-reversed field (cf. fig. A.1 in App. A.2).

Even though the errors have increased significantly, the time-reversal is still clearly visi-
ble in the 2D wave field visualization. This poses the question of the minimum number of
receivers needed to still create a time-reversed field that converges at the original source.
Section 5.2.3 examines this more closely for the elastic case.

Before dismissing the ψP/2 criterion for the minimal receiver spacing, the manner in
which the wavelengths are obtained is investigated. In previous calculations the wavelength
was calculated using the peak frequency of the Ricker wavelet (cf. sec. 4.2). The Ricker
wavelet, however, unlike basic trigonometric functions, contains multiple frequencies. Its
Fourier transform, given by

F( f ) =
2
p
π

f 2

f 3
p

e
− f 2

f 2
p , (5.9)

where fp is the peak frequency, is plotted in fig. 5.7 for both fp = 0.75Hz and fp = 0.3Hz (cf.
fig 5.7a and fig. 5.7b, respectively). Using a lower frequency creates a sharper peak, thus
resulting in a narrower frequency spectrum.
In order to obtain comparable results, both forward and time-reversal directions are simu-
lated again with the modified frequency of the source function, and different material pa-
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Table 5.3: Contact between two halfspaces (acoustic): 602 receivers, creating a grid of∆x = 1.0 m): RMS, EM ,
and PM values obtained by comparing the σx x entry from both the convergent and the divergent wave with the
forward simulation. For each receiver, both the error calculations for the converging and the diverging wave are
presented in the first and second row, respectively.

Receiver Position RMS EM PM

(0.25,−2.5,−7.5)
0.4966 0.33540 0.08963
0.4212 0.28952 0.08138

(−2.5, 0,−5.0)
0.6658 0.33944 0.08599
0.7038 0.17969 0.15756

(2.5, 0,−5.0)
0.4195 0.14356 0.04757
0.3766 0.15901 0.07436

(−2.5, 2.5,−7.5)
0.6348 0.47934 0.08517
0.5566 0.41472 0.09734

(2.5, 2.5,−7.5)
0.1515 0.06734 0.02495
0.2978 0.20814 0.05061

(−4.0, 4.0,−1.0)
0.6404 0.36139 0.09512
0.4357 0.34879 0.07042

(4.0, 4.0,−1.0)
0.2284 0.17225 0.02015
0.2993 0.15161 0.04506

rameters, as to yield identical wavelengths. Assuming a frequency of fp = 0.3Hz, and the
wavelengths ψp,1 = 2.0m, ψp,2 = 4.0m as given, the medium parameters are easily calcu-
lated. The new propagation velocities v =ψ · f

v̄p,1 =ψp,1 · fp = 0.6
m
s

,

v̄p,2 =ψp,2 · fp = 1.2
m
s

,
(5.10)

yield

ρ̄1 = 1.0 , λ̄1 = 0.36 , µ̄1 = 0,

ρ̄2 = 1.0 , λ̄2 = 1.44 , µ̄2 = 0.
(5.11)

The results from the error calculations for the same receivers as above are listed in tab.
5.4. Comparing the simulations with different peak frequencies of the Ricker wavelet, but
identical wavelength, only minor differences are visible. The error values in tab. 5.2 and
tab. 5.4 do not show a significant difference. This implies that changing the frequency of
the Ricker wavelet, which changes the frequency spectrum of the source function, does not
improve the accuracy significantly. Thus leading to the re-evaluation of the optimal receiver
spacing.

Since a narrower frequency spectrum did not have any significant implications on the
resulting errors, we return to the original source function with the frequency f = 0.75Hz.
Obviously, there are two ways a new bound on the receiver spacing can be found. Either one
varies the receiver spacing, or the wavelength of the propagating waves. When receivers are
spaced ∆x = 0.5m apart, 2402 receivers are necessary on the (10× 10× 10)m cube. Further
decreasing this spacing quickly becomes infeasible. Hence, in the following, the wavelengths
are varied. Fixing the desired wavelength to ψ̃p,1 = 6.0m and ψ̃p,2 = 4.0m we obtain the
propagation velocities ṽp,1 = 4.5ms−1, ṽp,2 = 3.0ms−1, and the new material parameters for
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(a) Frequency spectrum of the Ricker wavelet with a peak fre-
quency of fp = 0.75 Hz.

(b) Frequency spectrum of the Ricker wavelet with a peak fre-
quency of fp = 0.3 Hz.

Figure 5.7: Fourier transform of the Ricker wavelet for two different peak frequencies.

Table 5.4: Contact between two halfspaces (acoustic): Modified medium parameters, accommodating a Ricker
wavelet with f = 0.3 Hz. RMS, EM , and PM values obtained by comparing the σx x entry from both the con-
vergent and the divergent wave with the forward simulation. For each receiver, both the error calculations for the
converging and the diverging wave are presented in the first and second row, respectively.

Receiver Position RMS EM PM

(0.25,−2.5,−7.5)
0.22669 0.08483 0.03639
0.09158 0.05490 0.00748

(−2.5, 0,−5.0)
0.14099 0.03447 0.01563
0.10845 0.02784 0.01628

(2.5, 0,−5.0)
0.08566 0.03927 0.01075
0.05798 0.04428 0.01643

(−2.5,2.5,−7.5)
0.19767 0.12582 0.01399
0.13686 0.10291 0.02046

(2.5, 2.5,−7.5)
0.07105 0.03397 0.00725
0.05763 0.04665 0.00371

(−4.0,4.0,−1.0)
0.16680 0.11734 0.01344
0.11049 0.08847 0.01700

(4.0, 4.0,−1.0)
0.06108 0.04711 0.00409
0.04129 0.03091 0.00280
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Figure 5.8: Time evolution of the time-reversal of σx x at three distinct locations. The better the converging and
diverging wave can be resolved separately, the lower the calculated errors in tab. 5.5 become. Especially for the
receiver located at (−2.5,0,−5.0) the two waves are hardly distinguishable, thus resulting in a higher envelope
misfit.

the two media

ρ̃1 = 1.0 , λ̃1 = 20.25 , µ̃1 = 0,

ρ̃2 = 1.0 , λ̃2 = 9.0 , µ̃2 = 0.
(5.12)

The results obtained through this simulation are summarized in tab. 5.5. With the excep-
tion of the receiver located at (−2.5, 0,−5.0), all envelope misfits are below 0.06, which is
a significant improvement over the initial simulation. In contrast to the homogeneous case,
receivers further away from the source do not behave differently than those closer to the
source. Examining the time-evolution of the signal for the receiver with the highest error
values provides a consistent explanation for this behavior. Fig. 5.8 shows the time-reversed
direction for three different receivers. The wave propagates faster in negative x-direction.
Hence, receivers have to be located further away from the source, if both the converging and
the diverging wave are to be resolved separately. Since that is not the case for the receiver
located at (−2.5,0,−5.0), the errors naturally increase.

