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ABSTRACT
Spiking neural networks (SNN) are among the most computation-

ally intensive types of simulation models, with node counts on the

order of up to 10
11
. Currently, there is intensive research into hard-

ware platforms suitable to support large-scale SNN simulations,

whereas several of the most widely used simulators still rely purely

on the execution on CPUs. Enabling the execution of these estab-

lished simulators on heterogeneous hardware allows new studies to

exploit the many-core hardware prevalent in modern supercomput-

ing environments, while still being able to reproduce and compare

with results from a vast body of existing literature. In this paper,

we propose a transition approach for CPU-based SNN simulators

to enable the execution on heterogeneous hardware (e.g., CPUs,

GPUs, and FPGAs) with only limited modifications to an existing

simulator code base, and without changes to model code. Our ap-

proach relies on manual porting of a small number of core simulator

functionalities as found in common SNN simulators, whereas un-

modified model code is analyzed and transformed automatically.

We apply our approach to the well-known simulator NEST and

make a version executable on heterogeneous hardware available to

the community. Our measurements show that at full utilization, a

single GPU achieves the performance of about 9 CPU cores.
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1 INTRODUCTION
Spiking neural networks (SNNs) are artificial neural networks that

are used to model and understand the mammalian brain. Due to

the scale and complexity of relevant networks, simulations of SNNs
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often require enormous amounts of computational resources and

substantial running times. For example, on a single CPU core, simu-

lating 250ms of activity for a network of 11 250 neurons and about

127 million synapses using the NEST simulator [17] takes more

than 30 seconds. Meanwhile, the brain of a mammal contains on the

order of 10
7
to 10

11
neurons, with thousands of synapses per neuron

on average [1, 22, 23]. To tackle the computational demands of large-

scale SNN simulations, many of the existing simulators are designed

with the capability for parallel execution using multi-core CPUs in

a single-node or multi-node environment. In past few years, the

focus of works on high performance SNN simulation has shifted

towards accelerators such as graphics processing units (GPUs),

which are now present in most computers ranging from individual

workstations to the largest supercomputers. Several GPU-enabled

SNN simulators have been developed with substantial performance

improvements over a CPU-based execution [6, 10, 15, 25, 40, 48].

Typically, separate CPU and GPU variants of the relevant segments

of the simulator code base have been developed manually. While

this approach allows for a large degree of optimization to the tar-

get hardware, the simulator and model code is duplicated for each

hardware platform, posing significant challenges in terms of main-

tainability and extensibility. Further, developing code to be executed

on accelerators is widely considered to be more cumbersome and

error-prone than CPU programming (e.g., [40]). Thus, it is desir-

able to minimize the need to develop and modify accelerator code

directly. Since in contrast to the core simulator functionalities, neu-

ron and synapse models may frequently be added, modified, or

extended, the model development process should abstract from the

target hardware as much as possible.

Newly developed simulators can achieve a certain degree of hard-

ware independence by a template-based model specification [48].

However, a transition path is needed for existing and widely used

SNN simulators such as NEST [17] and Brian 2 [18], which have

been developed in general-purpose languages such as C++, target-

ing the execution on CPUs. Adding support for the execution on

heterogeneous hardware to these simulators allows researchers to

conduct new simulation studies in a timelier manner, while still

relying on widely studied and tested simulator and model imple-

mentations. In particular, new studies can easily reproduce previous

results from the literature and benefit from existing validation re-

sults, using existing configuration files and tool flows.
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This paper presents a semi-automated approach for transfor-

mation of SNN simulators to enable execution on heterogeneous

hardware. While our experiments are executed on CPUs and GPUs,

the transformed simulator can make use of CPUs, GPUs, FPGAs,

and DSPs. Our main contributions are as follows:

(1) We analyze the common architecture of CPU-based SNN

simulators, differentiating static components implementing

basic simulator functionality, and the portions specifying

neuron and synapse models.

(2) We present an approach based on an automated model code

transformation to support the transition from a purely CPU-

based simulator code base to an implementation executable

on heterogeneous hardware. We propose optimizations for

synapse models to reduce their memory consumption.

(3) We demonstrate our approach on the NEST simulator and

present performance measurement results when executing

NEST on GPUs, which was not possible previously. Substan-

tial performance gains are achieved over a purely CPU-based

execution. Our transformation code is publicly available
1
.

2 BACKGROUND AND RELATEDWORK
In this section, we briefly introduce spiking neural networks as

well as the simulators for this class of network. Further, we outline

fundamentals and existing work on the execution of spiking neural

network simulations on heterogeneous hardware.

2.1 Spiking neural network models
Spiking neural networks (SNNs) [37] are artificial neural networks

that are considered to be more biologically accurate representations

of mammal brains than the more abstract neural network models

used by common machine learning applications. An SNN is a di-

rected graph with so-called integrate-and-fire neurons as nodes

and synapses between two neurons as edges. Integrate-and-fire

neurons generate rapid increases or decreases of their membrane

potential, so-called spikes, according to the potential changes on

the incoming synapses. The spikes are transmitted to the neighbor-

ing neurons across the outgoing synapses, which may increase or

decrease the spike’s potential. The main application areas of SNN

models are in computational neuroscience, which aims at under-

standing the nervous systems, and in machine learning, e.g., in the

robotics field [8, 31].

In addition to the network topology, SNNs are characterized by

the neuron and synapse models. Neuron models define neuron state

variables and actions on incoming spikes, commonly using differen-

tial equations. Typically, these equations are solved numerically by

time-stepped integration. Each time step updates a neuron’s state

according to the incoming spikes and its current state, potentially

generating outgoing spikes. Synapse models define the way spikes

are affected by the transmission through a synapse.

With static synapse types, each spike’s potential is affected in a

constant way as it travels to the target neuron. In contrast, Spike-
timing dependent plasticity (STDP) models dynamically vary the

current spike’s potential depending on the current synapse state,

which may change with each transmitted spike. An SNN may use

several different types of neuron and synapse models.

1
https://github.com/opencl-nest/opencl-nest

2.2 SNN simulators
SNN simulators are programs that execute the network’s activities

in the form of neuron and synapse behaviors over a period of time.

