
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Performance Portability and Evaluation of
Heterogeneous Components of SeisSol
Targeted to Upcoming Intel HPC GPUs

Ludwig Kratzl

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Performance Portability and Evaluation of
Heterogeneous Components of SeisSol
Targeted to Upcoming Intel HPC GPUs

Portierung und Leistungsanalyse heterogener
Komponenten von SeisSol für zukünftige

Intel HPC GPUs

Author: Ludwig Kratzl
Supervisor: Prof. Dr. Michael Bader
Advisor: M. Sc. Ravil Dorozhinskii
Submission Date: 15/07/2021

I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Garching, 15/07/2021 Ludwig Kratzl

Acknowledgments

I would like to pay my special regards to my supervisor Prof. Dr. Michael Bader and my
advisor Ravil Dorozhinskii for their great guidance throughout this work. My sincere thanks
also goes to three members of the Intel cooperation for their fast and productive support. I
would also like to thank the Department for Geophysics at the Ludwig-Maximilian University
for providing me access to the Heisenbug machine. Last, I want to thank my family and
friends, especially my sister Franziska Kratzl, who has inspired and motivated me to study.

Abstract

For the first time in over 20 years, Intel is selling discrete graphics cards, including products
for high-performance computing, scheduled for release in 2022. This thesis investigates
programming models for the upcoming Intel GPUs and selects the Sycl standard, provided
by oneAPI and hipSYCL, to port the heterogeneous components of SeisSol. The modules
in question in SeisSol are analyzed and extended, and their efficiency is assessed using a
Roofline Model analysis. Similar experiments are performed using Sycl with CUDA as a
backend to test whether this combination can replace all native GPU approaches. This work
demonstrates that already the low-power series of Intel’s discrete GPUs can reach over 85 %
of their peak performance using this portability, making them superior to integrated graphics
chips. However, further measurements also show that Intel MPI needs to be improved before
it can be used on supercomputers. With an Nvidia RTX 3090 and Intel Arria 10 FPGA, it is
proven that Sycl’s cross-platform approach works but that its efficiency heavily depends on
the implementation of the standard.

iv

Kurzfassung

Erstmals seit über 20 Jahren verkauft Intel diskrete Grafikkarten, darunter auch Produkte für
High-Performance Computing, die 2022 erscheinen sollen. Die vorliegende Arbeit untersucht
Programmiermodelle für die erscheinenden Intel-GPUs und selektiert den Sycl-Standard,
bereitgestellt durch oneAPI und hipSYCL, für die Portierung von SeisSols heterogenen
Komponenten. Die betreffenden Module in SeisSol werden analysiert und erweitert und
die Effizienz der Portierung mithilfe eines Roofline-Diagramms durchgeführt. Ähnliche Ex-
perimente werden mit Sycl und CUDA als Backend durchgeführt, um zu prüfen, ob diese
Kombination alle nativen GPU-Ansätze ersetzen kann. Diese Arbeit demonstriert, dass schon
die Low-Power Serie von Intels diskreten GPUs an 85 % ihrer Spitzenleistung mit der Portie-
rung herankommt und damit den integrierten Grafikchips überlegen ist. Allerdings zeigen
weitere Messungen auch, dass Intel MPI vor dem Einsatz auf Supercomputern verbessert
werden muss. Mit einer Nvidia RTX 3090 und Intel Arria 10 FPGA wird belegt, dass Sycls
Crossplattform Ansatz funktioniert, aber dessen Effizienz stark von der Implementierung des
Standards abhängt.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1

2. Fundamentals 3
2.1. Intel GPUs . 3

2.1.1. Gen11 Architecture . 3
2.1.2. Iris Xe Architecture . 5
2.1.3. Intel GPUs in HPC . 6

2.2. Intel GPU Programming . 6
2.2.1. OpenMP . 6
2.2.2. OpenCL . 7
2.2.3. Sycl . 8

2.3. SeisSol . 9
2.3.1. Numerical Scheme . 9
2.3.2. Heterogeneous Components . 11
2.3.3. Performance Portability . 13

3. Analysis and Design 15
3.1. Device . 15

3.1.1. CUDA compared to Sycl . 16
3.1.2. Design and Implementation . 18
3.1.3. Correctness . 19

3.2. GemmForge . 20
3.2.1. Design . 21
3.2.2. Implementation . 22
3.2.3. Correctness . 23

4. Evaluation and Discussion 25
4.1. Device . 27

4.1.1. Single Accelerator . 27
4.1.2. Multi GPU . 29

vi

Contents

4.2. GemmForge . 31
4.2.1. Roofline Model Analysis with Intel GPUs 32
4.2.2. Roofline Model Analysis with CUDA backend 36

4.3. SeisSol . 37
4.3.1. SeisSol-Proxy . 37
4.3.2. Benchmarks . 38

5. Conclusion 41

A. Figures 42

List of Figures 44

List of Tables 46

Bibliography 47

vii

1. Introduction

In 2019, Intel announced the 12th generation of its GPUs, including the first discrete Graphics
Cards for over twenty years. The new series of products, Intel Iris Xe (Xe), contains a
revisited Instruction Set Architecture as well as models for office applications with low power
consumption (Xe-LP), computer games, and general high-performance (Xe-HP and Xe-HPG),
and HPC (Xe-HPC). While the Xe-LPs are already available by the Iris Xe Max "DG1", Intel
did not release representatives of the other GPUs by the time of this thesis. However, the
Leibniz Rechenzentrum (LRZ) recently announced to convey its SuperMUC-NG into a new
phase1: To fit the needs of modern AI computations, they are going to expand the 15th
fastest supercomputer in the world with the Iris Xe-HPC GPU called "Ponte Vecchio". This
announcement could change future HPC architectures, as until now, most HPC centers rely
on Nvidia GPUs: As described in Figure 1.1, from the top 500 supercomputers worldwide,
147 of them used accelerators or co-processors in November 2020, of which over 95 % were
coming from the Nvidia product stack. Consequently, HPC applications are often developed
with CUDA, the native language and API for Nvidia GPUs, which does not apply to Intel.
Therefore, LRZ’s breakthrough decision comes with the price that any CUDA code must be
ported before running it on its new cluster. This especially concerns strategic partners of the
LRZ like the Technical University of Munich (TUM), which uses the SuperMUC-NG as its
base supercomputer.

One affected application will be SeisSol, an open-source software for numerical simulations
of earthquakes and seismic waves. SeisSol was initially designed with an MPI+OpenMP
model, targeted to computations on CPUs and accelerators like Co-Processors [1]. However,
recent changes in SeisSol took a step towards Performance Portability by substituting OpenMP
with CUDA, resulting in a doubled speedup by exploiting native programming features like
shared memory and launch bounds [2]. Similar work has already been preceded with HIP,
the programming language and toolkit for AMD graphics cards [3]. Nevertheless, neither
HIP nor CUDA can be employed to target Intel GPUs. Therefore, SeisSol is not tunable to
the future Intel GPUs running in LRZ or other supercomputers, as OpenMP only supports
limited capabilities to access the offload device.

This thesis analyzes existing heterogeneous components of SeisSol and applies all necessary
changes to adapt them to Intel GPUs. The work is structured as follows:

Chapter 2 introduces the topic by first summarizing the known hardware details of the
existing and upcoming Intel GPUs. After that, available programming models for them are
discussed and it is shown that Sycl, a cross-platform standard to program accelerators, fits
best for portability. Additionally, an overview of available implementations of Sycl is given,

1https://www.lrz.de/presse/ereignisse/2021-05-04-SuperMUC-NG-Phase-2_ENG/

1

https://www.lrz.de/presse/ereignisse/2021-05-04-SuperMUC-NG-Phase-2_ENG/

1. Introduction

and hipSYCL and oneAPI are selected for compilation and performance evaluation. Next,
the numerical scheme of SeisSol, based on a high-order Discontinuous Galerkin method
and its implementation [4] solving the underlying system of Hyperbolic Partial Differential
Equations, is summarized. With that, the necessity for high-performance parallelism and
fine-tuned GPU kernels that justify the employment of native or low-level programming
concepts like Sycl over OpenMP is explained. Finally, the term Performance Portability is
discussed, and a Roofline Model analysis is chosen as success criteria for the main compute
kernels.

Chapter 3 examines three submodules for heterogeneous access: Device, a facade for
accelerator accesses, Yateto, providing a DSL to express tensor operations, and GemmForge,
a code generator for batched General Matrix Multiplications (GEMMs), which implements
the DSL of Yateto. It explains changes that were crucial in order to add support to the Sycl
standard and focuses on how these modifications apply to use Sycl not only on Intel GPUs
but also on FPGAs and arbitrary accelerators.

Chapter 4 evaluates Performance Portability by various benchmarks: At first, a parallel
Jacobi Relaxation solver is performed on Intel’s DevCloud with one and two Iris Xe Max
"DG1" GPUs using Intel MPI. This shows that GPU-aware Intel MPI is available and is suitable
for SeisSol, however needs further optimization before productive utilization. At the same
time, the chapter demonstrates that DG1 is already able to get close to peak performance on
dense GEMM operations and shows its superiority against SoC designs like the 9th Generation
UHD Graphics P630. Running SeisSol proxy implementation and two benchmarks establishes
a proof-of-concept of all changes and proofs that SeisSol will be able to run on the new
SuperMUC-NG. Furthermore, explorative performance analyses using Intel Arria 10 FPGAs
and two Nvidia RTX 3090 GPUs are performed, showing that the Sycl standard could replace
all native GPU code in the future from a functional perspective, but not from a performance
one. At last, this thesis ends with a summary and conclusion and describes future work
which should be done once the new Intel GPUs are available.

Nvidia 95.24 %

Intel 02.04 %

AMD 00.68 %

Other 02.04 %

Figure 1.1.: Market share of vendors of accelerators within the top 500 supercomputers. Total count
of centers using GPUs or Co-processors: 147. Nvidia is significantly more often in use (140 of 147).
Data extracted from https://www.top500.org/statistics/ using the ranking from November 2020.
Accessed 05/21.

2

https://www.top500.org/statistics/

2. Fundamentals

This chapter summarizes fundamentals necessary to port SeisSol for the new Intel GPUs. First,
Intel’s latest integrated graphics chip (Gen11) and parts of its performance characteristics are
examined. The following subsection accomplishes the same for all known details of Iris Xe
series and compares these two generations among each other. Then, available programming
models and compilers for any Intel GPU are discussed, and Sycl, together with oneAPI
and hipSYCL, is selected for the remaining parts of this thesis. The following section dives
deeper into heterogeneous components of SeisSol, mainly Device, Yateto, and GemmForge:
It explains their structure and implementation details and justifies them with the help of
SeisSol’s Numerical Scheme, which is established in the same section. With this in mind,
methods to evaluate all changes in terms of performance are analyzed, and Roofline Model
analysis, in combination with several benchmarks and tests, is chosen as success criteria.

2.1. Intel GPUs

Contrary to what is popular assumed, Intel has been developing GPUs for over twenty years.
For example, they released their first own discrete Graphics Card in 1998 with the i740 and
i752, only three years after Nvidia but without success. However, they continued their work
towards that: The Extreme Graphics and GMA series were mainly used as chipsets on a
motherboard independent of other components like a CPU, resulting in limited performance
aspects. With Intel HD Graphics (Generation 5 and later), Intel switched to a System on a Chip
(SoC) architecture. From then, Intel processors did not only contain CPUs with several cores
but also a GPU. This design led to a huge triumph in the GPU market: Though Figure 1.1
demonstrates the dominance of Nvidia in terms of HPC, Figure 2.1 shows the victory of the
SoC architecture in the consumer market. In 2020, nearly 70% of all GPUs were Intel products
(however, note that this is different when only considering discrete GPUs). In 2010, Intel
again made a step towards discrete accelerators with the Xeon Phi manycore architecture.
Initially inspired by previous GPU researches, this design has now been canceled in favor of
Iris Xe series. The following subsections examine the latest GPU series, Gen11, and compare
its characteristics with known details of the upcoming Iris Xe product stack.

2.1.1. Gen11 Architecture

All investigations in this subsection are based on Intel architectural white papers [5] [6], if not
otherwise indicated. Figure 2.2 gives a graphical overview of the subsequent explanations.

3

2. Fundamentals

0

10

20

30

40

50

60

70

Q4 19 Q3 20 Q4 20

M
ar

ke
t

sh
ar

e
in

%

Intel AMD Nvidia

Figure 2.1: Market share of vendors of
overall installed GPUs. Intel’s propor-
tion is notable greater than AMD’s or
Nvidia’s. Data extracted from https://
www.jonpeddie.com/press-releases/g
pu-shipments-soar-once-more-in-q4.
Accessed 05/21.

Slice
Subslice

Execution Unit (EU)

ALU 1

ALU 2

Registers

SLM
(64 KB)

Dataport
(64 B/cycle)

L1&L2
sampler
cache

L3 cache (3072 KB, 64 B/cycle)

Thread control

Thread
Dispatch

LLC

64 B/cycle
@ring clock

CPU Cores System DRAMeDRAM

8B/cycle,
4 channel

@memory clock

32B/cycle,
@EDRAM

clock

64 B/cycle @ring clock

Figure 2.2.: Schematic structure of the In-
tel Gen11 architecture: A slice groups
into subslices that cluster several execu-
tion units (EUs). The GPU is connected
with the CPU by a shared LLC

Gen11 architecture structures itself, similar to its
predecessor Gen9, in a single slice connected via a
Ring Bus with CPU Cores and a coherent shared Last-
Level-Cache (LLC). Each slice contains an L3 cache
and slice-common components as well as eight sub-
slices.

A subslice clusters eight execution units together
with an L1 and L2 texture sampler cache and a shared
local memory (SLM) of 64 KB. Here, Gen9 differs
from Gen11: The SLM of Gen9 is attached outside
of the subslice. Also, all subslices contain a dataport,
a general-purpose memory unit for load and store
operations with 64 Byte read and write bandwidth per
second, and a thread dispatcher that assigns threads
to execution units.

An Execution Unit (EU) is the main basic block of
an Intel GPU. It is a computational unit consisting
of two SIMD ALUs pipelined across seven available
hardware threads. The ALUs have a vector width
of 128 Bit, allowing up to four FP32 (32-bit floating
point) or eight FP16 (16-bit floating point) operations
simultaneously. With Fused Multiply Add (FMA)
commands, a single EU can reach up to 16 FP32 or 32
FP16 operations per cycle: 2 (ALUs) · (4 or 8 SIMD-
width) · 2 (FMA) = 16 or 32 operations. Therefore, a complete GPU results in a theoretical
peak performance of 8 · 8 · 16, 32 = 1024 FP32 or 2048 FP16 operations per cycle, respectively.

The memory bandwidth, on the other hand, is limited to its hierarchy. However, L1 and L2
sampler caches become only active in texture or image surface sampling, which is typically
not relevant for high-performance computations. Therefore, the bandwidth of the GPU is

4

https://www.jonpeddie.com/press-releases/gpu-shipments-soar-once-more-in-q4
https://www.jonpeddie.com/press-releases/gpu-shipments-soar-once-more-in-q4
https://www.jonpeddie.com/press-releases/gpu-shipments-soar-once-more-in-q4

2. Fundamentals

initially constrained by the 3 KB L3 cache of a subslice. Next follows the LLC (3 MB) shared
by CPU and GPU and an optional embedded DRAM (eDRAM), serving as an additional
cache level. Last, the connection of LLC to the system’s memory control limits the memory
bandwidth of all caches: For Gen11, this is 8 B per cycle on four channels, resulting in a
theoretical bandwidth of system memory frequency times 4 times 8 Byte.

