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Abstract—Mixed traffic scenarios present challenges to au-
tonomous vehicles due to the high degree of randomness intro-
duced by human drivers combined with their larger reaction
times and perception errors. In this paper we address those
challenges on a longitudinal control level by designing optimal
car-following models which aim to maximise simultaneously the
vehicle population’s speed, efficiency, comfort, and safety. We
use the agent-based simulation mixed traffic tool BEHAVE to
design a scenario covering all driving phases and formalize
the four different objective functions to be optimized. We
take on a multi-objective optimization approach in order to
analyse the trade-offs that occur between the chosen traffic
metrics. Furthermore, we design a methodology to scalarize the
multi-objective problem and find a single optimal well-balanced
parameter set maximizing the formulated objective functions.
The optimized model is able to gain significant performance
increase in terms of efficiency, comfort and safety, while giving
away a significantly smaller percentage of average speed.

I. INTRODUCTION

Inevitably our roads will be shared between autonomous
vehicles (AVs) and human drivers. With the increase of
self-driving cars’ technology readiness level, mixed traffic
scenarios involving both humans and AVs present bigger
interest to researchers, policy makers, and original equipment
manufacturers (OEMs). It is widely accepted that AVs will
have beneficial effects on traffic parameters such as efficiency
and safety in a purely autonomous environment, however,
mixed traffic conditions pose challenges that might hinder the
magnitude of those improvements.

Autonomous vehicles can perform well together in platoons
due to their predictable behaviour, small reaction times, and
communication capabilities. When an AV is behind a human-
driven vehicle, however, it is capable of making a limited
amount of assumptions about the human’s future behaviour
and has to infer the driver’s intentions instead of receiving
them over a communication channel. This calls for an overly
cautious driving style that can reduce the overall traffic system
performance. The magnitude of this performance deterioration
naturally attracts a great interest, however, a more fundamental
question that we try to address in this work is what metrics
define the performance of the traffic system.
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While speed and efficiency (in terms of energy needed
per unit of distance) are among the most discussed metrics,
comfort and safety are often omitted or studied in isolation. In
order to fill this gap, we study the effects of speed, efficiency,
comfort, and safety together as we believe they are all equally
important factors that need to be considered.

Currently there are not enough AVs on the roads to perform
real-life experiments to estimate those metrics. Therefore,
traffic simulation is a key tool that enables researchers to
study mixed traffic’s implications on traffic conditions. While
macroscopic city-scale mixed traffic studies exist [1], since we
are interested in studying the interaction of AVs and humans,
we require a microscopic agent-based simulation.

In this paper we make use of the BEHAVE tool which
is designed specifically to study agent-based interactions in
mixed traffic conditions on a multiple lane highway [2]. The
tool allows the user to specify different agent groups governed
by different driver behaviour models which is precisely what
is needed to study mixed traffic scenarios.

There are two main components describing vehicle motion;
longitudinal and lateral movement. In this paper, we will focus
on the longitudinal motion in order to reduce the parameter
space and the complexity of our analysis. In agent-based
simulations, the longitudinal motion of vehicles is governed
by a car-following model, which can be perceived as a function
that takes inputs from the environment of the vehicle and
returns the acceleration that it would like to apply.

The goal of this paper is to study how existing models
for longitudinal acceleration of AVs perform in a mixed
traffic context and how they can be improved to maximize
traffic performance metrics such as speed, efficiency, comfort,
and safety. More specifically, we choose two prominent car-
following models and try to find optimal parameter sets for
them. As we have multiple metrics to maximize, we take a
multi-objective optimization approach that allows us to explore
the trade-offs between the considered objectives. Using the
results obtained from the multi-objective optimization we
combine the objectives, which allows us to come up with a
single parametrization of the two initially chosen models that
balances well between the four different objectives.

The contributions of this paper can be summarized as:
• Mathematical formulation of objective functions for

speed, efficiency, comfort, and safety in mixed traffic
• Comparison of Pareto fronts of optimized AV longitudi-

nal control models
• A methodology to choose a single parametrization of a

control model
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II. RELATED WORK

There are two main types of car-following models: stimulus-
response models and collision avoidance models. The stimulus-
response models capture the behaviour of the ”following”
vehicle related to some stimulus coming from the ”leading”
vehicle. One example of a stimulus-response model is the
optimal velocity model (OVM) proposed initially by Bando
et al. [3]. It relies on differential equations describing the
velocity and acceleration of the agent, depending on the
velocity and position of the vehicle ahead and a sensitivity
parameter denoting the speed of the response. It has been
reported, however, that the model can encounter unrealistic
acceleration and deceleration values due to the fact that it
reacts to insignificant stimuli from the vehicle ahead.

