
Pedal to the Bare Metal:
Road Traffic Simulation on FPGAs

Using High-Level Synthesis
Jiajian Xiao

jiajian.xiao@tum-create.edu.sg
TUMCREATE and Technische

Universität München
Singapore

Görkem Kılınç
gorkem.kilinc@tum-create.edu.sg

TUMCREATE
Singapore

Philipp Andelfinger
philipp.andelfinger@gmail.com
TUMCREATE and Nanyang
Technological University

Singapore

David Eckhoff
david.eckhoff@tum-create.edu.sg
TUMCREATE and Technische

Universität München
Singapore

Wentong Cai
aswtcai@ntu.edu.sg

Nanyang Technological University
Singapore

Alois Knoll
knoll@in.tum.de

Technische Universität München and
Nanyang Technological University

Munich, Germany

ABSTRACT
The performance of Agent-based Traffic Simulations (ABTS) has
been shown to benefit tremendously from offloading to accelerators
such as GPUs. In the search for the most suitable hardware platform,
reconfigurable hardware is a natural choice. Some recent work
considered ABTS on Field-Programmable Gate Arrays (FPGAs),
yet only implemented simplified cellular automaton-based models.
The recent introduction of support for high-level synthesis from
C, C++, and OpenCL in FPGA toolchains allows FPGA designs to
be expressed in a form familiar to software developers. However,
the performance achievable with this approach in a simulation
context is not well-understood. In this work, to the best of our
knowledge, we present the first FPGA-accelerated ABTS based on
widely-accepted microscopic traffic simulation models, and the first
to be generated from high-level code. The achieved speedup of up
to 24.3 over a sequential CPU-based execution indicates that recent
FPGA toolchains allow simulationists to unlock the performance
benefits of reconfigurable hardware without the need to express
the simulation models in low-level hardware description languages.

CCS CONCEPTS
•Computingmethodologies→Agent / discretemodels;Mas-
sively parallel and high-performance simulations; Simula-
tion tools; • Hardware → Hardware accelerators.

KEYWORDS
FPGA; Traffic simulation; Agent-based simulation; Performance;
OpenCL; HLS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7592-4/20/06. . . $15.00
https://doi.org/10.1145/3384441.3395979

ACM Reference Format:
Jiajian Xiao, Görkem Kılınç, Philipp Andelfinger, David Eckhoff, Wen-
tong Cai, and Alois Knoll. 2020. Pedal to the Bare Metal: Road Traffic
Simulation on FPGAs Using High-Level Synthesis. In Proceedings of the
SIGSIM Principles of Advanced Discrete Simulation (SIGSIM-PADS ’20), June
15–17, 2020, Miami, FL, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3384441.3395979

1 INTRODUCTION
Agent-based simulation is a modelling approach that simulates
actions and interactions of individual autonomous entities called
agents. It is widely used to answer what-if questions in a num-
ber of areas including chemistry, physics, social engineering, etc.
Agent-based Traffic Simulation (ABTS), for example, is a method to
investigate traffic flow patterns and to predict the impact of traffic
incidents. However, sequential execution of a large-scale ABTS
usually incurs substantial run times. Existing research has shown
that employing multi-core CPUs or GPUs as accelerators leads
to better performance [19]. Efforts have been made to simplify
the process of porting sequential code to run on these accelera-
tors [17]. In the last decade, a growing interest can be observed
in Field-Programmable Gate Arrays (FPGAs) as high-performance
and energy-efficient accelerators for compute-intensive tasks. It has
been demonstrated that FPGAs can outperform CPUs or GPUs, e.g.,
in data encryption [2]. Previous works [12, 14] also show the feasi-
bility of accelerating ABTSs using FPGAs. Those works often rely
on converting common traffic models to models based on Cellular
Automata (CA), which naturally map to the FPGA’s hardware build-
ing blocks. In these works, the FPGA applications were expressed
in Hardware Description Languages (HDLs), which describe the
required functionality at a low level in terms of logical operations
and data transferred among hardware registers. The emergence of
high-level synthesis toolchains for FPGAs from vendors such as
Intel or Xilinx enables the development of FPGA programs in C-
like languages, reducing the development effort [11] and enabling
portability to and from other hardware platforms.

