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Abstract—The traction battery and the electric motor are
the most important components of the electrified powertrain.
To increase the energy efficiency of the electric motor, wound
copper wires are being replaced by coated rectangular cop-
per wires, so-called hairpins. Hence, to connect the hairpins
conductively, they must be welded together. However, such
new production processes are unknown compared with classic
motor production. Therefore, this research aims to integrate
Industry 4.0 techniques, such as cloud and edge computing,
and advanced data analysis in the production process to
better understand and optimize the manufacturing processes.
Welding defects are classified with the help of a convolutional
neural network (CNN) (predictive analysis) and, depending
on the defect, a recommended course of action for reworking
(prescriptive analysis) is given. However, the application of such
complex algorithms as neural networks to large amounts of
data requires huge computing resources. Therefore, a modular
combination of an edge and cloud architecture is proposed in
this paper. Furthermore, a pure cloud solution is compared
with the edge solution.

Keywords-cloud computing; edge computing; machine learn-
ing; convolutional neural networks; electric motor; hairpin;
predictive analytics; prescriptive analytics

I. INTRODUCTION

The electric drive train has special requirements for the
drive system and also for the automotive industry, and its
production sector. For this reason, it is necessary to develop
innovative technologies to optimize production and increase
the efficiency of the electric powertrain [1]. One novel
technology is referred as hairpin technology. This involves
replacing the traditional copper windings of the stator with
thick copper bars. One of the main step is the welding of
these copper bars. However, this process step is unstable
and at the same time generates faults. Furthermore, this
welding process cannot be monitored and the different types
of possible defects cannot be classified and therefore not
reworked directly in the production line.

This paper aims to detect and classify defective welds
directly in the welding station to give an employee a rec-
ommendation for rework with the help of a CNN. Powerful
hardware components and novel technologies of distributed
computing offer good conditions for a real-time capable op-
timization of production. Edge computing enables function-
ality to be provided close to the process. A direct connection
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of components of the production line and processing of
functionality in real-time becomes possible. The concepts
such as quality prediction to avoid further processing of
faulty components offer an opportunity to reduce scrap and
rework times. Within the scope of this paper, an architecture
combining both edge and cloud computing for automated
error detection using a CNN will be developed and val-
idated based on the production process described above.
Real-time production data provides the basis for predicting
defective welds and providing appropriate recommendations
for action. A modular structure facilitates the integration of
the solution into other use cases, while a validation of the
designed architecture compared to a cloud solution clarifies
the advantages of edge computing.

II. STATE-OF-THE-ART

In this section, the state-of-the-art in the use of edge
computing in the manufacturing industry, and automotive
production is discussed. To get an overview of approaches
that deal with edge computing we reviewed scientific papers
in this fields. Therefore, in the following the most relevant
publication are listed.

In their work, Hou et al. focus on the use of edge
computing and machine learning for the early detection of
process problems within semiconductor technology. There-
fore, they are using a single board computer, which in
this case is the edge device, and a digital microscope [2].
Trinks and Felden describe in their work a real-time quality
management system, to increase the efficiency of a 3D
printing system. If an error is detected, the printing process
is stopped and a message is sent to the operator in charge [3].
Lin et al. deal in their work with the planning of complex
semiconductor manufacturing systems and the associated
distribution of tasks. In the cloud data center, task scheduling
predictions are generated and sent to the appropriate edge
devices [4]. Luckow et al. evaluate in their research different
application possibilities of DL in the logistic area of an
automotive production. The edge device is a smartphone
of the worker [5]. Borangiu et al. describe in their work
an agent-based edge computing approach for the detection
of defects in automotive production. In the absence of an
insufficient amount of data, an anomaly detection system
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using unsupervised learning algorithms was used to detect
deviations and to initiate rework as early as possible [6].
Syafrudin et al. describe in their work, a cost-effective early
warning system. To act in real time, the four edge devices
were installed near different production processes of a door
panel. Errors are distributed to the employees after detection
via a push notification within the front-end application and
via a smart-phone message [7].