In summary, a reasonable accuracy can be achieved when placing receivers on a grid
smaller than an eighth of the wavelength, ψp/8. Increasing the wavelength, or decreasing
the receiver spacing beyond that still decreases the error, but introduces new difficulties,
such as a faster propagation velocity, and thus a larger region where the converging and the
diverging wave cannot be resolved separately.
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Table 5.5: Contact of two halfspaces (acoustic): Modified medium parameters, yielding wavelengths of 4.0 m for
x > 0.25 and 6.0 m for x < 0.25. RMS, EM , and PM values obtained from comparing the σx x entry from both
the convergent and the divergent wave with the forward simulation. For each receiver, both the error calculations
for the converging and the diverging wave are presented in the first and second row, respectively.

Receiver Position RMS EM PM

(0.25,−2.5,−7.5)
0.05662 0.03718 0.01186
0.05596 0.05490 0.00748

(−2.5, 0,−5.0)
0.13197 0.12101 0.06333
0.14884 0.15018 0.07155

(2.5, 0,−5.0)
0.10006 0.05980 0.02796
0.04863 0.04523 0.01375

(−2.5,2.5,−7.5)
0.03969 0.02347 0.00939
0.05329 0.02719 0.01246

(2.5, 2.5,−7.5)
0.04569 0.03242 0.00784
0.04260 0.01953 0.01049

(−4.0,4.0,−1.0)
0.04234 0.02540 0.00978
0.05334 0.03206 0.01238

(4.0, 4.0,−1.0)
0.05809 0.04538 0.00959
0.04914 0.02720 0.01193
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Figure 5.9: An inhomogeneity is introduced in the medium in shape of a box. Its dimensions are
[−3, 3], [2,3], [−8,−2] in x -, y-, z-direction, respectively. The box has a comparatively high density (ρbox = 20,
λbox = 2.25), thus creating a predominantly reflective boundary.

5.1.3 Localized Inhomogeneity

Adapted from fig. 3.1, a localized inhomogeneity in shape of a box is introduced. It is
located halfway between the source and the boundary in y-direction and stretches from
[−3, 3] and [−8,−2] in x- and z-direction, respectively (cf. fig. 5.9). Outside the box, the
same parameters as previously are used

ρ = 0.25 , λ= 2.25 , µ= 0, (5.13)

with a resulting wavelength of 4.0m. The receiver spacing of∆x = 0.5m remains unchanged,
thus fulfilling the newly found ψp/8 bound on the distance between receivers. In order to
observe the behavior when reflections inside the medium occur, the inside of the box is given
a larger density

ρbox = 20.0 , λbox = 2.25 , µbox = 0. (5.14)

The first indication of a successful time-reversal is again obtained by examining the 3D
wave field output of the x y-plane of the σx x component of the stress tensor (cf. fig. 5.104).
At t = 12 s the only visible wave field is around the region of the inhomogeneity, providing
evidence that waves are propagating out of the inhomogeneity long after the main part of the
wave in the forward direction has left the volume. Even with a high density box present in the
medium, the converged wave can be observed at time t = 16 s (cf. 5.16c). As time advances,
the diverging wave can be observed (cf. fig. 5.16d). Contrary to previously studied cases,
waves reflected of the boundary of the box are now visible. This distorts the time evolution of
some receiver points, making it unreasonable to speak of a time-reversal at those points (cf.
fig. 5.11). This is the case for the receiver located at e.g. (0.0, 2.5,−5.0). This observation
is confirmed by the envelope misfits, which for both the converging and the diverging wave,
with 0.69 and 0.47, are above the threshold of ±0.16 (cf. tab. 5.6). The errors of the
converging wave are within acceptable bounds for all other receivers not affected by strong
reflections. The errors, when comparing the diverging wave field, are consistently larger (cf.
tab. A.4 App. A.3). This can be attributed to the fact that some of the wave gets trapped

4 The 2D wave field output of the entire time-reversal simulation is published as a video: https://youtu.be/
A16TudZXrYs.

https://youtu.be/A16TudZXrYs
https://youtu.be/A16TudZXrYs
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(a) σx x at t = 12 s. (b) σx x at t = 15 s.

(c) σx x at t = 16 s. (d) σx x at t = 17.5 s.

Figure 5.10: Snapshots of σx x of the time-reversed wavefield at different times, in the interval [−100, 100],
where blue and red correspond the most negative and positive values, respectively. The video displaying the
entire simulation is available here4

inside the box. In the forward direction, the receiver inside the box is still recording an
oscillating wave field when Tfwd is reached, thus losing information even before the time-
reversal is begun. Since the converging wave consistently shows EM and PM values below
the thresholds of ±0.16 and ±0.15, respectively, we conclude that even with a predominantly
reflective boundary a successful time-reversal can be achieved.

Table 5.6: Local inhomogeneity (acoustic): RMS, EM , and PM values obtained from comparing the σx x entry
from both the convergent and the divergent wave with the forward simulation. For each receiver, both the error
calculations for the converging and the diverging wave are presented in the first and second row, respectively.

Receiver Position RMS EM PM

(0.0, 2.5,−5.0)
0.80980 0.66990 0.39425
0.72297 0.47226 0.14878

(0.0, 1.0,−5.0)
0.72855 0.15473 0.11936
0.45741 0.26074 0.01702

(−2.5,4.0,−3.0)
0.21537 0.12267 0.04252
0.11356 0.06428 0.01873

(−4.0,−4.0,−1.0)
0.10331 0.05669 0.01517
0.26060 0.22489 0.05139
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Figure 5.11: From top to bottom the time-evolution of σx x of receivers located inside the inhomogeneity, between
the source and the inhomogeneity, between the inhomogeneity and the boundary, and further away from it, is
plotted for both the forward and time-reversed direction.
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5.2 Elastic Media

The analysis of acoustic media provided a proof of concept that a time-reversal in SeisSol is
achievable with a reasonable accuracy, when spacing receivers less than ψp/8 apart. In the
following, elastic media, i.e. µ 6= 0, will be examined. The main difference between acoustic
and elastic media is the presence of both P- (primary) and S- (secondary) waves. In addition
to analysing the accuracy of the time-reversal, the minimum number of receivers required in
order to achieve a visible time-reversal in the 3D visualization is determined.

5.2.1 Homogeneous Volume

A homogeneous volume serves as the basis for the first analysis. The medium is characterized
by

ρ = 1.0 , λ= 5.0 , µ= 2.0. (5.15)

Following the theory presented in Section 2.1, we obtain the velocities

vp =

√

√λ+ 2µ
ρ

= 3.0
m
s

vs =
√

√µ

ρ
= 1.41

m
s

.

(5.16)

The corresponding wavelengths are calculated with the peak frequency of the source, fp =
0.75Hz

ψp = 4.0m,

ψs = 1.89m.
(5.17)

Finally, as discussed in Section 4.2, a double couple source with the moment tensor

Mi j =





0 1 0
1 0 0
0 0 0



 , (5.18)

is used. This creates a strike-slip fault, with strike and dip directions along the y- and x-axis,
respectively. As in the acoustic case, the P-wave is a longitudinal wave, whereas now, also the
S-wave, a shear wave, is observed. Before assessing the error of the time-reversal, the basic
properties of the elastic medium are verified. This serves as a confirmation that the following
time-reversal is indeed achieved in a medium exhibiting these properties, rather than in a
degenerate case.

