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Abstract

Medical tasks such as patient diagnosis, treatment planning, and surgery are challenging not
only for clinicians but also for computer-aided systems. Such systems powered by machine
learning could significantly aid physicians with these tasks and greatly impact the future of
healthcare. However, training such systems requires a significant amount of training data with
accompanying expert annotations. Furthermore, challenges such as outliers, rare medical
conditions, image artefacts, site variations, and inter-observer variability lead to an additional
burden to computer-aided systems’ generalization ability and robustness. Moreover, threats
like adversarial attacks could pose a security risk for healthcare with serious implications.

To this end, this dissertation tackles the issues of improving and thoroughly evaluating the
robustness of machine learning models for medical diagnosis.

The first part describes two methods to improve model robustness for medical image clas-
sification and segmentation. A novel data augmentation technique is proposed that uti-
lizes manifold-exploring geometric transformations. Our method improves model robustness
against affine and projective transformations and increases model performance on fine-grained
skin lesion and breast tumor classification. A metric based on geodesic distance is introduced
to quantify the robustness of classifiers by measuring the distance to their decision boundary.
Finally, a ternary quantization method is described, that in addition to compressing the size of
a trained model by 16 times, enhances the training dynamics of a large volumetric model for
whole-brain segmentation.

In the second part, we introduce methods to evaluate the robustness of classifiers. Our novel
benchmarking strategy utilizes adversarial examples to evaluate various deep learning models
for classification and segmentation. Our method highlights that models that achieve similar
or identical performance on clean test data could have substantial differences regarding
robustness to adversarial attacks.

Finally, we elaborate on robustness beyond imaging data and present a novel analysis pipeline
for depression score prediction in adolescents utilizing neuropsychological and clinical data.
Our pipeline consists of a longitudinal, multi-task model that accurately predicts depression
scores, a permutation scheme that identifies significant feature categories in the neuropsycho-
logical and clinical assessments, and model interpretation that ranks the importance of each
feature.
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Zusammenfassung

Medizinische Aufgaben wie Patientendiagnose, Behandlungsplanung und Chirurgie sind nicht
nur für Kliniker, sondern auch für computergestützte Systeme eine Herausforderung. Sol-
che Systeme, die auf maschinellem Lernen basieren, könnten Ärzten bei diesen Aufgaben
erheblich helfen und die Zukunft des Gesundheitswesens stark beeinflussen. Das Training
solcher Systeme erfordert jedoch eine erhebliche Menge an Trainingsdaten mit begleitenden
Expertenkommentaren. Darüber hinaus führen Herausforderungen wie Ausreißer, seltene me-
dizinische Bedingungen, Bildartefakte, Standortvariationen und die Variabilität zwischen den
Beobachtern zu einer zusätzlichen Belastung für die Generalisierungsfähigkeit und Robustheit
computergestützter Systeme. Darüber hinaus können Bedrohungen wie adversarische Angriffe
ein Sicherheitsrisiko für das Gesundheitswesen mit schwerwiegenden Folgen darstellen.

Aus diesem Grund befasst sich diese Dissertation mit der Verbesserung und gründlichen
Evaluierung der Robustheit von maschinellen Lernmodellen für die medizinische Diagnose.

Im ersten Teil werden zwei Methoden zur Verbesserung der Modellrobustheit für die Klassifi-
kation und Segmentierung medizinischer Bilder beschrieben. Es wird eine neuartige Technik
zur Datenerweiterung vorgeschlagen, die geometrische Transformationen zur Erforschung
von Mannigfaltigkeiten nutzt. Diese Methode verbessert die Robustheit des Modells gegen-
über affinen und projektiven Transformationen und erhöht die Leistung des Modells bei der
Klassifizierung von feinkörnigen Hautläsionen und Brusttumoren. Eine Metrik, die auf der
geodätischen Distanz basiert, wird eingeführt, um die Robustheit von Klassifikatoren zu quan-
tifizieren, indem die Distanz zu ihrer Entscheidungsgrenze gemessen wird. Schließlich wird
eine ternäre Quantisierungsmethode beschrieben, die nicht nur die Größe eines trainierten
Modells um das 16-fache komprimiert, sondern auch die Trainingsdynamik eines großen
volumetrischen Modells für die Segmentierung des gesamten Gehirns verbessert.

Im zweiten Teil stellen wir Methoden vor, um die Robustheit von Klassifikatoren zu bewerten.
Unsere neuartige Benchmarking-Strategie nutzt adversarische Beispiele, um verschiedene
Deep-Learning-Modelle für Klassifizierung und Segmentierung zu bewerten. Unsere Methode
verdeutlicht, dass Modelle, die eine ähnliche oder identische Leistung auf sauberen Testda-
ten erzielen, erhebliche Unterschiede in Bezug auf die Robustheit gegenüber gegnerischen
Angriffen aufweisen können.

Abschließend gehen wir auf die Robustheit jenseits von Bildgebungsdaten ein und präsentieren
eine neuartige Analyse-Pipeline zur Vorhersage von Depressionswerten bei Jugendlichen
unter Verwendung neuropsychologischer und klinischer Daten. Unsere Pipeline besteht aus
einem longitudinalen Multi-Task-Modell, das Depressionswerte genau vorhersagt, einem
Permutationsschema, das signifikante Merkmalskategorien in den neuropsychologischen und
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klinischen Bewertungen identifiziert, und einer Modellinterpretation, die die Wichtigkeit jedes
Merkmals einstuft.
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1Introduction

1.1 Learning Robust Representations . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Generalizability vs. Robustness . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Robustness in Medical Diagnosis . . . . . . . . . . . . . . . . . . . 4

1.1 Learning Robust Representations

1.1.1 Introduction

Machine learning systems have been integrated into commonly-used systems that provide
movie and music recommendations, personalized advertisements, cooking assistance, au-
tonomous transportation, and medical diagnosis [223]. Such systems can rely on statistical
methods like linear regression or be powered by more powerful models, such as Deep Neural
Networks (DNNs) [104].

The study and deployment of DNNs has been a drastically growing field in both research and
industry and includes developing new model architectures and modules that provide improved
trainability, faster and more stable optimization algorithms, larger and more diverse datasets,
and more.

With the increasing popularity and deployment of DNNs in applications, such as financial
systems, autonomous driving, and healthcare, the security and privacy of DNNs became an
active area of investigation. Security breaches could occur during training or testing of a
model, or even afterwards in the form of model or dataset theft [128].

A particularly interesting direction regarding security is adversarial inputs, which were first
formally described by Biggio and Roli [29] as a way to circumvent spam filters. Since then,
Szegedy et al. [273] introduced these inputs on imaging data as adversarial examples. Samples,
crafted with the intention to fool machine learning models without bearing any detectable
distortion by the human eye when compared to their benign sources.

However, adversarial examples are only one of the many adverse types of inputs that could
challenge the predictions of a DNN. Outliers, data that differ significantly from the observations
a model was trained on could also create problems in the performance of a machine learning
model. Furthermore, unseen or rare findings, commonly observed in medical imaging as rare
diseases or anatomical variations are another source of performance deterioration. Variations
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in perspective, illumination changes, and transformations such as rotations and translations
are additional types of input variabilities that could lead to model failure.

1.1.2 Generalizability vs. Robustness

In order to deploy models in real-world applications successfully, it would be crucial to ensure
that they are characterized by the following attributes:

• Generalizability: The ability of models to generalize to unseen data, originating from
the same distribution as the training data. This property is closely related to model
overfitting and data memorization, both of which lead to a significant drop in model
performance in the real-world [307].

• Robustness: The ability of a model to maintain acceptable performance when tested on
data from a distribution different than the one of the training data [122]. As discussed
above, there are various types of adverse inputs. Therefore, a machine learning-powered
application must define what kind of input data it aims to be robust to in advance.

This thesis first describes methods to improve a model’s robustness [217] and to enhance a
model’s training dynamics, which can lead to better generalizability [216]. Afterwards, an
evaluation method for the robustness of DNNs is introduced [215]. Finally, a pipeline for the
analysis of a model is discussed, focusing on non-imaging longitudinal data.

1.1.3 Robustness in Medical Diagnosis

Medical diagnostics systems powered by machine learning are reported to have achieved
similar performance with physicians on applications in radiology, pathology, dermatology, and
ophthalmology, to name a few [61]. Many aspects of healthcare can be aided by machine
learning systems, including diagnosis, treatment planning, surgery, patient triage, and health
insurance claim approvals [288].

Analyzing medical information is executed using standardized Medical Imaging formats like
Digital Imaging and Communications in Medicine (DICOM) [199]. Medical images are shared
within a hospital’s Picture Archiving and Communication Systems (PACS) to allow efficient
archiving and data analysis. Moreover, Electronic Health Records (EHR) is a standardized
collection of patient and population health information electronically stored in a digital
format.

Health insurance providers, pharmaceutical companies, and healthcare providers constitute
some of the stakeholders within the healthcare system with strong financial interests [239].

Furthermore, hospitals are underfunded in various parts of the world [1]; thus, their computer
infrastructure systems could be severely outdated and lack technical personnel to update
software and hardware to the latest security measures [135].
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The above factors, namely the extensive digitization, the outdated infrastructure, and the high
financial interests, constitute healthcare especially vulnerable to security threats. In recent
years cyber attacks against systems using artificial intelligence leverage data poisoning, model
theft, and adversarial examples [86]. Adversarial approaches could enable billing teams
of insurance companies to imperceptibly alter insurance claims without getting detected by
fraud detectors [239]. Manufacturing companies could also be tempted to utilize adversarial
methods for the approval of drugs and devices. Pharmaceutical corporations could deploy
adversarial approaches to maliciously bias trial outcomes [86].

Stites et al. [265] built an application that scans the World Wide Web and locates available
and unprotected radiology servers. Their scan found 2774 radiology or DICOM servers that
were unprotected worldwide. 719 of those servers were fully open to sharing patient data
communications [265]. Furthermore, in the past 10 years, approximately 3000 breaches, each
including more than 500 medical records, have taken place in the United States [35].

CyberAngel [203] created a framework that scanned around 4.3 billion IP addresses and
found more than 45 million unique medical images on over 2,140 unprotected servers across
countries, including the US, UK, France, and Germany. They also discovered that openly
available medical images were accompanied by up to 200 lines of metadata per patient, which
included information about the patient name, birth date, address, height, weight, diagnosis,
and more [203].

In 2019, Mirsky et al. [199] showed how an attacker could leverage a deep learning system
to insert or remove abnormal findings on CT and MRI scans in DICOMs from the scanner
to the PACS. Two deep networks were used, one for injection and the other for removal of
lung nodules. The altered images were so realistic that they fooled 99% of radiologists who
evaluated them [75, 199].