A. Need for Action and Objectives of this Research

The current applications presented above are not in the
area of production with high cycle times. Another strong
deficit of the publications is that there is no modular
structure of the systems. Therefore, these systems cannot
be adapted without great effort. Furthermore, there is no
central management of the software. This means that, for
example, adjustments to the software must be carried out
physically on site and not centrally. Additionally, there is
currently only one application where cloud computing is
used in the production of electric motors. There are no
edge computing applications in this area [8]. Thus, this
paper extends the application range of edge computing and
combines two innovative technologies: the production of the
electric powertrain of a car with cloud and edge computing.

III. DESIGN AND IMPLEMENTATION OF THE
ARCHITECTURE

A. Business Understanding

The main steps in the production of the stator are the
deformation of the copper rod into a shape which resembles
a hairpin. These hairpins are then inserted into the stator lam-
ination stack followed by twisting the hairpins and joining
them together using laser welding [9]. A problematic aspect
of this process, however, is the high reflection of copper,
which hardly absorbs any radiation. Consequently, a higher
laser power must be selected unlike when welding steel or
aluminium [10]. At the moment this welding process cannot
be monitored and the different types of possible defects
cannot be classified. As a result, the stator goes through
all further processing steps until it is finally tested at the
end of the production line. If a faulty weld occurs the stator
must be removed from the production line, the welding tool
disassembled, the defect inspected visually, the stator aligned
manually, the welding tool reassembled, the stator reinstalled
and the defective welds rewelded. This requires a lot of time
and expensive as well. Since a certain error-proneness of the
laser welding process cannot be excluded, an approach is
needed that enables the detection of the errors. One stator
consists of 54 pairs of hairpin. Furthermore, the defined
cycle time of the production line is 30 seconds. Due to the
high number of welds, a real-time capable system is needed.

For this reason, we first analyzed the welding process
in detail with a technologist and then identified four im-
portant types of weld seams in series production. These
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Fig. 1: Representation of the four error classes

classes are divided into four groups, namely correct welding
(CW), insufficient welding (IW), welding spatter (WS), and
welding craters (WC) like illustrated in Fig. 1. In addition, a
distinction was made according to the severity of the welding
defects.

B. Requirements

A definition of the requirements forms the basis for
a specification of the system. These requirements were
established through semi-structured interviews with twelve
experts in the fields of data analytics, control engineering,
Internet of Things (IoT), and production:

o Real-time prescriptive analytics: The most important re-
quirement is the proactive delivery of recommendations
for action in the event of quality deviations. It must be
guaranteed under real-time requirements to avoid loss
of cycle time. As already mentioned, a stator has 54
hairpin pairs, which have to be welded. The solution
to be developed here can therefore not exceed a cycle
time of 30 seconds.

o Modularity: A modular design of the system is essential
so that the system can be easily adapted or extended to
other applications.

« Data-driven modeling: The detection of quality devia-
tions with the help of data-driven algorithms such as
a CNN has the advantage that no expert knowledge
is required for programming. Therefore, such a model
should be preferred.

« Iterative improvement of the model: Production condi-
tions usually change over time. As described in the pre-
vious requirement, a CNN should be used. This means
that it must be retrained with new data and adapted to
the changed conditions. A suitable processing resource
is required for this.