2.1.2. Iris Xe Architecture

The Iris Xe series is an iteration of Intel’s Gen12 architecture. This subsection summarizes
architectural details of the new Xe series based on the announced products of the LP series
and an architectural overview shown at the Architecture Day 2020 [7]. One of the main
benefits of the new architectural style are so-called tiles. Every tile resembles a single Iris Xe,
that are together interconnected via a so-called XeLink. This feature is crucial to compute
clusters like considered in this work. The following explanations show how the other known
specifications apply to the four Xe sub-architectures.

• Iris Xe LP: By the time of writing, LP is the only released series. Intel Iris Xe Graphics
G7 follows the SoC design, whereas Iris Xe Max DG1 (Discrete Graphics 1) is the
standalone version equipped with 4 GB of memory. Both have a single slice and no
additional tiles. One main difference between these GPUs and Gen11 is the number of
subslices and execution units. In the case of Iris Xe LP, six subslices contain 16 EUs on
each slice, whereas in Gen11, there are 8 for both. Hence, the minimum number of total
EUs is 96 compared to 64 per slice. Using a boost clock of 1650 MHz and a memory
clock of 2133 MHz, these two GPUs reach a theoretical peak bandwidth of 68.3 GB/s
or 2.5 FP32 OP/s. Iris Xe Max SG1 (Server Graphics 1) is another model based on the
aforementioned specifications but containing 8 GB of onboard DDR4 memory.

• Iris XE HPG: Iris Xe HPG DG2 is an improved variant of DG1 announced for the end
of 2021. Internet leaks1 reveal variants with 128, 256, and 512 EUs. It can be speculated
that these high counts of EUs get achieved by multiple slices within a GPU. Assuming
the same clock, ALU count, and SIMD width as with the LP series, 3.4 to 13.5 TFlop/s
are reachable. However, other leaks state a clock speed of 2.2 GHz, making the DG2 a
direct competitor to Nvidia’s RTX 3070 in terms of Flop/s.

• Iris XE HP: The HP series comes with up to four tiles that could scale performance
linearly with the peak one of XE HPG products. Apart from that, no details are known
at the time of writing.

• Iris XE HPC: A GPU series with its codename "Ponte Vecchio" is designed to run on
supercomputers like SuperMUC-NG (compare Chapter 1) or Aurora. The first details
were announced at the HPC Devcon 20192: 16 compute tiles distributed across two
blocks combine Rambo cache and I/O link tiles. A total number of EUs was not unveiled
so far. Therefore, no assumptions about the ultimate peak performance are viable.

1https://www.tomshardware.com/news/intel-dg2-gpu-specifications-show-serious-potential
2https://www.intel.com/content/www/us/en/events/hpcdevcon/overview.html

5

https://www.tomshardware.com/news/intel-dg2-gpu-specifications-show-serious-potential
https://www.intel.com/content/www/us/en/events/hpcdevcon/overview.html

2. Fundamentals

2.1.3. Intel GPUs in HPC

Today, Intel GPUs are not widespread in HPC applications because of their limited perfor-
mance characteristics. However, there is still research on them. For example, Gera et al.
investigate the performance characteristics of Gen9 architecture, showing that these GPUs
can reach their peak performance [8]. Deakin and McIntosh-Smith examine Iris Pro 580
Graphics (Gen9) in combination with Sycl [9]. They demonstrate that the peak bandwidth
and execution time is equal to OpenCL. Additionally, they show that Sycl can also produce
competitive performance compared to native performance models. Li et al. compare the
Xeon Phi architecture with an Nvidia Tesla GPU, however, without accessing an integrated
graphics chip [10]. Similar has been performed by Theodoro et al. [11]. Christgau and Steinke,
on the other hand, perform a closely related work to this thesis: They port their tsunami
simulation easyWave from CUDA to Sycl using Intel’s compatibility tool, showing acceptable
Performance Portability, but also areas for improvements of oneAPI [12]. To the best of the
author’s knowledge, no other investigations on the available Iris Xe products have been
carried out in the area of HPC so far.

2.2. Intel GPU Programming

This section discusses programming models for Intel GPUs and compares their syntax by a
Saxpy (Single-Precision A·X Plus Y) example and emphasizes features or missing concepts
with help of the literature. Starting with the most widely used, OpenMP, it continues with
OpenCL, Intel’s direct programming concept so far, and ends with the Sycl standard. Its
implementations provided by oneAPI and hipSYCL are then selected for the rest of this work.

2.2.1. OpenMP

OpenMP is a standardized language extension for C/C++ and Fortran and allows quick
parallelization by parallel regions, work-sharing constructs, or task-based thread scheduling.
It is assumed that most readers are familiar with the general concepts of OpenMP. Therefore,
the next paragraph focuses on GPU offloading.

Starting from version 4.0, OpenMP can be used to offload code to non-host devices like
FPGAs and GPUs with the help of target regions, which are assignable to a device indexed
by the OpenMP runtime. Parallel regions within a target region can be nested into teams
that create a kernel-like hierarchization into blocks and threads similar to CUDA. However,
a runtime system is responsible for distributing work between compute units. There exists
a broad variety of compilers, for instance, GCC, Intel CC, or LLVM with Clang, which
support OpenMP offloading, making OpenMP highly portable. Appendix A.1 shows a Saxpy
benchmark implemented with OpenMP offload, including data mapping of host to device
pointers and vice versa. In direct comparison to Sycl or OpenCL, OpenMP can achieve better
performance results [9]. Additionally, it could already get close to the peak performance
with Intel’s Xeon Phi series at an early stage of the offload support [13]. On the other hand,
OpenMP can also create higher runtimes in several applications than their native counterparts,

6

2. Fundamentals

workgroup
size y

workgroup size x

subgroup
(always 1D)

work item

NDRange size x

NDRange
 size y

Figure 2.3: Example for OpenCL and Sycl
kernel indexing. A 2D range of (6,4)
groups into four (3,2) workgroups. Each
workgroup consists of two subgroups
(green) of length three, containing the
smallest component, a work item (blue).
Note that OpenCL defines global and lo-
cal ranges for their kernels instead of local
block counts and their thread sizes as in
CUDA or HIP.

like CUDA [14], and require deep low-level analysis and custom features to tune a code for a
specific platform via local shared memory, FMA operations, or register bounds [15]. Because
of this and the fact that SeisSol requires these features to minimize the execution time spent
on numerical macro kernels, the usage of OpenMP is declined for Intel GPUs in SeisSol.

2.2.2. OpenCL

OpenCL is a cross-platform standard developed by the Khronos Group primarily used for
parallel or heterogeneous systems. By the time of writing, version 3.0 is the latest release. In
the following, only crucial ideas of OpenCL C are summarized, as the rest of this thesis dives
deeper into its concepts with the Sycl abstraction of OpenCL. Further readings are available
in the standard [16] or tutorials [17] [18]. The OpenCL standard consists of four models: The
platform, memory, execution, and programming model.

The platform model defines a host device (typically a CPU) that is always provided by
the runtime. Hence, there is at least one execution environment guaranteed to be available.
Additionally, the host acts as a master thread, connecting multiple OpenCL devices that
queue so-called commands or command groups. A command, on the other hand, is a small
sub-program, mostly called a kernel, that gets executed by one of the available devices.

The execution model assigns an n-dimensional index space to a kernel, closely related to
blocks and threads in CUDA or teams and threads in OpenMP. This hierarchical structure is
called an NDRange (N-dimensional range) and is used to distribute work to hardware threads
of a device. For common OpenCL devices like GPUs, N is limited to three dimensions. An
NDRange structures itself into workgroups (blocks/teams) consisting of work items (threads)
performing the actual work. Therefore, the global NDRange equals the count of workgroups
times the size of each one. Figure 2.2.2 illustrates this idea using a 2D range of size (6,4). There
is also an intermediate 1D structure between workgroups and work items, called subgroups.
Subgroups were introduced in version 2.0 of the standard and are used to cluster work items
and assign them to a single hardware thread (comparable to a SIMD lane). However, as they
do not impact this work, further readings are referred to [19].

The memory model defines three main types of memory: Private memory is only visible
to a single work item, whereas local memory gets shared within a workgroup. Finally,

7

2. Fundamentals

there is global memory accessible by a complete NDRange. For Intel GPUs, these memories
are mapped with the same memory available in the hardware (compare Figure 2.2 in the
last section). OpenCL also allows declaring global memory as so-called unified shared or
host memory. Unified shared memory is managed by the runtime and gets automatically
transferred between host and device via page fault mechanisms when accessed. On the
contrary, host memory follows the same idea, but data is transferred via a PCI-E bus and
does not migrate back from the device.

A combination of the discussed three models results in the OpenCL programming model
available by the OpenCL framework. Traditionally, this model is expressed with the C
programming language, but a C++ extension is also available [20]. Various vendors pro-
vide OpenCL for their products, including Nvidia and Intel, resulting in good portability.
Additionally, Fang et al. showed that OpenCL gets similar performance results as CUDA
under fair condition [21]. Nevertheless, OpenCL is not used to port SeisSol for Intel GPUs
for three reasons: Firstly, OpenCL C comes with a large overhead of boilerplate code, which
makes dynamic code generation cumbersome. That issue is furthermore emphasized by the
necessity to separate kernel and host code. Due to the length of an OpenCL code, no example
is provided in the appendix of this work, but it is referred to the book of Ravishekhar and
Bhattacharyya, where Saxpy is implemented in Chapter 1 [18] and stays exemplary for these
concerns. Secondly, there is a modern C++17 programming abstraction to OpenCL called
Sycl that recently received new attention with Intel’s oneAPI platform. oneAPI contains a
Sycl compiler called data-parallel c++ (dpcpp), available in both a packaged and open-source
variant, that already received good results while porting CUDA code to Intel’s own prod-
ucts [12]. Therefore, it is believed that the performance gap between Sycl and OpenCL or
OpenMP, like reported by Silvia et al. [22], will minimize or not apply to Intel’s software
stack in the future. Thirdly, Sycl today allows different backends than OpenCL, for example,
CUDA, which allows to create native applications.

2.2.3. Sycl

Sycl [23] is another Khronos standard, initially designed on top of the OpenCL backend.
However, as mentioned in the section before, it also allows different backends like CUDA,
increasing portability by reducing dependencies on OpenCL. Sycl is a fully C++17 conform
standard, which means that no additional syntactical extension is needed to create and launch
a kernel, but only Sycl libraries. With its single-source approach (device and host code are
mixable), Sycl can highly reduce lines of code within a program, speed up development time,
and improve the readability of heterogeneous code [24]. Due to its relation to OpenCL, Sycl
follows the same models. Thus, all explanations of platform, execution, and memory from the
previous section also apply to Sycl. Obviously, the programming model deviates as OpenCL
C can’t access C++ features like lambdas or template functions. Listing A.2 implements a
Saxpy benchmark using Sycl and raw C pointers. In direct comparison to OpenCL, the brevity
and conciseness of the Sycl code can be highlighted, assuming the reader is familiar with C++
lambda expressions. If not, introductory works to Sycl help to explain this part in detail [25].
By the time of writing, there exist at least four Sycl implementations, including Codeplay’s

8

2. Fundamentals

ComputeC++, Xilinx’s TriSYCL, hipSYCL provided by the University of Heidelberg [26], and
Intel’s oneAPI. For this thesis, hipSYCL and oneAPI are selected as development platforms
for three reasons: Firstly, both are open-source available and installable on HPC machines
without additional configuration. For hipSYCL, there is also a spack package available, adding
more convenience to test setups like used in this work. Spack is an HPC package manager,
which installs an application and all its dependencies from source code, which is important
as the targeted test systems do not allow changes without administrative access. Secondly,
both of them support CUDA as code backend, which is used to ensure the correctness of
SeisSol by comparing the results obtained with Sycl with the native CUDA ones. Thirdly, and
most importantly, it is expected that Intel’s Sycl compiler is highly tuned for Intel devices,
and therefore will be available on all HPC systems that employ Intel GPUs like the "Ponte
Vecchio". Hence, evaluations using oneAPI should create an outlook on what is expectable in
the future in terms of performance results.

2.3. SeisSol

SeisSol is an open-source "scientific software for the numerical simulation of seismic wave
phenomena and earthquake dynamics"3. An example of a real-world application of SeisSol
is the 1994 Northbridge or the 2004 Sumatra-Andaman earthquake. This section introduces
SeisSol and its heterogeneous components by providing an overview of its numerical scheme
build upon a High-Order Discontinuous Galerkin (DG) method using ADER time integration
and Local or Global Time Stepping (LTS/GTS). Hence, the necessity of small GEMM kernels
generated during compilation is justified. The subsequent section provides a big picture of
SeisSol’s heterogeneous components distributed to three libraries, namely, Device, Yateto,
and GemmForge that are analyzed and extended in Chapter 3 with Sycl compliant code. The
last section defines the term Performance Portability and how it is applied in this thesis.

2.3.1. Numerical Scheme

SeisSol provides a numerical solver for the three-dimensional elastic wave equation driven
by velocities and stresses. This can be modeled by a system of linear hyperbolic Partial
Differential Equations (PDEs) as expressed in Equation 2.1.

∂q
∂t

+ A(s)
∂q
∂x

+ B(s)
∂q
∂y

+ C(s)
∂q
∂z

= 0 (2.1)

q(s, t) = (σxx, σyy, σzz, σxy, σyx, σxz, u, v, w) is a nine-component vector containing stresses σij
and particle velocities u, v, w in the Cartesian space s = (x, y, z) ∈ R3. A stress σij determines
the force on a plane i within a body in direction j. A, B, C are space-dependent Jacobi matrices
adding the Lamé parameters λ and σ as well as the mass density ρ. The Lamé parameters are
used to define the relationship between stress and strain in elastic deformation.

3http://www.seissol.org/

9

http://www.seissol.org/

2. Fundamentals

SeisSol uses a Discontinuous Galerkin (DG) method for spatial discretization. In the DG
method, 2.1 is transformed into its weak form by multiplying it with test functions Φ and
integrating it over the domain Ω. The result is then semi-discretized into finite elements Ωk
that present a new state in a time step and are linked by a numerical flux. SeisSol applies
an adaptive grid of tetrahedral meshes, allowing to vary the mesh size depending on the
importance of geological regions. Additionally, SeisSol combines the DG method with the
ADER scheme for time discretization as described by Käser and Dumbser [27] [28] which
leads to a high-order representation of Q̂ at each time step tn of tetrahedron Ωk shown in
Equation 2.2. Note that the following descriptions are based and summarized on the work of
Heinecke et al. [1].

Q̂n
k (s) = (φ1, ..., φBO)(ξ(s))Q

n
k (2.2)

This equation combines orthogonal polynomial basis functions φj(ξ), j ∈ 1, . . . , BO, which
are space-dependent, and time-dependent degrees of freedom Qn

k ∈ RBO×9. The count of
bases BO is determined by the convergence order O. A typical size for O is six, resulting in
B6 = 56 basis functions. Therefore, this characteristic size is used later in the benchmarks for
a Roofline Model analysis. ξ is a translation of an arbitrary Cartesian coordinate s = (x, y, z)
into a reference point, here a tetrahedron of a mesh. The fully discretized update scheme in
SeisSol for a degree of freedom at time tn+1 = tn +∆t based on Qn

k is provided in Equation 2.3.