Another type of malware that challenges organizations around the world is “ransomware”.
This is a malicious software that, once downloaded and executed, encrypts as many files as
possible and then demands a ransom payment to recover the files [82]. Healthcare is one of
the most affected fields, with 15% of ransomware globally found in healthcare institutions in
2017 [207].

Exposure to such sensitive information can lead to identity theft, fraud [239], and millions of
dollars in litigation costs from lawsuits by law firms and victims of such breaches [75].

Investigating and evaluating the robustness of DNNs for medical applications could alleviate
some of the security threads in healthcare and facilitate the resilience of AI systems.

1.1 Learning Robust Representations 5





2Contributions

This thesis is built from the following contributions. In Part II, we first give an overview of
adversarial attacks and defenses and their applications in medical imaging. Afterwards, we
discuss methods to improve a model’s robustness to geometric transformations. Finally, we
introduce a ternary quantization method for large volumetric models that leads to improved
training dynamics:

• M. Paschali, W. Simson, A. Guha Roy, R. Göbl, C. Wachinger, N. Navab. “Manifold
Exploring Data Augmentation with Geometric Transformations for Increased Performance
and Robustness.” International Conference on Information Processing in Medical Imaging
(IPMI), 2019

• M. Paschali*, S. Gasperini*, A. Guha Roy, M.Y.-S. Fang, N. Navab. “3DQ: Compact
Quantized Neural Networks for Volumetric Whole Brain Segmentation.” International
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI),
Shenzhen, 2019 (Equal Contribution)

In Part III, we address robustness evaluation with an emphasis on standardized model bench-
marking. We then introduce a novel model evaluation technique using adversarial examples
proposed in the following contribution:

• M. Paschali, S. Conjeti, F. Navarro, N. Navab. “Generalizability vs. Robustness: Ad-
versarial Examples for Medical Imaging.” International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), Granada, 2018

Finally, in Part IV, we tackle robustness beyond imaging data and present a novel pipeline that
combines deep learning with statistical evaluation to perform longitudinal prediction from
tabular data presented in:

• M. Paschali, O. Kiss, Q. Zhao, E. Adeli, S. Podhajsky, I. Gotlib, K.M. Pohl, F. Baker.
“Predicting Symptoms of Depression in Adolescents based on Longitudinal Self-Reports and
Behavioral Assessments.”, 2021 (Under Review)
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3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 The Linearity Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Types of Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . 14

3.2 Crafting Adversarial Examples . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Gradient-based Attacks . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Transformation-based Attacks . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Other Attack Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.4 Applications of Adversarial Attacks . . . . . . . . . . . . . . . . . . 17

3.3 Adversarial Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Adversarial Examples in Medical Imaging . . . . . . . . . . . . . . . . . . 24

3.1 Introduction

As discussed in the previous chapter, robustness is a broad term that describes the resilience of
a deep model to test samples that do not originate from the same distribution as the training
data. Therefore, to improve the robustness of a model, we need to first specify what kind
of robustness is critical to a particular application. Some methods, like data augmentation,
are general and can benefit both the generalizability and the robustness of a model. Others
like adversarial training are more specific to a use case, namely adversarial examples. Thus
in this Part of the dissertation, we will first discuss ways to improve a model’s robustness to
adversarial attacks and then introduce two contributions, a data augmentation method tailored
to increase robustness to geometric transformations and a ternary quantization mechanism
that enhances training dynamics and model performance.

Szegedy et al. [273] discovered that minute changes to the input of a neural network can
have significant effects on its output. Specifically, a minor perturbation of pixels in the input
image to a classifier can completely change the class predicted by the model. Moreover, the
difference between the original and perturbed examples is often imperceptible to the human
eye. This sensitivity to small perturbations has been found to exist not only in neural networks
but also in traditional machine learning techniques, like linear models and nearest neighbor
classifiers [212]. Even though the human brain is not fooled in the same way as machine
learning models, optical illusions, like the ones shown in Fig. 3.1 trick the human brain
similarly to how adversarial examples fool classifiers.

Such minimally perturbed samples that are able to fool machine learning models are called
adversarial examples and are an interesting area of research for various reasons. First, they
highlight that machine learning methods do not yet fully understand the tasks they are trained
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Fig. 3.1. Adversarial examples have similar effect to machine learning models like optical illusions to the human
brain. Left: Concentric circles illusion. Right: The impossible cube or irrational cube, an impossible
object invented by M.C. Escher [220].

to perform, even when these methods achieve human level performance on a test set consisting
of natural inputs. Thus, if we improve the performance on adversarial examples, machine
learning models will acquire a better understanding of underlying tasks and make the right
decisions for the right reasons. Second, adversarial examples can have crucial implications for
computer security, which is particularly interesting for healthcare as discussed earlier in the
Introduction.

A noteworthy property of adversarial examples is that a specific adversarial example that was
crafted to deceive one classifier, model A, will often also deceive another model, model B.
When model B has a different architecture than model A, this phenomenon is called cross-
model generalization of adversarial examples. Moreover, if model B was trained on a different
training dataset than model A, this is called cross-dataset generalization [102, 116, 273, 282]

Fig. 3.2 shows the learned decision boundaries of models A and B and the actual task boundary
between classes 1 and 2 [282]. Since the models boundaries are similar, an adversarial example
generated for model A can also often cross the boundary of model B. The trasferability of
adversarial examples shows that they pose a security threat even when the attacker does not
have access to the target’s model architecture, weights, or training set.

Based on their knowledge of the target, adversarial attacks can be split into white-box attacks,
where the adversary has full access to the model and its parameters to generate adversarial
examples and black-box attacks, where the adversary has no or limited knowledge about the
model, and crafts adversarial examples without any gradient information using an independent
classifier [212, 213].
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Fig. 3.2. Model decision boundaries and adversarial example transferability. Model boundaries are similar, hence
an adversarial example generated for model A can also often cross the boundary of model B [282].

3.1.1 The Linearity Hypothesis

Initially the cause for the existence of adversarial examples was unknown [273]. First,
they were attributed to the high complexity and non-linearity of neural networks. However,
Goodfellow et al. [102] found that adversarial examples affect simple models, such as shallow
linear classifiers in a similar way to deep models. Thus, they introduced the linearity hypothesis,
which states that adversarial examples exist due to the fact that models behave extremely
linearly as a function of their inputs.

This hypothesis is based on the fact that deep neural networks (DNNs) often use components
that are extremely linear, such as rectified linear units (ReLUs) [100]. Even though, DNNs
are nonlinear as a function of their parameters, they are linear as a function of their inputs.
Networks using ReLUs divide input space into several regions, with the output of the rectified
linear layers being linear within each region. To grasp the reason linear functions are
vulnerable to adversarial examples, consider the output of a model f(x) = wTx. If the input
x is perturbed by ε · sign(w), then the output increases by ε||w||1. For a high dimensional w,
the increase in the output can be extremely large [102, 116].

Next we will discuss how adversarial examples are distributed in space. Initially, it was
hypothesized that they were rare and occurred in small pockets around the decision boundaries
of a classifier that can only be found with careful search strategies [273]. However, according
to the linearity hypothesis adversarial examples take up large volumes of space. If a loss
function L(x, y) increases in a linear fashion towards a direction d, then an adversarial
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example x̂ = x + ε will be misclassified as long as εTd is large. Thus, the linearity hypothesis
dictates that a hyperplane where εTd = C for a constant C divides the space into two half-
spaces. The original input x along with a large region of samples on the same side of the
hyperplane as x are correctly classified. However, on the opposite side of the hyperplane,
nearly all points have a different classification [102, 116].

3.1.2 Types of Adversarial Attacks

The adversarial perturbations explained above are responsible for evasion attacks and require
minimal changes to be done to the original test images. However, an attacker cannot always
craft adversarial perturbations at test-time.

It has been shown [28] that machine learning systems are still susceptible to another type of
attack called poisoning attacks. These attacks occur at training time; the attacker manipulates
the performance of a model by inputting carefully constructed poisoned samples into the
training data. In [247] those poison instances are constructed using a watermarking strategy,
and the attacker is populating the training dataset with clean and poisoned samples to cause
deterioration in the model performance.

Another type of data poising attacks are backdoor attacks [59]. A backdoor is a kind of input
that the model’s creator is unaware of but that the attacker can use to manipulate the ML
system predictions. For instance, an attacker could teach a malware classifier that if a certain
artefact is present in a file, the file should always be classified to a specific class. That way,
the attacker can create an adversarial input as they insert that artefact somewhere into their
file [221]. Additionally, it has been shown [106] that poisoned models can be transferred
using transfer learning even on a completely different dataset.

Finally, model stealing or extraction describes an attack, where a black box machine learning
system is interrogated to either reconstruct the model or extract the data it was trained on.
This could lead to critical issues regarding personal private training data or confidential and
sensitive models [162]. Krishna et al. [162] showed that an attacker could steal natural
language processing models without access to any input training data. Their proposed attack
inputs randomly-sampled sequences of words to a victim model and fine-tunes their own
classifier on the labels predicted by the victim model [128].

Kaissis et al. [141] thoroughly discuss how such attacks to models or datasets can have a
critical impact in healthcare and how differential privacy [80] can be applied to the input
data, the results of an algorithm or the algorithm itself to provide resistance to such attacks.

Within the scope of this dissertation, we will focus on evasion attacks with adversarial examples
and their defenses, methods to improve model training dynamics and robust evaluation
pipelines for imaging and tabular data.
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3.2 Crafting Adversarial Examples

Let x ∈ Rn be a vector of input image features, such as pixels, and y be an integer specifying
the classification label for x. Let f be the classification function learned by the model, so that
f(x) is the prediction of the model. Let L(x, y) be the cost used to train f [116]. The goal of
adversarial example crafting is to find an input point x̂ = x+ ε that causes misclassification
by f . Various methods for adversarial example crafting have been proposed using different
criteria to determine the model’s performance, different strategies to minimize the size of
ε, and different approximations to optimize the selected criterion [102, 116, 273]. Since
the goal of adversarial examples is to be imperceptible by the human eye, every adversarial
crafting method aims at finding the minimum ε that will still fool a trained model.

3.2.1 Gradient-based Attacks

Szegedy et al. [273] proposed the first adversarial crafting method, based on solving the
following optimization problem:

ε = argminελ||ε||22 + L(x+ ε, ŷ) (3.1)

for (x + ε ∈ [0, 1]n) and where ŷ is the target class the adversarial example should be
misclassified to [273]. They used box-constrained L-BFGS to perform the minimization,
which was repeated iteratively with multiple values of λ so that the minimum amount of
perturbation ε that can fool f can be found. The method is computationally expensive, due
to the iterative optimization procedure for each example, however it is highly effective in
crafting imperceptible adversarial examples with high success rate [116, 273].