« Relabeling: Machine-based learning algorithms can
mis-classify the quality of a product. The data and
its labels are used to retrain the algorithm in case
of changing conditions. It is essential that the labels
are correct. Therefore, an employee must have the
possibility to change already generated labels.

o Central management: For self-optimization of produc-
tion, a newly trained model as described above must
also be deployed in production. Also, it is important
that an employee can change this remotely. In addition,
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all modules shall be automatedly deployed from a cen-
tral position via a continuous integration and continuous
deployment process (CI/CD) to the desired edge device.

o Independence of control hardware: The independence
and interoperability of the edge devices is important.
This ensures that the model for detecting quality de-
viations and generating recommendations for action is
not dependent on specific hardware.

o Operational data storage: The edge device unit must be
able to efficiently store and manage ’active’ data of the
operative production via real time access.

o Long-term data storage: Consistent long-term docu-
mentation and provision of historical data is required to
generate knowledge about interrelationships and prob-
lem causes for model retraining.

C. High-level design

The design of the overall concept describes the general
system structure. The high-level design is illustrated in
Fig. 2. The components are described in the following
Sections. Subsystems of the solution to be developed here
can be assigned to the three levels: production environment,
edge, and cloud.

The production environment contains all components that
are physically in the production process. Products are pro-
cessed and transformed. In this application, the production
line is the hairpinwelding station, which is equipped with a
3D scanner. This 3D scanner is located directly in the laser
welding process and takes 3D scans of the welds of the
hairpin pairs. For each pair, the camera generates a three-
dimensional image of the dome.

The components of the edge level are in direct commu-
nication with components of the production process and are
in physical proximity to it. The functionalities on the edge
device, which we call modules in the following, include the
steps: acquisition, preprocessing, prediction, storage, and in-
teraction. These are explained in more detail in Section III-E.

The cloud is used as a data storage and organization
platform. It coordinates the data collected by the multiple
edge devices and stores them in a central location.

As a basis for this work we use Microsoft Azure. Azure
IoT Edge is one service, which is provided via the Azure
Cloud. The IoT Edge runtime provides the basis for the
function modules to be developed which consists of two

Cloud [Storage |W central administration |
Production- T Edge T
enviroment i X
1 Processing layer
I ; Acquisition | |Interaction

Production line

Preprocessing| | Storage |

Prediction

Sensors
Fig. 2: High-level design of edge- and cloud-system

components: [oT Edge Hub and IoT Edge Agent. The IoT
Edge Hub serves as a communication interface between the
individual function modules. The communication between
the modules, which are decoupled from each other, is made
possible by a publish-subscribe mechanism using MQTT,
with an IoT Edge Hub acting as a message broker. Further-
more, data can be exchanged between the edge device and
the cloud via defined interfaces.

To enable a modular structure of functionality, indepen-
dent of the respective hardware, an additional technology is
required. For this reason we use container technology.

In the following a detailed description about the compo-
nents of each level is listed.

D. Components of the Production Environment

As described, the sensor used in the production process
has an optical measuring principle. The advantages of an
optical test method are non-contact, speed, and integrability
to other use cases. Due to a higher accuracy of the CNN, a
3D scanner was used instead of an ordinary camera. The
accuracy of the CNN with 3D data instead of ordinary
images as input is about 5% higher. For the acquisition of
the images we developed an interface between the scanner
and edge device. The Keyence XR-HT40M 3D scanner used
in this application provides a file transfer protocol (FTP)
client function, which allows images to be transferred to an
FTP server automatically. Therefore, the acquisition module
enables an FTP server on the edge device to receive data
from the camera using FTP.

E. Components of the Edge level

The edge device used in this research is an industrial
personal computer (IPC) of the type Siemens SIMATIC
IPC427D. In the following the modules of the edge level
are explained.