In this work, we present our design of an FPGA-accelerated
ABTS generated from OpenCL code using the SDAccel high-level

Session: Agent-Based Model SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA

117

https://doi.org/10.1145/3384441.3395979
https://doi.org/10.1145/3384441.3395979
https://doi.org/10.1145/3384441.3395979

synthesis tool by Xilinx. We focus on the FPGA-as-accelerator sce-
nario, i.e., a PC or a cluster equipped with an FPGA accelerator
connected via PCI-E. Our code is available online1.

Our ABTS is based on two key models: a car-following model
(CFM) and a lane-changing model (LCM). We consider a proof-of-
concept case that still exercises both models: a single road with a
configurable number of parallel lanes.

The main contributions of this paper are:
• To the best of our knowledge, we present the first FPGA-
accelerated ABTS to rely on models from the traffic engineer-
ing literature, and the first to rely on high-level synthesis.

• We describe the main design choices tailored to the FPGA
hardware architecture, including an efficient neighbour search
mechanism.

• We evaluate the performance using two different high-level
synthesis approaches supported by SDAccel.

The remainder of this paper is organised as follows: In Section 2,
we describe the fundamentals of FPGAs and discuss related work.
In Section 3, we present our approach to accelerate ABTS on FP-
GAs. We evaluate the performance and the energy consumption in
Section 4. Section 5 concludes the paper.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the state of art in ABTS and FPGA tech-
nologies as well as briefly review the advances in recent literature.

2.1 Agent-based Traffic Simulation (ABTS)
In most of the established ABTSs, the movement of an agent is
determined by two models: a car-following model (CFM) and a
lane-changing model (LCM). The CFM controls the agent to move
forward by following the vehicle ahead and avoiding collisions. In
this paper, we use the Intelligent Driver Model (IDM) [13]. IDM
receives as input the current velocity, a desired velocity, and the dis-
tance and speed of the vehicle in front and returns the acceleration
for the next time step.

The LCM triggers lane changes to allow the vehicle to accelerate
or to follow its route. In this paper, we employ the MOBIL model,
short for Minimizing Overall Braking Induced by Lane change [7].
MOBIL is an incentive-based model that evaluates potential lane-
changing manoeuvres and generates a decision that balances the
current vehicles acceleration with the required braking by other
vehicles.

Both models require gathering the positions and velocities of a
maximum of six neighbouring agents: the leaders and followers on
the same lane, on the left lane, and on the right lane. In Section 3.1,
we propose a simple algorithm that does the neighbour search and
agent update efficiently on an FPGA.

2.2 Field-Programmable Gate Array (FPGA)
An FPGA is an integrated circuit consisting of many programmable
logic blocks and I/O components. Reconfiguration involves updat-
ing the lookup table contained in each logic block to achieve a
desired local logical behaviour, and the configuration of the inter-
connections among the blocks to achieve an overall functionality.

1https://github.com/xjjex1990/fpga_traffic_simulator

FPGAs are used in applications demanding low energy consumption
and are more flexible compared to Application-Specific Integrated
Circuits [8].

Typically, FPGA programs are expressed in Hardware Descrip-
tion Languages (HDLs). Synthesis tools translate from an HDL to a
so-called bitstream that can be transferred to an FPGA. Program-
ming in HDLs requires in-depth knowledge about the hardware
and comes with significant design efforts [11]. High Level Synthesis
(HLS) tools that generate bitstreams from higher-level code such as
C or System C are developed to alleviate this. Programming using
HLS in an FPGA-as-accelerator scenario involves two steps: first,
an intellectual property describing the main logic of the application
needs to be developed; second, a data path that transfers the data
from the CPU to the FPGA has to be created. The Open Computing
Language (OpenCL) for FPGAs simplifies this process by providing
an all-in-one solution. It allows to program FPGAs in a C-like pro-
gramming language and abstracts away the CPU-FPGA data path
by its communication interfaces.

