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Abstract— We present the development, evaluation, and com-
parison of different neural network architectures using different
input data to detect and classify quality deviations in the welding
of hairpins. Hairpins are copper rods that are located in the
stator of electric motors in electric cars. We use both 3D data
and grayscale images as input. The primary challenges are that
only a small dataset is available and that high network accuracy
is essential to prevent defects in the usage of an electrical engine
and to enable a focused rework process. We were able to achieve
a 99% accuracy using either 3D data or grayscale images.

Index Terms—machine learning, convolutional neural net-
works, electric motors, hairpin, quality control, production

I. INTRODUCTION

The automotive industry is currently facing a decade of
fundamental changes in its drive concepts. In the future,
electric mobility will play a significant role in individual
transport. Moreover, the disruptive nature of electromobility
and its technologies have created new challenges [1]. This
has been accompanied by a profound change in the structure
of the vehicles and the components used. This development
has far-reaching effects on production technology because the
components of an electric powertrain clearly differ from those
of a conventional powertrain. In addition, the lack of expert
knowledge regarding new production techniques is problem-
atic and has an impact on the quality of the components
produced.

The use case presented in this paper is the welding of
hairpins. Hairpins are a novel technology designed to increase
the efficiency of an electric motor by replacing the traditional
copper windings in the stator of an electric motor with thick
copper bars. The free ends of the hairpins are connected via
laser welding. This process is error-prone and difficult to
monitor continuously. Currently, occurring defects cannot be
classified and reworked during production.

Therefore, this paper presents an approach to classify quality
deviations for the welding of hairpins, which enables a rework
process that is part of the production process. Different net-
work architectures of convolutional neural networks (CNN)
are analyzed and compared. In addition, different inputs of
the CNN are used and the results are evaluated: 3D scans and
grayscale images are used for this purpose. Grayscale images
offer potential financial savings in comparison to expensive
3D scans.

II. STATE OF THE ART

In recent years, many different architectures for object de-
tection and object recognition have evolved and significant im-
provements with respect to performance have been achieved.
The most common architectures for object detection are single-
stage and two-stage detection networks. Single-stage networks,
such as SSD [2] or YOLO [3], combine object detection
and object classification in a single stage, whereas two-stage
detection networks are more complex and separate the object
detection task from the object classification task. There are
two-stage architectures based on region convolutional neural
network (R-CNN) [4] and architectures evolving from it like
Fast R-CNN [5], Faster [6] or Mask R-CNN [7]. The detection
of hairpins is considered to be a solved problem. Consequently,
the focus of this study is on object classification.

The longer it takes to detect missed production errors,
the greater the expenses for correction. Therefore, quality
control is crucial and the number of missed faults needs to
be minimized. However, only a few machine learning (ML)-
based applications to detect quality deviations are common
in this area [8], [9]. Further approaches of ML algorithms in
the production of electric engines are summarized by Mayr
et al. [10]. Additionally, there is only one application of ML-
based methods for detecting quality deviations in the welding
process of hairpins [11]. Mayr et al. used a charge-coupled
device (CCD) camera to detect quality deviations with the
help of a CNN. However, the accuracy of the network was
only in the range of 61% to 91%. This is too low for industrial
applications. This paper uses two approaches to improve the
accuracy of such detections.

‚ First, 3D scans are applied instead of images from a CCD
camera. These scans serve as the input for a CNN that
was self-developed to be able to detect quality deviations
in the welding.

‚ Because such a 3D scanner is considerably more expen-
sive than a common industrial camera, different network
architectures are compared to achieve a higher accuracy
with common grayscale images.
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III. METHODOLOGY

A. Business Understanding

An important step in the production of the stator is the
deformation of the copper rod into a shape similar to a
hairpin. These hairpins are subsequently inserted into the
stator lamination stack, followed by twisting the exposed ends
of the hairpins and connecting them by laser welding [12].
However, the problem with this process is that copper has
strong reflective properties and therefore cam hardly absorb
any radiation. Thus, in contrast to the welding of steel or
aluminum, a higher laser power has to be applied, which
results in characteristic defects during welding [13]. Therefore,
we analyzed the welding process in detail and identified types
of errors that regularly occur during the welding process. The
classification of welding is divided into four classes as shown
in Fig. 1: Correct welding (CW), insufficient welding (IW),
weld spatter (WS) and weld craters (WC).

Currently, there is no automated fault classification system.
Therefore, the stator passes all further processing steps until
its final inspection at the end of the production line. In case of
a faulty weld seam, the stator is removed from the production
line, disassembled and manually re-welded. This process is
time-consuming and expensive. To establish a more efficient
process, welding defects have to be detected earlier to enable
targeted re-welding in large scale series production.

