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Aspects of BSM physics: from gravity to dark matter
to UV instantons

Aspekte der BSM Physik: von Gravitation iiber dunkle Materie zu UV
Instantonen

Maximilian Ruhdorfer

Abstract

In this thesis we study possible solutions to a wide range of theoretical and experimental short-
comings of the standard model (SM). The first two parts are devoted to properties and the
phenomenology of two well-motivated extensions of the SM: pNGB dark matter in Composite
Higgs models and the QCD axion. In the last part we investigate effective field theories (EFTs)
of the SM and gravity, construct a non-redundant basis for the most general EFT of the SM
coupled to general relativity to all orders and study its renormalization using modern amplitude
methods.

Zusammenfassung

In dieser Arbeit untersuchen wir mogliche Losungen fiir eine Reihe von Defiziten des Stan-
dardmodells (SM) der Teilchenphysik. Die ersten beiden Teile sind den Eigenschaften und der
Phanomenologie zweier gut begriindeter Erweiterungen des SM gewidmet: pNGB dunkle Ma-
terie in Composite Higgs Modellen und dem QCD Axion. Im letzten Teil untersuchen wir
effektive Feldtheorien (EFT) des SM und der Gravitation, konstruieren eine redundanzfreie Ba-
sis flir die allgemeinste EFT des SM gekoppelt an die allgemeine Relativitdtstheorie zu allen
Ordnungen und charakterisieren ihre Renormierung mittels moderner Amplitudenmethoden.
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Introduction

The discovery of a Higgs boson with mass of approximately 125 GeV in July 2012 by the
ATLAS and CMS collaborations [2,|3] constitutes a milestone in modern physics. It concludes
a half century long monumental effort both in the theoretical and experimental community to
make sense of the “particle zoo”, i.e. the overwhelming number and variety of particles that
was observed starting in the 1960s. The Higgs was merely the last missing keystone of the
Standard Model (SM) of particle physics, which provides an excellent description of all particles
and interactions, that we have observed so far. However, even after the completion of the SM
many longstanding theoretical questions remain unanswered. For instance the SM can neither
explain the lightness of the Higgs boson nor the absence of measurable CP violation in the strong
sector. Furthermore the lack of a candidate for particle dark matter (DM) is proof that there
has to exist some form of physics beyond the SM. These and other shortcomings suggest that
the SM should be interpreted as an effective field theory (EFT) with a limited range of validity.
The more fundamental theory, which supersedes the SM, is then expected to provide answers
to the above questions. Finding this extension of the SM is now the main challenge of particle
physics.

While we have few hints on the nature of the new physics (NP), our search is not random.
We follow well-motivated guiding principles, which have proven useful in the past. One of
the most important principles is the concept of naturalness of mass scales. Applied to the
electroweak scale, or respectively the Higgs boson mass, this is the well-known hierarchy problem
(see Section for a thorough discussion). A large hierarchy between the electroweak scale and
the scale at which effects of NP appear, which at the latest must occur at the Planck scale
where gravity becomes strongly coupled, is unnatural and fine-tuned. Past experience tells us
that nature tends to be natural and tuning often has a deeper reason, such as symmetries or
dynamic selection. Thus there is good reason to expect new physics not far above the TeV scale.

Nonetheless, despite considerable effort the search for beyond the Standard Model (BSM)
physics has so far been unsuccessful. There are no experimental hints of new degrees of freedom.
For this reason a careful re-evaluation of our theoretical assumptions and biases is required to
make sure that we do not miss NP simply because we are looking at the wrong place. We should
look for new physics as broadly as possible. This includes the search for new ways to test the
predictions of the SM, since any deviations might hint to BSM physics.

A global search for NP at several fronts is the main theme of this thesis. We approach this
goal from two orthogonal but not unrelated directions: gravity in an EFT framework and DM.
While the existence of gravity is a fact, we have collected ample evidence for DM during the past
100 years. However, all evidence so far originates exclusively from the gravitational interactions
of DM, thus motivating a study of both phenomena as an ideal starting point for the exploration
of BSM scenarios. In particular we investigate pseudo-Nambu Goldstone Boson (pNGB) DM
and the QCD axion, both well-motivated DM candidates. Additionally we study EFTs of the
SM and gravity and construct for the first time the EFT of all known low-energy degrees of
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freedom, i.e. the EFT of gravity coupled to SM matter, which we call GRSMEFT.

A particularly active frontier in the quest for new physics is the area of DM searches. Almost
100 years after the discovery of the first solid hints of DM in the velocity dispersion in the Coma
cluster in 1930 by Fritz Zwicky [4], its nature is still a mystery to us. During the past decades the
focus and experimental target of a majority of DM searches has been weakly interacting massive
particle (WIMP) DM. Its popularity originates from the fact that WIMPs generically arise in
well-motivated theories addressing the hierarchy problem, such as supersymmetry or Composite
Higgs (CH) models, and naturally achieve the observed relic abundance, a phenomenon which
is often referred to as the “WIMP miracle”. However, the null results in direct detection experi-
ments, such as XENONIT [5], in combination with the increasing sensitivity of indirect searches
for present-day annihilation products of DM, e.g. in the cosmic antiproton flux by AMS-02 [6]
or gamma rays by Fermi-Lat [7], already put considerable stress on the WIMP. This has sparked
a renewed interest in alternative DM scenarios (see Section for an overview). While it is
important to explore the landscape of DM models, one should not give up on the WIMP too
easily, as thermal freeze-out remains a robust and predictive mechanism to explain the “missing
mass” in the universe.