2.3 Open Computing Language and SDAccel
The Open Computing Language (OpenCL) is a parallel program-
ming framework targeting a wide variety of hardware platforms. It
allows users to write programs in a C-like language without tak-
ing care of hardware details. An OpenCL execution environment
typically consists of a host (usually a CPU) and one or multiple
devices (e.g., CPUs, GPUs, FPGAs). A host program orchestrates the
resources while a device program, consisting of so-called kernels,
implements the actual workload. A thread that executes one kernel
is called a work-item. Work-items are executed in groups named
work-groups. OpenCL offers a two-layer memory hierarchy: Local
memory maps to the Block RAM (BRAM) of an FPGA, which is
shared among work-items in the same work-group. Global memory
binds to the massive but latency-prone off-chip memory to which
all work-items have access.

Unlike GPUs which utilise Single Instruction Multiple Data
(SIMD) parallelisation, an FPGA’s parallelisation is two-fold. Each
operation (store/load, arithmetic operation, etc.) is compiled to a
small circuit called a Functional Unit (FU). An FPGA can generate
many FUs for the same operation so that multiple data elements can
be processed simultaneously. Further, many FUs are wired together
to form a pipeline. A work-item steps over one FU at a time while
many work-items start successively to fill the different stages of
the pipeline (Fig. 1). The start interval between two consecutive
work-items is called initiation interval (II). The performance of an
FPGA is influenced mainly by two factors: the initiation interval
and the operating frequency. Dependencies across work-items may
cause a bigger initiation interval. The operating frequency is guided
by the cycles spent on the slowest pipeline stage.

The SDAccel tool allows users to express an OpenCL kernel
using HDL, HLS (high-level synthesis from C or C++), or OpenCL.
In this work, we explore designs with the latter two approaches.
The C or C++ used for HLS is close to sequential code in terms of
style, with extra syntax provided for FPGA-specific data mappings
and optimisation, making portation from existing sequential code
trivial. The resulting program presents as a single work-item to the
host. The body of an HLS kernel is typically a loop where one data

Session: Agent-Based Model SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA

118

TimeCycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

T2.1 T2.2 T2.3 T2.4

T3.1 T3.2 T3.3 T3.4

T4.1 T4.2 T4.3 T4.4

T1.1 T1.2 T1.3 T1.4

Cycle 7

Figure 1: Pipeline Parallelism. We assume four tasks, each
task being divided into four FUs (e.g., T1.1 - T1.4).

point is dealt with per iteration. When parallelised on an FPGA,
many iterations start a number of cycles apart (as defined by the
II), yielding pipelined parallelism. Two types of OpenCL kernels
are supported when programming in OpenCL [16]: Single-work-
item kernels are intrinsically equivalent to HLS with extra use of
OpenCL primitives such as __𝑘𝑒𝑟𝑛𝑒𝑙 , __𝑔𝑙𝑜𝑏𝑎𝑙 . NDRange kernels
are a type of kernel widely used for programming GPUs, and thus
offer good portability to and from GPU code. When executed on
FPGAs,NDRange kernels can either yield SIMD parallelism as GPUs
or pipelined parallelism if dependencies exist across work-items.
Due to the similarity between kernels written as Single-work-item
and in HLS, we will omit Single-work-item and focus on HLS and
NDRange for the remainder of the paper.

2.4 Related Work
Methods for accelerating agent-based simulations using hardware
accelerators have been widely explored. A comprehensive study
on challenges and state-of-the-art solutions on hardware accelera-
tors can be found in [19]. The acceleration of ABTSs using GPUs
has been well-studied and substantial speedups have been demon-
strated [10, 18]. However, challenges still remain when speeding up
ABTSs using FPGAs due to the manifold architectural differences
between an FPGA and a GPU, such as smaller memory bandwidths
and lower frequencies.

