
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Classical Reinforcement Learning using
Quantum Algorithms

Ayse Kotil

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Classical Reinforcement Learning using
Quantum Algorithms

Klassisches Reinforcement Learning mittels
Quantenalgorithmen

Author: Ayse Kotil
Supervisor: Prof. Dr. Christian B. Mendl
Advisor: Prof. Dr. Christian B. Mendl
Submission Date: 15.01.2021

I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.01.2021 Ayse Kotil

Acknowledgments

I would like to thank my advisor, Prof. Dr. Christian B. Mendl, for always kindly
taking the time for answering my questions, guiding me through theoretical and practical
challenges, and for inspiring me to pursue the field of quantum computing.

Abstract

This study investigates how the Harrow-Hassidim-Lloyd (HHL) Algorithm, the quantum
algorithm for solving linear systems of equations (LSE), performs within the Policy
Iteration of model-based Reinforcement Learning (RL). The HHL Algorithm offers an
exponential speed-up over the best known classical algorithm for solving LSE. We simulate
the algorithm numerically with Python and conduct an error analysis for an example RL
application, by examining the Policy Iteration outputs produced by the HHL Algorithm.
We address the prerequisites of the HHL Algorithm and how they affect our RL problem,
and finally present problem mappings for our example application.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Insights into Quantum Mechanics and Quantum Computing 1
1.2 Problem Statement . 2
1.3 Related Work . 3
1.4 Outline of the Study . 3

2 Overview of Classical Reinforcement Learning 4
2.1 Introduction . 4
2.2 Mathematical Model Definition . 5
2.3 Markov Decision Process Components . 6

2.3.1 Utility Function . 6
2.3.2 Bellman Equation . 7

2.4 Markov Decision Process Algorithms . 7
2.4.1 Value Iteration Algorithm . 7
2.4.2 Policy Iteration . 11

3 Overview of Quantum Computing 14
3.1 Introduction . 14
3.2 Qubit Representation . 14

3.2.1 Measurement . 16
3.3 Quantum Gates . 17

3.3.1 Single-Qubit Gates . 18
3.3.2 Multiple-Qubit Gates . 19

3.4 Quantum Algorithms . 21
3.4.1 Discrete Quantum Fourier Transformation 21
3.4.2 Phase Estimation . 23

3.5 Hamiltonian Simulation . 24

4 The HHL Quantum Algorithm 25
4.1 Introduction . 25

v

Contents

4.2 The Algorithm . 26
4.2.1 Hamiltonian Evolution and Phase Estimation 27
4.2.2 Uncomputation . 28

4.3 Prerequisites and Caveats . 29

5 Policy Iteration using the HHL Quantum Algorithm 31
5.1 Introduction . 31
5.2 HHL Simulation . 31
5.3 Parameter Analysis . 36

6 Conclusion 42

List of Figures 43

Bibliography 44

vi

1 Introduction

1.1 Insights into Quantum Mechanics and Quantum
Computing

The concept of quantum computing is based on quantum mechanics and possesses features
that differ from classical computing. The most distinguishing features of quantum
mechanics include superpositions, entanglement and uncertainty.
Superposition stands for the ability of a quantum system to be in any of the infinitely

many combinations of different states. Any linear combination of quantum states repre-
sents a valid quantum state as long as the probability space is preserved. In the classical
world, no such ‘mixed-states’ exist.

The principle of entanglement characterizes quantum systems which cannot be described
as a composite system of individual components; in other words, it is not possible to
obtain complete information about one component without considering the whole system.
The existence of such a system was first pointed out by Einstein, Podolsky, and Rosen [1].
They showed that a qubit belonging to an entangled pair of qubits (called a EPR-pair),
when it interacts with the environment through a measurement, immediately leads to a
collapse of the other qubit, even with a long distance between them. They did so without
the underlying concept of entanglement. In fact, they questioned the integrity of quantum
mechanics, as the behaviour of the qubit pair was not explainable, in Einstein’s words, “a
spooky action at distance” [2]. Later on, Bell [3] showed that a theoretical justification
for the observations conducted by Einstein, Podolsky and Rosen cannot be made with
local hidden variables to ‘complete’ quantum mechanics.

Last but not least, the uncertainty principle, introduced by Heisenberg [4], addresses
the uncertainty regarding obtaining information about physical quantities of a particle.
For instance, it is not possible to gain information both on a particle’s momentum and
position with 100% certainty. The more information obtained about the momentum of
the particle, the less certain one’s knowledge becomes about the position of the particle,
and vice versa.

First ideas about a quantum computer emerged much later in the 1980s, by the works of
Feynman [5], Deutsch and Jozsa [6], Bernstein and Vazirani [7], and many other scientists.
With their discoveries, and as quantum information theory started to revolve around
the features of quantum mechanics, the capabilities of a quantum computer attained a
stronger interest.

1

1 Introduction

Making concrete statements about the capabilities of a quantum computer is not always
trivial. Quantum computing is suitable for specific computational tasks; a quantum
computer cannot outperform classical computers in every computational problem. In fact,
a problem needs to have a particular mathematical structure in order to be able to offer
significant speed-ups in its quantum-equivalent over its classical version [8]. The work of
Shalev et al. [9] extends the results shown by Aaronson and Ambainis [8] and further puts
symmetry of functions in relation with large quantum speed-ups. There exist quantum
algorithms which are proven to offer polynomial (Grover’s search algorithm [10], search
via Quantum Walk [11]) and exponential speed-ups (Shor’s factorization algorithm [12]),
and some of which are believed to offer a speed-up (Variational Quantum Eigensolver
[13]), but are not mathematically proven to do so, called heuristic quantum algorithms.
Implementing quantum algorithms on a quantum computer is highly challenging due

to the fragile nature of quantum states, which are prone to lose information due to
outside inferences from the environment as the number of qubits grows. Quantum error
correction [14] is the concept of encoding quantum systems in entangled states, so that the
environment cannot damage the system. This requires a large number of qubits, which
makes it challenging to construct an error-corrected quantum computer. Babbush et al.
[15] argue that unless error rates in quantum computers improve with increasing number
of qubits, the overhead induced by error correction will make the quantum advantage of
algorithms with only a quadratical speed-up infeasible. This realization brings attention
to quantum algorithms with an exponential speed-up over their classical equivalents,
which is one of the key motivation points of our study.

1.2 Problem Statement

Machine learning (ML) is one of the research fields of great potential to change the way
we operate in a broad scope of applications, and comes with a strong computational
power demand. This raises the question whether quantum computing can be used for
tackling challenging ML problems, and there are already significant advances in that
matter. We approach the ML sub-field reinforcement learning (RL), in particular, the
Policy Evaluation (PE) step of the Policy Iteration Algorithm which is used to find an
optimal state-action mapping for a model-based RL. We take advantage of the special
form of the PE, which is a linear system of equations (LSE) and replace it with the
quantum solver for LSE, the Harrow-Hassidim-Lloyd (HHL) Quantum Algorithm [16].
We address the necessary problem mappings for the new hybrid algorithm and investigate
how the quantum equivalent of solving LSE affects the RL problem.

2

1 Introduction

1.3 Related Work

There are several studies which put RL in context with quantum mechanics and quantum
computing. Dunjko et al. [17] suggest a quantum setting for RL with actions and
percepts as orthogonal quantum states, where quantum registers are used to store the
history of the environment. Dong et al. [18] show an approach for representing states
and actions as quantum states in superpositions, and ties agent’s decision making with
measuring quantum states; as well as transition probabilities with amplitudes of these
quantum states. A more physical construction was introduced by Lamata [19] with
super-conducting circuits and by Chen et al. [20] with variational quantum circuits for
deep reinforcement learning.
Compared to the existing studies, our study follows a different approach. Instead of

looking at the learning environment of the agent in a quantum mechanical way, we aim to
substitute parts of classical algorithms for solving RL problems with their ‘computationally’
equivalent quantum algorithms. Thus the nature of the problem remains to be classical,
however, the computation of the problem solution is expected to be accelerated by
quantum computing. In addition, addressing the challenges of such a substitution (which
is quite problem-specific) is also a side-goal of our study.

1.4 Outline of the Study

In the light of our problem statement, we aim to give the reader sufficient theoreti-
cal background about the two key concepts of our study: Chapter 2 focuses on the
mathematical definitions and representations of the main components of RL, including
the central algorithms used for solving a model-based RL. In Chapter 3, we show how
quantum information and transformations are represented by qubits in a mathematical
sense. Chapter 3 also examines relevant quantum algorithms which form the basis for
the HHL Algorithm described in Chapter 4. Finally, we present a way of simulating the
HHL Algorithm with Python, which will be used to solve an example RL application, in
Chapter 5.

3

2 Overview of Classical Reinforcement
Learning

2.1 Introduction

Reinforcement learning (RL), in contrast to other machine learning procedures, requires
a tight interaction between an environment and an agent. Typical examples include
self-driving cars, worker robots and industrial controllers. It is both a research subject
and an experimental field since dynamic programming1 became an important part of
self-learning processes. In this section, we are going to introduce the basic components
of RL including the algorithms which will be later relevant for our quantum computing
application.
In the following, we focus on the discrete, model-based RL, where the stochasticity of

the environment takes advantage of the time-invariant nature of homogeneous Markov
Decision Processes (MDP).

s1 s2 s3p

1-p

q

1-q

r

1-r

Figure 2.1: A simple example of a Markov Chain with three states

A discrete stochastic process (Xn)n∈N0 is called a Markov process with random variables
{Xi, i ∈ N0} taking values from a countable state space S, if the following property holds
∀i0, . . . ik+1 ∈ S [23, p. 7]:

P(Xk+1 = j|X0 = i0, X1 = i1, . . . , Xk = ik) = P(Xk+1 = j|Xk = ik) (2.1)

The probability of transiting to the state Xk+1, given the history of states X0, . . . , Xk,
is equal to the probability of transiting to it when the transition only depends on the
current state. In other words, a stochastic process is Markovian if it has a memory

1Introduced by Richard Bellman in 1957 [21], dynamic programming divides an optimization problem
into sub-problems to bring them together for a solution [22, p. 5].

4

2 Overview of Classical Reinforcement Learning

length of 1; the future of the process just depends on the present, not the past. The
process is in addition homogeneous, if the transition probabilities are time-invariant, i.e.
P(Xk+1 = j|Xk = i) = p ∀k.

2.2 Mathematical Model Definition

RL is a machine learning problem defining a mapping of situations to actions in order to
maximize a numerical reward signal [24, p. 1]. The reward is acknowledged by an agent.
Like in other machine learning applications, the learning process is realized implicitly by
the agent. The environment, in which the agent operates, is defined as an MDP consisting
of the following elements [25, pp. 1–2]:

• S : State space, i.e. a set of states which the environment can evolve to

• As : Action space, i.e. a set of actions defined for a given state s ∈ S

• Pa ∈ [0, 1]S×S : Transition probability matrix. A matrix entry pij corresponds to
P(sj |si, a), i.e. the probability of transiting to state sj ∈ S given a state si ∈ S and
an action a

• R : S → R : Reward function mapping from a state to its corresponding real value

• π : S → A : Policy function from the state space to the action space, i.e agent’s
decision mapping

Figure 2.2: The agent-environment interaction in reinforcement learning [26].

The agent chooses in every state an available action by following a certain policy. It
then receives a real valued reward which can be positive or negative. A negative reward
is often associated with a ‘punishment’; as the goal of the agent is to maximize the
(expected) total reward sum. By receiving a negative feedback from the environment, the
agent is motivated to choose the ‘correct’ actions in next iterations.