Qn+1
k = Qn

k + Vk −
4

∑
i=1

Fk,i (2.3)

Note that if the time steps ∆t are equally for every tetrahedron, one speaks of Global
Stepping (GTS), but also individual values are allowed (Local Time Stepping, LTS). The
partitioning of tetrahedrons into equivalent time steps is one of the key ideas of SeisSol

The heart of the update scheme form Compute Kernels denoted as V, F, consisting of tensor
operations and depending on time Tn,∆t

k . That explains and justifies the focus of this work on
optimizing that part of SeisSol’s numerical scheme, as these kernels are executed enormously
often, depending on the simulated time and count of tetrahedrons in the mesh. Some of
them are illuminated in the following to emphasize these considerations. More detailed
explanations can be found in previous work [29].

Tn,∆t
k describes the Time Kernel and approximates time-predicted values of the degrees of

freedom in [tn, tn+1] of a tetrahedron k by a Taylor expansion. The time derivatives of this
expansion are expressed by a recursive scheme using multiplication of stiffness matrices, mass
matrices, the previous result of the recursion, and a linear combination ∈ R9×9 of A, B, C.

Vk describes the Volume Kernel depending on Tn,∆t
k , following a similar scheme as the time

derivatives of it.
Fk,i expresses the numerical Flux Kernel for a tetrahedron Ωk over its faces i = 1, . . . , 4

depending on Tn,∆t
k . Again, there are tensor operations by multiplying unique flux matrices,

face-local matrices, and the time kernel T. For completeness, F can also express the Dynamic
Rupture Kernel or boundary conditions, which are explained in detail in preceded work [29].

10

2. Fundamentals

2.3.2. Heterogeneous Components

The last subsection summarized the underlying numerical scheme and how it is expressed by
tensor operations. Considering SeisSol and GPUs, these are implemented by three modules,
as illustrated in Figure 2.4, that together enable GPU access: Yateto, GemmForge, and Device.
Device is essentially a primary API endpoint to prepare and synchronize computations of the
numerical scheme. Yateto generates code to express tensor operations with GEMM operations
and corresponding calls GEMM libraries under the assumption of using it in the context of
an ADER-DG method. GemmForge, on the other hand, implements GEMM code generation
for GPUs, until now only using CUDA and HIP, and leverages performance by exploiting
knowledge of the application domain. One main advantage of this design is that one does
not need to change code within SeisSol if adding a new accelerator API. In the following, the
most important aspects of all repositories are illuminated and how they apply to Intel GPUs.
Chapter 3 then use this information to analyze and implement necessary changes.

Yateto

Device

GemmForge

LIBXSMM

...

SeiSol

...

HIP

CUDA

...

HIP

CUDA

...

Figure 2.4: Summary of the cru-
cial heterogeneous components in
SeisSol: Yateto provides a DSL
to express the numerical scheme
implemented by GemmForge or
other GEMM libraries. Device
presents a facade to a typical GPU
programming model like Sycl.

Device

Device4 implements Facade [30] and Adapter [30] design patterns for accelerator accesses.
It provides an API abstracting common GPU programming concepts, including memory
allocation, copying data from or to the device, and synchronization, but also a custom stack
on the global memory of a device and a stream buffer for out-of-order tasks. Additionally,
there is a sub-interface for common GPU algorithms containing data initialization and
scaling, reduction, and batched array manipulation5. As stated in Chapter 1, there have been
implementations of this facade in CUDA [2] and HIP [3] so far. For Intel GPUs, a new adaptee
needs to be implemented in Sycl.

Device is primarily an API to prepare and finalize data for GEMMs but is also responsible
for synchronizing kernels and balance a workload to queues. SeisSol already calls all methods
of the facade in the right order and produces numerical correct results with the CUDA
implementation [2]. Therefore, if the Sycl implementation behaves exactly like the CUDA
one, the results must be logically correct. A deeper analysis of what that means for the
implementation is available in Chapter 3. Moreover, the repository contains a parallel Jacobi
benchmark and several test suites that can be used or extended to ensure correctness and

4https://github.com/SeisSol/Device
5A batched array is considered as a contiguously allocated area of memory containing logically separated

containers.

11

https://github.com/SeisSol/Device

2. Fundamentals

for evaluation. The benchmark is implemented with an MPI+X model, where X can be any
GPU programming model or language wrapped by Device. Thereby, it may demonstrate that
the targeted MPI implementation is Intel-GPU aware. This is especially important, as SeisSol
relies on the same design idea and does not work without GPU-aware MPI.

Yateto

Yateto6 (Yet Another Tensor Toolbox) is a code generator, providing a domain-specific lan-
guage (DSL) to express tensor operations [4]. Yateto was explicitly designed for generating
kernels establishing them via 2D tensor (or GEMM) operations used in Partial Differential
Equation (PDE) solvers, particularly in the ADER-DG method. Because of this, it is possible to
reason about generated kernels executing on hardware, which does not apply to a generalized
code generator. This includes, for example, that most matrices fit into low-level caches or
that all dimensions stay fixed during runtime. Moreover, the application context immediately
justifies the focus of optimizing these operations as they are the building block of solving the
ADER-DG scheme. Yateto delegates the generation of kernels to GEMM libraries, for instance,
LIBXSMM7, targeting SIMD Intel CPU architectures, or GemmForge, targeting Nvidia [2] and
AMD GPUs [3]. For GPUs in general, Yateto allows passing batched GEMMs, increasing the
time data remains on a GPU. A batched GEMM operation is defined in Equation 2.4 and
summarized based on previous work [2].

Ce = α ·Op(Ad) ·Op(B f) + β · Ce (2.4)

A, B, C are real matrices such that Matrix-Matrix-Multiplication is defined. e is the index of
the current batch operation, d is either e or omitted if A is constant throughout the batches.
The same holds for f and B. Op(M) is either MT or M. Note that two special cases of
GEMMs, Copy-Scaled-Add (CSA) and initialization, are treated individually by Yateto, which
becomes important when changing GemmForge later in this thesis. Additionally, note that all
matrices are stored in column-major forward due to the origin of SeisSol in Fortran.

Considering Intel GPUs, Yateto does not need major changes, as the current design already
allows to switch between the AMD and Nvidia GPU architectures. Therefore, the rest of
this thesis does not focus on Yateto and assumes that an additional option for Intel GPUs is
already available.

GemmForge

GemmForge8 is SeisSol’s code generator for batched GEMM operations on a GPU, as men-
tioned in the section before. GemmForge allows specifying a GPU architecture, which is
passed to a GEMM, CSA, or initialization code generator. Exploiting the programming model
of the target architecture, the code is generated following the same optimization ideas on any
GPU model, which are summarized in the following based on preceded work [2].

6https://github.com/SeisSol/yateto
7https://github.com/hfp/libxsmm
8https://github.com/ravil-mobile/gemmforge

12

https://github.com/SeisSol/yateto
https://github.com/hfp/libxsmm
https://github.com/ravil-mobile/gemmforge

2. Fundamentals

Inspired by Rivera et al. [31], GemmForge splits a single matrix-matrix multiplication into
a sum of outer products, distributed parallelly to up to three Nvidia warps. Dorozhinskii and
Bader denote these as team, and the first m threads of a team active threads. The size of a team
is determined by the count of rows of Op(Ad). Each load or store of any column (recall the
column-major layout of SeisSol) of A or C by a team then leads to coalesced memory access.
Furthermore, each active thread loads one element of the same column of A into a register
and combines it with a row of matrix B, which is loaded into the shared memory of a GPU.
At the beginning of a kernel execution, intermediate results of a multiplication are stored in
registers and copied back to global memory at the end of the entire product. These resulting
fine-tuned kernels are further optimized by loop-unrolling and CUDAs launch_bounds hint
for the compiler, limiting the number of registers per thread to avoid register spilling.

Evaluating these techniques, the CUDA implementation of GemmForge outperforms native
HPC libraries like cuBLAS9 and can reach the theoretical peak performance of a GPU [2].
This is attributable to the fact that these types of kernels are 1) memory bound and 2) allow
the techniques as described above due to the known structure of the matrices at runtime.
This does not apply to general GEMMs like those processed by cuBLAS. GemmForge’s HIP
implementation follows the same ideas and also gets close to peak performance [3].

Regarding Intel GPUs, the architectural layer of the code generation has to be extended to
include object-oriented concepts of C++ and to skip optimizations that are not expressible
by Sycl (like register limitations). However, no specialized GEMM implementations for Sycl
are created in this work as there is not much experience on performance characteristics
of Intel GPUs in the literature yet. Instead, the existing technique as described above is
employed, even though it might not be optimal for Intel GPUs in general. The correctness
of the implementation is ensured by an existing test-suite for GEMM operations and new
suites for CSA and initialization created in this work. The next section summarizes how the
described changes and evaluations for Sycl and Intel GPUs refer to Performance Portability.

2.3.3. Performance Portability

Performance Portability is a non-standardized term in computer science for a) providing a
correct piece of software to a new platform and b) evaluating performance relative to the
new underlying architecture at once. Pennycook et al. define Performance portability as
follows: Performance Portability is "a measurement of an application’s performance efficiency
for a given problem that can be executed correctly on all platforms in a given set" [32]. This
work stays to a single problem on two platforms for Performance Portability: A single and a
double GEMM benchmark provided by GemmForge, that maps to a compute kernel solved
by SeisSol in a typical setup and runs on an Iris Xe Max, Gen9 UHD Graphics P630, and
Nvidia RTX 3090. Therefore, the suggested metric of their work is not applied. Instead,
evaluations of performance results are performed directly by a Roofline Model analysis [33].

A Roofline Model is a visualization for performance characteristics of both a device and
an algorithm. It plots operational intensity (in floating-point operations per byte) against

9https://docs.nvidia.com/cuda/cublas/index.html

13

https://docs.nvidia.com/cuda/cublas/index.html

2. Fundamentals

measured performance (in Flop/s) of an algorithm, thus showing if its performance is either
memory-bound (i.e. limited by the bandwidth) or compute-bound (i.e. limited by the count
of operations a CPU can execute per cycle). An operational intensity can be received by
hardware performance counters or estimated by dividing the numbers of Flops by the count
of bytes processed in the algorithm. On the other hand, the theoretical peak performance on
both labels is retrieved either with the specification of a device or by microbenchmarks. The
latter can create fairer conditions for GPUs, as the theoretical bandwidth is not achievable by
default floating-point data types. The closer an algorithm gets to these peak performances,
the more efficient it uses the underlying hardware.

For the parallel Jacobi and SeisSol itself, benchmarks provided by these applications are
executed on the two Intel GPUs, a single Intel Arria 10, and a compute cluster containing two
Nvidia RTX 3090. Chapter 4 introduces the execution environments as well as the parameter
and the output of the algorithms in detail.

14

3. Analysis and Design

The last chapter introduced SeisSol’s heterogeneous components, Yateto, Device, and Gemm-
Forge, and gave an idea of what changes are required to support Intel GPUs with the Sycl
programming model. This chapter analyzes Device and GemmForge in detail and designs a
new implementation using the existing CUDA code as a template such that the Sycl code
is functionally equivalent to it. Next, important implementation details are provided, for
example, individual reductions for both hipSYCL and oneAPI, and the correctness of all
changes is ensured by various test suites.

3.1. Device

Device provides a Singleton [30] interface facade for an arbitrary accelerator API and common
GPU algorithms. Figure 3.1 shows a higher-level overview of the structure of its CUDA
implementation, which is summarized in the following.

AbstractAPI

Algorithms

Aux

Memory

Copy

DeviceInstance

Control

Streams

ArrayManip

BatchManip

Reduction

Figure 3.1: Structure of
CUDA components of Device.
AbstractAPI hides the imple-
mentation of native features
like data transfer in Copy
or custom ones like a GPU
stack provided by Memory.
Algorithms encapsulates
typical parallel algorithms like
reduction.

Memory implements the allocation and deletion of global, shared, and page-locked memory.
Additionally, it includes a custom GPU stack on the global memory used for quick data access
in SeisSol’s compute kernels with push and pop operations. Copy transfers 1D or padded 2D
data from a host to a device or vice versa, either synchronously or asynchronously. Streams
maintains CUDA device streams which are similar to a kernel queue in Sycl, allowing to
introduce further levels of parallelism. All streams are ordered and managed by a circular
queue buffer implemented by Streams. Control initializes and selects a CUDA device by
a certain id number and synchronizes it. Aux contains a test kernel and a method for error
checking.
ArrayManip and BatchManip are parts of the Algorithms component and implement short-

cut methods for batched or non-batched array initialization and scaling, whereas Reduction

15

3. Analysis and Design

aggregates an array depending on an arithmetic operator.
In the following subsections, this architecture is used as a template for the Sycl imple-

mentation. They answer, which design concepts of Sycl are different and why they prevent
performing an automatic conversion, for example with Intel’s compatibility tool1. For that,
CUDA API is compared with Sycl API, and inconsistencies between the programming models
are extracted. Subsequently, changes in the architecture (compared to Figure 3.1) are designed,
implemented, and verified.

3.1.1. CUDA compared to Sycl

This subsection illuminates differences and similarities between CUDA and Sycl needed for
designing the Sycl implementation of Device and, later in the chapter, GemmForge. These
considerations remain with the most crucial aspects received by the author’s experience
during this work. Note that there are more ways to express aspects from one language
within the other, for example, explicit device management in CUDA or subgroups in Sycl.
However, as they do not play a role in later changes, they are not consulted in the following
explanations based on CodePlay’s migration guide2.

One difference between Sycl and CUDA is that Sycl is designed to access arbitrary devices,
whereas CUDA is not. That already leads to a break in the programming concepts: As
described in Section 2.2.2, the Sycl platform model holds next to a host device all other
devices (for example, CPUs or FPGAs) that are accessible. Therefore, in Sycl, a programmer
is responsible for selecting a GPU over all other devices. In CUDA, there is no need for
such filtering, as only Nvidia GPUs are available. Furthermore, CUDA automatically detects
and provides the best device on a machine. Sycl needs a device selector or a lookup of the
underlying platforms to express the same concept.

Next, CUDA has a global static context presented by the runtime. Therefore, launching
a kernel does not require calling any C++ objects or holding a context like a Sycl queue.
Additionally, kernels in CUDA per default execute on a default stream, i.e., passing a stream
explicitly to a kernel is not necessary for CUDA. Sycl does not have such implicit queuing.
Furthermore, Sycl streams are per default out-of-order, which means that any kernel passed
to a queue can be executed in any order. That is not the case with CUDA, where streams are
in-order.

The index space of CUDA is very similar to Sycl except in terms of notation. In CUDA,
for example, a work item is called a thread, a work-group a block, and an NDRange a
grid. Calculations of a global thread index in Sycl follow the same regulations as in CUDA
in all dimensions, but Sycl also has convenient functions and objects to circumvent these
computations. An example for 1D indexing using CUDA and a verbose and abbreviated
variant in Sycl is provided in Equation 3.1 to 3.3. On the other hand, Figure 3.2 compares
CUDA and Sycl 2D index space labeled with method calls necessary to access the information.

1https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compatibili
ty-tool.html

2https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/migrat
ion

16

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compatibility-tool.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compatibility-tool.html
https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/migration
https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/migration

3. Analysis and Design

Note that both the figure and equation assume that all Sycl calls are performed on an nd_item
within a kernel function. For CUDA, the same is asserted but without the need for the latter.

blockIdx.x · blockDim.x + threadIdx.x (3.1)

≡ get_group().get_id(0) · get_local_range(0) + get_local_id(0) (3.2)

≡ get_global_id(0) (3.3)

However, one essential difference is the way how the index space is created in both
programming models. A CUDA kernel launcher requires a specification of mk blocks and nk
threads per dimension k. That results during runtime in a grid size of mk × nk, or mk blocks
of size nk. Sycl reverses this idea: A kernel function takes a (global) NDRange (or grid in the
CUDA terms) of size mk × nk per dimension and a local size nk of all workgroups (blocks).
This difference of launching a kernel index has to be considered while porting CUDA to Sycl
code.