Cong et al. [3] compare the performance of running Rodinia,
a widely used GPU benchmark suite, on a GPU and on an FPGA,
respectively. They conclude that modern FPGAs can achieve com-
parable or even better performance for certain tasks. A maximum
speedup of 7x over GPU is achieved running a bioinformatics ap-
plication.

A general FPGA-based discrete event simulation accelerator is
presented by Rahman et al. [9]. Their work focuses on the efficient
maintaining of the event queues on FPGAs. However, event queues
are not necessarily needed in our case.

In previous works, FPGAs aremostly applied to CA-basedmodels
owing to the natural mapping of cells to logic blocks [19]. FPGAs
have demonstrated performance benefits when applied to CA-based
models such as an environment simulation [15], Game of Life [4]
and a crowd evacuation model [6]. Schäck et al. [12] implement a
traffic simulation on a single lane road based on so-called Global
CA model in which a set of cells change their states simultaneously.
Tripp et al. [14] develop a CA-based traffic simulation running
on a grid of roads. The movement of agents on individual lanes
is computed on an FPGA while the agents’ transitions from one

road to another and at intersections are computed on the CPU. Our
implementation does not rely on transforming models to a CA-
based format, and thus can be extended to traffic models beyond
those discussed in this paper.

3 DESIGN AND IMPLEMENTATION
In a typical ABTS, an agent autonomously performs neighbour
searches, makes decisions based on its neighbours’ states and up-
dates its own state in each time step. Neighbour search is a crucial
step and potentially consumes a significant amount of execution
time [18]. Therefore, we start this section with a simple neighbour
search algorithm that can be executed efficiently on FPGAs. Then,
we discuss two design considerations that can further improve
the performance. Lastly, we assemble everything and present our
overall design.

3.1 Agent Update and Neighbour Search
As our simulation scenario, we consider a long road with multi-
ple parallel lanes. Initially, agents are assumed to be stored in a
per-lane array, sorted by ascending agent positions in driving direc-
tion. After a single step of the CFM or LCM is executed, the agents
remain sorted: 1) The CFM drives the agent to follow but not to
overtake the agent in the front; 2) To carry out a lane change, the
lane-changing agent is removed from its original lane and inserted
between its leader and follower on the target lane. We present a sim-
ple algorithm that relies on the per-lane agent order to efficiently
determine the neighbours of all agents on the road. The basic idea
is to iterate through the agents in the order of their position con-
sidering all lanes, updating per-lane pointers to efficiently identify
their neighbours.

Figure 2 illustrates the neighbour search: For each lane 𝑙 , a
pointer current[𝑙] is maintained, initially pointing to the rearmost
agent. The neighbour search iterates through the agents by their
position across all lanes, until the foremost agent has been reached.
Once an agent’s neighbours have been identified on lane 𝑙 , the
pointer current[𝑙] is updated to point to the agent’s leader on lane
𝑙 (cf. Figure 3). During the iterations, the invariant holds that the
neighbours of each current agent are identified by the current point-
ers as follows: the leader and the follower, if any, on the current
lane 𝑙 are located by current[𝑙]+1 and current[𝑙]-1 . The leaders
and followers on neighbouring lanes 𝑙𝑖 , if any, are identified by
current[𝑙𝑖] and current[𝑙𝑖]-1.

current[laneB]

current[laneC]

current[laneA]

Figure 2: Neighbour search of the first agent (coloured in
red). Neighbours are indicated by the dash arrowed lines.

Session: Agent-Based Model SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA

119

current[laneB]

current[laneC]

current[laneA]

Figure 3: Neighbour search of the second agent (coloured in
red). Neighbours are indicated by the dash arrowed lines.

3.2 Design Considerations
To maximise the parallelisation opportunities and tailor the com-
puting workload to the underlying FPGA hardware, we consider
the following two design concerns:

3.2.1 Single and Double Buffering. Single and double buffering (SB
and DB) are two design principles for ABSs, both of which have
implications on parallelized execution, model behavior and the
potential for state conflicts [20]. With SB, each agent overwrites
its state immediately after the agent behaviours have been exe-
cuted, whereas with DB, the new agent state is first written to an
intermediate buffer and consequently applied for all agents at once.
The SB design may cause write-read or write-write dependencies,
resulting in larger initiation interval when pipelined on FPGA. Fur-
ther, with SB, inconsistent agent states may be read as the agent
updates gradually progress throughout the pipeline. To avoid these
complications, we rely on DB in our implementation.