5

2 Overview of Classical Reinforcement Learning

2.3 Markov Decision Process Components

2.3.1 Utility Function

In order to model the RL environment, a proper definition of the goal of the agent is
needed. The agent is encouraged to consider the long-term consequences of its actions,
since the complexity of the system can vary with each use case. In most cases, the agent
may have to make decisions which do not lead to an immediate positive reward but result
in a positive feedback in the long-run. This decision-making process relies on the utility
function defined as follows [27]:

U(s) =

∞∑
t=1

γt−1R(st) (2.2)

with s = {s1, s2, . . . }, si ∈ S ∀i and 0 < γ ≤ 1 being the discount factor. The infinite
set s represents the (infinite) sequence of states the environment evolves to at discrete
time steps ti during the exploration phase. The received utility is the (infinite) sum
of reward function values assigned to the states, which can be considered a measure of
success for the agent in the learning process. The goal is to maximize the overall received
rewards.

The discount factor controls the weight of the future rewards, i.e. the feedback received
in later time instances. For values < 1, the future rewards become less relevant than those
in the early stages of the exploration. The agent can be motivated to find the optimal
solution as fast as possible by reducing the weight on future rewards. The trade-off is that
the smaller γ is, the shorter ‘the horizon’ becomes; meaning that the agent gets closer to
disregarding its future actions. This may be inconvenient in cases where future decisions
are of great importance. On the other hand, γ being closer to 1 results in longer learning
processes which will be discussed in 2.4.1. Therefore one should decide on a reasonable γ
in accordance with the corresponding use-case.

From a mathematical point of view, the usage of discount factor leads to a convergence
of the infinite sum introduced in (2.2) when γ < 1 [28, p. 650]:

Proof. Let the reward function R(s) be bounded from above, i.e. R(s) ≤ Rmax ∀s. Then
it holds:

∞∑
t=1

γt−1R(st) ≤
∞∑
t=1

γt−1Rmax = Rmax
1

1− γ
(2.3)

The agent starts exploring the environment with an initial policy, i.e. concrete actions
are assigned to every state of the environment. For the agent to be able to make an
assessment of the decisions made, a reference measurement is needed, such that the agent
can compare its own decision process with an optimal value to eventually reach it. Every

6

2 Overview of Classical Reinforcement Learning

state is evaluated by the slightly altered utility function by means of assigning a single
state s ∈ S a measurable value:

V (s) = E

 ∞∑
t=0

γtR(st)

∣∣∣∣∣∣π∗
 (2.4)

where π∗ = arg max
π

Uπ(s) is the optimal policy which maximizes the utility function

starting from the state s, i.e. s = {s, s1, s2, . . . }.

2.3.2 Bellman Equation

The value of a state shown in (2.4) depends directly on the next states of the environment,
since the received rewards in the subsequent time instances are attached to next states.
The following equation makes use of a recursive structure, using the fact that the agent’s
expected sum of rewards under an optimal policy is equal to the sum of the current
received reward and the expected sum of next states rewards (Bellman Equation) [28,
p. 652]:

V (s) = R(s) + γmax
a∈A

∑
s′

P(s′|a)V (s′) (2.5)

The Bellman Equation attempts to answer the following question: What is the value
of the state s, given all the other values of next-states which the agent would visit, by
maximizing the sum of next-state values, i.e. by always choosing the action that would
lead to the most rewarding (remaining) state set?. The Bellman Equations describe a
system of non-linear equations, since the max operator is non-linear. Finding a solution
to these equations is therefore non-trivial. In the following subsection, we examine two
different approaches for solving the Bellman Equation.

2.4 Markov Decision Process Algorithms

Having defined the tools to work with, we proceed to the RL algorithms used in optimizing
the agent’s behaviour. They are both iterative approaches and have different strengths
and weaknesses which will be discussed in each case.

2.4.1 Value Iteration Algorithm

The first approach, called Value Iteration Algorithm (VI), requires randomly assigned
values for each state. That way the environment is initialized with non-optimal state

7

2 Overview of Classical Reinforcement Learning

values, which are updated iteratively as follows:

Vi+1(s) = R(s) + γmax
a∈A

∑
s′

P(s′|a)Vi(s
′) (2.6)

At every iteration instance i, every state value is updated such that the overall utility
increases each time. The algorithm terminates if V i+1(s)− V i(s) < ε(1− γ)/γ with s
being the state vector and V the corresponding state value vector [28, p. 653]. ε is the
desired error constant.

Convergence. VI converges when γ < 1 as shown in the following [28, pp. 654–655]:

Proof. The convergence of VI relies on the fact that updating every state in each iteration
is a contraction, i.e. the Bellmann update mapping [29], denoted B : V → R, satisfies the
following property:

||B(V i)− B(V ′i)|| ≤ γ||V i − V ′i|| (2.7)

with ||V i|| = maxs V (s). The Bellman function thus takes the (non-optimal) value of
a state s and returns a new value for s. Thus the difference between two possible values
of the state s after applying the Bellman operator is always less than or equal to the
difference of the values themselves, without applying the Bellman operator. Let V ∗ be
the optimal state value vector. One can replace V ′i in (2.7) to obtain:

||B(V i)− V ∗|| ≤ γ||V i − V ∗|| (2.8)

(2.8) shows that applying the Bellman operator reduces the difference between a value
vector at an arbitrary iteration point and the actual value vector by γ. In fact, the
convergence is exponential, since

||B(V i)− V ∗|| ≤ γ||V i − V ∗|| = γ||B(V i−1)− V ∗||
≤ γ2||V i−1 − V ∗|| ≤ · · · ≤ γi||V 0 − V ∗||

(2.9)

The minimum number of required iterations N for a desired error rate ε can also be
derived with the help of (2.3):

||V 0 − V || ≤ Rmax
2

1− γ
⇒ ||V N − V || ≤ Rmax

2γN

1− γ
!
≤ ε

⇒ N =

⌈
log

ε(1− γ)

2Rmax
1

log γ

⌉ (2.10)

8

2 Overview of Classical Reinforcement Learning

The lower limit for N shows that as γ gets closer to 1, the number of iterations needed
for a maximum error rate ε grows exponentially, resulting in a longer learning process as
mentioned in 2.3.1.

The agent can determine its optimal policy according to the state values resulting from
the converged Value Iteration Algorithm:

π(s) = arg max
a∈A

∑
s′

P(s′|s, a)V (s) (2.11)

Thus, for a state s, the agent chooses the action which maximizes the expected return it
would get from a possible next state s′. The Value Iteration Algorithm can be summarized
as follows:

Algorithm 1: Value Iteration
Initialization

1 VVV 0 ← 0, i.e. initial states values are 0
2 i← 0
3 while True do

foreach s ∈ S do
Vi+1(s) = R(s) + γmaxa∈A

∑
s′ P(s′|a)Vi(s

′)

if ||VVV i+1 − VVV i|| < ε(1− γ)/γ then
return VVV i+1

i← i+ 1

In the following, we will present a simple example of a grid environment (adapted
from [28, p. 646]), where the agent is tasked to find the right exit with the shortest path
possible.

Example. The example grid environment consists of a 4x4 matrix. The action set A
consists of 4 actions; up, down, left and right. The state set S consists of the 16 fields
and one additional ‘game-over’ state, which is an absorbent state, i.e. the agent stays
in this state forever once the state is arrived. There are two possible exit fields which
directly lead to the game-over state, one with a positive and one with a negative reward.
The agent is expected to end its walk at one of these two exit fields, and optimally at the
field with the positive reward. For every non-terminal state, the agent receives −0.05.
The only constraints the agent has are the blocked fields (1, 2) and (3, 1); the agent

cannot move to these fields. When the agent chooses an action towards them, it stays in
its current state.

9

2 Overview of Classical Reinforcement Learning

(a) Utilities represented as a color gradient (b) Utilities represented as numerical
values

Figure 2.3: State values of the example grid world resulting from the converged value iteration

With S = {0, . . . , n2 − 1}, A = {−n,+n,−1,+1}, the transition probabilities within
the environment are defined as follows:

P(sj |si, a) :=



0.8 if si + a = sj

0.2 if si + a 6= sj and si is a corner state
0.1 if si + a 6= sj and si is an edge state
0.2/3 if si + a 6= sj and si is a middle state
0 otherwise

When the agent intends to move towards a direction, the probability that the intended
action actually occurs is 0.8. Every other action that is not in compliance with the
intended action is evenly distributed. The agent cannot move between non-adjacent states
(non-neighbours), hence every other transition has 0 probability of taking place.

Figure 2.3 shows the resulting utility mapping from the converged value iteration
algorithm with γ = 1. The color range indicates the different utility values, ranging from
0.5 to 1.0. One can observe that the states around the positive exit field have a high
value, whereas the ones around the negative exit field have the lowest values amongst all
states.
According to the policy extraction (2.11), the agent would follow the ascending value

path/the darkening color direction. The agent’s start state does not matter, since the
agent’s decision making is independent from any particular state; actions are chosen
with respect to the next states only. The agent thus chooses to get as far away from
the false exit as possible, as it gets closer to the right exit with every step. Since the
goal of the agent was to find the right exit through the shortest path possible, VI can
be considered a successful tool for the grid environment example given the transition

10

2 Overview of Classical Reinforcement Learning

probabilities as described above and γ = 1. This particular example can be extended
with other parameter values as well.

Pros and Cons. VI provides an optimal policy based on the premise that the iterations
will eventually converge to states’ optimal values. The convergence still holds even though
the random initialized utilities at the beginning are not near their actual values. However,
if a given environment can evolve to many different states and if the agent has a broad
freedom concerning the number of available actions, the complexity of value iteration can
cause long execution times, since the computational time of value iteration is O(|S|2×|A|)
[30]. The complexity grows quadratically in state space and linearly in action space.

2.4.2 Policy Iteration

The second approach to be presented is the policy iteration algorithm. This algorithm has
the same objective as the value iteration, i.e. finding the optimal policy. However, policy
iteration achieves this goal slightly differently. As opposed to the random initialization
of state values in the value iteration, the policy iteration requires a randomly initialized
policy, corresponding a random walk of the agent. The algorithm consists of the following
two steps [28, pp. 656–657]:
Algorithm 2: Policy Iteration
Initialization

1 π0 ← randomly initialized state-action mapping
2 changed ← True
3 i← 0
4 while changed do

Policy Evaluation
foreach s ∈ S do

Vi(s)← R(s) + γ
∑

s′ P(s′|s, πi(s))Vi(s′)
Policy Improvement
foreach s ∈ S do

πi+1(s)← arg max
a∈A

∑
s′ P(s′|s, a)Vi(s)

if πi+1 = πi then
changed ← False

else
i← i+ 1

return π

11

2 Overview of Classical Reinforcement Learning

Policy evaluation is the first step of the algorithm, where state values are obtained by
a given policy, as described in (2.4). The difference to (2.4) is that the given policy is not
optimal until convergence of the algorithm. The second step, called policy improvement,
corresponds to the policy extraction from state values as introduced in (2.11).

Convergence. A policy iteration is guaranteed to return a strictly better policy than
the previous iteration if the policy is not already optimal [24, pp. 76–79][31]. As there
are finitely many policies (due to discrete modelling and finitely many states), the policy
iteration algorithm eventually converges to an optimal policy.

An important difference between the policy evaluation and the Bellmann Equation (2.5)
is the absence of the max operator, which makes the policy evaluation a linear operation.
In fact, the utility extraction can be transformed to a linear system of equations:

Vi(s) = R(s) + γ
∑
s′

P(s′|s, πi(s))Vi(s′) ∀s ∈ S

⇔ (I− γP)V = R
(2.12)

where P = (pi,j) ∈ Rn×n = P(sj |si, π(si)) is the probability matrix dependent on the
policy π, with n = |S|.