...

...

...

(x,y)

(threadIdx.x, threadIdx.y)
(get_local_id(0), get_local_id(1))

blockDim.y
get_local_range(1)

...

...

0 1

1

blockIdx.y
get_group().get_id(1)

blockIdx.x
get_group().get_id(0)

blockDim.x
get_local_range(0)

...

...

gridDim.y
get_global_range(1)

gridDim.x
get_global_range(0)

Figure 3.2.: CUDA (first line) and Sycl (second line)
indexing in comparison for a 2D index space. Ex-
cept for different wording and additional object
hierarchies in Sycl, both follow the same design
idea. Note that all methods must be called within a
kernel. Sycl additionally requires to call the meth-
ods on an nd_item.

CUDA and Sycl share the same ideas re-
garding the memory model as described in
Section 2.2.2 but express it with different syn-
tax. For example, shared memory can be al-
located within a kernel in CUDA but outside
of a kernel in Sycl. Nevertheless, Sycl allows
two different data management strategies:
Raw C pointers, which are unconstrained ac-
cessible via pointer arithmetics, and memory
buffers. Memory buffers provide an abstrac-
tion of memory and are fully maintained by
the Sycl runtime. They are not directly acces-
sible by index operators but rather with an
accessor object. Buffers and accessors in com-
bination with out-of-order queues enable the
Sycl runtime to build dependency graphs.
Similar to OpenMP tasking, Sycl can then
schedule kernels with this graph and may
add more parallelism.

Furthermore, CUDA default memory copy
operations are synchronous, whereas asyn-
chronous ones require a different set of func-
tions. In Sycl, those operations need to be submitted on a queue when using raw pointers.
Any queuing in Sycl returns an event that is executed asynchronously and can be waited for.
Alternatively, there are wait operations on a queue that synchronize it completely with the
host. However, synchronizing a single queue does not synchronize the complete device, as
there can be multiple queues per device. Comparing to CUDA, synchronizing Nvidia GPUs
is commonly performed either per device completely or per single stream.

17

3. Analysis and Design

3.1.2. Design and Implementation

Using the CUDA architecture as a template and aware of the discrepancies and similarities
between both programming languages, the Sycl part of Device is designed and implemented
as follows:

• A container class called DeviceContext is created, which is instantiated during the
initialization phase of the Control component and filled with each available definition
of a concrete accelerator installed at a given system. However, to enable GPU-aware MPI,
all non-level zero backends are excluded regarding Intel GPUs, as it is only available on
the latter one. The filled vector is sorted by a newly introduced environment variable,
PREFERRED_DEVICE_TYPE, requiring a value of either GPU, CPU, or FPGA. This allows
to set and switch devices at runtime by an index: Because the context class holds all
references that are specific per device (like the queue buffer or the stack), pointers
to them are updated once a device was changed. Nevertheless, it is still a user’s
responsibility to distribute the work to the maximum count of the same device types.

• For reasons of the Single-Responsibility principle of Software Engineering, dedicated
classes Stack and DeviceCircularStreamBuffer are created, instead of including them
directly in Memory or Stream. Note that all queues in the buffer are created in-order.

• All data managements in Memory or Copy are handled via C raw pointers instead of
buffers. Buffers are great for automatic dependency management, but this is not a use-
case for SeisSol and therefore, they are not used for this work. Additionally, omitting
buffers reduces the overhead which is caused by the runtime with them.

• Furthermore, any memory copy operations are synchronized, except if methods are
explicitly marked as asynchronous. Additionally, to the best of the author’s knowledge,
there are no 2D memory copy operations for strided memory transfer in Sycl. Due to
that, they are implemented manually via a for-loop.

• Any kernel indexing in Algorithms is directly converted using Figure 3.2. The global
kernel index space is created by multiplying CUDA blocks and threads in every dimen-
sion, whereas the local range inherits CUDA block size.

• Instead of checking error codes as returned from CUDA API, an asynchronous exception
handler is passed to any queue. Furthermore, all assertions on the integrity of a method
are expressed with exceptions.

• Two implementations of Reduction are provided: The first one bases on the Sycl
reduction library implemented by oneAPI. The second one is a custom implementation
for platforms like hipSYCL that do not implement this part of the standard.

• The build system compiles all Sycl code with O3 optimization. Furthermore, Ahead-of-
Time (AoT) compilation is activated if any preferred device is set. That can increase the
performance of a kernel as it does not have to be assembled at runtime via Just-In-Time

18

3. Analysis and Design

compilation. Additionally, AoT compilation is mandatory for FPGAs. All other changes
in the build files are excluded here but are available at the public GitHub repository for
interested readers.

Appendix A.3 shows an updated Figure 3.1 that summarizes the design changes in the API
component regarding Sycl based on the descriptions above.

3.1.3. Correctness

Correctness of the implementation is ensured by three examples and test suites. The first
example submits a test kernel and transfers mock data between the host and a device, whereas
the second example is an HelloWorld test for GPU-aware MPI. For both tests, a limitation
was encountered on a local Intel HD Graphics 620. It does not have hardware support for
double-precision floating points. These types are only supported if IGC_EnableDPEmulation
environment variable is set to 1. The same holds for the Iris Xe Max GPU3. However,
this does not impact SeisSol, as the precision is definable at compile-time. Both tests pass
their requirements on the local HD Graphics P620, but note that Intel MPI requires setting
I_MPI_OFFLOAD environment variable to 2 before running MPI with device pointers.

The parallel Jacobi benchmark is a more complex example implemented for CPUs and
GPUs, which is summarized based on preceded work [3] in the following. It approximates
a solution of a system of diagonal-dominant linear equations Ax = b by converging to a
fixpoint given by φ(xk) = xk + M−1r. M contains diagonal elements of A, and r = b− Axk is
the residual value of a current convergence step. The implementation in the repository splits
computations of matrix-vector products and distributes these across all MPI ranks. Each
rank is assigned to a single GPU. Intermediate and final results are propagated with MPI
collectives. For reproducibility, the benchmark uses a fixed band matrix A, solution vector x
and initial approximation x0 stated in Equation 3.4. Additionally, the maximum error is set to
ε = 10−7.

A =

2 −1 0 0 0 0
−1 2 −1 . . . 0 0 0
0 −1 2 0 0 0

...
. . .

...
0 0 0 2 −1 0
0 0 0 . . . −1 2 −1
0 0 0 0 −1 2

, x0 =

−10
...
−10

 , x =

−1
...
−1

 (3.4)

Running this example on Intel HD Graphics P620 and one or two Iris Xe Max with row sizes
{10k | k = 3, 4, 5, 6, 7} ∪ {5 · 10k | k = 3, 4, 5, 6} of A using oneAPI in the packaged version
result in equal outcomes using Intel MPI, indicating that the Sycl implementation is correct
and Intel GPU-aware MPI works. Similar experiments were performed using native CUDA,

3https://community.intel.com/t5/Intel-DevCloud/Iris-Xe-MAX-node-is-missing-double-precision-s
upport/td-p/1247876?profile.language=de

19

https://community.intel.com/t5/Intel-DevCloud/Iris-Xe-MAX-node-is-missing-double-precision-support/td-p/1247876?profile.language=de
https://community.intel.com/t5/Intel-DevCloud/Iris-Xe-MAX-node-is-missing-double-precision-support/td-p/1247876?profile.language=de

3. Analysis and Design

oneAPI (open-source), and hipSYCL with one and two RTX 3090 and OpenMPI without UCX
layer. The same results were obtained with that setup, as well.

Last, all available tests for the Reduction part of the algorithms library were executed.
Additionally, they were extended by suites for the custom implementation of 2D memory
copy as well as tests for array manipulations. As all tests are passing, the correctness of
Algorithms is also verified under the assumption that they do not contain errors.

3.2. GemmForge

GemmForge is a Python module for generating batched GEMM kernels as introduced in
Section 2.3.2. Parallel to this thesis, GemmForge was redesigned by the community compared
to its original structure described by Dorozhinskii [2]. The following section always refers to
the design provided by the tag v0.0.204, for which Figure 3.3 shows a truncated overview of
its architecture.

AbstractGenerator

VM

CSAGenerator

GemmGenerator

gemmforge

Initializer

HwDescription

AbstractArchLexic

AbstractThreadPolicy

NvidiaGemmPolicy

NvidiaCsaPolicy

NvidiaInitializerPolicy
TheadPolicyFactory

AMDArchLexic

NvidiaArchLexic

AbstractLoader

Code

Figure 3.3: Architectural
style of GemmForge. VM
stores important hardware
details of a vendor model.
AbstractThreadPolicy
defines a strategy to create
a kernel index space.
AbstractGenerator and
AbstractLoader generate
batched GEMM kernels
with the help of the Code
dictionary.

VM is a container class for a GPU vendor. It contains HwDescription storing hardware
details like the size of shared memory or the maximum count of threads for a GPU model.
AbstractArchLexic is a facade for vendor-specific language syntax used by the code gen-
erators. AbstractThreadPolicy is a Strategy Pattern [30] exploiting these data to define
an indexing space of a kernel. Default policies are specific for Nvidia GPUs created by a
Factory [30] class but can be extended for other GPU manufacturers. AbstractGenerator
and AbstractLoader are base classes for batched GEMM code generation as described in
Section 2.3.2. AbstractGenerator analyzes the underlying VM and thread policy to create a
kernel launcher, a kernel itself, and a belonging header. AbstractLoader is a sub-generator
for loading data into shared memory. Code serves as a dictionary for C++ code generation.
CSAGenerator, GemmGenerator, and Initializer are the respective generator implementa-
tions.

One issue thereby is that the GemmForge implementation is tailored to CUDA and HIP. HIP
and CUDA share almost all programming concepts except for minor syntactical differences.

20

3. Analysis and Design

Therefore, only the bare necessities like thread indexing within a kernel are abstracted in
AbstractArchLexic. Other concepts like launching kernels, creating an index space with
dimension objects, or synchronization within a block are not abstracted, resulting in a non-
disjoint separation between GPU and host code. The following section discusses two designs
that change the architecture of GemmForge such that GPU and host code are fully separated.

3.2.1. Design

The main challenge of GemmForge design is to eliminate mutually exclusive concepts
in CUDA and Sycl that are difficult to generalize and that prevent to solely add a third
implementation to AbstractArchLexic. For example, declaration of shared memory in CUDA
takes place within a kernel but in Sycl outside of it. Or: Sycl kernels are typically expressed
with anonymous lambda methods, whereas CUDA uses functions labeled with a language
extension. All these discrepancies are not issues in Device, where each implementation is
isolated from the other ones.

To tackle these problems, two design options are considered: The first one targets to com-
pletely refactor all three generators by introducing a Composite Pattern [30] in combination
with GPU and host code Builders [30] to express a formal grammar for each programming
language. That design implements a fully GEMM-independent code generation package
for default C++, CUDA, HIP, and Sycl code. Furthermore, Sycl and CUDA code is inter-
changeable and allows transferring CUDA to Sycl step-by-step, if necessary. Appendix A.4
emphasizes these ideas by a class diagram.

The second design aims to add more levels of abstraction into AbstractArchLexic and
move all GPU-specific code to overridden methods of derived classes. At the same time, all
non-shared information needed during the generation phase in the parameters of such a
method is unified. For example, the method in AbstractGenerator, which creates a kernel,
is extended by a count of requested local memory. This parameter then acts as an offer that
can be consumed or not. In this case, SyclArchLexic can use this hint to declare the local
memory during the kernel setup, whereas NvidiaArchLexic ignores it. Moreover, the same
parameter is passed to a standalone version for creating local memory within the kernel code.
The CUDA architecture lexicon accepts this parameter, whereas the Sycl one, on the other
hand, skips that method completely.

This work follows the second variant for the following reason: The first design requires
a complete re-implementation of GemmForge with a complex structure of many different
classes implementing the Composite and Code Builder patterns. An experimental setup4

using C# confirms any concerns on this. Therefore, and due to uncertainties accompanying
that design regarding time limitations, the ideas of redesigning GemmForge were discarded.

4https://github.com/ZaubererHaft/GemmForge-Experimental

21

https://github.com/ZaubererHaft/GemmForge-Experimental

3. Analysis and Design

3.2.2. Implementation

At the chosen design, a new architecture lexicon SyclArchLexic is added and all GPU-specific
method calls in the generators are deferred to AbstractArchLexic or Code. Furthermore,
the existing methods are extended with offers to mutually exclusive concepts discarded or
consumed by vendor-specific implementations as described in the section before. Addition-
ally, passing a non-null stream or queue pointer as a parameter is asserted in the generated
kernel launcher. Hence, the method always gets the right context where to submit a GEMM
operation. So far, this was either null or a stream from the CircularBuffer of the Device
submodule passed as a parameter by SeisSol. Within CUDA a null (or zero) stream is valid
for a kernel launcher, as it resembles the default stream. Using Sycl, one can’t make assump-
tions about a device and need a correct platform chosen by Device (compare Section 3.1.1).
Figure 3.4 illustrates the solution to that problem by a shortened kernel launcher generated by
GemmForge. Initially, the change broke the compatibility to SeisSol, but a fix was provided
by the community during this work, such that SeisSol always passes a stream that is different
from null.

void gemm(const float * A, const float * B,
float * C, unsigned NumElements,
void* streamPtr) {

dim3 Block(64, 1, 1);
dim3 Grid((NumElements + 1 - 1) / 1, 1, 1);
cudaStream_t stream = (streamPtr != nullptr) ?

static_cast<cudaStream_t>(streamPtr) : 0;
kernel<<<Grid,Block,0,stream>>>(A, B, C,

NumElements);
CHECK_ERR;
}

void gemm(const float * A, const float * B,
float * C, unsigned NumElements,
void* streamPtr) {

range<3> Block(64, 1, 1);
range<3> Grid((NumElements + 1 - 1) / 1, 1, 1);
if (streamPtr == nullptr)
throw std::invalid_argument();

queue *stream = static_cast<queue *>(streamPtr);
kernel(stream, Grid, Block, A, B, C, NumElements);

}

Figure 3.4.: Shortened GEMM kernel launcher of CUDA (left) and Sycl (right) generated by Gemm-
Forge. Pointers A, B, C contain NumElements contiguously batched matrices. Active threads per kernel
are determined by the y-index range, whereas z index range is not set by the GEMM generator. The
Sycl code asserts a valid context provided by the streamPtr and implicitly checks errors by exceptions
thrown by the runtime.

The remaining part of the Sycl implementation in the respective generators is derived from
the CUDA code similar as performed in Section 3.1.2, except for one difference. In Device,
the thread indexing is directly converted by the corresponding methods (recall Figure 3.2 for
an overview). However, this direct indexing causes issues using Sycl with CUDA backend5:
The linear index in CUDA allows up to 231 − 1 threads along x-axis. However, the CUDA
implementation for Sycl used by oneAPI and hipSYCL does not map the x-axis of Sycl to the
x-axis in CUDA but to the z-axis, which is limited to 216 − 1. In a typical setup of SeisSol,
more than 2 GB of data is used. Assume matrix sizes of C ∈ R56×56, A ∈ R56×9, B ∈ R9×9

with single precision. This results in 2 · 10243 B÷ ((56 · 56 + 56 · 9 + 9 · 9) · 4 B) ≈ 144281

5https://github.com/intel/llvm/issues/1388

22

https://github.com/intel/llvm/issues/1388

3. Analysis and Design

NumElements, each requiring 64 threads to process the biggest matrix A with a quadratic size
of 56. Therefore, a direct conversion raises a CUDA_ERROR_INVALID_VALUE, as the maximum
number of threads in y, z direction in CUDA is exceeded.