In order to examine the character of the propagating waves, it is instructive to examine
the 3D visualization of the velocity field. Contrary to the acoustic case, a 3-dimensional
visualization is necessary to showcase the characteristics of the wave propagation along the
principle axes. The velocity in x-direction, u, is examined first (cf. 5.12). The wavefront
travelling outwards the fastest clearly moves in x-direction (cf. fig. 5.12a). As given by eq.
5.16 the P-wave moves with a velocity of 3.0 m

s . The peak of the source is at time tmax = 4.0 s;
at t = 5.0 s the wavefront has travelled slightly more than half of the distance between origin
and the surface boundary (cf. fig. 5.12a middle). This is in accordance with the 3.0m the
P-wave is expected to travel in 1 s.
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(a) u at t = 4.5 s, t = 5.0 s, t = 5.5 s, in the interval [−10, 10]

(b) u at t = 6.0 s, t = 7.5 s, in the interval [−50,50]

Figure 5.12: The visualization of u: In the upper row both P- and S-wave are observed. The P-wave has a smaller
amplitude, therefore, the visualized interval is chosen as [−10,10]. This saturates the display of the S-wave; in
the lower row the interval is adjusted to [−50,50], to better visualize the S-wave

The S-wave can be identified as the second visible wave field. Fig. 5.12a already visualizes
a wave travelling in y-direction. Since the amplitude of the S-wave is greater than that of
the P-wave, the interval fig. 5.12b is adjusted to visualize the S-wave better. Analogously
to before, the propagation velocity is examined. To travel from the origin to the surface
boundary along the y-axis a wave with vs = 1.41m

s (see eq. 5.16) requires 3.54 s. At 7.5 s the
peak of the second wave is seen to have reached the edge of the volume. Additionally, one
observes the y-direction as the direction u is propagating in, thus confirming the presence
of a shear wave. That is, both the propagation velocity and the shear wave character of the
x-component of the S-wave are confirmed. A similar argument can be made for the velocities
v and w. Snapshots of v at identical times can be found in fig. 5.13, where the xz-plane
through the origin was added. The primary wave travels in y-direction (cf. fig. 5.13a),
whereas the secondary wave travels in x-direction (cf. fig. 5.13b). Again, confirming that
the primary wave is a longitudinal wave, while the secondary wave is a shear wave.

Additionally, the strike-slip nature of the source, i.e. the only non-zero entries of the
moment tensor are Mx y = My x , is confirmed. Both the x and the y component of the shear
wave propagate in the x y-plane, and respectively in the yz- and xz-plane.

Figures 5.12 and 5.13 show the symmetries of the wave propagation in an informative
manner, which allows us to focus on the error calculations of receivers in one symmetry
quadrant. The main part of the error analysis concerns itself with the σx x and σx y entries.
The choice for σx x provides a straight-forward connection to the acoustic case, while σx y is
motivated by the design of the moment tensor. The other entries of σi j are considered when
their analysis provides deeper insights.

The time-reversal analysis is begun by examining the time revolution of both σx x and
σx y for receivers located in one of the symmetry quadrants of the cube (cf. fig. 5.14) 5. The
receivers on the diagonal, e.g. at (4.0,4.0,−1.0), show both the S- and the P-wave resolved
separately in the σx x component. Considering the diverging wave an exact calculation using
the propagation velocities can be made. The receiver is located

p
42 + 42 + 42 = 6.93m away

from the surface. As established previously, the peak of the wavefront converges at the origin

5 The 3D wave field output of σx y of the entire time-reversal simulation is published as a video: https:
//youtu.be/G5QZm7ZvAPk.

https://youtu.be/G5QZm7ZvAPk
https://youtu.be/G5QZm7ZvAPk
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(a) v at t = 4.5 s, t = 5.0 s, t = 5.5 s, in the interval [−10,10]

(b) v at t = 6.0 s, t = 7.5 s, in the interval [−50, 50]

Figure 5.13: The visualization of v: in the upper row in the interval [−10, 10], optimized for showing the P-wave;
in the lower row in the interval [−50,50] for better visualization of the S-wave

at t = 16.0 s. Using the entries of the recorded receiver file, the sign change between the two
peaks of both S- and P-wave can be determined with a precision of ∆t = 0.002 s,

tp = 18.319s,

ts = 20.855s.
(5.19)

Adding the time it takes for P- and S-waves to arrive at the receiver location to tconv = 16.0 s
yields the expected values

tp,exp = 18.309s,

ts,exp = 20.810s.
(5.20)

Thus indicating that P- and S-wave indeed are resolved separately.
Before the error calculations can be performed, the time evolution of the receiver files

has to be modified, such that forward and time-reversed direction are comparable (cf. fig.
5.15). The forward simulation is shown in fig. 5.15a and the corresponding time-reversal in
fig. 5.15b. Both the convergent and the divergent wave are clearly visible. Both waves are
modified, as detailed in sec. 4.3. The converging wave (red) is time-reversed, i.e. essentially
played backwards in time, from the moment the wave is converged until the start of the
simulation (cf. fig 5.15c). The diverging wave (blue) is simply translated in time, such that
tconv coincides with tmax (cf. fig. 5.15d). This confirms the validity of the theoretical overview
given in fig. 4.3.

The quantitative analysis is performed analogously to the acoustic case. The RMS error
and both envelope and phase misfits are calculated. The results are presented in tabular
form (cf. tab. 5.7). Especially noteworthy is the receiver on the diagonal far away from the
source at (4.0,−4.0,−1.0). Both EM and PM for all entries of the stress tensor are below the
threshold for an excellent match, as defined by Kristekova et al. In fact, most of the envelope
misfits are blow 0.1.

To summarize, this section has indicated that the studied medium indeed exhibits both P-
and S-waves that can be resolved separately. Furthermore, it was established that the entire
wave field is accurately time-reversed.
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Figure 5.14: Time evolution of σx x (left) and σx y (right) of receivers located in one of the symmetry quadrants
of the cube.
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(a) σx x as recorded by the receiver located at
(4.0,−4.0,−1.0) in the forward direction.

(b) σx x as recorded by the receiver located at
(4.0,−4.0,−1.0) in the time-reversed direction.
The red part marks the converging and the blue
part the diverging wave.

(c) The convergent wave, i.e. the first wave-
field in fig. 5.15b, is time-reversed in the interval
[0, tconv] = [0,16], which corresponds to the in-
terval [4, 20] in the forward direction.

(d) The divergent wave, i.e. the second wavefield
in fig. 5.15b, is translated in time, such that it co-
incides with the original forward propagating wave-
field, i.e. t = 16 from fig. 5.15b is translated to
t = 4 .