3.2.2 Number Representation. As the high dynamic range of float-
ing point numbers is not required to represent positions and ve-
locities on individual roads, we rely on fixed-point arithmetic to
achieve better power and space efficiency [5]. We use 24 bits to
represent the integer part and 8 bits for the fractional part, which
enables a minimum number increment of 2−8, i.e., a precision of
0.4cm or cm/s.

3.3 Main Simulation Loop
In the HLS implementation, the main body of the kernel function is
a nested loop. The outer loop iterates through the simulation steps.
The inner loop, which is pipelined, iterates through the agents to
carry out the neighbour search and agent update.

In the NDRange kernel implementation, the loop that counts
the simulation steps resides in the host code. The loop that up-
dates the agents is replaced by an NDRange function call. Due to
the incremental updating of the current pointers in the neighbour
search algorithm, SIMD processing of multiple agents is infeasible.
However, pipeline parallelization across work-items is possible.

Unintended vehicle collisions may occur due to the employment
of DB design [1]: as illustrated in Fig. 5, the red vehicle and the
yellow vehicle are close in longitudinal positions and both intend
to change lanes to the middle lane. As the vehicles are two lanes
apart, they are unaware of each other. As a result, both of them may
decide to change to the middle lane, causing a collision. To resolve
such conflicts, before writing to the buffer holding the new state, we
check whether the last stored agent on the target lane collides with
the current agent. The pipelined execution on the FPGA ensures

Time

Neigbour
Search

Agent
Update

Conflict
Resolution

Neigbour
Search

Agent
Update

Agent A
finishes updating

Agent B

Agent A

Conflict
Resolution

...

...

Figure 4: Illustration of pipelined processing of agents

Figure 5: Illustration of a possible collision due to our
double-buffering design.

that at this point, the last agent has finished updating its state (cf.
Figure 4).

4 EXPERIMENT
Weevaluate ourHLS andNDRange kernels on anAmazon f1.2xlarge
instance equipped with an 8-core Intel Xeon E5-2686, 122GB RAM
and an Xilinx Virtex UltraScale+ XCVU13P FPGA. The FPGA has a
maximum frequency of 500MHz, 3,780K Logic Cells, 12,288 DSPs
and 455Mb RAM. The version of the Xilinx OpenCL Compiler is
2018.2 with GCC version 4.8. Initially, agents are spawned at the
leftmost two lanes of the road. We run the traffic simulation on a
road with four lanes for 1,000 time steps, varying the number of
agents. The run time is compared to that of a sequential CPU imple-
mentation on an Intel Xeon-E5 CPU and a SIMD implementation
on an NVIDIA GTX 1060 GPU. The proposed neighbour search
and conflict resolution implementations rely on the pipelined exe-
cution and strict update order guaranteed on the FPGA, however,
as GPUs process many agents in an undefined order, we base the
GPU implementation on a different fast ABTS design described
in [18]. When a conflict is detected, the agent that is further be-
hind on the lane is rolled back to its original lane. As shown in
Fig. 6, FPGA-HLS is slower than the CPU at small scales due to
the initialisation and data transfer overheads. However, FPGA-HLS
outperforms the CPU for 256 and more agents. Interestingly, the
GPU performs similarly to the CPU and is slower than FPGA-HLS.
This is due to the substantial overheads in the conflict resolution
step on the GPU, which constitutes 60-90% of the total execution
time. FPGA-HLS achieves a 24.35x speed up over the CPU and
8.9x over the GPU when simulating 16,384 agents. Notably, FPGA-
NDRange is the slowest implementation in all cases. One reason for
this is the dependencies among work-item on the current pointers,
which prevent parallel processing of the agents. Moreover, FPGA-
NDRange cannot rely on pre-fetching: in the HLS implementation,
agent data is pre-fetched from the latency-prone off-chip memory