1) Preprocessing module: A dissemination of data be-
tween the acquisition module and the preprocessing module
cannot be realized via MQTT, since messages to be sent
exceed the maximum message size, which arises from
the file size of the raw data images (12.29 megabytes).
Therefore, we are using an exchange directory on the edge
device, which several modules can access. The acquisition
module stores data in a directory on the IPC, whereas the
preprocessing module waits for new data in this directory
and then starts a preprocessing of the data. Preprocessing
decodes the height information from the 3D scan, reduces
the image size, converts it into a grayscale image and
normalizes the data. The exact procedure is described in
detail by the authors in Ref. [11]. Subsequently, for a
prediction of quality, all information is published. Then,
a message object is created for each preprocessed hairpin.
Each message is published via MQTT on a topic through
the IoT Edge Hub. By preprocessing the data, the size of an
image can be reduced to 1.99 kilobytes.
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2) Prediction module: To predict the quality of the hair-
pin, as shown in Fig. 1, we developed a CNN, which is
based on the VGG network. The basic structure of our
CNN is a series of convolution blocks. These convolution
blocks consist of two consecutive filters including ReLU
activation layer, followed by a pooling layer. The number of
filters is doubled from one to the other convolution block.
The first layer uses 8 filters of the size 3z3. The second
block has 16 filters, the third 32 filters and so on. This
model consists of four convolution blocks including batch
normalization (BN) and ReLU activation. At the end of each
block, except the last one, a max pooling is applied. For the
last block, global average pooling is used instead of max
pooling. This is followed by a fully interconnected layer with
32 neurons, again a BN layer, a ReLU activation function,
and a drop-out layer with a drop-out rate of 0.5. Finally, in
this architecture, an output layer with one neuron for each
class and a softmax activation function follows, so that a
probability for each class is generated as output. A total of
1827 training data sets were used to optimize the network
architecture and multiplied by an augmentation algorithm to
produce 91,350 samples. A validation of the results was
carried out using 457 test data. We achieved an average
accuracy of 99.21% using this network architecture, and
therefore used as a prediction algorithm in the prediction
module. More information that clarifies and justifies our
choice of methods for classification of welding defects in
copper hairpins and a more detailed explanation of the model
and its construction is provided by the authors in previous
publications [11].

When the prediction module is started, the CNN model
is loaded and the messages of the preprocessing module are
subscribed to. As a result, a list with the probabilities of
the four classes of the weld is expected. Furthermore, the
class with the highest probability is identified and checked
if it exceeds a threshold value of 80% otherwise, the weld
is marked as uncertain decision (UD). An UD is intended
to allow for later improvement of the CNN by manual
reclassification using the web app. Finally, a message of
the predicted data is published.

3) Data storage module: This module has the task to
store the preprocessed images and information like the class
of the welded hairpin on the edge device and in the cloud.
We are using a local database to store process information
such as pin numbers in an SQL server. Therefore, we
implemented this server in a separate docker module to en-
sure consistent modularity. Furthermore, we implemented an
additional directory of the IPC for storing the preprocessed
3D scans to allow access to the data by other modules, such
as the web app. Moreover, the local data is moved to the
cloud and deleted at certain intervals so that the storage
resources of the edge device are not overloaded in productive
operation.
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4) Interaction module: This module provides two impor-
tant functionalities. Firstly, it provides an actual status of the
process and the welded haripins and offers the operator the
strategy for the rework. Secondly, it offers the possibility, to
relabel already classified welding defects which are saved in
the SQL database.

The application can be used on different devices, such
as laptop and smartphone, so that an employee is always
informed about the current process.

A traffic light system (green = OK, yellow = UD, red =
Not OK) shows the current status of the production process
of a stator, as shown in Fig. 3, in the top element of the
start page (see 1). Three elements of equal size (see 2)
below this notification element visualize important quality
key figures of a production day, and this creates transparency
for managers. If new hairpin pairs are welded together, the
prediction of quality is displayed by coloring the elements
in the stator view (see 3). A listing of UD (see 4) is intended
to provide a user with an interface for direct reclassification.
This is essential to continuously improve the accuracy of the
CNN as requested. All not OK predictions of the current
welds are displayed in the lower right element of the start
page (see 5) together with a rework strategy. The rework
strategy of each welding fault is explained by the authors
in previous publications [11]. If the user now wishes to
change a UD classification, he will be redirected to a new
page where an overview of all relevant information is listed.
There, a selection of the class has to be made first. Important
information and an example are provided to the employee.
This simplifies the selection, even if an employee is an
inexperience user.

