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Abstract

In this work, variational circuits on a continuous-variable (CV) quantum computer are
simulated using the PennyLane Framework and used to solve several classic machine
learning tasks. Utilizing the CV approach, it is possible to directly encode real numbers
into each mode, which is an advantage for more complicated architectures. The necessary
background theory in quantum optics and CV quantum computing is presented and used
to deduce how neural network inspired architectures can be realized. The parameter shift
rule for different gates is deduced and tested with the PennyLane framework. Non-linear
1D regression and 2D function approximation was successfully achieved with a 1 mode
and a 2 mode architecture, respectively. Simple classification was performed on the Iris
flower dataset to a test-accuracy of 70 %. A 1D linear ordinary differential equation was
solved using a three mode architecture and a non-linear ordinary differential equation was
solved using a 2 mode architecture. Finally, an idea for the practical implementation of a
convolutional neural network on a CV quantum computer building on previous results is
presented.
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Introduction and Background Theory
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1. Introduction

Quantum computing is an ongoing and active field of research, which shows great promise,
if it can be efficiently implemented. The constituent of a traditional quantum computer is
the qubit and one of the strength of a quantum computer is the exponential growth in
computing power with the number of qubits [32 ]. This approach, however, contains seri-
ous problems in implementation, especially quantum computing today is error prone, and
they have to rely on error codes, meaning it takes several physical qubits to implement
a logical qubit, even thousands [22 ]. Furthermore, many quantum computing paradigms
need a sufficiently low temperature to function properly, such as is the case for the ion-
trap quantum computer [32 , p. 312]. This means a big overhead in terms of size, energy
consumption and price.

An interesting novel approach to quantum computing is to switch from a digital qubit
domain to a continuous domain [30 ]. Now, the observables, instead of being 2-state qubits,
are represented by continuous variables (CV) such as position or momentum. This ap-
proach is interesting because it can be realized by simple optical instruments, which mostly
operate at room temperature and is more error resistant than a conventional quantum com-
puter. This is partly due to the fact that the quantum information is carried in light, which
is charge-less and therefore does not react that much with the environment [32 , p. 287].
Another advantage is the direct representation of real numbers in the input, which needs
several qubits to be simulated on a qubit quantum computer. In fact there are some sys-
tems which cannot be accurately simulated on a digital computer and in that case this
analogue paradigm might prove powerful [15 ].

One of the most interesting applications of quantum computing is in the field of ma-
chine learning. Either as a part of a machine learning method (e.g. optimization) or, as in
this thesis, directly embedded on a quantum computer, quantum machine learning is an
active area of research. Recently, a way to implement neural networks on a CV quantum
computer has been introduced. This work, by Killoran et al. [26 ], was used as a basis for
this thesis and several machine learning tasks were solved by similar architectures.

The experiments were simulated using the PennyLane framework from company Xanadu
[14 ].

Notation

Different values of ~ are set in different part of the work to simplify expressions. In quan-
tum optics, unless explicitly included, ~ = 1. In Quantum the quantum computing sec-
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1. Introduction

tions, the PennyLane convention of using ~ = 2 is followed. The quadrature operators
of the quantum electromagnetic oscillator are set to x̂ and p̂ to underline their similarity
to the position and momentum operator respectively. This might overload the x symbol
because the x is then used both as a function argument in f(x), an operator x̂ and its eigen
pairs. Furthermore, whenever neural networks are mentioned, artificial neural networks are
meant and not biological ones. Additionally, the operator â will be called the annihilation
operator throughout the text, but is sometimes called amplitude, mode or ladder oper-
ators in the literature [29 ] [24 ]. The modes themselves from the mode expansion are in
this work referred to as modes and not qumodes as in some literature [26 ]. The phase shift
gate, rotating coherent states, is called phase shift gate in this work and a positive phase
shift φ corresponds to a clockwise rotation as is custom in quantum optics [29 , p. 40]. The
PennyLane framework uses the opposite convention, but this shouldn’t be an issue as the
difference can be learned by the machine learning models.
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2. Quantum optics

To understand, how optical continuous-variable (CV) quantum computing works, some
background in quantum optics is needed. First, the quantum vector potential is introduced
and used to derive the mode expansion and the quantum harmonic oscillator view of light.

The quantum gates used in the optical CV paradigm will be introduced and their ef-
fect, physical implementation and derivative will be shown. Ultimately, a neural network
inspired architecture will be presented.

Quantum Optics from Leonhardt [29 ] was used extensively for this chapter.

2.1. Maxwell’s equations and the quantum vector potential

Classically, light obeys Maxwell’s equations, that look like [29 , p. 15]

∇ ·B = 0, ∇×E = −∂B
∂t
, ∇ ·D = 0, ∇×H =

∂D

∂t
, (2.1)

where B is the magnetic induction, E is the electric field, D is the electric displacement
and H is the magnetic field. In order to translate these equations to the quantum realm,
the assumption is made, that the classical fields are expectation values of the underlying
quantum fields, so that for all fields the operator version becomes [29 , p. 15]

F = 〈ψ|F̂|ψ〉 , (2.2)

where |ψ〉 is the state-vector of the system or an ensemble if the state is mixed. Maxwell’s
equations are linear, because the divergence, curl and partial derivative are all linear oper-
ations. Because of the linearity of Maxwell’s equations, the quantum version of Maxwell’s
equation are identical, but now the fields are operators

∇ · B̂ = 0, ∇× Ê = −∂B̂
∂t
, ∇ · D̂ = 0, ∇× Ĥ =

∂D̂

∂t
, (2.3)

where each field operator is a 3-dimensional vector of each component operator:

F̂ =

F̂xF̂y
F̂z

 . (2.4)
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2. Quantum optics

These equations can be simplified for the case where the magnetic induction and elec-
tric displacement are proportional to the magnetic field and the electric field respectively.
This approximation is a good one for non-absorptive, non-dispersive and isotropic me-
dia, which is a good approximation fin this case [29 , p. 15]. This assumption leads to the
so-called constitutive equations [29 , p. 15]

D̂ = ε0εÊ, B̂ = µ0µĤ, ε0µ0 =
1

c2
, (2.5)

where ε0, µ0 and c are constants and ε and µ depend on the material. Again, because
these equations are linear, the quantum version takes the same form as the classical ver-
sion. Equations (2.3 ) can now be rewritten as

∇ · B̂ = 0, ∇× Ê = −∂B̂
∂t
, ε0ε∇ · Ê = 0,

c2

µε
∇× B̂ =

∂Ê

∂t
. (2.6)

These equations can be expressed in terms of a vector potential as [29 , p. 16]

Ê = −∂Â
∂t

, B̂ = ∇× Â. (2.7)

Because the divergence of curl is zero, the first equation is satisfied. The second is also
satisfied as can be seen by substituting the definition of Ê and B̂ into equation (2.6 ). Re-
quiring the Coulomb gauge

∇ε · Â = 0, (2.8)

the third equation is satisfied and only the fourth equation remains. Substituting Â in to
the third, one obtains

c2

µε
∇×∇× Â = −∂

2Â

∂t2

1

µε
∇×∇× Â +

1

c2
∂2Â

∂t2
= 0,

(2.9)

which is the electromagnetic wave equation [29 , p. 16]. Therefore, this equation together
with the Coulomb gauge and assuming the constitutive equations (2.5 ) completely de-
scribes how the quantum vector potential evolves.

The Hamiltonian of light is assumed to be the same as the classical version but with
operators [29 , p. 17]

Ĥ =
1

2

∫ (
Ê · D̂ + B̂ · Ĥ

)
dV. (2.10)
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2.2. Light modes

2.2. Light modes

Having defined the vector potential in terms of the electromagnetic wave equation, the
next question becomes how to represent it. One interesting way to do this is through so-
called light modes. The idea is to expand the electromagnetic potential in terms of its
classical and quantum components

Â (r, t) =
∑
k

(
Ak (r, t) âk + A∗k (r, t) â†k

)
, (2.11)

where Ak (r, t) are the classical complex wave functions, called modes, and the âk are op-
erator coefficients, called annihilation operators, carrying the quantum degrees of freedom
and symbolizing the quantum equivalent to the classical amplitude of a light wave. The
second term is the complex conjugate of the first term.

A scalar product between the different modes can be defined as [29 , p. 21]

〈Ai|Aj〉 = −ε0ε
i~

∫ (
A∗i ·

∂Aj

∂t
−Aj ·

∂A∗i
∂t

)
dV. (2.12)

This scalar product fulfills the typical properties of a scalar product such as conjugate
symmetry:

〈Ai|Aj〉∗ =
ε0ε

i~

∫ (
Ai ·

∂A∗j
∂t
−A∗j ·

∂Ai

∂t

)
dV

= 〈Aj |Ai〉 ,
(2.13)

as well as stability over scalar multiplication and addition (linearity), which is due to
the integration and derivative operators both being linear.

There are many potential waves that could satisfy the expansion, but in this work, the
convention for normal modes is used [29 , p. 23]

〈Ai|Aj〉 = δij 〈Ai|A∗j 〉 = 0. (2.14)

With these conditions the Bose commutation relations can be derived, which are offered
here without proof [29 , p. 23]

[âi, â
†
j ] = δij , [âi, âj ] = 0. (2.15)

An immediate consequence of these relations, is that two different annihilation opera-
tors commute and hence different light modes represent distinct physical systems [29 , p.
23].

Interesting in this work, are monochromatic modes that only oscillates at single frequen-
cies ωk [29 , p. 25]

Ak(r, t) = Ak(r)e−iωkt. (2.16)
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2. Quantum optics

As derived in section A.1 , the light Hamiltonian for monochromatic modes can be writ-
ten as a sum of harmonic oscillators

Ĥ =
∑
k

ωk~
(

1

2
+ â†kâk

)
. (2.17)

This is a very important result for several reasons. Firstly, here the so-called zero-point
energy is encountered, which means that even in the ground state, space still contains the
energy E =

∑
k
ωk~
2 [29 , p. 26]. Secondly, this Hamiltonian exactly has the shape of a sum

of quantum harmonic oscillators [24 , p. 44]. The term â†kâk is Hermitian, and so must
represent an observable. In fact, the Hamiltonian consists only of these operators and a
constant, so the allowed energies are sums of the eigenvalues of these operators. Because
this is the Hamiltonian of light, these operators are called photon number operators. They
represent the number of photons in a mode and are defined by [29 , p. 38]

n̂ = â†â. (2.18)

Using the annihilation operator, one can define the important quadrature operators [29 ,
p. 38]

x̂ =
1√
2

(
â† + â

)
, p̂ =

i√
2

(
â† − â

)
, (2.19)

which can be seen as the real and imaginary part of the annihilation operator

â =
1√
2

(x̂+ ip̂) . (2.20)

By using the definition (2.19 ), one can see that they are canonically conjugate [29 , p. 38]

[x̂, p̂] = i. (2.21)

Therefore, x̂ and p̂ can be regarded as the position and momentum, respectively. It
follows, that the momentum can also be written as p̂ = −i ∂∂x , which leads to a different
way to write the annihilation operator (a similar result can be achieved for the momentum
operator)

â =
1√
2

(
x̂+

∂

∂x

)
. (2.22)

Because the energy of a single mode is Ê = n̂ + 1
2 according to equation (2.17 ), the

Hamiltonian can also be written in terms of the quadrature operators as (for unit frequency

8



2.3. Fock states

and ~ = 1)

Ĥ = â†â+
1

2

=
1

2

(
x̂2 + p̂2 + i (x̂p̂− p̂x̂)

)
+

1

2

=
1

2

(
x̂2 + p̂2 − 1

)
+

1

2

=
x̂2

2
+
p̂2

2
,

(2.23)

where the relation (2.21 ) was used.