This problem is addressed in the generalized force model
(GFM) of Helbing and Tilch [4] by addition of a term
which takes into consideration the difference of velocities
between the vehicles. This, however, introduces an unrealistic
behaviour at close proximity when the lead vehicle is travelling
faster than the follower. The full velocity difference model
(FVDM) postulated in by Jiang et al. [5] is an extension of
the GFM, which also takes such situations into consideration
but makes no allowance of the effect of the inter-car spacing
independently of the relative velocity [6]. Furthermore, it must
be noted that the GFM, OVM and FVDM require very small
simulation time-steps in order to produce realistic acceleration
patterns, which makes them computationally inefficient [7].
Additionally, the responsive nature of these models results
in agents constantly reacting to non-essential stimuli thus
leading to unrealistic behaviour.

A widely used example of a collision avoidance car-
following model is Gipps’ model described by Gipps in [8].
It utilizes the concept of maintaining a safe speed in order to
avoid collisions. As a consequence of the safe speed and safe
distance conditions Gipps’ model typically underestimates
the capacity of the system as drivers keep too large distances
between themselves since they are always prepared for the
worst-case scenario.

The Intelligent Driver Model (IDM) described by Treiber
et al. in [9], although considered a stimulus-response model,
incorporates the concept of safe driving similarly to Gipps’
model. It can be thought of as a hybrid model unifying the
two categories described above.

There is a safe distance, however, approaching slower
vehicles is smoother, as there is no fixed deceleration but
rather a gradually increasing deceleration until the comfort-
able deceleration value is reached. The IDM offers smooth
transitions between the different driving modes: acceleration,
deceleration, car-following, which is manifested in a more
realistic acceleration profile and is formulated in Equation 1.

ai = a0

1−
(
v

v0

)β
−

s0 + vT0 +
v(v − vl)
2
√
a0b0

s


2


(1)

The IDM has the following parameters: preferred speed v0,
preferred acceleration a0, preferred deceleration b0, minimum
gap s0, time headway T0 (time it would take for the vehicle
to reach the vehicle ahead’s tail position), free road term
factor β. The inputs to the model are the vehicle’s velocity
v, velocity of vehicle ahead vl, and distance to vehicle ahead
s. The enhanced IDM (E-IDM) suggested in [10] has an
additional parameter called coolness c which allows for a less
reactive behaviour of the model while keeping it collision free
thus improving traffic flow. The acceleration in the enhanced
IDM is computed as follows:

ae =


ai if ai ≥ ac
(1− c) ai+

c

(
ac + b0 tanh

(
ai − ac
b0

))
otherwise

(2)

where ac is called the constant acceleration heuristic and
is formally defined as:

ac =


v2ãl

v2
l − 2sãl

if vl(v − vl) ≤ −2sãl

ãl −
(v − vl)2Θ(v − vl)

2s
otherwise

(3)
where ãl = min(al, a) is called the effective acceleration

and Θ is the Heaviside step function.
The afore-mentioned suitability of the IDM as a model

that accurately represents traffic dynamics make it one of
the fundamental building blocks used in this paper. More
specifically, the E-IDM is used as one of the two candidates
for AV control in the mixed traffic scenario. In [10] it is shown
that vehicles employing the algorithm improve the throughput
of the system, however, comfort, safety, and efficiency are
not analysed.

The second model that we will consider is a stimuli
algorithm that is typically used for ACC and that is extended
into the CACC version that AVs utilize in platoons. Since
we create the mixed traffic conditions such that there are no
platoons, CACC is not a suitable option, however, the control
logic of ACC described in [11] looks promising. It consists
of a controller that follows the speed of the vehicle in front
with a minimal delay with a control parameter α, and keeps
a predefined time headway T0. The model is formulated as
in Equation 4.

aacc = − 1

T0
(v − vl + α (T0v − s)) (4)

In order to model human drivers in our simulations, we
use the Human Driver Model (HDM), an extension of the
IDM described in [12]. This extension consists of 4 main
parts: addition of reaction time, perception errors, temporal
anticipation of other drivers, which aims at counteracting the
delay in reaction time, and spatial anticipation of more than
one vehicle ahead.