To solve this problem, an additional abstraction layer is introduced for thread indexing in
each generator provided by AbstractArchLexic. For CUDA and HIP, the current implemen-
tation is adopted without changes. For Sycl, the indexing strategy in GemmForge is switched
as follows: The local size of a range is passed also to the global one. However, the global
range is extended by multiplying the z-size with the count of threads, and not the x-size.
That results in a re-ordering of the blocks along the z-axis. Figure 3.5 illustrates this change
using a generic global space and a fixed local space of 64 along x-axis.

...
NumElements - 10 1

63...0 63...0 63...0

get_group().get_id(0)

63...0

63...0

63...0

...

NumElements - 1

get_group().get_id(2) 0

1

Figure 3.5.: Generalized index space for CUDA (left) and Sycl (right) used in GemmForge kernel
launcher. Because the CUDA backend for Sycl maps the z-axis in Sycl to the x-axis in CUDA when
using a 3D range, it is necessary to exchange both during GEMM code generation using Sycl.

Due to a lack of information about Iris Xe HPC series, no separate thread policy classes for
Intel are added. It is to believe that tuning the LP series is not productive for the upcoming
high-performance products. In Chapter 4, all performance analyses are therefore performed
with the default thread policy. Regardless of that, the hardware descriptions of Iris Xe Max
and UHD Graphics P630, as found in Section 2.1.2, are added to compute the active threads
for the GEMM operation.

3.2.3. Correctness

To verify all changes, GemmForge test suite for GEMM operations is executed, containing
setups for transposed and non-transposed matrices A, B, C as well as different values for α, β.
The tests fill these matrices with random numbers and compare the resulting matrix C with a
simple CPU implementation producing C′ using their absolute difference |cij − c′ij|. A test
fails if this difference is higher than a fixed maximum error ε = 10−5. Furthermore, similar
tests are implemented for CSAGenerator and Initializer generators but with the unused
matrices removed.

The tests were executed on Iris Xe Max and UHD Graphics P630 using oneAPI in the
packaged version as well as on Nvidia RTX 3090 using oneAPI (open-source variant) and
hipSYCL. All GemmGenerator tests passed on all machines. The same held for CSAGenerator
and Initializer using RTX 3090. However, P630 and DG1 raised a runtime exception
CL_INVALID_WORK_GROUP_SIZE when executing these tests using oneAPI or created illegal

23

3. Analysis and Design

results with hipSYCL. Investigating this problem using the open-source variant of oneAPI6

reveals that the total local size calculated with get_local_range(0) · get_local_range(1)
· get_local_range(2) must not exceed PI_KERNEL_GROUP_INFO_WORK_GROUP_SIZE provided
by an accelerator. For P630, this value is set 256, for DG1, it is 512, which can be reproduced
by running clinfo7. That means that a local size of a kernel range is limited to 256 or 512
for these devices, respectively. However, CSAGenerator and Initializer index their matrices
fully within the local index. For example, initialization of batched matrices Ak ∈ R56×9 creates
a local indexing space of at least 64 · 9 = 576 when aligning the row size to 64. That already
exceeds the maximum local size of both devices.

For DG1, this problem is circumventable by not aligning the x-size to a multiplier of Nvidia
warp size of 32, which allows running the tests and SeisSol proxy application. In contrast to
that, P630 can’t run both applications because even with unaligned row sizes, a minimum of
56× 9 = 504 threads per workgroup is required. For more resource-intensive simulations,
both limitations on the local size are a drawback compared to Nvidia, where a thread block is
limited to 1024 threads8. Nevertheless, it is expectable that Intel HPC GPUs allow a higher
maximum number of threads per workgroup, maybe similar to Nvidia. On that account, the
index generation is not changed such that it is compatible with the integrated graphics chips.

6https://github.com/intel/llvm/blob/sycl/sycl/source/detail/error_handling/enqueue_kernel.cpp
7http://manpages.ubuntu.com/manpages/bionic/man1/clinfo.1.html
8https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, Section 2.2

24

https://github.com/intel/llvm/blob/sycl/sycl/source/detail/error_handling/enqueue_kernel.cpp
http://manpages.ubuntu.com/manpages/bionic/man1/clinfo.1.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

4. Evaluation and Discussion

This chapter evaluates all introduced changes and their effect on SeisSol using two test
systems: Intel DevCloud1 and Heisenbug2 provided by the Geophysics department of the
Ludwig-Maximilian University (LMU). The DevCloud allows requesting multiple compute
nodes, equipped with one to many Iris Xe Max, integrated UHD Graphics P630, or even Arria
10 FPGAs. Heisenbug system comes without a job scheduler for their two Nvidia RTX 3090
and a single AMD EPYC 7662 64-Core Processor. Both types of GPUs were already used
for verifying the correctness of all changes in the previous sections, but without focusing on
platform details. Therefore, Table 4.1 gives an overview of the most important performance
characteristics and properties crucial for the subsequent measurements.

Intel DevCloud Heisenbug
Iris Xe Max UHD Graphics P630 RTX 3090

Peak FP32 Flops 2.50 TFlop/s 460.8 GFlop/s 35.58 TFlop/s
Max. threads per block 512 256 1024

Peak bandwidth in GB/s 68.30 41.60 936.20

Sycl platform oneAPI (packaged)
oneAPI (open-source),

hipSYCL, CUDA

MPI implementation Intel MPI
OpenMPI w/o

UCX layer

Table 4.1.: Performance characteristics and properties of all test systems. The Intel Iris LP series is
designed for test setups and office applications. Thus, the limited performance is not surprising
compared to RTX 3090 or other high-end Nvidia GPUs.

Note that the Intel PAC With Arria 10 GX FPGA is not included in the table. Its specifications
can be found at the Intel documentation3. The following examinations are performed on
these systems in the next sections:

• The first experiment executes the parallel Jacobi benchmark of Device on DevCloud
using a single Iris Xe Max and UHD Graphics P630. The goal of it is to give an
impression of performance differences between discrete and integrated graphics chips
of Intel. Additionally, it demonstrates that the multi-platform approach of Sycl truly
works by executing the benchmark on Intel Arria 10 and Nvidia RTX 3090.

1https://devcloud.intel.com/oneapi/home/
2https://www.geophysik.uni-muenchen.de/research/geocomputing/heisenbug
3https://ark.intel.com/content/www/us/en/ark/products/149169/intel-pac-with-arria-10-gx-fpga.
html

25

https://devcloud.intel.com/oneapi/home/
https://www.geophysik.uni-muenchen.de/research/geocomputing/heisenbug
https://ark.intel.com/content/www/us/en/ark/products/149169/intel-pac-with-arria-10-gx-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/149169/intel-pac-with-arria-10-gx-fpga.html

4. Evaluation and Discussion

• Next, the Jacobi benchmark is investigated using two Iris Xe Max to assess the perfor-
mance of Intel MPI regarding GPU-awareness. Running the same experiment on RTX
3090 with all platforms compares the performance results within the two Sycl imple-
mentations hipSYCL and oneAPI (open-source) and to native CUDA using OpenMPI
without UCX layer. This experiment is then discussed as a Proof-of-Concept (PoC) that
Sycl could replace the Device submodule in the future.

• Subsequently, all specifications for the Roofline Model analysis are measured by first
executing a microkernel benchmark, representing a typical computation in SeisSol, to
get the actual bandwidth for both Intel GPUs. Then, two GEMM kernels are executed
to obtain the performance of the portability in terms of Flop/s and used to create the
Roofline Model for both devices.

• To evaluate the performance of a Sycl GEMM kernel without containing native CUDA
features like launch_bounds, the Roofline Model analysis is also executed on the Nvidia
GPU. Again, this experiment is used as a PoC to demonstrate that Sycl can replace all
native implementations, but here in GemmForge, instead of Device.

• SeisSol proxy application evaluates the main compute kernels of SeisSol. Running it
on Iris Xe Max as well as on the Nvidia machine serves as a criterion for the success
of porting SeisSol to Intel GPUs. Real simulations are not executable on DG1 due to
the highly limited performance of this GPU, as already sketched in Section 3.2.3 and
emphasized with Table 4.1. The latter aims to give an idea of what performance could
be expectable on related Intel cards in contrast to RTX 3090 in the future.

• Simulating LOH1 and TPV5 benchmark of SeisSol on the Heisenbug server using
CUDA, hipSYCL, and oneAPI (open-source) generates comparable outputs for stresses
σ, velocities v, or slip rates in the fault of an earthquake4. An investigation of some
of them by an error analysis ensures the overall correctness of the implementation.
Furthermore, the same benchmarks are performed without I/O to show the entire
performance of the GPU with Sycl and CUDA.

The experiments were not aimed to compare performance between the Intel and Nvidia
GPUs, as they are not competitive at the current state. Additionally, differences between
GPUs and CPUs are not assessed, as this was already part of prior work [2] [3]. Also, the
generated CUDA code by oneAPI and hipSYCL is not analyzed in detail, as it was not the
scope of this thesis. However, this is an interesting topic for future work, as the following
sections show large differences in performance and numerical correctness. Note that any code
was compiled with O3 optimization level but no other additional compiler hints than stated
in the last chapter. Furthermore, note that all numbers are rounded to two decimal places.

4A good definition of these and other geophysical terms can be found in https://earthquake.usgs.gov/lear
n/glossary/.

26

https://earthquake.usgs.gov/learn/glossary/
https://earthquake.usgs.gov/learn/glossary/

4. Evaluation and Discussion

4.1. Device

In the first experiment, the parallel Jacobi as described in Section 3.1.3 is executed. Again,
a row size of {10k | k = 3, 4, 5, 6, 7} ∪ {5 · 10k | k = 3, 4, 5, 6} is used for A. The benchmark
reports its runtime as an absolute performance value and the count of entries processed
relative to the time across all GPUs (ranks). This throughput is defined in Equation 4.1.

ME/s := (
n−1

∑
r=0

maxIter · loadr

tr
)÷ n (4.1)

where n is the total number of ranks (GPUs), indexed by r, maxIter is the constant count of
fixpoint iterations. loadr and tr describe the workload per rank (GPU) and the overall time
in µs spent in the compute kernels and synchronization with the host, respectively. Because
maxIter is constant 106 and the minimum number of rows is 1000 for all tests, 4.1 is denoted
as Million Elements per second (ME/s) and used as the primary performance counter in
the measurements. The total runtime can be obtained easily by rearranging the equation if
required.

4.1.1. Single Accelerator

Figure 4.1 shows the ME/s averaged by ten iterations achieved with Iris Xe Max (left) and
UHD Graphics P630 (right). Both experiments were executed on one GPU (n = 1) with
disabled MPI, using single precision floating point values.

0

200

400

600

800

1000

1200

10 50 100 500 1000 5000 10000

M
E/

s

Row size in 1000
oneAPI

(a) Iris Xe Max DG1

0

200

400

600

800

1000

1200

10 50 100 500 1000 5000 10000

M
E/

s

Row size in 1000
oneAPI

(b) UHD Graphics P630

Figure 4.1.: Average throughputs measured with the parallel Jacobi benchmark using single precision
on a discrete Intel Iris Xe Max (Gen12, left) and with the integrated UHD Graphics P630 (Gen9, right).

The figure omits row sizes < 10000 for better readability. Both GPUs produce similar
performance values for lower row sizes (104, 5 · 104,105). The absolute deviation (in ME/s) of
Iris Xe Max to UHD Graphics is 25.82, 35.24,−34.83, respectively. However, the integrated
graphics chip already reaches its peak performance at a row size of 5 · 105 that is furthermore

27

4. Evaluation and Discussion

significantly lower than DG1 (1048.62 ME/s vs. 798.96 ME/s). For larger row sizes (e.g.,
10 · 106), the count of processed elements is nearly doubled (1230.60 ME/s vs. 711.27 ME/s)
considering Iris Xe Max. These measurements indicate that the discrete LP series profits from
its 32 additional EUs and a subslice-shared L3 cache and thus receives better performance
counters. One can conclude that already LP series performs better on large data sets, so
similar is expectable from the HPC GPUs.

Figure 4.2 shows the same experiment (average of 10 iterations, single precision, no MPI)
compiled with native CUDA (green), oneAPI (open-source, blue), and hipSYCL (red) but at
this time executed on a single RTX 3090. Again, very small row sizes are excluded. At lower
row sizes (up to 5 · 105), a repetitive pattern is observable occurring at all measurements
with the Nvidia card in this work: CUDA implementation results in the best performance,
followed by the code generated by oneAPI (open-source) and hipSYCL with its syclcc
compiler, respectively.

Nevertheless, in this trial, the differences between all three platforms start to decrease
at a row size greater or equal than 5 · 105. In fact, oneAPI in the open-source variant and
hipSYCL seem to profit from these large matrices and even obtain higher performance than
native CUDA. Using 14737.91 ME/s achieved by CUDA with a matrix size of 5 Million as
a reference value, oneAPI has 14.76 % and hipSYCL 6.20 % higher throughput per second.
Due to the scope and time limitations of this work, the origins of this discrepancy are not
analyzed. Instead, the experiment is used as proof that Sycl can replace CUDA in terms of
functional correctness and, in some cases, also performance. However, it additionally shows
that the results are highly dependent on the selected Sycl implementation, as hipSYCL, for
example, processes only half as many elements as oneAPI at smaller matrices.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10 50 100 500 1000 5000 10000

M
E/

s

Row size in 1000
CUDA oneAPI hipSYCL

Figure 4.2: Average throughputs mea-
sured with the parallel Jacobi bench-
mark on a single Nvidia RTX 3090 with
single precision, using native CUDA
and Sycl compiled with oneAPI (open-
source) and hipSYCL. Whereas CUDA is
far ahead at the beginning, oneAPI and
hipSYCL profit from very large matrix
sizes.

For explorative purposes, results are also provided in Figure 4.3 using an Intel Arria 10
FPGA. FPGAs differ a lot from CPUs and GPUs, as they consist of configurable integrated
circuits. During the compilation process, a program is mapped to the spatial architecture of
logical units. Parallelism during execution is received by pipelining and not on instruction
or data-level. Keeping the pipeline filled with instructions is one of the challenges of tuning
FPGAs, which is exacerbated by branches in the control flow of a program.

28

4. Evaluation and Discussion

Executing the compiled benchmark with the same row sizes as above results in considerably
lower throughput in contrast to the GPUs. However, interpreting FPGAs and their perfor-
mance characteristics are not part of this work and require special attention [34]. Nevertheless,
future work could analyze it and define use cases for their deployment. FPGAs might be a
valuable extension for SeisSol, as they can exceed the performance of GPUs in imaging and
other applications [35] [36]. The cross-platform approach of Sycl could allow to exploit and
evaluate this in direct comparison with graphics chips or CPUs.

0

10

20

30

40

50

60

70

1 5 10 50 100 500 1000 5000 10000

M
E/

s

Row size in 1000
Intel Arria 10

Figure 4.3: Average throughputs mea-
sured with the parallel Jacobi bench-
mark on a single Intel Arria 10 FPGA
with single precision and compiled with
oneAPI (packaged). It proves the cross-
platform approach of Sycl, however, the
benchmark reaches almost its peak per-
formance already at a row size of 5 · 104.