Although the local state of each neuron leads to spike patterns that

are usually not synchronous across the network, the synchronous

execution of SNN models permits a simple barrier-base paralleliza-

tion. The simulation state is advanced by updating each neuron’s

state according to the chosen neuron model, which is typically

reflected computationally by one time step of numerical integra-

tion. The number of integration steps before synchronization is

required (super step), depends on the lookahead, which is a delta in

time during which state changes of a neuron are guaranteed not to

affect other neurons, as defined by the minimum time required for

a spike to travel through a synapse. At the end of each super step,

synchronization is achieved by exchanging newly generated spikes

among the neurons. In parallel and distributed simulation terminol-

ogy, this execution scheme is similar to synchronous conservative

synchronization using the YAWNS algorithm [42].

A number of SNN simulators have been proposed in the liter-

ature, frequently focusing on scalability to large networks. The

number of neurons in the brain of a mammal is on the order of 10
7

to 10
11
, with about 1 000 to 10 000 synaptic connections per neuron

on average [1, 22, 23]. Thus, the number of synapses is substantial

even in small networks. To support large scale SNN simulation,

simulators have been developed targeting high-performance com-

puting environments employing multi-core CPUs and GPUs.

Established simulators such as CARLsim 4 [10], Brian 2 [18],

NEURON 7.5 [24], NCS 6 [25], Nemo 0.7 [15], Nengo 2.6 [6], NEST

2.14, HRLSim [40], and PCSIM 0.5 [43] support multi-threaded

execution on CPUs, some of them with support for execution on

multiple nodes. GENN 3 [48] can be executed on a single GPU.

Some other simulators additionally support the execution in GPU

clusters [6, 10, 10, 15, 25, 40, 40]. Among these simulators, CARLsim

4 and NCS 6 support a CPU-GPU co-execution.

Several authors have explored the execution of SNN simulations

on GPUs independently of the established simulators (e.g., [7, 44]).

These works share the approach of manual development and opti-

mization of GPU code.While manually tuned GPU code can provide

high performance, maintenance and extensibility is impacted by

the presence of hardware-specific code or separate CPU and GPU

implementations. This issue is exacerbated when considering the

execution on further accelerator types such as FPGAs (e.g., [38]).

Among the simulators supporting GPU-based execution, to our

knowledge GENN [48] is the only one to support automatic GPU

code generation. Users of GENN define neuron models using a

C++ interface provided by GENN. The main inputs provided by the

user are the model parameter names and the neuron update rules

in the form of C++ statements. A drawback of both hand-tuned

and generated GPU code is the lack of comparability of results to

those generated using the well-tested and well-studied code and

models of established simulators. The transformation approach pro-

posed in our present paper enables the use of unmodified models

of an existing CPU-based simulator, while reducing the simulation

running time using hardware accelerators. While our experiments

are performed on GPUs, the generated OpenCL code enables the

execution on further hardware types such as FPGAs or DSPs.
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2.3 Heterogeneous computing and graphics
processing units

In the past two decades, high-performance computing has moved

from mostly CPU-based platforms to heterogeneous architectures.

While a range of accelerator types have emerged that provides

performance benefits for certain classes of computational prob-

lems, graphics processing units (GPUs) are currently the domi-

nant hardware type used to supplement CPU-based host systems

with resources for massively data-parallel processing. Of the list

of the top 500 supercomputers published in November 2018
2
, 126

rely on GPUs. The benefits of CPU-GPU co-processing or purely

GPU-based execution have been shown for many scientific ap-

plications (e.g., [14, 19, 35]), including several types of network

simulations [2, 3, 46].

In NVIDIA’s terminology, a GPU contains several streaming mul-
tiprocessors (SMs) with up to thousands of arithmetic units in total.

This enables a GPU to execute thousands of lightweight threads

in parallel to provide teraflops of computing power. However, the

design of efficient GPU algorithms requires exploiting the GPU’s

unique architectural characteristics. The programs to be executed

by the GPU’s threads are referred to as kernels. On current NVIDIA

GPUs, 32 consecutive GPU threads are grouped into a warp, in
which threads run the same sequence of instructions in lockstep. If

the program executed by a warp includes branches taken by only

some of the threads, the branches are serialized, decreasing per-

formance. Another significant factor for GPU performance is the

memory access pattern in the GPU’s DRAM. If threads in a warp

access 32 consecutive memory locations, the accesses are served by

a single memory transaction. Conversely, if the memory accesses

by a warp do not follow this pattern, multiple transactions are

issued, which can severely reduce the overall performance. GPU

programs are commonly implemented using frameworks such as

CUDA or OpenCL. While the former only targets NVIDIA GPUs,

OpenCL supports cross-platform development and deployment on

a variety of hardware devices ranging from CPUs to accelerators

such as GPUs, APUs, FPGAs, and Intel Xeon Phi. In recent years,

these accelerators have shown promising performance results for

various simulation problems [47]. To permit execution on a wide

range of hardware platforms, the translation approach presented in

our present paper generates OpenCL code. In the remainder of the

paper, we refer to the portion of the hardware controlled directly

by the CPU as the host, and portion executing OpenCL kernels as

the device or accelerator.

2.4 Code transformation and generation for
heterogeneous computing

An automated transformation of a CPU program for efficient execu-

tion on heterogeneous platforms often requires the parallelization

of suitable program portions. When transforming sequential into

parallel code, loops are important sources of parallelism. In auto-

mated loop transformations, data dependencies between loop itera-

tions are analyzed. Subsequently, the computations are reordered to

maximize the amount of parallelizable operations, while satisfying

2
https://www.top500.org

all data dependencies. The code analysis frequently relies on knowl-

edge of the problem class at hand. For instance, existing works pro-

pose tiling approaches for the successive over-relaxation method in

linear algebra [13] and for stencil-based loop computations [9]. Da

Li et al. [34] present a template-based approach to parallelization of

irregular nested loops and recursive computations for GPUs. Aside

from maximizing the exploited parallelism, a second challenge in

loop transformation targeting GPUs lies in achieving memory ac-

cess locality [4]. Hou et al. [27] address the issue of memory access

locality by reordering computational operations in wavefront loops

without affecting the correctness of the results. Fully automated

parallelization is possible for a certain class of nested loops using

the so-called polyhedral (or polytope) model [33], which permits

a compile-time analysis of data dependencies for affine programs.

Several works propose approaches to transform affine programs for

parallelized execution on GPUs [5, 45]. While the above approaches

can be carried out without domain knowledge, their applicability

is limited to programs of a certain structure, e.g., nested loops with

predictable control flow.

