
Optimal maintenance decisions supported by SHM: A benchmark study

A. Kamariotis & D. Straub
Engineering Risk Analysis group
Technical University of Munich, Germany

E. Chatzi
Department of Civil, Environmental and Geomatic Engineering
ETH Zurich, Switzerland

ABSTRACT: Despite technological advancements, visual inspection still remains the primary, and oftentimes
sole, means for condition-based assessment, in the current approach to infrastructure operation and maintenance.
Structural Health Monitoring (SHM) may be exploited as a complementary source of information on the con-
dition of a system. However, it is currently difficult to quantify the effect of SHM on optimal operation and
maintenance and hence on the total life-cycle cost. As a step towards this goal, we employ a numerical bench-
mark for continuous monitoring under operational variability (Tatsis & Chatzi 2019). The numerical benchmark
serves as a tool to create reference monitoring data from a two-span bridge system subject to deterioration (local
stiffness reduction) over its lifespan. The benchmark is used as a simulator for extracting dynamic response data,
i.e. simulated measurements (accelerations), corresponding to a typical deployment on the structure. At each
time step, Bayesian updating of the deterioration model and the structural reliability is carried out, using the
modal data stemming from an operational modal analysis. The reliability updating is the basis for a preposterior
decision analysis, to evaluate the Value of Information (VOI) of the SHM system (Straub et al. 2017). For that, a
decision time step, an action and the corresponding costs are defined. A heuristic-based approach using a simple
decision rule is employed for life-cycle optimization. The resulting expected life-cycle costs are computed for
the case of the deployed SHM system, and compared against the expected life-cycle costs obtained in the case
of no information, thus enabling the quantification of the VOI of SHM.

1 INTRODUCTION

Structural deterioration is, among others, one of the
main threats that structures and infrastructures are
subjected to throughout their life-cycle. The tech-
nological advancements in developing sensors, ca-
pable of reliably measuring different quantities of
structural response (e.g. accelerations, displacements,
strains, temperatures, etc.), have lead to vast scien-
tific and practical developments in the field of Struc-
tural Health Monitoring (SHM). Various techniques
for translating the raw measurement data into indi-
cators of structural “health” have been made readily
available. The benefit of using SHM systems in sup-
porting optimal maintenance decisions therefore re-
mains to be investigated.

The question we are trying to answer is the follow-
ing: How can information obtained from an SHM sys-
tem provide optimal decision support and what is the
value of this information? Preposterior Bayesian deci-
sion analysis can be used to quantify the VOI (Raiffa

& Schlaifer 1961). Recent works (Pozzi & Der Ki-
ureghian 2011; Zonta et al. 2014; Straub 2014; Thöns
et al. 2015) use the VoI concept in an attempt to quan-
tify the value of monitoring on idealized structural
systems within a Bayesian framework. The works
to date adopt simplifying assumptions regarding the
type of information that the SHM system provides.

In recent years, significant research has been done
in the field of operational modal analysis (Peeters &
De Roeck 1999), Bayesian structural system iden-
tification and model updating using SHM modal
data (Vanik et al. 2000; Papadimitriou et al. 2001;
Simoen et al. 2015; Behmanesh et al. 2015), with
these methods applied successfully on real struc-
tures (Behmanesh & Moaveni 2015). In this work,
we employ state-of-the-art Bayesian model and struc-
tural reliability updating methods for incorporating
the monitoring information coming from such an op-
erational modal analysis within a sequential decision-
making framework, following the roadmap to quanti-
fying the benefit of SHM presented in (Straub et al.



2017). To the knowledge of the authors, no such work
has been published before.

The structure of the paper is a follows: Section
2 introduces the two-span bridge system benchmark
model, the creation of synthetic monitoring data, the
damage scenario and the empirical stochastic deterio-
ration model. Section 3 presents the proposed sequen-
tial Bayesian deterioration model updating frame-
work in the presence of continuously obtained modal
data. In Section 4, we address the reliability analysis
of the deteriorating structural system and the updating
of the reliability using the monitoring data. In Section
5, a heuristic-based solution to the decision problem
is introduced, followed by the VoI results of our in-
vestigation in Section 6. Finally Section 7 concludes
this work.