In Part [I| of the thesis we systematically study composite pNGB DM [§], a non-standard
WIMP candidate, which can be naturally compatible with the null results in direct detection
experiments. pNGB DM naturally emerges e.g. in non-minimal CH models, which are a promi-
nent solution to the hierarchy problem (see Section . In such models both the Higgs and
the DM are composite pNGBs of a new strong sector with a global symmetry G, spontaneously
broken to a subgroup H C G at a scale f ~ TeV. Due to the pNGB nature of the DM its leading
coupling to the SM is via momentum dependent interactions with the Higgs. These are ex-
tremely suppressed at low momentum transfer and in particular in the elastic scattering of DM
on nuclei, making pNGB DM naturally compatible with the strong exclusion limits from direct
detection experiments. At the same time, they provide a large enough interaction strength in
DM annihilations to set the observed relic abundance via the freeze-out mechanism. In prac-
tice this simple picture can be significantly altered due to explicit symmetry breaking effects,
which are needed to give a mass to the DM and generically introduce momentum independent
interactions. Thus in order to maintain the “Goldstone limit”, which is characterized by the
dominance of the momentum dependent couplings, a controlled breaking of the Goldstone shift
symmetry of the DM is required.

We start the discussion with a short introduction and a presentation of the theoretical
background of DM and CH models in Chapters [1| and Subsequently we perform a model
independent study of the DM phenomenology of pNGB DM in Chapter Building on these
general results we explicitly construct a fully realistic CH model based on the symmetry breaking
structure SO(7)/SO(6) in Chapter |4l This symmetry breaking structure gives rise to the Higgs
doublet H and a complex DM candidate y, which is stabilized by an exact U(1)pmy C SO(6)
symmetry of the strong sector. We demonstrate that this model successfully implements elec-
troweak symmetry breaking (EWSB) and study its DM phenomenology, which crucially depends
on the source of the explicit breaking of the DM Goldstone symmetry. We identify three quali-
tatively different scenarios: breaking by the top quark couplings (Section , breaking by the
bottom quark couplings (Section [4.4)), breaking by gauging U(1)pwm (Section[4.5). These scenar-
ios implement the “Goldstone limit” to a varying degree, each of them leading to an interesting
and qualitatively different DM phenomenology.

After having established that Composite Higgs models can indeed feature pNGB DM which
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effectively realizes the “Goldstone limit”, an alternative direct probe is required, since direct
detection signals are structurally suppressed for this type of DM candidate. A promising avenue
are searches at particle colliders, which fully exploit the energy growth of the pNGB couplings.
In Chapter 5| we assess the potential of current and future particle colliders to detect pPNGB DM
in weak boson fusion processes.

The focus of Part [[I] is another well-motivated DM candidate, the QCD axion. The QCD
axion was originally introduced as a solution to the strong-CP problem [9H12]: the axion dynam-
ically relaxes the QCD theta angle, thereby explaining the absence of measurable CP violation
in the strong interactions. However, it is at the same time an appealing DM candidate [13-15],
whose relic abundance is set non-thermally through the misalignment mechanism or topological
defects. The non-observation of WIMP DM has significantly increased the popularity of axion
or axion-like particle (ALP) DM, with a large variety of ongoing and proposed experiments,
such as the helioscope CAST [16] or the haloscope ADMX [17], trying to detect the axion. The
interpretation of the search results in terms of the QCD axion crucially depends on its proper-
ties. In the standard approach the axion’s low-energy properties are surprisingly well predicted,
even though the origin of both the axion and the Peccei-Quinn symmetry breaking mechanism
is unknown. In particular its mass can be expressed in terms of measured quantities, such as
the pion mass m, and its decay constant f, and the Peccei-Quinn symmetry breaking scale f,,
i.e. mgfa ~ mgfr (see Section . This seems to be a robust prediction, independent of the
specific ultra-violet (UV) completion. However, recently it was demonstrated that a non-trivial
embedding of QCD in a product gauge group can lead to significant deviations from this ex-
pectation due to UV instantons |18]/19]. This is in contrast to the standard expectation that
infrared (IR) QCD instantons dominate the mass. Since the axion mass is an important input
in experimental efforts to detect the axion, it is essential to have a clear understanding of how
robust the above prediction actually is. The goal of Part |II| of this thesis is to identify the
underlying reason for the enhancement of UV instantons in non-trivial UV completions of QCD.

After a short introduction to the topic in Chapter [] we present the theoretical background
of the strong-CP problem and the axion as its solution in Chapter [/l Subsequently we establish
the basics of instantons and the instanton calculus in spontaneously broken gauge theories in
Chapter [§l With these ingredients in hand, we investigate in Chapter [J] the contribution to the
axion mass from small instantons in partially broken UV completions of QCD.