Goodfellow et al. [102] simplified the problem and proposed the Fast Gradient Sign Method
(FGSM). They calculated the added perturbation ε as follows:

ε = argmaxεL(x+ ε, y) (3.2)

In this case ||ε||∞ < η, where η is a hyperparameter chosen by the attacker to specify
the maximum allowed amount of perturbation to the input image pixels. To obtain a fast,
closed-form solution, Goodfellow et al. [102] replaced L with a first-order Taylor series
approximation:

ε = argmaxεL(x, y) + εTg, where g = ∇xL(x, y) (3.3)

subject to ||ε||∞ < η. The solution to Equation 3.3 is:

ε = η · sign(g) (3.4)

FGSM is extremely fast compared to the L-BFGS method of Szegedy et at. [273] since it
required gradient computation only one time. The original version shown above creates an un-
targeted attack, since the user does not specify the required ŷ of the adversarial example [102,
213]. FGSM can become targeted as follows:

x̂ = x− η · sign(∇xL(x, ŷ)), where ŷ = argminyfy(x) (3.5)
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Original C&WJSMAFGSM BIM

Fig. 3.3. Overview of adversarial examples generated with some of the discussed attack crafting methods, namely
FGSM [102], BIM [164], JSMA [213] and C&W [51]. The image belongs to the ImageNet dataset [74]
and for the generation adversarial.js [36] was used.

FGSM, after one step, usually required a high η to produce strong adversarial attacks; however,
those can be detected by the human eye. Basic Iterative FGSM (BIM), where η is gradually
increased, is another variation of FGSM that requires little computation with low overall
perturbation [164].

Most methods of crafting adversarial examples perturb many input pixels, each by a minimal
amount. Papernot et al. [213] introduced the Jacobian-based Saliency Map Attack (JSMA),
a different approach that changes only a few input pixels, each one by a large amount.
They extend the idea of saliency maps [255], commonly used as a visualization to compute
adversarial saliency maps. These maps indicate which input pixels should be perturbed by the
adversary to cause the desired changes to the network prediction. After each iteration, they
maximally modify the highest-saliency pixels. JSMA is successful on input images with low
dimension like MNIST [167] but is too computationally expensive for large images.

Madry et al. [183] proposed an extension of BIM called Projected Gradient Descent (PGD)
attack and formulated it as a constrained optimization problem. The constraint for η is
expressed as the L2 or L∞ norm of the perturbation. The difference in comparison to BIM is
that PGD initializes the example to a random point in the ball of interest within the L2 or L∞
norm, while BIM initializes to the original point. PGD starts from a random perturbation in
the ball around a sample. Then takes a gradient step in the direction that maximizes the loss,
and it projects the perturbation back into the L2 or L∞ ball to maintain a minimal amount of
added perturbation. The process is repeated until convergence [158, 183]. Carlini and Wagner
introduce another strong constrained optimization-based attack (C&W) [51]. Examples of the
aforementioned attacks can be seen on Fig. 3.3.

Another well-known adversarial attack is DeepFool [202], which consists of an iterative greedy
search process. In every iteration, the projections of the input image to the decision boundaries
of all classes are computed, and η is inferred to push x towards the decision boundary of the
closest incorrect class. An extension of DeepFool is Universal Adversarial Perturbation [201].
The method computes a universal perturbation for a set of training samples by aggregating
individual perturbation vectors that send the input samples towards the decision boundary.
They showed that such perturbations were successful within the images of one dataset and
were transferable among network architectures. In a similar direction, Brown et al. [41]
introduced the Adversarial Patch, a universal, targeted adversarial attack. Adversarial patches
can be printed and added to any scene or photograph, causing misclassified predictions
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to various classifiers. It should be noted that the patch, even though it is small, is not
imperceptible and can be detected by human observers.

3.2.2 Transformation-based Attacks

Xiao et al. [298] introduced the Spatially Transformed adversarial examples. They maximized
the model’s cost function to predict the target misclassification class and minimized the spatial
transformation (flow) of the pixels in their neighborhood. Using this method, instead of
changing individual pixel values, they were shuffling pixels within a small neighborhood.
This attack was particularly robust against a common defense strategy called adversarial
training, encouraging the attention of the model to be located in the wrong parts of an image.
Another transformation-based approach is ManiFool [143], which finds optimized affine
transformations that, when applied to an image, can fool a classifier. This attack is particularly
interesting for this dissertation, as it is among the few ones that don’t rely on individual pixel
perturbations. The contribution, which will be described in the next Chapter, extended the
idea of ManiFool and showed that ManiFool adversarial training could dramatically increase
the performance of a model to random affine and projective transformations and the clean
test set [217]. Recently, Rahmati et al. [228] proposed a Geometric Decision-based Attack
(GeoDA), a geometric framework that linearizes the decision boundary of classifiers.

3.2.3 Other Attack Mechanisms

Su et al. [267] introduced the One-pixel attack. They used an Evolutionary Algorithm called
Differential Evolution and iteratively generated adversarial examples that minimized the
confidence of a classifier. Initially, several adversarial candidates are generated by modifying
a random pixel. After getting the model’s predictions, the previous pixels’ positions and
colors were combined, generating more adversarial candidates. This step is repeated until
an adversarial image with one pixel perturbed reduced the model’s confidence, causing
misclassification. This method showed that differential evolution is not computationally
expensive and can be applied to various problems [286].

Another group of attacks is using Generative Adversarial Networks (GANs) to craft adversarial
examples [297]. A generator, a discriminator, and an attacker are trained jointly [17]. The
proposed attack has high success rates with low generation time. Cycle Consistency GANs
have also been similarly employed to craft adversarial attacks [138]. It has also been shown
that a CycleGAN could act as both an attack and a defense mechanism since it can generate
clean samples from adversarial images.

3.2.4 Applications of Adversarial Attacks

Inspired by the attack crafting mechanisms described above, various applications of adversarial
examples have been demonstrated in many fields and beyond images.

Attacks on semantic segmentation
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Fig. 3.4. Example of adversarial example crafted using DAG [301] in [215]. The target prediction is consists of
solely background pixels and as can be seen by the model predictions, the attack is highly successful,
substantially distorting the model prediction.

Xie et al. [301] introduced Dense Adversarial Generation (DAG), which operates like a per-
pixel targeted version of FGSM. They showed that both semantic segmentation and detection
networks could be fooled with high success rates. Especially for segmentation, regardless of
the image’s content, the predicted segmentation maps highly resembled the target ones that
were completely different from the input image. In the next part of this dissertation, we will
discuss one of our contributions [215] that leveraged DAG to generate adversarial examples
for whole-brain segmentation that were then used as a benchmark for model robustness
evaluation. An example of the DAG attack on whole-brain segmentation is shown in Fig. 3.4
using a slice from a volume from the OASIS [186] dataset. Fischer et al. [87] extended the
universal adversarial perturbations for semantic segmentation and utilized them successfully,
showing that a network can be tricked into not segmenting pedestrians standing in the middle
of a street.

Attacks on audio and speech

Adversarial examples can be found in modalities other than imaging, specifically audio and
speech. Alzantot et al. [7] proposed a method based on genetic algorithms to craft adversarial
examples. The targeted attack creates a population of candidate adversarial samples by adding
random noise to a subset of them within an audio clip. Afterwards, the fitness score for each
population member is computed, and the next generation is produced, minimizing the noise
effect on human perception.

Cisse et al. [66] introduced Houdini, a gradient-based approach that was successfully applied
to speech recognition, pose estimation, and semantic segmentation in both a targeted and
untargeted setting. Carlini and Wagner [48] introduced a white-box iterative optimization-
based attack for speech recognition that measured distortion in Decibels (dB) and ensured it
was imperceptible by humans with a very high success rate.
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Fig. 3.5. Overview and taxonomy of defense mechanisms against evasion attacks with adversarial examples
discussed in this dissertation.

Various methods have shown that Graph Convolutional Networks (GCNs) are also vulnerable
to adversarial examples [31, 316]. Moreover, attacks have been proposed against deep
reinforcement learning [24, 130, 229]. We won’t delve into these approaches since they are
out of the scope of this dissertation.

3.3 Adversarial Defenses

Adversarial robustness is useful for applications beyond security [209] and developing mech-
anisms to improve it can lead to substantially better models. Adversarial defenses vary
significantly based on the attacks they are targeting, i.e. poisoning attacks during training
time or test-time attacks. Furthermore, defenses can be categorized into proactive, which aim
to create robust models before their deployment and reactive which aim to detect an attack
on test-time and act accordingly. A taxonomy of defenses is shown in Fig. 3.5.

Adversarial Training

A widely used and straightforward approach against adversarial examples is to use them
explicitly during training. This is a proactive defense strategy since models are protected
against adversarial attacks during training before being deployed. It should be noted that
adversarial training [102] is not equivalent to data augmentation [116] since adversarial
examples are not images that are expected to occur naturally at test time and do not provide
the same information to the network as the clean training images. Adversarial perturbations
are recomputed using the latest version of the model parameters after every minibatch. The
training process can be interpreted as a minimax game with the learning algorithm as the
minimizing player and the adversarial crafting process (such as L-BFGS, FGSM or PGD) as the
maximizing player [116]. Various defense methods incorporate adversarial training, either
as the only measure [281] by augmenting training data with perturbations transferred from
other models or as auxiliary support [240]. Moreover, experiments have been conducted on a
large scale for adversarial training by Kurakin et al. [163].

The robustness provided by adversarial training relies heavily on the attacks used for training,
which usually include FGSM and PGD. Since PGD is the most potent gradient-based attack, it
brings the most significant improvement in robustness when used during adversarial training.
A recent study by Athalye et al. [13] showed that adversarial training was one of the few
defenses against adversarial examples that remained resilient.
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Fig. 3.6. Overview of the defense mechanism proposed in [300]. Random resizing and random padding are
applied to an input image to eliminate the effects of adversarial perturbation before the model prediction.

However, adversarial training is time-consuming since, in addition to the gradients needed to
update the model weights, each stochastic gradient descent iteration requires more gradient
computations to craft the adversarial images. It has been shown that it takes 3-30 times longer
to train a robust model with adversarial training than a non-robust equivalent. To that end,
Shafahi et al. [248] introduced a fast adversarial training variation in which both network
parameters and added image perturbations are computed once using a simultaneous backward
pass. Later, adversarial training was also introduced for universal perturbations [249] as a
min-max optimization problem where the minimization is over the model weights and the
maximization over a universal perturbation.

Kannan et al. [145] proposed a different adversarial training technique called adversarial logit
pairing (ALP). ALP encourages the similarity between pairs of images in the learned logit space
by including the cross-entropy between the logits of benign samples and the corresponding
perturbed samples in the training loss.