2.3. Fock states

The eigenstates of the photon number operator n̂ are called Fock states and have corre-
sponding eigenvalues [29 , p. 41]

n̂ |n〉 = n |n〉 . (2.24)

This means e.g. that the eigenvalue of the Fock state |1〉 is n = 1, corresponding to
the number of photons in that state. The Fock states are orthonormal because each state
corresponds to a unique eigenvalue and are assumed to be normalized. The annihilation
operator has the effect of decreasing the photon number of a Fock state, which explains
the name [29 , p. 42]

n̂â |n〉 =
(
â†â
)
â |n〉

=
(
ââ† − 1

)
â |n〉

= â (n̂− 1) |n〉
= (n− 1) â |n〉 ,

(2.25)

where the third step uses the commutation relation (2.15 ). From this, one can deduce
that â |n〉 = c |n− 1〉 for some normalization constant c. Taking the inner product of the
annihilated state gives

〈n|â†â|n〉 = n 〈n|n〉
= n,

(2.26)

where the last equality follows from the Fock states being orthonormal. Therefore, the
effect of the annihilation operator including normalization is

â |n〉 =
√
n |n− 1〉 . (2.27)

9



2. Quantum optics

Similarly, the conjugate transposed annihilation operator â† has the effect of increasing
the photon number and is therefore called the creation operator. Its effect including nor-
malization is [29 , p. 42]

â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.28)

Using the annihilation operator, one could in principle “empty” out any state until it
becomes negative. If the annihilation operator is applied to a negative state â |−0.1〉 =
−
√

0.1 |−1.1〉, taking the modulus on both sides leads to a contradiction. Therefore, neither
non-integer, nor negative states are allowed.

For the ground state, ψ0 (x), the eigen equation becomes

n̂ψ0 (x) = 0 (2.29)

This is fulfilled if either âψ0 (x) = 0 or â†âψ0 (x) = 0 [29 , p. 42]. Looking at the first option
and using equation (2.22 ) leads to the expression

1√
2

(
x+

∂

∂x

)
ψ0 = 0

∂ψ0

∂x
= −xψ0,

(2.30)

where x̂ seizes to be an operator, because it is multiplied with its eigenstate. This equation
can be solved by separation of variables

∫
1

ψ0
dψ0 = −

∫
x dx

lnψ0 = −1

2
x2 + c1

ψ0 (x) = c2e
− 1

2
x2 ,

(2.31)

where c1 and c2 are constants that come from the indefinite integration. c2 can be found
by normalization

1 = c22

∫ ∞
−∞

e−x
2

dx

1 = c22π
1/2

c2 = π−
1
4 ,

(2.32)

where the Gaussian integral
∫∞
−∞ e

−x2 dx = π
1
2 was used [42 , p. 46]. The positive normal-

ization is used, since the probability distribution ψ0 per definition can’t be negative. The
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2.4. Coherent states

ground state including normalization is therefore

ψ0 (x) = π−
1
4 e−

1
2
x2 . (2.33)

Using equation (2.27 ), a relation between the ground state and the excited states can be
found

n |n〉 =
√
nâ† |n− 1〉

|n〉 =
â†√
n
|n− 1〉

|n〉 =
â†n√
n!
|0〉 ,

(2.34)

where the last step can be seen by recursively substituting the Fock states.
Combining equation (2.34 ) and (2.33 ), Fock states can be derived to be [29 , p. 43]

ψn (x) =
Hn (x)√
2nn!
√
π
e−

x2

2 , (2.35)

where Hn (x) is the nth Hermite polynomial. Important for later calculations is, that these
states are not Gaussian.

2.4. Coherent states

Coherent states describe laser light. Therefore, these states have a well-defined amplitude
and are eigenstates of the annihilation operator [29 , p. 48]

â |a〉 = α |a〉 , (2.36)

where α is the complex wave amplitude of a mode. By setting α = 0, the same equation
as for the Fock states (2.29 ) is achieved, which means they have the same ground state
(2.33 ). Other coherent states can be achieved by applying a displacement operator to the
ground state as defined in section 3.2 [29 , p. 50]

|α〉 = D̂(α) |0〉 . (2.37)

Because the displacement gate is a Gaussian gate, meaning it transforms a Gaussian
state to another Gaussian state [26 ], coherent states are all Gaussian. Coherent states can
be represented by a Poissonian sum of Fock states [29 , p. 52]

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 . (2.38)
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2. Quantum optics

2.5. Quadrature states and phase space

Yet another way to look at light, is in the so-called phase space picture [26 ]. The quadrature
operators also have eigenstates, that are however not directly observable [29 , p. 41]

x̂ |x〉 = x |x〉
p̂ |p〉 = p |p〉 .

(2.39)

The eigenvalue x is what is being measured in homodyne detection as explained in
section 4.6 . The quadratures can be organized in a vector, which is useful in architectures
with more than one mode [

x̂
p̂

]
(2.40)

The phase space formulation of quantum mechanics tracks the evolution of these compo-
nents [26 ]. This is mostly the approach, that will be taken in this work. To get an intuitive
idea of what the CV gates defined in section 3 do, it often helps to look at their action in
phase space. In figure 2.1 phase space is illustrated with different measurements of the
quadrature values of identically prepared systems with expectation value close to x = 1
and p = 1. The underlying probability distributions (quasi) can be described by Wigner
functions and many of the gates used have simple representations of those functions [29 ,
p. 73], but this is outside the scope of this work.

2 1 0 1 2
x

2

1

0

1

2

p

Figure 2.1.: Phase space representation of a mode adapted from [29 , p. 39].
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3. Optical continuous-variable quantum
computation

The gates used in this work can all be achieved by simple optical instruments that are well
known and studied in quantum optics. The single mode gates are the phase, displacement,
squeeze and Kerr gate. The basic two-mode gate is the beam splitter. These gates are all
unitary in the Schrödinger picture, but can produce non-unitary (and nonlinear for the
Kerr gate) effects in phase space [26 ]. In fact this represents a universal gate set, in the sense
that any polynomial transformation of arbitrary degree in phase space on the quadrature
operators can be achieved [26 ].

As the effect of these gates are most easily seen on the quadrature and annihilation
operators, it is often easier to use the Heisenberg and phase space pictures instead of the
Schrödinger picture of quantum mechanics.

3.1. Phase gate

The phase gate changes the phase of a single annihilation operator (mode) in the Heisen-
berg picture and thereby leads to a rotation in phase space.

It is defined by [29 , p. 38]

Û (φ) = e−iφn̂. (3.1)

The effect of the phase operator on the annihilation operator in the Heisenberg picture
is

Û † (φ) âÛ (φ) = e−iφâ, (3.2)

which can be seen by differentiation [29 , p. 38]

d

dφ
Û †âÛ = in̂Û †âÛ − iÛ †âÛ n̂

= iÛ † (n̂â− ân̂) Û

= iÛ †
(
n̂− n̂†

)
âÛ

= iÛ †
[
â†, â

]
âÛ

= −iÛ †âÛ ,

(3.3)

13



3. Optical continuous-variable quantum computation

using the Bose commutation relation (2.15 ). Because (3.1 ) also fulfills the same differential
equation and for φ = 0 both sides of (3.2 ) reduce to â, (3.1 ) is the solution.

The effect on the creation operator can be found by taking the hermitian conjugate of
(3.2 ) and using that the phase gate is unitary

Û † (φ) â†Û (φ) = eiφâ†. (3.4)

Because of unitarity, its effect on the square of the annihilation operator is easily derived
to be

Û † (φ) â2Û (φ) = Û † (φ) âÛ (φ) Û (φ)† âÛ (φ)

= e−2iφâ2
(3.5)

The effect of this operator on the position quadrature is

x̂φ = Û † (φ) x̂Û (φ)

=
1√
2
Û † (φ)

(
â† + â

)
Û (φ)

=
1√
2

(
â†eiφ + âe−iφ

)
=

1

2

(
eiφ (x̂− ip̂) + e−iφ (x̂+ ip̂)

)
= cos (φ) x̂+ sin (φ) p̂.

(3.6)

The effect on the p̂ can be found similarly and is [29 , p. 40]

p̂φ = − sin (φ) x̂+ cos (φ) p̂. (3.7)

The effect on the quadratures can therefore be summarized by a rotation

U (φ) :

[
x̂φ
p̂φ

]
=

[
cos (φ) sin (φ)
− sin (φ) cos (φ)

] [
x̂
p̂

]
. (3.8)

3.2. Displacement gate

The displacement operator can be described by [29 , p. 49]

D̂(α) = eαâ
†−α∗â. (3.9)

Its effect on the annihilation operator is given by [29 , p. 49]

D̂(α)†âD̂(α) = â+ α. (3.10)
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3.2. Displacement gate

The effect on the creation operator can be found by taking the hermitian conjugate

D̂(α)†â†D̂(α) = â† + α∗. (3.11)

The effect on the x̂ quadrature is

D̂ (α)† x̂D̂ (α) =
1

2

(
D̂ (α)† (x̂+ ip̂+ x̂− ip̂) D̂ (α)

)
=

1√
2

(
D̂ (α)† âD̂ (α) + D̂ (α)† â†D̂ (α)

)
=

1√
2

(â+ α+ â †+α∗)

=
1√
2

(â+ â†) +
√

2 Re (α)

= x̂+
√

2 Re (α)

(3.12)

Similarly, the effect on p̂ can be found to be [26 ]

D̂(α)†p̂D̂(α) = p̂+
√

2 Im (α) . (3.13)

Taking the expectation value of equation (3.12 ) in the |x〉 state, the expected outcome of
a measurement is

〈x|D̂ (α)† x̂D̂ (α) |x〉 = x+ 2 Re (α) , (3.14)

For the quadrature ground state |0〉 this becomes

〈0|D̂ (α)† x̂D̂ (α) |0〉 = 2 Re (α) , (3.15)

which means that if one wants to embed the value x = 1 starting in the ground state,
this is equivalent of using α = 0.5. Therefore, one can talk about embedding a real value x
in |x〉 when in reality one is embedding α in the coherent state. In fact, in the experiments
later conducted x is always directly embedded in the coherent state, which leads to an
error of factor 2, that nonetheless doesn’t matter, cause the parametric circuits will just
learn this scaling.

The effect on the quadratures can be summarized by

D (α) :

[
x̂α
p̂α

]
=

[
x̂+
√

2 Re (α)

p̂+
√

2 Im (α)

]
. (3.16)
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3. Optical continuous-variable quantum computation

3.3. Squeeze gate

The squeeze operator for real squeezing ξ is given by [28 , p. 491]

Ŝ = e
â21
2
ξ−

â
†2
1
2
ξ. (3.17)

The effect on the annihilation operator is [29 , p. 58]

Ŝ†âŜ = â cosh(ξ)− â† sinh(ξ). (3.18)

The effect of the squeeze operator on the creation operator is easily found by taking the
hermitian conjugate

Ŝ†â†Ŝ = â† cosh(ξ)− â sinh(ξ). (3.19)

The effect on the x̂ quadrature can now be found to be

Ŝ†x̂Ŝ =
1

2
(Ŝ†(x̂+ ip̂+ x̂− ip̂)Ŝ)

=
1√
2

(Ŝ†âŜ + Ŝ†â†Ŝ)

=
1√
2

(â cosh(ξ)− â† sinh(ξ) + â† cosh(ξ)− â sinh(ξ))

=
1√
2

(â(cosh(ξ)− sinh(ξ)) + â†(cosh(ξ)− sinh(ξ)))

= e−ξ
1√
2

(â+ â†)

= e−ξx̂.