The reaction time Tr is implemented by evaluating the
right-hand side of Equation 1 at time t− Tr:
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(5)
The perception errors are modelled using a Wiener process

applied on the inter-vehicle distance and approaching speed
∆v = v − vl:

sest = s exp (Vswst) (6)
∆vest = ∆v + srcw∆v (7)

where Vs is the variation coefficient for spatial error, rc
inverse TTC error, and ws and w∆v are Wiener processes
defined as:

w(t+ ∆t) = exp (−∆t/τ)w(t) +

√
2∆t

τ
η(t) (8)

where τ is the error correlation time and η(t) is sampled
from a normal distribution.

The temporal anticipation of the driver represents the IDM
inputs estimation at time t from their values at t− Tr. Those
estimations are computed by assuming either constant or no
acceleration:

ŝ =
∣∣sest − Tr∆vest∣∣t−Tr

(9)

v̂ =
∣∣vest + Tra

∣∣
t−Tr

(10)

∆̂v =
∣∣∆vest∣∣

t−Tr
(11)

The IDM equation is then used with the adjusted inputs.
The spatial anticipation of the driver is modelled by including
interaction terms for more vehicles ahead. The original IDM
formula can be split into a free road (first term in Equation
1) and an interaction term (second term in Equation 1).

ai(s, v,∆v) = afree(v) + aint(s, v,∆v) (12)

The interaction term itself takes the inputs of the model
(s, v,∆v). When interaction terms for multiple vehicles
ahead are added, therefore, the respective new inputs to the
interaction term are computed:

ahdm = afree(v̂) +

na∑
k=1

aintk (ŝk, v̂, ∆̂vk) (13)

where the term aintk is the interaction term with the k-th
vehicle in front and na is the number of anticipated vehicles.

III. SCENARIO

The scenario we design in order to test out various car-
following models aims at capturing all parts of longitudinal
driving. Those include starting from a standstill position,
acceleration phase, steady velocity driving phase, unexpected
braking, and recovery. Since we examine only car-following
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Fig. 1: Acceleration profile of an 8 vehicle population where
AVs use the ACC model.

behaviour we use a straight road with a single lane for our
experiments. The vehicles are ordered by alternating human-
driven and AVs in order to fully observe the interaction
between the two types of vehicles. The human-driven vehicles
use the HDM model described in the previous section with
the following parameters: a0 = 2, b0 = 2, T0 = 1.5,
T ′ = 1.5, Vs = 0.05, rc = 0.01, τ = 20, based on
[12]. The models used by the autonomous vehicles are
altered depending on the experiment that is being preformed
(either ACC or E-IDM). All vehicles start from velocity 0
positioned one vehicle length apart. The time step of the
simulation is set to ∆t = 0.1 seconds. One minute after
the start of a simulation run (episode), the leading vehicle
brakes with constant deceleration b for a time duration of
d seconds, after which the simulation continues running for
one more minute. One experiment consists of 5 episodes
with increasing deceleration and braking duration in order
to evaluate the overall performance of the population for a
variety of braking situations. The specific values of b and
d chosen for the episodes are: b = {−2,−4,−6,−8,−10}
m/s2 and d = {1, 2, 3, 4, 5} seconds. Figure 1 shows the
acceleration profile of a small vehicle population with AVs
that utilize the ACC model.

For the experiments run throughout the paper we use a
population of 50 vehicles. Since the human model introduces
randomness to the experiment, every experiment (5 episodes)
is run 10 times and the results are averaged.

IV. OPTIMIZATION OBJECTIVES

The four metrics that we have determined relevant for
AVs are speed, efficiency, comfort, and safety. Ideally, a car-
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following model will increase all of them, however, typically
there are trade-offs. The following subsections discuss in
detail how we have measured those traffic parameters. The
notation used to describe the objectives can be found in Table
I.