Defensive Distillation

Papernot et al. [211, 214] propose to combine two models in a student-teacher fashion to
increase the robustness against adversarial examples inspired by knowledge distillation [125].
Specifically, the teacher network is trained with the original training dataset of clean images
with one-hot ground truth labels and learns to predict a probability distribution over the labels
of each class. Afterwards, the student model is also trained using clean training data, but
instead of the ground truth for each image, the probability distribution predicted by the teacher
model is used as a label. That way, the boundaries formed between the classes are less linear,
and the model is encouraged to have lower confidence when classifying an ambiguous sample.
However, this defense mechanism was found vulnerable by Calrini et al. [49]. Our experiments
found that models trained with defensive distillation were vulnerable to black-box attacks but
were substantially more robust to adversarial crafting, producing higher levels of perturbation
for adversarial examples, creating more distorted and easily detectable samples.
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Fig. 3.7. Overview of the defense mechanism proposed in [178]. This method introduces a noise layer before
each convolution during both train- and inference-time and ensembles the predictions for different
random noise to stabilize the outputs of a model and eliminate the effect of adversarial perturbations.

Randomization

Recent defenses resort to randomization mechanisms to minimize the effects of adversarial
perturbations in the input or feature space. Randomization-based defenses attempt to random-
ize the adversarial effects so that they are turned into random effects, which are not a concern
for the majority of DNNs. Since adversarial perturbations result from meticulous optimization
procedures, often dependent on a model and dataset, randomizing the input can eliminate
the adversarial effects.

Xie et al. [300] utilize two random transformations, resizing and padding, to eliminate the
adversarial effects at inference time as can be seen in Fig. 3.6. Random resizing resizes
the input image to a random size before forwarding them to a trained model. Random
padding added zeros around an input image in a random manner. This intuitive approach
achieves robustness to black-box adversarial attacks. However, under the white-box setting,
this mechanism was compromised by an attack proposed by Athalye et al. [14]. Guo et
al. [107] apply random image transformations such as bit-depth reduction, JPEG compression,
total variance minimization, and image quilting before feeding an image to a model. This
defense approach is robust to black-box adversarial examples but is also vulnerable to the
attack proposed in [14].

Liu et al. [178] introduce a random noising mechanism called random self-ensemble (RSE)
shown in Fig. 3.7. RSE adds a noise layer before each convolution layer during both train- and
inference-time and ensembles the prediction results over different random noises to stabilize
the outputs of a model and minimize the effect of adversarial perturbations. Moreover [172]
proposes to directly add random noise to image pixels before classification in order to eliminate
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Fig. 3.8. Overview of the adversarial example detection method proposed in [304]. The network is evaluated
on the original input and input pre-processed by the feature squeezers. If the difference between the
model’s prediction on a squeezed input and its prediction on the original input is higher than a threshold,
the input is considered adversarial.

the strength of adversarial perturbations and provides an upper bound regarding the size of
adversarial perturbation the method is robust to.

Dhillon et al. [77] introduce stochastic activation pruning (SAP) to defend pre-trained models
against adversarial examples by stochastically pruning a subset of the activations in each layer
while maintaining the activations with larger magnitudes. Even though this method is robust
to some black-box attacks, it is also vulnerable to the attack of Athalye et al. [14] that is
tailored to randomization defenses. Luo et al. [181] propose to mask the feature maps after
each convolutional layer randomly. By randomly masking these maps, each filter only extracts
features from partial positions. This defense shows high robustness to black-box attacks, and
the adversarial examples it is vulnerable to are usually also confusing to humans.

Denoising

Denoising is a straightforward reactive method to mitigate the effects of adversarial perturba-
tions. Previous works can be categorized into input denoising and feature denoising. Input
denoising attempts to remove the adversarial perturbations from an input image directly,
while feature denoising alleviates the effects of adversarial perturbations directly on DNN
features.

Xu et al. [303, 304] introduce two denoising methods using bit-reduction and image-blurring
to reduce the effects of adversarial perturbations. Adversarial example detection is achieved
by comparing the predictions of a model on an original and a squeezed image as can be seen
in Fig. 3.8. The original input is considered an adversarial example if the two types of inputs
produce substantially different predictions. However, feature squeezing was shown to be
vulnerable to adversarial attacks of increasing difficulty [118, 250].

Other works use GANs to learn the distribution of the clean data to generate a clean projection
of an adversarial example, thus alleviating the perturbation effect. Defense-GAN [241] trains a
generator to model the distribution of clean images. During inference, Defense-GAN denoises
an adversarial example by looking for an image close to the adversarial input in its learned
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Fig. 3.9. Overview of the metric learnign defense approach proposed in [185]. In Triplet Loss Adversarial (TLA)
training a triplet is selected so that the negative sample is the closest one withing the mini-batch.
After training the distance between clean and adversarial examples originating from the same class is
minimized while the margins to different classes increase.

distribution and forward this benign image into the model instead. This method remains
highly effective against adversarial attacks, and its success has only been reduced by [13].

Similarly, the adversarial perturbation elimination GAN (APE-GAN) [139] also trains a genera-
tor to denoise an adversarial example. Even though APE-GAN achieves a good performance in
a black-box setting, it is vulnerable to the adaptive white-box attack introduced in [50].

In MagNet [195] an auto-encoder is leveraged to learn the manifold of clean samples. Af-
terwards, a detector distinguishes between clean and adversarial examples according to the
relationships between those and the learned manifold. The reformer is trained to denoise
the adversarial samples and turn them to their clean counterparts. Despite MagNet’s suc-
cess against black-box attacks like FGSM, Carlini and Wagner [50] showed that MagNet is
vulnerable to transferable adversarial examples crafted with the CW2 attack.

Liao et al. [175] describe a High-level representation Guided Genoiser (HGD) that denoises
the features distorted by the adversarial perturbations. Instead of denoising the image pixels,
HGD uses a denoising U-net [236] with a feature-level loss function that minimizes the feature
difference between clean and adversarial examples. Even though HGD was successful against
black-box attacks, it was compromised by a PGD attack in a white-box setting [12].

Metric Learning Defenses

Mao et al. [185] introduced Triplet Loss Adversarial (TLA) training, a metric learning defense.
For a triplet, the negative example was selected to be the image closest to the anchor that
belongs to a different class as shown in Fig. 3.9. In addition, a positive sample from the same
class as the anchor was randomly selected within a mini-batch. Thus, TLA brought clean and
adversarial examples originating from the same class closer and increased the margins to the
different classes. TLA showed increased robustness even for attacks such as PGD.

Papernot et al. [210] proposed a defense based on k-nearest neighbors (KNN) called Deep
KNN (DkNN). KNN is run on the representations of each layer of a DNN and is used to
estimate the abnormality of a prediction for a test sample. The prediction can be considered
abnormal when the DNN representations for a test input are far from the representations
of training samples of the same class as the predicted one. DkNN showed its robustness to
various adversarial attacks, including the C&W attack.
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Provable Defenses

The defenses described above are based on heuristics, which means that their effectiveness is
experimentally validated, rather than theoretically proved. Thus, even though some of those
heuristic defenses are still robust, they could still be vulnerable to future attacks. To that
end, we will now discuss provable defense mechanisms that maintain their robustness for a
well-defined type of attack.

Raghunathan et al. [226] propose a certifiable defense method against adversarial examples
for two-layer models. The authors propose a semidefinite relaxation that can create a differ-
entiable certificate for the network’s robustness. Afterwards they incorporate the relaxation
to the loss as a regularizer to encourage robustness. This method certifies that no attack
that perturbs each image pixel by at most ε = 0.1 can cause more than 35% test error on
MNIST [167]. They later expanded their certificate to more networks, also including the ReLU
activation function [227].

Wong and Kolter [294] formulate a dual problem to upper-bound the adversarial polytope.
Different from [226] this approach can be applied to deep networks with arbitrary linear
operators, such as convolutions. Their approach is scaled further in [295] to more general
deep architectures with skip connections and nonlinear activations. They also propose a
nonlinear random projection technique to estimate the upper bound that only scales linearly
with the size of hidden units, making it applicable to larger models.

Balunovic et al. [21] proposed Convex Layerwise Adversarial Training (COLT) which combines
adversarial training and provable defenses. Specifically, the training procedure combines
both the verifier and the adversary. The verifier aims to certify the model with convex
relaxation while the adversary attempts to find inputs inside the convex relaxation, which
cause verification failure.

Another approach to provable defense is introduced in [258], where the problem is tackled
as distributionally robust optimization. They consider a Lagrangian penalty formulation
of perturbing the underlying data distribution in a Wasserstein ball and follow a training
procedure that combines model weight updates and worst-case perturbations for the training
data.

3.4 Adversarial Examples in Medical Imaging

Adversarial robustness has also been an active area of research in medical imaging due to
the need for increased security in critical healthcare systems. To this end, one of the first
introductions of adversarial examples for medical imaging is one of the contributions of
this dissertation [215]. In our work, which will be thoroughly discussed in the next Part,
we proposed to use adversarial examples as benchmark for thorough model evaluation,
especially in cases where different model architectures achieve the same performance on clean
data. Finlayson et al. [86] discuss how the healthcare system may be uniquely vulnerable
to adversarial attacks, both regarding monetary incentives and technical issues and attack
state-of-the-art DNNs for the tasks in dermatology, ophthalmology and radiology.
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Fig. 3.10. Overview of the method proposed in [174]. By incorporating additional anatomical information,
specifically the volume of each brain structure, the model’s age predictions became more robust.

Notably, Ma et al. [182] found that medical DNNs can be more vulnerable to adversarial
attacks compared to models for natural images. This is attributed to the fact that medical
images usually have complex biological textures with high gradient regions that are sensitive
to adversarial perturbations; and that state-of-the-art DNNs designed for large-scale natural
image problems are often overparameterized, leading to a sharp loss landscape and high
susceptibility to adversarial attacks. However they also found that, medical adversarial attacks
can be easily detected, due to critical feature differences compared to natural images.

Adversarial Attacks for Medical Applications

Li et al. [306] proposed Adaptive Targeted Iterative FGSM (ATI-FGSM), a tailored attack
against DNNs for multiple landmark detection. ATI-FGSM adds imperceptible perturbations to
an image and can influence the model’s predictions of user selected landmarks, while keeping
the other landmarks still. Experiments showed that ATI-FGSM was more effective against the
original Iterative FGSM attack for cephalometric landmark detection.

Commonly used attack mechanisms do not directly extend to Electrocardiogram (ECG) signals,
since such methods introduce artefacts to the signals that are not physiologically possible. To
that end, Han et al. [111] recently developed a method to construct smoothed adversarial ex-
amples for ECG tracings that are imperceptible to human evaluation. Their attack is evaluated
on a DNN for arrhythmia detection from single-lead ECG, showcasing the vulnerability of the
model to the newly introduced attack.