(3.20)

Similarly, the effect on the p̂ quadrature is [29 , p. 57]

Ŝ†p̂Ŝ = eξp̂. (3.21)

Therefore, the effect of the real squeeze gate can be summarized by

S (r) :

[
x̂r
p̂r

]
=

[
e−r 0
0 er

] [
x̂
p̂

]
. (3.22)

3.4. Beam splitter gate

The basic two mode gate is the beam splitter [26 ]. A phaseless beam splitter can be de-
scribed by (as derived in section 4.1 and A.2 )

[
â′1
â′2

]
=

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

] [
â1
â2

]
. (3.23)
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3.5. Kerr gate

The effect on the quadratures of both modes can be found by looking at the real and
imaginary part of the annihilation operator separately

x̂′1 + ip̂′1 = cos (θ) (x̂1 + ip̂1)− sin (θ) (x̂2 + ip̂2)

= (cos (θ) x̂1 − sin (θ) x̂2) + i (cos (θ) p̂1 − sin (θ) p̂2) .
(3.24)

Similarly, the effect on the second mode is

x̂′2 + ip̂′2 = sin (θ) (x̂1 + ip̂1) + cos (θ) (x̂2 + ip̂2)

= (sin (θ) x̂1 + cos (θ) x̂2) + i (sin (θ) p̂1 + cos (θ) p̂2) .
(3.25)

The effect of a phaseless beam splitter on the quadrature operators in phase space can
therefore be summarized by

R (θ) :


x̂′1
x̂′2
p̂′1
p̂′2

 =


cos (θ) − sin (θ) 0 0
sin (θ) cos (θ) 0 0

0 0 cos (θ) − sin (θ)
0 0 sin (θ) cos (θ)



x̂1
x̂2
p̂1
p̂2

 . (3.26)

3.5. Kerr gate

For universality a nonlinearity is needed [26 ]. This is achieved with the so-called Kerr gate,
which can be represented by [26 ]

K (κ) = eiκn̂
2
. (3.27)

Its effect on the annihilation operator is [28 , p. 308]

K†(κ)âK(κ) = âe−2iκn̂. (3.28)

The effect on the creation operator is then found by taking the Hermitian conjugate

K†(κ)â†K(κ) = e2iκn̂â†. (3.29)

The effect on the quadratures is, offered without proof [28 , p. 309]

K (κ) :

[
x̂κ
p̂κ

]
=

[
x̂ coshφ− ip̂ sinhφ
p̂ coshφ+ ix̂ sinhφ

]
, (3.30)

where φ(x̂, p̂) = K(x̂p̂ − p̂x̂ − ix̂2 − ip̂2). The most important thing to notice about this
transformation, is that it is nonlinear in phase space, which is important a neural network
type transformation.

17





4. Physical realization

4.1. Beam splitter

As a basic component for two modes a beam splitter can be used, of which a coarse
schematic can be seen in figure 4.1 .

â1

â2

â′2

â′1

Figure 4.1.: A diagram of an ideal beam splitter adapted from [29 , p. 93]. Two different
modes interfere and lead to new annihilation operators.

Assuming, the inputs are in coherent states (see section 2.4 ), the interaction of a beam
splitter can be written by [29 , p. 94]

[
â′1
â′2

]
= B

[
â1
â2

]
=

[
B11 B12

B21 B22

] [
â1
â2

]
.

(4.1)

This assumes, that the action of the beam splitter is linear, but that is a good approxima-
tion in this case [29 , p. 94]. Using the Bose commutation relations (2.15 ), this transforma-
tion can be proven to be unitary, which is done in section A.2 .

Using the Z-Y decomposition theorem, any unitary 2 × 2 gate can be written by [32 , p.
175]

B = eiα

[
e−i

β
2 0

0 ei
β
2

] [
cos
(γ
2

)
− sin

(γ
2

)
sin
(γ
2

)
cos
(γ
2

) ] [e−i δ2 0

0 ei
δ
2

]
, (4.2)
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4. Physical realization

where α, β, γ and δ are constants that define the transformation. For a beam splitter with-
out phase change (phaseless), the effect becomes [29 , p. 95]

[
â′1
â′2

]
=

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

] [
â1
â2

]
, (4.3)

where θ = γ
2 .

4.2. Phase change

A phase shift can be achieved by letting the light pass through a medium with a different
refraction index as can be seen in figure 4.2 [28 , p. 29-30]. The effect is then given by a
simple time evolution operator as shown in (3.1 ) and the effect on the annihilation operator
is (according to (3.2 ))

â′1 = e−iφâ1. (4.4)

â1 â′1

nr

l

Figure 4.2.: A diagram of a phase gate adapted from [28 , p. 296]. The input signal goes
through a different medium with refraction index nr and length l.

Since the phase shift is given by φ = nrkl, where nr is the refraction index, k is the wave
number and l is the length [28 , p. 29], different phase changes can be achieved by altering
these variables.

4.3. Displacement

A schematic of a physical implementation of the displacement gate can be seen in figure
4.3 [28 , p. 297]. Similar to homodyne detection (see section 4.6 ), the gate is implemented
by interfering with a local laser, which is so powerful in comparison to the signal, that it
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4.4. Squeezing

can be treated classically as having the amplitude β. According to (4.3 ), the effect on â1 o´f
the beam splitter is

â′1 = cos (θ) â1 − sin (θ)β. (4.5)

When θ << 1, this can be approximated using the small angle approximation [9 ]

â′1 = â1 − θβ
= â1 + α,

(4.6)

where α = −θβ. Therefore, by either changing θ or β, one can change the value of the
displacement.

â1

β

â′1

Figure 4.3.: A diagram of a displacement gate adapted from [28 , p. 296]. The input signal
interferes with a local laser with an amplitude much higher than the signal, so
it can be treated classically.

4.4. Squeezing

There are several ways to implement a single mode squeezing operator, but one is degen-
erate parametric down-conversion [23 , p. 165]. A diagram of this approach can be seen in
figure 4.4 . Along with the signal â1, a powerful coherent light is being sent into a nonlin-
ear medium (could be a nonlinear crystal [12 , p. 237]) to change its environment (a process
called pumping). The total Hamiltonian of the process is given by [23 , p. 165]

Ĥ = ~ωâ†â+ ~ωLâ†LâL + i~χ(2)
(
â21â
†
L − â

†2
1 âL

)
, (4.7)

where χ(2) represents the strength of the nonlinear term and is medium dependent. Using
the so-called parametric approximation, which holds when the local field is strong enough
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4. Physical realization

to never be undepleted of photons [23 , p. 165], (4.7 ) becomes

ĤPA = ~ωâ†â+ i~χ(2)
(
â21â
†
L − â

†2
1 âL

)
= ~ωâ†â+ i~χ(2)

(
â21α

∗
Le

iωLt − â†21 αLe
−iωLt

)
= Ĥ0 + V̂ ,

(4.8)

where the annihilation operator of the local laser has been split into its polar coordinates
âL = αLe

−iωLt and the constant term ~ωp|αL|2 has been dropped. The two different parts
of the Hamiltonian can be analyzed in the interaction picture [8 , p. 166]

ĤI = eiĤ0 V̂ e−iĤ0

= eiωLâ
†âti~χ(2)

(
â21α

∗
Le

iωLt − â†21 αLe
−iωLt

)
e−iωLâ

†ât

= i~χ(2)
(
â21α

∗
Le

i(ωL−2ω)t − â†21 αLe
−i(ωL−2ω)t

)
,

(4.9)

where (3.5 ) was used.
Using a local laser with mode ωL = 2ω, the interaction Hamiltonian become

ĤI = i~χ(2)
(
â21α

∗
L − â

†2
1 αL

)
= i~

(
â21
2
ξ∗ − â†21

2
ξ

)
,

(4.10)

where ξ = 2χ(2)αL. This generates the squeeze gate

Ŝ = e−
i
~ ĤI t

= e
â21
2
ξ∗t−

â
†2
1
2
ξt.

(4.11)

4.5. Kerr interaction

The Kerr transformation is equivalent to an intensity-dependent phase transformation,
called self-phase modulation [28 , p. 308]. Without going into detail, this can be achieved in
a medium with a non-vanishing cubic polarization reaction to the incoming beam, which
can be achieved e.g. with an optical fiber [12 , p. 345]. After propagation through the Kerr
material, the light splits into an ω and a 3ω term, the last of which has to filtered out. A
rough diagram of this can be seen in figure 4.5 .
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4.5. Kerr interaction

DMχ(2)

â1 ω

âL

ωp

Figure 4.4.: A schematic of a squeeze gate adapted from [28 , p. 296]. The input signal goes
through a nonlinear medium which is pumped by a powerful local source and
then the unwanted frequency is filtered out with a dichoric mirror.

χ(3)

â1

ω

3ω

Figure 4.5.: A schematic of a Kerr gate adapted from [28 , p. 309]. The input signal goes
through a Kerr medium with a χ(3) interaction and the unwanted 3ω part of
the light is discarded.
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4. Physical realization

4.6. Measurement

In this work, the only variable used is the expectation value of the position quadrature.
Therefore, only this operator needs to be measured. This can be done e.g. by using so-
called balanced homodyne detection of which a coarse diagram can be seen in figure 4.6 

[29 , p. 110-111]. The mode to be measured interferes with a local laser light, that is shifted
with a known phase φ compared to the signal. In practice this can be achieved by the
signal and the local laser coming from the same master laser. The local oscillator’s phase
is then shifted using a piezo-electrically movable mirror [29 , p.111].

Signal

Local laser

âS

αL

â2

â1

−
I2

I1

I21 = I2 − I1

Figure 4.6.: A schematic of homodyne detection adapted from [29 , p. 110]. The input signal
interferes with a local oscillator in a beam splitter resulting in two output rays,
whose light intensity is detected.

A phaseless beam splitter with no loss and θ = π
2 has the effect of (looking at equation

(3.23 ))

[
â1
â2

]
=

1√
2

[
1 −1
1 1

] [
âS
αL

]
. (4.12)

Such a beam splitter is used in the detection. The laser is kept strong in comparison with
the signal, so it can be treated classically as having a well-defined amplitude α [29 , p.111].
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4.7. Interferometer

It is now possible to define:

n̂21 = n̂2 − n̂1
= â†2â2 − â

†
1â1

=
1

2

((
â†S + α∗L

)
(âS + αL)−

(
â†S − α

∗
L

)
(âS − αL)

)
= αLâ

†
S + α∗LâS

=
1√
2

(Re (αL) + i Im (αL)) (x̂S − ip̂S) + (Re (αL)− i Im (αL)) (x̂S + ip̂S)

=
√

2 (Re (αL) x̂S + Im (αL) p̂S)

=
√

2|αL| (cos (θ) x̂S + sin (θ) p̂S)

=
√

2|αL|x̂θ,

(4.13)

where θ is the relative phase and the last step uses (3.6 ). Logically, the intensity differ-
ence I21 must be proportional to n21 because this represents the difference in number of
photons. Therefore, the proportionality can be deduced

I21 ∝ x̂θ, (4.14)

where the proportionality constant can be found by calibration.