In Part [[TT] we leave the area of DM physics. A particularly convenient and model independent
way to parameterize general effects of heavy new physics is the EFT framework, where deviations
from the leading theory are encoded in coefficients of higher dimensional operators. There is
already a vast literature on the EFT for the SM, or SMEFT. In order to identify the most
promising search channels, it is again important to follow some guiding principles in the form of
UV complete theories, which can be matched onto the SMEFT. By integrating out the heavy
degrees of freedom one gains insight about which effective operators are generated at which loop
order. This knowledge will also be crucial for identifying the nature of the NP once we observe
deviations from the SM. In this part of the thesis we perform the full one-loop matching of
a simple but important benchmark scenario, the SM extended by a heavy singlet scalar, onto
the dimension six SMEFT Lagrangian and identify contributions which have been missed in
previous computations [20,21].

While the SMEFT provides an excellent description of all directly observed low-energy de-
grees of freedom, it does not include gravity. The low-energy description of gravity, Einstein’s
theory of general relativity (GR), is manifestly non-renormalizable and therefore intrinsically an
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EFT. Quantum corrections generate higher-dimensional operators, which have to be included in
a consistent formulation. This implies that for a unified low-energy description of the SM cou-
pled to gravity an EFT interpretation is unavoidable. A tower of higher dimensional operators
parameterizes deviations from the SM minimally coupled to GR due to heavy physics. In this
part of the thesis we want to find the maximal number of independent low-energy departures
from GR, what corresponds to a full and non-redundant operator basis in the EFT language.
Finding a non-redundant operator basis is a non-trivial task, which has recently been solved
within the context of the SMEFT using Hilbert series methods [22}23]. We generalize these
methods to EFTs with gravity and construct an EFT of the SM coupled to gravity, which we
call GRSMEFT. The GRSMEEFT is the true low-energy description of all fundamental interac-
tions, which have been observed so far. As a next step we study the underlying structure of
the GRSMEFT, which might help us to gain a better understanding of gravity. At the quan-
tum level it appears that there are some operators which do not get renormalized at one loop.
This is a well-known phenomenon in the SMEFT, where many non-trivial zeroes appear in the
dimension six anomalous dimension matrix [24-26]. These can be understood with the help of
helicity selection rules [27]. Our goal is to generalize these selection rules to the GRSMEFT in
order to gain a better understanding of the one-loop structure of gravity.

The discussion starts with an introduction in Chapter|10|and a review of the EFT framework
and Hilbert series methods in Chapter [11] In Chapter [12] we perform the one-loop matching of
the SM extended by a scalar singlet onto the SMEFT. Chapters|13|and [14]focus on gravitational
EFTs, where we first construct the GRSMEFT in Chapter [13| and subsequently derive helicity
selection rules for one-loop renormalization in Chapter [14] and compute a selection of anomalous
dimensions in a toy SM coupled to gravity.

We finally conclude in Part [[V] and summarize our main results. Additionally we give an
outlook on still ongoing work and possible future directions.

The thesis is largely based on the following publications:
[28] R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Charged Composite Scalar Dark
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detection, JCAP 1811, no. 11, 050 (2018), [arXiv:1809.09106|.

[30] M. Ruhdorfer, J. Serra and A. Weiler, Effective Field Theory of Gravity to All Orders,
JHEP 05, 083 (2020), |[arXiv:1908.08050].
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SciPost Phys. 8, 027 (2020), [arXiv:1910.04170].

[32] C. Cséki, M. Ruhdorfer and Y. Shirman, UV Sensitivity of the Azion Mass from Instantons
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Chapter 1

Motivation and introduction

The Composite Higgs framework, i.e. the idea that the Higgs arises as a composite pNGB
of a new strong sector, is one of the simplest and best-motivated solutions to the hierarchy
problem [35]. While the minimal realistic model based on the symmetry breaking structure
SO(5)/S0(4) [36] incorporates only the Higgs-doublet as pNGBs, non-minimal realizations con-
tain additional particles which can also provide a solution to the DM puzzle [§]. If besides the
Higgs the enlarged symmetry breaking structure G/H gives rise to an additional pNGB y which
is a singlet under the SM gauge groups and stable, it constitutes a compelling WIMP DM
candidate.

Such a scenario was first explored in the SO(6)/SO(5) model [37], which contains the Higgs-
doublet H and a real scalar n as Goldstone bosons (GBs). The possibility that the real scalar
n can play the role of DM was extensively explored in [8,38]. In this setup the DM is stabilized
by an exact Zs symmetry P, : 7 — —n. Even though this is preserved by the two-derivative
Lagrangian it is not part of the symmetry of the strong sector, i.e. P, ¢ SO(6). This means
that P, can be violated at higher-derivative order, e.g. by a Wess-Zumino-Witten term which
appears in the model at four-derivative order with a UV dependent coefficient [37]. Thus one
is effectively forced to assume that the symmetry of the UV completion is larger and respects
0(6)/O(5) in order to ensure the stability of the DM.