Figure 2.4: The policy mapping of the agent. From left to right: Initial random policy, 3rd
iteration, last iteration

Example. The example grid environment set-up is the same as in the previous example,
except that γ = 0.99. Figure 2.4 shows three iterations of the policy iteration algorithm.
It can be observed that the agent’s decisions converge to the optimal policy, as the action
mapping in the last iteration results in the shortest possible path to the right exit state at
(1, 3). The crucial field in the grid environment is (1, 1), where the agent has to decide on
which path to take to the right exit. Both going up and down would result in the same
path length to (1, 3), however, the agent decides to go down to avoid the possibility of
landing in the wrong exit. This ‘behaviour’ also coincides with the findings from the value
iteration algorithm, as the lower field from (1, 1) had a higher value than the upper field.

12

2 Overview of Classical Reinforcement Learning

Pros and Cons. The policy iteration works with entirely randomized initial policies,
that way no prior knowledge of the environment is required. One advantage of the
algorithm is that the optimal policy can be obtained even though the state values are
not exact, or not even good approximations of their real values. On the other hand,
the computation time complexity of the policy iteration is O(|S|2 × |A|+ |S|3) [30]. In
comparison to the time complexity of value iteration, the policy iteration performs worse
in state space. However, the policy iteration algorithm usually requires a small number of
iterations, and in most cases less than the number of iterations it takes the value iteration
algorithm to converge [32]. It comes down to the characteristics of the environment, such
as the state space, to determine which of the iteration algorithms might be suitable for
the task at hand.

13

3 Overview of Quantum Computing

3.1 Introduction

The term quantum, as it is used today, was first mentioned by Max Planck in his work in
1901 as ‘elementary quantum of electricity, i.e. the electric charge of a single positively
charged ion or electron’ [33]. He postulated that electromagnetic radiation is emitted in
quanta; in blocks of energy.
The information instance of a quantum computer is a qubit, as opposed to a classical

bit in a classical computer. Handling quantum states as the smallest entity of information
originates from Schumacher’s work in 1996 [34]. Feynman pointed out the impossibility of
simulating quantum systems probabilistically in a classical computer; one needs a computer
built on quantum mechanical elements [5, pp. 474–477]. This thought brought life to
the concept of quantum supremacy [35], where the goal is to show that a computational
problem, which is impossible for a classical computer to solve in a feasible time, is proven
to be solved by a state-of-the-art quantum computer. Recent researches in quantum
supremacy include [36, 37].

Without the underlying physics of quantum computing, we aim to introduce important
building blocks for many quantum computational operations, including the HHL Quantum
Algorithm which will be discussed in the next chapter. Starting with some notations and
representations, we will build upon these fundamentals to show more complex structures.

3.2 Qubit Representation

A special representation for qubits was needed in order to combine various ways of dealing
with quantum mechanics [38]: One that requires complex vectors and linear operators
defined on them, and one that requires abstract calculations between the vectors and
operators. Also a third way, which enables calculations with representatives of these
elements. To overcome the inconvenience of switching between different notations, the
Bra-Ket notation was introduced.

Bra-Ket. Quantum mechanics make use of a complex and complete1 vector space H
with an inner product, called Hilbert space. A vector ψ in H is denoted as a ket, i.e.

1A vector space is complete if every Cauchy sequence of vectors converges to a vector with respect to
the norm defined in the space [39].

14

3 Overview of Quantum Computing

the vector is accompanied by |·〉: |ψ〉 ∈ H. Every ket comes with its dual, namely its
conjugate-transpose vector denoted as a bra, i.e. the vector is accompanied by 〈·| [38]:

|ψ〉† =


ψ0
...

ψn−1


†

=
(
ψ∗0 . . . ψ∗n−1

)
= 〈ψ| ∈ H† (3.1)

where we assumed for simplicity that the Hilbert space is finite and n-dimensional. †
denotes the conjugate transpose of a vector.

Inner product. The bra-ket notation is quite convenient when denoting the complex
inner product. One brings the two elements of the inner product together by enclosing
them with a bra-ket [40, p. 65]:

〈ϕ,ψ〉 =
N−1∑
i=0

ϕ∗iψi = 〈ϕ|ψ〉 (3.2)

Kronecker product. The Kronecker product ⊗ is used to represent a vector space
by expanding two vector spaces, n-dimensional V and m-dimensional W , to create a
n ·m-dimensional vector space V ⊗W :

ϕ ∈ V, ψ ∈W =⇒ ϕ⊗ ψ =



ϕ0ψ0

ϕ0ψ1
...

ϕ0ψm−1

ϕ1ψ0
...

ϕn−1ψm−1


(3.3)

In general, the Kronecker product is defined on arbitrary matrices. Let A ∈ Cn×m,
B ∈ Ck×l, then [40, p. 74]:

A⊗B =


a11B . . . a1mB
...

. . .
...

an1B . . . anmB

 ∈ Cnk×ml (3.4)

Hilbert Space Basis. A n-qubit is defined in the 2n-dimensional Hilbert space. This
Hilbert space can be generated through 2n linearly independent basis vectors. Every

15

3 Overview of Quantum Computing

vector belonging to the Hilbert space can be represented with the linear combination of
these basis vectors:

ψ ∈ H =⇒ ψ =
∑

i∈{0,1}n
γi |i〉 (3.5)

where γi ∈ C∀i ∈ [n] and |i〉 = |q0, . . . , qn−1〉 = |q0〉⊗ · · ·⊗ |qn−1〉 with qj ∈ {0, 1} ∀j ∈
[n]. The standard generating vector set for one-qubit systems is the so called computa-
tional basis: {|0〉 , |1〉} = {

(
1
0

)
,
(

0
1

)
}. The computational basis can be extended through

Kronecker product to generate an arbitrary n-qubit system. For example, a two-qubit sys-
tem can be generated by |00〉 , |01〉 , |10〉 , |11〉} = {|0〉⊗|0〉 , |0〉⊗|1〉 , |1〉⊗|0〉 , |1〉⊗|1〉} ={(

1
0
0
0

)
,

(
0
1
0
0

)
,

(
0
0
1
0

)
,

(
0
0
0
1

)}
.

We have now covered important mathematical properties of the space where quantum
mechanics live. When it comes down to what a qubit really is, we will continue to treat it
as an abstract object belonging to the Hilbert space. In reality, qubits correspond to real
physical states. Therefore, we are going to refer to the ‘vectors’ in the Hilbert space as
quantum states. However, there are still some disagreements about what a real quantum
state is; whether or not the infinitely many possibilities are merely to be observed as
information or a real physical state [41]. Examples for a 2-dimensional quantum state in
the real world include the position of electron in a hydrogen molecule, a spin one-half
particle in a magnetic field and a spinning electron in a magnetic field [42].

3.2.1 Measurement

We distinguish between the pre-measurement state and and post-measurement state of a
qubit. Before measurement, a single qubit state |ψ〉 = α |0〉+ β |1〉 in the computational
basis can be anywhere in an infinitely large space. To illustrate this, Figure 3.1 shows
the position of the state |ψ〉 in a 3-dimensional sphere, called the Bloch sphere. The 3-
dimensional visualization is derived from several instruments, including polar coordinates,
unit circle and Euler’s identity [43]. For simplicity, we omit the derivation and merely
show the equivalent expressions:

|ψ〉 = α |0〉+ β |1〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (3.6)

This representation indicates that a qubit can indeed be in infinitely many states, called
superpositions of basis states. However, once the qubit is observed, its state collapses
with probability |α|2 and |β|2 to the basis states |0〉 and |1〉, respectively.

Generally, the post-measurement state of a n-qubit system can only be in one of the
2n basis states. Since the square absolute values of the amplitudes for the basis states

16

3 Overview of Quantum Computing

Figure 3.1: An arbitrary state |ψ〉 on the Bloch sphere [44]

represent the probabilities of an occurrence of a basis state, they sum up to 1:

|ψ〉 =
∑

i∈{0,1}n
αi |i〉 =⇒

∑
i∈{0,1}n

|αi|2 = 1 (3.7)

In an n-qubit system, each qubit measurement will change the state irreversibly, leaving
the system in a post-measurement state. For instance, measuring the basis state 1 in the
first qubit in a 2-qubit system would result in the following post-measurement state [40,
p. 16]:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

−→ α10 |10〉+ α11 |11〉√
|α10|2 + |α11|2

(3.8)

Dividing the terms by the amplitudes, i.e. the normalization of the state, ensures that
the remaining probabilities sum up to 1.

We have now covered the most important aspects of representing a qubit system. In the
next sections, we are going to define operations on qubits and present relevant algorithms
building upon these operations, which will be crucial in understanding our quantum
computing application.

3.3 Quantum Gates

A qubit system consists of qubits as inputs, which can be transformed into an output.
In other terms, an input state can be processed by means of some operations, called
quantum gates, into an output state. Applying these gates are represented as matrix
operations.

17

3 Overview of Quantum Computing

Quantum gates are unitary transformations2, often denoted as U . The unitarity of
quantum gates is based on the probability condition (3.7). In fact, every unitary matrix
stands for a valid quantum gate [40, p. 18]. Unitary transformations are also characterised
by being reversible.

U U n U
Figure 3.2: A unitary operation action on a single qubit (left), on two

qubits (middle) and on n qubits (right)

Figure 3.2 shows how a unitary operation is denoted. A single line (or wire) represents
one qubit as input, which is then processed by U . 2 or more qubits can be connected
through multiple wires. However, it is often more convenient to bundle the wires and
note how many qubits are to be transformed through them. A system of a sequence of
qubit transformations is called a quantum circuit.

Quantum gates can be categorized as single-qubit gates and multiple-qubit gates. We
first show the most relevant single-qubit gates, followed by multiple-qubit gates and how
gates can be grouped together to represent a whole circuit.

3.3.1 Single-Qubit Gates

X

(
0 1
1 0

)
Pauli X-gate

Y
(

0 −i
i 0

)
Pauli Y-gate

Z

(
1 0
0 −1

)
Pauli Z-gate

Figure 3.3: Pauli gates and their matrix equivalents [40, p. xxx]

Pauli Gates In the following, the qubit transformations corresponding to Pauli gates
are listed:

1. Pauli X-gate reverses the qubit, which corresponds to a rotation of the qubit around
the x-axis of the Bloch sphere by π: |0〉 X−→ |1〉 and |1〉 X−→ |0〉.

2. Pauli Y-gate rotates the qubit around the y-axis of the Bloch sphere by π: |0〉 Y−→ i |1〉
and |1〉 Y−→ i |0〉.

2A matrix U is unitary if U†U = UU† = I.

18

3 Overview of Quantum Computing

3. Pauli Z-gate rotates the qubit around the z-axis of the Bloch sphere by π: |0〉 Z−→ |0〉
and |1〉 Z−→ − |1〉.

Pauli gates form a basis for the single qubit system together with the identity matrix I,
i.e., any single qubit gate can be generated with the matrix space spanned by the Pauli
gates and I.

Hadamard Gate The Hadamard gate puts a qubit into a superposition with equal
probabilities on the basis states |0〉 and |1〉. Figure 3.4 shows how the Hadamard gate
transforms a single qubit.

H : 1√
2

(
1 1
1 −1

)
α|0〉+ β|1〉 H α |0〉+|1〉√

2
+ β |0〉−|1〉√

2

Figure 3.4: Hadamard gate representation and its application on an arbitrary qubit input
[40, pp. xxx, 19]

3.3.2 Multiple-Qubit Gates

For an n-qubit system, an eligible quantum gate for a simultaneous operation on n-qubits
lies in C2n×2n , since the gate is applied on a 2n-dimensional vector. However, an n-qubit
system may consist of arbitrary gates, not necessarily defined for all of the qubits; the
gates may apply on an arbitrary subset of qubits.