Another development approach for heterogeneous computing

environments is to formulate programs in a domain-specific lan-
guage (DSL) and to generate code for the target platforms. By pro-

viding abstractions tailored to the given problem domain, DSLs are

often more concise than general-purpose languages. Further, DSLs

can be used to hide low-level or hardware-dependent implementa-

tion details. Many DSLs have been proposed to solve computational

tasks such as graph problems [26], image processing [30, 39], and

social network analysis [16]. A number of DSLs have been proposed

to achieve heterogeneous execution for simulations. The DSL by

Hawick et al. [20] permits the generation of simulation programs

for many problems based on partial differential equations. Similarly,

Devito et al. [12] propose a language to build portable mesh-based

PDE solvers that can run on multiple platforms. In 2018, Cosenza et

al. [11] presented the OpenABL language, which allows users to for-

mulate agent-based simulation models in a hardware-independent

manner. The generated code can be executed using a number of

existing frameworks running either on CPUs or GPUs.

Since our goal is to provide support for heterogeneous execution

of existing simulators, we do not define our own DSL. Instead, we

rely on knowledge of the structure of SNN simulators to enable

source-to-source translation from C++ to OpenCL.

3 ANALYSIS OF SPIKING NEURAL NETWORK
SIMULATORS

Conceptually, SNN simulations follow a common structure that

is reflected in the software architecture of simulators and in the

computations involved in the process of an SNN simulation run. In

the following, we describe the general structure of SNN simulations

as a basis for the transition approach presented in Section 4.

3.1 Architecture
An SNN simulation can be seen as a collection of simulations for

individual neurons that interact among each other by the exchange

of spikes. Often, each neuron is simulated in a time-stepped fashion

by updating the neuron’s internal state at each step. The changes

in neuron state at a time step may trigger zero or more spikes
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Figure 1: A sequence of SNN simulation steps. The synap-
tic delay guarantees that neurons cannot interact within a
super step. Thus, inter-neuron synchronization is required
only after a super step has been processed.

that are then sent to neighboring neurons. Since the spikes mus

be considered in the target neurons’ future state updates, a neu-

ron’s state can only be updated once it has received all spikes with

smaller timestamps. From this outline of an SNN simulation, we

can see that the two main operations are the neuron update and
the spike delivery, the facilities for which commonly form the

main components of an SNN simulator: The neuron update com-

ponent receives the current states and incoming spikes as input

and performs a simulation step for each neuron. The output of this

computation step is composed of the neuron’s new state and any

newly emitted spikes. The spikes delivery component is respon-

sible for transferring the spikes among neurons in the network.

The delivery may either occur locally, if the connected neurons

are simulated in the same process, or remotely via inter-process

communication or a physical network.

An important aspect of SNN simulations is the delay in spike

transmission reflecting the synaptic delay, i.e., the number of time

steps taken by the signal to arrive at and have impact on the target

neuron. Simulators such as NEST [17] exploit this characteristic in

a synchronization scheme similar to the YAWNS algorithm [42] in

order to avoid transferring all new spikes at every time step. Instead,

the simulation time is divided into super steps with the size of the

minimal delay in the neural network, with all spikes generated in a

super step only being sent at the end of the super step (cf. Figure 1).

With this approach, it is guaranteed that all neurons receive the

incoming spikes in time, while the frequency of synchronization is

reduced. The super steps also enable larger amounts of computation

between synchronization points, which is beneficial for parallel

computation on a GPU.

Since there are many different neuron and synapse models that

can be used in SNN simulations, simulators typically provide in-

terfaces to allow other simulator components to interact with the

neuron update and spike delivery components regardless of the

specifics of the underlying models. Since neuron and synapse mod-

els may be added, extended, or modified frequently, we consider

the models the dynamic parts of a simulator.

The remaining simulator components are independent of the

models and typically remain unchanged during modeling and when

executing simulations using different combinations of models and

parameters. We refer to these as static components. For instance,

the static components in NEST are the SimulationManager, which

orchestrates the overall simulation (e.g., by advancing time and

triggering synchronization) and the ConnectionManager, which
provides access to the topology defined by the synapses.

3.2 Neuron and synapse models
Neuron models are differentiated by two aspects:

(1) Neuron state: Each type of neuron uses a set of variables

(e.g., the current membrane potentials) to represent the neu-

ron’s state at a given time. Further, some configurable con-

stants (e.g., the membrane capacitance and resting potential)

may exist that affect the neuron’s behavior.

(2) Update function: The update function defines how the

state in the next time step is calculated from the current

state and the incoming spikes. If certain conditions are met,

output spikes are generated to be transmitted to other neu-

rons. Since neuron models are often specified in terms of

differential equations, the neuron update function frequently

involves performing one iteration of a numerical integration

per super step.

As described in Section 2.1, synapse models can be either of STDP
or static type. Similarly to neuron models, they can be differentiated

according to their state and their update functions:

(1) Synapse state: Each synapse in the network may have state

variables and parameters. The most important state variables

are the weight, which affects a spike’s weight on arrival at

the target node, and the synaptic delay, which is the time

required for a new spike to be received by the target neuron.

STDP models reflect a synapse’s plasticity, i.e., the synapse

state variables may be modified each time a spike is transmit-

ted. In contrast, static synapse models affect the spike weight

in a fixed manner, independently of the state variables. Since

STDP models rely on the current value of the state vari-

ables to determine each spike’s weight, STPD synapses may

require substantially larger amounts of memory for their

internal data than static models.

(2) Synapse update function: In STDP models, each trans-

mitted spike may modify the values of the synapse’s state

variables. To achieve correct updates of the variables, spikes

must be processed according to timestamp order, which is

an important constraint when considering parallelized ex-

ecution. Static synapse models do not require updates of

the state variables. Instead, a constant weight value is as-

signed to the spike before it is forwarded to the target neuron.

Thus, while the transmit function for STPD models may re-

quire significant amounts of computation, the execution of

the transmit function of static synapse models is reflected

mainly by the memory accesses required to store new spikes

at the target neurons.

An implication of the above descriptions is that while the neuron

updates within each super step can be trivially parallelized across

neurons, it must be ensured that the spike transmission and update

steps at a STDP synapse follow the temporal order of the spikes.
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4 PROPOSED TRANSITION APPROACH
In this section, we propose an approach to generate a GPU imple-

mentation from a CPU-based SNN simulator in a semi-automated

fashion. The approach follows the differentiation of static and dy-

namic simulator components from Section 3.1, which makes it

applicable to several CPU-based SNN simulators: while some basic

simulator functionalities are ported manually, neuron and synapse

models are analyzed and translated to code executable on hetero-

geneous hardware in an automated fashion. In contrast, the com-

putationally inexpensive portions of the simulator code remain on

the CPU.