Figure 5.15: The theoretically presented overview (cf. fig. 4.3), is now shown for values obtained through the
simulation. The time evolution of σx x as recorded by the receiver located at (4.0,−4.0,−1.0) is plotted. In the
second row, the forward (in black) and time-reversed direction (in grey) are drawn in the same plot.
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Table 5.7: Homogeneous medium (elastic): RMS, EM , and PM values obtained from comparing both the con-
vergent and the divergent wave with the forward simulation. Dark grey cells correspond to the best value obtained
in each column, while light grey cells mark the worst.

Homogeneous Elastic Medium

Receiver Position Wavefront Qp RMS EM PM

(2.5,0.0,−5.0)
convergent

σx y
0.05526 0.02553 0.01208

divergent 0.05147 0.03068 0.01071

(0,2.5,−5.0)
convergent

σx y
0.05557 0.02571 0.01212

divergent 0.05072 0.03170 0.01002

(2.5,2.5,−5.0)

convergent
σx x

0.08375 0.02173 0.00618
divergent 0.05584 0.01853 0.00425

convergent
σx y

0.06259 0.03851 0.00560
divergent 0.06451 0.03874 0.01075

(2.5,2.5,−2.5)

convergent
σx x

0.12810 0.07167 0.00708
divergent 0.10959 0.05761 0.01056

convergent
σx y

0.14405 0.07580 0.00837
divergent 0.12905 0.06046 0.01649

(4.0,4.0,−1.0)

convergent
σx x

0.16096 0.07026 0.00694
divergent 0.13626 0.05243 0.01251

convergent
σx y

0.17210 0.09648 0.00738
divergent 0.14721 0.07713 0.01532

(4.0,−4.0,−1.0)

convergent
σx x

0.16276 0.06891 0.00699
divergent 0.13910 0.05643 0.01278

convergent
σy y

0.15899 0.06526 0.00602
divergent 0.12241 0.04887 0.00928

convergent
σzz

0.17735 0.15095 0.01882
divergent 0.12931 0.11192 0.01442

convergent
σx y

0.17065 0.09650 0.00740
divergent 0.14539 0.08088 0.01321

convergent
σyz

0.16897 0.04334 0.00823
divergent 0.13828 0.03741 0.00570

convergent
σxz

0.15846 0.03916 0.00568
divergent 0.11337 0.02943 0.00497
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(a) σx y at t = 12 s. (b) σx y at t = 15 s.

(c) σx y at t = 16 s. (d) σx y at t = 17.5 s.

Figure 5.16: Snapshots of σx y of the time-reversed wavefield at different times in an inhomogeneous medium, in
the interval [−100, 100], where blue and red correspond the most negative and positive values, respectively.6

5.2.2 Localized Inhomogeneity

Similar to the acoustic case, the time-reversal in a medium with a localized inhomogeneity
of high density is studied. For a summary of the error analysis of the contact between two
halfspaces in the elastic case, the interested reader is referred to App. B.1.

Identical to the acoustic case, the inhomogeneity is stretches from [−3,3], [2, 3], [−8,−2]
in x-, y-, z-direction, respectively. Its properties are given by

ρbox = 20.0 , λbox = 5.0 , µbox = 2.0. (5.21)

The 3D visualization of the time-reversal (σx y) is shown in fig. 5.166. As expected, the
wavefront travels towards the origin for t < 16 s, and diverges for t > 16 s. At t = 16 s
the wave is focused around the origin. Since the effects of a reflective boundary on the
wave propagation were already discussed in detail in Section 5.1.3, the first two receivers in
tab. 5.8 are not considered in more detail here. To aid the analysis of receivers (4,4,−1) and
(4,−4,−1), the time-frequency misfit plots for σx x of both the converging and diverging wave
are shown in fig. 5.17. The amplitude difference between the two receivers is immediately
obvious. The inhomogeneity is located between the source and the receiver at (4, 4,−1). As
the box is predominantly reflective, only a damped wave reaches the receiver. This explains
the large discrepancies in the error calculations of the two receivers. Furthermore, for the
receiver at (4,−4,−1) the convergent wave produces consistently smaller errors than the
divergent wave. In fact, all misfit calculations comparing the convergent wave with the
forward direction are below the ±0.16 threshold. Fig. 5.17c and fig. 5.17d show the TF
misfit plots of both the converging and the diverging wave. The peak of the diverging wave
has a visibly lower amplitude than that of the forward direction. This is explained in the
same way, as in the acoustic case. As time passes, energy of the wave gets trapped inside the
inhomogeneity.

6 The 3D wave field output of σx y of the entire time-reversal simulation is published as a video: https:
//youtu.be/c-5geHHmugo.

https://youtu.be/c-5geHHmugo
https://youtu.be/c-5geHHmugo
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Table 5.8: Localized inhomogeneity (elastic): RMS, EM , and PM values obtained from comparing both the
convergent and the divergent wave with the forward simulation. Dark grey cells correspond to the best value
obtained in each column, while light grey cells mark the highest error.

Localized Inhomogeneity (Elastic Medium)

Receiver Position Wavefront Qp RMS EM PM

(0.0,2.5,−5.0)
convergent

σx y
0.59593 0.39150 0.13263

divergent 0.47215 0.24503 0.10000

(0.0,4.0,−5.0)
convergent

σx y
0.60846 0.35145 0.10305

divergent 0.58290 0.32777 0.10829

(2.5,1.0,−3.0)

convergent
σx x

0.36904 0.07824 0.02485
divergent 0.29216 0.05211 0.01979

convergent
σx y

0.25944 0.13769 0.02000
divergent 0.19892 0.08604 0.01730

(2.5,0.0,−5.0)

convergent
σx x

0.39796 0.05066 0.02486
divergent 0.29728 0.04030 0.01292

convergent
σx y

0.11545 0.05359 0.01666
divergent 0.11700 0.06514 0.02068

(4.0,4.0,−1.0)

convergent
σx x

0.25780 0.17670 0.04179
divergent 0.32477 0.18606 0.05845

convergent
σy y

0.28918 0.10860 0.04215
divergent 0.27175 0.11011 0.03683

convergent
σzz

0.32599 0.22193 0.06617
divergent 0.30423 0.19442 0.05933

convergent
σx y

0.22043 0.10206 0.02241
divergent 0.24804 0.11894 0.02867

convergent
σyz

0.21428 0.08848 0.02123
divergent 0.20402 0.07592 0.02659

convergent
σxz

0.34058 0.12328 0.02786
divergent 0.25567 0.08422 0.01978

(4.0,−4.0,−1.0)

convergent
σx x

0.18075 0.08948 0.01525
divergent 0.28508 0.16384 0.02296

convergent
σy y

0.17945 0.07704 0.02071
divergent 0.29775 0.09461 0.04242

convergent
σzz

0.18282 0.12640 0.02610
divergent 0.27298 0.24562 0.03284

convergent
σx y

0.19379 0.11117 0.01240
divergent 0.29580 0.17132 0.03949

convergent
σyz

0.19122 0.05064 0.01127
divergent 0.26140 0.07728 0.02115

convergent
σxz

0.18247 0.03303 0.00632
divergent 0.39546 0.07837 0.03230
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(a) TF misfit of σx x recorded at position (4, 4,−1). Forward
direction compared with the converging wave from the time-
reversal.
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(b) TF misfit of σx x recorded at position (4, 4,−1). Forward
direction compared with the diverging wave from the time-
reversal.
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(c) TF misfit of σx x recorded at position (4,−4,−1). For-
ward direction compared with the converging wave from the
time-reversal.
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(d) TF misfit of σx x recorded at position (4,−4,−1). For-
ward direction compared with the diverging wave from the
time-reversal.