Adversarial Defenses for Medical Applications

Li et al. [174] proposed a hybrid model for age prediction from brain MRI scans that is shown
in Fig. 3.10. Specifically, they found that introducing anatomical context to the training process
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Fig. 3.11. Overview of the denoising method proposed in [305]. A neighbor loss is used to amplify the similarity
between noisy and clean samples in the feature space and enhance the robustness of the model by
denoising adversarial samples.

substantially increases the model’s robustness. To this end, they augmented the training of
the DNN with the volume of each brain region computed through traditional multi-atlas
segmentation techniques. Another approach is utilizing adversarial training with PGD samples
for lung nodule detection [177]. They showed that their method was more robust to both
under-represented nodules and resilient to noise perturbations.

An adversarial example detection method was proposed in [173] for Chest X-ray multi-label
pathology classification. For a clean or adversarial input, the system first extracts features
using a CNN classifier trained on clean data. Afterwards, the detection module rejects the
input if it is considered adversarial or predicts the classification label. The detection module
uses a unimodal multivariate Gaussian model (MGM) to identify the attacks.

Bortsova et al. [292] analyzed black-box adversarial attacks for DNNs used for ophthalmology,
radiology, and pathology. They investigate the effect of pre-training and training data similarity
to a model’s robustness. Their experiments showed that pre-trained weights could lead to
higher adversarial example transferability and that data disparity between the target and the
source models of the attacks contributed to increased robustness. Their analysis concluded with
a set of recommendations to increase the robustness of a system deployed for healthcare.

Another defense strategy, shown in Fig. 3.11 was described in [305], where they developed
a method that directly enhances a classifier’s denoising ability with a naturally embedded
auto-encoder and a mechanism for semantic feature invariance for general noise. Specifically,
a neighbor loss is employed to emphasize the similarity between noisy and clean samples in
the feature space. Experiments on dermatology and radiology showed that the robustness of a
classifier with the proposed denoising strategy could be substantially improved. Xu et al. [302]
introduced two defense strategies based on adversarial training, namely, Multi-Perturbations
Adversarial Training (MPAdvT) and Misclassification-Aware Adversarial Training (MAAdvT).
MPAdvT trains DNNs using different perturbation levels and varying adversarial iteration steps.
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In MAAdvT a misclassification-aware regularization using Kullback-Leibler (KL) divergence is
added to the adversarial loss to stabilize the loss for clean samples that are being misclassified
by the DNN.

Explainability with Adversarial Examples

Recent works aim at using adversarial examples to improve various aspects of model training,
evaluation and interpretation. Khakzar et al. [150] aim at enhancing the learned feature
representations of DNNs by training models that are robust against adversarial examples. Their
approach using robust optimization steers the model towards learning more interpretable
features. They evaluate their method on weakly-supervised localization of anomalies on Chest
X-Rays showing increased localization accuracy and enhanced interpretable gradients.

Chang et al. [53] proposed an adversarial explanation technique for applications in ophthal-
mology. Their regularization method, inspired by the Lipschitz constraint, showed that when
the model is distorting images to deliberately change the prediction to pathologic or normal
it is providing explanations for the DNN decision process. Glaucoma specialists compared
conventional heatmap-based explanation methods with the proposed adversarial explanation
and identified substantial improvement in the explainability of the model.
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In this Chapter we are discussing the first contribution of this dissertation which has been
published in [217]. Figures 4.1-4.4 and Tables 4.1-4.4 are used with permission from Springer
Nature Customer Service Centre GmbH with License Number: 5058290266725.

4.1 Introduction

Deep learning models have recently been effective in performing medical imaging tasks such
as classification, segmentation, and registration with state-of-the-art accuracy and have found
their way into a multitude of Computer Assisted Diagnosis and Intervention (CAD/I) Systems
that assist physicians.

However, medical imaging datasets are often characterized by considerable class heterogeneity,
extreme class imbalance, outliers, inter-observer variability, ambiguity, and, most importantly,
limited data. The aforementioned issues hinder neural network training, resulting in sub-
optimal and overfit solutions.

Furthermore, deep learning models used by physicians in a CAD/I system must be extensively
evaluated, not only in terms of generalizability (performance on data originating from a given
test set), but also in terms of robustness (behavior on data corrupted by noise, unknown
transformations, and outliers). Data augmentation is the process of increasing the size and
variance of a dataset used to train a machine learning model aiming to improve generalizability
and gain a deeper understanding of the underlying distribution of the training data. The space
representing the distribution of the training data can be viewed as the manifold of a given
class learned by a classifier.

ManiFool Augmentation is achieved by increasing the size of the training dataset for a
given task with samples transformed with optimized affine geometric transformations. The
overview of the method is shown in Fig. 4.1, where it is compared with traditional data
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Fig. 4.1. Schematic representation of proposed augmentation: In contrast to random augmentation (checker-
board pattern), which explores the space around the original training samples x locally, the proposed
augmentation scheme based on ManiFool explores the present classes towards the decision boundaries,
thus incorporating more relevant training samples x(i)

τ . Furthermore, ManiFool Augmentation samples
are ensured to belong to the ground truth class. Figure published in [217], used with permission from
Springer Nature Customer Service Centre GmbH.

augmentation performed with random transformations. The algorithm used to create samples
for data augmentation is inspired by ManiFool [143], and the intuition behind it is rather
intuitive: Iteratively move an image towards a classifier’s decision boundary using affine
geometric transformations, following the direction that maximizes the gradient. After every
step, project the computed movement back onto the original training manifold of the image
being transformed. This procedure is repeated until either a transformation is found that
causes the network to misclassify the transformed sample or a maximum allowed number
of steps is reached. In case of misclassification, we have crossed the decision boundary and
entered the manifold of another class. In that case, we backtrack to the manifold of the
original class and leverage the computed affine transformation for data augmentation.

Unlike conventional augmentation approaches that use random transformations, ManiFool
Augmentation ensures that the network’s training space is not restricted to the immediate
vicinity of a training sample. Instead, as shown in Fig. 4.1, augmentations are found globally up
to the limits of each class-manifold for the entire training set. An effective data augmentation
technique should ensure that the samples used to increase the population of the training
dataset originate from the same manifold as the original data. Using training samples from a
different distribution in the training dataset for augmentation would not necessarily allow
the model to learn a better embedding for each class but rather map the same class to two
different sub-spaces, one for each training manifold.
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A thorough evaluation on two challenging medical datasets shows that the proposed aug-
mentation method improves the robustness of a model to geometric transformations and
substantially increases the performance on the original test data. This is further underlined by
cross-dataset testing, where networks trained with ManiFool Augmentation better captured
the underlying distribution of the training data.

õ
Contributions:

• We propose a novel data augmentation technique, utilizing an exhaustive
manifold-exploration method that improves the performance of a deep
learning model on the provided test set and substantially increases its
robustness to random geometric transformations.

• We describe quantitative measures to evaluate the robustness of a classifier.
A metric like this is a step toward rigorous evaluation of machine learning
models, a significant move toward physicians’ safe and accurate use of
trained models in practical applications involving patient diagnosis and
care.

• We compare three state-of-the-art DNN architectures in terms of their
robustness to geometric transformations and evaluate the quality of their
decision boundaries.

• We thoroughly validate the proposed augmentation technique and robust-
ness metric on two challenging medical imaging datasets for skin and breast
lesion classification.

4.2 Related Work

General Applications

Supervised learning relies heavily on the training dataset used to optimize a classifier. Specif-
ically, in medical imaging applications, datasets can be small, with noisy annotations and
bias to a specific site, scanner, or population group [147]. Thus, utilizing general methods to
reduce the model memorization of the training dataset and avoid overfitting is critical. As will
be discussed later in this dissertation, models that better understand the underlying manifold
of the training data showcase increased robustness.

A widely used method to avoid overfitting and enhance a model’s performance is data
augmentation with random transformations [254]. These transformations can include scaling,
rotation, translation, and flipping. Furthermore, adding salt and pepper or Gaussian noise can
simulate images of decreased quality. Perspective transforms are also used that project the
image from different points of view to emphasize different objects of significance.
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Methods range from elastic transformations [296], noise generation in a learned features
space [76], to repeat, rotate and infill approaches where scaling and rotation are applied to a
training sample in a grid pattern, and background consistency is guaranteed [208]. Fawzi et
al. introduced a data augmentation method that can be used with stochastic gradient descent
and looks for an augmented sample with the greatest loss within a constrained exploration
space called "trust region" [84].

Generative Adversarial Networks (GANs) [103] are also widely used to produce synthetic data
augmentation samples for various applications. Data Augmentation GAN (DAGAN) [10] learns
how to craft synthetic images using a lower-dimensional representation of real examples.
In DAGAN, the generator acts as an autoencoder; it encodes a given image to a compact
representation, adds noise to it, and then decodes it. Thus, the decoder learns a family of
transformations that can act as data augmentation. The DAGAN discriminator learns to distin-
guish between an image and a transformed version of it and a pair of different images from
the same class. That way, the discriminator encourages the decoder to learn transformations
that do not alter the class but produce transformed images that differ substantially from the
original image.

BAlancing GAN (BAGAN) [188] is a conditional GAN approach tailored towards datasets with
severe class imbalance. The model learns features from the majority classes and uses them to
generate images for the underrepresented classes. Unlike DAGAN, class conditioning is applied
to the latent space to push the generation towards a target class. Wang et al. [289] reported,
however, that in many cases, traditional data augmentation with geometric transformations
outperforms GAN-based approaches and is more generalizable.

Other methods for data augmentation that additionally increase robustness include Patch
Gaussian [179], where Gaussian noise is added to randomly selected patches of an image.
This method can increase robustness to high-frequency noise while maintaining the ability to
take advantage of high-frequency information to classify an image correctly. Such a general
method can also be used in combination with other techniques such as AutoAugment [70].
AutoAugment poses augmentation as a discrete search problem in which the search algorithm
is based on reinforcement learning, which aims to maximize the classification accuracy with
data augmentation.

To improve robustness for in-domain and Out-of-Distribution (OOD) data, Self-Supervised
Manifold Based Data Augmentation (SSMBA) has been proposed [206], generating synthetic
training samples by a pair of corruption and reconstruction functions to move randomly on a
data manifold.

Medical Imaging
For medical imaging applications, all data augmentations applied to a dataset must be anatom-
ically and physically correct. Populating the training dataset with highly distorted or infeasible
images can lead to model ambiguity and hinder model convergence and generalizability.

Nalepa et al. [205] proposed a data augmentation method that exploits diffeomorphic image
registration to benefit from subtle spatial and tissue features captured within the training
set for brain-tumor segmentation from MRI scans. A method for one-shot biomedical image
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segmentation with learned image transformations was introduced in [310] where a single
segmented scan is required and combined with other unlabeled scans in a semi-supervised
approach learns a model of transformations and synthesizes additional labeled samples. The
transformations are composed of a spatial deformation field and an intensity change, creating
variations in anatomy and image acquisition procedures. Chen et al. [54] introduced a
data augmentation technique to learn both generalizable and robust features for cardiac MR
image segmentation using an adversarial intensity transformation model, which can simulate
intensity inhomogeneities, a common artefact in clinical MR imaging.