2 CONTINUOUSLY MONITORED BRIDGE
SYSTEM SUBJECT TO DETERIORATION

Consider the two-span bridge model of Figure 1, with
its reference behavior (Tatsis & Chatzi 2019) simu-
lated by a Finite Element (FE) model of isoparamet-
ric plane stress quadrilateral elements. 200 elements
are employed to mesh the x direction, and 6 elements
are assumed per height (y direction). The beam di-
mensions form configurable parameters of the bench-
mark and are set as: height h = 0.6m, width w = 0.1m,
while the lengths are L1 = 12m for the first span and
L2 = 13m for the second span. A linear elastic mate-
rial with Young’s modulus E = 30GPa, Poisson ratio
ν = 0.2, and material density ρ = 2000 kg/m3 is as-
signed. For all the three support points elastic bound-
aries are assumed in both directions, in the form of
translational springs with Kx = 108 N/m and Ky =
107 N/m.

It is assumed that the simulated two-span bridge
is continuously monitored using a set of 18 sensors
measuring vertical acceleration, whose locations are
noted in red in Figure 1. A distributed Gaussian white
noise excitation F (x) is used as the load acting on the
bridge. A dynamic time history analysis of the model,
for a given realization of the load, results in the mea-
sured vertical acceleration signals at the assigned sen-
sor locations.
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Figure 1: Benchmark model

2.1 Synthetic monitoring data creation

For the purpose of the present analysis, at every time
instance for which we want to obtain data from the
deployed SHM system, a dynamic time history anal-
ysis of the benchmark model is run and the “true”
vertical acceleration signals ẍx at the sensor locations

(FE nodes) are obtained. The noise-free accelera-
tion time series data set is contaminated with Gaus-
sian white noise of 2% root mean square noise-to-
signal ratio, simulating a sensor measurement error.
Subsequently the noisy accelerations ˜̈xẍxx are fed into
an output-only operational modal analysis (OMA)
scheme. Specifically, the stochastic subspace identifi-
cation (SSI) (Peeters & De Roeck 1999) algorithm is
used to identify a set of the lower eigenvalues (squares
of natural frequencies) and mode shapes. A set of
identified eigenvalues and mode shape vectors is re-
ferred to as SSI modal data herein.

2.2 Structural deterioration

We assume that the support of the bridge structure is
further subjected to gradual deterioration (e.g. from
scour). Damage is introduced as a reduction of the
stiffness in y-direction of the spring K(2)

y at the mid-
dle elastic support of the bridge. The evolution of the
stiffness reduction of the vertical support spring over
the lifespan of the bridge is described by employ-
ing the damage model of equation (1), where Ky is
the initial undamaged value, and D(t) is the simple
stochastic deterioration model of equation (2). The
uncertain parameters of the deterioration model are
summarized in Table (1).

K(2)
y (t) = Ky/

(
1 +D(t)

)
(1)

D(t) = AtB (2)

Table 1: Parameters of the stochastic deterioration model.
Parameter Distribution Mean c.o.v.

A Lognormal 2.435×10-4 40%
B Normal 2.0 15%

We consider a lifespan of the bridge T = 50 years.
The mean and coefficient of variation of the param-
eters A and B are chosen to reflect sufficiently large
uncertainty a-priori. They result in a 1% probability
that D(t = 50) >10 at the end of the lifespan.

3 BAYESIAN DETERIORATION MODEL
UPDATING FRAMEWORK

In this section we present the Bayesian model up-
dating framework that we employ for the sequential
learning of the parameters of the deterioration model
of equation (2). A detailed presentation of the frame-
work can be found in Vanik et al. (2000), Simoen et al.
(2015), Behmanesh & Moaveni (2015).