4.1.2. Multi GPU

The second experiment repeats the measurements of the last section, but now with two
Iris Xe Max and two RTX 3090. Here, UHD Graphics P630 and Arria 10 are skipped, as
the focus lies on the performance of Intel MPI regarding GPU-awareness. For RTX 3090, all
CUDA measurements are compared against the two Sycl implementations.

Using multiple GPUs, the Jacobi benchmark reports the averaged throughput across all
ranks as shown in Equation 4.1. In the following, this is denoted as compute results. Addition-
ally, it logs communication results, which follow the same formula as in Equation 4.1 but tr is
now the time in µs spent on gathering all intermediate results of an approximation xi from
each rank and sending the combined value to all others (execution time of MPI_Allgatherv).

Figure 4.4 shows compute and communication speed for two Iris Xe Max. A performance
drop of about half ME/s compared to the single GPU execution is observable at low row
sizes (104, 5 · 104, 105) that relativize with higher ones. That means that the execution time
stays roughly the same compared to a single GPU though the workload has been halved.
Therefore, additional resources for launching the kernels do not pay off in small payloads
for GPUs. Similar results are measured using two RTX 3090 (see Figure 4.5). Here, it is
also worth noting that higher throughputs of oneAPI (open-source) and hipSYCL for bigger
matrix sizes (5 · 106, 10 · 106) vanish using a multi-GPU setup and stay below a native CUDA
implementation. Nevertheless, oneAPI gets close to CUDA (96.30 % and 98.15 % relative
performance), whereas hipSYCL varies more (87.55 % and 92.98 %).

29

4. Evaluation and Discussion

0

200

400

600

800

1000

1200

10 50 100 500 1000 5000 10000

M
E/

s

Row size in 1000
Iris Xe Max

(a) Compute Results

0

50

100

150

200

250

300

350

10 50 100 500 1000 5000 10000

M
E/

s

Row size in 1000
Iris Xe Max

(b) Communication Results

Figure 4.4.: Average throughputs across all ranks measured with the parallel Jacobi benchmark using
single precision on two discrete Intel Iris Xe Max. Left: Processed elements relative to the time
spent in the compute kernels. Right: Processed elements compared to the time spent gathering and
broadcasting intermediate results of a solution vector. Here, the GPU implementation of Intel MPI has
a distinct performance drop in comparison to OpenMPI.

During execution, a significant impact on the overall execution time of two Iris Xe Max,
driven by communication over MPI layer, was experienced. This can be attributed to the
current state of Intel MPI using GPU pointers. By the time of writing, Intel representatives
confirmed that the support for GPU-aware MPI is still under development and is going to
be finalized with the release of Iris Xe HPC series. Therefore, Intel MPI does currently not
perform as well as other GPU-aware MPI implementations, e.g. OpenMPI. The investigation
of communication results obtained with two RTX 3090 using OpenMPI 3.1.5 without UCX
layer is illustrated in Figure 4.5 and confirms the aforementioned statement. Here, the
communication results are significantly better for lower values of row sizes than the ones
obtained with Intel MPI. For example, results obtained for a row size of 104 are about 20 times
faster at native CUDA in terms of communication speed (3.85 ME/s against 159.59 ME/s).
The difference decreases with increasing row sizes (59.18 % at 5 · 105, 42.63 % at 106) and ends
with 7.24 % at the highest row count, which means that communication overheads diminish
at large data sets. Thus, the experiment leads to the conclusion that collective operations like
MPI_Allgatherv have a bad impact on the execution time at the current state of Intel MPI.
Nevertheless, this reported drawback is limited to collectives, which do not affect SeisSol
since the major communication is executed via point-to-point operations. It will be a task for
future work to check the efficiency of its implementation once the Intel HPC GPUs become
available.

30

4. Evaluation and Discussion

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10 50 100 500 1000 5000 10000

M
E/

s

Row size in 1000
CUDA oneAPI hipSYCL

(a) Compute Results

0

50

100

150

200

250

300

350

10 50 100 500 1000 5000 10000

M
E/

s

Row size in 1000
CUDA oneAPI hipSYCL

(b) Communication Results

Figure 4.5.: Average throughputs across all ranks measured with the parallel Jacobi benchmark
compiled with native CUDA, oneAPI (open-source) and hipSYCL using single precision on two
RTX 3090. Left: Processed elements relative to the time spent in the compute kernels. Right:
Processed elements compared to the time spent gathering and broadcasting intermediate results of the
approximation. The GPU implementation of OpenMPI is faster on any row size than Intel MPI.

4.2. GemmForge

The second part of the evaluations performs a Roofline Model analysis for Iris Xe Max, UHD
Graphics P630, and RTX 3090 by executing three microkernels: A simple bandwidth test and
a single and double GEMM kernel.

The bandwidth test manually copies data from an array P to an array Q using the maximum
allowed workgroup size and divides the transferred payload by the time in seconds. This
determines the effective bandwidth obtained for floating-point data format, which is to be
preferred for the Roofline Model analysis. Indeed, the theoretical bandwidth given by a
manufacturer data sheet is only achievable by other data types than single-precision floats
(e.g. doubles), which are not used in the test kernels. Therefore, using the effective bandwidth
causes realistic and fair conditions for the analyses.

The single and double GEMM kernels are derived from the following equation as described
by Dorozhinskii and Bader [2]:

Ce = D · Ae · Be + Ce (4.2)

where C, A ∈ R56×9, B ∈ R9×9, D ∈ R56×56. D represents a constant matrix for all batches e
(e.g. a stiffness or mass matrix as introduced in Section 2.3.1). As this equation contains two
GEMMs (D · Ae or Ae · Be), the entire equation is split up into two kernels using a temporary
storage Te per batch:

Te = Ae · Be (4.3)

Ce = D · Te + Ce (4.4)

31

4. Evaluation and Discussion

Equation 4.3 represents a single GEMM and 4.3 together with 4.4 a double GEMM kernel.
In both kernels, the maximum number of batches emax is determined by the requested count
of memory, similar to the explanations in Section 3.2.3. Additionally, the same experiment is
repeated using a single RTX 3090 to compare the two Sycl implementations against native
CUDA. All following measurements are executed with single precision and repeated 20 times.

4.2.1. Roofline Model Analysis with Intel GPUs

Figure 4.6 shows the measured bandwidths for both Iris Xe Max and UHD P630 using various
requested data set sizes. The medians of the results span more while using the integrated
GPU (28.19 GB/s to 29.69 GB/s) in contrast to the discrete one (56.05 GB/s to 55.91 GB/s).
For Roofline Model analysis, the maximum value is filtered across all data sets, creating a
more strict upper-bound limit to it: 29.90 GB/s obtained with 3.5 GB of requested elements
respective 57.75 GB/s with 0.5 GB. This is approximately 84.56 % of the theoretical peak
bandwidth for Iris Xe Max respective 71.88 % for UHD P630.

55.5

56

56.5

57

57.5

58

0.5 1.0 1.5 2.0 2.5 3.0 3.5

G
B/

s

Dataset size in GB

(a) Iris Xe Max

27.5

28

28.5

29

29.5

30

0.5 1.0 1.5 2.0 2.5 3.0 3.5

G
B/

s

Dataset size in GB

(b) UHD Graphics P630

Figure 4.6.: Bandwidth measurements by microkernel using Intel Iris Xe Max (left) and UHD P630
(right). Note the different range but the same scaling along the y axis. The discrete graphics card has a
more balanced median, whereas the integrated GPU varies higher at smaller data set.

The computational intensity of the single and double GEMM kernel is estimated with the
help of Equation 4.3 and 4.4. For reasons of simplicity, an arbitrary single batch e = 1 is
considered. Since α = 1 and β = 0, GemmForge skips these operations and only multiplies A
and B. Let i be a row of A and j a column of B. The respective result Tij is calculated by a
sum of parallel outer products, resulting in 9 multiplications and additions, or in total 9 · 2
floating-point operations. This product is repeated per column 1 ≤ j ≤ 9 and row 1 ≤ i ≤ 56
of A, resulting in 56 · 9 · 9 · 2 Flops for the first kernel. The transferred bytes are estimated
accordingly: Two matrices T, A of size 56× 9 and one matrix of size 9× 9, all containing a
single-precision floats of 4 B. In total, this results in (2 · 56 · 9 + 9 · 9) · 4 B per single GEMM.

32

4. Evaluation and Discussion

The established operational intensity is given in Equation 4.5.

56 · 9 · 9 · 2 Flop
(2 · 56 · 9 + 9 · 9) · 4 B

≈ 2.08
Flop

B
(4.5)

For the double GEMM Kernel, Equation 4.4 is first considered isolated. Multiplying D with
Te requires 59 · 2 operations per element. Due to the size of Te, this is repeated 56 · 9 times
and needs furthermore 56 · 9 additions to add matrix Ce. It can be speculated that matrix D
stays in GPU local memory during the entire batch operation. Therefore, the size of D is not
added it into the transferred bytes and thus only the memory transfers caused by loading and
storing matrix Ce and Te are taken into account. The full estimation is stated in the following
equation:

56 · 9 · 56 · 2 + 56 · 9 Flop
(3 · 56 · 9) · 4 B

≈ 9.42
Flop

B
(4.6)

Combining 4.5 and 4.6 together results in the overall operational intensity for the double
GEMM benchmark. For that, the nominators and denominators are summed up, respectively:

(56 · 9 · 9 · 2) + (56 · 9 · 56 · 2 + 56 · 9) Flop
((2 · 56 · 9) + (9 · 9 + 3 · 56 · 9)) · 4 B

≈ 6.35
Flop

B
(4.7)

The observed peak performance of both kernels is shown in Figure 4.7 for Iris Xe Max
and 4.8 for UHD P630 using various requested data sets. The measured Flops of the single
GEMM benchmark span from 100.24 to 102.40 GFlop/s using DG1 and from 48.36 to 50.12
using the integrated chip. Similar to the experiments performed in Section 4.1, almost twofold
performance differences between these GPUs can be observed.

94

96

98

100

102

104

0.5 1.0 1.5 2.0 2.5 3.0 3.5

G
Fl

op
/s

Dataset size in GB

(a) Single GEMM

284

286

288

290

292

294

0.5 1.0 1.5 2.0 2.5 3.0 3.5

G
Fl

op
/s

Dataset size in GB

(b) Double GEMM

Figure 4.7.: Flop/s obtained by the single (left) and double (right) GEMM benchmark on Intel Iris
Xe Max using single precision and various batch sizes. The maximum performance of the double
GEMM almost triples compared to the single one. For the Roofline Model, the accomplished Flop/s
are averaged over all data sets

33

4. Evaluation and Discussion

48

48.5

49

49.5

50

50.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

G
Fl

op
/s

Dataset size in GB

(a) Single GEMM

57

57.5

58

58.5

59

59.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

G
Fl

op
/s

Dataset size in GB

(b) Double GEMM

Figure 4.8.: Flop/s obtained by the single (left) and double (right) GEMM benchmark on the Intel
UHD Graphics P630 using single precision and various batch sizes. The performance of the GPU
stagnates at the double GEMM.

Looking at the double GEMM benchmark, this discrepancy even increases fivefold, which
is due to the fact that UHD P630 is slowed down overall with the introduction of the second
GEMM operation. The average Flop/s over all data sets obtained with Iris Xe Max increase
by 189.4 % from 101.35 to 293.31, whereas it is only 18 % for UHD P630 (49.6 vs. 58.57). This
can be explained by the fact that Gen9 UHD P630 shares its local memory throughout the
entire slice. That increases latency, as all communication must pass the dataport (compare
Section 2.1.1). On the other hand, Gen12 Iris Xe assigns (similar to Gen11) each subslice
its own local memory, which mitigates this issue and increases the efficiency of the shared
memory.

For the Roofline Model analysis, the GFlop/s are averaged across all datasets. These are
101.35 and 290.97 for Iris Xe and 58.67 and 49.59 for UHD Graphics. Using the peak Flop/s
and the maximum bandwidth of Table 4.1, the Roofline models are built. The maximum
operational intensity for Iris Xe Max is 2.5·103 GFlop/s

68.30 GB/s ≈ 36.60 Flop/B, whereas the effective is
2.5·103 GFlop/s

57.7544 GB/s ≈ 43.92 Flop/B. Applying the same reasoning, UHD Graphics P630 results in
an operational intensity of 11.07 Flop/B or 15.41 Flop/B, respectively. Combining all these
results together creates the Roofline diagram plotted in Figure 4.9.

From a visual perspective, one can already derive that both GPUs get close to their
peak performance if considering solely the single GEMM benchmark. The double GEMM
benchmark is not as close as the single GEMM in the case of Iris Xe GPU but still seems to
be relatively near to the roof. However, results obtained with UHD P630 are almost twice
as far away. More precisely, the slope of the roof is determined by pG ÷ iG , where pG is
the theoretical peak performance in GFlop/s and iG is the effective operational intensity in
Flop/Byte of GPU G and multiplied with the estimated operational intensity to obtain the
exact theoretical value. Table 4.2 lists the measured and the maximum reachable performance
of both GPUs for both kernels, confirming these observations.

34

4. Evaluation and Discussion

0.125

0.25

0.5

1

2

1 2 4 8 16 32 64

Peak FP32 performance (2.5)

(2.08, 0.10135)

(6.30, 0.29097)

peak memory
bandwidth

effe
cti

ve memory
bandwidth

Pe
rf

or
m

an
ce

(T
Fl

op
/s

)

Operational Intensity (Flop/Byte)
Single GEMM Double GEMM

(a) Intel Iris Xe

0.03125

0.0625

0.125

0.25

0.5

1

0.5 1 2 4 8 16 32

Peak FP32 performance (0.4608)

(2.08, 0.04959)
(6.30, 0.05867)

peak memory
bandwidth

effe
cti

ve memory
bandwidth

Pe
rf

or
m

an
ce

(T
Fl

op
/s

)

Operational Intensity (Flop/Byte)
Single GEMM Double GEMM

(b) Intel UHD Graphics P630

Figure 4.9.: Roofline Model for Iris Xe Max (left) and integrated Intel UHD Graphics P630 (right). In
both diagrams, the single GEMM benchmark gets close to the effective peak performance. The double
GEMM benchmark, on the other hand, gets near to the roof only with the discrete GPU, whereas the
integrated one is significantly far away from that. This is attributable to the slice-shared USM of Gen9
that decreases the efficiency of the local memory.

The efficiency of both Intel GPUs remain behind Nvidia (104.5 % of the maximum per-
formance) [2] and AMD (111.0 %) [3] while comparing the single GEMM benchmark with
single precision. In these preceded works, the second part of the equation was measured
in isolation and is therefore not directly comparable with the double GEMM benchmark
used in this thesis. However, there were performance losses around 10 % (Nvidia) and 27 %
(AMD) with this variant, as well. Therefore, one can assume that the combined kernel is also
slower across any GPU and thus Iris Xe achieves a satisfactory intermediate result, which is
furthermore reinforced by the investigations in the next section. Additional improvements
could be achieved by better utilization of the subslices by introducing a dedicated thread
policy. At the same time, it is expectable that the Sycl standard implemented by oneAPI moves
more strongly towards Intel GPUs, and thus, additional optimizations like launch_bounds
might be introduced.

Single GEMM Double GEMM
Measured Theor. % Measured Theor. %

Iris Xe Max 101.35 118.40 85.60 290.97 358.61 81.14
UHD Graphics P630 49.59 62.20 79.73 58.67 188.39 31.67

Table 4.2.: Analytical results (in GFlop/s) of the Roofline Model analysis. The benchmarks reach more
than 80 % of Intel Iris Xe effective peak performance for both kernels, whereas they can’t exploit the
Intel UHD P630 effectively.