In the 3-qubit system example given in Figure 3.5, the gate A is being applied on two
input qubits |00〉, A ∈ C4×4. Moreover, the quantum circuit has two single-qubit gates
applied on the 3rd qubit, i.e. C, B ∈ C2×2; |0〉 → B |0〉 → CB |0〉. The whole circuit can
be described as U ∈ C8×8 = A ⊗ (CB), i.e. |000〉 → A |00〉B |0〉 → A |00〉CB |0〉. The
Kronecker product between kets are often omitted for better readability, as is also the
case in the example representation.

|0〉
|0〉
|0〉

A

B C

A|00〉

CB|0〉
Figure 3.5: A 3-qubit circuit example

Instead of combining the operations separately by the Kronecker product, one can
‘transform’ every gate in the example circuit into a 3-qubit gate. Since the first two

19

3 Overview of Quantum Computing

qubits are left unaffected by the operations realized by the gates B and C, they can be
thought as if they would undergo an identity element; namely the identity matrix. This
way the gates B and C can now be transformed as I⊗ I⊗B and I⊗ I⊗ C, respectively.
Analogously, the gate A can be extended to A⊗ I. The circuit representation is therefore
U = (I⊗ I⊗ C)(I⊗ I⊗B)(A⊗ I) and is equal to the representation derived above.

CNOT Gate The CNOT-gate (controlled -not gate) is applied on 2 qubits. One of the
qubits is the control qubit, denoted with a black point, the other is the target qubit,
denoted with an xor-symbol. Whenever the control qubit is |1〉, the target qubit is flipped:
|ab〉 CNOT−−−→ |a, a⊕ b〉.

:


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Figure 3.6: CNOT gate representation [40, p. xxx]

The CNOT-gate is a controlled-gate, which is a term used to describe operations on
qubits that are controlled by other qubits. The control qubits may each be a |0〉 or a |1〉,
depending on the desired operation.

Controlled-RΦ Gate This controlled operation extends the single-qubit RΦ-Gate,
which is commonly referred to as phase shifting gate, since the operation shifts the qubit
around the z-axis in the Bloch sphere (3.6):

RΦ(cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉) = cos

θ

2
|0〉+ eiϕ+Φ sin

θ

2
|1〉 (3.9)

RΦ

:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiΦ


Figure 3.7: Controlled rotation gate representation [45]

The controlled-RΦ Gate acts only if the input state is at the basis state |11〉: |11〉 RΦ→
eiΦ |11〉.

20

3 Overview of Quantum Computing

3.4 Quantum Algorithms

3.4.1 Discrete Quantum Fourier Transformation

Discrete Fourier Transformation maps the time domain of a set of discrete values, often
referred to as signals or amplitudes, into a frequency domain, giving a different but useful
representation for the same information [46]. The classical discrete Fourier Transformation
returns the frequencies yk, k ∈ {0 . . . N − 1} given N signal values x0, . . . , xN−1:

yk :=
1√
N

N−1∑
j=0

xje
2πijk/N (3.10)

The quantum equivalent of Fourier Transformation is the basis change between the
computational basis |x〉 and the ‘Fourier basis’ |y〉, i.e.

|x〉 −→ 1√
N

N−1∑
y=0

e2πixy/N |y〉 (3.11)

Assuming N = 2n for some n ∈ N, the input |x〉 is transformed as follows [40, p. 218]:

|x〉 −→ 1√
N

N−1∑
y=0

e2πixy/2n |y〉

∗
=

1√
N

N−1∑
y=0

e2πix(
∑n

k=1 yk/2
k) |y1 . . . yn〉

=
1√
N

N−1∑
y=0

n∏
k=1

e2πixyk/2
k |y1 . . . yn〉

=
1√
N

1∑
y1=0

· · ·
1∑

yn=0

n∏
k=1

e2πixyk/2
k |y1 . . . yn〉

∗∗
=

1√
N

n⊗
k=1

(|0〉+ e2πix/2k |1〉)

(3.12)

(∗) uses the binary representation of y, i.e. y = (y1 . . . yn)2 = 2n−1y1+2n−2y2+· · ·+yn20,
y/2n = 2−1y1 + 2−2y2 + · · ·+ 2−nyn. Hence, the N Fourier basis vectors are represented
by 2n-dimensional computational basis vectors.

At the last step of the equivalence conversion, (∗∗) uses the fact that e2πixyk/2
k is only

effective whenever yk = 1, otherwise e0 is 1.
Figure 3.8 shows the circuit representation of quantum discrete Fourier Transformation.

The intermediate states with respect to the circuit slices depicted in Figure 3.8 are as
follows [40, p. 219]:

21

3 Overview of Quantum Computing

1. The input |x1 . . . xn〉 corresponds to the computational basis for the binary repre-
sentation of one ‘signal’ which is to be transformed.

2. The Hadamard gate is applied to the first qubit: |ψ1〉 = 1√
2
(|0〉+(−1)x1 |1〉) |x2 . . . xn〉.

We can rewrite (−1)x1 as eπix1 , since the new expression evaluates to 1 when x1 = 0
and to −1 when x1 = 1 due to eπi = −1: |ψ1〉 = 1√

2
(|0〉+ eπix1 |1〉) |x2 . . . xn〉.

3. The controlled rotation operator is applied to the first qubit. Rk is a more convenient
representation of the rotation operator introduced at 3.7 with Φ = 2πi/2k. The
circuit state after the rotation is: |ψ2〉 = 1√

2
(|0〉+ e2πi(

x1
2

+
x2
22) |1〉) |x2 . . . xn〉.

4. After n− 1 controlled rotation operators applied to the first qubit:
|ψ3〉 = 1√

2
(|0〉+ e2πi(

x1
2

+
x2
22 +···+xn

2n
) |1〉) |x2 . . . xn〉.

5. The end state of the circuit, after x2, . . . , xn have been transformed through the
Hadamard and rotation gates, is:

|ψ4〉 =
1√
2

(|0〉+ e2πix/2n |1〉)⊗ · · · ⊗ 1√
2

(|0〉+ e2πix/2 |1〉)

=
1√
2n

n⊗
k=1

(|0〉+ e2πix/2k |1〉)
(3.13)

|x1〉

|x2〉

...

|xn−1〉

|xn〉

H R2 Rn−1 Rn

H Rn−2 Rn−1

H R2

H

1√
2
(|0〉+ e2πi·x/2n |1〉)

1√
2
(|0〉+ e2πi·x/2n−1 |1〉)

...

1√
2
(|0〉+ e2πi·x/22 |1〉)

1√
2
(|0〉+ e2πi·x/2 |1〉)

Figure 3.8: QDFT Circuit [40, p. 219]

The end state ψ4 is thus equivalent to the transformation derived at (3.12).
The inverse discrete Quantum Fourier Transformation is analogous:

|y〉 −→ 1√
N

N−1∑
x=0

e−2πixy/N |x〉 (3.14)

22

3 Overview of Quantum Computing

3.4.2 Phase Estimation

A use case of Quantum Fourier Transformation (QFT) is the Phase Estimation, where
the problem statement is to find the eigenvalue of a unitary operator U with eigenvector
ψ, or more precisely, to find the phase ϕ s.t. Uψ = e2πiϕψ, since for the eigenvalues of U
it holds:

Uψ = λψ ⇐⇒ ψ†U † = λ∗ψ†

=⇒ ψ†U †Uψ = λ∗ψ†λψ =⇒ |λ|2 = 1
(3.15)

where we used that U is unitary and ψ†ψ = 1.
The Phase Estimation circuit in Figure 3.9 transforms the input as following [40, p. 222]

|0〉⊗t |ψ〉 H−→ 1√
2t

(|0〉+ |1〉)⊗t ⊗ |ψ〉 =
1√
2t

(
(|0〉+ |1〉)⊗t−1 ⊗ |ψ〉

)
⊗ (|0〉 |ψ〉+ |1〉 |ψ〉)

U20

−→ 1√
2t

(
|0〉+ |1〉)⊗t−1 ⊗ |ψ〉

)
⊗ (|0〉 |ψ〉+ |1〉U |ψ〉)

=
1√
2t

(|0〉+ |1〉)⊗t−1(|0〉+ e2πiϕ |1〉)⊗ |ψ〉

U22

−→ 1√
2t

(|0〉+ |1〉)⊗t−2(|0〉+ e2πiϕ2 |1〉)(|0〉+ e2πiϕ |1〉)⊗ |ψ〉

−→ . . .

U2t−1

−→ 1√
2t

(|0〉+ e2πiϕ2t−1 |1〉)(|0〉+ e2πiϕ2t−2 |1〉)⊗ · · · ⊗ (|0〉+ e2πiϕ20 |1〉)⊗ |ψ〉

(3.16)

|0〉⊗t

|ψ〉

H

...
...

H

H

U20

...
...

U21
U2t−1

QFT †

Figure 3.9: Phase Estimation Circuit [40, p. 222]

23

3 Overview of Quantum Computing

The derived end-state (3.16) of the Phase Estimation circuit is equal to the end-state
of the QFT (3.13), if a 2t-dimensional QFT-input x is replaced with 2tϕ. Hence, if ϕ
can be represented with exactly t qubits, one can obtain the exact representation of the
eigenvalue of U for the eigenstate ψ [40, p. 222] by reversing the QFT (3.14).

The Phase Estimation procedure is a subroutine, meaning that it can be completed with
other circuits, as the procedure is not responsible for preparing the unitary operations
U2j .

3.5 Hamiltonian Simulation

The time dynamics of a closed quantum system governed by a Hamiltonian H is given by
the Schrödinger equation [47]:

i~
d |ψ〉
dt

= H |ψ〉 (3.17)

The Schrödinger equation shows that once the Hamiltonian H of a system is known, it
is possible to extract the state at a certain time point. Moreover, if the Hamiltonian is
time-independent, the time evolution of |ψ(t)〉 may be written as [40, p. 206]

|ψ(t)〉 = e−iHt/~ |ψ(0)〉 (3.18)

with |ψ(0)〉 as the initial state and e−iHt/~ as the unitary operator of the system.
According to [48], simulating a quantum system with the corresponding Hamiltonian on a
quantum computer requires N steps, whereas it takes a classical computer exponentially
many steps with respect to N . This exponential speed-up in simulation of quantum
systems is considered as the main motivation of quantum computing.
Simulating the Hamiltonian of a quantum system has the following objective [49]: Finding
a quantum algorithm which is able to produce a unitary operator U , given the simulation
error ε and time t ∈ R such that ||U − e−iHt|| ≤ ε, with || the spectral norm and e−iHt

the desired unitary operator.

24

4 The HHL Quantum Algorithm

4.1 Introduction

In Chapter 2, we have formulated the Policy Evaluation step of the Policy Iteration
Algorithm as a linear system of equations (LSE). In this chapter, we are going to
investigate the HHL Quantum Algorithm [16], which is named after its authors Harrow,
Hassidim and Lloyd and was introduced as a quantum solver for LSE. The algorithm
offers an estimation for the expected value of the solution vector of a given linear system
of equations in a time complexity of Õ(log(N)s2κ2/ε), where κ is the condition number
of the given matrix with dimension N , s the sparsity of the matrix, i.e. the maximum
number of non-zero entries in the rows of the matrix and ε the desired accuracy deviation.
The best known classical algorithm for solving linear systems of equations with a sparse
matrix A, the Conjugate Gradient Descent, has a time complexity of O(Nsκ log(1/ε)) [50].
Hence, the HHL Algorithm performs exponentially faster regarding the matrix dimension
N , given that the matrix is well-conditioned and sparse.
Starting from the classical equivalent of the quantum solution, we are going to break

down the algorithm into steps and show how it works, using the tools that were covered
briefly in Chapter 3. We will discuss the prerequisites of the algorithm. This short
discussion will be a building block for the upcoming Chapter 5, as we analyze our
reinforcement learning application.