4.7. Interferometer

Consisting solely of beam splitters and phase gates, universal multiport interferometers
can represent any unitary linear transformation between multiple modes in phase space
[17 ]. An N -mode interferometer uses N(N − 1)/2 beamsplitters and N(N − 1)/2 phase
shifters. A rough schematic of a 3-mode version can be seen in figure 4.7 .

Figure 4.7.: A schematic of a 3-mode interferometer adapted from [17 ]. Each intersection
contains a phase gate and a beam splitter.
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5. Parameter shift rule

In order to optimize an optical CV variational circuit with respect to its parameters, it is
necessary to differentiate the output with respect to the parameters similar to backprop-
agation in classical machine learning. Assuming, the outputs are expectation values, this
can be done by the so-called parameter-shift rule [6 ]. The central idea is, that the partial
derivative of an expectation value with respect to a circuit parameter can be found by two
expectation values at certain shifts to that parameter. The parameter shift rule for a CV
quantum gate holds for any Gaussian gate followed by at most logarithmically many non-
Gaussian operations [37 ]. As all used gates except the Kerr gates are Gaussian, this rule is
vital for calculating the gradient necessary for optimization.

5.1. Single gate

A single gate quantum circuit with the output being the expectation value of the quadra-
ture x̂ as can be seen in figure 5.1 . This could represent a phase gate or any other Gaussian
single mode gate with a well-defined parameter shift rule.

|x〉 U (θ) 〈x̂〉

Figure 5.1.: Variational circuit to illustrate a parametrized single gate circuit where the out-
put is the expectation value of the x̂ quadrature.

Since the expectation value depends on θ and x it can therefore be seen as a function of
those parameters. x is the input and θ is the learnable parameter

f (x; θ) = 〈x|U † (θ) x̂U (θ) |x〉
= 〈x|Mθ (x̂) |x〉 ,

(5.1)

where Mθ (x̂) is the transformation of the operator x̂ in the Heisenberg picture. The
parameter shift rule then says, that for certain gates the partial derivative of the transfor-
mation can be rewritten as [6 ]

∇Mθ (x̂) = c (Mθ+s (x̂)−Mθ−s (x̂)) , (5.2)
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5. Parameter shift rule

where s and θ are unique to the specific type of gate. Because of the product rule and the
fact that |x〉 is independent of θ, the partial derivative of the variational circuit function
can be written as

∇θf (x; θ) = 〈x|∇θMθ (x̂) |x〉
= c (〈x|Mθ+s (x̂) |x〉 − 〈x|Mθ−s (x̂) |x〉)
= c (f (x; θ + s)− f (x; θ − s)) ,

(5.3)

for some c, s ∈ R and where equation (5.1 ) and (5.2 ). Notice the similarity to finite dif-
ferences, except this expression is analytical and so the only errors are rounding errors or
experimental errors if this is realized in a physical circuit. This rule is very powerful as any
circuit, no matter how deep or complicated in principle has a simple analytical derivative
of each parameter.

5.2. Multiple gates

The parameter shift rule easily generalizes to multiple parametrized gates as in figure 5.2 .

|x〉 U1 (θ1) . . . Ui (θi) . . . UN (θN ) 〈x̂〉

Figure 5.2.: Quantum circuit to illustrate a parametrized multiple gate circuit where the
output is the expectation value of the x̂ quadrature.

The function in this case is

f (x; θ) = 〈x|U †1 (θ1) . . . U
†
i (θi) . . . U

†
N (θN ) x̂UN (θN ) . . . Ui (θi) . . . U1 (θ1) |x〉

= 〈xi−1|U †i (θi) x̂i+1Ui (θi) |xi−1〉
= 〈xi−1|Mθi (x̂i+1) |xi−1〉 ,

(5.4)

where |xi−1〉 = Ui−1 (θi−1) . . . U1 (θ1) |x〉 and the operator x̂i+1 = U †i+1 (θi) . . . U
†
N (θN ) x̂UN (θN ) . . . Ui+1 (θi).

Because only Ui depends on θi, the product rule causes the partial derivative of this expres-
sion with respect to θi to have the same form as the single gate case

∇θif (x; θ) = 〈xi−1|∇θiMθi (x̂i+1) |xi−1〉
= c (〈xi−1|Mθi+s (x̂i+1) |xi−1〉 − 〈xi−1|Mθi−s (x̂i+1) |xi−1〉) ,

(5.5)

for some c, r ∈ R.
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5.3. Phase gate

The transformation for both x̂ and p̂ can be represented by a matrix M , which makes

the notation simpler. Since matrix multiplication is distributive,
[
x̂
p̂

]
can be moved to the

end of the circuit. Therefore, it is enough to consider the gate matrix, which is done in the
following.

5.3. Phase gate

The derivative of the gate, looking at its effect on the quadratures (section 3.1 ), is

∇φM(φ) =

[
− sin (φ) − cos (φ)
cos (φ) − sin (φ)

]
. (5.6)

The definition of the parameter shift rule for the phase gate becomes

c (M(φ+ s)−M(φ− s)) = c

([
cos (φ+ s) sin (φ+ s)
− sin (φ+ s) cos (φ+ s)

]
−
[

cos (φ− s) sin (φ− s)
− sin (φ− s) cos (φ− s)

])
= c

[
cos (φ+ s)− cos (φ− s) − sin (φ+ s) + sin (φ− s)
sin (φ+ s)− sin (φ− s) cos (φ+ s)− cos (φ− s)

]
.

(5.7)

If s = π
2 and the fact that cos

(
φ− π

2

)
= sin (φ), cos

(
φ+ π

2

)
= − sin (φ), sin

(
φ− π

2

)
=

− cos (φ) and sin
(
φ+ π

2

)
= cos (φ) is used, this can be simplified significantly

c
(
M(φ+

π

2
)−M(φ− π

2
)
)

= c

[
cos
(
φ+ π

2

)
− cos

(
φ− π

2

)
− sin

(
φ+ π

2

)
+ sin

(
φ− π

2

)
sin
(
φ+ π

2

)
− sin

(
φ− π

2

)
cos
(
φ+ π

2

)
− cos

(
φ− π

2

) ]
= c

[
−2 sin (φ) −2 cos (φ)
2 cos (φ) −2 sin (φ)

]
.

(5.8)

With c = 1
2 , the parameter shift rule of the phase gate becomes [37 ]

∇φM (φ) =
1

2

(
M
(
φ+

π

2

)
−M

(
φ− π

2

))
. (5.9)

5.4. Displacement gate

Looking at (3.16 ), the Heisenberg representation of the displacement gate on the quadra-
tures is

M(a, φ) =

 1 0 0
2a cos (φ) 1 0
2a sin (φ) 0 1

 , (5.10)
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5. Parameter shift rule

where it is applied to the basis

1
x̂
p̂

. a is the length and φ is the phase of the complex

displacement. The derivative of this gate with respect to a is

∇aM(a, φ) =

 0 0 0
2 cos (φ) 0 0
2 sin (φ) 0 0

 (5.11)

The parameter shift rule of this gate with respect to a can be derived from the definition
(5.2 )

c (M(a+ s)−M(a− s)) = c

 1 0 0
2(a+ s) cos (φ) 1 0
2(a+ s) sin (φ) 0 1

−
 1 0 0

2(a− s) cos (φ) 1 0
2(a− s) sin (φ) 0 1


= c

 0 0 0
4s cos (φ) 0 0
4s sin (φ) 0 0

 .

(5.12)

One can now see, that any s is allowed if the constant is set to c = 1
2s . The final rule for

the displacement gate is therefore, assuming that the phase is φ = 0 [37 ]

∇rM (r) =
1

2s
(M (r + s)−M (r − s)) . (5.13)

5.5. Squeeze gate

A diagram of single squeeze gate circuit can be seen in figure 5.3 .

|x〉 S (r) 〈x̂〉

Figure 5.3.: Quantum circuit with a single parametrized squeeze gate where the output
is the expectation value of the x̂ operator. The argument is set to 0, so the
squeezing is real.

Looking at equation (3.22 ), the gradient of the effect of the squeeze gate with respect to
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5.6. Beam splitter gate

r in the Heisenberg picture is

∇rM(r) = ∇r
[
e−r 0
0 er

]
=

[
−e−r 0

0 er

] (5.14)

This can be written in the form (5.2 ) [6 ]

∇rM(r) =
1

es − e−s

[
−e−r (es − e−s) 0

0 er (es − e−s)

]
=

1

es − e−s

([
e−(r+s) 0

0 er+s

]
−
[
e−(r−s) 0

0 er−s

])
= c (M(r + s)−M(r − s)) ,

(5.15)

where c = 1
es−e−s . Looking back at equation (5.3 ), this leads to a partial derivative of the

whole circuit as

∇rf (x; r) =
1

es − e−s
(f (x; r + s)− f (x; r − s)) , (5.16)

where s has to be as small as possible, as long as the prefactor doesn’t blow up.

5.6. Beam splitter gate

The gradient of a phaseless beam splitter with respect to θ is easily seen to be similar to
the phase gate version because the gates are similar. The partial derivative of a none-
phaseless beam splitter with respect to the phase parameter φ is identical. Both rules can
be summarized as [37 ]

∇θM (θ, φ) =
1

2

(
M
(
θ +

π

2
, φ
)
−M

(
θ − π

2
, φ
))

(5.17)

∇φM (θ, φ) =
1

2

(
M
(
θ, φ+

π

2

)
−M

(
θ, φ− π

2

))
. (5.18)
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6. Quantum neural networks

6.1. Classic artificial neural networks

In this section, neural networks are introduced together with a necessary abstraction in
order to implement them on a CV quantum computer. A rough schematic of a fully con-
nected neural network can be seen in figure 6.1 . It consists of an input layer, an output
layer and an arbitrary number of hidden layers all with an arbitrary number of so-called
neurons.

...
...

· · ·

· · ·

· · ·

· · ·

...
...

Input
layer

Hidden
layers

Output
layer

Figure 6.1.: Schematic of a fully connected artificial neural network.

A schematic of an individual neuron can be seen in figure 6.2 [2 ]. The function of a
neuron is to add the inputs weighted by the weights wi of the edges plus a bias b and then
apply an activation function a. A typical activation function is the sigmoid function [2 ]

a (x) =
1

1 + e−x
, (6.1)

which transforms the real axis to the interval ]0, 1[. Another activation function is hy-
perbolic tangents [2 ]

a (x) = tanh(x), (6.2)
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6. Quantum neural networks

which transforms the real axis to the interval ]−1, 1[.

x1

x2

...

xn

f (x) = a (
∑n

i wixi + b)

f (x)

f (x)

f (x)

w1

w2

wn

Figure 6.2.: Schematic of a single neuron of a neural network with several input and output
neurons.