35

4. Evaluation and Discussion

4.2.2. Roofline Model Analysis with CUDA backend

In the following, similar experiments are repeated using Sycl compiled with CUDA backend.
The obtained results are represented in a shortened manner and without discussing them at a
deeper level. Recall that all experiments are performed with single precision and repeated 20
times.

0

100

200

300

400

500

600

700

800

0.5 GB 1.0 GB 1.5 GB 2.0 GB

G
B/

s

CUDA oneAPI hipSYCL

(a) Bandwidth

0

500

1000

1500

2000

2500

3000

Single GEMM Double GEMM

G
Fl

op
/s

CUDA oneAPI hipSYCL

(b) Benchmarks

Figure 4.10.: Averaged Bandwidths (left) and performance of GEMM benchmarks (right) obtained
with Nvidia RTX 3090 measured with native CUDA, oneAPI (open-source), and hipSYCL using single
precision. Though oneAPI is very close to CUDA, hipSYCL can’t reach the same performance. This
discrepancy may be explained by the different underlying PTX generators.

0.5

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Peak FP32 performance (35.58)

peak memory
bandwidth

effective memory
bandwidth

Pe
rf

or
m

an
ce

(T
Fl

op
/s

)

Operational Intensity (Flop/Byte)

S. GEMM (CUDA)
D. GEMM (CUDA)
S. GEMM (oneAPI)
S. GEMM (oneAPI)

S. GEMM (hipSYCL)
D. GEMM (hipSYCL)

Figure 4.11.: Roofline Model for native CUDA,
oneAPI (open-source), and hipSYCL. oneAPI and
CUDA slightly exceed the effective memory band-
width with the single GEMM, but stay below with
the double GEMM benchmark. hipSYCL remains
behind the theoretical and effective limits.

The bandwidth measurements for all three
platforms are plotted in Figure 4.10a with
fewer data sets sizes than for Intel GPUs.
Again, the maximum value accomplished at
2.0 GB of occupied memory is selected for
the Roofline Model analysis, which is 774.72
GB/s. Once more, the data show a three-
stage difference between all platforms. The
average Flop/s of both the single and double
GEMM using a 2 GB dataset are available in
Figure 4.10b.

In this measurement, oneAPI (open-
source) scores very closely to CUDA (97.13 %
of 1662.29 GFlop/s in the single GEMM and
98.95 % of 2935.52 GFlop/s in the double
GEMM benchmark). hipSYCL, on the other
hand, doesn’t seem to be able to apply the
code optimizations (38.07 % and 73.51 %, re-
spectively). This difference between the two

36

4. Evaluation and Discussion

Sycl implementations seems to depend on the underlying compilers of oneAPI and hipSYCL:
hipSYCL calls the CUDA compiler nvcc for PTX generation, whereas oneAPI uses clang. The
huge difference between native CUDA and hipSYCL is therefore surprising.

Last, Figure 4.11 plots all measurements in a Roofline Model. CUDA and oneAPI slightly
exceed the effective bandwidth with the single GEMM (103.16 % and 100.20 % compared to
the theoretical peak, respectively). On the other hand, there is a need for improvement of the
code generation considering the double GEMM benchmark (60.15 % and 59.52 %). hipSYCL
remains at the bottom (39.28 % and 44.20 %). This model demonstrates that the performance
of Sycl with oneAPI is on par with CUDA for these particular benchmarks. However, it must
be noted that even a marginal difference scales to a large one when these kernels are executed
tremendously often, which is to be expected when running SeisSol.

4.3. SeisSol

This section evaluates SeisSol performance with all introduced changes into its heterogeneous
components and thus allows to compare different programming models, i.e. CUDA and Sycl.
First, the proxy variant of SeisSol is executed to illustrate the expectable performance of its
compute kernels and then the simulation with LOH1 and TPV5 benchmarks.

4.3.1. SeisSol-Proxy

The proxy application emulates SeisSol’s single-node performance by running the main
compute kernels as introduced in Section 2.3.1. The proxy is parameterizable with individual
kernels and aims to give an overview of the overall performance in SeisSol, including all
optimization techniques.

0

50

100

150

200

250

Ader Local All Neighbor

G
Fl

op
/s

oneAPI

(a) Intel Iris Xe Max

0

500

1000

1500

2000

2500

3000

Ader Local All Neighbor

G
Fl

op
/s

CUDA oneAPI hipSYCL

(b) Nvidia RTX 3090

Figure 4.12.: Hardware Flops of the main compute kernels of SeisSol executed by the proxy application
using 100000 cells, 40 time steps, single precision and a convergence order of six. Left: performance
results obtained with Intel Iris Xe Max. Right: Nvidia RTX 3090. The slightly better performance of
CUDA compared to oneAPI (open-source) pays off with the frequent repetitions of these kernels.

37

4. Evaluation and Discussion

Figure 4.12 shows the performance counters of all generated kernels using Intel Iris Xe
Max (left) and Nvidia RTX 3090 (right) using 100000 cells, 40 time steps, a convergence order
of six, and single-precision averaged by ten repetitions. As mentioned in the sections before,
SeisSol can’t run on UHD Graphics P630 due to the limited local thread sizes per workgroup.
Similar to preceded work [2], Ader is denoted as the implementation of the Time kernel and
Local or Neighbor as respective implementations of Equation 2.3. Because Iris Xe is a low-end
GPU and thereby was not designed for the execution of large-scale simulations, it is assumed
that comparing its results from the proxy with other GPUs is not productive. Therefore,
Figure 4.12a stays without additional comments and future studies could fruitfully use it a as
a reference. On the other hand, Figure 4.12b shows the performance obtained with RTX 3090:
As expected in the previous section, the small difference between oneAPI (open-source) and
CUDA scales with a larger count of iterations, here up to 13.31 % at the Neighbor kernel.
Therefore, one can conclude that, is not a suitable replacement for CUDA at the current
state of SeisSol, in spite of the fact that Sycl and oneAPI can unify and ease programming
across Nvidia and Intel. The same holds for hipSYCL, where the performance deviations are
particularly large compared to native CUDA (37.07 % at the Neighbor kernel).

4.3.2. Benchmarks

The last experiment executes LOH15 and TPV5 benchmarks6 of SeisSol. The Layer Over
Half-space (LOH1) simulates elastic wave propagation driven by a source point for earthquake
nucleation. As suggested by Harris et al. [37], TPV5 nucleates the earthquake rupture in
a square zone of the fault surface. While evolving away from the nucleation, the rupture
encounters two artificial square patches with initial stress conditions different from the fault.
Both benchmarks are executed solely on the Heisenbug machine using 24 cores and two
RTX 3090. However, these measurements show that Sycl-standardized code works correctly.
Thus, SeisSol should also run accurately on Intel HPC GPUs.

LOH1 TPV5
Max. εrel u, v, w σij u, v, w σij

oneAPI (open-source) 0.4 7.24 · 10−6 0.87 0.19
hipSYCL 0.0 0.0 0.0 0.0

Table 4.3.: Relative maximum error compared to native CUDA occurred at LOH1 (left half) and
TPV5 (right half) benchmark using oneAPI (open-source) and hipSYCL. Whereas hipSYCL produces
exact results, oneAPI results in a numerical error, which can be attributed to the different PTX code
generation.

First, the numerical results of both simulations are examined by comparing the output for
stresses σij and the particle velocities u, v, w to ensure the overall correctness of this work.
SeisSol allows writing its output over time in Hierarchical Data Format7 (HDF5) files, which

5https://seissol.readthedocs.io/en/latest/pointsource.html
6https://seissol.readthedocs.io/en/latest/tpv5.html
7https://www.hdfgroup.org/solutions/hdf5/

38

https://seissol.readthedocs.io/en/latest/pointsource.html
https://seissol.readthedocs.io/en/latest/tpv5.html
https://www.hdfgroup.org/solutions/hdf5/

4. Evaluation and Discussion

can be compared block and element-wise with a constant δ by h5diff. As the σij are measured
in Mega Pascal (MPa), whereas the u, v, w are normalized, the data is grouped into stresses
and velocities for analysis. The following explanations are also summarized in Table 4.3.

Considering oneAPI (open-source) and LOH1, an absolute maximum error εabs ≈ 0.01−
0.0006 = 0.004 or εrel ≈ 2

5 of u at position [5 12571] compared to native CUDA is observable.
For σxy at [6 12571], it is εabs ≈ 2.76253 · 1011 − 2.76251 · 1011 = 2 · 106 or εrel ≈ 7.24 · 10−6 as
the overall maximum error. For hipSYCL, the velocities and stresses match exactly the CUDA
results (ε = 0.0).

With TPV5 and oneAPI (open-source), the measurements deviate with εabs ≈ 0.0131−
0.0017 = 0.0114 and εrel ≈ 0.87 at u and position [13 1608610] respective εabs ≈ 3.6021 · 107 −
2.9084 · 107 = 6.937 · 106 and εrel ≈ 0.19 with σyy at [20 1663914]. Again, the results are exact
with hipSYCL.

-4.4e+00

4.9e+00

-3
-2
-1
0
1
2
3

u

(a) u at t = 1 s (b) u at t = 2 s (c) u at t = 3 s

Figure 4.13.: Particle velocity u in LOH1 benchmark at t = 1 s (left), t = 2 s (center), and t = 3 s (right)
calculated by oneAPI and rendered in ParaView. From a visual perspective, the results match with
native CUDA.

-6.3e+00

1.0e+01

-4

-2

0

2

4

6

8

SRs

(a) SRs at t = 3 s (b) SRs at t = 4 s (c) SRs at t = 5 s

Figure 4.14.: Slip rates along strike direction (SRs) in TPV5 benchmark at t = 3 s (left), t = 4 s (center),
and t = 5 s (right) calculated by oneAPI and rendered in ParaView. From a visual perspective, these
rates match with the output reported in the SeisSol documentation.

These discrepancies are attributable to the different PTX code generators of hipSYCL and
oneAPI as mentioned in the section before. Nevertheless, since hipSYCL produces exact
results and the error of oneAPI stays within an acceptable range (it involves only a negligible

39

4. Evaluation and Discussion

amount of meshes), it is expected that portability is working correctly for SeisSol on both
platforms. From a visual perspective, this can be confirmed by comparing the outputs
visualized in ParaView. Figure 4.13 and 4.14 show two exemplary values evolving over time
for both benchmarks compiled with oneAPI. Comparing these outputs with the example
figure stated in the SeisSol documentation8 and using CUDA, no differences are perceptible.

The performance results of both benchmarks are available in Figure 4.15 for the same
experiment but with disabled output. Recall that in any simulation in SeisSol, there are
also calculations on the CPU involved. Due to this, the Flop count of the two benchmarks
differs in general, because LOH1 has lower computational dependencies on CPUs than
TPV5. Additionally note that dynamic rupture Flop/s used at TPV5 are not included in the
measurements, but the time spent on the respective compute kernels is. Therefore, the Flop/s
count is lower overall for TPV5.

Once again, the characteristic difference between all platforms is observable, which is the
highest for LOH1. Here, oneAPI (open-source) and hipSYCL reach 72.07 % or 58.94 % of
4467.99 GFlop/s obtained with native CUDA. The discrepancies mitigate for TPV5 (85.82 %
and 73.79 % of 2605.39 GFlop/s) due to its dependency on CPUs but are still notable.
Therefore, as in the previous subsection, the created portability can currently not be considered
as a replacement of native CUDA. However, a continuation of these explorative studies is
desirable for future work.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

LOH1 TPV5

G
Fl

op
/s

CUDA oneAPI hipSYCL

Figure 4.15.: Flop/s achieved by LOH1 and TPV5 benchmark with disabled output on an AMD EPYC
7662 using 24 cores and two Nvidia RTX 3090. The higher dependency of TPV5 on the CPU reduces
the efficiency of the deployment of GPUs compared to LOH1.

8https://seissol.readthedocs.io/en/latest/tpv5.html, bottom

40

https://seissol.readthedocs.io/en/latest/tpv5.html

5. Conclusion

SeiSol is an open-source software for numerical simulations of earthquakes and seismic
waves, implemented as an MPI+X model, where X is replaceable with OpenMP, CUDA, and
HIP. Due to the announcement that the next upgrade of SuperMUC-NG is going to include
Intel’s new generation of HPC GPUs, it becomes necessary to adapt SeisSol’s heterogeneous
components for the Sycl standard. Additionally, a broad variety of modern GPUs and their
programming models could require the need for cross-platform development in the future.

This thesis presented the extended versions of Device and GemmForge based on the Sycl
standard that allows executing SeisSol simulations on both Intel and other GPUs. Investigating
Performance Portability using a discrete prototype GPU Intel Iris Xe Max with the oneAPI
platform revealed that the portability achieves 85.60 % of its effective peak performance using
single GEMM benchmarks, which is superior to Intel’s integrated SoC design. However,
it was found that Intel MPI was not yet ready for use in HPC data centers due to its low
efficiency in collective operations with GPU pointers in direct comparison to CUDA-aware
OpenMPI without UCX layer.

As an exploratory study, similar experiments with Intel Arria 10 FPGA and Nvidia RTX
3090 were conducted, showing that Sycl’s cross-platform approach works, but its efficiency
highly depends on a specific implementation of the standard. hipSYCL from the University
of Heidelberg, for example, could not exploit the underlying hardware as much as oneAPI
compiled as open-source variant compared to native CUDA. Yet, none of both investigated
platforms exceeded or caught up with the performance of the native CUDA implementation.
When running SeiSol proxy application, even a small difference between oneAPI and CUDA
in terms of performance added up to over 13 %, justifying the fine-tuned kernels employed
by SeisSol. Therefore, this direct portability is not a replacement for native programming
models in its current state.

The limited performance of Iris Xe Max did not allow to execute an earthquake simulation
on this GPU. Instead, RTX 3090 was used and the experiments showed correct results with
Sycl, even exact ones with hipSYCL in comparison to CUDA. Therefore, it is assumable that
SeiSol is working correctly once the new Intel GPUs are available.

In the next months, it is expectable that Intel will release its highly discussed Iris Xe HPG
GPU "DG2". The author suggests re-executing SeiSol on this graphics card and perform a
competitive performance analysis against related Nvidia and AMD GPUs and derive issues
or bottlenecks of this early portability. Assessing GPU-aware Intel MPI implementation is also
crucial for that. Furthermore, investigating Sycl combined with FPGAs could be an appealing
task to future researches.

41

A. Figures

#pragma omp target enter data map(to: A [:size], B [:size])
#pragma omp target teams distribute parallel for
for (size_t i = 0; i < size; i++)
{

A[i] = scalar * A[i] + B[i];
}
#pragma omp target exit data map(from: A [:size])

Figure A.1.: Shortened Saxpy example with OpenMP.

cl::sycl::queue q {cl::sycl::gpu_selector{}};
float *devA = (float *)malloc_device(size, q);
float *devB = (float *)malloc_device(size, q);
q.memcpy(devA, A, size);
q.memcpy(devB, B, size);
q.wait();

auto rng = cl::sycl::nd_range<1>{{N}, {1}};
q.submit([&](cl::sycl::handler &cgh) {

cgh.parallel_for(rng, [=](cl::sycl::nd_item<1> item) {
devA[item.get_global_id(0)] = scalar *
devA[item.get_global_id(0)] + devB[item.get_global_id(0)];

});
}).wait();

q.memcpy(A, devA, size);
q.wait();

Figure A.2.: Shortened Saxpy example with Sycl.