3.1 Bayesian formulation

The goal of the Bayesian inverse problem is to in-
fer the deterioration model parameters θ ∈ IR2 given
noisy identified modal eigenvalues λ̃m = (2πf̃m)

2 and



mode shape vector components Φ̃m ∈ IRNs at the
Ns DOFs which correspond to the sensor locations,
where m = 1, ...,Nm is the number of the observed
modes.

Consider a linear FE model, which is parametrized
through the deterioration model parameters θ =
[A,B]. In this work, the model predicting the eigen-
values and mode shapes for the updating process is
the same FE model as the one described in Section 2
for the creation of the noise-contaminated synthetic
data. Despite of the noise being added, the use of
the same model constitutes a so-called inverse crime
(Wirgin 2004). However, it is not the purpose of this
work to focus on the updating process, therefore for
reasons of simplicity we consider this to be acceptable
for the demonstration in this paper. The goal of the
Bayesian probabilistic framework is to estimate the
parameters θ, and their uncertainty, such that the FE
model predicted modal eigenvalues λm(θ) and mode
shapes Φm(θ) ∈ IRNs best match the corresponding
SHM modal data.

Using Bayes’ theorem, the posterior probability
density function (PDF) of the deterioration model pa-
rameters θ given one identified modal data set [λ̃, Φ̃]
is computed via equation (3) and is proportional to
the likelihood function L(θ; λ̃, Φ̃) multiplied with
the prior PDF of the model parameters πpr(θ) (Ta-
ble 1). The proportionality constant is the so-called
model evidence Z and requires the solution of a two-
dimensional integral, shown in equation (4).

πpos(θ | λ̃, Φ̃) ∝ L(θ; λ̃, Φ̃)πpr(θ) (3)

Z =

∫

Ωθ

L(θ; λ̃, Φ̃)πpr(θ)dθ (4)

The SHM modal data come with significant un-
certainty, which should be taken into account within
the Bayesian framework. According to (Simoen et al.
2015), one can separate between i) measurement un-
certainty, including random measurement noise and
variance or bias errors induced in the SSI procedure,
and ii) model uncertainty. The combination of mea-
surement and model uncertainty reflects the total pre-
diction error. In order to construct the likelihood func-
tion, the eigenvalue and mode shape prediction errors
for a specific mode m are defined as in equations (5)
and (6).

ηλm = λ̃m − λm(θ) (5)

ηΦm =
∥∥γmΦ̃m −Φm(θ)

∥∥ (6)

where γm is a normalization constant which is com-
puted as in equation (7). Γ is a binary matrix for se-
lecting the FE degrees of freedom, which correspond
to the sensor locations.

γm =
Φ̃T
mΓΦm

‖Φ̃m‖2
(7)

The probabilistic model of the eigenvalue predic-
tion error is a zero-mean Gaussian random variable
with standard deviation assumed to be proportional to
the measured eigenvalues:

ηλm ∼ N (0, c2
λmλ̃

2
m) (8)

For the mode shape prediction error, which is defined
as the L2-norm of the difference of the mode shape
vectors for a given mode m, a zero-mean Gaussian
random variable is assigned with a standard deviation
proportional to the L2-norm of the measured mode
shape vector:

ηΦm ∼ N
(
0, c2

Φm‖Φ̃m‖2
)

(9)

The factors cλm and cΦm can be seen as assigned
coefficients of variation, and their chosen value re-
flects the prediction error. In this work, a fixed value
cλm = cΦm = 0.15 is chosen for all the modes corre-
sponding to a 15% coefficient of variation.

Assuming statistical independence among the iden-
tified modal data, the likelihood function for a given
modal data set can be written as in equation (10).