However, an enlarged symmetry breaking structure can also provide a natural stabilization
mechanism. E.g. if the DM is a complex scalar charged under an exact U(1)py C H symmetry
in the unbroken subgroup of the strong sector, under which all SM particles are neutral, it
is automatically stable. This stabilization mechanism is UV-robust in the sense that any G-
invariant high-energy completion of the strong sector will automatically respect U(1)py. Such
a mechanism is realized e.g. in a model based on SO(7)/SO(6) which we will study in detail in
Chapter |4 The SO(7)/SO(6) coset contains in addition to the Higgs doublet two real scalars
n and k, which are singlets under the custodial SO(4) C SO(6). In addition to the custodial
SO(4) the unbroken SO(6) also possesses an SO(2) factor, i.e. SO(4) x SO(2) C SO(6), under
which 7 and & rotate into each other. Combining 1 and « into a complex scalar, we obtain a DM
candidate x which is charged under U(1)py ~ SO(2), thus implementing the above stabilization
mechanism.

Another appealing aspect of pPNGB DM in Composite Higgs models is that it is naturally
light and weakly coupled at low energies in the same way as the Higgs is and therefore an ideal
WIMP candidate. Its leading coupling to the SM is the derivative Higgs portal

1
12

originating from the non-linear sigma model Lagrangian of the GBs. This coupling has the

Oul H 0" |x?, (1.1)
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CHAPTER 1. MOTIVATION AND INTRODUCTION

advantage that it is extremely suppressed at small momentum transfer which characterizes DM-
nucleon scattering (|¢|/f? < (100 MeV)?/(1 TeV)? ~ 10~8), what makes it naturally compatible
with the strong exclusions from direct detection experiments. But at the same time the in-
teraction strength for DM annihilation is s/f? ~ 4m>2< /f? which is large enough to obtain the
observed relic abundance for weak scale DM. This feature is one of the reasons why pNGB DM
has received increasing attention lately [28,29}|3850] within the Composite Higgs framework
and in general.

However, explicit symmetry breaking effects can significantly change this simple and appeal-
ing picture. Some explicit breaking of the global Goldstone shift symmetry is in fact necessary to
generate a potential for the Higgs and Yukawa couplings of the Higgs to the elementary fermions
and a mass for the DM candidate x. This generically also introduces non-derivative couplings
of the DM to the SM and in particular the marginal Higgs porta]lﬂ

2N H*|x[?, (1.2)

which has been extensively studied in renormalizable scalar singlet DM models [51H53]. It is
well-known that WIMP DM which dominantly annihilates through the marginal Higgs portal is
mostly ruled out by direct detection (exceptions being the Higgs resonance region, or DM heav-
ier than a few TeV [54] or non-standard but motivated cosmological histories which can open
up large regions of parameter space [55]). This implies that in realistic models the marginal
Higgs portal coupling has to be suppressed in order to be not ruled out by direct detection.
Therefore one has to be as close as possible to the “Goldstone limit” which is characterized by
the derivative Higgs portal being the dominant coupling. In Chapter 4] we will demonstrate that
this limit can indeed be achieved in the SO(7)/SO(6) model.

We start this part of the thesis with an introduction to the theoretical backgrounds of
Composite Higgs models and DM in Chapter Chapter [3| discusses pNGB DM in general
and emphasizes some of its main features. In Chapter [4] we explore realistic pPNGB DM in the
SO(7)/SO(6) Composite Higgs model and identify scenarios which are close to the “Goldstone
limit”. Finally we present the results of our study of the derivative Higgs portal, the irreducible
feature of pNGB DM models, at present and future colliders in Chapter [} Chapters [3] and [4]
are based on [28,29], whereas the results of Chapter [5| were published in [31].

!Note that the more common normalization in marginal Higgs portal models is A|H|?|x|>. We will adopt this
normalization in Chapter [5] when we discuss collider constraints on the marginal and derivative Higgs portal.
However, in Chapter |3| and [4 we use the normalization in Eq. (1.2).
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Chapter 2

Composite Higgs and dark matter

In this chapter we lay the theoretical foundations for the remainder of this part of the thesis.
After a brief overview of the hierarchy problem in Section we present one of its most popular
solutions in Section[2.2} the Composite Higgs framework. Afterwards we discuss the second main
ingredient of this part of the thesis: dark matter. We start with a global picture of the DM
landscape in Section [2.3]and later focus on one particularly appealing DM candidate, the WIMP,
and introduce some fundamental concepts of WIMP DM in Section [2.4

2.1 The hierarchy problem

There are many equivalent ways to formulate the hierarchy problem (see e.g. [56,/57] for modern
essays on the topic and [58-60] for the original formulation). Here we will discuss a variation
based on the introduction of [61] which is a formulation that is deeply rooted in the EFT
interpretation of the SM.

The foundation of the hierarchy problem is the realization that the SM on its own is an
incomplete description of nature. For instance a consistent coupling to gravity is only possible
in terms of a low-energy expansion in powers of (E/Mp)), which breaks down for energies above
the Planck Mass F > (47)Mp;. This means that perturbative quantum gravity has to be
replaced by a more fundamental theory of quantum gravity with new degrees of freedom or
interactions at the latest at the Planck scale. Thus any computation within the SM is only
valid up to an energy scale Agyy < Mp; where new physics beyond the SM, which does not
necessarily have to be related to quantum gravity and might be located far below the Planck
scale, appears. This implies that the SM is nothing else but an EFT with a limited range of
validity and should, according to the EFT paradigm, not be truncated at the renormalizable
level. One should include all local and gauge invariant operators of arbitrary mass dimension d,
ie.