Tirindelli et al. [280] introduced ultrasound-tailored data augmentation transformations
inspired by the physics of the modality. Specifically, they proposed deformation, reverb and
Signal-to-Noise Ratio transformations that were applied to B-Mode ultrasound images of the
spine. The method was validated for segmentation and classification tasks and showed promis-
ing improvement in comparison to DNNs trained with no or with random augmentation.

GANs are also widely used in the field of medical imaging for a variety of augmentation
techniques. Bowles et al. [33] generated high-quality data augmentation samples along with
their annotations using Progressive Growing GANs (PGGANs) for CT and MRI scans. In [92]
Deep Convolutional GANs (DCGANs) were used to increase performance on liver segmentation
from CT scans with synthetic images. GANsfer Learning [34] combined labeled and unlabelled
data with a PGGAN and decoupled the learning of structural variations and the learning of
structure appearance. This method produced high-quality augmentation images in 3 learning
phases used for grey matter segmentation from MRI scans. Another commonly used framework
was based on Cycle Consistency GANs (CycleGANS) [313] to transform contrast CT images
into non-contrast images [242]. The synthetic non-contrast images were leveraged as data
augmentation for kidney segmentation from CT scans, improving the model’s performance
and showcasing increased robustness to OOD samples.

Contrary to the approaches described above, ManiFool does not utilize GANs to create syn-
thetic samples but uses an exhaustive manifold-exploration method to find the optimal affine
transformations that can increase a model’s performance and robustness to geometric trans-
formations.

4.3 Methodology

ManiFool [143] is an iterative algorithm that can be applied to any differentiable classifier
f . This section will describe the mathematical operations that generate a geometrically
transformed example leveraged for data augmentation.

Movement Direction

With an image x with ground truth label y and a binary classifier f we initialize an iterative
process of i steps. The input image at step 0 is noted as x(0). First, ManiFool calculates the
movement direction u to the decision boundary of classifier f . This is done by following
the opposite of the gradient, −∇f(x). The gradient at the step i for the image x(i) is the
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projection of ∇f(x(i)) onto the tangent space and can be calculated with the pseudoinverse
given by:

u = −J+
x(i)∇f(x(i)) = −(JT

x(i)Jx(i))−1JT
x(i)∇f(x(i)). (4.1)

Jx(i) denotes the Jacobian matrix and the computed u for step i defines the direction towards
the decision boundary.

To increase the accuracy and speed-up the convergence during the calculation of u a manifold
optimization method following [3] was used:

u(i) = −λi
J+

x(i)∇f(x(i))
||J+

x(i)∇f(x(i))||
+ γu(i−1), (4.2)

where λi denotes the computed step size in the current iteration and γ is a constant momen-
tum.

Mapping onto the original manifold

Once the movement direction u towards the decision boundary is computed, it is mapped
back onto the manifold of the ground truth class denoted by M. As in [143], the mapping is
carried out with retraction Rx(i)(u) = x(i)

τi , where τi is the affine transformation computed:

τi = exp
(∑

j

ujGj

)
. (4.3)

Gj denote the basis vectors of the Lie Group T of the computed affine transformation. The
algorithm terminates once one of the following two conditions are met: a transformed image
has been misclassified, or the maximum number of iterations Imax was reached. After i steps
the transformation applied to the input image x(0) to generate the ManiFool sample are
accumulated and calculated as:

τ̂ = τ0 ◦ τ1 ◦ . . . τi. (4.4)

Multi-class Classification

In order to extend ManiFool to multi-class classifiers, we execute the following steps: We craft
a ManiFool example for each of the remaining classes. We calculate the geodesic distance
between the original and the transformed image for each class. Afterwards, we select the
generated example, which requires the smallest transformation τymin to cause an erroneous
prediction. The class with the lowest geodesic distance between the original and transformed
image can be calculated as:

lmin = arg min
l 6=lx

d̃x(0)(e, τl). (4.5)

Next, we will elaborate as to how the distance d̃x(0) is computed and how it can be used as a
metric for robustness evaluation of DNNs.

4.3.1 Invariance to Geometric Transformations

Geodesic Distance Between Transformations
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The geodesic distance dx(i) between two transformations τ1 and τ2 is given by the length L
of the shortest curve γ between τ1 and τ2. However, the metric space of the manifold of the
training data is not known. Thus, we have to acquire a metric in the Riemannian space. This
can be achieved by mapping the Lie group T to the differentiable image manifold of x(i)

τ1 and
x(i)
τ2 , which inherits the Riemannian metric from L2 [143, 160, 285]. The geodesic distance

computed after the mapping between τ1 and τ2 is found by the shortest path between x(i)
τ1 and

x(i)
τ2 . This can be computed as:

dx(i)(τ1, τ2) = minL(γ). (4.6)

Geodesic Distance Between Original Images and ManiFool Examples

After discussing how to compute the distance between two transformations and two trans-
formed images, we will now elaborate on how to calculate the geodesic distance between the
original images of the training set and the samples generated with ManiFool. The sample x(0)

before being transformed can be considered the initial point of the γ curve we mentioned
above, if we define its transformation e as identity [143]. Hence, the geodesic distance be-
tween the original image x(0)

e and x(i)
τi , can be computed by the distance between the identity

transformation e and the final aggregated affine tranformation τi as shown below:

d̃x(i)(e, τi) = dx(i)(e, τ)
||x(i)||L2

. (4.7)

Robustness to Geometric Transformations

The computed ManiFool examples are crafted so that they will originate from the edge of
each class manifold. Thus, if we measure this distance d̃x(i) between an original input image
and its ManiFool transformed example, we can define a metric to evaluate the robustness of a
model. Specifically, we hypothesize that models with a learned feature space with increased
class compactness and maximized distance among decision boundaries will require a higher
average d̃ to cause a transformed image to be misclassified. We calculate the average distance
ρ̃τ of all the crafted ManiFool examples as:

ρ̃τ (f) = 1
m

m∑
j=1

d̃x(i)
j

(e, τ̃), (4.8)

where m denotes the number of all crafted examples. ρ̃τ can be used as a quantitative metric
of the robustness of a classifier to geometric transformations. This metric can be leveraged to
compare the robustness of different model architectures.

An additional metric for the robustness quantification of classifier f is rτ , which can be
computed by Equation 4.9. rτ evaluates the performance of a model on images transformed
randomly. In this work, for a range of given geodesic distances r we craft examples using
random transformations and evaluate the misclassification rate of the model f .

rτ (f) = min r s.t. P(f(x(i)
τ ) 6= f(x(i)) | dx(i)

τ
(e, τ) = r) ≥ 0.5, (4.9)
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Fig. 4.2. Samples generated with ManiFool Augmentation for the two datasets, specifically Dermofit and DDSM.
Figure published in [217], used with permission from Springer Nature Customer Service Centre GmbH.

where 0.5 is a threshold defined by the user. It is hypothesized that a robust model can sustain
higher classification accuracy for samples with higher geodesic distance from the original
images, thus being more resilient to transformations.

4.3.2 ManiFool Augmentation

Our approach differs from the original ManiFool work in that our goal is to use the transformed
images for data augmentation rather than fooling a deep neural network and crafting an
adversarial example [273]. Thus, after we compute the affine transformation τi that crosses
the decision boundary and causes misclassification for f , we backtrack onto the original class
manifold M by iteratively reducing the final step size.

For the images in the training set, we craft ManiFool Augmentation examples that originate
from the edges of the class manifolds. For this task, we utilize an independent black-box
classifier f . Afterwards, we create an augmented training dataset consisting of original and
geometrically transformed samples in an equal ratio and train a new randomly initialized
classifier. An alternative method would have been to leverage every geometrically transformed
sample generated at each step i for data augmentation. However, it was important to keep
an equal ratio of transformed and original samples in the final dataset to avoid bias to
geometrically transformed samples. Therefore, we only employed the transformed samples
close to the decision boundary to accommodate the maximum possible variance during training
without inducing bias to the classifier. Samples created with ManiFool Augmentation are
shown in Fig. 4.2.
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4.4 Experiments

4.4.1 Experimental Setup

Dataset Description

Two challenging medical imaging classification datasets were used to evaluate the proposed
method; namely, Digital Database for Screening Mammography (DDSM) [119], [120] and
Dermofit [18]. The DDSM database contains 11.617 expert-selected regions of interest (ROI)
from mammograms from 1861 patients who were annotated by radiologists as normal, benign,
or malignant. Dermofit is an image collection with 1300 high-quality dermatoscopic images
and fine-grained expert annotations that have been histologically verified (10 classes). Both
datasets were split at patient-level with non-overlapping folds; specifically, 70% was used for
training and 30% for testing.

Model Training

Three state-of-the-art model architectures, namely ResNet18 [117], VGG16 [256] and Incep-
tionV3 [271], were selected for the evaluation. All networks were initialized with ImageNet
weights; therefore, appropriate resizing and normalization of the input were performed. The
loss function used for the classification problems was weighted cross-entropy since the afore-
mentioned datasets are characterized by severe class imbalance. Median frequency balancing
was used to compute the class weights, following [238]. All the models were optimized with
Adam optimizer with an initial learning rate of 0.001. The experiments were implemented in
PyTorch [218], and the models were trained on an NVIDIA Titan Xp for 50 epochs.

Baseline Methods

We use ablative experiments as well as comparisons to other commonly used augmentation
methods to evaluate the proposed contributions. The proposed method was compared with
models trained with no data augmentation (referred to as "None" in the following Section)
and models trained with traditional random augmentation ("Random"), specifically rotation
and horizontal flipping. ManiFool Augmentation (noted as "ManiFool" in the tables of results)
was further evaluated against augmentation techniques including Random Erasing [311]
("Erasing"), a commonly used and fast augmentation technique that replaces random patches
of an image with Gaussian noise and data augmentation with images synthesized by GANs
("DCGAN"), following the method proposed in [92].

ManiFool Augmentation Crafting

A critical implementation detail is that for the crafting of ManiFool Augmentation images,
black-box state-of-the-art models were used as the differential classifier f described above.
Those models were previously trained on the given datasets but are not included in the
evaluation phase of this work to avoid bias and to guarantee that the datasets are previously
unseen by all the models that are being evaluated.
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Tab. 4.1. Comparative evaluation of models trained on Dermofit using different augmentation methods and
ManiFool Augmentation. Table published in [217], used with permission from Springer Nature Customer
Service Centre GmbH.