It can easily be seen, that the sum of the neuron excluding bias is equivalent to an inner
product between a weight vector and an input vector

y =
[
w1 ... wn

] x1...
xn

 . (6.3)

Because each neuron in a layer has a different weight vector, the total transformation of
one layer before the activation function can be represented by a linear transformation

y = Wx + b, (6.4)

whereW is the weight matrix. Including the activation function, the total effect in a neuron
is

f(x) = a (Wx + b) . (6.5)

Therefore, a fully connected neural network is essentially nothing more than a linear
transformation followed by a nonlinear activation function. This abstraction is impor-
tant because it turns out that both linear transformations and nonlinearities with train-
able parameters are realizable on a CV quantum computer. The universal approximation
theorems say that neural networks can approximate any function to any precision by an
arbitrarily deep or wide neural network [35 ] [25 ]. Therefore, being able to realize such
networks on a CV-quantum computer could potentially be a big advantage.
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6.2. Artificial neural networks on a CV quantum computer

6.2. Artificial neural networks on a CV quantum computer

Any Gaussian transformation in phase space (see section 2.5 ) can be written by [26 ][
x̂′

p̂′

]
= M

[
x̂
p̂

]
+

[
αRe
αIm

]
, (6.6)

where M is a real-valued, so-called sympletic matrix and [ αRe
αIm ] is a vector of complex

numbers. A sympletic matrix is defined by [26 ]

MTΩM = Ω[
M11 M21

M12 M22

] [
0 I
I 0

] [
M11 M12

M21 M22

]
=

[
0 I
I 0

]
[
M11M21 +M21M11 M11M22 +M21M12

M12M21 +M22M11 M12M22 +M22M12

]
=

[
0 I
I 0

] (6.7)

It is evident from equation (6.6 ), that the block off-diagonal elements ofM mix the differ-
ent quadratures. The transformation (6.6 ) is very close to the linear transformation needed
for a neural network (6.4 ). One can notice how, looking back at section 3.2 , that the ad-
dition with the vector can be achieved by a displacement gate on each individual mode.
Any sympletic matrix can be decomposed using the Bloch-Messiah decomposition [26 ]

M = K2

[
Σ 0
0 Σ−1

]
K1, (6.8)

where Σ = diag(σ1, σ2, . . . , σN ) is a diagonal matrix of the real, positive singular values
and K1 and K2 are orthogonal, sympletic and real-valued. To implement a real-valued
classic neural network transformation, the matrix M must be block diagonal to not mix x̂
and p̂

M =

[
M11 0

0 M22

]
, (6.9)

which leads to the orthogonal matrices also being block diagonal

K1 =

[
K11 0

0 K12

]
K2 =

[
K21 0

0 K22

]
. (6.10)

Using this constraint the effect on x̂ becomes

x̂′ = M11x̂ + αRe

x̂′ = K21ΣK11x̂ + αRe.
(6.11)
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This decomposition makes the transformation realizable with the simple CV gates de-
scribed in section 3 . Because K1 and K2 are orthogonal and therefore unitary, they can
be achieved on two different universal interferometers with only phaseless beam split-
ters as described in section 4.7 [26 ]. As Σ is a diagonal matrix, its effect can be achieved
by a simple squeeze gate for each mode, resulting in a scaling. To achieve the necessary
nonlinearity, the so-called Kerr gate is used mode-wise, which is non-Gaussian.

A setup performing the complete transformation is shown in figure 6.3 , where α, r, λ,
φ1, θ1, φ2 and θ2 are the parameters of the circuit. Because this setup is parameterized, it
can be used to learn a transformation similar to the learning of weights in a neural network.

QNN layer

D (α1)

U1 (φφφ1, θθθ1)

S (r1)

U2 (φφφ2, θθθ2)

Φ (λ1)

D (α2) S (r2) Φ (λ2)

...
...

...

D (αN ) S (rN ) Φ (λN )

︷ ︸︸ ︷

Figure 6.3.: Variational circuit for implementing one neural network layer on a CV quan-
tum computer consisting of two interferometers as well as one displacement,
squeeze and Kerr gate for each wire. Adapted from [26 ].
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PennyLane Simulation Framework
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7. Overview

The Python framework PennyLane from Canadian company Xanadu was used to simulate
the CV circuits used for numerical experiments [14 ]. This Python package allows not only
simulation of CV quantum computers, but also contains hybrid computation capacity and
is therefore perfect for quantum machine learning. Furthermore, this package is compati-
ble with both NumPy and PyTorch, and these interfaces were used extensively.

PennyLane allows insertion of a quantum node (not to be confused with modes) into the
directed acyclic graph of a machine learning computation similar to the directed acyclic
graph of TensorFlow and PyTorch as in figure 7.1 .

µ
x

n
(1)
1

n
(1)
2

n
(1)
3

n
(1)
4 n

(1)
5

f(x)

classical node
quantum node

Figure 7.1.: Directed acyclic graph of a PennyLane hybrid computation involving classical
and quantum nodes. One of the 4 possible paths through the graph from the
first node with parameter µ is indicated.

The gradient or Jacobian can be computed by standard backpropagation using the chain
rule. When n(p)i represents the output of the ith node of the pth path the derivative of the
output with respect to the specific parameter µ becomes [14 ]

∂f (x)

∂µ
=

N∑
p=1

∂f (x)

∂n
(p)
m

∂n
(p)
m

∂n
(p)
m−1

· · · ∂n
(p)
1

∂µ
, (7.1)

where N is the number of paths and m is the number of nodes to the parameter µ. The
partial derivatives of classical notes are calculated by automatic differentiation, depending
on the interface used as in standard backpropagation. This is not possible for the quantum
optimization nodes as these do not use standard mathematical functions with an analytical
derivative. However, using the parameter shift rule as explained in section 5 , the gradi-
ent of all quantum components are found by PennyLane and communicated to the used
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7. Overview

interface [14 ]. The quantum nodes are thus treated as black boxes by the interface. Non-
Gaussian gates, such as the Kerr gate, do not have a simple parameter shift rule, and so
the partial derivative of it is calculated using finite differences [37 ].

The codes for most numerical experiments of section III can be found in the repository:
https://github.com/martin-knudsen/masterThesis .
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8. Concrete example

To show, how PennyLane is used, one of the numerical experiments presented in section
10 is used which was inspired by [5 ]. This section relies heavily on the documentation
from the PennyLane website [7 ] and the associated paper [14 ].

In order to use PennyLane, it needs to be imported, which is done as in listing 8.1 . The
importing of the NumPy interface from PennyLane allows for automatic differentiation.

1 import pennylane as qml
2 from pennylane import numpy as np
3 from pennylane.optimize import AdamOptimizer

Source Code 8.1.: Import statements for importing PennyLane, the NumPy interface of
PennyLane and an optimizer.

The simulated quantum computer or device is set using the qml.device object. This
chooses the particular back end, in this case a Fock back end, which is a CV basis that
allows non-Gaussian transformations. For many purposes, the Gaussian back end is suf-
ficient, but not in this work because of the usage of non-Gaussian Kerr gates. The wires
keyword sets the number of modes and cutoff_dim sets the maximum allowed dimen-
sion of the Fock basis (here allowing a maximum photon number of 10).

1 dev = qml.device("strawberryfields.fock", wires=1, cutoff_dim=10)

Source Code 8.2.: Statement for setting the device as a Fock back end from Strawberry-
fields with one mode and an allowed dimension of 10 of the Fock basis.

Similar to Qiskit from IBM [19 ], the different gates are applied sequentially to the device.
The states are initialized to the ground state, which in the Fock case is the 0 photon state
(2.33 ). As an example of a sequence, consider the 1 mode variational circuit shown in figure
10.2 . Each of the gates takes several arguments, both a gate parameter and an integer
indicating the mode to which the gate should be applied. As there is only one mode in
this example, all gates are applied to that wire. The argument of the Python definition is
a NumPy array in this case, but this is interface dependent. Note, that the rotation gate
represents a phase gate with the opposite sign of its argument following the PennyLane
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8. Concrete example

convention.

1 def layer(v):
2 # Linear transformation
3 qml.Rotation(v[0], wires=0)
4 qml.Squeezing(v[1], 0.0, wires=0)
5 qml.Rotation(v[2], wires=0)
6

7 # Bias
8 qml.Displacement(v[3], 0.0, wires=0)
9

10 # Element-wise nonlinear transformation
11 qml.Kerr(v[4], wires=0)

Source Code 8.3.: Gates representing a 1 mode variational circuit performing a linear trans-
formation and a non-linearity similar to a neural network. Note that the
rotation gate represents a phase gate with the opposite sign of its argu-
ment.

As is, the code in listing 8.3 can’t run, because it is missing the qnode decorator that
changes the function according to the particular device used. However, it can be used
as a subcircuit in a larger circuit as in listing 8.4 . This circuit uses layer as a subcircuit
and has the necessary decorator. The inputs are again two NumPy arrays, but there is an
important difference: var is a positional argument and therefore PennyLane can calculate
the gradient of the circuit with respect to its components. x=None is a keyword argument
and is therefore treated as a constant.

As visible in figure 7.1 , PennyLane allows for hybrid computations, which is necessary
for many tasks including machine learning. For this problem, the loss of the circuit needs
to be classically calculated, which is done with the calculation in listing 8.5 . The inputs are
NumPy arrays.

Next, the optimizer and parameters are initialized as can be seen in listing 8.6 . The
optimizer takes some keywords, such as learning rate and momentum (beta1, beta2).

The final optimization loop can be seen in listing 8.7 .
PennyLane provides templates for popular subcircuits. Used in this thesis was mainly

the CVNeuralNetLayers of which a single layer looks like in listing 8.8 [10 ].
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1 @qml.qnode(dev)
2 def quantum_neural_net(var, x=None):
3 # Encode input x into quantum state
4 qml.Displacement(x, 0.0, wires=0)
5

6 # NN layer subcircuit
7 for v in var:
8 layer(v)
9

10 # return an expectation value of the x quadrature
11 return qml.expval(qml.X(0))

Source Code 8.4.: Qunode of PennyLane representing a circuit for the device defined in
dev and with the subcircuit layer.

1 def cost(var, features, labels):
2 # output of the circuit of all points
3 predictions = np.array([quantum_neural_net(var, x=x) for x in features])
4

5 # find the square loss
6 loss = 0
7 for l, p in zip(labels, predictions):
8 loss = loss + (l - p) ** 2
9

10 loss = loss / len(labels)
11 return loss

Source Code 8.5.: Classical calculation of the square loss for all points of a variational cir-
cuit.

1 var = 0.05*3 * np.random.randn(num_layers, 5)
2 opt = AdamOptimizer(0.02, beta1=0.9, beta2=0.999)

Source Code 8.6.: Optimizer and initial parameters get defined.
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8. Concrete example

1 for it in range(steps):
2 var = opt.step(lambda v: cost(v, X, Y), var)

Source Code 8.7.: Optimization loop consisting of updating the circuit parameters accord-
ing to the defined optimizer.

1 def cv_neural_net_layer(
2 theta_1, phi_1, varphi_1, r, phi_r, theta_2, phi_2, varphi_2,

a, phi_a, k, wires):↪→

3

4 Interferometer(theta=theta_1, phi=phi_1, varphi=varphi_1,
wires=wires)↪→

5

6 broadcast(unitary=Squeezing, pattern="single", wires=wires,
parameters=list(zip(r, phi_r)))↪→

7

8 Interferometer(theta=theta_2, phi=phi_2, varphi=varphi_2,
wires=wires)↪→

9

10 broadcast(unitary=Displacement, pattern="single",
wires=wires, parameters=list(zip(a, phi_a)))↪→

11

12 broadcast(unitary=Kerr, pattern="single", wires=wires,
parameters=k)↪→

Source Code 8.8.: Single CV QNN layer, reprinted from [10 ].
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9. Parameter shift rule in a real circuit

The codes for all numerical experiments can be found in the repository: https://github.
com/martin-knudsen/masterThesis .