Subsequently, all subclasses belonging to the selected
class are visualized and described. The subclasses of a not
OK weld are IW, WC, WS as described in Section III-A.
Finally, all information of the relabeling is visualized. To
overwrite the old information in the cloud a confirmation
must be made. The user is redirected to the homepage of
the web app.

FE. Components of the Cloud level

This Section lists the implementation of the modules in
the cloud level.

Manuel classification
Stator production process o >
Prediction for key performance indicator Quality : not OK
@ 257 x OK 6 x uncertain decision 2 x not OK
\11} .
&\\“ "l:," Stator Pin Class New | Status Strategy Pin Class
f < 171 w > 4 33 WC
== := 17 2 up - > 3 34 WS
%, & 18 5 up >
o ®
19 4 up - >
Fig. 3: Homepage
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1) Data storage module: Beside saving the data on the
edge device, we continuously replicate the SQL database and
the object storage of the edge device. Process information
and preprocessed images are also stored in the cloud. There-
fore, we are using the Azure SQL database service. Based
on Transact-SQL, tables with high availability can be used
on server instances. For managing the preprocessed images,
we are using a blob storage in the cloud.

2) Central management: In addition to managing mod-
ules, the cloud is to act as a central control unit. Software
code is hosted via services of the cloud and automatically
provided on the edge device. The code is automatically built
into a container image and loaded into a storage instance,
container registration, of the cloud. To provide the container
images, an IoT Hub instance is required in the cloud, which
communicates with the IoT Edge runtime of the edge device.

3) Continuous improvement of CNN: In order to contin-
uously improve the CNN and adapt it to possible environ-
mental conditions, the CNN is trained in the cloud on the
basis of new data. Thus, a virtual machine (VM) is started
in the cloud.

G. Implementation of the Architecture

For data transfer between the modules, messages for
specific topics can be published and subscribed too. We
defined the topics in such a way that communication takes
place as shown in TABLE I, which illustrates how modules
receive and publish data. The acquisition module receives
images from the camera via FTP and stores them in a shared
directory on the IPC. The preprocessing module waits for
new data in this directory, processes the image data, and
publishes results as a message about the topic preprocessing
via MQTT. The prediction module subscribes to this topic,
performs necessary functionalites to predict the class and
creates another message about the topic prediction, which is
also published via MQTT. The storage module subscribes to
the messages of the prediction module via MQTT and stores
them in local instances and instances of the cloud. The web
app for generating and visualizing a recommended action
for the rework queries data from the local administration
instances and changes database entries if necessary. The final
architecture of the edge-computing solution is illustrated in
Fig. 4.

TABLE I: DATA EXCHANGE BETWEEN THE MODULES

Module Input Output
Acquisition FTP Camera Directory IPC
Preprocessing Directory IPC MQTT: preprocessing

Prediction MQTT: preprocessing MQTT: prediction

Storage MQTT: prediction data and object storage

Interaction data and object storage Data storage

Cloud
Azure
| Object storage Continuous improvment Software
(Blob) J of CNN repository
¥
Data storage Module
(SQL) [oT-Hub management
Edge
IPC 3
Storage Object storage Data storage
module (directory) (SQL)
[ !
iAzure ToT-Edge Runtime | ]
i [ ToT-Edge Webapp
Agent IoT-Edge-Hub
[ 2 OO, WO
Prediction Prepro'cessing Acquisition
module module module
Directories v

Moby Container-Runtime
Ubuntu 18.04. LTS

Fig. 4: Final architecture of the edge and cloud computing
solution

Production Environment

IV. VALIDATION

To validate the system, we compared the above described
edge computing solution with a cloud computing solution.