Session: Agent-Based Model SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA

120

10
3

10
4

10
5

2
4

2
6

2
8

2
10

2
12

2
14

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

ill
is

e
c
o

n
d

]

Number of agents

CPU
GPU

FPGA-HLS
FPGA-NDRange

Figure 6: Performance comparison between CPU, GPU,
FPGA-HLS and FPGA-NDRange

to the fast BRAM before the main simulation loop is entered. The
pre-fetching contributes to the initialisation overhead, resulting in
a slowdown at small scales, but a performance increase at larger
scales. However, in the NDRange implementation, where multiple
work-groups are presented and the BRAM address space can only
be shared within the same work-group, the memory required to
pre-fetch all agent data for each work-group exceeds the available
BRAM at large scales. Pre-fetching a chunk of data per work-group
is infeasible as it is only beneficial when the neighbouring agents
are pre-fetched, which naturally cannot be done before the neigh-
bour search. Instead, each work-item fetches agent data from the
slow off-chip memory, causing a decrease in performance.

Our kernels consume less than 6% of the FPGA’s resources. This
indicates a good potential to extend our approach to full road net-
work topologies by generatingmultiple pipelines on the same FPGA,
each pipeline dealing with one road. Extra logic might be required
in this case for transmitting agents between pipelines.

5 CONCLUSION AND OUTLOOK
In this work, we presented our approach to accelerate ABTS on
FPGAs using the SDAccel tool. A neighbour search and a conflict
resolution mechanism for FPGAs are proposed. We explored two
types of kernels called HLS (Single-work-item) and NDRange as
well as two design considerations which help achieve high perfor-
mance for both kernel types. Our experiments show that FPGA-
HLS outperforms a sequential CPU-based simulation due to the
pipelined parallelism, and the GPU owing to a smaller overhead
in the conflict resolution step. The NDRange kernel achieved low
performance, as our neighbour search algorithm is not amenable to
automatic parallelization and data pre-fetching in a SIMD fashion.
As a result, we recommend the use of Single-work-item or HLS
kernels and pre-fetching for workloads similar to our ABTS. In fu-
ture work, we will extend our approach to be applicable to full road
network topologies, which will require a reconsideration of the
neighbourhood search algorithm, as well as sorting when agents
simultaneously advance to a new road and change lanes.

6 ACKNOWLEDGEMENT
This work was financially supported by the Singapore National
Research Foundation under its Campus for Research Excellence
And Technological Enterprise (CREATE) programme.

REFERENCES
[1] Philipp Andelfinger, Jordan Ivanchev, David Eckhoff, Wentong Cai, and Alois

Knoll. 2019. From Effects to Causes: Reversible Simulation and Reverse Explo-
ration of Microscopic Traffic Models. In Proceedings of the 2019 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (PADS). ACM, Chicago,
IL, USA, 173–184.

[2] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron, and John Lach. 2008. Accel-
erating Compute-Intensive Applications With GPUs and FPGAs. In Proceedings
of the Symposium on Application Specific Processors (SASP ’08). IEEE, Anaheim,
CA, USA, 101–107.

[3] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shao-
chong Zhang. 2018. Understanding performance differences of FPGAs and GPUs.
In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, Boulder, CO, USA, 93–96.

[4] Lintao Cui, Jing Chen, Yu Hu, Jinjun Xiong, Zhe Feng, and Lei He. 2011. Acceler-
ation of Multi-Agent Simulation on FPGAs. In Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL ’11). IEEE, Chania,
Greece, 470–473.

[5] Yao Fu, EphremWu, Ashish Sirasao, Sedny Attia, Kamran Khan, and RalphWittig.
2016. Deep learning with int8 optimization on xilinx devices. White Paper (2016).