Figure 5.17: Time-frequency plots of σx x recorded at positions (4,4,−1) and (4,−4,−1), respectively. For each
case both the converging and the diverging waves from the time-reversal are compared to the initial simulation.

Thus, comparing the convergent wave with the forward propagation and limiting the
statements to receivers that are not blocked by the inhomogeneity, a time-reversal is achieved
within acceptable error margins. We have thus shown the validity of the implemented time-
reversal method in elastic media, even when inhomogeneities are present in the medium.
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5.2.3 Varying Receiver Count

The final analysis conducted using the (10 × 10 × 10)m cube returns to the homogeneous
elastic medium. The goal of this experiment is to determine how decreasing the number of
receivers used in the simulation affects the time-reversed field. When pinpointing the loca-
tion of the source, the misfit between time-reversed and original wave becomes secondary.
Especially, since the error calculations are specific to a point in the volume. The 3D visu-
alization was previously used to gain an overview over the behavior of the time-reversal.
It can now be employed to determine, if a limited number of receivers still creates a sat-
isfactory time-reversal. Since the position of the source is of interest, it is instructional to
consider sources at different positions. Therefore, the following simulations are both run on
the original source at the origin of the cube, and the same source time function translated in
x-direction by x = 2. In this way, the differences between two possible source locations can
be examined.

With knowledge of the source time function and the end time of the forward simulation
Tfwd, the convergence time can be determined. Since the same source time function as pre-
viously is applied, the convergence time is tconv = 16 s. Thus, the 3D wave field is examined
at time t = 16 s (cf. fig. 5.18). Fig. 5.18a serves as the reference case, as it shows the
converged wave using 2402 receivers in total, i.e. a receiver spacing of ∆x = 0.5m, which
is the same resolution employed throughout the entire analysis above. From fig. 5.18b to
fig. 5.18e the receiver count decreases. When spacing the receivers 2.5m apart, a converged
wave can still be observed. Below 98 receivers it is hardly justifiable to speak of a converged
wave, as the amplitude almost stretches across the entire principle coordinate directions.
Even though the wave field itself is not concentrated at a point, the location of the source
can be inferred. To showcase this better, fig. 5.19 shows σx y on both the x y- and xz-plane.
With the knowledge of the moment tensor of the source, in this case Mx y = My x are the
only non-zero components, the principle plane can be determined. Using the plots on the
left in fig. 5.19, the source location is visible on a 2D plane. To fix the source position in the
3-dimensional volume, the wave field has to be observed in different directions. It is given
that in an experimental setup, where the planes through the source location are not known,
more effort is required to produce the visualization shown in fig. 5.19. Since this section
serves to showcase the capabilities of the time-reversal method using only a limited number
of receivers, it is instructional to show the result on the planes intersecting with the source
location. Iteratively inspecting different locations of the same plane leads to the same result.
Thus, it is possible to determine the location of the source using the time-reversal method
with only one receiver at the middle of each face of the cube. How accurately the source
position can be determined remains to be studied in future work.
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(a) Receivers spaced ∆x = 0.5 m apart (2402 receivers)

(b) Receivers spaced ∆x = 2.0 m apart (152 receivers)

(c) Receivers spaced ∆x = 2.5 m apart (98 receivers)

(d) Receivers spaced ∆x = 5.0 m apart (26 receivers)

(e) Receivers located in each of the 8 corners and in the middle of each face (14 receivers)

Figure 5.18: The 3D visualization of σx y at the convergence time (t = 16 s) with decreasing receiver count. Left :
Source located at the origin. Right : Source located at (2,0,−5).
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(a) σx y visualized in the x y-plane (left) and the xz-plane (right) at t = 16 s, using data from 6
receivers. The source is located at the origin.

(b) σx y visualized in the x y-plane (left) and the xz-plane (right) at t = 16 s, using data from 6
receivers. The source is located at (2,0,−5).

Figure 5.19: Both x y- and xz-plane visualized at tconv for sources located at different positions.
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5.3 Test Case: WP2-LOH1

The preceding analysis was conducted in a mock environment inside a (10×10×10)m cube.
This test case serves to showcase the capabilities of the time-reversal implemented in this
thesis outside the simple test environment. For that purpose, the 3D test problem WP2-
LOH1 (Wave Propagation 2 - Layer Over Halfspace) is studied, since LOH1 also served as an
application example in [DK06]. As the name states, a layer (medium 1) of 1km thickness is
situated above the halfspace (medium 2). The entire volume extends from [−26000,32000]m
in x- and in y-direction, and from [0,34000]m in z-direction (cf. fig. 5.20). Note, that
the z-axis in all figures in this section points upwards, instead of following convention and
pointing downwards. This choice is solely motivated by visualization purposes. The material
parameters of both media are summarized in tab. 5.9.

vp (ms−1) vs (ms−1) ρ (kg m−3) λ (GPa) µ (GPa)
Medium 1 4000 2000 2600 20.8 10.4
Medium 2 6000 3464 2700 32.4 32.4

Table 5.9: Material parameters for the LOH1 test case

The source is a point dislocation with only two non-zero entries of the seismic moment
tensor Mx y = My x = M0 = 1018 Nm, located at (xs, ys, zs) = (0,0, 2000)m. The source time
function is given by

ST (t) = M0
t

T2
exp

�

−
t
T

�

, (5.22)

where T is a smoothness parameter, here chosen as T = 0.1. Since the source does not have
a dominant frequency, we instead define the maximum frequency 5Hz, as given in [Her10].

Figure 5.20: Sketch of one quadrant of the LOH1 geometry: A layer of 1 km (medium 1) is above the halfspace
(medium 2), and the source is located at (xs, ys, zs) = (0,0, 2000)m. Note that the z-axis points upwards, in
order to keep the same orientation as in fig. 5.21.

The wave field is recorded in the forward direction up to a simulation time of 27 s with a
grid of receivers spaced roughly 4.5km apart on each of the faces of the cuboid, resulting in a
total of 552 receivers, which record the outgoing wave field. Subsequently, the time-reversal
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(a) σxz at t = 11. (b) σxz at t = 18.

(c) σxz at t = 27. (d) σxz at t = 31.