L(θ; λ̃, Φ̃) =

=
Nm∏

m=1

N(ηλm ; 0, c
2
λmλ̃

2
m)N

(
ηΦm ; 0, c

2
Φm‖Φ̃m‖2

)
(10)

The benefit of SHM is that the sensors can provide
data in a continuous fashion, therefore resulting in an
abundance of measurements received almost continu-
ally. Assuming independence among Nt modal data
sets obtained at different time instances, the likeli-
hood can now be expressed as:

L(θ; λ̃1...λ̃Nt , Φ̃1...Φ̃Nt
) =

=
Nt∏

t=1

Nm∏

m=1

N
(
λ̃tm − λtm(θ); 0, c2

λmλ̃
2
tm

)

N
(∥∥γtmΦ̃tm −Φtm(θ)

∥∥; 0, c2
Φm‖Φ̃tm‖2

)
(11)

where the index tm indicates the modal data of mode
m identified at time instance t. The inclusion of data
in a continuous fashion increases the level of accu-
racy of the Bayesian model updating procedure. How-
ever, when choosing how many data sets obtained at
different time instances to consider for the updating,
one should be aware of the fact that by increasing the
number of data sets, the parameter estimation uncer-
tainty will decrease, yet this might not properly reflect
the full variability of the updated parameters (Vanik
et al. 2000; Behmanesh et al. 2015).

3.2 Adaptive MCMC sampling

The solution of the Bayesian updating problem in
the general case involves the solution of the n-
dimensional integral for the computation of the model



evidence, where n is the number of random variables.
Analytic solutions to this integral are available only in
special cases, and numerical integration or sampling
methods are necessary. In this work, since the num-
ber of random parameters is limited to two, we are
flexible in choosing the method to solve the Bayesian
updating problem. However, to render this demonstra-
tion more generally applicable, we employ an adap-
tive Markov Chain Monte Carlo (MCMC) method
(Haario et al. 2006), with the adaptation performed
on the covariance matrix of the proposal PDF.

4 STRUCTURAL RELIABILITY

4.1 Structural reliability analysis for the
deteriorating structural system

A detailed review can be found in Straub et al. (2020).
In its simplest form, a failure event at time t can be de-
scribed in terms of a structural system capacity R(t)
and a demand S(t). Both R and S are random vari-
ables. In this investigation we are dealing with a prob-
lem in which the structural capacity R(t) can be sep-
arated from the demand S(t). At a time t, the struc-
tural capacity includes the effect of the deterioration
process, as in Figure 2. This curve is obtained via
a static analysis of the benchmark model of Section
2 for increasing values of the stiffness reduction of
spring K(2)

y described by the damage rule of equation
(1). For increasing values of the stiffness reduction,
we evaluate the loss of load bearing capacity of the
bridge structure relative to the undamaged state.
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Figure 2: Structural capacity in function of the deterioration D.

The uncertain demand acting on the structure is
modeled by the maximum load in a one-year time in-
terval with a Gumbel distribution. The parameters of
the Gumbel distribution are chosen such that the prob-
ability of failure in the initial undamaged state is equal
to 10−6 and the coefficient of variation is 20%.

We discretize time in yearly intervals j = 1, .., T ,
where the j-th interval represents t ∈ (tj−1, tj]. For
this type of problems, the time-variant reliability
problem can be replaced by a series of time-invariant
reliability problems. F ∗

j is defined as the event of fail-
ure in interval (tj−1, tj]. For a given value of the ca-
pacity, the conditional interval probability of failure is
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Figure 3: CDF of the Gumbel distribution for the load with loca-
tion an = 0.0509, scale bn= 0.297.

defined as:

Pr
(
F ∗
j

∣∣ R(θ, tj)
)
= 1− Fsmax

(
R(θ, tj)

)
(12)

We define Pr[F (ti)] =Pr(F ∗
1 ∪ F ∗

2 ∪ ...F ∗
i ) as the ac-

cumulated probability of failure up to time ti. We can
compute Pr[F (ti)] through the conditional interval
probabilities Pr(F ∗

j |R(θ, tj)). The conditional accu-
mulated probability of failure can be computed as:

Pr
[
F (ti)

∣∣ θ
]
= 1−

i∏

j=1

[
1−Pr

(
F ∗
j

∣∣ R(θ, tj)
)]

(13)