[6] Ioakeim G. Georgoudas, Panagiotis Kyriakos, G. Ch. Sirakoulis, and I. Th. An-
dreadis. 2010. An FPGA Implemented Cellular Automaton Crowd Evacuation
Model Inspired by the Electrostatic-Induced Potential Fields. Elsevier Journal of
Microprocessors and Microsystems 34, 7 (November 2010), 285–300.

[7] Arne Kesting, Martin Treiber, and Dirk Helbing. 2007. General lane-changing
model MOBIL for car-following models. Transportation Research Record 1999, 1
(2007), 86–94.

[8] Ian Kuon and Jonathan Rose. 2007. Measuring the gap between FPGAs and ASICs.
IEEE Transactions on computer-aided design of integrated circuits and systems 26,
2 (2007), 203–215.

[9] Shafiur Rahman, Nael Abu-Ghazaleh, and Walid Najjar. 2017. PDES-A: A parallel
discrete event simulation accelerator for FPGAs. In Proceedings of the ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (PADS). ACM, Singapore,
133–144.

[10] Daniel Rajf and Tomas Potuzak. 2019. Comparison of Road Traffic Simulation
Speed onCPU andGPU. In 23rd IEEE/ACM International Symposium onDistributed
Simulation and Real Time Applications (DS-RT). IEEE, Cosenza, Italy, 1–8.

[11] Kyle Rupnow, Yun Liang, Yinan Li, and Deming Chen. 2011. A study of high-level
synthesis: Promises and challenges. In 2011 9th IEEE International Conference on
ASIC. IEEE, Xiamen, China, 1102–1105.

[12] Christian Schäck, Rolf Hoffmann, and Wolfgang Heenes. 2010. Efficient traffic
simulation using the GCAmodel. In 2010 IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW). IEEE, Atlanta, GA,
USA, 1–7.

[13] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested Traffic
States in Empirical Observations and Microscopic Simulations. Physical review E
62, 2 (August 2000), 1805.

[14] Justin L. Tripp, Henning S. Mortveit, Anders A. Hansson, and Maya Gokhale.
2005. Metropolitan Road Traffic Simulation on FPGAs. In Proceedings of the
Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM ’05). IEEE, Napa, CA, USA, 117–126.

[15] Ioannis Vourkas and Georgios Ch. Sirakoulis. 2012. FPGA Based Cellular Au-
tomata for Environmental Modeling. In Proceedings of the International Conference
on Electronics, Circuits and Systems (ICECS ’12). IEEE, Seville, Spain, 93–96.

[16] Hasitha Muthumala Waidyasooriya, Masanori Hariyama, and Kunio Uchiyama.
2018. Design of FPGA-based computing systems with OpenCL. Springer.

[17] Jiajian Xiao, Philipp Andelfinger, Wentong Cai, Paul Richmond, Alois Knoll,
and David Eckhoff. 2019. Advancing Automatic Code Generation for Agent-
Based Simulations on Heterogeneous Hardware. In Proceedings of the European
Conference on Parallel Processing. Springer, Göttingen, Germany.

[18] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.
2018. Exploring Execution Schemes for Agent-Based Traffic Simulation on
Heterogeneous Hardware. In Proceedings of the International Symposium on
Distributed Simulation and Real Time Applications (DS-RT). IEEE, Madrid, Spain,
1–10.

[19] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.
2019. A Survey on Agent-based Simulation Using Hardware Accelerators. ACM
Computing Surveys (CSUR) 51, 6 (2019), 131.

[20] Mingyu Yang, Philipp Andelfinger, Wentong Cai, and Alois Knoll. 2018. Evalua-
tion of Conflict Resolution Methods for Agent-Based Simulations on the GPU. In
Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation. ACM, 129–132.

Session: Agent-Based Model SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA

121

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Agent-based Traffic Simulation (ABTS)
	2.2 Field-Programmable Gate Array (FPGA)
	2.3 Open Computing Language and SDAccel
	2.4 Related Work

	3 Design and Implementation
	3.1 Agent Update and Neighbour Search
	3.2 Design Considerations
	3.3 Main Simulation Loop

	4 Experiment
	5 Conclusion and Outlook
	6 Acknowledgement
	References