Problem statement. The HHL algorithm solves a linear system of equations defined
on a Hermitian matrix A ∈ CN×N , i.e. A† = A:

Ax = b, x, b ∈ CN (4.1)

Since A satisfies the normality condition, i.e. A†A = AA†, there exists a spectral
decomposition of A [40, p. 72]:

A =
∑
j

λi |uj〉 〈uj | (4.2)

with λi as eigenvalues of A and |uj〉 the corresponding eigenvectors. The spectral
decomposition results in a diagonal matrix, thus the inverse of A is obtained by inverting

25

4 The HHL Quantum Algorithm

the eigenvalues. The vector |b〉 can be expressed in the eigenbasis of A:

A−1 =
∑
j

λ−1
j |uj〉 〈uj | , |b〉 =

∑
j

〈uj |bj〉 |uj〉 =
∑
j

βj |uj〉 , βj ∈ C (4.3)

Hence, one can obtain a representation for the solution vector |x〉:

|x〉 = A−1 |b〉 =
∑
j

λ−1
j βj |uj〉 (4.4)

The HHL Algorithm takes advantage of the spectral decomposition of the Hermitian
input matrix A by using Phase Estimation (3.4.2) to represent |b〉 in the eigenbasis of A,
inverting the resulting eigenvalues and finally reversing the Phase Estimation to obtain
the solution vector |x〉.
In the next section, we go through the steps of the algorithm in detail.

4.2 The Algorithm

|0〉

|0〉

|b〉

UΨ0

eiAt

QFT †

R

QFT

e−iAt

U †Ψ0

Phase Estimation

Eigenvalue Inversion

Inverse
Phase Estimation

Figure 4.1: Schematic HHL quantum circuit

The circuit depicted in Figure 4.1 is a simplified circuit representation of the HHL
Algorithm. The simplified circuit transformations given the input |0〉 |0〉 |b〉 can be
summarized by the following steps [16][51, p. 6]:

1. The initial state of the HHL Algorithm is |0〉A |0〉C |b〉I , where C (control) and
I (input) symbolize the circuit registers for storing the |0〉-qubits and qubits for
representing the vector b, respectively. The first register A (ancilla) contains only
one qubit, which will be used to apply a measurement.

26

4 The HHL Quantum Algorithm

2. The C-register is transformed into a super-position state:

|0〉C
UΨ0−→

√
2
T

∑T−1
τ sin

π(τ+ 1
2

)

T |τ〉 =: ΨC
0 . This super-position state is comparable

with the super-position state realized by Hadamard gates in the Phase Estimation
Algorithm, however, the HHL Algorithm uses a different approach in order to
minimize a quadratic loss function [16].

3. The conditional Hamiltonian operator is applied to the registers C and I:

(
∑T−1

τ=0 |τ〉 〈τ |
C ⊗ eiAτt0/T) · (|Ψ0〉C ⊗ |b〉I).

4. Inverse Quantum Fourier Transformation is applied to the register C to complete
the phase estimation, which leaves the state in |0〉A

∑N
j=1 βj |λ̃j〉

C
|uj〉I .

5. The rotation on the ancilla qubit controlled by the C-register yields:

∑N
j=1 βj |uj〉

I |λ̃〉
C

(√
1− C2

λ̃2
j

|0〉+ C

λ̃j
|1〉

)A
. C is a normalizing constant which

is O(1/κ). The rotation operator is Ry(θ) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
with θ =

2 arcsin(C/λ̃j) [51].

6. The register C is uncomputed through the Inverse Phase Estimation, leaving the cir-

cuit in the state
∑N

j=1 βj |uj〉
I |0〉C

(√
1− C2

λ̃2
j

|0〉+ C

λ̃j
|1〉

)A
. The ‘uncomputation’

will be explained in subsection 4.2.2.

7. Measuring the ancilla qubit and obtaining |1〉 results in the state√
1∑N

j=1 C
2|βj |2/|λj |2

∑N
j=1 βj

C
λj
|uj〉, which differs from the solution vector x only by

normalization of the end-state.

4.2.1 Hamiltonian Evolution and Phase Estimation

After having prepared the inputs, the algorithm proceeds to find the eigenvalues of A.
In order to do that, the phase estimation procedure requires a unitary operator and
its efficient preparation. Since A is Hermitian and thus has the spectral decomposition
introduced at (4.2), the unitary operator eiAt has the eigenvalues eiλjt and eigenvectors
uj :

27

4 The HHL Quantum Algorithm

eiAt =
∞∑
k=0

(iAt)k

k!

= I + iAt− A2t2

2!
− iA3t3

3!
+ . . .

= I + it(λ1 · |u1〉 〈u1|+ λ2 · |u2〉 〈u2|+ . . .)− t2 (λ2
1 · |u1〉 〈u1|+ λ2

2 · |u2〉 〈u2|)
2!

− . . .

=
∞∑
k=0

(iλ1t)
k

k!
|u1〉 〈u1|+

∞∑
k=0

(iλ2t)
k

k!
|u2〉 〈u2|+ · · ·+

∞∑
k=0

(iλnt)
k

k!
|un〉 〈un|

= eiλ1t |u1〉 〈u1|+ eiλ2t |u2〉 〈u2|+ · · ·+ eiλnt |un〉 〈un|

=
∑
j

eiλjt |uj〉 〈uj |

(4.5)

The unitary operator eiAt can be used to get the eigenvalue information from A by
simulating it with Hamiltonian Evolution discussed in 3.5. In the HHL Algorithm, the
time t is chosen to be t0/T , with T being the number of computational steps regarding the
simulation, and t0 being the time interval, hence, t0/T corresponds to a single time-step
of the simulation [52, p. 32]. The HHL Algorithm requires T to be a large number, and
t0 to lie in O(κ/ε).

4.2.2 Uncomputation

When constructed for obtaining a function value f(x) with the given input x, quantum
algorithms may produce a so called ‘garbage output’, which is dependent on x [53]. Most
of the times, the garbage register needs to be uncomputed to reuse it or to prevent any
unwanted interferences if the garbage register is entangled with the register containing the
solution. The term uncomputation refers to the procedure of reversing the computation
for obtaining f(x) whilst preserving the desired output. Because of no-deleting theorem
[54], one cannot simply set the garbage registers to |0〉; there is no unitary operation
which can accomplish it in general. Therefore, the concept of uncomputation trick is
widely used in quantum algorithms.

In the HHL Algorithm, we need to uncompute the control register. The control register
corresponds to the eigenvalues of A. To elaborate on how uncomputation works, we briefly
summarize the discussion in [52, pp. 22, 23]. Given a quantum algorithm which takes the
input |x〉 |0〉 |0〉 and produces

∑
y αy |x〉 |y〉 |f(x)〉 with |f(x)〉 as the solution, the garbage

state is
∑

y αy |y〉. An additional register added, which undergoes a CNOT-operation
controlled on the |f(x)〉 register, leaving the whole state in

∑
y αy |x〉 |y〉 |f(x)〉 |f(x)〉. If

now the first registers are inversed, meaning that the inverse of the unitary operations which

28

4 The HHL Quantum Algorithm

were used to compute |f(x)〉 is applied, the state becomes |x〉 |0〉 |0〉 |f(x)〉. Swapping the
last two registers results in |x〉 |0〉 |f(x)〉 |0〉, which is the final state without the garbage
output.

4.3 Prerequisites and Caveats

The HHL Algorithm comes with some important restrictions regarding the inputs, which
will be crucial in our reinforcement learning application. Therefore, we address these
restrictions briefly in this chapter, in order to refer to them when we present the application
simulation as well as the workarounds and input compatibility analyses in Chapter 5.

Hermitian input matrix. The input matrix has to be Hermitian, so that one can
make use of its spectral decomposition. [16] suggests defining a new matrix Ã, such that

Ã =

(
0 A
A† 0

)
∈ C2N×2N , x̃ =

(
0
x

)
∈ C2N , Ãx̃ =

(
b
0

)
∈ C2N (4.6)

However, transforming the input matrix is not sufficient on its own. One also needs
to make sure that the matrix can be simulated efficiently, which will be discussed in
Chapter 5. When the simulation itself does not perform in O(log(n)), the exponential
speed-up of the HHL Algorithm is lost.

Condition number κ. The condition number of a matrix is the ratio between its
smallest and biggest singular value. If the matrix is normal1, which is the case with
Hermitian matrices, then κ = |λmax|

|λmin| . The HHL Algorithm performs quadratically with
the condition number κ. If the matrix is ill-conditioned, then the exponential speed-up
may be lost; since κ has to lie in O(log(N)) in order to achieve an exponential speed-up
[16].
We also note that a non-Hermitian input matrix A with a condition number cond(A)

has the same condition number after having been transformed to A′ as described in (4.6):

cond(A′) =
|λA

′

max|
|λA

′

min|
=
σAmax
σAmin

= cond(A) (4.7)

Eigenvalue range. The HHL Algorithm assumes that the singular values of the input
matrix lie between 1/κ and 1. This restriction requires a priori knowledge about the
range of the singular values, which may not be available with every use-case. In addition,

1A matrix A is normal if AA† = A†A.

29

4 The HHL Quantum Algorithm

transforming an arbitrary, non-Hermitian matrix into a Hermitian matrix as described in
(4.6) results in the following:

Ã :=

(
0 A
A† 0

)
, det(Ã− Ix) = 0⇔ det

(
−Ix A
A† −Ix

)
= det(Ix2 −AA†) = 0 (4.8)

Hence, the new matrix Ã has the square root of the eigenvalues of AA†, which are
the positive and negative singular values of the input matrix A. However, the negative
eigenvalues pose a problem for the HHL Algorithm, since the eigenvalues are mapped
to 2πk/t0 before the controlled rotation. Both the index k and the time interval t0 are
positive, which indicates that the eigenvalues should be positive as well.

The output. The end-state |x〉 that the HHL-circuit is left with after the ancilla-qubit
measurement contains the solution vector to the given linear system of equations. However,
reading out the state would require a minimum of N measurements, which would eliminate
the exponential speed-up of the HHL Algorithm. Instead, one can obtain a ‘statistical’
information about the solution vector, like the expectation value 〈x|M |x〉, as suggested
by the authors of the HHL Algorithm. [55] shows three other ways to use the solution
vector without measuring it; including checking the overlap of any vector with |x〉, a
specific entry of |x〉 (i.e. 〈j|x〉 for a given j) and 〈x|xn |x〉.

30

5 Policy Iteration using the HHL
Quantum Algorithm

5.1 Introduction

In this chapter, we are going to present how we simulate the HHL Algorithm with Python
by implementing the computational steps corresponding to quantum transformations.
The simulation is followed by numerical analyses regarding the accuracy of the algorithm
with respect to the number of simulation steps T , the desired accuracy deviation ε and
the condition number κ of the input matrix A. We investigate how κ is affected by
the problem dimension N and the reinforcement learning parameter γ. In addition, we
address the prerequisites of the HHL Algorithm concerning the data preparation.

5.2 HHL Simulation

The Python simulation1 aims to evaluate whether the HHL Algorithm, if executed
perfectly on a quantum computer, could provide a good enough approximation for the
Policy Iteration. As the Policy Iteration Algorithm requires solving a linear system of
equations in every iteration, it is important that the cumulation of the expected error ε for
each solution vector does not lead to wrong policies and consequently, to more iterations.

def hhl(A, b, epsilon, T):
"""
:param A: ndarray

2d array containing the input matrix
:param b: ndarray

1d array containing the right hand side
:param epsilon: float
:param T: int
:return: ndarray

1d array containing the solution vector
"""

Listing 5.1: The method outline corresponding to the HHL Algorithm

1The Python code can be found at https://github.com/akotil/quantum-reinforcement-learning.