None Random Erasing ManiFool

ResNet

Original Test 0.7379 0.7859 0.7867 0.8126

Random Affine 0.6515 0.6962 0.6573 0.7900

Random Projective 0.4373 0.4817 0.4555 0.6263

VGG

Original Test 0.7526 0.8080 0.7924 0.8258

Random Affine 0.6993 0.7387 0.6751 0.8011

Random Projective 0.4319 0.5140 0.5071 0.6200

Inception

Original Test 0.7303 0.8051 0.7898 0.8275

Random Affine 0.5544 0.7063 0.7123 0.7883

Random Projective 0.2149 0.4388 0.4630 0.5376

4.4.2 Results and Discussion

The results of the ablative experiments, as well as baseline comparisons, will be addressed
in this Section, as will the effects of the proposed method on the models’ performance and
robustness.

Performance improvement with ManiFool Augmentation

Tables 4.1 and 4.2 showcase the results of the ablative and baseline evaluation of the proposed
ManiFool Augmentation method for the Dermofit and DDSM. First, we can see that the
performance of models trained without any augmentation is substantially lower due to
overfitting and limited manifold exploration. Random Augmentation improves the model
performance. However, it offers no guarantee about the increase in the variance the model
is exposed to during the training phase. Moreover, random augmentation can create out-of-
distribution samples, which could obstruct model training.

Augmented images crafted by ManiFool originate from the same distribution as the original
training data, a trait particularly critical in the setting of medical applications, where misclas-
sifications can have undesired clinical effects. Moreover, Manifool Augmentation, due to its
increased exploration capabilities, improves the accuracy by 2%− 3% for both datasets and all
model architectures. Furthermore, ManiFool Augmentation consistently outperforms Random
Erasing, Random Augmentation, and GAN Augmentation by approximately 2% for all datasets
and models.

Limitations of Augmentation with GANs

Generating synthetic images with GANs is a task widely investigated, as was discussed in the
Related Work Section. However, there are limitations regarding GANs for medical imaging
applications: For many cases, the synthetic images suffer from low resolution, leading to a
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Tab. 4.2. Comparative evaluation of models trained on DDSM using various augmentation methods and ManiFool
Augmentation. Table published in [217], used with permission from Springer Nature Customer Service
Centre GmbH.

None Random Erasing DCGAN ManiFool

ResNet

Original Test 0.8321 0.8254 0.8294 0.8228 0.8426

Random Affine 0.7225 0.6849 0.6073 0.6964 0.7970

Random Projective 0.2483 0.2078 0.3245 0.2657 0.3245

VGG

Original Test 0.7914 0.8381 0.8377 0.8405 0.8443

Random Affine 0.2444 0.6547 0.7194 0.7371 0.8094

Random Projective 0.1901 0.2046 0.2388 0.2279 0.2733

Inception

Original Test 0.8438 0.8454 0.8424 0.8414 0.8451

Random Affine 0.4854 0.6423 0.6006 0.6980 0.7330

Random Projective 0.1954 0.2164 0.2019 0.1980 0.2356

significant loss of information and quality. Additionally, GANs trained on the entire dataset do
not provide ground truth labels for the generated samples. Therefore in order to use synthetic
images as data augmentation with their respective label, we have to train n conditional
GANs [225], where n represents the number of classes. This is not only time-consuming but
also sometimes unachievable due to limited data.

For instance, some classes of the Dermofit dataset only have 23 images for training, which
are not enough training samples for a conditional GAN. Efforts have been made to overcome
the GAN labeling problem for medical imaging [33], by generating Brain CT scans along with
paired segmentation label maps. However, this method does not guarantee the correctness
of the label maps, and while the performance improvement on the test set is promising,
mislabeling could cause ambiguity during training and jeopardize the model’s robustness.

Furthermore, compared to Manifool Augmentation, augmentation with GANs does not neces-
sarily increase the variance of the training data since images are sampled randomly from the
training distribution and not from the outer regions of the manifold as achieved by ManiFool
and can be seen in Fig. 4.1.

Robustness to Random Geometric Transformations

A noteworthy finding highlighted in Tables 4.1 and 4.2 is the substantial improvement in
the robustness of models trained with ManiFool Augmentation to random transformations.
The improvement is not only significant because it ranges from 7% to 15%, but also be-
cause, despite the fact that the proposed augmentation only used affine transformations,
the robustness to projective transformations was greatly improved as well. The remaining
evaluated augmentation methods, namely Random Erasing and GAN augmentation, provided
marginal to no improvement in the robustness of the networks compared with standard
random augmentation.

Fig. 4.3 depicts another experiment evaluating the effect of ManiFool Augmentation on
the robustness of trained models. As described in the Methodology Section, Equation 4.9
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Tab. 4.3. Comparative evaluation of models trained on Dermofit with various augmentation techniques and
deployed on HAM10k, a previously unseen skin lesion classification dataset. Table published in [217],
used with permission from Springer Nature Customer Service Centre GmbH.

None Random Erasing ManiFool

Dermofit HAM10k Dermofit HAM10k Dermofit HAM10k Dermofit HAM10k

ResNet 0.7379 0.1983 0.7859 0.3847 0.7867 0.1699 0.8136 0.3854

VGG 0.7526 0.1911 0.8080 0.3101 0.7924 0.1947 0.8238 0.3419

Inception 0.7303 0.2798 0.8051 0.2520 0.7898 0.2140 0.8275 0.3009

Tab. 4.4. Reported average robustness measure score defined in Equation 4.8 for different commonly used model
architectures. Table published in [217], used with permission from Springer Nature Customer Service
Centre GmbH.

ResNet VGG Inception

Dermofit 2.128 2.660 3.391

DDSM 1.510 1.240 1.242

measures the misclassification rate of a classifier for images transformed with random affine
transformations for a specific range of geodesic distances.
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Fig. 4.3. Robustness of models with various augmentation approaches to random transformations with increasing
geodesic distance. Figure published in [217], used with permission from Springer Nature Customer
Service Centre GmbH.

In Fig. 4.4 we show examples generated within a range of G ∈ [1, 5] for Dermofit and G ∈ [1, 3]
for DDSM that were used to infer the misclassification rates of the trained models. As can be
observed in Fig. 4.3, the models trained with ManiFool Augmentation had substantially lower
misclassification rates for higher values of geodesic distance G.

Effect on Cross-Dataset Performance

To demonstrate the improved robustness achieved by ManiFool Augmentation, we perform
cross-dataset evaluation between Dermofit and HAM10000 [284], which consists of 10.000
skin lesion images with 7 overlapping classes among the two datasets. Notably, all models
trained with ManiFool Augmentation achieve 1%− 5% higher accuracy on the unseen dataset,
as shown in Table 4.3. This validates the hypothesis that ManiFool Augmentation increases
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Fig. 4.4. Images generated with Random Affine Transformations for Dermofit [18] and DDSM [119] for a given
range of Geodesic Distances G. Figure published in [217], used with permission from Springer Nature
Customer Service Centre GmbH.

the model’s understanding of the underlying data distribution, resulting in increased model
robustness not only on geometric transformations but also on unseen test samples.

Robustness of Different Architectures

After we employ a classifier f to create ManiFool Augmentation samples, we can compute
the average geodesic distance between the original and transformed images (Equation 4.8).
This measure is able to quantify the robustness of a machine learning model since it implicitly
calculates the distance between the decision boundaries of the trained model. Thus, models
with larger geodesic distances between classes will be characterized by higher robustness.
Other works [215] attempted to evaluate the robustness of a classifier using adversarial
examples. However, such images cannot appear naturally, and no quantitative measures had
been given for a model’s robustness. After we crafted samples with ManiFool Augmentation,
we inferred the robustness scores for the trained classifiers, and the results are shown in
Table 4.4. This experiment underlines how the robustness of various architectures can differ
according to each dataset. Thus, using a state-of-the-art architecture based on its results
on an independent dataset is insufficient because its robustness can vary significantly. In
our experiments, we found that InceptionV3 was the most robust model for Dermofit, while
ResNet18 was the most robust for DDSM.
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In this Chapter we describe the second contribution of this dissertation which has been
published in [216]. Figures 5.2-5.5 and Tables 5.1-5.3 are used with permission from Springer
Nature Customer Service Centre GmbH with License Number: 5058290012947.

5.1 Introduction

Fully Convolutional Neural Networks (F-CNNs) have been integrated into many Computer
Assisted Diagnosis (CAD) systems, performing a plethora of medical image analysis tasks
with increased complexity and requirements [192]. As a result, their complexity has grown,
reaching hundreds of layers and millions of trainable parameters.

Another factor contributing to the size explosion of F-CNNs in CADs is that medical data is
typically volumetric in nature and has been steadily increasing in resolution. This increase in
the parameters of F-CNNs has drawbacks in terms of computation, energy usage, and storage
requirements. To this end, we describe, for the first time in 3D F-CNNs, a quantization-based
method that achieves model compression without any loss in performance and can decrease
overfitting when training on limited datasets.

Various state-of-the-art segmentation techniques process volumetric data slice-wise leveraging
2D F-CNNs [237]. Such approaches achieve satisfying results but are not capable of fully
exploiting the contextual information from neighboring slices. 3D F-CNNs, such as V-Net [198],
3D U-Net [65] and VoxResNet [55] have reached state-of-the-art performance in various
segmentation applications using 3D convolutions kernels. However, their millions of trainable
parameters, even though they increase the model capacity, require a large amount of training
data and storage space for the model weights.
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It has been shown [276] that deep learning-powered CADs using 3D F-CNNs have started
being deployed into the medical workflow. Hospital infrastructure systems were already
burdened with storing large medical patient records but now have to allocate further storage
for trained model weights used in CAD systems. Moreover, the evolving area of patient-specific
treatment [287], will increase the need for storage in medical facilities even more and enhance
personalized diagnosis and monitoring.

Neural network compression has been an active field of research focusing on integrating
state-of-the-art F-CNNs in low-power and resource-limited devices, such as smartphones and
embedded electronics. A further possible use-case is represented by the decentralized training
scheme of Federated Learning [161]. Even if client data is kept private, iteratively sending
millions of parameters over the internet could be hindered by unstable connections; thus,
compressed models could be a suitable approach for global training.

õ
Contributions:

• We introduce, for the first time in 3D F-CNNs, a quantization approach with
a novel bit-scaling scheme which we call 3DQ. 3DQ employs two trainable
scaling factors and a normalization parameter that enhances the learning
capacity of the model while maintaining compression.

• We thoroughly validate 3DQ on the critical task of 3D whole-brain segmen-
tation, highlighting that our proposed approach can achieve state-of-the-art
performance and impressive compression rates.

• We show that network quantization can improve training dynamics of large
networks trained with limited data and achieve less overfitting.