4.1 Static and dynamic components
As discussed in the previous section, SNN simulators can be re-

garded as being comprised of static and dynamic components.

The static components constitute the simulator core of the simula-

tor, carrying out the basic operations in an SNN simulation such

as the creation of neurons and synapses, the triggering of neu-

ron updates and the exchange of spikes, synchronization among

processes, and the time advancement. These essential procedures

are carried out by every SNN simulation, regardless of the neuron

and synapse models used. Thus, the corresponding components

are rarely modified between simulation experiments or in the de-

velopment cycle of the simulator. The remaining part of an SNN

simulator is comprised of the neuron and synapse models, which

are used to construct networks. A simulation experiment may use

any combination of models from a model library. Further, exper-

iments may require changes or extensions to existing neuron or

synapse models, or the development of new models. Thus, the

models constitute the dynamic part of the simulator code base. A

common interface for neuron and synapse models is often provided

so that the static components can communicate with the dynamic

components (cf. Figure 2). The resulting loose coupling among com-

ponents simplifies the maintenance of the simulator code base, as

static components are not affected by changes to the dynamic com-

ponents such as the addition, modification, or extension of models.

The loose coupling also enables the development of multiple im-

plementations, i.e., targeting CPUs and GPUs, for the same neuron

or synapse model. The GPU-accelerated simulators NCS [25] and

Nemo [15] as well as the purely CPU-based NEST simulator rely

on such an architecture. In contrast, CARLsim [10], which provides

support for GPU execution, does not follow this structure. Instead,

it defines separate interfaces for CPU and GPU implementation and

the simulator explicitly selects an implementation at runtime.

Since we assume that the static components of an SNN simula-

tor are modified only rarely, the effort of a manual translation of

code for execution on heterogeneous hardware can be justified. In

addition, the static components are loosely coupled to the model

implementations, allowing for the required code changes to be

reasonably small and self-contained. For example, in our implemen-

tation described in Section 5, the key code modifications to add

accelerator support were limited to only a few source files.

The same strategy cannot be applied to the dynamic components:

firstly, the variety of neuron and synapse models makes a manual

translation process cumbersome and error-prone. For instance, ver-

sion 2.14 of the NEST simulator distribution includes more than 50

<<Interface>>

NeuronModel

update()

SimulationManager

run()
<< use >>

Model_A_GPU

update()

Model_A_CPU

update()

<<Interface>>

SynapseModel

spike_deliver()

Mode_B_GPU

spike_deliver()

Model_B_CPU

spike_deliver()

<< use >>

SpikeDeliveryManager

deliver()

Static modules Dynamic modulesInterface

C++ code

GPU code

C++ code

GPU code

Figure 2: Static and dynamic components in an SNN simula-
tor.

Model_A.h

Model_A.cpp

Clang/LLVM

Abstract Syntax Tree

Code 
generator

Model_A_GPU.h Model_A_GPU.cpp Model_A_kernel.cl

Template.h Template.cpp Template.cl

Figure 3: Compilation workflow from C++ SNN simulator
code to OpenCL.

neuron and 10 synapse models. Further, it may frequently be neces-

sary to add, modify, or extend models to carry out SNN studies. To

handle the diverse and dynamic nature of the models, we propose

a tool to automate the transformation of neuron and synapse mod-

els for execution on heterogeneous hardware. The transformation

relies on the fact that most models share a similar basic structure,

with major differences only in the specific computations performed.

The transformation tool exploits the similarities among models by

applying a template common to a class of models, which is then

populated with the model-specific computations.

4.2 Transformation of neuron models
In this section, we present the steps required for porting neuron

models to code executable on heterogeneous hardware. The over-

all workflow, which applies both to neuron and synapse models,

is illustrated in Figure 3. In the first step, we parse and analyze

the model’s source code. We assume that each neuron model is

defined by a class with the neuron variables being class members.

The result of the code analysis is an abstract syntax tree (AST)

describing the computations performed in the neuron model code,

as well as their order. Relying on the fact that the models follow

the same high-level structure, we can identify the code snippet
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Algorithm 1 A super step in a CPU-based SNN simulation.

1: function SimulationUpdate(from, to)

2: for i← number of neurons do
3: neuron[i].Update(from, to)

1: function Update(from, to)

2: for lag← from; lag < to; lag← lag + 1 do
3: ModelBehavior()

Algorithm 2 A super step in a heterogeneous SNN simulator.

1: function SimulationUpdate(from, to)

2: MassUpdate(neurons, from, to)

1: functionMassUpdate(neurons, from, to)

2: if first update then
3: CopyDataHostToDevice(neurons)

4: for lag← from; lag < to; lag← lag + 1 do
5: ModelBehaviorGPU()

6: CopyDataDevicetoHost(neurons)

Figure 4: A super step in a CPU-based SNN simulator and in a simulator supporting heterogeneous hardware.

carrying out the main computations that define the model behavior

(ModelBehavior in Algorithm 1). The ModelBehavior routine will be
translated to OpenCL. To do so, the neuron state variables used in

the ModelBehavior routine must be identified. The AST allows us

to determine several properties of the variables used in the routine:

from the scope of a variable, we can determine whether it is local to

the current function local data or a member variable of the neuron.

If a variable represents a state variable of a neuron, information

on its type (e.g., integer or double-precision floating point) and di-

mensionality (scalar or array) allows us to allocate memory for the

variable in the OpenCL code. To conserve memory, state variables

that are not used in the ModelBehavior routine are not allocated in

the OpenCL code. Finally, we identify function calls to later replace

them with calls to equivalent OpenCL functions (cf. Section 5.2).

After the analysis, OpenCL code is generated based on prede-

fined code templates (cf. Figure 3) for accelerator and host code. A

critical part in the generation of the accelerator code is producing

data access patterns suitable for the chosen hardware. Since our

performance experiments of Section 6 are performed using GPUs,

we automatically apply a common memory access optimization

applicable to all common GPU accelerators: due to the large number

of neurons in a typical SNN, the neuron state variables reside in

the GPU’s high-capacity DRAM. Unfortunately, CPU code typically

relies on a “array-of-struct” (AoS) representation, where neurons

are stored as an array of objects, with the state variables as object

members. On a GPU, the AoS representation is known to result in

large numbers of memory transactions when operating on many

array elements in a data-parallel fashion. Thus, we convert the code

to follow a “struct-of-array” (SoA) access pattern by flattening out

the neuron data into a one-dimensional array for each variable

and accessing the entries using each neuron’s numerical index.