31

https://github.com/akotil/quantum-reinforcement-learning

5 Policy Iteration using the HHL Quantum Algorithm

For the simulation, we make use of the Python libraries NumPy [56] and SciPy [57]
and import these libraries as np and sp, respectively.
The HHL Algorithm is mapped to the Python method hhl(A, b, epsilon, T), as

shown in Listing 5.1. The method parameters consist of the input matrix A, the right
hand side b, the error constant ε and time evolution parameter T .

Preparing the inputs. Before running the simulation, it has to be checked whether the
input matrix A fulfils the following two conditions: i). A is Hermitian. ii) A has an eigen-
value range between 0 and 1. The former can be checked with np.allclose(A.conj().T,
A), which returns True if A = A†. If A does not fulfil the Hermitian property, we apply
the transformation from (4.8).

if not np.allclose(A.conj().T, A):
A_dagger = np.zeros((n * 2, n * 2), dtype="complex")
A_dagger[:n, n:] = A
A_dagger[n:, :n] = A.conj().T
b = np.pad(b, (0, n), "constant")

Listing 5.2: Transforming the input matrix

In order to bring the eigenvalues in the required range, a scaling of A is required, since
multiplying A with a positive scalar δ < 1 equates to the same amount of scaling for its
eigenvalues:

Au = λu
δ−→ (δA)u = δ(Au) = δ(λu) = (δλ)u = δ

′
u (5.1)

With the linear scaling of A, one arrives at the modified LSE δAx = δb. Since the HHL
Algorithm requires b to be a unit vector, the scaling of the solution vector x is applied
after the simulation, i.e. we solve δAx = b and scale x thereafter by δ||b||.
Scaling A brings only the absolute values of its eigenvalues in a desired range. As

discussed in Section 4.3, the eigenvalues come with a negative range after the Hermitian
transformation. We deal with the negative eigenvalues by mapping the eigenvalue range
to [−1/2, 1/2] and performing an ‘eigenvalue flip’ in the controlled rotation which will be
discussed shortly.
In order to map the eigenvalues to [−1/2, 1/2], we scale A with γ = 1/2λmax.

eigenvalues = linalg.eigvals(A)
if np.any(eigenvalues > 0.5):

max_eigval = max([abs(i) for i in linalg.eigvals(A)])
A *= 1 / (2 * max_eigval)

Listing 5.3: Scaling the input matrix A

32

5 Policy Iteration using the HHL Quantum Algorithm

Running the simulation. The first step of the simulation is to initialize the system,
that is, preparing the two registers containing |ψ〉 and |b〉, i.e. the state |ψ〉 ⊗ |b〉. We can
store these registers conveniently as arrays, both in computational basis, and combine
them via np.kron.

psi = [np.sqrt(2 / T) * np.sin(np.pi * (i + 1 / 2) / T) for i in range(T)]
registers = np.kron(psi, b)

Listing 5.4: Initialization of the registers

After having initialized the registers, the simulation proceeds to creating the Hamiltonian
operator which will be applied to the registers. Due to the special structure of |τ〉 〈τ | ⊗
eiAτt0/T for τ ∈ [T], the Hamiltonian operator consists of ‘exponential block matrices’ on
its diagonal. Hence, only these block matrices have to be stored. We therefore create
a 3-dimensional array of T n × n matrices, with n being the dimension of the input
matrix. Applying the Hamiltonian operator to the registers corresponds to T matrix-
vector multiplications, thus one can treat the registers as a 2-dimensional array to iterate
through a block of n-entries.

H = np.zeros((T, n, n), dtype="complex")
t_0 = k / epsilon
for i in range(T):

H[i] = linalg.expm(1j * A * i * t_0 / T)

Apply Hamiltonian Evolution to the registers
state = [np.dot(H[i], registers.reshape((T,n))[i]) for i in range(T)]

Listing 5.5: Hamiltonian Evolution

In order to complete the Phase Estimation, we now fourier transform the first register.
We again assume that a quantum computer is able to perform QFT without errors, so
that we can use the classical Fourier Transformation to simulate QFT.
After the Hamiltonian Evolution, state stores the following:

(
eiA·0·t0/T (|ψ〉 ⊗ |b〉)j∈N0, 0≤j<n

)>(
eiA·1·t0/T (|ψ〉 ⊗ |b〉)j∈N0, n≤j<2n

)>
...(

eiA·(T−1)·t0/T (|ψ〉 ⊗ |b〉)j∈N0, (T−1)n≤j<Tn

)>


=


(|ψ〉0 eiA·0·t0/T |b〉)>
(|ψ〉1 eiA·1·t0/T |b〉)>

...
(|ψ〉T−1 e

iA·(T−1)·t0/T |b〉)>


(5.2)

The Fourier Transformation is applied on every column of state, which can be achieved
by specifying axis=0 in np.fft.fft(). Furthermore, the parameter norm specifies the
scaling within the transformation. By setting norm="ortho", the scale factor is set to 1/

√
n

33

5 Policy Iteration using the HHL Quantum Algorithm

instead of the default scaling 1/n of fft. As a consequence, the Fourier transformation
becomes unitary, i.e. it is symmetric with respect to its inverse, as shown in (3.11) and
(3.14).

state = np.fft.fft(state, axis=0, norm="ortho")

Listing 5.6: Fourier Transformation

After the Fourier Transformation, the controlled rotation is applied on the ancilla
register. For this step, we consider the mathematical representation of the ancilla register
after the rotation:

√
1− C2

λ̃k
|0〉+ C

λ̃k
|1〉. It is not necessary to numerically add the ancilla

register, one can just as well rescale state[k] by C

λ̃k
to extract the relevant state for

measurement. One can also compute ‘the other half’ which carries |0〉, however, only
the state half with |1〉 delivers the solution vector when measured. In reality, one may
have to perform several measurements until the state is left with the solution vector,
corresponding to measuring 1. We can disregard the measurement in the simulation, since
we can directly extract the solution.

In order to deal with negative eigenvalues, we scale the eigenvalue range to [−1/2, 1/2],
following a similar approach in [58, 59]. We mirror the the eigenvalues by changing their
signs from T/2. The specified range is necessary, since the negative numbers in range
[−1/2, 0) cannot be distinguished from their positive equivalents with mod 1.

C = 0.1 / k
one_state = np.zeros((T, n), dtype="complex")
for i in range(T):

if not scaled or (scaled and i < T // 2):
eigenvalue = 2 * np.pi * i / t_0

else:
eigenvalue = 2 * np.pi * (i - T) / t_0

C_1 = C / eigenvalue if C <= abs(eigenvalue) else 0
one_state[i] = C_1 * state[i]

Listing 5.7: Conditional rotation

The last stages of the simulation match the steps of reversing the Phase Estimation.
These stages include the inverse Fourier Transformation, the inverse Hamiltonian Evolution
and undoing the computation of |ψ〉. The inverse Hamiltonian Evolution corresponds to
the conjugate transpose of H[i], as the Hamiltonian operator is unitary and therefore
satisfy np.dot(H[i].conj().T, H) == np.eye(n).

34

5 Policy Iteration using the HHL Quantum Algorithm

Inverse Fourier Transformation
one_state = np.fft.ifft(one_state, axis=0, norm="ortho")

Inverse Hamiltonian Evolution
one_state = [np.dot(H[i].conj().T, one_state[i]) for i in range(T)]

Listing 5.8: Reversing the Phase Estimation

Undoing the computation of |ψ〉, i.e. reversing the control register back to |0〉 would
correspond to a ‘reverse’ Kronecker Product. We can consider the one_state after the
inverse Hamiltonian Evolution to be |ψ〉 ⊗ |x〉. This representation gives us the ability to
simply reverse ⊗ by choosing an i ∈ {1, . . . , T} such that

|ψ〉 ⊗ |x〉 = (ψ1x1, ψ1x2, . . . , ψ1xn, ψ2x1, . . . , ψTxn)>

xj =
1

ψi
(|ψ〉 ⊗ |x〉)i×j ∀j ∈ {1, . . . , n}

(5.3)

We observed that the choice of the index i affects the accuracy of the result, so we
randomly initialized linear systems of equations to extract x1 for all values of i.

Figure 5.1: The values of x1 in dependence of the selected index i for obtaining the x vector from
|ψ〉 ⊗ |x〉 under a randomly initialized system with T = 1000.

The empirical results revealed that the index interval around T/2 result in the most
stable result for x1. Hence, we choose i = T/2 for extracting the solution vector.

one_state /= C # undo scaling by rotation
solution = one_state[T // 2] / psi[T // 2] # undo Kronecker Product
solution *= SCALE_FACTOR # undo scaling by δ
solution *= B_NORM # undo scaling by ||b||

Listing 5.9: Reversing the control register

35

5 Policy Iteration using the HHL Quantum Algorithm

The solution array now stores the desired solution vector to the LSE Ax = b up to
the desired precision given by ε.

5.3 Parameter Analysis

For this and upcoming sections, we are going to focus on a concrete reinforcement learning
(RL) application. Our goal is to make a solid statement about whether or not the
HHL Algorithm can deliver good approximations for the Policy Evaluation (PE) step of
the Policy Iteration Algorithm (PI), and how the cumulated errors affect the accuracy
performance of policy iterations.
The concrete RL application2 is a modified version of the example introduced in

Chapter 2, Section 2.4.2. We expand the maze dimension to n = 10 and add more blocked
states and one exit state. Figure 5.2 shows the grid environment, where [(3,2), (7,3),
(4,5), (9,5), (7,6), (1,7), (3,9), (5,9)] are blocked fields, [(1,4), (8,5)] are
exit fields with a reward of +1 and (1,5) is an exit field with a reward of -1. Under
this set-up and with γ = 0.95, the classical PI converges to the state-action mapping as
depicted in the rightmost grid of Figure 5.2.

Figure 5.2: The setting of the RL application which is to be investigated (left), converged state
values (middle) and converged state-action mapping (right).

In the following, we reproduce the results of classical PI by replacing the PE-step with
the simulation of HHL Algorithm. In order to decide on a number of time evolution steps
T , we first investigate the γ-κ and then the T -accuracy relationship given a matrix with a
specific κ-value. The accuracy measure in the latter case is based on the residue ||Ax− b||
with x being the output vector of the HHL Algorithm with arbitrary test inputs A and b.

2The maze construction is located at module/maze.py and a simulation of RL algo-
rithms can be found at module/reinforcement_learning.py under https://github.com/akotil/
quantum-reinforcement-learning.

36

https://github.com/akotil/quantum-reinforcement-learning
https://github.com/akotil/quantum-reinforcement-learning

5 Policy Iteration using the HHL Quantum Algorithm

γ - Condition number κ The RL parameter γ is an important factor which directly
affects the condition number of the matrix of one single PE. As the condition number
grows, the accuracy of the HHL Algorithm suffers. Therefore we take a close look at the
γ − κ relationship so that a statement can be made as to how the system matrix will
behave under a certain γ value.

Figure 5.3: Plots showing how the condition number of the PE matrix differs
by iterations given γ-value range

Figure 5.3 presents the dependence of the condition number of the matrix resulting
from one PE on different γ values until convergence. For the plots, we have used the RL
application introduced before. For consistency, we fixed a random policy, which was used
to initialize the PI with. There are two important relations which can be extracted from
the plots: One relation is the condition number increase between iterations for a given γ,
depicted as a line at the left graph. The condition numbers seem to grow logarithmically
as PI proceeds with further iterations. The other relation is the condition number increase
(plotted with logarithmic scale) of one matrix belonging to a certain iteration (first or last)
as γ is increased, depicted as points at the right graph. The condition number growth is
exponential in the given γ set of [0.75, 0.8, 0.85, 0.9, 0.99].
The results from γ-κ analysis show that the γ-parameter directly plays a role in the

condition number of a PE matrix. As the classical results from the RL application are to
be reproduced with the help of the HHL Algorithm, we note the condition number range
for the γ-value 0.95, which is (138, 299).