Following the total probability theorem, the uncondi-
tional accumulated probability of failure is:

Pr
[
F (ti)

]
=

∫

Ωθ

Pr
[
F (ti)

∣∣ θ
]
πpr(θ)dθ (14)

The solution to the above integral is found using
Monte Carlo simulation (MCS). We draw samples
from the prior distribution πpr(θ) of the two uncer-
tain deterioration model parameters and the integral
in (14) is approximated by:

Pr
[
F (ti)

]
≈ 1

nMCS

nMCS∑

k=1

Pr
[
F (ti)

∣∣ θ(k)
]

(15)

Having computed the probabilities Pr[F (ti)], one can
compute the hazard function h(ti) for the different
time intervals ti, which expresses the failure rate of
the structure conditional on survival up to time ti−1:

h(ti) =
Pr
[
F (ti)

]
−Pr

[
F (ti−1)

]

1−Pr
[
F (ti−1)

] (16)

4.2 Structural reliability updating using SHM
modal data

The goal of SHM is to identify structural damage.
Data coming from the monitoring system can be em-
ployed in order to identify the parameters θ of the
deterioration model and obtain their posterior distri-
bution. Consequently this affects the computation of



the cumulative probability of failure at time ti, which
is now conditioned on data Z = [λ̃, Φ̃] obtained up to
time ti−1.

Pr
[
F (ti)

∣∣ Z1:i−1

]
=Pr(F ∗

1 ∪ F ∗
2 ∪ ...F ∗

i | Z1:i−1)
(17)

The cumulative probability of failure up to time ti
conditional on modal data obtained up to time ti−1

is:

Pr
[
F (ti)

∣∣ Z1:i−1

]
=

∫

Ωθ

Pr
[
F (ti)

∣∣ θ
]
πpos(θ|λ̃1:i−1, Φ̃1:i−1)dθ

(18)

In (18), one needs to integrate over the posterior dis-
tribution of the parameters θ. As described in Sec-
tion (3.2), an adaptive MCMC algorithm is used for
the Bayesian analysis, therefore at every step of the
sequential updating we obtain the posterior distribu-
tion of the parameters in the form of posterior MCMC
samples. Using these samples θ(k), the integral in
equation (18) can be approximated:

Pr
[
F (ti)

∣∣ Z1:i−1

]
≈ 1

nMCMC

nMCMC∑

k=1

Pr
[
F (ti)

∣∣ θ(k)
]

(19)

The hazard function conditional on the monitoring
data can then be obtained via the following expres-
sion:

h(ti | Z1:i−1) =

=
Pr
[
F (ti)

∣∣ Z1:i−1

]
−Pr

[
F (ti−1)

∣∣ Z1:i−1

]

1−Pr
[
F (ti−1)

∣∣ Z1:i−1

] (20)

5 LIFE-CYCLE COST WITH SHM

5.1 Life-cycle optimization based on heuristics

We are interested in identifying optimal maintenance
strategies for a deteriorating structure equipped with a
monitoring system, and subsequently quantifying the
Value of Information (VOI) of the SHM. Towards that
goal, we set up a simple decision model. A prior dete-
rioration model of equation (2) describing the dynam-
ics of the system (deterioration) is available. The de-
cision time horizon is the lifespan of the bridge struc-
ture T = 50 years.

We introduce the terms policies and strategies (Bis-
mut & Straub 2020), which we employ for the so-
lution of the decision problem. A policy πi can be
thought as a decision rule that tells us which action
to take at time step ti, conditional on all the informa-
tion at hand up to that time (Jensen and Nielsen 2007).
A strategy S is the set of policies over all the decision
problem time steps.

We introduce a simple heuristic for the solution of
the sequential decision problem. A detailed presen-
tation for the use of heuristics in optimal inspection
and maintenance planning can be found in (Luque &
Straub 2019) and (Bismut & Straub 2020). With the
use of heuristics, the space of solutions to the deci-
sion problem is drastically reduced, but the problem is
solved only approximately. The simple heuristic cho-
sen here is to perform a repair action whenever the
estimate of the hazard function is larger than a prede-
fined threshold. The parameter w = hthres describing
the heuristic is a parameter of the strategy S. We as-
sume that performing a repair action means replacing
the component (spring support) and bringing it back
to its initial state, and that no failure will occur once a
repair action has been performed.