Symbol Description
N number of agents
K number of time steps
ai,k acceleration of i-th agent at time step k
vi,k velocity of i-th agent at time step k
pi,k position of i-th agent at time step k
∆t time step duration
ρ air density
cw drag coefficient
M total number of episodes in an experiment run
A frontal area of vehicle
φ rolling friction coefficient
m mass of vehicle
g gravitational acceleration
λ weight adjustment factor
ηrb efficiency of recuperative braking
ψ time-to-collision critical threshold

TABLE I: Notation

A. Speed

The average speed V̂j of the population during episode j
is computed by adding up the travelled distances over the
episode of all cars and dividing this by the total travel time of
the vehicles. The overall average speed metric V̂ is computed
as a weighted sum of the episodes. The episode with the
highest weight is the one with the smallest braking intensity
as it is more frequent in real life situations.

V̄j =

N∑
i=2

pi,K

(N − 1)∆tK
(14)

V̄ =

M∑
j=1

αj V̂j (15)

Where αj = 1/2j

M∑
j=1

1/2j

. The first vehicle is excluded from this

computation because in all scenarios its average speed remains
the same.

B. Efficiency

The efficiency of the vehicle population throughout the
episodes is determined by computing the distance that could
be driven with one unit of energy. As with the speed, the
episode efficiencies are combined using a weighted sum to
produce an overall efficiency. The energy consumption of a
vehicle is computed by using a simple model for the power
needed or generated by the vehicle’s accelerations. There are
three terms that are used to arrive at the total power: the
air friction P air, rolling friction P roll, and acceleration P acc

power terms.

P air
i,k = 0.5ρcwAv

3
i,k (16)

P roll
i,k = φmgv3

i,k (17)

P acc
i,k =

{
m(1 + λ)ai,kvi,k, if a ≥ 0

m(1 + λ)ai,kvi,kηrb, otherwise
(18)

Pi,k = P air
i,k + P roll

i,k + P acc
i,k (19)

where ηrb is the efficiency of the recuperative braking (in

the case of electric AVs) modelled as
[
e

0.0411

|ai,k|
]−1

[13]. The

total energy consumption Ej for episode j is computed by
using the power consumption of every vehicle for every time
step multiplied by the time step duration. Similarly to the
average speed case the overall efficiency is a weighted sum
of the episode efficiencies.

Ej =

N∑
i=2

K∑
k=1

Pi,k∆t (20)

E =

M∑
j=1

αjEj (21)

C. Comfort

The overall passenger comfort Cj for episode j in the
population is measured by computing the total jerk that was
experienced throughout the episode. We have assumed that
both positive and negative changes in acceleration affect
discomfort equally. Since we are trying to compute the comfort
we negate the sum of jerks, which represents the discomfort.

Cj =

N∑
i=2

K−1∑
k=1

− |ai,k − ai,k+1| (22)

C =

M∑
j=1

αjCj (23)

D. Safety

The overall safety Sj of episode j is computed by utilizing
one of the most widely known safety surrogate metrics time-
to-collision (TTC) [14]. We represent the risk of an accident
as the duration for which the TTC between two vehicles is
below a certain critical value ψ. Literature indicates that this
threshold for rural roads similar to our scenario is typically
set to ψ = 3 seconds [15], [16], [17]. As we would like to
represent the safety with our metric we negate the overall
duration for which the TTC is under the critical threshold.

Sj =

K∑
k=1

N∑
i=2

−Θ(ψ − TTCi,k)∆t (24)

S =

M∑
j=1

αjSj (25)

where Θ is the Heaviside step function.
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V. RESULTS AND DISCUSSION

Because we have multiple objective functions, we need to
employ a multi-objective optimization approach.

The optimization problem can be formulated as follows:

arg min
ωCF

(−V̄ ,−E,−C,−S) (26)

where ωCF is the set of parameters for car-following model
CF.

As discussed in Section II we have chosen two different
models to evaluate in this paper. The first one is the enhanced
IDM (E-IDM) and the second one is the ACC as described
in Equation 4. We solve the optimization problem by using
the NSGA-II genetic algorithm [18]. The model parameters
ωCF and their support for the two models are as follows:
• Enhanced IDM: Preferred acceleration a0 ∈ [0.5, 4],

preferred deceleration b0 ∈ [0.5, 4] time headway T0 ∈
[0.5, 4] and free road term factor β ∈ [0.5, 4].