T - Accuracy deviation ε The goal of the T − ε analysis is to find out the following:
Given an input matrix with condition number κ, at which T value the HHL Algorithm is
able to produce a solution vector which differs from the actual solution vector x∗ by ε
under the l2-norm.

37

5 Policy Iteration using the HHL Quantum Algorithm

One can produce arbitrary matrices with a specific κ value. A possible approach for
achieving this would be to produce a random matrix A ∈ Rn×n, extract its singular value
decomposition UDV and replace the entries (σ1, . . . σn) of the diagonal matrix D with a
uniformly spaced interval between 1 and κ. That way the ratio between the biggest and
smallest singular values is guaranteed to be κ for the modified matrix A′ = UD

′
V with

D
′

= diag(1, . . . , κ).

A = np.random.random((n, n))
u, s, v = sp.linalg.svd(A)
s = np.linspace(1, condition_number, endpoint=True, num=n)
s = np.diag(s)
A = u @ s @ v

Listing 5.10: Producing a random matrix with desired condition number κ

Figure 5.4: The residue ||Ax̃− b|| in dependence of the parameter T

Figure 5.4 depicts the T - ε relationship for matrices with dimensions 10 × 10. The
graphs show the residue ||Ax̃−b|| depending on the condition numbers of the test matrices
A. As the condition numbers grow, the HHL Algorithm needs a larger T -parameter to
produce a solution vector with the desired accuracy derivation of ε = 0.01. The HHL
Algorithm succeeds in producing the right approximation for x at most by T = 600
for a κ ∈ {2, 4, 8, 16, 32}. For very small condition numbers, T = 100 already satisfies
the accuracy deviation, as seen with κ ∈ {2, 4}. As for the other half of condition
numbers, κ ∈ {64, 128, 256, 512, 1024}, a larger scaling for T is needed. Looking back at
the condition number range of our RL application, a proper T value falls in the range
[4000, 5000] as the residues in the right graph converge to ε within this range for κ ∼= 256.

Dimension n - Condition number κ One of the important constraints of the HHL
Algorithm is the necessity of a polylogarithmic scaling of κ as the matrix dimension n
grows, otherwise the quantum algorithm cannot outperform the best classical solver for

38

5 Policy Iteration using the HHL Quantum Algorithm

LSE. Considering the setting of our RL application, it is not clear how the application
scales with the growing number of states, as there is no unique way of expanding a maze.
One can expand the maze structure in numerous ways; by adding more fields and fixing
the number of blocked states and keeping the exit states where they are, or by adding
more blocked states and exit states as the dimension grows. Both positions and the
number of such special states make up the characteristics of the matrix, and implicitly its
condition number. It is therefore not trivial to find out about the relationship between
the condition number of the PE matrix and its dimension. To illustrate this, Figure 5.5
shows two different scaling strategies: The left graph shows a maze growth with two fixed
exit fields and three fixed blocked states. The right graph illustrates another maze growth
with randomly placed and proportionally many blocked states with respect to the maze
size.

Figure 5.5: The growth of condition number as the maze dimension scales,
resulting in different distributions with respect to different scaling

strategies (left : fixed, right : randomly)

A detailed analysis is needed for cases where the scaling of RL applications is well-
defined, in order to make a concrete statement about n-κ-dependency.

Results. Running the HHL Algorithm with ε = 0.01 and T = 5000 for the example RL
application yields the results in the left graph of Figure 5.6. The approximate solution
vectors resulting from the simulation differ about a magnitude of 10−3 from the real
solution in every iteration of the PI. These approximations indeed lead to the same
policies in every iteration; resulting in the same converged solution from the classical
version showed in Figure 5.2.

On the other hand, choosing T = 4000 fails to converge to the right policy. The right
hand side of the Figure 5.6 shows the norm differences for the case T = 4000, where the
HHL Algorithm fails to be a good approximation for the PI. For the first 3 iterations,
the quantum algorithm results in rather small deviations from the real solution vector,
however, after the third iteration, the resulting PE matrix has a higher condition number

39

5 Policy Iteration using the HHL Quantum Algorithm

Figure 5.6: The absolute norm differences
∣∣‖x‖ −‖x̃‖∣∣ between the classical

solution vector x and the quantum solution vector x̃ per iteration
(left : T = 5000, right : T = 4000)

(κ ∼= 279) than the parameter T = 4000 can compensate for. As a result, the policy vector
differs from the corresponding policy vector in the classical case, and the norm difference
gets bigger. After that, the HHL Algorithm proceeds to solve for the next iterations
to only fail every second iteration, because the PE matrix has almost the same large
condition number from before as the policy vector is near convergence. Consequently, the
quantum solutions oscillate between two policies, one of which is the nearly converged
one, with the other policy being the result from a poor approximation.

Efficient Hamiltonian Simulation The HHL Algorithm assumes that the inputs are
efficiently computable, meaning that the Hamiltonian operator responsible for simulating
the matrix A can be efficiently prepared and applied in a quantum computer. This is
crucial in our application, as the inputs change with every iteration of PI; a quantum
computer needs to prepare the inputs not slower than a time complexity which grows
polylogarithmic in n.
Hamiltonian simulations are in general non-trivial, complex operations. However, a

particular matrix form is shown to be efficiently simulated. If the matrix is s-sparse and
efficiently row-computable, then the Hamiltonian simulation can be applied in a time
period which grows almost linearly within s [60, 61]. A matrix A is called s-sparse if
it has at most s non-zero values in each row. In addition, the matrix A is efficiently
row-computable if there is an efficient quantum or classical algorithm which can output all
non-zero entries (j, Ai,j) for a given row index i, often treated as a ‘black box’ operation
[62].
We break down the PE matrix A = (I− γP) with P = (pi,j) = P(sj |si, π(si)) to find

out about its sparsity. Each row of P represents the transition probabilities to every
other state from the state which the row corresponds to. In our setting, the agent can
only choose to move to neighbouring states. Since the environment is chessboard-shaped,

40

5 Policy Iteration using the HHL Quantum Algorithm

there are only a maximum of 4 fields that the agent can move to. These states result in a
non-zero transition probability; for every other state, the row is filled with zeros. Scaling
P with γ does not change its sparsity, but substracting it from the identity matrix results
in a maximum of 5 non-zero entries in each row. It is important to note that the sparsity
of A is indeed constant for any dimensions of the grid environment, given that the setting
of the RL problem is not changed. Furthermore, if the matrix is not Hermitian, turning
it into a Hermitian matrix will result in a sparsity of s = 5 in a dimension of 2n.
As for the row-computability, we consider the transition probabilities introduced in

Chapter 2, Section 2.4.1. For every row i, one only needs to calculate the probability of
a transition to the neighbouring states. This computation needs to be done only once,
since the transition probabilities are pre-determined and remain the same throughout
the application. Thus, a classical computer can output (j, Ai,j) in at most O(s) with the
overhead of preparing the transition probability tensor at the beginning.

41

6 Conclusion

Summary. In this study, we introduced a way of simulating the Harrow-Hassidim-Lloyd
Quantum Algorithm (HHL Algorithm) in Python and integrated the simulation in the
Policy Evaluation step of the Policy Iteration Algorithm under a concrete model-based
reinforcement learning application. We investigated the results, where we showed that a
proper parameter initialization of the HHL Algorithm is necessary in order to achieve
a satisfying approximation for the policy iterations. We also provided our estimates for
proper parameters in our case; which may serve as a guide for other applications, although
suitable parameter will vary with each use case. We addressed most of the prerequisites
of the HHL Algorithm and presented ways of overcoming them.

Future Work. An important caveat of the HHL Algorithm is the solution read-out,
which we have not addressed and which may be a starting point of a future work investi-
gating a similar Reinforcement Learning application in context of the HHL Algorithm.
More in-depth mathematical analyses about the Policy Iteration Algorithm are needed to
tackle the read-out problem. One could look at possible patterns of state values to derive
an approximate simplification, so that the whole solution vector does not have to be read
out. Instead, a subset of the vector’s entries could be sufficient to reach convergence. One
could also look into possible and practical ways of using the statistical data provided by
the solution vector, as it is the only way of making use of the solution without losing the
quantum-advantage of the HHL Algorithm.

42

List of Figures

2.1 A simple example of a Markov Chain with three states 4
2.2 The agent-environment interaction in reinforcement learning [26]. 5
2.3 State values of the example grid world resulting from the converged value

iteration . 10
2.4 The policy mapping of the agent. From left to right: Initial random policy,

3rd iteration, last iteration . 12

3.1 An arbitrary state |ψ〉 on the Bloch sphere [44] 17
3.2 A unitary operation action on a single qubit (left), on two qubits (middle)

and on n qubits (right) . 18
3.3 Pauli gates and their matrix equivalents [40, p. xxx] 18
3.4 Hadamard gate representation and its application on an arbitrary qubit

input [40, pp. xxx, 19] . 19
3.5 A 3-qubit circuit example . 19
3.6 CNOT gate representation [40, p. xxx] . 20
3.7 Controlled rotation gate representation [45] 20
3.8 QDFT Circuit [40, p. 219] . 22
3.9 Phase Estimation Circuit [40, p. 222] . 23

4.1 Schematic HHL quantum circuit . 26

5.1 The values of x1 in dependence of the selected index i for obtaining the x
vector from |ψ〉 ⊗ |x〉 under a randomly initialized system with T = 1000. 35

5.2 The setting of the RL application which is to be investigated (left), con-
verged state values (middle) and converged state-action mapping (right). . 36

5.3 Plots showing how the condition number of the PE matrix differs by
iterations given γ-value range . 37

5.4 The residue ||Ax̃− b|| in dependence of the parameter T 38
5.5 The growth of condition number as the maze dimension scales, resulting

in different distributions with respect to different scaling strategies (left :
fixed, right : randomly) . 39

5.6 The absolute norm differences
∣∣‖x‖ −‖x̃‖∣∣ between the classical solution

vector x and the quantum solution vector x̃ per iteration (left : T = 5000,
right : T = 4000) . 40

43

Bibliography

[1] A. Einstein, B. Podolsky, and N. Rosen. “Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete?” In: Phys. Rev. 47 (10 May 1935),
pp. 777–780. doi: 10.1103/PhysRev.47.777.

[2] A. Einstein, Hedwig Born, and M. Born. Briefwechsel 1916-1955. rororo Taschen-
bücher. Rowohlt, 1972, p. 254. isbn: 9783499114786.

[3] J. S. Bell. “On the Einstein Podolsky Rosen paradox.” In: Physics Physique Fizika
1 (3 Nov. 1964), pp. 195–200. doi: 10.1103/PhysicsPhysiqueFizika.1.195.

[4] W. Heisenberg. “Über den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik.” In: Zeitschrift für Physik 43.3 (1927), pp. 172–198. doi: 10.1007/
BF01397280.

[5] Richard P. Feynman. “Simulating physics with computers.” In: International Journal
of Theoretical Physics 21.6 (1982), pp. 467–488. doi: 10.1007/BF02650179.

[6] David Deutsch and Richard Jozsa. “Rapid solution of problems by quantum compu-
tation.” In: (Dec. 1992). doi: https://doi.org/10.1098/rspa.1992.0167.

[7] Ethan Bernstein and Umesh Vazirani. “Quantum Complexity Theory.” In: SIAM
Journal on Computing 26.5 (1997), pp. 1411–1473. doi: 10.1137/S0097539796300921.

[8] Scott Aaronson and Andris Ambainis. “The Need for Structure in Quantum
Speedups.” In: Theory of Computing 10.6 (2014), pp. 133–166. doi: 10.4086/
toc.2014.v010a006.