9.1. Accuracy of the expectation value

As the exact value of an observable cannot be measured exactly due to quantum uncer-
tainty, the value has to be estimated by repeated measurements, called “shots”, and then
the average of the measurements is taken. In PennyLane, an estimate for the expectation
value is calculated using the Berry-Essen theorem [4 ]. To test this out, the circuit in figure
9.1 was used. A histogram of 10000 samples with the resulting expectation value can be

|0〉 D (0.5, 0) 〈x̂〉

Figure 9.1.: Simple CV variational circuit that displaces the ground state by the real amount
r = 0.5.

seen in figure 9.2a . The theoretical value of the x eigenvalue is x = 1, and as one can see,
the resulting expectation value is close to this value. The estimation of the expectation
value becomes better and better with increasing shots as can be seen in figure 9.2b . The
experimental expectation value seem to follow a normal distribution about the analytical
value of the x quadrature.

9.2. Single mode parameter shift

To test how the parameter shift rule would work in a physical circuit, the following func-
tion is used: f (0) = 1, meaning with an input in the ground state, the expectation value of
x̂ should become 1. The circuit to perform this task can be seen in figure 9.3 . Analytically,
the solution to this problem is to set r = 0.5, because that gives an x = 1 eigenvalue as can
be seen in section 3.2 .

Using mean square error as defined in equation (10.2 ) as the loss function, the partial

47

https://github.com/martin-knudsen/masterThesis
https://github.com/martin-knudsen/masterThesis


9. Parameter shift rule in a real circuit

2 0 2 4
x

0

100

200

300

f

expectation value
data

(a) Frequency of individual measurements and
resulting expectation value of the x̂ quadra-
ture for the circuit on figure 9.3 using 10000
shots.

0.96 0.98 1.00 1.02
< x >

0

20000

40000
shots

experimental
analytical

(b) Expectation value of x̂ in the circuit 9.3 with
r = 0.5 as a function of shots (opposite axes
to highlight the Gaussian curve).

Figure 9.2.

|0〉 D (r, 0) 〈x̂〉

Figure 9.3.: Simple CV variational circuit with only one parametrized displacement gate
with the phase set to 0.
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9.3. Two mode parameter shift

derivative of the loss function with respect to r becomes, using the chain rule

∇rMSE (x; r) =

(
∂MSE (x; r)

∂f (x; r)

)(
∂f (x; r)

∂r

)
= (−2 (0.5− f (x; r)))

(
1

2s
(f (x; r + s)− f (x; r − s))

)
,

(9.1)

where the second parenthesis uses the parameter shift rule of the displacement gate
(5.13 ). Now, simple gradient descent can be used to train the circuit [11 , p. 93]

r = r − λ∇rMSE (x; r) , (9.2)

where λ is the learning rate. PennyLane can directly return an expectation value, so the
manual calculation in section 9.1 is not necessary.

The results of this optimization can be seen in figure 9.4a , where three different number
of shots were tried. The starting value of the parameter was r = −0.1, the learning rate set
to λ = 0.01 and the parameter shift set to s = 1, but this is an arbitrary choice.

0 25 50 75 100
step

0

1

2

loss

10
100
1000

(a)

0 25 50 75 100
step

0.0

0.2

0.4

0.6

r

10
100
1000

(b)

Figure 9.4.: MSE loss function and change in displacement parameter as a function of steps
for three different number of shots to approximate the expectation value.

As one can see, the increase in shots, which leads to a better approximation of the true
expectation value and therefore the true gradient, results in a faster convergence with less
oscillation.

9.3. Two mode parameter shift

To show, that the parameter rule works for a more involved circuit, the circuit in figure
9.5 is used, where the fixed arguments were chosen randomly. The circuit is optimized,
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so that its function consisting of the sum of the two expectation values becomes f(0; θ) =
〈x̂1〉+ 〈x̂2〉 = 1.

|0〉 D (1, 0)

BS (θ, 0)

R (0.1) 〈x̂1〉

f(x; θ) = 〈x̂1〉+ 〈x̂2〉

|0〉 D (0.5, 0) R (0.2) 〈x̂2〉


Figure 9.5.: Simple CV variational circuit with all parameters fixed except θ of the beam

splitter. The circuit function is the sum of the two x-quadrature expectation
values.

The gradient is very similar to the single mode case, but this time the parameter shift
rule is of the beam splitter flavor. Because the function is a simple sum and the derivative
is stable over addition, the result has the same form as for the single gate case

∇θMSE (x; θ) =

(
∂MSE (x; θ)

∂f (x; θ)

)(
∂f (x; θ)

∂θ

)
= (−2 (1− f (x; θ)))

(
1

2

(
f
(
x; θ +

π

2

)
− f

(
x; θ − π

2

)))
.

(9.3)

Using simple gradient descent as in (9.2 ), the loss and change in θ can be seen in figure
9.6 . Here a Starting value of θ = 0.5 was used, a learning rate of λ = 0.01.

As one can see, the optimization is very good for this more involved example as well, so
this further corroborates the parameter shift rule for more complex circuits.
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Figure 9.6.: MSE loss function and change of the θ parameter as a function of steps for the
circuit 9.5 .
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10. 1D function regression

A simple task to test the power of variational circuits is nonlinear regression of a function
with one input and one output. Because only one input and output are necessary, the
natural number of modes is 1. Therefore, the architecture is a little different from the one
presented in figure 6.3 . A single “layer” is now the one in figure 10.1 [5 ]. In this case,
simple phase shifts were used instead of an interferometer. This is acceptable, because for
a single mode an arbitrary Gaussian gate can be defined by U = D(α)R(θ)S(r)R(φ) [41 ].
Using 4 of these layers, the complete transformation can be seen on figure 10.2 .

R (φ1) S (r) R (φ2) D (α) Φ (λ)

Figure 10.1.: Variational circuit implementing a 1 mode universal transformation. Adapted
from [5 ].

|0〉 D (x) L L L L 〈x̂〉

Figure 10.2.: Variational circuit for 1D nonlinear regression using 4 layers such as the one
in figure 10.1 .

This circuit works by first encoding the x-value using the displacement gate. The vari-
ables α, φ1, r, φ2 and λ for each layer are then learned, so that the expectation value of
the x̂ observable represents the function value at that point. To test this circuit, a Gaussian
function with some additional random noise added was used

f (x) = e
(x−µ)2

2σ2 + η (x) , (10.1)

with η (x) representing random noise and the values µ = 0 and σ = 0.3. As a loss function,
mean square error (MSE) was used, which can be defined by [11 , p. 61]

MSE =
1

N

N∑
i=1

(ŷi − yi)2 , (10.2)

where ŷi is the prediction of the network and yi is the actual value for the ith data point.
The result of this optimization for different steps can be seen in figure 10.3 . The same

settings as in [5 ] were used, meaning the NumPy interface, the Adam optimizer [27 ] and a
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10. 1D function regression

cutoff-dimension of 10 was used and the weights were initialized randomly. For the Adam
optimizer, the learning rate was set to λ = 0.02, the momenta to β1 = 0.9 and β2 = 0.999.

After about 1000 optimization steps, the regression was very accurate with an MSE of
0.0062507. The small “bump” after the steep decline can be explained due to the optimizer
initially overshooting the minimum, because of a large step size.

1.0 0.5 0.0 0.5 1.0
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Step: 0, MSE: 0.5800705
Data
QNN

(a)

1.0 0.5 0.0 0.5 1.0
x

0.5

0.0

0.5

1.0
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Step: 25, MSE: 0.0857629
Data
QNN

(b)

1.0 0.5 0.0 0.5 1.0
x

0.5

0.0

0.5
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Step: 100, MSE: 0.0443770
Data
QNN

(c)

1.0 0.5 0.0 0.5 1.0
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Step: 999, MSE: 0.0062507
Data
QNN

(d)

Figure 10.3.: 1D nonlinear regression of equation (10.1 ) using a 1 mode variational circuit
showing the step and the MSE.
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Figure 10.4.: MSE loss function of 1D regression of equation (10.1 ) as a function of steps.
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11. 2D function approximation

In this section, a 2 mode variational circuit is trained to approximate a normalized version
of the 2D Rosenbrock function [36 ]

f (x, y) = 100
(
y − x2

)2
+ (1− x)2 . (11.1)

A normalized version of this function in the interval x, y ∈ [−2, 2] can be seen in figure
11.1 .

f(x,y)

Figure 11.1.: Normalized version of the Rosenbrock test function (equation (11.1 )).

The circuit used to solve this task can be seen in figure 11.2 . As one can see, this circuit
actually uses a neural network layer as presented in section 6.2 . Importantly, the exact
version used was not a normal neural network with real weights, but the complex version
allowing mixing of the quadratures (6.8 ).

|0〉 D (x1)
L L L L

|0〉 D (x2) 〈x̂〉

Figure 11.2.: Variational circuit for 2D function approximation using 4 2D QNN layer as
defined in figure 6.3 and a measurement of the x-coordinate of the second
mode.

A plot of the approximated function for different optimization steps can be seen on
figure 11.3 . As is evident from the figure, a coarse grid was used for the approximation,
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11. 2D function approximation

to keep runtime low. One can see, how after 500 steps the MSE is low and the function
approximation seems to converge.

The settings used in the optimization were: the Numpy interface, cutoff dimension of
30, learning rate λ = 0.01, Adam optimizer with β1 = 0.9 and β2 = 0.999. Due to the
increase in the dimensions, from one to two modes, the computational overhead increased
significantly.

(a) (b) (c) (d)

f(x,y) f(x,y) f(x,y) f(x,y)

Figure 11.3.: 2D function approximation of equation (11.1 ) using a 2 input QNN showing
the step and the mean square error (MSE).
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12. Simple classification

To further test the implementation of neural networks, a simple classification problem is
solved, namely the Iris dataset [21 ]. This dataset consists of 150 samples of flowers with
4 features distributed on 3 classes, Iris Setosa, Iris Verticolor and Iris Virginica. This dataset
can be used as a small test for classification algorithms as each of the 4-dimensional feature
vectors of each data point belongs to one of 3 classes. The features are the length and width
of both the “petal” and “sepal” of the flowers.

In order to visualize the dataset and make the calculation faster, the dimension of the fea-
ture vector is decreased using Principal Component Analysis (PCA) [31 ]. This method re-
duces the dimensionality of the data by choosing the so-called principal components, which
are orthogonal axes with the highest possible variance of the data. This is appropriate for
classification because the axes with the highest variance show the most difference between
the classes and is therefore the easiest to classify. To perform PCA, the Scikit-learn library
was used [34 ]. With 2 principal components, the Iris Dataset looks like in figure 12.1 . There
is some overlap between the different groups. However, because 3 principal components
was used for the classification, this becomes less of an issue.

2.5 0.0 2.5 5.0
PC1

2

1

0

1

PC2

Setosa
Versicolor
Virginica

Figure 12.1.: The Iris flower dataset after PCA with 2 principal components.