B. Experimental setup

Because only the top of the hairpins is of importance for
the welding quality, stripped copper wire pieces with a length
of 100mm were used. These wire pieces were inserted into a
test carrier, where two pins were welded together.

A 3D camera, XR-HT40M from Keyence, was used to
capture 3D data of the welding seams along with grayscale
images. The advantage of a 3D camera over a classic 2D
camera is a higher stability of the inspection because the
height information provides important insights and features for
the inspection process. However, a disadvantage is the price,
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Fig. 1: Representation of the four quality classes that result
from the welding process of hairpins.
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Fig. 2: Experimental setup.

which is significantly higher than the price of a conventional
2D camera for industrial applications. Fig. 2 schematically
illustrates the process of recording the height information and
the resulting RGB image of a welding spatter (WS) and the
grayscale image. The images were recorded by a grayscale
camera with a resolution of 2048x2048 pixels covering an
area containing four hairpins. Based on information from
the 3D scanner, hairpin detection was executed, resulting
in images of hairpins with a resolution of 300x300 pixels.
Object detection in grayscale images can be achieved using
sate-of-the-art image processing methods and is not further
investigated throughout this work.

C. Data generation

The aim is to generate a dataset covering all required
classes. This is a challenging task to execute in an industrial
production line. As a result, 550 to 600 images of hairpin
welds could be generated for each class with different degrees
of defect severity. To further increase the number of samples
in the training set, data augmentation using rotations, shifts
and mirroring was implemented. Using these techniques, a
more realistic training set is generated. For example, in serial
production, it cannot be guaranteed that the hairpin image will
always be centered and rotated similarly. The data augmenta-
tion ensures that the network learns these variations. However,
it is important that the synthetically generated images are
not included in the test set to guarantee unbiased results. A
detailed breakdown of the dataset including data augmentation
is shown in TABLE I. The datasets for 3D and graysale

TABLE I: DIVISION OF THE DATASET FOR THE FAILURE
CLASSES

Class Training set Test set Sum
IW 456 104 560
WS 455 102 557
WC 438 125 563
CW 478 126 604
Sum 1, 827 457 2, 284

augmented 91, 350 - -
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images were split into training and validation datasets with
80% training data and 20% validation data.

D. 3D Data Analysis

1) Preprocessing: We preprocessed the 3D scans to in-
crease the resulting performance of a classifier and its accu-
racy. This preprocessing pipeline is divided in five parts.

‚ The images are cropped around the center of gravity with
the size 450x450 pixels, as shown in Fig. 2, for a raw
3D data sample.

‚ The colour of the 3D scan is converted into height
information. The values are in a range of 0 ´ 16mm.
The result is shown in Fig. 3.

‚ The 3D data was reduced to a size range of 30x30 pixels
in the x and y directions. In addition, the altitude range
was scaled to a value range between 0 and 255.

‚ The preprocessed 3D information was saved as a
grayscale image.

‚ The image was normalized based on the subtraction of
the mean of one pixel over the entire dataset, dividing by
the standard deviation of these pixels.

2) 3D data analysis based on own network design: The
basic structure of the model is based on convolutional blocks
(Conv-Block). The used Conv-Blocks consist of consecutive
convolutional layers including batch normalization and rec-
tified linear unit (ReLU) activation function followed by a
pooling layer. The proposed structure uses four Conv-Blocks,
where the number of filters is doubled from one Conv-Block
to the next. This means that the first Conv-Block consists of
two convolutional layers, each with eight kernels with a size
of 3x3 pixels. The second, third, and fourth layers have the
same structure; however, the number of kernels is doubled
after each repetition. The fourth block applies global average
pooling instead of max pooling.

This is followed by a fully connected layer with 32 neurons,
a batch normalization layer, a ReLU activation function and
a dropout layer with a dropout rate of 0.5. Finally, there is
an output layer with one neuron for each class and a softmax
activation function to create a probability output for each class.

To find the optimal training parameters, a stochastic gradient
descent algorithm based on a batch size of 150 was used. An
adaptive step size of 1e´ 3 was defined, which is reduced to
0.9 times every five training epochs. Furthermore, a Nesterov
momentum of 0.9 was applied to this optimization method.
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Fig. 3: Height transformation of the 3D data.

The cost function, with which the gradients for training the
model can be calculated, is based on the categorical cross
entropy in this application.