Figure 5.21: Snapshots of the time-reversed wavefield at different times, we display the quantityσx y in the interval
[−2.0 · 106, 2.0 · 106], where blue and red correspond the most negative and positive values, respectively. The
coordinate system is identical to the one presented in fig. 5.20, with the z-axis pointing upwards. We observe the
wavefield first converging to the source position, followed by a diverging wave.

simulation is run and the wave field recorded (cf. fig. 5.21)7. Note that the resolution of
receivers at the surface is far below the minimum discussed previously. The wavelength of
the P-Wave can be obtained using vp (cf. tab. 5.9)

ψp,min =
cp,1

f
=

4000ms−1

5Hz
= 800m. (5.23)

Even if receivers would only be spaced ψp,min/4 = 200m apart, it would require approxi-
mately 300.000 receivers at the surface. Albeit using significantly fewer receivers, the results
obtained display the expected behavior. In fact, even though the receiver spacing is larger
than the wavelength, ∆x ≈ 5.6 ·ψp,min, the source position inside the volume can still be
determined (cf. fig. 5.21c).

The goal of this test case was to present the results from the time-reversal implementation
in a more realistic setting. Although our analysis is merely qualitatively, we were able to
pinpoint the region of the source through the time-reversed wave field. Developing methods
that allow an accurate time-reversal with a limited number of receivers, e.g. on only the
surface at z = 0, remains a question for future work.

7The 3D wave field output of the entire time-reversal simulation is published as a video: https://youtu.be/
J1bgmMLQQdY.

https://youtu.be/J1bgmMLQQdY
https://youtu.be/J1bgmMLQQdY




Chapter 6

Conclusions & Outlook

In this thesis, we implemented and analysed the time-reversal of seismic waves in SeisSol.
The implementation is independent of the medium and the source. Therefore, in addition
to performing experiments in a (10 × 10 × 10)m volume, the 3D benchmark test scenario,
WP2-LOH1 was studied. A quantitative analysis, examining the 3D visualization of the time-
reversed wave confirms that the wave field indeed converges to the source position. Thereby
delivering proof of a successful time-reversal in realistic scenarios.

The misfit analysis of the time-reversal was initially conducted in an acoustic medium.
Visualizing the wavefront provides evidence that the time-reversal behaves as expected. Ini-
tially, a backward propagating wave is observed, which converges to the location of the
original source. Once converged, the wave immediately diverges and propagates towards
the surface of the volume. Using receivers, the wave field was recorded at interesting points
inside the volume. The recorded data was then utilized to perform a misfit analysis between
the forward simulation and the time-reversal. Analysing the homogeneous acoustic case
with receivers spaced ψp/4 apart, where ψp is the wavelength of the P-wave, yields enve-
lope and phase misfits that are all classified as excellent (ranges adopted from Kristekova et
al. [KKM09]). Subsequently, the contact between two halfspaces was studied. Two distinct
materials yield different propagation velocities and, more importantly, different wavelengths.
The misfits for waves with a greater wavelength were consistently better than those of smaller
wavelengths. After analysing multiple different scenarios, we came to the conclusion that a
consistently low envelope and phase misfit can be achieved when spacing receivers ψp/8
apart. This was also confirmed in homogeneous elastic media, where the calculated misfits
mostly were below 0.1.

Furthermore, the behavior of the time-reversal was studied in a medium containing a
predominantly reflective inhomogeneity in form of a box. In this case, all receiver locations
cannot be regarded as equally important, since the propagation of the wave is obstructed
by the inhomogeneity. The overall visualization provides also in this case the indication for
a successful time-reversal. Considering only receiver locations, where both the converging
and the diverging wave can be resolved separately, the misfit calculations stay smaller than
the above mentioned bound of ±0.16, thus confirming the observation from the visualiza-
tion. Hence, further establishing the success of the time-reversal of seismic waves in more
complicated scenarios.

Finally, the question of how many receivers are actually necessary to produce a visible
time-reversed wave was pursued. Decreasingly fewer receivers were placed on the faces of
the cube and the 3D visualization of the wave-propagation was observed. Even with a total
of 98 receivers, i.e. less than 1/20 of the receivers used in the misfit analysis, is a converging
wave observable. This corresponds to a receiver placed every ψP/1.6. In the case of a lower
receiver count, it would not be adequate to speak of a converging wave. Nonetheless, with
the knowledge of the seismic moment tensor of the source and placing only one receiver on
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each face of the cube, the location of the original source can still be inferred. Thus promising
good prospects for future work, to create more accurate time-reversals using fewer receivers
at the surface.

To summarize, in this thesis we have achieved the successful time-reversal of seismic
waves in SeisSol, and confirmed the validity of the time-reversal approach of Fink et al.
([FP01]) beyond acoustics. Furthermore, a criterion for the receiver spacing yielding consis-
tently small misfits was found, i.e. ∆x ≤ψP/8. In addition to the error analysis, reducing the
receivers taken into account in the simulation provided the possibility to determine the loca-
tion of the source with significantly fewer receivers. Finally, the 3D test problem WP2-LOH1
was examined in order to establish the validity of the implemented time-reversal approach
beyond the (10× 10× 10)m test volume.

Future research is needed to prepare the time-reversal method for real world testing,
as seismographs on land are commonly placed on the surface of the Earth. Studying the
behavior of the time-reversal when receivers are only located on one face is an instrumental
step in this direction. Moreover, the misfit analysis studied in a test volume, can be extended
to include more realistic scenarios as well.
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Appendix A

Error Tables (Acoustic Media)

The appendices contain additional information on the data and on the error calculations in
particular. The data presented here is understood to be an extension of Chapter 5.

A.1 Homogeneous

Section 5.1.1 presents the most relevant results of the simulation in the homogeneous acous-
tic medium. The errors obtained from all 14 receivers are listed in tab. A.1, using a receiver
spacing of ∆x = 1.0m with a 100k-element mesh. Additionally, a simulation with the same
parameters, but with a mesh consisting of 500k elements was performed. Its result, tab.
A.2 in particular, is referred to in the analysis of the contact between two halfspaces (sec.
5.1.2). Comparing these two tables, we conclude that there is no significant improvement
when refining the mesh.
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Table A.1: Homogeneous medium (acoustic): RMS, EM , and PM values for 13 receivers placed throughout the
volume are calculated. Both the convergent and the divergent wave is comapred with the forward simulation. Dark
grey cells correspond to the best value obtained in each column, while light grey cells mark the worst.