(d)
L=Lsm+ Z Z ng) i (2.1)

d—4"
d>4 1 ASM

where on dimensional grounds the higher dimensional operators are suppressed by the scale of
new physics Agy. The EFT interpretation nicely explains some further puzzles of the SM. The
five dimensional Weinberg operator for example introduces masses for the neutrinos. For an
order one operator coefficient the experimental value of m, ~ 0.1 eV hints to a suppression
scale of Agn ~ 10 GeV. Such a large scale of new physics would also explain why all low
energy observables are so far compatible with the renormalizable SM Lagrangian. The heavy
new physics assumption with a cutoff of the order of the GUT scale Agyp ~ Mgyt = 105 GeV
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Figure 2.1: Feynman diagrams contributing to the renormalization of the Higgs mass within
the SM.

therefore seems to be a plausible and well-motivated scenario. But is heavy new physics also
compatible with the renormalizable SM Lagrangian? Let us for the following assume that the
scale of new physics is Agm ~ Maur. The marginal couplings are not directly sensitive to Agym
but the SM also contains one relevant operator, the Higgs mass term. Applying the same logic
based on dimensional analysis, which led us to conclude that the d > 4 operators are highly
suppressed by the scale of new physics, we would expect the Higgs mass term to be of the size

cA3\HH . (2.2)

From measuring the Higgs mass we know that [p?| = m?%, /2 = (89 GeV)? < Mgy, ie. if new
physics appears at a high scale the coefficient ¢ = u? /MéUT ~ 10720 « 1 is unnaturally small.
The Hierarchy or Naturalness Problem can thus be phrased as the question why dimensional
analysis, which perfectly explains the suppression of higher dimensional operators, fails to predict
the order of magnitude of the Higgs mass. Why is there such a large hierarchy between the
electroweak and new physics scale, i.e. why is ¢ = u? /MéUT so small?

The small value of ¢ is even more puzzling when one considers loop corrections to the Higgs
mass term. The diagrams in Figure [2.1] with loops of Higgses, W and Z bosons and the top
quark modify the Higgs mass by

AZ 2 1
Ssmmay = —M [3 y? — 3 9 (1 + > — 3/\} : (2.3)

872 4 2 cos? 0,

The diagrams are quadratically divergent and are therefore sensitive to the scale of new physics,
i.e. to the cutoff of the theory. For Agy ~ Mgyt one would consequently need a cancelation
between the bare tree level Higgs mass term against the loop contributions of at least 24 digits in
order to obtain the observed Higgs mass mpy = 125 GeV. Such a cancelation would seem highly
unnatural! Note that the sensitivity to Agn is not merely an artefact of using a cutoff regulator
for the loop integral. A cutoff in the EFT language stands for a physical mass threshold such as
the mass of a heavy particle. Once these heavy degrees of freedom couple to the SM the Higgs
mass will be sensitive to the corresponding mass scale even in regularization schemes where
power law divergences are absent, such as dimensional regularization.

One could argue that only the renormalized Higgs mass is observable and is fixed to whatever
value we observe in experiments. This is certainly true at a technical level in the EF T framework
which should make sense without having exact knowledge of the UV, but the hierarchy problem
is actually a question about the nature of the UV completion that gives rise to the SMEFT. We
expect that the fundamental theory of electroweak symmetry breaking would predict the Higgs
mass in terms of its microscopic input parameters, similar to the Fermi constant Gr which can
be predicted in the theory of the weak interaction in terms of the weak coupling constant g,
and the W boson mass my. If this is the case the contributions to the Higgs mass can be
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2.2. COMPOSITE HIGGS

parameterized as [61]
2

S
m%*:/ dE "5 (B;p) (2.4)
0

dE

where the integral includes contributions to m?, from all energy scales. Splitting this up into
contributions from E < Agy, which are computable within the EFT, and BSM contributions
from E > Agy we obtain

Asm de [e’] dm2

wiy = [ A S B + [ dB T (Esp) = Sy + Sasmdy, (25)
0 dE Ast dFE

where 5SMm%{ is present in all theories that give rise to the SM and has the generic form

that is given by Eq. |D In order to obtain mlzq < A%M the completely unrelated 6BSMm%I

contribution has to cancel 6SMm%{ to great accuracy. The required fine-tuning can be quantified

in terms of ) )
dsmmiy Asm
A > ~ . 2.

- 2 <500 GeV (2:6)

My
Order one tuning therefore requires new physics at the TeV scale. New physics at higher scales
needs more tuning, which implies that even if we know the fundamental theory we have to
measure the input parameters to an equally large precision in order to obtain a prediction for
the Higgs mass.

Conceptually there is nothing wrong with a model that exhibits such a large tuning and it
could well be that the solution to the hierarchy problem turns out to be anthropic selection.
However, past experience tells us that nature tends to be natural and tuning often has some
deeper reason, such as symmetries or dynamic selection. For this reason we think it is worth
exploring models that aim to explain why the electroweak scale is as low as it is in a natural
way without fine-tuning.