To assign a special importance to certain classes while
training a model or to compensate for an uneven amount of
training data per class, a class weighting can be integrated
into the cost function. Because the detection of faulty welding
needs to be particularly reliable, the costs for the predictions of
these classes are weighted more strongly. This leads to higher
costs if these welds are incorrectly classified, and therefore
the gradients are more strongly influenced. In this application,
the weighting of the different classes was set to

“

wCW , wIW , wWS , wWC

‰

“
“

1, 10, 10, 10
‰

This weighting means that an incorrect classification of the
incorrect classes is weighted 10 times as strongly in the costs
as an incorrect classification of the correct class.

E. Grayscale Data Analysis

The grayscale image data was recorded simultaneously to
the 3D data, which allows for a direct comparison of the
approaches. The hairpin crops were normalized and re-sized to
the required input resolution of the used network. To identify
the most suitable network architecture, two different networks
based on the grayscale data were implemented. Inception V3
was chosen as a network architecture because it has been
proven to work for multiple use cases when using transfer
learning, as presented and executed for example in Ref. [14].
The feature extraction process was adapted to the requirements
of our use case using an input size of 300x300 pixels. In
addition, our own network architecture was based on the same
images but with a reduced resolution of 30x30 pixels. This
network addresses our specific needs and was trained from
scratch.

1) Grayscale analysis based on Inception V3: Inception
V3 [15] was used as a base network architecture. This architec-
ture was chosen primarily due to its increased efficiency, which
is achieved by breaking large convolution kernels down into
multiple smaller convolution kernels, resulting in a reduced
number of parameters. In addition, Inception weights pre-
trained on ImageNet data are available. These weights are used
as a starting point even though the present problem is different
from classifying the regular images found in ImageNet. The
feature extraction process for images is similar in functionality,
which allows us to tailor the weights and the feature extraction
to our specific problem during training. Our network uses all
layers of Inception V3 until mixed 10 layer, which is followed
by three fully connected layers and a softmax layer. The
two first fully connected layers have 1024 neurons, followed
by a layer with 512 neurons, followed by the softmax layer
with four output classes. Each of the fully connected layers
is followed by ReLU activation and a dropout layer with a
ratio of 0.1. All layers are re-trained because the available
weights based on ImageNet do not provide the required
feature extracting capabilities but serve as an initialization for
solving our specific problem. This decreases the training effort
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in comparison to an initialization with randomly distributed
weights.

We chose a categorical focal loss with α “ 0.25 and γ “ 2
as our loss function. An Adam optimizer was used for the
training with a learning rate of lr “ 5 ¨ 10´6 in the first
training phase and a learning rate of lr “ 1 ¨ 10´6 in the
second training phase, using the accuracy as a metric. The
regularizers β1 and β2 were chosen to be β1 “ 0.9 and
β2 “ 0.999. A 5-fold cross-validation was used to obtain
the results. The training process was split into two phases to
leverage the existing weights in the first phase and to address
the specifics of our use case. The first training phase lasted
100 epochs and treated all classes equally; phase one used a
higher learning rate than phase two, which lasted 50 epochs.
In both phases, a batch size of 32 and 100 steps per epoch
were used. To address the imbalance in the classes and more
importantly the cost of errors, the classes were weighted such
that
“

wCW , wIW , wWS , wWC

‰

“
“

1, 0.4, 0.75, 0.35
‰

2) Grayscale analysis based on own network design: Our
own network architecture uses 30x30 grayscale images as
input. The network is separated into three main parts. The first
stage of the network is formed by five convolutional layers,
each followed by batch normalization, ReLU activation, and a
maximum pooling layer. The used kernel sizes in this stage are
1x1, 3x1, 1x3, 1x1, and 3x3 using a stride of 1. Consequently,
the first stage serves as a feature extractor, which can be
compared to a dense block as used in Ref. [16]. Stage one
preserves the available input information by avoiding down
sampling or by adding a maximum pooling layer before the
discriminating features are extracted. The max pooling uses a
stride of 2x2. The second stage of the network is a convolu-
tional layer with a 3x3 kernel followed by batch normalization,
activation, and maximum pooling layers. The purpose of this
stage is to further refine and reduce the feature space. The
final classification stage of the classifier consists of two fully
connected layers, one with 1024 neurons and the other with
512 neurons, and a softmax activation layer. In addition to
batch normalization and ReLU activation, a dropout of 0.1
is used after the first two layers. To train the network, the
weights are initialized using the Glorot initializer [17]. All
convolutional layers use 32 filters. In addition to a learning
rate of lr “ 10´4, the training process uses focal loss and an
Adam optimizer with a similar parameterization to that used
for re-training the Inception V3-based architecture. Training
was executed in two phases of 100 epochs each, with batch
sizes of 32 and 100 steps per epoch. The first phase treated all
classes equally, whereas in the second phase, the class weights
as shown in Section III-E1 were used.