Homogeneous Acoustic Medium

Receiver Position Wavefront Qp RMS EM PM

(−2.5,0.0,−5.0)
convergent

σx x
0.08331 0.02110 0.01785

divergent 0.08855 0.04896 0.01998

(2.5,0.0,−5.0)
convergent

σx x
0.08335 0.02109 0.01788

divergent 0.08888 0.04909 0.02005

(0,2.5,−5.0)
convergent

σx x
0.08334 0.02104 0.01788

divergent 0.08608 0.04624 0.01973

(2.5,2.5,−5.0)
convergent

σx x
0.12207 0.09395 0.00807

divergent 0.10377 0.07081 0.01539

(2.5,2.5,−2.5)
convergent

σx x
0.15008 0.12281 0.01073

divergent 0.12588 0.09689 0.02372

(4.0,4.0,−1.0)
convergent

σx x
0.13767 0.11405 0.01117

divergent 0.10356 0.08580 0.01925

(4.0,4.0,−9.0)
convergent

σx x
0.13781 0.11433 0.01091

divergent 0.10451 0.08595 0.01954

(−4.0,4.0,−1.0)
convergent

σx x
0.13783 0.11433 0.01092

divergent 0.10452 0.08598 0.01954

(−4.0,4.0,−9.0)
convergent

σx x
0.13722 0.11368 0.01084

divergent 0.10160 0.08490 0.01836

(4.0,−4.0,−1.0)
convergent

σx x
0.13766 0.11416 0.01088

divergent 0.10628 0.08980 0.01869

(4.0,−4.0,−9.0)
convergent

σx x
0.13803 0.11449 0.01093

divergent 0.10685 0.08877 0.01964

(−4.0,−4.0,−1.0)
convergent

σx x
0.13805 0.11449 0.01094

divergent 0.10685 0.08879 0.01964

(−4.0,−4.0,−9.0)
convergent

σx x
0.13796 0.11422 0.01120

divergent 0.10620 0.08887 0.01940
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Table A.2: Homogeneous medium (acoustic, 500k-elements mesh): RMS, EM , and PM values obtained by
comparing both the convergent and the divergent wave with the forward simulation. Dark grey cells correspond to
the best value obtained in each column, while light grey cells mark the worst. An identical setup as in tab. A.1 is
used, except for a refined mesh.

Homogeneous Acoustic Medium (500k-elements mesh)

Receiver Position Wavefront Qp RMS EM PM

(−2.5, 0.0,−5.0)
convergent

σx x
0.08363 0.02170 0.01787

divergent 0.08424 0.06646 0.01039

(2.5,0.0,−5.0)
convergent

σx x
0.08328 0.02201 0.01766

divergent 0.06315 0.03448 0.01056

(0.0,2.5,−5.0)
convergent

σx x
0.08367 0.02200 0.01766

divergent 0.06310 0.03487 0.01043

(2.5,2.5,−5.0)
convergent

σx x
0.12094 0.09176 0.00799

divergent 0.13919 0.04362 0.03692

(2.5,2.5,−2.5)
convergent

σx x
0.15198 0.11975 0.01058

divergent 0.15904 0.06229 0.04467

(4.0,4.0,−1.0)
convergent

σx x
0.14536 0.11120 0.01080

divergent 0.14004 0.05695 0.03839

(4.0,4.0,−9.0)
convergent

σx x
0.13708 0.11385 0.01110

divergent 0.14977 0.07791 0.04063

(−4.0, 4.0,−1.0)
convergent

σx x
0.13708 0.11385 0.01110

divergent 0.14978 0.07791 0.04063

(−4.0, 4.0,−9.0)
convergent

σx x
0.13843 0.11501 0.01121

divergent 0.16003 0.09845 0.04130

(4.0,−4.0,−1.0)
convergent

σx x
0.13697 0.11373 0.01108

divergent 0.14950 0.07695 0.04055

(4.0,−4.0,−9.0)
convergent

σx x
0.13846 0.11502 0.01121

divergent 0.15987 0.09760 0.04133

(−4.0,−4.0,−1.0)
convergent

σx x
0.13847 0.11502 0.01121

divergent 0.15987 0.09760 0.04133

(−4.0,−4.0,−9.0)
convergent

σx x
0.13780 0.11453 0.01114

divergent 0.16749 0.11612 0.04034
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Table A.3: Contact of two Halfspaces (acoustic): RMS, EM , and PM values obtained by comparing both the
convergent and the divergent wave with the forward simulation. Dark grey cells correspond to the best value
obtained in each column, while light grey cells mark the highest error.

Contact of two Halfspaces (Acoustic Medium)

Receiver Position Wavefront Qp RMS EM PM

(0.25, 2.5,−2.5)
convergent

σx x
0.13387 0.09620 0.01580

divergent 0.10186 0.07639 0.01253

(0.25, 2.5,−5.0)
convergent

σx x
0.15020 0.07236 0.00879

divergent 0.09865 0.03274 0.01297

(0.25,−2.5,−7.5)
convergent

σx x
0.13443 0.09686 0.01577

divergent 0.10462 0.07874 0.01281

(−2.5,0.0,−5.0)
convergent

σx x
0.08924 0.03301 0.01544

divergent 0.12246 0.04274 0.03279

(2.5,0.0,−5.0)
convergent

σx x
0.09383 0.03662 0.00827

divergent 0.07620 0.04914 0.01819

(−2.5,2.5,−7.5)
convergent

σx x
0.16287 0.13699 0.01216

divergent 0.14695 0.11748 0.02346

(2.5,2.5,−7.5)
convergent

σx x
0.04501 0.02033 0.00718

divergent 0.07015 0.05748 0.00507

(4.0,4.0,−1.0)
convergent

σx x
0.05918 0.04588 0.00600

divergent 0.05091 0.03803 0.00378

(−4.0,4.0,−1.0)
convergent

σx x
0.14794 0.12472 0.01448

divergent 0.12094 0.10085 0.02002

(4.0,−4.0,−1.0)
convergent

σx x
0.05923 0.04588 0.00600

divergent 0.05324 0.04055 0.00394

(−4.0,−4.0,−1.0)
convergent

σx x
0.14772 0.12459 0.01444

divergent 0.12227 0.10355 0.01956

A.2 Contact of two Halfspaces

In each halfspace, waves propagate with different wavelengths. In the first simulation, waves
with wavelengthsψp,1 = 2.0m in negative x-direction andψp,2 = 4.0m in positive x-direction
are observed. Receivers placed in medium 2 consistently show smaller misfits than those
positioned in medium 1 (tab. A.3), obtained with ∆x = 0.5m).

When running the simulation with identical medium parameters, but a receiver spacing of
∆x = 1.0m, spurious oscillations are observed (cf. fig. A.1, which explains the discrepancies
seen in the error calculations of the forward and time-reversed wave.
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Figure A.1: Contact of two halfspaces (acoustic, ∆x = 1.0 m): Time evolution of σx x in the forward direction
(left) and in the time-reversal (right) at seven distinct locations.
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A.3 Localized Inhomogeneity

RMS and TF misfit calculations for 14 receivers are presented in tab. A.4.

Table A.4: Localized inhomogeneity (acoustic): RMS, EM , and PM values obtained by comparing both the
convergent and the divergent wave with the forward simulation. Dark grey cells correspond to the best value
obtained in each column, while light grey cells mark the highest error.