2.2 Composite Higgs

The idea behind Composite Higgs models is very simple and dates back to the 1980s [62(-68|:
instead of an elementary particle the Higgs could be a composite object of finite size I, i.e.
the Higgs could be a bound state of a new strong sector which confines at the scale m, = 1/ly.
In the following we will first discuss the Composite Higgs framework in general before going
into more details concerning partial compositeness and the Goldstone Lagrangian. We conclude
this section with a presentation of the minimal Composite Higgs model based on the coset
SO(5)/S0O(4). For a pedagogic introduction to Composite Higgs models see [61,/69-71] and [35]
for a review. This section loosely follows and adopts the notation of [61].

2.2.1 The Composite Higgs framework

A composite Higgs naturally solves the Hierarchy problem. Its mass is screened from any energy
scales above the confinement scale m,. The confinement scale on the other hand is dynamically
generated by dimensional transmutation similar to the QCD scale Aqcp. In UV theories without
relevant operators, other than fermion mass terms, the running of the coupling constant g is
logarithmic and therefore has to run for an exponentially long time from a weakly coupled regime
at a high scale Ayy > m, until it reaches the strongly coupled regime at m, where it formally
diverges

o 1 bo < —872 >
Hon ) 8 e = Auv exp { Srr S ) 27)
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CHAPTER 2. COMPOSITE HIGGS AND DARK MATTER

Composite Sector Elementary Sector

b, Wy, B,
gsm

Figure 2.2: Structure of Composite Higgs models. The composite sector with confinement
scale m, and typical coupling of the resonances g, possesses a global symmetry G which is
spontaneously broken to a subgroup H which contains the electroweak gauge group of the SM
Gsm = SU(2)r xU(1)y. The Higgs is then identified with a SU(2), doublet of GBs in the coset
G/H. The global symmetry is explicitly broken by the couplings to the elementary sector, the
SM fermions and vectors. This explicit breaking generates the Higgs potential which eventually
breaks electroweak symmetry.

where by < 0 is the beta function coefficient for an asymptotically free theory. This naturally
generates an exponential hierarchy between m,, which is potentially at the TeV scale, and a
large UV scale such as Mp) or Mgyt and therefore solves the hierarchy problem.

If the Higgs is a bound state in a new strongly coupled sector its natural mass would be
mp ~ my or at most a factor of (47) below the confinement scale. This suggests that we need
my, = 1 TeV or lower in order to make the measured Higgs mass of my = 125 GeV natural.
However, this is problematic for two reasons:

i) In a generic strongly coupled theory the Higgs would be only one of many resonances
appearing at m,. But so far we have not observed any hints of new particles at the TeV
scale.

ii) At energies E' < m, the heavy resonances can be integrated out generating EFT operators
with suppression scale m,. EFT operators involving the electroweak sector suppressed by
a TeV scale cutoff are in conflict with electroweak precision observables.
This essentially forces us to take m, = 10 TeV which again introduces some degree of tuning
for the Higgs mass. This is often referred to as the little hierarchy problem.

Luckily we can turn to low energy QCD as inspiration for a solution. Composite scalars
can be naturally lighter than the other resonances if they are pNGBs of an approximate global
symmetry of the strong sector. In QCD the pions for example are the GBs of the approximate
chiral SU(2)r, x SU(2)r symmetry of the up and down quarks in the QCD Lagrangian which is
spontaneously broken to the vectorial combination SU(2);, x SU(2)r — SU(2)y by the chiral
condensate (Gq) A%CD. Consequently the pion mass is much lower than the confinement scale
my ~ 140 MeV <« AQCDEI

Finally the picture of Composite Higgs models emerges (see Figure : we assume that
there exists a new strong sector with a global symmetry G which is spontaneously broken to a
subgroup H when the strong sector confines at m,. This gives rise to dim G—dim H massless
GBs with symmetry breaking scale f which is much larger than the electroweak scale f > wv.

!The mass originates from the small explicit breaking of the chiral symmetry by the non-zero quark masses.
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2.2. COMPOSITE HIGGS

In order to obtain a phenomenologically viable Composite Higgs model this construction has to
satisfy the following additional constraints.

1. The electroweak gauge group of the SM Ggy = SU(2)r x U(1)y must be a symmetry
of the strong sector and must remain unbroken, i.e. Gsy C H, such that the SM gauge
bosons do not pick up TeV scale masses.

2. The coset G/H has to contain a SU(2), doublet of GBs which can be identified with the
Higgs boson.

Phenomenologically viable Composite Higgs models contain in addition to the composite sector
a sector of elementary particles with all SM fermions and gauge bosonsE| in complete analogy
to the elementary photon and leptons in low energy QCD. The SM particles do not fill full
G representations and therefore their coupling to the strong sector or respectively the partial
gauging of only the subgroup Gsy C G breaks G explicitly. This means that the Higgs is
no longer an exact GB and obtains a potential at the loop level, which triggers electroweak
symmetry breaking. The hierarchy between the electroweak scale v and the symmetry breaking
scale of the strong sector f is quantified in terms of the £ parameter

§= <;z> : (2.8)

which is determined by the orientation of the SU(2); x U(1)y w.r.t. the unbroken group in the
true vacuum. As we will see in the following the natural value is £ ~ 1, what requires some
tuning to generate a hierarchy between v and f.