42

A. Figures

Aux

Memory

Copy

Control

Streams

SyclWrappedAPI
- currentDeviceContext
- currentDeviceStack
- currentCircularBuffer
- ...

DeviceContext

DeviceStack

DeviceCircularQueueBuffer

*

AbstractAPI

Figure A.3.: Final design of the Sycl component of the Device repository.

Builder

ExpressionResolver

+ resolve(Adition exp)

Composite

Resolves Expressions
by Visitor

Factory

CUDACodeBuilder

+ mallocShared(Malloc m) : IGPUCodeBuilder

SyclCodeBuilder

+ mallocShared(Malloc m) : IGPUCodeBuilder

Architecture

+ gridSize

+ memorySize

GPUCodeBuilder

+ mallocShared(Malloc m) : IGPUCodeBuilder

+ build() : Code

Literal

resolve(ExpressionResolver r)

BinaryExpression

resolve(ExpressionResolver r)

CodeGenerator

- hostCodeBuilder : HostCodeBuilder

- gpuCodeBuilder : IGPUCodeBuilder

Expression

resolve(ExpressionResolver r)

CodeBuilderFactory

+ createSyclCpp() : CodeGenerator

+ createCudaCpp() : CodeGenerator

HostCodeBuilder

+ declareVariable(Variable var, Assignment a) : HostCodeBuilder

+ build() : Code

Code

+ toString()

Figure A.4.: Initial design considerations for GemmForge.

43

List of Figures

1.1. Market share of vendors of accelerators within the top 500 supercomputers. . 2

2.1. Market share of vendors of overall installed GPUs. 4
2.2. Schematic structure of the Intel Gen11 architecture. 4
2.3. Example for OpenCL and Sycl kernel indexing. 7
2.4. Summary of the crucial heterogeneous components in SeisSol. 11

3.1. Structure of CUDA components of Device. 15
3.2. CUDA and Sycl indexing in comparison for a 2D index space. 17
3.3. Architectural style of GemmForge. 20
3.4. Shortened GEMM kernel launcher of CUDA and Sycl generated by GemmForge. 22
3.5. Generalized index space for CUDA and Sycl. 23

4.1. Average throughputs measured with the parallel Jacobi benchmark using Intel
GPUs. 27

4.2. Average throughputs measured with the parallel Jacobi benchmark using a
single Nvidia RTX 3090 . 28

4.3. Average throughputs measured with the parallel Jacobi benchmark on a single
Intel Arria 10 FPGA. 29

4.4. Average throughputs across all ranks measured with the parallel Jacobi bench-
mark on two discrete Intel Iris Xe Max. 30

4.5. Average throughputs across all ranks measured with the parallel Jacobi bench-
mark on two RTX 3090 . 31

4.6. Bandwidth measurements by microkernel using Intel Iris Xe Max and UHD P630. 32
4.7. Flop/s obtained by the single and double GEMM benchmark on Intel Iris Xe

Max. 33
4.8. Flop/s obtained by the single and double GEMM benchmark on the Intel UHD

Graphics P630. 34
4.9. Roofline Model for Iris Xe Max and integrated Intel UHD Graphics P630. . . . 35
4.10. Averaged Bandwidths and performance of GEMM benchmarks of the Nvidia

RTX 3090. 36
4.11. Roofline Model for native CUDA, oneAPI (open-source), and hipSYCL. 36
4.12. Hardware Flops of the main compute kernels of SeisSol executed by the proxy

application. 37
4.13. Particle velocity u in LOH1 benchmark. 39
4.14. Slip rates along strike direction (SRs) in TPV5 benchmark. 39
4.15. Flop/s achieved by LOH1 and TPV5 benchmark with disabled output. 40

44

List of Figures

A.1. Shortened Saxpy example with OpenMP. 42
A.2. Shortened Saxpy example with Sycl. 42
A.3. Final design of the Sycl component of the Device repository. 43
A.4. Initial design considerations for GemmForge. 43

45

List of Tables

4.1. Performance characteristics and properties of all test systems. 25
4.2. Analytical results in GFlop/s of the Roofline Model analysis. 35
4.3. Relative maximum error compared to native CUDA occurred in LOH1 and TPV5. 38

46

Bibliography

[1] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A. A. Gabriel, C. Pelties, A. Bode,
W. Barth, X. K. Liao, K. Vaidyanathan, M. Smelyanskiy, and P. Dubey. “Petascale High
Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers”.
In: International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2015-Janua.January (2014), pp. 3–14. issn: 21674337. doi: 10.1109/SC.2014
.6.

[2] R. Dorozhinskii and M. Bader. “SeisSol on Distributed Multi-GPU Systems: CUDA
Code Generation for the Modal Discontinuous Galerkin Method”. In: ACM International
Conference Proceeding Series (2021), pp. 69–82. doi: 10.1145/3432261.3436753.

[3] S. Dominick. Performance portability and evaluation of heterogeneous components of SeisSol
targeted to AMD GPUs. 2021.

[4] C. Uphoff and M. Bader. “Yet Another Tensor Toolbox for Discontinuous Galerkin
Methods and Other Applications”. In: ACM Transactions on Mathematical Software 46.4
(2020). issn: 15577295. doi: 10.1145/3406835. arXiv: 1903.11521.

[5] IntelCorporation. Intel Processor Graphics Gen11 Architecture. 2019.

[6] S. Junkins. The Compute Architecture of Intel ® Processor Graphics Gen8. 2014.

[7] D. Blythe. The Xe GPU Architecture.

[8] P. Gera, H. Kim, H. Kim, S. Hong, V. George, and C. K. C. Luk. “Performance Charac-
terisation and Simulation of Intel’s Integrated GPU Architecture”. In: Proceedings - 2018
IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS
2018 (2018), pp. 139–148. doi: 10.1109/ISPASS.2018.00027.

[9] T. Deakin and S. McIntosh-Smith. “Evaluating the performance of HPC-style SYCL
applications”. In: ACM International Conference Proceeding Series (2020). doi: 10.1145/33
88333.3388643.

[10] B. Li, H. C. Chang, S. Song, C. Y. Su, T. Meyer, J. Mooring, and K. W. Cameron. “The
power-performance tradeoffs of the intel Xeon Phi on HPC applications”. In: Proceedings
of the International Parallel and Distributed Processing Symposium, IPDPS (2014), pp. 1448–
1456. issn: 23321237. doi: 10.1109/IPDPSW.2014.162.

[11] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz. “Comparative performance analysis
of Intel Xeon Phi, GPU, and CPU: A case study from microscopy image analysis”. In:
Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS (2014),
pp. 1063–1072. issn: 23321237. doi: 10.1109/IPDPS.2014.111.

47

https://doi.org/10.1109/SC.2014.6
https://doi.org/10.1109/SC.2014.6
https://doi.org/10.1145/3432261.3436753
https://doi.org/10.1145/3406835
https://arxiv.org/abs/1903.11521
https://doi.org/10.1109/ISPASS.2018.00027
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1109/IPDPSW.2014.162
https://doi.org/10.1109/IPDPS.2014.111

Bibliography

[12] S. Christgau and T. Steinke. “Porting a Legacy CUDA Stencil Code to oneAPI”. In:
Proceedings - 2020 IEEE 34th International Parallel and Distributed Processing Symposium
Workshops, IPDPSW 2020 (2020), pp. 359–367. doi: 10.1109/IPDPSW50202.2020.00070.

[13] T. Cramer, D. Schmidl, M. Klemm, and D. Mey. “OpenMP Programming on Intel Xeon
Phi Coprocessors : An Early Performance Comparison”. In: European Conference on
Parallel Processing (2012), pp. 547–558.

[14] S. Memeti, L. Li, S. Pllana, J. Kołodziej, and C. Kessler. “Benchmarking OpenCL,
OpenACC, OpenMP, and CUDA”. In: Association for Computing Machinery (ACM)
(2017), pp. 1–6. doi: 10.1145/3110355.3110356.

[15] M. Martineau, S. Mcintosh-smith, C. Bertolli, A. C. Jacob, S. F. Antao, A. Eichenberger,
G.-t. Bercea, T. Chen, T. Jin, K. O. Brien, and G. Rokos. “Performance Analysis and
Optimization of Clang ’ s OpenMP 4 . 5 GPU Support”. In: th International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS) (2016), pp. 54–64. doi: 10.1109/PMBS.2016.11.

[16] A. Munshi. “The OpenCL Specification - Version 1.0”. In: Khronos Group Specifications
(2009).

[17] B. Gaster. OpenCL An Introduction for HPC programmers(SC 2010). 2010.

[18] R. Banger and K. Bhattacharyya. OpenCL Programming by Example. Packt Publishing
LTD, 2013, p. 112. isbn: 9781849692342.

[19] L. Howes and A. Munshi. “OpenCL Extension Specification”. In: Khronos Group Specifi-
cations (2015).

[20] B. Gaster. The OpenCL C ++ Wrapper API. 2010.

[21] J. Fang, A. L. Varbanescu, and H. Sips. “A comprehensive performance comparison of
CUDA and OpenCL”. In: Proceedings of the International Conference on Parallel Processing
(2011), pp. 216–225. issn: 01903918. doi: 10.1109/ICPP.2011.45.

[22] H. C. D. Silva, F. Pisani, and E. Borin. “A comparative study of SYCL, OpenCL, and
OpenMP”. In: Proceedings - 28th IEEE International Symposium on Computer Architecture
and High Performance Computing Workshops, SBAC-PADW 2016 (2017), pp. 61–66. doi:
10.1109/SBAC-PADW.2016.19.

[23] Sycl 2020 Specification (Revision 3). 2020.

[24] Z. Jin and H. Finkel. “Evaluation of Medical Imaging Applications using SYCL”. In:
Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM
2019 (2019), pp. 2259–2264. doi: 10.1109/BIBM47256.2019.8982983.

[25] B. Ashbaugh, A. Bader, J. Brodman, J. Hammond, M. Kinsner, J. Pennycook, R. Schulz,
and J. Sewall. Data Parallel C++. Springer Nature, 2020, pp. 1–2. doi: 10.1145/3388333
.3388653.

[26] A. Alpay and V. Heuveline. “SYCL beyond OpenCL: The architecture, current state and
future direction of hipSYCL”. In: ACM International Conference Proceeding Series (2020),
p. 3388658. doi: 10.1145/3388333.3388658.

48

https://doi.org/10.1109/IPDPSW50202.2020.00070
https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1109/PMBS.2016.11
https://doi.org/10.1109/ICPP.2011.45
https://doi.org/10.1109/SBAC-PADW.2016.19
https://doi.org/10.1109/BIBM47256.2019.8982983
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388658

Bibliography

[27] M. Käser and M. Dumbser. “An arbitrary high-order discontinuous Galerkin method
for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with
external source terms”. In: Geophysical Journal International 166.2 (2006), pp. 855–877.
issn: 0956540X. doi: 10.1111/j.1365-246X.2006.03051.x.

[28] M. Dumbser and M. Käser. “An arbitrary high-order discontinuous Galerkin method
for elastic waves on unstructured meshes - II. The three-dimensional isotropic case”. In:
Geophysical Journal International 167.1 (2006), pp. 319–336. issn: 0956540X. doi: 10.1111
/j.1365-246X.2006.03120.x.

[29] C. Pelties, J. De La Puente, J. P. Ampuero, G. B. Brietzke, and M. Käser. “Three-
dimensional dynamic rupture simulation with a high-order discontinuous Galerkin
method on unstructured tetrahedral meshes”. In: Journal of Geophysical Research: Solid
Earth 117.2 (2012). issn: 21699356. doi: 10.1029/2011JB008857.

[30] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Software. 1996, p. 395. isbn: 020163361-2. arXiv: dd.

[31] C. Rivera, J. Chen, N. Xiong, J. Zhang, S. L. Song, and D. Tao. “TSM2X: High-
performance tall-and-skinny matrix–matrix multiplication on GPUs”. In: Journal of
Parallel and Distributed Computing 151 (2021), pp. 70–85. issn: 07437315. doi: 10.1016/j
.jpdc.2021.02.013. arXiv: 2002.03258.

[32] S. J. Pennycook, J. D. Sewall, and V. W. Lee. “Implications of a metric for perfor-
mance portability”. In: Future Generation Computer Systems 92 (2019), pp. 947–958. issn:
0167739X. doi: 10.1016/j.future.2017.08.007.

[33] S. Williams, A. Waterman, and D. Patterson. “Roofline: An insightful visual performance
model for multicore architectures”. In: Communications of the ACM 52.4 (2009), pp. 65–76.
issn: 00010782. doi: 10.1145/1498765.1498785.

[34] M. Parker. “Understanding Peak Floating-Point Performance Claims”. In: Intel FPGA
White Paper (2016), p. 6. url: https://www.altera.com/content/dam/altera-www/glo
bal/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-p
erformance-claims.pdf.

[35] S. Asano, T. Maruyama, and Y. Yamaguchi. “Performance comparison of FPGA, GPU
and CPU in image processing”. In: FPL 09: 19th International Conference on Field Pro-
grammable Logic and Applications. IEEE, 2009, pp. 126–131. isbn: 9781424438921. doi:
10.1109/FPL.2009.5272532.

[36] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang. “Understanding Performance
Differences of FPGAs and GPUs”. In: Proceedings - 26th IEEE International Symposium
on Field-Programmable Custom Computing Machines, FCCM 2018 (2018), pp. 93–96. doi:
10.1109/FCCM.2018.00023.

49

https://doi.org/10.1111/j.1365-246X.2006.03051.x
https://doi.org/10.1111/j.1365-246X.2006.03120.x
https://doi.org/10.1111/j.1365-246X.2006.03120.x
https://doi.org/10.1029/2011JB008857
https://arxiv.org/abs/dd
https://doi.org/10.1016/j.jpdc.2021.02.013
https://doi.org/10.1016/j.jpdc.2021.02.013
https://arxiv.org/abs/2002.03258
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1145/1498765.1498785
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://doi.org/10.1109/FPL.2009.5272532
https://doi.org/10.1109/FCCM.2018.00023

Bibliography

[37] R. A. Harris, B. Aagaard, M. Barall, S. Ma, D. Roten, K. Olsen, B. Duan, D. Liu, B.
Luo, K. Bai, J. P. Ampuero, Y. Kaneko, A. A. Gabriel, K. Duru, T. Ulrich, S. Wollherr,
Z. Shi, E. Dunham, S. Bydlon, Z. Zhang, X. Chen, S. N. Somala, C. Pelties, J. Tago,
V. M. Cruz-Atienza, J. Kozdon, E. Daub, K. Aslam, Y. Kase, K. Withers, and L. Dalguer.
“A suite of exercises for verifying dynamic earthquake rupture codes”. In: Seismological
Research Letters 89.3 (2018), pp. 1146–1162. issn: 19382057. doi: 10.1785/0220170222.

50

https://doi.org/10.1785/0220170222

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Fundamentals
	Intel GPUs
	Gen11 Architecture
	Iris Xe Architecture
	Intel GPUs in HPC

	Intel GPU Programming
	OpenMP
	OpenCL
	Sycl

	SeisSol
	Numerical Scheme
	Heterogeneous Components
	Performance Portability

	Analysis and Design
	Device
	CUDA compared to Sycl
	Design and Implementation
	Correctness

	GemmForge
	Design
	Implementation
	Correctness

	Evaluation and Discussion
	Device
	Single Accelerator
	Multi GPU

	GemmForge
	Roofline Model Analysis with Intel GPUs
	Roofline Model Analysis with CUDA backend

	SeisSol
	SeisSol-Proxy
	Benchmarks

	Conclusion
	Figures
	List of Figures
	List of Tables
	Bibliography