Since within a super step the state updates are independent across

neurons, we assign one GPU thread to each neuron. In contrast to

the neuron state variables, function-local variables rely on GPU

registers by default and thus can be accessed efficiently without

further code transformations.

Depending on the data used by the model, host-side OpenCL API

calls are generated for GPU memory allocation and data transfer

from and to the accelerator. Figure 4 provides pseudo code of the

original and the transformed host code. The result of the code

generation step is a set of C++ files containing host and accelerator

code. Further details on the transformation of the neuron models

as well as example code are provided in Section 5.2.

4.3 Transformation of synapse models and
spike delivery

Since there are two synapse model types (static and STDP) that dif-
fer in their characteristics, we employ separate strategies for their

transformation. One of the factors affecting this design decision

is the high degree of nodes in neural networks. Motivated by the

node degrees in mammals’ brains, a neuron is commonly connected

to about 10
4
other neurons. When relying on STDP models, the re-

sulting large numbers of synapses in the network incur substantial

requirements both in terms of memory capacity and in terms of

computation to transfer spikes across the network. As we will see

in Section 6, the spike delivery in fact constitutes the largest portion

of the simulation workload. Therefore, it is critical to achieve high

performance and low memory usage for STDP models.

In contrast, in the simple case of static synapse models, the

computational and memory demands are relatively low. Since the

network topology is generated at the start of the simulation, the

states of all static synapses can be copied to device memory and

remain there over the course the entire simulation, reducing the

overall amount of data transfer between the host and the device.

Note that this also applies to the neuron data, as illustrated in

Figure 5. The graph is stored in compressed sparse row (CSR) format,

connections being grouped by their source node. Each time we

perform the spike delivery, the list of firing nodes is copied to the

device. The CSR format allows us to quickly determine the outgoing

connections from the source node indexes and perform the delivery.

Because of the high degree of connectivity, on an NVIDIA GPU,

we assign one entire warp (32 threads) to process the outgoing

connections of each source node. In static synapse models, the

order of transferred spikes can be ignored, since their weights are

constant. Therefore, we can deliver spikes with different timestamps

in parallel. At the target node, atomic operations are utilized to

avoid race conditions with respect to multiple spikes received by a

target node at the same time.

Since STDP synapses consume significantly more memory than

static models, storing all the STDP synapses in device memory

would severely limit the feasible network size. To achieve scalability,

we instead carry out the spike delivery through STDP synapses one

batch of spikes at a time. On a GPU, one thread is assigned to one

spike. The spikes traveling through the same synapse must be pro-

cessed sequentially in timestamp order. To avoid additional process-

ing, we group only spikes with the same timestamp in each batch.

When a batch of spike is processed, the states of STDP synapses

Session on Applications SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

120



Time window 1 Time window 2

synchronize

Host
memory

Device
memory

Simulation

Batch 1 Batch 2 Batch N

STDP synapses
Spike counters

Static
synapsesNeurons

Initialization

Batch 1 Batch 2 Batch N Spike counters

Figure 5: Data transfer between host and device memory in the initialization step and during simulation. The shaded shapes
illustrate memory allocated permanently on the device.

transmitting these spikes are transferred to device memory. After

a batch has been processed, the memory allocated for the STDP

synapse data is freed (cf. Figure 5). The efficiency of this approach

depends on the batch size, which is limited by the available graphics

memory. The corresponding device kernels are generated automat-

ically according to the same procedure as applied to the neuron

models (cf. Figure 3).

5 HETEROGENEOUS NEST
We demonstrate our transition approach on the example of the

well-known SNN simulator NEST [17]. NEST is an SNN simulator

supporting various neuron and synapsemodels. In the following, we

briefly sketch NEST’s architecture and describe our modifications

as well as the automatic transformation of neuron models.

The process to enable automatic transformation of synapse mod-

els follows the same principles as the transformation of neuron

models. Thus, we leave the implementation of the automatic trans-

formation for synapses to future work. Our publicly available im-

plementation currently includes manually ported versions of the

synapse models required for the experiments in Section 6.

5.1 NEST overview
NEST is implemented using C++ and supports CPUs in shared

and distributed-memory environments using OpenMP and MPI.

The neural network is divided into a number of OpenMP threads

referred to as virtual processes (VPs). Nodes are assigned to VPs

in a round-robin fashion. A synapse is stored in the same VP as

the target neuron, which guarantees thread-safety for the spike

delivery, since only one thread can write data to a given neuron.

The VPs can be assigned to multiple processes communicating via

MPI in a distributed-memory environment.

A super step in NEST involves the following operations:

(1) Each VP executes a super step on its assigned neurons, which

involves executing the state update function of each neu-

ron according to the selected model. Since the super step is

divided into multiple time steps, the internal state of each

neuron is updated multiple times, potentially creating new

spikes at each iteration. If an emitted spike has a target node

in a remote MPI process, it is stored in a local buffer.

(2) The stored spikes are inserted into an MPI buffer and issued

using an MPI_Allgather call to provide all processes with

the spike data.

(3) Each VP scans through its MPI receive buffer to obtain the

list of source neurons of incoming spikes. If the VP holds

one or more target neurons, it delivers the spikes through

the corresponding synapses according to the synapse model.

The division of work across VPs makes it convenient to extend

NEST with support for heterogeneous hardware: since each VP

controls a device, multiple VPs can easily exploit the resources of a

multi-device system. Further, the support for MPI communication

enables a multi-device execution across multiple execution nodes

without further development efforts.

The core component of NEST is the SimulationManager, which
executes the operations of a super step as described above. For

spike delivery, the SimulationManager relies on the EventDeliv-
eryManager, which delivers spikes within and across VPs. The

ConnectionManager stores the network topology of the current VP.

The above components constitute the core of the framework and

do not require modification when varying the neuron or synapse

models across simulation runs. Thus, since the code changes re-

quired to enable support for heterogeneous hardware are perma-

nent and independent of the chosen models being simulated, we

carry out these changes manually.