Localized Inhomogeneity

Receiver Position Wavefront Qp RMS EM PM

(0.0,2.5,−5.0)
convergent

σx x
0.80980 0.66990 0.39425

divergent 0.72297 0.47226 0.14878

(0.0,1.0,−5.0)
convergent

σx x
0.72855 0.15473 0.11936

divergent 0.45741 0.26074 0.01702

(0.0,4.0,−5.0)
convergent

σx x
0.98026 0.52111 0.22047

divergent 0.50400 0.32086 0.06820

(−2.5,4.0,−3.0)
convergent

σx x
0.21537 0.12267 0.04252

divergent 0.11356 0.04274 0.03279

(−2.5,1.0,−7.0)
convergent

σx x
0.26085 0.11657 0.05392

divergent 0.21945 0.06428 0.01873

(−2.5,0.0,−5.0)
convergent

σx x
0.28285 0.09600 0.04889

divergent 0.28308 0.15233 0.01919

(2.5,2.5,−5.0)
convergent

σx x
0.92488 0.77945 0.36534

divergent 0.50485 0.28696 0.11166

(2.5,2.5,−2.5)
convergent

σx x
1.02943 0.72669 0.40378

divergent 0.90802 0.65578 0.19013

(4.0,4.0,−1.0)
convergent

σx x
0.21453 0.11120 0.01080

divergent 0.16100 0.07822 0.03051

(4.0,4.0,−9.0)
convergent

σx x
0.15171 0.13029 0.03034

divergent 0.12011 0.05600 0.02608

(−4.0,4.0,−9.0)
convergent

σx x
0.19931 0.13801 0.02790

divergent 0.17658 0.08934 0.03337

(4.0,−4.0,−1.0)
convergent

σx x
0.11097 0.06448 0.01324

divergent 0.28746 0.20236 0.05989

(−4.0,−4.0,−1.0)
convergent

σx x
0.10331 0.05669 0.01517

divergent 0.26060 0.22489 0.05139

(−4.0,−4.0,−9.0)
convergent

σx x
0.13239 0.07982 0.01388

divergent 0.34788 0.22567 0.06436
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Error tables (Elastic Media)

B.1 Contact between two Halfspaces

The (10×10×10)m cube is divided into two halfspaces with distinct properties. For x < 0.25,
the medium is characterized by

ρ1 = 1.0 , λ1 = 5.0 , µ1 = 2.0. (B.1)

The medium parameters for medium 2, i.e. x > 0.25 are given by

ρ2 = 0.5 , λ2 = 5.0 , µ2 = 2.0. (B.2)

Thus yielding wavelengths

ψp,1 = 4.00m

ψs,1 = 1.89m,
(B.3)

in medium 1 and

ψp,2 = 5.66m

ψs,2 = 2.67m,
(B.4)

in medium 2. Since the wavelengths in medium 2 are larger, receivers placed in medium 2
show consistently smaller misfits. The error calculations for the same 11 receivers as in the
acoustic case are presented in tab. B.1. Furthermore, tab. B.2 shows the error calculations
for all six entries of σi j for one receiver in each medium.
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Table B.1: Contact of two Halfspaces (elastic): Errors calculated for 11 receivers placed throughout the volume.
RMS, EM , and PM values obtained by comparing both the convergent and the divergent wave with the forward
simulation. Dark grey cells correspond to the best value obtained in each column, while light grey cells mark the
highest error.

Contact of two Halfspaces (Elastic Medium)

Receiver Position Wavefront Qp RMS EM PM

(0.25,2.5,−2.5)

convergent
σx x

0.12880 0.10048 0.01079
divergent 0.10679 0.09055 0.00976

convergent
σx y

0.13114 0.09053 0.00772
divergent 0.10260 0.07293 0.00854

(0.25,2.5,−5.0)

convergent
σx x

0.09261 0.04845 0.01978
divergent 0.09678 0.07353 0.01551

convergent
σx y

0.09421 0.04763 0.01916
divergent 0.09595 0.06549 0.01584

(0.25,−2.5,−7.5)

convergent
σx x

0.12520 0.09727 0.01066
divergent 0.10643 0.09053 0.00974

convergent
σx y

0.13058 0.09040 0.00770
divergent 0.10608 0.07658 0.00857

(−2.5, 0.0,−5.0)
convergent

σx y
0.05739 0.02578 0.01053

divergent 0.04256 0.03388 0.00380

(2.5, 0.0,−5.0)
convergent

σx y
0.06187 0.02658 0.01223

divergent 0.03965 0.01865 0.00820

(−2.5, 2.5,−7.5)

convergent
σx x

0.14979 0.14280 0.01239
divergent 0.13223 0.11533 0.02239

convergent
σx y

0.15761 0.08519 0.00926
divergent 0.13910 0.06999 0.01576

(2.5, 2.5,−7.5)

convergent
σx x

0.07408 0.02097 0.00330
divergent 0.06399 0.01784 0.00462

convergent
σx y

0.08033 0.02816 0.00227
divergent 0.10158 0.03614 0.00713

(4.0, 4.0,−1.0)

convergent
σx x

0.08313 0.02855 0.00594
divergent 0.07596 0.02474 0.00821

convergent
σx y

0.10049 0.03497 0.00272
divergent 0.11679 0.03813 0.00575

(−4.0, 4.0,−1.0)

convergent
σx x

0.23077 0.15362 0.01466
divergent 0.19112 0.11490 0.02345

convergent
σx y

0.15446 0.10529 0.01021
divergent 0.13774 0.08360 0.01770

(4.0,−4.0,−1.0)

convergent
σx x

0.09603 0.03374 0.00781
divergent 0.07360 0.02218 0.00824

convergent
σx y

0.08624 0.02450 0.00445
divergent 0.12006 0.04093 0.00528

(−4.0,−4.0,−1.0)

convergent
σx x

0.24043 0.15461 0.01610
divergent 0.19261 0.11206 0.02381

convergent
σx y

0.15587 0.10428 0.00842
divergent 0.13518 0.07817 0.01782
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Table B.2: Contact of two Halfspaces (elastic): Errors calculated for all six entries of the stress tensor recorded on
the space diagonal in medium 1 and 2 respectively. RMS, EM , and PM values obtained by comparing both the
convergent and the divergent wave from the time-reversal with the forward simulation. Dark grey cells correspond
to the best value obtained in each column, while light grey cells mark the highest error.

Contact of two Halfspaces (Elastic Medium)

(4.0,−4.0,−1.0)

convergent
σx x

0.09603 0.03374 0.00781
divergent 0.07360 0.02218 0.00824

convergent
σy y

0.06986 0.05844 0.00759
divergent 0.09727 0.09011 0.01719

convergent
σzz

0.07420 0.05838 0.00906
divergent 0.09507 0.08094 0.01269

convergent
σx y

0.08624 0.02450 0.00445
divergent 0.12006 0.04093 0.00528

convergent
σyz

0.09879 0.01517 0.00236
divergent 0.09795 0.01523 0.00220

convergent
σxz

0.10728 0.03494 0.00442
divergent 0.14500 0.04415 0.00854

(−4.0,−4.0,−1.0)

convergent
σx x

0.24043 0.15461 0.01610
divergent 0.19261 0.11206 0.02381

convergent
σy y

0.19291 0.06654 0.00807
divergent 0.14507 0.05060 0.00552

convergent
σzz

0.18124 0.13536 0.02017
divergent 0.14545 0.11398 0.01809

convergent
σx y

0.15587 0.10428 0.00842
divergent 0.13518 0.07817 0.01782

convergent
σyz

0.19092 0.10581 0.00902
divergent 0.16011 0.08800 0.01277

convergent
σxz

0.14029 0.02504 0.00374
divergent 0.12861 0.02471 0.00487
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