[9] Shalev Ben-David et al. Symmetries, graph properties, and quantum speedups. 2020.
arXiv: 2006.12760 [quant-ph].

[10] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search.” In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing.
STOC ’96. Philadelphia, Pennsylvania, USA: Association for Computing Machinery,
1996, pp. 212–219. isbn: 0897917855. doi: 10.1145/237814.237866.

[11] Frédéric Magniez et al. “Search via QuantumWalk.” In: SIAM Journal on Computing
40.1 (2011), pp. 142–164. doi: 10.1137/090745854.

[12] P. W. Shor. “Algorithms for quantum computation: discrete logarithms and factor-
ing.” In: Proceedings 35th Annual Symposium on Foundations of Computer Science.
1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

44

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF02650179
https://doi.org/https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.4086/toc.2014.v010a006
https://doi.org/10.4086/toc.2014.v010a006
https://arxiv.org/abs/2006.12760
https://doi.org/10.1145/237814.237866
https://doi.org/10.1137/090745854
https://doi.org/10.1109/SFCS.1994.365700

Bibliography

[13] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quantum pro-
cessor.” In: Nature Communications 5.1 (2014), p. 4213. doi: 10.1038/ncomms5213.

[14] Daniel Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant
Quantum Computation. 2009. arXiv: 0904.2557 [quant-ph].

[15] Ryan Babbush et al. Focus beyond quadratic speedups for error-corrected quantum
advantage. 2020. arXiv: 2011.04149 [quant-ph].

[16] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for
Linear Systems of Equations.” In: Phys. Rev. Lett. 103 (15 Oct. 2009), p. 150502.
doi: 10.1103/PhysRevLett.103.150502.

[17] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. Framework for learning
agents in quantum environments. 2015. arXiv: 1507.08482 [quant-ph].

[18] D. Dong et al. “Quantum Reinforcement Learning.” In: IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 38.5 (Oct. 2008), pp. 1207–
1220. issn: 1941-0492. doi: 10.1109/TSMCB.2008.925743.

[19] Lucas Lamata. “Basic protocols in quantum reinforcement learning with supercon-
ducting circuits.” In: Scientific Reports 7.1 (2017), p. 1609. doi: 10.1038/s41598-
017-01711-6.

[20] Samuel Yen-Chi Chen et al. Variational Quantum Circuits for Deep Reinforcement
Learning. 2020. arXiv: 1907.00397 [cs.LG].

[21] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[22] Art Lew and Holger Mauch. Dynamic Programming: A Computational Tool (Studies
in Computational Intelligence (38)). Springer, 2006.

[23] Ehrhard Behrends. Introduction to Markov Chains With Special Emphasis on Rapid
Mixing. Vieweg+Teubner Verlag, 1999. isbn: 978-3-528-06986-5.

[24] Richard S. Sutton and Andrew G. Barto. “Reinforcement learning: an introduction.”
In: A Bradford Book, 2018.

[25] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience, 2005.

[26] Mark Lee. The Agent-Environment Interface. [Online; accessed November 26, 2020].
2005. url: http://incompleteideas.net/book/first/ebook/node28.html.

[27] Tjalling C. Koopmans. “Stationary Ordinal Utility and Impatience.” In: Economet-
rica 28.2 (1960), pp. 287–309. issn: 00129682, 14680262.

[28] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.

[29] Eric V Denardo. “Contraction mappings in the theory underlying dynamic program-
ming.” In: Siam Review 9.2 (1967), pp. 165–177.

45

https://doi.org/10.1038/ncomms5213
https://arxiv.org/abs/0904.2557
https://arxiv.org/abs/2011.04149
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/1507.08482
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1038/s41598-017-01711-6
https://doi.org/10.1038/s41598-017-01711-6
https://arxiv.org/abs/1907.00397
http://incompleteideas.net/book/first/ebook/node28.html

Bibliography

[30] H.S. Chang et al. “Simulation-based Algorithms for Markov Decision Processes.”
In: Communications and Control Engineering. Springer London, 2007, p. 7. isbn:
9781846286896.

[31] Manuel S Santos and John Rust. “Convergence properties of policy iteration.” In:
SIAM Journal on Control and Optimization 42.6 (2004), pp. 2094–2115.

[32] Lucian Busoniu et al. Reinforcement Learning and Dynamic Programming Using
Function Approximators. CRC Press, 2010, p. 113.

[33] Max Planck. “Über die Elementarquanta der Materie und der Elektrizität.” In: Von
Kirchhoff bis Planck. Springer, 1978, pp. 191–194.

[34] Benjamin Schumacher. “Quantum coding.” In: Phys. Rev. A 51 (4 Apr. 1995),
pp. 2738–2747. doi: 10.1103/PhysRevA.51.2738.

[35] Sergio Boixo et al. “Characterizing quantum supremacy in near-term devices.” In:
Nature Physics 14.6 (2018), pp. 595–600. doi: 10.1038/s41567-018-0124-x.

[36] Frank Arute et al. “Quantum supremacy using a programmable superconducting
processor.” In: Nature 574.7779 (2019), pp. 505–510. doi: 10.1038/s41586-019-
1666-5.

[37] Han-Sen Zhong et al. “Quantum computational advantage using photons.” In:
Science (2020). issn: 0036-8075. doi: 10.1126/science.abe8770.

[38] P. A. M. Dirac. “A new notation for quantum mechanics.” In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society 35.3 (1939), pp. 416–418. doi:
10.1017/S0305004100021162.

[39] Sadri Hassani. Mathematical Physics. Springer International Publishing, 2013.

[40] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2012.

[41] Matthew F. Pusey, Jonathan Barrett, and Terry Rudolph. “On the reality of
the quantum state.” In: Nature Physics 8.6 (2012), pp. 475–478. doi: 10.1038/
nphys2309.

[42] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics,
Vol. III: The New Millennium Edition: Quantum Mechanics. The Feynman Lectures
on Physics. Basic Books, 2011. Chap. 10. isbn: 9780465025015.

[43] Ian Glendinning. “The bloch sphere.” In: QIA Meeting TechGate. 2005.

[44] CC BY-SA 3.0 Smite-Meister. Bloch sphere, a geometrical representation of a two-
level quantum system. [Online; accessed December 12, 2020]. 2009. url: https:
//commons.wikimedia.org/wiki/File:Bloch_sphere.svg.

[45] Summary of Quantum Operations. https://qiskit.org/documentation/tutorials/
circuits/3_summary_of_quantum_operations.html. Accessed: 2021-01-14.

46

https://doi.org/10.1103/PhysRevA.51.2738
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1038/nphys2309
https://doi.org/10.1038/nphys2309
https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg
https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg
https://qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html
https://qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html

Bibliography

[46] D. Sundararajan. The Discrete Fourier Transform: Theory, Algorithms and Appli-
cations. World Scientific, 2001. isbn: 9789812810298.

[47] E. Schrödinger. “An Undulatory Theory of the Mechanics of Atoms and Molecules.”
In: Phys. Rev. 28 (6 Dec. 1926), pp. 1049–1070. doi: 10.1103/PhysRev.28.1049.
url: https://link.aps.org/doi/10.1103/PhysRev.28.1049.

[48] Seth Lloyd. “Universal Quantum Simulators.” In: Science 273.5278 (1996), pp. 1073–
1078. issn: 0036-8075. doi: 10.1126/science.273.5278.1073.

[49] Stuart Hadfield and Anargyros Papageorgiou. “Divide and conquer approach to
quantum Hamiltonian simulation.” In: New Journal of Physics 20.4 (Apr. 2018),
p. 043003. doi: 10.1088/1367-2630/aab1ef.

[50] Jonathan R Shewchuk. An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain. Tech. rep. USA, 1994.

[51] Bojia Duan et al. “A survey on HHL algorithm: From theory to application in
quantum machine learning.” In: Physics Letters A 384.24 (2020), p. 126595. issn:
0375-9601.

[52] Danial Dervovic et al. Quantum linear systems algorithms: a primer. 2018. arXiv:
1802.08227 [quant-ph].

[53] Scott Aaronson, Daniel Grier, and Luke Schaeffer. “The Classification of Reversible
Bit Operations.” In: 8th Innovations in Theoretical Computer Science Conference
(ITCS 2017). Ed. by Christos H. Papadimitriou. Vol. 67. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2017, 23:1–23:34. isbn: 978-3-95977-029-3. doi: 10.4230/
LIPIcs.ITCS.2017.23.

[54] Arun Kumar Pati and Samuel L. Braunstein. In: Nature 404.6774 (Mar. 2000),
pp. 164–165. doi: 10.1038/35004532.

[55] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. “Preconditioned Quantum Linear
System Algorithm.” In: Phys. Rev. Lett. 110 (25 June 2013), p. 250504. doi:
10.1103/PhysRevLett.110.250504.

[56] Charles R. Harris et al. “Array programming with NumPy.” In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[57] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python.” In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

[58] Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. “Quantum arithmetic with the
quantum Fourier transform.” In: Quantum Information Processing 16.6 (2017),
p. 152. doi: 10.1007/s11128-017-1603-1.

47

https://doi.org/10.1103/PhysRev.28.1049
https://link.aps.org/doi/10.1103/PhysRev.28.1049
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1088/1367-2630/aab1ef
https://arxiv.org/abs/1802.08227
https://doi.org/10.4230/LIPIcs.ITCS.2017.23
https://doi.org/10.4230/LIPIcs.ITCS.2017.23
https://doi.org/10.1038/35004532
https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s11128-017-1603-1

Bibliography

[59] Changpeng Shao. Reconsider HHL algorithm and its related quantum machine
learning algorithms. 2018. arXiv: 1803.01486 [quant-ph].

[60] Dominic W. Berry et al. “Exponential Improvement in Precision for Simulating
Sparse Hamiltonians.” In: Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing. STOC ’14. New York, New York: Association for Computing
Machinery, 2014, pp. 283–292. isbn: 9781450327107. doi: 10 . 1145 / 2591796 .
2591854.

[61] Dominic W. Berry et al. “Simulating Hamiltonian Dynamics with a Truncated
Taylor Series.” In: Phys. Rev. Lett. 114 (9 Mar. 2015), p. 090502. doi: 10.1103/
PhysRevLett.114.090502.

[62] Dorit Aharonov and Amnon Ta-Shma. “Adiabatic Quantum State Generation
and Statistical Zero Knowledge.” In: Proceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing. STOC ’03. San Diego, CA, USA: Association
for Computing Machinery, 2003, pp. 20–29. isbn: 1581136749. doi: 10.1145/
780542.780546.

48

https://arxiv.org/abs/1803.01486
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1145/780542.780546
https://doi.org/10.1145/780542.780546

	Acknowledgments
	Abstract
	Contents
	Introduction
	Insights into Quantum Mechanics and Quantum Computing
	Problem Statement
	Related Work
	Outline of the Study

	Overview of Classical Reinforcement Learning
	Introduction
	Mathematical Model Definition
	Markov Decision Process Components
	Utility Function
	Bellman Equation

	Markov Decision Process Algorithms
	Value Iteration Algorithm
	Policy Iteration

	Overview of Quantum Computing
	Introduction
	Qubit Representation
	Measurement

	Quantum Gates
	Single-Qubit Gates
	Multiple-Qubit Gates

	Quantum Algorithms
	Discrete Quantum Fourier Transformation
	Phase Estimation

	Hamiltonian Simulation

	The HHL Quantum Algorithm
	Introduction
	The Algorithm
	Hamiltonian Evolution and Phase Estimation
	Uncomputation

	Prerequisites and Caveats

	Policy Iteration using the HHL Quantum Algorithm
	Introduction
	HHL Simulation
	Parameter Analysis

	Conclusion
	List of Figures
	Bibliography