• ACC: time headway T0 ∈ [0.5, 4] and control parameter
α ∈ [0.01, 1]

The only constraints of the optimization problem are
the defined supports of the model parameters ωCF. Those
upper and lower parameter bounds were chosen in order to
provide a reasonably large exploration space while keeping
the parameter values realistic, and thus not too far away from
the parameters human drivers exhibit. In the case of E-IDM,
the inter-vehicle distance s0 is not being studied since initial
tests showed insignificant effects on the objective functions.
Furthermore, the preferred speed v0 is not included in the
parameter list since it controls the same part of the function
as the free road term factor.

A. Multi-objective optimization of ACC and EIDM

The NSGA-II algorithm is run with parameters for a
maximum of 100 iterations with population size 50. The
mutation rate is set to 0.01 and the mutation percentage is
0.4. The optimization process produces a four dimensional
Pareto front. Figure 2 shows the four most interesting two
dimensional projections of the front. Since the main trade-off
is between the average speed and the rest of the objectives,
the front is best observed on those projections.

It can be observed the E-IDM and ACC form a continuous
front with the ACC taking the high velocity part of the
front while the E-IDM is able to reach more efficient and
comfortable solutions. Both models are able to produce
solutions with the maximum safety value (0), however, the
E-IDM has a solution that has slightly higher average speed.
The safety-comfort projection clearly demonstrates that there
is no trade-off between those two objectives as the maximum
safety and comfort values are actually reachable by a single
parametrization of the E-IDM model.

None of the fronts shows a clear domination of one model
over the other for the regions of the front where the non-
dominated solutions coexist. The fact that none of the models
dominates the other in the shared parts of the front could
imply that both models are derived from the same master
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Fig. 2: Projections of Pareto fronts (*) and default parameter
solutions (circles) for purely human population (green) and
mixed traffic scenarios with AVs governed by E-IDM (orange)
or ACC(blue) models.

model similarly to what was demonstrated in [19] for the
IDM and the OVM models.

The reference point of the E-IDM with parameters a0 = 2,
b0 = 2, T0 = 1.5, and β = 4 resides well within the front
for comfort and safety, which means that the parametrization
remains optimal for those objectives. It is, however, an internal
point of the efficiency front which means that there exist
better parametrizations which dominate it. The reference point
of the ACC model is dominated on the safety front and
resides within the other fronts, which means that there are
better parametrizations, which allow safer operations of ACC
controlled vehicles.

The human model reference point is dominated by all
solutions on the Pareto front. This is an expected finding,
which reconfirms the proposition that intelligently controlled
autonomous vehicles can simultaneously improve the speed,
efficiency, comfort, and safety of the traffic system.

B. Scalarization of Optimization Problem and Comparison
of Balanced Solutions

The results of the multi-objective optimization have pro-
vided us with bounds for the chosen objective functions. These
bounds help us define what are realistically the minimum and
maximum values of the objectives functions where optimal
behaviour in a multi-objective sense can be observed. We
can use those bounds to normalize the objective functions
and then combine them into a single objective, which will
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Default
E-IDM

Default
ACC

Balanced
E-IDM

Balanced
ACC

Improvement of
Average Speed [%] 0.39 3.21 -2.47 -0.22

Improvement of
Efficiency [%] 1.76 0.58 6.96 2.38

Improvement of
Comfort [%] 44.29 21.63 50.82 36.08

Improvement of
Safety [%] 93.82 59.94 100 95.47

TABLE II: Improvement of traffic system performance of
various AV driving models over human-driver only scenario.

allow us to find a single balanced solution. Once minimum
and maximum values from all non-dominated solutions of
both models for all of the objectives are collected the single
objective for the performance of the traffic system P can be
formulated as:

P = α1

(
V̄ − V̄min

V̄max − V̄min

)
+ α2

(
E − Emin

Emax − Emin

)
+α3

(
C − Cmin

Cmax − Cmin

)
+ α4

(
S − Smin

Smax − Smin

) (27)

The weights α1−4 can be set to be equal or can be used
to prioritize certain objectives over others or set manually
to values depicting the priorities of the practitioner that is
using this methodology. In this paper we choose to have three
levels of priority. Highest priority is given to the speed and
safety objectives (α1 = α4 = 3), medium priority is given
to efficiency (α2 = 2), and the lowest priority is given to
comfort (α3 = 1).

The new optimization problem is formulated as arg min
ωCF

P .

We utilize the simplex algorithm in order to find the optimal
solutions for the parameters of both the E-IDM and the
ACC. The results of the solutions and their comparison to the
reference points and the human driver model can be found in
Table II.