In order to test how well the circuit has generalized learning outside the training dataset,
it has to be split into a test dataset and a training dataset. The standard splitting from
Scikit-learn is 3

4 meaning 112 samples for training and 38 samples for testing and this was
used. For the optimization, a quantitative measure of the success of a classification is
needed. Using the softmax function, a kind of probability can be assigned to each class of
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12. Simple classification

the output vector x of the network [3 ]

fj (x) =
exj∑
k e

xk
, (12.1)

where xi is the ith component of x. The fj are similar to probabilities in that they are
between 0 and 1 and sum to 1. Using the softmax function, the so-called cross entropy loss
is obtained, which is defined for the ith data point by [3 ]

Li (x) = − log fyi (x)

= − log
exyi∑
k e

xk
,

(12.2)

where yi is the correct label for the ith data point. Therefore, the cross entropy can be un-
derstood as the negative logarithm of the softmax probability of the correct class according
to the label yi. The closer the probability of the correct class, the closer the argument within
the log is to 1, the closer the log term is to 0. The negative sign comes from the fact that
the denominator is always bigger than the numerator and so the log is always smaller or
equal to 0. The final loss function is just the sum of all cross-entropies. Another relevant
metric for this problem is the accuracy defined as the fraction of correctly labeled images

Accuracy =
number of correctly labeled images

total number of images
. (12.3)

In figure 12.2 , the circuit used for the solution of the classification task can be seen.
Importantly, as in section 11 , the actual layer used was the complex, non classical version.
The output is a vector of the expectation values of each mode, that are then post processed
using the cross-entropy as described above.

|0〉 D (x1)

L

〈x̂1〉

|0〉 D (x2) 〈x̂2〉

|0〉 D (x3) 〈x̂3〉

Figure 12.2.: 3 mode variational circuit for classification of the Iris dataset using one QNN
layer and displacement encoding as well as measurement of the x̂ quadrature
of each mode.

The results of optimization can be seen in figure 12.3 . The settings used for the opti-
mization were: The PyTorch interface, cutoff dimension of 4, learning rate λ = 0.03 and
the Adam optimizer. The low cutoff dimension was due to the calculation being slow,
and could be an area of improvement. As one can see the accuracy is increasing in the
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Figure 12.3.: Loss and accuracy for both training and testing classifying the Iris dataset
using a circuit as in figure 12.2 .

beginning and then flattening out and opposite for the loss. The training accuracy kept
improving and ended close to 90% after about 50 steps. The generalization to the test
dataset also increased to about 70% after about 10 steps. Therefore, significant learning
has taken place, as the accuracy would be expected to be around 1

3 if the results weren’t
statistically significant. The fact that the training accuracy continued improving after the
test accuracy flat lined suggests that the optimization is over fitting.
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13. Simple ODE

An initial value problem (IVP) of an ordinary differential equation (ODE) can be defined
by [16 ]:

y′ (x) = f (x, y (x)) , y (x0) = y0. (13.1)

13.1. Classic artificial neural network ansatz

In order to solve a 1D ordinary differential equation (ODE) using a variational circuit, a
classic neural network ansatz for this problem is presented in figure 13.1 [20 ].

...

σ
f(x)x

Figure 13.1.: Classic neural network approach to solving an ordinary differential equation
where weights and biases are omitted. Adapted from [20 ].

Because in an ODE, both a function and its derivative are present, the neural network
must be differentiated with respect to its input. For the ODE, the relevant loss function is
therefore

LODE = (y (x0)− y0)2 +

N∑
i=1

(
y′ (xi)− f (xi, y (xi))

)2
, (13.2)

where (x0, y0) is the initial value, y (xi) is the function value of the current solution at
point xi, y′ (xi) is the derivative of y in the point xi and f (xi, y (xi)) is the right-hand side
of the ODE according to the definition (13.1 ).
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13. Simple ODE

Notice the contrast to normal backpropagation of a neural network where the output of
the network is optimized (differentiated) with respect to the weights in order to optimize
these. To solve an ODE, both the partial derivative of the output with respect to the input
and the weights are needed. To test the setup, this IVP is solved

dy

dx
= −2xy, y (0) = 1, (13.3)

on the interval [−1, 1].
For comparison, the general solution can be found via separation of variables

1

y
dy = −2x dx∫

1

y
dy = −2

∫
x dx

ln (y) = −x2 + c1

y (x) = c2e
−x2 .

(13.4)

Inserting the initial value, the value of the constant is found to be c2 = 1. The theoretical
solution for this particular IVP is therefore

y (x) = e−x
2
. (13.5)

13.2. Neural network inspired variational circuit solution

Inspired by the classical approach, the circuit shown in figure 13.2 is used. As in the other
sections, the complex neural network version was used. The activation function used was
a sigmoid activation function which is appropriate for this case, because the real solution
does not have a negative function value in the chosen interval.

To solve the circuit, the PyTorch interface was used. Several different settings were tried
for best possible convergence and the best setting was: learning rate 0.03 and the Adam
optimizer, cutoff dimension set to 4. The gradient of the network with respect to its inputs
was achieved using PyTorch’ automatic differentiation feature, autograd.

Several steps in the optimization can be seen in figure 13.3 and the resulting loss curve
can be seen in figure 13.4 . The circuit did not converge every time but this could be a
matter of choosing the right hyper parameters.

As one can observe, the optimization pattern is different when compared to previous
tasks. A possible explanation for this behavior is, that there are two sometimes competing
interests in the optimization: the differential equation (13.3 ) and the initial value. There-
fore, at step 10 one can see the initial value has been optimized but the differential equation
is not that accurate. In step 60, the differential equation (shape) is more fulfilled but the
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13.2. Neural network inspired variational circuit solution

Input
layer

Quantum
layers

Output
layer

x 〈x̂1〉

x x 〈x̂2〉 σ

x 〈x̂3〉

Input

1

1

1

1

1

1

Output
L

Figure 13.2.: Hybrid variational circuit for solving an ordinary differential equation. The
input is broadcasted to each mode before entering the QNN layer and is post
processed by a summation of the expectation values and a sigmoid activation
function.

initial value is quite off. Finally, in step 130, both the differential equation and the initial
value are fulfilled.
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Step: 0, loss: 24.3024660
exact
approx

(a)

1.0 0.5 0.0 0.5 1.0
x

0.4

0.6

0.8

1.0

y(x)

Step: 10, loss: 2.4052751
exact
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exact
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(c)

1.0 0.5 0.0 0.5 1.0
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0.4

0.6

0.8

1.0

y(x)

Step: 130, loss: 0.0584966
exact
approx

(d)

Figure 13.3.: Solution of the ODE (13.3 ) on a QNN as in figure 13.2 .

To test the network on a more involved example, this first order nonlinear ODE was
solved [39 ]

y′ = x2 + y2 − 1 , y (0) = 0. (13.6)

This is a so-called Riccati equation [33 ] and was solved numerically for comparison by
using the odeint function of the SciPy library [40 ].

Because of the higher level of complexity, the optimization had difficulty finding the
minimum. Therefore, the network to solve this problem was simplified to have fewer free
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13. Simple ODE

0 50 100 150
step

0

20

40
loss

Figure 13.4.: Loss of the ODE in equation (13.3 ) solved on a QNN as a function of steps.

parameters but still use the complex version of the QNN, as one can see in figure 13.5 . This
setup used only had 2 modes, a single layer and no classical activation function, but just a
simple sum of the outputs in the end.

Input
layer

Quantum
layers

Output
layer

x 〈x̂1〉

x
∑

x 〈x̂2〉

Input
1

1

1

1

Output
L

Figure 13.5.: Simplified quantum circuit for solving an ordinary differential equation using
only two modes and no classical activation function. The input is broadcasted
to each mode before entering the QNN layer and is post processed by a sum-
mation of the expectation values.

To solve the circuit, the PyTorch interface was used. The result of the optimization using
the Adam optimization strategy and a learning rate of λ = 0.02 can be seen in figure 13.6 .
As one can see, the final approximation is very good. One can again see the competing
interests of the initial value and the shape of the function.

After finding the minimum in step 371 the loss started to increase again and then oscil-
late, as can be seen in figure 13.7 .
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13.2. Neural network inspired variational circuit solution
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Figure 13.6.: Solution of the ODE (13.6 ) using the variational circuit from figure 13.5 .
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Figure 13.7.: Divergence of the solution of the ODE (13.6 ) on a QNN as in figure 13.5 in
high iterations.

A graph of the loss function can be seen in figure 13.8 . As one can see, the oscillation
starts at around step 750 and continuous throughout. One way to explain this is, that
the Adam optimizer tends to blow up, if the loss becomes small [1 ]. To counter this, the
accepted error of Adam was increased, as suggested in [1 ] but this did not discard the
oscillation pattern. Another reason, is that the loss landscape might not be convex and
therefore have local minima, that are entered after some iterations. Nonetheless, one could
choose the parameters of the circuit to be the ones with the smallest loss.
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13. Simple ODE
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Figure 13.8.: Loss of the optimization of the ODE in equation (13.6 ), solved using the circuit
in figure 13.5 .
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14. Convolutional neural network

Here, a way to realize a periodic convolutional neural network (CNN) on a CV quantum
computer is introduced. A CNN on an optical CV quantum computer has already been
proposed [26 ], but here a concrete way to implement it is presented.

A periodic 1D convolution can be represented by a simple circulant matrix [26 ], which
looks like [13 ]

C =


c1 c2 c3 . . . cn
cn c1 c2 cn−1
cn−1 cn c1

...
. . .

...
c2 c3 . . . c1

 . (14.1)

The similarity between this and the well-known 2D convolution becomes apparent, if
all but the first two entries are to 0

C =


c1 c2 0 . . . 0
0 c1 c2 0
0 0 c1 c2 0
...

. . .
...

c2 0 . . . c1

 . (14.2)

When this matrix meets an input vector, every entry becomes the weighted average of
itself and its neighboring point. This is the 1D equivalent of a 2× 2 (periodic) filter in a 2D
convolutional neural network.

Using a circulant matrix is convenient, because it can be diagonalized by the discrete
Fourier transform [13 ]

C =
1

n
Fdiag(Fc)F †, (14.3)

where F is the Fourier matrix, diag creates a diagonal matrix of a vector and c is the first
row of C as a column vector. Therefore, a 1D convolution can be understood as transform-
ing the vector to Fourier space, followed by a scaling with the Fourier coefficients of the
column vector and ending with a transformation back to normal space. In order to opti-
mize the convolution, the values ci need to be updated. F stays the same and one only has
to calculate the Fourier transform of the row c in every step, which can be achieved using
the fast Fourier transform [18 ].
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14. Convolutional neural network

If the Fourier transformed row of C is set to â = Fc, then multiplication with the diag-
onal matrix results in a complex scaling âj of each component of the Fourier transformed
vector. In polar coordinates, this scaling can be written by

âj = tje
iφj , (14.4)

where tj is the modulus and φj is the phase.
To implement such a transformation on a CV quantum computer, a circuit such as in

figure 14.1 can be build, where besides the convolution there is a bias and a nonlinearity
as is custom for convolutional neural networks.

â

D (α1)

F †

S (r1) R (φ1)

F

Φ (λ1)

D (α2) S (r2) R (φ2) Φ (λ2)

...
...

...
...