With the use of heuristics, solving the sequential
decision problem boils down to the solution of the op-
timization problem:

w∗ = argminwE[Ctot | w] (21)

where Ctot is the total cost of maintenance and risk
and w is the parameter describing the heuristic.

5.2 Computation of the expected total cost in the
prior case without any data

In the prior case, where no monitoring data is avail-
able, the expectation in equation (21) is with respect
to the system state, i.e. the deterioration model param-
eters θ.

Eθ[Ctot | w] =
∫

Ωθ

Ctot(w,θ)fθ(θ)dθ (22)

The total cost of maintenance and risk Ctot(w,θ) is
the sum of the repair costsCR(w) and the failure costs
CF(w,θ) over the lifetime of the bridge. Since we are
interested in quantifying the value of information, as
defined later in Section 5.4, the initial cost is not in-
cluded in Ctot.

The integral of equation (22) is computed via MCS.
One can draw samples θ from πpr(θ) to compute the
accumulated probability of failure via equation (15),
and subsequently compute the hazard function with
equation (16). When the hazard function exceeds the
threshold, i.e. when h(ti)≥ w, we define trepair = ti−1

as the time that the repair takes place. The time of
repair is thus a function of our chosen heuristic.

The cost of repair is given as:

CR(w) = ĉcRγ
(
trepair(w)

)
(23)

where ĉcR is the fixed cost of the repair, and γ(t) =
1/(1 + r)t is the discount function, with r being the
discount rate.

The risk of failure is given as:

CF(w,θ) =

trepair(w)∑

i=1

CF (ti,θ) (24)



where:

CF (ti,θ) = ĉcFγ(ti)
{
Pr
[
F (ti)

]
−Pr

[
F (ti−1)

]}
(25)

where ĉcF is the fixed cost of the failure event.
Following the solution of the optimization problem

in (21), the expected life-cycle costs associated with
the optimal decision, in the prior case without any
monitoring data is Eθ[Ctot | w∗

0].

5.3 Computation of the expected total cost in the
SHM data-informed case

Z = [Z1, ...,ZnT
] are the random vectors containing

the identified modal data stemming from an SHM op-
erational modal analysis. For our investigation, we
obtain one set of identified modal data every year, and
no optimization for the data acquisition time step or
size is performed.

Under availability of identified modal data from the
SHM system, the expectation in equation (21) is oper-
ating on both the system state θ and on the monitoring
outcomes Z.

Eθ,Z [Ctot | w] =
∫

Ωθ

∫

ΩZ

Ctot(w,θ,z)fΘ,Z(θ,z)dzdθ

(26)

The total cost of maintenance and repair Ctot(w,θ)
is again the sum of the repair costs CR(w,Z) and
the failure costs CF(w,θ,Z) over the lifetime of the
bridge, which now depend also on the monitoring out-
comes Z.

The integral in equation (26) is computed with
crude MCS. We draw samples from the uncertain de-
terioration model parameters, and for each of those
samples, we have one deterioration history, as given
by equation (2). For each deterioration history, we
generate monitoring outcomes (one identified modal
data set per year). In this way we are jointly sampling
the system state space and monitoring data space, and
equation (26) is approximated as:

Eθ,Z [Ctot | w] =

=
1

nMCS

nMCS∑

k=1

[
CR(w,z

(k)) +CF(w,θ
(k),z(k))

] (27)

For each of the sampled system states and correspond-
ing monitoring data, when h(ti | z(k)

1:i−1) ≥ w, then
t
(k)
repair = ti−1.