It can be observed that the balanced solutions in both cases
“borrow” from the speed objective in order to improve on
the efficiency, comfort, and safety metrics. The increase in
efficiency by the E-IDM balanced model parametrization is
more than twice as big as the one of the balanced ACC model.
Furthermore, the comfort is increased by a factor of 1.5 more
and safety reaches the perfect score, which means that no
car in any of the episodes has crossed the 3 seconds TTC
critical threshold. The ACC balanced model parametrization is,
however, producing a higher speed metric, by only sacrificing
0.22% of the average speed value, while the E-IDM is losing
2.47%.

An overarching observation from our results is that the ACC
model parametrizations offer higher average velocities and
lower comfort, efficiency, and safety than the E-IDM. Smooth
transitions between driving phases and relaxed reactions to
changing traffic conditions, typical for the E-IDM favour
comfort, efficiency, and safety, but also lead to slower reaction
to changing conditions. In some cases this would mean missed
opportunities for steeper, and therefore faster, acceleration
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Fig. 3: Proportion of improvement in traffic performance
objectives received by AVs for the two balanced models.

phases. One key detail in our scenario description is that we
include the acceleration phase of driving in our experiments
rather than initiating our vehicles at cruising speed as it is
usually done. This more complete evaluation of the driving
cycle is the main reason why the trade-off between speed and
the other factors is observed as the more aggressive models
perform well during the acceleration and worse when they
have to brake unexpectedly. This is the case with the ACC
which is a velocity matching controller, thus a part of the
stimuli-response family of models, which are notorious for
over-reacting to environmental changes and producing high
acceleration/deceleration values.

C. Analysis of Implications on Human and AV sub-populations

Rapid acceleration adaptations and fast reaction times
might enhance the performance of the AVs in the traffic
system, however, we should also consider the effects on
the performance of the human sub-population. Ideally, the
presence of autonomous vehicles on the roads should also
“steer” human drivers to also improve their performance
indicators. Figure 3 shows the split of the improvement
brought by the AVs between the two groups of vehicles.
A split of 0.5 would mean that the performance increase
on a given objective is perfectly shared by human drivers
and AVs. A split higher than that would indicate that AVs
are benefiting more than human drivers. It can be observed
that the E-IDM provides better improvement splits for all
objectives except efficiency where both splits are very close
to 50% anyway. The biggest difference can be observed for
the comfort objective. Higher magnitude of the split can be
explained by the fact that the smoother driving style of the
E-IDM model makes AVs act as a dampener between human
drivers thus also improving their comfort levels.

VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

This paper presented a comparative analysis of two longi-
tudinal control algorithms, namely the ACC and the E-IDM
car-following models, in a mixed traffic scenario of alternating
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human and AV string of vehicles. We have formulated 4
performance indicators of the presented traffic system: speed,
efficiency, comfort, and safety. In order to find optimal
parametrizations of the examined AV control models, we
performed a multi-objective optimization and observed that the
two models form a continuous Pareto front. A clear trade-off
has been observed between the speed performance indicator
and the rest of the indicators. The ACC resides within the
higher velocity part of the front, while the E-IDM model
covers the more comfortable efficient, and safe part of the
front.

The results of the multi-objective calibration were used
to scalarize the optimization problem and come up with a
balanced single solution for optimal parameter sets of the two
examined models. The E-IDM model exploits the trade-off by
using a 2.5% reduction of speed to improve efficiency by 7 %,
comfort by 50 % and arrive at a perfect safety score. It was
further observed that the E-IDM model splits improvements
of performance indicators more evenly between human drivers
and autonomous vehicles.

The biggest limitation of our study is the human driver
model. Even though HDM is considered to be reliable, the
modelling of the perception errors produces unrealistically
random fluctuations of the acceleration values for human-
driven vehicles. This makes it extremely challenging for
AVs to further improve traffic conditions even with perfect
knowledge of the system, as predictions become obsolete. If
a more adequate human driver model is present, a promising
future direction of research should be the design of driving
behaviour models that actively try to improve the driving
style of the human drivers thus further enhancing the traffic
system’s performance.