The main remaining components of the NEST framework are

the neuron and synapse models. NEST 2.14 provides more than 50

neuron models and 10 synapse models. To perform a simulation

run, the user prepares a script that describes the scenario, which is

defined by the neuron and synapse models with their parameters,

the number of neurons and connections, the simulated time, etc.

Based on the script, NEST constructs the network with the selected

models and executes the simulation. These models are defined as

C++ classes and share a common interface so that the core compo-

nents, particularly the SimulationManager, can invoke the model

behavior (e.g., as defined by the state update function) in a generic

fashion. Using the techniques described in Sections 4.2 and 4.3,

we developed a tool that is supplied with a model implementation

in the form of C++ code as input and generates an OpenCL im-

plementation executable on OpenCL-supprted accelerators. The

compilation workflow follows the description in Section 4.2
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Listing 1: Original C++ code
1 if ( S_.r_ == 0 ) {
2 S_.y3_ = V_.P30_ * ( S_.y0_ +
3 P_.I_e_ ) + ... ;
4

5 S_.y3_ = ( S_.y3_ < P_.LowerBound_ ?
6 P_.LowerBound_ : S_.y3_ );
7 } else {
8 --S_.r_;
9 }
10 S_.I_ex_ = V_.P21_ex_ * S_.dI_ex_ +
11 ...;
12 ...
13 // Ring buffer
14 V_.weighted_spikes_ex_ = B_.ex_spikes_.get_value(
15 lag );
16

17 ...
18 // Ring buffer
19 V_.weighted_spikes_in_ = B_.in_spikes_.get_value(
20 lag );
21

22 ...
23 if ( S_.y3_ >= P_.Theta_ ) {
24 S_.r_ = V_.RefractoryCounts_;
25 S_.y3_ = P_.V_reset_;
26 // Firing spikes
27 set_spiketime( Time::step( origin.get_steps () +
28 lag + 1 ) );
29 SpikeEvent se;
30 kernel ().event_deliv_mgr.send( *this , se, lag );
31 }
32 // Ring buffer
33 S_.y0_ = B_.currents_.get_value( lag );
34

35

36 ...

Listing 2: Generated OpenCL code
1 if ( S__r_[tid] == 0 ) {
2 S__y3_[tid] = V__P30_[tid] * ( S__y0_[tid] +
3 P__I_e_[tid] ) + ...;
4

5 S__y3_[tid] = ( S__y3_[tid] < P__LowerBound_[tid] ?
6 P__LowerBound_[tid] : S__y3_[tid] );
7 } else {
8 --S__r_[tid];
9 }
10 S__I_ex_[tid] = V__P21_ex_[tid] * S__dI_ex_[tid] +
11 ...;
12 ...
13 // Ring buffer
14 V__weighted_spikes_ex_[tid] = ring_buffer_get_value(
15 ex_spikes_ , ring_buffer_size , num_nodes , tid ,
16 lag , time_index);
17 ...
18 // Ring buffer
19 V__weighted_spikes_in_[tid] = ring_buffer_get_value(
20 in_spikes_ , ring_buffer_size , num_nodes , tid ,
21 lag , time_index);
22 ...
23 if ( S__y3_[tid] >= P__Theta_[tid] ) {
24 S__r_[tid] = V__RefractoryCounts_[tid];
25 S__y3_[tid] = P__V_reset_[tid];
26 // Firing spikes
27 spike_count[tid ]++;
28

29

30

31 }
32 // Ring buffer
33 S__y0_[tid] = ring_buffer_get_value(currents_ ,
34 ring_buffer_size , num_nodes , tid ,
35 lag , time_index);
36 ...

Figure 6: Update function of the ia f _psc_alpha neuron model in the C++ and OpenCL implementation

5.2 Transformation of neuron models
Each neuron model defines the neuron’s behavior when interact-

ing with other neurons through incoming and outgoing spikes. In

NEST, the behavior is implemented in the Update function of the

neuron class. The model further defines the internal state variables,

which are modified in the Update function. Algorithm 1 shows

pseudo code of the steps performed by the Update function: us-

ing the current state of the neuron and the incoming spikes from

other neurons as input, the Update function executes state changes

caused by the incoming spikes in a super step. The computation is

divided into multiple small time steps (lines 2-3). In the loop, the

neuron executes the procedure ModelBehavior , which is model-

specific. At each time step, depending on the current state, the

neuron may emit spikes to be transmitted to neighboring neurons.

The SimulationManager invokes the SimulationUpdate function,
which iterates through the neurons of the local VP and invokes

the Update function on each of them. The above procedure may be

executed by multiple VPs on disjunct sets of neurons concurrently.

To enable execution of the Update function on heterogeneous

hardware, the computation scheme is modified as shown in Algo-

rithm 2. Now, the SimulationManager invokes MassUpdate, which
processes all neurons of the given type. In MassUpdate, if the neu-
ron data has not been initialized on the device, we copy the neuron

data from host to device memory (lines 2-3). Hence, the data is trans-

ferred to the device only once. Then, at each time step, all neurons

are updated in parallel on the device. During the update, neurons

may emit spikes. Thus, we invoke CopyDataDtoH (line 6), which

copies counters from the device to the host that indicate to the host

the number of spikes generated by each neuron. The number of

counters is equal to the number of neurons. Currently, we repre-

sent the counters as 4-byte variables. However, since in practice

the values are small, depending on the scenario it may be sufficient

to represent them using even fewer bytes. In our experiments, this

data did not incur substantial data transfers overhead.

An important step in the transformation is the generation of a de-

vice kernel forModelBehaviorGPU . To this end, we implemented

a parsing tool based on LibTooling from the CLang/LLVM toolkit
3

that parses the C++ code of theModelBehavior function of the neu-

ron model class. The parsing tool allows us to obtain the following

required pieces of information:

(1) The list of state variables used by the ModelBehavior func-
tion to identify the variables to be transferred to the device.

(2) The type and dimensionality of each variable. This informa-

tion is used to allocate device memory.

3
https://clang.llvm.org/docs/LibTooling.html

Session on Applications SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

122

https://clang.llvm.org/docs/LibTooling.html


(3) Function calls performed during the update. The update

function may invoke utility functions to 1. retrieve incoming

spikes from a neuron’s local storage and 2. emit spikes.