2.2.2 Partial compositeness

Now that we know the general structure of the composite sector, it is time to discuss the couplings
of the elementary SM particles to the strong sector and in particular how the Yukawa couplings
are generated. The most straightforward way to introduce a Yukawa coupling in the UV theory
above the confinement scale is in terms of a bilinear quark operator coupled to a scalar operator
Og of the strong sector. For the third generation quarks this would be of the form

£1[1Jl};/ = Afi\t_qu(’)gtR + Aji\LQLOSbR + h.c., (2.9)
uv UV

where Ayvy is the cutoff of the strong sector theory and d is the mass dimension of Og, which
has the quantum numbers of the Higgs. In analogy to QCD Og can be realized as a bilinear
of techniquarks of the new strong sector Og ~ 1/_1331%1‘ which confines below m, and forms the
Higgs. Therefore the mass dimension of Qg is typically of the order d ~ 3. However, in this
approach it is hard to generate O(1) Yukawa couplings for the top quark. In order to see this
one has to evolve \;j, down to the confinement scale

d—1
M
Yeb = App(my) = )\t,b< > , (2.10)

where we assumed that the running is dominated by the canonical mass dimension. M;j is
defined at the UV scale Ayy and cannot be arbitrarily large without violating unitarity. It can
be shown that unitarity arguments for scalar operators also imply d — 1 > 0 which makes it

ZNote that the right-handed top can potentially be a composite particle of the strong sector.
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CHAPTER 2. COMPOSITE HIGGS AND DARK MATTER

challenging to obtain O(1) Yukawa couplings if there is as anticipated a large hierarchy between
AUV and M.

A more solid solution is based on the partial compositeness idea introduced by Kaplan [72]
and later rediscovered for models of electroweak symmetry breaking in |73]. In the partial
compositeness scenario one assumes that the coupling to the strong sector is linear and of the
following form \ \

Loy = ﬁ@og + ﬁmoﬁ +..., (2.11)
uv uv
where (’)?/ R are fermionic operators of the strong sector. These couplings will lead to mixing of
the SM fermions with composite resonances in the IR. Here the situation is improved since uni-
tarity bounds for fermionic operators only require dr g > 3 /2, such that an operator dimension
of dy /g ~ 5/2 allows )\, ;. to stay sizable in the IR

T > , (2.12)

)\tL7tR (m*) = )\tLatR <AUV

which will be able to generate the O(1) top Yukawa coupling. Note that this can also provide an
explanation for the hierarchy of Yukawa couplings. Each quark flavor ¢; couples to a different
composite operator OqLi/ B If the operators for the lighter quarks have a dimension dy g > 5/2
their Yukawa couplings are suppressed by powers of (m./Ayy) and for a large enough hierarchy
between m, and Ayy already a small change in d,/g can cause a huge suppression.

As we already mentioned before, once the strong sector confines the composite operators
(9]%/ r generate fermionic resonances of typical mass m, from the vacuum. These fermionic
resonances need to have the same SM quantum numbers as the SM fermions they couple to and
are usually referred to as their partners. This implies e.g. that the quark partners have to be
colored. Let us now discuss what this implies for the top sector. The situation is completely
analogous for all other SM fermions. Below the confinement scale OqL and OF interpolate
multiplets of vector-like fermionic resonances, the top partners, which we will denote by @ and
T with <0|O§|Q> # 0 and (0|OF|T) # 0. Therefore at low energies the interaction Lagrangian
in Eq. together with the mass terms for the composite resonances schematically takes the
form

L A A _
LR — —m (QQ +TT) — gtL ma(GLQ + hoc.) — ZE2m,((gT + h.c.), (2.13)

* *

where we inserted the typical coupling of the composite resonances g, for dimensional reasons.
At tr are understood to be to be taken at the IR scale m.. Eq. induces a mixing between
the elementary top quark and its partners such that the observable top quark, just like any other
SM fermion, is a linear combination of elementary and composite degrees of freedom

|physical ferminon) = cos f |elementary ferminon) + sin # |composite resonance) (2.14)

and thus partially composite, hence the name partial compositeness. Eq. (2.13) generates a
mixing angle of the size

Y A
sinfy = —— ~ =, i=15,ig, (2.15)

JoRex o

where we assumed in the last step that the typical coupling of the composite resonances is large,
ie. g« > A jtp- sinfp g is a measure for the amount of compositeness of a fermion and is
often called the compositeness fraction €;,p = sinf;,r. The top partners couple to further
resonances, among others the pNGB Higgs, with coupling strength g,. This means that also the
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physical top quark talks to the Higgs via its mixing with the top partners. Thus the size of the
Yukawa couplings can be estimated to be

Aty Atg

*

Yt = g« Sinby, sinfy,, ~ (2.16)
In this picture lighter fermions are less composite, i.e. they have a smaller mixing angle with
their composite partners.