The cost of repair is expressed as:

CR(w,z
(k)) = ĉcRγ

(
trepair(w,z

(k))
)

(28)

The risk of failure is:

CF(w,θ
(k),z(k)) =

trepair(w,z(k))∑

i=1

CF (ti,θ
(k)) (29)

where:
CF (ti,θ

(k))

= ĉcFγ(ti)
{
Pr
[
F (ti)

∣∣ θ(k)
]
−Pr

[
F (ti−1)

∣∣ θ(k)
]}

(30)

Solving equation (21), we obtain the optimal ex-
pected life-cycle costs given the monitoring data,
Eθ,Z [Ctot | w∗

mon].

5.4 Value of information

The VOI is given by equation (31) and is the differ-
ence of the optimal expected life-cycle costs between
the prior case and the case where monitoring data are
available.
V OI =Eθ

[
Ctot(θ,w)

∣∣ w∗
0

]
−Eθ,Z

[
Ctot(θ,Z,w)

∣∣ w∗
mon

]

(31)

6 RESULTS

6.1 Sequential Bayesian deterioration model
updating using monitoring data

Initially we demonstrate how the Bayesian framework
performs in learning the parameters of the deterio-
ration model on the basis of the SHM modal data.
We assume a scenario where the “true” deterioration
model corresponds to parameters valuesA∗=3.2×10-4

and B∗ = 2.34. Using equation (2), this corresponds
to a value of the deterioration D∗(t =50) = 3.03 and
the stiffness at the mid support spring reduced to
Ky(t =50) = K0/(1+3.03) at the end of the service
life of the bridge. The “true” deterioration curve can
be seen in black in all the subfigures of Figure 5.

For this “true” deterioration curve we create one
monitoring history, i.e., we generate one set of SHM
modal data (Nm = 6 identified modes) every year. In
this simple example, the structural properties are not
assumed influenced by environmental (temperature,
humidity) and operation (non stationary effects due
to traffic) variability. To this end, we assume it suf-
fices to utilize one estimate of the modal properties set
per year. This estimate is delivered upon processing of
several datasets, which allows to further quantify the
variance in the estimation of these values. Using this
data, we employ the sequential Bayesian deterioration
model updating framework of Section 3.

Figure 4 demonstrates how the distribution of the
deterioration model parameters is updated, by com-
paring the prior PDF of A and B with the posterior
filtering PDF of A and B at year 30, using modal
data λ̃1:30 and Φ̃1:30. The posterior PDF is given via
a kernel density estimation using the 5000 posterior
MCMC samples of A and B. It is observed that using
one SHM data set per year up to year 30, the uncer-
tainty in the deterioration model parameters has de-
creased, the filtering PDF is narrower (only slightly
for A) and peaked around the true values A∗ and B∗.
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Figure 4: Prior PDF and posterior filtering PDF at year 30 for
deterioration model parameters.

In Figure 5 we compare the “true” deterioration
model with the deterioration model estimated using
MCS in the prior case, and with the ones estimated
with filtering posterior MCMC samples at three dif-
ferent time instances. In the upper right subfigure we
observe that at the first years of the deterioration,
the deterioration model parameters are not sufficiently
identified and there is still large uncertainty in the es-
timation, which is clearly reduced in later years, as
seen in two lower subfigures.
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Figure 5: Sequential Bayesian learning of the deterioration
model.

6.2 Reliability updating using monitoring data

As presented in Section 4.2, learning the deterioration
model parameters and the reduction of the uncertainty
in their estimation through the acquisition of SHM
modal data affects the estimation of the reliability of
the structure. In Figure 6, we show the accumulated

failure probability Pr[F (t)] of the bridge structure,
and compare it with the accumulated failure proba-
bility conditional on monitoring data Pr[F (t)|Z(t)].
The 90% credible interval of Pr[F (t)] is obtained
from 1000 independent simulation runs. For the con-
ditional case, we consider also here the case of a gen-
erated monitoring history from the “true” deteriora-
tion model described in Section 6.1. At each time t,
Pr[F (t)|Z(t)] is conditioned on monitoring outcomes
up to time t.
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Figure 6: Probability of failure updating.