Listing 1 of Figure 6 shows an example of the C++ code of the

ModelBehavior routine for the ia f _psc_alpha model. This code

executes a number of instructions on the neuron’s state variables

such as S_.r_, S_.y3_, S_.I_ex_. These variables are of primitive

types (int or double), often asmembers of a C++ struct. The parsing

tool gathers the type information from the class header file. Further,

the accesses to the ring buffer holding incoming spikes (lines 14,

19, and 33) and the transmission of spikes (lines 27-30) are detected

as function calls to get_value and event_delivery_manager.send.
Listing 2 of Figure 6 shows the generated OpenCL kernel code.

All accesses to neuron state variables have been transformed from

an array-of-struct (AoS) to a GPU-friendly struct-of-array (SoA)

pattern. For instance, the variable S_.r_ is of type int, where S_ is
an instance of the State_ structure defined in the neuron class. In the
OpenCL implementation, we define an int array S__r_ of size iden-
tical to the number of neurons. Now, the device thread with index

tid accesses the S__r_[tid] entry in the array. The utility function

for accessing the ring buffer of incoming spikes is replaced with a

kernel call. For sending spikes, we maintain a counter spike_count
of the number of spikes sent by each neuron. The code portion for

triggering spikes in neuron tid is replaced by an incrementation

of spike_count[tid]. This counter is later copied back to the host

(Algorithm 2, line 6) so that the sending of spikes can rely on the

existing facilities of NEST (Listing 1, lines 27-30).

6 EVALUATION
The experiments are performed with respect to the hpc_benchmark
scenario used in several existing works [21, 28, 29, 32, 41]. The

benchmark relies on the iaf_psc_alpha model for all neurons. The

indegree of each neuron is fixed at 11 250. The total number of

neurons in the network is controlled by a scale factor: N = scale
× 11 250. There are two types of neurons in the network: excita-
tory and inhibitory neurons. The synapses connecting excitatory

neurons rely on the stdp_pl_synapse_hom model, while all other

synapses use the static_synapse model. The time step size is 0.1ms.

The synaptic delay is 1.5ms. The simulation terminates after 250ms.

We executed the simulations on a system comprised of two nodes

using Intel Xeon Gold 6148 2.4G CPUs with 20 physical cores and 40

threads each, and four NVIDIA Tesla V100 SXM2 GPUs with 16 GiB

of RAM. The tool chain is comprised of GCC 7.2.0, CUDA toolkit

9.0, and OpenMPI 1.10.7. The GPU implementation is developed

from version 2.14 of the NEST simulator. However, the CPU results

are obtained using the development branch of NEST 2.14, which in

our experiment provided better performance than NEST 2.14.

The correctness of our implementation was verified by compar-

ing the average spiking rate per neuron between CPU and GPU

runs for a number of scenarios with different network size and sim-

ulation time. Since a random number generator (poisson_generator)
is associated with each virtual process, CPU and GPU runs were

compared using the same number of CPU threads and GPU streams

respectively. In all tested cases, the results produced by the CPU

and GPU variants were identical.
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Figure 7: Speedup with one stream per GPU compared to ex-
ecution on a single CPU core.

6.1 Performance
In the first experiment, we measure the speedup obtained by our

GPU version. Figure 7 shows the throughput improvement using

a single and multiple GPUs compared to single-threaded CPU ex-

ecution at different SNN scales. In the CPU version, we run the

NEST 2.14 with only 1 virtual process, i.e., in a single thread. Our

GPU program runs in a single process with one OpenMP thread

controlling each GPU. This setup does not involve MPI communi-

cation. We observe that in most cases, the throughput scales almost

linearly with the number of GPUs. For example, at a network size

of 56 250 neurons, the speedup of 2, 3, and 4 GPUs is 6.0, 9.6, and

12.6 over a single CPU; or 1.7, 2.8, and 3.7 over a single GPU. The

results also show that the GPU implementation achieves better

performance as the network size increases. At 22 500 neurons, the

speedup factors over a single CPU core using a single and 4 GPUs

are 1.92 and 8.10. Meanwhile, at 56 250 neurons, these ratios are

2.86 and 12.58. The reason for this result is the improved utilization

of the GPU at larger network sizes.

In the previous experiment, each GPU was controlled by a single

thread. To better exploit the GPU’s computing resources, we vary

the number of CPU threads (or GPU streams) sharing a single GPU.

We compare the performance of multi-stream single-GPU runs

with the performance of a single-stream single-GPU execution. The

results are shown in Figure 8. Note that, since the remaining CPU

portion of the simulator still performs minor amounts of work, e.g.,

for data serialization, larger numbers of threads also reduce the time

spent on the CPU portion. Further, the performance is improved

by overlapping CPU-GPU data transfers in one thread with kernel

computation in other threads. Generally, by increasing the number

of threads (GPU streams) sharing a single GPU, the performance

improves. However, at 6 threads, the performance starts decreasing

slightly. A likely cause is the overhead of the additional kernel calls

in relation to the smaller amount of computation per call.

We also compare the performance between multi-core CPU and

GPU execution. Figure 9 shows the speedup over single-threaded

CPU execution at different network sizes. Overall, the performance

gain yielded on the multi-core CPU is consistent across network

sizes. For example, a run using 4 threads is about 2.7 to 3.7 times

faster than a single-threaded run. Meanwhile, as mentioned above,

the GPU performance increases with the network size. When using

a single stream to control the GPU, the GPU performance is compa-

rable to 2 to 3 CPU cores. When relying on 5 threads to control the

GPU, substantially higher performance is achieved: even at 22 500,
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Figure 9: Performance comparison between a single multi-
core CPU and a single GPU. The results are given as speedup
factors over one CPU core. With multiple GPU streams, the
GPU achieves performance equivalent to about 9 CPU cores.

the GPU outperforms 5 CPU cores. At 56 250 neurons, the speedup

over a single CPU core is 9.4, or 2.4 times faster than a run using 5

CPU cores.

We also evaluate the effect of the MPI communication on the

performance of our NEST GPU implementation. Instead of execut-

ing multiple threads per process as in the previous experiments, we

execute multiple MPI processes, each of which is single-threaded

and uses one GPU. To be able to clearly quantify the proportion of

runtime spent on different phases of the simulation, each process

controls the GPU using only one stream, although we have previ-

ously seen that employing multiple threads per GPU increases the

performance dramatically. Inter-node communication relies on the

existing MPI communicating scheme of NEST 2.14. We measure

the running time of each of the following: update, spike delivery
and MPI communication. The results are illustrated in Figure 10.