A. Experimental setup

To ensure a similar setup for the cloud and edge com-
puting solution, both systems were deployed on identical
VMs in the cloud. Both VMs were located in the same
region, contained identical hardware specifications and used
identical versions of required software. Each VM contained
two vCPUs, 8 gigabytes of RAM and disk storage. The
transformation of the edge computing solution to the cloud
contradicts the purpose of the edge technology, but was
necessary for the comparability of the systems.

An FTP client is used to simulate the camera in the pro-
duction line by reading raw data images from the production
environment and communicating them to the VM via FTP.
An FTP server serves as an acquisition module and provides
the counterpart within the VM to receive the data from a
client. If data from a client is received via the server, the
data can be written to a previously defined directory of the
host system, in this case a VM. The preprocessing module
waits for new events and the above described processing
pipeline starts.

In contrast to the cloud system, the client for reading
and sending data via FTP is located in the same virtual
layer in the edge computing solution. An FTP server is
also used to capture new raw data images. The logic for
processing, prediction, and management of the images is
also identical. Processed data, however, is managed in local
storage instances, not via services outside the VM.
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In this experiment we primarily investigated processing
times of the duration of relevant processing steps, as well as
the total processing time of the systems, was recorded using
defined measurement points, see Fig. 5.

B. Results

In the course of the experiment, 54 welds of a stator
were processed by each system, which allowed an average
value of the different processing times to be calculated. All
times of a processing step were summed and divided by
the number of welds. TABLES II shows all average values
of the processing times for the cloud and edge systems. It
contains the average processing time per individual weld and
the average duration of the processing steps per stator. Due
to the parallelization of computing processes, the total time
is not the sum of the individual time stamps. For example, a
second pair of hairpins can already be processed even though
processing of the first pair has not yet been completed.

As shown in TABLES II, an edge computing solution
is clearly advantageous. Compared to the cloud computing
solution, the edge computing solution reduced the processing
time of a stator enormous. This corresponds to a reduction
of the runtime by 1 — % ~ 85%. Saving the data
in the object store and the SQL database in the cloud is
comparatively faster than storing the data in local instances.
However, this is due to very powerful computing resources
of the cloud centers such as high read and write rates of the
hardware. To summarize, all results satisfy the requirements.
A total processing time of the edge computing solution of
15.774 seconds fulfills the time requirements of the process,
providing a 30-second time window to capture the image
data. The container technology and the publish-subscribe
mechanism also allow a modular structure. Depending on
the application, containers can be adapted, added or ex-
changed. TABLE III summarizes the requirements, listed in

Client  Server

t05—>t1

Preprocessing  Storage module Object storage
Directory Prediction Data storage !
t

2 ; 3

i i it
,‘_tn.n_., E Lot : Ciomge 1

t

total

Fig. 5: Measuring points for determining the processing
times

TABLE II: AVERAGE DURATION OF PROCESSING STEPS
PER WELD AND STATOR

System [ tiotal [ trtp [ tmodules [ tstorage
Average duration of processing steps per weld
Cloud 3.986s 3.946s 0.716s 0.135s
Edge 0.584s 0.115s 0.692s 0.227s
Average duration of processing steps per stator
Cloud 107.621s 106.541s 19.342s 3.640s
Edge 15.774s 3.093s 18.680s 6.117s
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TABLE III: COMPARISON OF REQUIREMENTS AND SOLU-
TION

Requirements
(Section III-B)

Solution Component

Real-time prescriptive
analytics

Edge architecture. Processing time for
one stator: 15.8 seconds

Modularity Container technology and

publish-subscribe mechanism

Data-driven modelling CNN with an accuracy of 99, 21%

Iterative improvement of
the model

VM in the cloud and transparent
database in the cloud

Central management Azure CI/CD pipeline

Independence of control
hardware

Container technology

Relabeling Interaction Module

Operational data storage Storage module, SQL module and

directories (Edge)

Long-term data storage SQL module and blob storage (Cloud)

Section III-B and compare them with our provided solution.
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