IV. EVALUATION OF EXPERIMENTAL RESULTS

The results of all network architectures are compared based
on the same metrics in this section. The proposed models
was implemented in keras (version 2.2.4) using the tensorflow
backend (version 1.14.0).

A. Training process

The training process follows the 5-fold cross-validation
methodology. The result is a very stable and nearly ideal
training process with a high accuracy was achieved with the
3D data as input. There are no fluctuations or other signs of
overfitting or underfitting during the training.

As described in Section III, the training process for gray
scale images follows a two phased training approach. Similar
to the training process for 3D scans, 5-fold cross-validation
is used. Neither for the inception based network, nor for our
own design an indication for over- or underfitting could be
identified. The validation accuracy curve observed over all
training epoch in both phases for both networks, is constantly
following the training accuracy curve closely.

B. Confusion Matrix

The confusion matrix (CM) resulting from the 5-fold cross-
validation is shown in Fig. 4.

The results of the CMs indicate that the trained models
using 3D data and grayscale images are suitable to separate
the classes. This is illustrated by the high values on the CM
diagonals, which are marked highlighted using a darker gray
color. All entries that are not on this diagonal are incorrectly
classified by the model.

C. Evaluation metrics

Numerous evaluation metrics can be calculated depending
based on CM. These metrics quantify the classification ca-
pability of models. Therefore, we calculate the classification
accuracy, precision, recall, and Fβ-score. For most image
classification challenges, the Top-1 and Top-5 accuracies are
chosen as a comparison metric. However, this is not a suitable
metric for critical image classification applications. The F1-
score weighs the precision and recall equally, which implicitly
assumes that the costs of all types of errors are equal. In
our use case, the cost of incorrectly classifying a faultless
sample as faulty is far less expensive than missing a faulty
sample. Consequently, an Fβ with a β “ 3 is chosen to allow
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Fig. 4: Visualization of the classification results based on
relative values. Left: CM with 3D data. Middle: CM with
30x30 grayscale data using our own network architecture.
Right: CM with 300x300 data using the Inception V3-based
architecture.
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a meaningful comparison and emphasize the importance of
avoiding missing faulty samples.

Fβ “ p1` βq
2 ¨

precision ¨ recall

β2 ¨ precision` recall
(1)

TABLE II lists the classification accuracy, precision, recall, and
Fβ-score as described in Equation 1 of the different networks.

As shown in TABLE II, the accuracy with 3D data and
grayscale images of 300x300 pixels is over 99%. Using only
grayscale images with a size of 30x30 pixels reduces the
accuracy by approximately 5%. These results demonstrate
that the proposed CNN architectures are capable of reliably
deciding whether a welding process is faulty. A high recall
rate is a particularly important requirement for a reliable
production systems. The proposed models with 3D data and
300x300 pixel grayscale images achieved a high average recall
rate of over 99%, which means that, on average, only 1% of
failures were not detected or classified as other failures. The
grayscale images of 300x300 pixels result in a worse value
for the recall.

V. CONCLUSION AND OUTLOOK

Our results show that addressing the quality control problem
of hairpin welding is feasible and shows satisfying results.
Throughout this work the input data from a 3D scanner and
gray scale images were used to train different neural networks.
In this study, input data from a 3D scanner and grayscale
images were used to train different neural networks. The
classification based on the 3D scanner and large grayscale
images achieved comparable accuracies and Fβ-scores, for
β “ 3. Our own grayscale image-based neural network
design performed slightly worse than the other two networks.
However, with a drastically reduced network and image input
size compared to the Inception V3-based network, the results
are very encouraging. Both the 3D image-based feature space
and the grayscale-based feature space allow for a straight-
forward class separation due to the height differences of the
classes. The most crucial aspect is the price of a camera-based
system compared to a 3D scanner, which is significantly more
expensive. In addition, camera-based systems can be easily
adapted to a new use case whenever necessary. Especially
in an industrial environment, where lower quantities or more
frequent adjustments to the manufacturing process are neces-
sary, this is of high importance. In such cases, only software
changes need to be applied, assuming that the new problem
can be solved using a camera.

TABLE II: ACCURACY, PRECISION, RECALL AND Fβ -SCORE

Type Overall
Accuracy

(%)

Average
Precision

(%)

Average
Recall

(%)

Average
Fβ“3-score

(-)
3D Scan 99 99 99 1.59

Image
(300x300)

99 99 99 1.58

Image
(30x30)

94 96 92 1.48

In future work, the developed solutions will be integrated
into the manufacturing process and the results will be evalu-
ated with an available state-of-the-art 3D scanner. Depending
on the results, it might be necessary to improve the developed
networks. In addition, more training data will allow for a better
generalization of the networks, which could be done prior to
integration into production.
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