Furthermore, the currently examined scenario is only a
first step to tackle the problem of optimal AV behaviour
in mixed traffic. The results of this initial experiment,
therefore, must be validated and extended with more complex
scenarios and include additional behavioural. Those include
the consideration of multiple lanes and thus optimal lane
changing models, random vehicle distribution on the road,
variable penetration rate of autonomous vehicles, and urban
road network scenarios including controlled and uncontrolled
intersections. The evaluation of those more complex scenarios
will extend the spectrum of traffic situations the models have
to deal with and thus will produce more general results.

Last but not least, the imperfections of sensing and
computational and communication delays of AVs should also
be included in the respective models in order to only consider
realistically applicable future AV control algorithms. It will
therefore be interesting to see how well the imperfections of
humans combine with the imperfections of AVs. The added
complexity in: 1) the considered traffic scenarios, 2) the
behavioural models of the vehicles, and 3) coordination efforts
of the AVs, will set the stage for novel AV driving behaviour
methods which optimize traffic on a system rather than vehicle
level.

REFERENCES

[1] J. Ivanchev, A. Knoll, D. Zehe, S. Nair, and D. Eckhoff, “A macroscopic
study on dedicated highway lanes for autonomous vehicles,” in
International Conference on Computational Science. Springer, 2019,
pp. 520–533.

[2] J. Ivanchev, T. Braud, D. Eckhoff, D. Zehe, A. Knoll, and
A. Sangiovanni-Vincentelli, “On the need for novel tools and models
for mixed traffic analysis,” in ITS World Congress, Singapore, Oct
2019.

[3] M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata, and
Y. Sugiyama, “Phenomenological study of dynamical model of traffic
flow,” Journal de Physique I, vol. 5, no. 11, pp. 1389–1399, 1995.

[4] D. Helbing and B. Tilch, “Generalized force model of traffic dynamics,”
Physical review E, vol. 58, no. 1, p. 133, 1998.

[5] R. Jiang, Q. Wu, and Z. Zhu, “Full velocity difference model for a
car-following theory,” Physical Review E, vol. 64, no. 1, p. 017101,
2001.

[6] L. Zhi-Peng and L. Yun-Cai, “A velocity-difference-separation model
for car-following theory,” Chinese Physics, vol. 15, no. 7, p. 1570,
2006.

[7] E. Cascetta, Transportation systems engineering: theory and methods.
Springer Science & Business Media, 2013, vol. 49.

[8] P. G. Gipps, “A behavioural car-following model for computer simula-
tion,” Transportation Research Part B: Methodological, vol. 15, no. 2,
pp. 105–111, 1981.

[9] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

[10] A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent driver
model to access the impact of driving strategies on traffic capacity,”
Philosophical Trans. of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 368, no. 1928, pp. 4585–4605,
2010.

[11] M. Segata, “Safe and Efficient Communication Protocols for Platooning
Control,” PhD Thesis (Dissertation), University of Innsbruck, February
2016.

[12] M. Treiber, A. Kesting, and D. Helbing, “Delays, inaccuracies and
anticipation in microscopic traffic models,” Physica A: Statistical
Mechanics and its Applications, vol. 360, no. 1, pp. 71–88, 2006.

[13] C. Fiori, K. Ahn, and H. Rakha, “Power-based electric vehicle energy
consumption model: Model development and validation,” Applied
Energy, vol. 168, pp. 257–268, 04 2016.

[14] C. Hydén, “Traffic conflicts technique: state-of-the-art,” Traffic safety
work with video processing, no. 37, pp. 3–14, 1996.

[15] J. Hogema and W. Janssen, “Effects of intelligent cruise control on
driving behaviour: a simulator study,” TNO Human Factors Research
Institute, Tech. Rep. 1996 C012, 1996.

[16] G. Hegeman, Assisted overtaking: An assessment of overtaking on
two-lane rural roads. TRAIL Research School Delft, the Netherlands,
2008, no. T2008/4.

[17] H. Farah, S. Bekhor, A. Polus, and T. Toledo, “A Model for Passing
Decisions on Two-Lane Rural Highways,” in 87th Annual Meeting of
the Transportation Research Board, Washington DC, USA, Jan 2008.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[19] B. Yang and C. Monterola, “Classification and unification of the
microscopic deterministic traffic models,” Physical Review E, vol. 92,
no. 4, p. 042802, 2015.

1974

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:35:06 UTC from IEEE Xplore.  Restrictions apply. 