2.2.3 Higgs potential and power counting

An important assumption of Composite Higgs models is that all the breaking of the global
symmetry G stems from the couplings with the elementary sector. The elementary sector
possesses only a Ggy = SU(2)p x U(1)y symmetry, such that the couplings explicitly break
GxSU2)LxU(1)y = [SU(2)rxU(1)y]diag to the diagonal combination of the elementary sector
Ggy and the Ggy € H. The gauge sector accomplishes this by only gauging the SU(2)r xU(1)y
subgroup of G. In the fermion sector the linear couplings in Eq. break the symmetry
since the composite resonances come in full G representations, whereas the SM fermions only fill
incomplete G multiplets. Due to this explicit breaking of the symmetry the Higgs is no longer
an exact GB and obtains a potential at the loop level which is schematically of the form

V(H) ~ —p?|H> + \H|*. (2.17)
The size of the coefficients can be easily estimated by naive dimensional analysis (NDA) and by
including the spurions of the symmetry breaking, i.e. the SM couplings
2

2 ggM 2 9% 2
~ >\ ~ * . 2.18
H 1672 my, 1672 gsm ( )

These estimates imply that the natural values for the electroweak scale and the Higgs mass are

e
g«

L RV L s (2.19)
4

While the Higgs mass is naturally light, its VEV is naturally of the same size as the symmetry
breaking scale of the strong sector. However, electroweak precision tests require that f > 3w,
such that some tuning is required, which we can quantify with the £ parameter defined in
Eq. . Let us add a few more comments about the estimate of the Higgs potential parameters.
Eq. shows that the largest contribution to the potential comes from the top sector since
it has the largest couplings. For this reason contributions from first and second generation
quarks as well as the leptons are usually neglected. The contribution from the gauge sector
can be important as well even though it seems to be suppressed by the weak gauge coupling.
The reason for this is that the strong sector vector resonances which cut off the quadratic
divergence and whose mass m, enters instead of m, in Eq. are stronger constrained than
the fermionic partners and must have masses of m, 2 3 TeV, compared to m, 2 1 TeV for
the top partners. Besides the gauge sector typically contributes with negative sign to p? and
therefore stabilize the electroweak symmetry in contrast to the fermionic contributions which
are destabilizing. Thus including the gauge contributions can reduce the residual tuning in the
potential.

Before we go on and discuss the Goldstone Lagrangian let us shortly comment on the power
counting and dimensional analysis in Composite Higgs models. The usual assumption is that
the strong sector can be characterized by one scale and one coupling, i.e. the typical mass of
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the composite resonances m, and their typical coupling g.. The symmetry breaking scale f
is strictly speaking not an energy scale. It has the dimensions of a scalar vacuum expectation
value (VEV) and is simply the normalization of the GBs in the non-linear sigma model. In the
one scale and one coupling hypothesis the relation to m. and g, is fixed by dimensional analysis
as we will see in the following

My = guf . (2.20)

But dimensional analysis can do even more. With its help we can estimate the natural size of
EFT operator coefficients. However, the real power of dimensional analysis only manifests itself

if one reintroduces units of energy F, length L and time 7T, s.t. the Lagrangian has dimensions

of
FB1 h
[£] = L4 _[Ll’

where we used that [A] = ET. With the convention z* = (ct, z1,z2,z3) we see that [9,] = L.
Using this we can easily find the dimensions of canonically normalized scalar, fermion and vector
fields from their kinetic terms

(2.21)

(o >
9 =A== Wl="155- (2.22)
This also implies that in these units a particle mass or a general mass scale has dimensions
of [m] = [m] = L~!. In natural units with A = ¢ = 1 couplings are dimensionless but by
examining gauge and Yukawa interaction in this units we find that both couplings actually
carry dimensions of [g] = [y] = [A]~'/2. Note that quartic scalar couplings scale as (coupling)?,
i.e. [\] = [¢g]>. With this information we can express the units of all quantum fields in terms of
mass and coupling units
[m] [m]*/2
(6] =T[4 =", []= (2.23)
Tl 9]

Now we can finally appreciate the difference between a scalar VEV like f and a mass scale
like m, and understand the relation in Eq. . Note that loop corrections come with an
additional factor of A which we can absorb into the loop factor 1/(47)? in natural units, s.t.
factors of (4m) formally scale like a coupling constant [(47)] = [g].

In a theory with only one coupling and one scale we can use g, and m, to form dimensionless
field variables ¢, 1), Au and dimensionless derivatives éu with

- g . X X WA s 0
¢:9@ ¢:9$,,%=245 Oy = —, (2.24)
e

My My e

such that we can write the Lagrangian as

~

L(g, 0, Ay). (2.25)

m

L
g2

In order to extend the power counting to elementary fields we have to normalize the fields with
the couplings through which they talk to the strong sector, for example the gauge coupling ¢ for
the gauge ﬁeldsﬂ With this we can write the tree level power counting rule in all generality as

E—miﬁ Oy g1l gio gV gA, XY

L 2.26)
2 ) ) ) ) ) ) (
gz Lma’ ma om0 my 302

3Note that this approach does not give the correct normalization for the kinetic terms of the elementary fields.
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where II, o, ¥ are composite sector pNGBs, scalar resonances and fermionic resonances, respec-
tively, whereas A, and 1) are elementary gauge fields and fermions with their corresponding
gauge coupling g and linear coupling to the fermionic partners A. The generalization to loop
effects is straightforward.

2.2.4 Goldstone Lagrangian in coset construction

One of the key ingredients of Composite Higgs models is the pNGB nature of the Higgs. In
order to describe its dynamics we have to discuss how one can construct the GB Lagrangian. As
was found by Callan, Coleman, Wess and Zumino (CCWZ) [74,(75] there is