6.3 VOI results

The VOI is computed with equation (31) following
the framework presented in Section 5.

The expected life-cycle cost Eθ,Z [Ctot | w] in the
SHM data-informed case is calculated with MCS fol-
lowing equation (27). For this we draw 500 samples
of θ, and for each of those we create one monitoring
outcome history. In this way we are jointly sampling
θ and Z. The expected life-cycle cost Eθ[Ctot | w] in
the prior case without any data in equation (22) is also
computed with MCS using the same 500 samples of
θ that are used in the SHM data-informed case.

We assume ĉcF = 106, and for ĉcR we investigate
different ratios ĉcR/ĉcF = [10−1,10−2,10−3,10−4], and
for each of those we calculate the VOI. The discount
rate is r = 2%.

The solution to the life-cycle optimization prob-
lem based on heuristics of equation (21) is performed
with a standard optimization algorithm. Tables 2 and
3 summarize the results of this optimization and Table
4 documents the VOI for each cost ratio case.

As observed in Table 4, the VOI is 0 in the case
when the costs have a ratio ĉcR/ĉcF = 10−1, which
means that one does not get any benefit from the data
we obtain from our SHM system. This is related to
the fact that, for this cost ratio, the optimal action is
to not perform a repair in the lifespan of the bridge,
in both prior and monitoring cases. However, for the
further considered cost ratio cases, the VOI is posi-
tive, which indicates a potential benefit of installing
an SHM system on the deteriorating bridge structure.

It is important to note that the expected costs are
computed with a limited number of Monte Carlo sam-
ples and monitoring histories (500), thus resulting in



significant uncertainty in the estimate of the expected
costs. It is observed that for small θ, the variability
in the estimation of the expected costs is high, which
however is equally present in both prior and SHM
data-informed cases (same samples θ). This still leads
to high variability in the values that the VOI assumes.

Table 2: Life-cycle optimization using 500 samples in the prior
case.
ĉcR/ĉcF w∗

0 E[Ctot|w∗
0 ] trepair

10−1 ≥ 8× 10−5 178.21 no repair
10−2 ≥ 8× 10−5 178.21 no repair
10−3 ≥ 8× 10−5 178.21 no repair
10−4 2.1× 10−6 81.23 year 31

Table 3: Life-cycle optimization using 500 samples and monitor-
ing histories in the SHM data-informed case. trepair is varying
for each sample and monitoring history.
ĉcR/ĉcF w∗

mon E[Ctot|w∗
mon]

10−1 ≥ 1.95× 10−2 178.21
10−2 5× 10−4 95.34
10−3 9.9× 10−5 57.88
10−4 8.6× 10−6 45.86

Table 4: Value of information
ĉcR/ĉcF E[Ctot|w∗

0 ] E[Ctot|w∗
mon] VOI

10−1 178.21 178.21 0.00
10−2 178.21 95.34 82.87
10−3 178.21 57.88 120.33
10−4 81.23 45.86 35.37

7 CONCLUSIONS

In this paper, we present an investigation on optimal
decision support with SHM and on quantifying the
VOI of SHM, with the use of a simple benchmark
bridge-type deteriorating structure. We simulate se-
quential monitoring acceleration data, which would
be generated by an SHM system in a realistic sce-
nario, and input them in an operational modal analy-
sis, to identify the modal characteristics of the system.
On the basis of this sequential modal data, we employ
Bayesian model updating methods for system identifi-
cation. The stochastic decision problem for life-cycle
optimization and computation of the VOI is solved
with the use of a simple heuristic. For this simplified
hypothetical example, and for the particular choices
we make, we find that the VOI assumes positive val-
ues for some of the cost ratios, thus quantifying the
benefit of the SHM system in taking optimal mainte-
nance actions in evidence of deterioration. The ideas
presented here serve as a first step towards the quan-
tification of the VOI of SHM for more realistic appli-
cations with fewer simplifying assumptions.
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