It is evident that the running time is dominated by the spike de-
livery. In our experiments, the proportion of time spent on spike
delivery is about 81% to 87%. Compared with the original NEST

implementation on a single CPU, our GPU method reduces the ab-

solute running time of the spike delivery by a factor of about 2. The

results show the importance of the performance of the spike delivery
for the overall running time. The update step accounts for about

10% of the running time, while MPI communication accounts for 2%

to 8%. From this experiment, we conclude that in our small-scale

setup, MPI communication does not hinder performance increases

through the use of GPUs. In future work, experiments in large-scale

supercomputing environments could provide further scalability

results.
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(b) 3 MPI processes
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Figure 10: Breakdown of the running time with different
numbers of MPI processes on a single execution node, each
using one GPU.

Finally, we conducted preliminary experiments of a CPU-GPU

co-execution, i.e., neurons and synapses are divided into partitions,

each of which is processed either by the original CPU-based NEST

or our OpenCL implementation running on a GPU. We used up

to 6 CPU cores and up to 6 streams on a single GPU to simulate

the benchmark network at a scale of 67 500 neurons. The main

challenge lies in balancing the workload between the CPU and the

GPU, since the GPU can process each time step substantially faster

than a CPU core. Currently, we are relying on an even assignment

of the same number of neurons to each CPU core or GPU stream.

With this simple assignment, the best performance was achieved

when the entire workload is processed by the GPU. To achieve a

performance benefit with the co-execution, the number of neurons

assigned to a CPU core or GPU stream should thus be chosen

separately, which is part of our future work.

6.2 Memory consumption
Since accelerators such as GPUs are typically equipped with lower

amounts of memory than is accessible to the host CPU, efficient

use of the available memory is critical to be able to process large

segments of the network concurrently. Due to the large degree of

connectivity in SNNs, the synapse data typically constitutes the

largest part of the memory consumption of an SNN simulation. For

example, in a network of 22 500 neurons, the synapse data accounts
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for 97% of the total memory consumptions. In Section 4.3, we pre-

sented our strategy to efficiently represent the network in memory.

The memory consumption of the benchmark from our performance

measurements is roughly proportional to the number of neurons in

the network. A simulation of a network of 11 250 neurons required

3.7 GiB of host memory and 0.8 GiB of graphics memory. At 56 250

neurons, about 18 GiB of host memory and 2.9 GiB of graphics

memory are required. Our experiments consumed about a factor of

4.6 to 6.2 more host memory than graphics memory.

7 DISCUSSION
One of the goals of our work is to support heterogeneous hard-

ware environments. Compared to other GPU-accelerated simulators

such as Nemo [15], CARLsim [10], GENN [48], NCS [25], and HRL-

Sim [40], which use NVIDIA’s CUDA platform, our implementation

relies on OpenCL, allowing the simulation to make use of CPUs

as well as a variety of accelerators (e.g., GPUs, FPGAs, DSPs, Intel

Xeon Phi). The OpenCL code generated by the source-to-source

transformation is hardware-agnostic, so that executable code can

be compiled for any platform supported by OpenCL. Future work

could explore the performance achievable on platforms beyond

the CPU and GPU environments of the experiments in the present

paper. By extending the transformation tool with hardware-specific

optimizations, it may be possible to achieve higher performance

on certain devices while still allowing for models to be formulated

without regards for hardware specifics.

The main factor limiting the maximum size of the simulated

network is the available memory on the accelerator. Existing work

on GPU-accelerated SNN simulations rarely focused on scalabil-

ity. Often, the considered networks contained only 100 to 1, 000

connections per neuron so that the entire network could be stored

in GPU memory. Thus, the applicability of these simulators to the

large-scale networks frequently encountered in practice is limited.

By batching the computational work (cf. Section 4.3), the accelera-

tor memory consumption in our implementation is largely decou-

pled from the network size. In our experiments, we executed the

hpc_benchmark scenarios in configurations requiring up to 18 GiB

of GPU memory per execution node.

Our implementation targets NEST version 2.14. More recently,

NEST 2.16 [36] has been released with improvements in network

build time and scalability over the NEST 2.14 [29] and comparable

performance in small-scale and medium-scale systems. Extending

our work to NEST 2.16 could allow us to support large networks

at even higher performance. Further, our transformation approach

could be applied to established CPU-based simulators such as NEU-

RON [24] and PCSIM [43].

Since recent supercomputers frequently rely on combinations of

CPU and GPU devices, a CPU-GPU co-execution should be used to

make full use of such environments. In our performance measure-

ments, we have seen that while a CPU-GPU co-execution is already

possible, a mechanism for workload balancing among these devices

should be introduced to achieve high performance. Moreover, even

when relying purely on a single accelerator device, the number of

threads controlling the device must be chosen carefully to exploit

the hardware fully. Thus, future work should consider automated

workload balancing, e.g., using runtime profiling and autotuning.

Finally, the OpenCL-accelerated NEST stores neuron state data

permanently in accelerator memory. To support the data collection

requirements of real-world studies, it may be necessary to periodi-

cally transfer parts of this data to host memory. Support for such

transfers can easily be added to our implementation. The effects

on performance depend on the amount of data required and the

frequency of data collection. In contrast to neuron and synapse

state data, spikes are regularly transferred to the host. Thus, our

current implementation already allows for data collection required

to explore spiking patterns over time. In future work, it would be in-

teresting to explore methods for in situ data analysis in accelerator

memory, transferring only the analysis results to the host.

8 CONCLUSIONS
We presented an approach to transform CPU-based spiking neural

network simulators to enable their execution on heterogeneous

hardware. Our approach relies on manual porting of static core sim-

ulator functionalities, whereas neuron model code is analyzed and

transformed automatically.We demonstrated our approach by trans-

forming the well-known NEST simulator to support OpenCL, en-

abling its acceleration using hardware platforms such as GPUs, FP-

GAs, and DSPs. Since the transformed code supports co-execution

on multiple device types, better hardware utilization and lower run-

times can be achieved on modern GPU-dominated supercomputers.

Our performance measurements show that at sufficient utilization,

a single GPU achieves the performance of about 9 CPU cores. An im-

portant avenue for future work is the workload balancing between

CPU and GPU during co-execution. Applying the transformation

to the recent NEST 2.16 may provide further performance increases.

Finally, the OpenCL code generated by our code transformation

can also exploit accelerators such as FPGAs and DSPs, which may

further accelerate certain experiments. We hope the community

will benefit from our publicly available implementation.
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