D (αN ) S (rN ) R (φN ) Φ (λN )

︷ ︸︸ ︷

Figure 14.1.: Variational circuit proposal for a convolutional neural network layer on a CV
quantum computer consisting of two interferometers as well as one displace-
ment, squeeze, phase shift and Kerr gate for each wire.

Because the effect of the squeeze gate on the x̂ quadrature is to scale by the negative
exponential of its argument (see eq. (3.22 )), its argument has to be

e−rj = tj

rj = − log tj .
(14.5)

The circuit as represented in figure 14.1 was implemented, but the resulting convolution
was not accurate. After consulting with the team behind PennyLane, the probable expla-
nation for this, is that squeezing has to be close to 1, because a big scaling results in the
state going into a Fock state that might be outside the domain of the simulation (cutoff
dimension might be too small). If one wants to use a convolution such as the one from
equation (14.2 ), the question now becomes which constraints on c1 and c2 lead to a scaling
close to 1. Because the connection between the ci values and the resulting scaling involves
a Fourier transform, the constraints are connected in a non-trivial way. This connection
can be seen in figure 14.2 , where the infinity norm of the difference between the scaling
and a scaling of 1 for all wires is plotted for various values of c1 and c2. From this figure,
one can see, that the allowed convolutions of the type (14.2 ) are |c1| ≈ 0 and |c2| ≈ 1 or
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vice versa. In conclusion, only convolutions that almost don’t have an effect or almost pe-
riodically shift each component of the input vector with its neighboring point are allowed.
This severely decreases the set of permissible convolutions and therefore handicaps this
approach.

Figure 14.2.: Distance from a scaling of 1 (norm) as a function of convolution coefficients.
The closer scaling is to 1, the less the simulation error.

While this method was not simulated successfully, it could in theory be used in a real
device where cutoff dimension isn’t a problem.
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15. Conclusion

Continuous-variable quantum computing has the benefit over the qubit paradigm, that
real numbers can easily be represented. This is a big advantage for functions requiring
a real input such as neural networks. Such networks can be build using basic optical
equipment such as beam splitters and phase changers. These advantages combined make
the CV computer a strong candidate for a commercial quantum computer.

In this work, variational circuits were simulated using the PennyLane simulation frame-
work and successfully used to solve several machine learning tasks, such as regression,
classification and finding the solution of an ordinary differential equation.

1D regression was performed by a single mode variational circuit that converged, a task
that has previously been performed [26 ]. 2D function approximation using a CV neural
network was also performed using a normalized Rosenbrock function and this also con-
verged successfully.

Classification of the Irish flower data set was also successfully performed, however, with
only a test-accuracy of 70 %, that is nonetheless statistically significant. Here, a 3 mode
variational circuit inspired by a classic neural network architecture was used.

A linear ordinary differential equation was solved using a hybrid computation with a 3
mode circuit inspired by a classic neural network and using a classical sigmoid function for
post-processing. A non-linear ordinary differential equation was solved using a simpler 2
mode circuit and no classical activation function. This indicates, that simpler circuits might
not only decrease the computational time but also solve the problem more accurately. This
is an important insight for quantum computers in general as they are still primitive and
the overhead of adding extra modes or qubits is still very high.

Finally, a CV circuit performing a convolutional neural network has previously been
proposed [26 ], but here a way to practically implement this transformation is proposed
using the convolution theorem. However, the circuit was not successfully implemented
due to uncertainty in the scaling (squeeze gate). As the problem is of the PennyLane sim-
ulation, this method could still work in a physical circuit.

Considering, that the numerical experiments conducted for this thesis perform “classi-
cal” calculations that can be more easily performed on a classical computer, this is more of
a proof of concept than an actual suggestion for quantum supremacy. Future work could
focus on how to utilize superposition for computational gain. As all simulation were run
locally, another immediate suggestion for future work is to run on a supercomputer to in-
crease the complexity and accuracy of the simulated circuits. Improved performance of
the methods used can also be achieved by tuning the hyper parameters. It would also be
interesting to verify the circuits in real physical experiments when this is possible.
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A. Detailed descriptions

A.1. Light Hamiltonian as a sum of quantum harmonic oscillators

the Hamiltonian can be rewritten by first realizing the relationship

Â · ∂D̂
∂t

= Â ·
(
∇× Ĥ

)
= Ĥ ·

(
∇× Â

)
−∇ ·

(
Â× Ĥ

)
= Ĥ · B̂−∇ ·

(
Â× Ĥ

)
,

(A.1)

using Maxwell’s equations (2.1 ) in the first step, a vector identity in the second step
[38 , p. 123] and the definition of the vector potential (2.7 ) in the third step. Using this
relation and the fact that Ĥ and B̂ must commute due to the constitutive equations (2.5 ),
0he Hamiltonian can be rewritten as

Ĥ =
1

2

∫ (
Ê · D̂ + Â · ∂D̂

∂t
+∇ ·

(
Â× Ĥ

))
dV

=
1

2

∫ (
Ê · D̂ + Â · ∂D̂

∂t

)
dV,

(A.2)

where the integral of ∇ ·
(
Â× Ĥ

)
is zero, because due to the divergence theorem, this

is equal to a surface integral of Â× Ĥ at infinity (because the volume is over all of space)
and here it is 0 [29 , p. 22].

Monochromatic modes that only oscillates at single frequencies ωk are described by [29 ,
p. 25]

Ak(r, t) = Ak(r)e−iωkt. (A.3)
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A. Detailed descriptions

For monochromatic modes, the inner product (2.12 ) becomes

〈Ai|Aj〉 = −ε0ε
i~

∫ (
A∗i ·

∂Aj

∂t
−Aj ·

∂A∗i
∂t

)
dV

=
ε0ε

~

∫
(A∗i ·Ajωj + Aj ·A∗iωi) dV

= δij ,

(A.4)

and

〈A∗i |Aj〉 = −ε0ε
i~

∫ (
Ai ·

∂Aj

∂t
−Aj ·

∂Ai

∂t

)
dV

=
ε0ε

~

∫
(Ai ·Ajωj −Aj ·Aiωi) dV

= 0,

(A.5)

and

〈Ai|A∗j 〉 = −ε0ε
i~

∫ (
A∗i ·

∂A∗j
∂t
−A∗j ·

∂A∗i
∂t

)
dV

=
ε0ε

~

∫ (
A∗j ·A∗iωi −A∗i ·A∗jωj

)
dV

= 0,

(A.6)

Using the constitutive (2.5 ), the mode expansion (2.11 ) and the definition of the vector
potential (2.7 ), Ê · D̂ can be written for monochromatic modes as

Ê · D̂ =

(∑
k

ωkAk(r, t)âk − ωkA∗k(r, t)â
†
k

)
·

(
ε0ε
∑
k′

ωk′Ak′(r, t)âk′ − ωk′A∗k′(r, t)â
†
k′

)
= −ε0ε

∑
kk′

ωkωk′
(
Ak(r, t)âk −A∗k(r, t)â

†
k

)
·
(
Ak′(r, t)âk′ −A∗k′(r, t)â

†
k′

)
,

(A.7)

and the same for Â · ˆ∂D
∂t

Â ·
ˆ∂D

∂t
=

(∑
k

Ak(r, t)âk + A∗k(r, t)â
†
k

)
·

(
ε0ε
∑
k′

ω2
k′Ak′(r, t)âk′ + ω2

k′A
∗
k′(r, t)â

†
k′

)
= ε0ε

∑
kk′

ω2
k′

(
Ak(r, t)âk + A∗k(r, t)â

†
k

)
·
(
Ak′(r, t)âk′ + A∗k′(r, t)â

†
k′

)
,

(A.8)
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A.2. Unitarity of a beam splitter transformation for normal modes

This can be substituted into the light Hamiltonian (A.2 )

Ĥ =
ε0ε

2

∑
kk′

ωk′

∫
−ωk

(
Akâk −A∗kâ

†
k

)
·
(
Ak′ âk′ −A∗k′ â

†
k′

)
+

ωk′
(
Akâk + A∗kâ

†
k

)
·
(
Ak′ âk′ + A∗k′ â

†
k′

)
dV

=
ε0ε

2~
∑
kk′

ωk′~
∫
âkâk′(AkAk′ωk′ −AkAk′ωk)âk + â†k′(AkA

∗
k′ωk + AkA

∗
k′ωk′)+

â†kâk′(A
∗
kAk′ωk + A∗kAk′ωk′) + â†kâ

†
k′(A

∗
kA
∗
k′ωk′ −A∗kA

∗
k′ωk) dV

=
∑
kk′

ωk′~
2

(âkâk′ 〈A∗k|Ak′〉+ âkâ
†
k′ 〈Ak′ |Ak〉+

â†kâk′ 〈Ak|Ak′〉+ â†kâ
†
k′ 〈Ak|A∗k′〉).

(A.9)

Looking at the assumptions for normal modes (2.14 ), the Hamiltonian becomes

Ĥ =
∑
k′

ωk′~
2

(
âk′ â

†
k′ + â†k′ âk′

)
=
∑
k′

ωk′~
2

(
[âk′ , â

†
k′ ] + 2â†k′ âk′

)
=
∑
k′

ωk′~
(

1

2
+ â†k′ âk′

)
,

(A.10)

using the Bose commutation relations (2.15 ).

A.2. Unitarity of a beam splitter transformation for normal modes

To reiterate, the effect of a beam splitter on the annihilation operators can be written by

[
â′1
â′2

]
= B

[
â1
â2

]
=

[
B11 B12

B21 B22

] [
â1
â2

]
.

(A.11)
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A. Detailed descriptions

Following the derivation in [29 , p. 94]

1 = [â′1, â
′†
1 ]

= (B11â1 +B12â2)
(
B∗11â

†
1 +B∗12â

†
2

)
−
(
B∗11â

†
1 +B∗12â

†
2

)
(B11â1 +B12â2)

= |B11|2[â1, â†1] +B11B
∗
12[â1, â

†
2] +B12B

∗
11[â2, â

†
1] + |B22|2[â2, â†2]

= |B11|2 + |B12|2.

(A.12)

Similarly, for â′2, it is apparent that |B21|2 + |B22|2 = 1. From the relation [â1, â
†
2] = 0 it

can be deduced that

0 = [â′1, â
′†
2 ]

= (B11â1 +B12â2)
(
B∗21â

†
1 +B∗22â

†
2

)
−
(
B∗21â

†
1 +B∗22â

†
2

)
(B11â1 +B12â2)

= B11B
∗
21[â1, â

†
1] +B11B

∗
22[â1, â

†
2] +B12B

∗
21[â2, â

†
1] +B12B

∗
22[â2, â

†
2]

= B11B
∗
21 +B12B

∗
22.

(A.13)

Similarly for the reverse order, the result is B21B
∗
11 + B22B

∗
12 = 0. These two restrictions

mean that the transformation B must be unitary, as one can see by performing the matrix
multiplication of B with its hermitian conjugate

BB† =

[
B11 B12

B21 B22

] [
B∗11 B∗21
B∗12 B∗22

]
=

[
|B11|2 + |B12|2 B11B

∗
21 +B12B

∗
22

B21B
∗
11 +B22B

∗
12 |B21|2 + |B22|2

]
=

[
1 0
0 1

]
,

(A.14)

and BB† = B†B as one can easily verify.
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A.2. Unitarity of a beam splitter transformation for normal modes
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