5.2 Related Work

5.2.1 Model Quantization

Various approaches, such as parameter pruning, low-rank factorization, knowledge distillation,
and weight quantization [60] have been proposed to compress the size of CNNs without
compromising their performance. Particularly, weight quantization to binary [231] and
ternary values [121, 176, 312] has been widely investigated for various applications due to its
additional benefit of allowing for impressive speed-up during both training and inference by
approximating convolutions with XNOR and bitcounting operations [231]. Even though it
has been shown that XNOR-Net revolutionized this speed-up [231], there is also a significant
trade-off between accuracy and speed, which is not ideal for medical applications.

Chen et al. [57] proposed Layer-wise/Limited training data Deep Neural Network Quantiza-
tion (L-DNQ), where they formulated quantization for each layer as a discrete optimization
problem.
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TernaryNet [121] was the first approach in medical imaging to propose compact and fast
F-CNNs utilizing ternary weights, where a 2D U-Net was used for slice-wise pancreas CT
segmentation.

5.2.2 Robustness of Quantized Models

The robustness of quantized neural networks has also been explored. Guo et al. [109] were
the first to show the intrinsic relationship between weight sparsity and DNN robustness against
FGSM and DeepFool adversarial examples. They conducted experiments by pruning both the
weights and the activations of DNNs and concluded that appropriately higher model sparsity
could lead to better robustness for nonlinear DNNs.

Xiao et al. [299] showed that weight sparsity is also beneficial for network robustness ver-
ification. They demonstrated that weight sparsity could turn computationally intractable
verification problems into tractable ones and improved weight sparsity in DNNs by training
them with L1 regularization. Additionally, weight sparsity significantly speeds up the linear
programming solvers [146] for network robustness verification [233].

Feng et al. [85] proposed an adversarial attack against the Deep product quantization network
(DPQN) [47], that performs fast image retrieval tasks on large-scale datasets. The proposed
attack is called product quantization adversarial generation (PQ-AG) and can lead DPQN to
produce semantically irrelevant results. Guo et al. [108] proposed an attack and a defense
mechanism for quantized networks that is based on adversarial training. They developed
an Iterative Quantized Local Search (IQLS) algorithm that computes strong perturbations
by quantizing both input and perturbation space. Afterwards, they introduce an efficient
Quantized Adversarial Training (QAT) scheme based on the upper bound of iterations needed
for IQLS. Khalid et al. [151] proposed Constant Quantization (CQ) and Trainable Quantization
(TQ) to enhance the robustness of DNNs against adversarial examples. CQ quantizes input
pixels based on a specified number of quantization levels, while TQ learns the quantization
levels iteratively during training to further increase the defense’s strength.

A boundary-based retraining method was proposed in [260] combining adversarial and
quantization losses and adopting a nonlinear mapping scheme to defend against white-box
gradient-based adversarial attacks. They experimentally showed that their method could
retain its accuracy after quantization better than other baselines on black-box and white-box
adversarial attacks. Yoon et al. [308] introduced Stochastic Quantized Activation (SQA) that
tackles overfitting issues and achieves robustness combined with FGSM adversarial training
even against white-box attacks. SQA reduces the adversarial effect by providing random
selectivity to activation functions.

Lin et al. [176] introduced Defensive Quantization (DQ) which controlled the Lipschitz
constant of the DNN during quantization so that the magnitude of the adversarial perturbation
would remain non-expansive during inference time. The novel approach outperformed the
full precision DNNs in terms of robustness and hardware efficiency. To combat the challenge
of data scarcity, Choi et al. [63] employed a data-free quantization approach, which was
combined with knowledge distillation [125]. Their approach is shown in Fig. 5.1. First, they
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Fig. 5.1. Overview of Data Free Defensive Distillation proposed in [63]. For the adversarial example generation
the statistics from the batch normalization layers were matched between the generated and the original
data using KL divergence and no other data were used from the training set.

minimized the maximum distance between the outputs of the teacher and the quantized
student for adversarial samples crafted by a generator. For the adversarial example generation,
instead of using the original data, the statistics from the batch normalization layers were
matched between the generated and the original data using KL divergence. Their data-
free quantized models achieved comparable performance to models trained on the original
large-scale datasets.

5.3 Methodology

5.3.1 Weight Quantization

The primary goal of our quantization scheme is approximating the full precision weights of a
3D convolutional model W by their ternary counterparts {-1, 0, 1}, W̃ , as shown in Eq. 5.1.

The first step is inferring threshold ∆, based on which W will be categorized into three
quantization bins. Other methods use a single ∆ for the entire model [121]. However, 3DQ
calculates one ∆ per layer y, in order to maintain the variability in the range of weight values
within each layer and overcome weight sparsity [312]. Specifically, each ∆l is calculated as
∆l = t ·max (|Wl|): the maximum absolute value of weights in each layer is multiplied by a
constant hyperparameter t which modulates weight sparsity and remains consistent for all
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quantized scaled approximatedfull precision

1-1 0 ,

Fig. 5.2. Overview of 3DQ. The full precision weights are quantized into ternary values, scaled by γ± and then
further diversified by the factor α. Figure published in [216], used with permission from Springer Nature
Customer Service Centre GmbH.

layers. t has been set to 0.05, following [312] since it achieved the optimal trade-off between
weight sparsity and accuracy.

Training an entire F-CNN with ternary weight values {-1, 0, 1} would lead to suboptimal
performance. Therefore, after thresholding, the computed ternary weights W̃ are multiplied
by a set of scaling factors. 3DQ uses two scaling factors, γ+

l and γ−l [312], which are trainable
parameters learned for each layer l, differing from previous methods [121, 231].

Wl ≈ W̃l =


+γ+

l · α if Wl > ∆l

0 if |Wl| < ∆l

−γ−l · α otherwise.

(5.1)

Moreover, unlike [312], we introduced one more scaling factor α to 3DQ [83]. α is calculated
from W as the average of the model weights with an absolute value larger than ∆l,

α = 1
n∆l

∑
|W̃l||Wl| (5.2)

where n∆l
=
∑
|W̃l|. α improves the approximation of the full precision weights, because it

spreads the quantized weight values within the same bin, leading to increased expressivity
and diversity in the weights between the channels of each layer. The proposed quantization
pipeline is shown in Fig. 5.2 and our method has been published in [216].

5.3.2 Storing Compressed Weights

Full precision W and ternary W̃ are both required during training in order to perform model
optimization and learn the scaling factors γ+ and γ−. However, during inference, the full
precision weights W are no longer required, and thus there is no need to store them.

After scaling the ternary weights W̃ , the values still take up 32 bits; therefore, it is crucial
to store the model in a way that ensures the 16x compression rate that the ternary weights
can achieve. To this end, we split each kernel into three components, as shown in Fig. 5.3:
1) A pair of learned scaling factors γ+ and γ− for each layer of a F-CNN architecture. 2) The
values of α, which are inferred from the full precision weights and sum up to as many as the
channels of each layer. 3) The ternary weights, which make up most of the model parameters,
and can sum up to millions of values for large 3D models.
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Figure published in [216], used with permission from Springer Nature Customer Service Centre GmbH.

The scaling factors are stored as full precision variables that take up 32 bits of disk space
each. In the meantime, each ternary weight kernel is divided into two binary masks, one for
positive weights and the other for negative weights. Unmarked areas in both masks represent
zero weights. The masks undergo bit packing, and 8 weight bits are stored in 1 byte. The
same procedure is followed backwards to load the compressed saved models: first, unpack the
ternary weight values, then multiply them with the stored full precision scaling factors. The
described technique achieves high compression rates, which is critical for large 3D networks,
which require storing up to 45M parameters for each model [198].

5.4 Experiments

5.4.1 Experimental Setup

Datasets

We validated 3DQ on two publicly available medical imaging 3D segmentation datasets, the
Multi-Atlas Labelling Challenge (MALC) [186] and the Hippocampus (HC) Segmentation
dataset from the Medical Decathlon challenge [257]. MALC belongs to the OASIS dataset
and consists of 30 whole-brain MRI T1 scans with manual expert annotations. The input
volumes are sized 256× 256× 256, which were sampled in cubic patches of size 64× 64× 64.
Maintaining the original challenge split, we leveraged 15 scans for training and 15 for
testing. We considered 28 classes for the segmentation, as in [237], and we repeated all the
experiments 5 times with different initialization seeds.

HC includes 263 training samples with average size 36× 50× 35, which we padded to cubes
sized 64× 64× 64. The challenge test set is not available to the public; thus, we performed
5-fold cross-validation, dividing the dataset to 80% for training and 20% for testing using
patient-level splits. For HC, the voxels are categorized into 3 classes, including 2 parts of the
hippocampus (hippocampus proper and hippocampal formation) and the background [257].

Model Training

To showcase the generalizability of our method, we quantized commonly used 3D F-CNN
architectures, specifically 3D U-Net [65] on MALC and HC, and V-Net [198] on MALC. The
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Fig. 5.4. Qualitative results of 3DQ in comparison with various baseline methods. White arrows on the zoomed
views highlight the superior segmentation performance achieved by 3DQ. Figure published in [216],
used with permission from Springer Nature Customer Service Centre GmbH.

utilized models are suitable candidates for quantization and compression since they consist of
16M and 45M trainable parameters, respectively, and take up to 175MB to store on the disc.

For both MALC and HC, we trained the models with an equally balanced loss function
combining Dice loss and weighted cross-entropy to alleviate class imbalance. The class weights
were calculated using median frequency balancing [238]. Adam optimizer [153] was used,
while the initial learning rate for 3D-UNet was 0.0001 and for V-Net 0.00005. All models were
trained on an NVIDIA Titan Xp Pascal GPU and implemented on the deep learning framework
PyTorch [218]. Even though all 3D U-Net models were trained from scratch, initiating the
quantized experiments on V-Net with pre-trained weights was beneficial.

Evaluation Metrics

Since we aim to compress quantized models without losing performance compared to the full
precision models, we evaluate our method based on two different criteria: the Dice Score
achieved by the networks across MRI volumes and the storage space required to save the
models on the disc. We report the average Dice Score across the 5-folds in case of HC or 5
repetitions for MALC and the corresponding standard deviation.

Ablative testing

To evaluate the effectiveness of the primary components of 3DQ, specifically the ternary
weights and the incorporation of scaling factor α, we performed ablative testing. We compared
3DQ with BTQ (Binary Trained Quantization), an adjusted binarized version of Trained Ternary
Quantization (TTQ) [312], to underline the advantages of ternary weights. Moreover, we
compared 3DQ against TTQ to showcase the contribution of scaling factor α to the model
performance.

Baseline comparison
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Tab. 5.1. Comparison of Dice scores of 3DQ with TTQ and its binarized version BTQ on HC and MALC, with 3D
U-Net and V-Net. ± denotes the standard deviation. Table published in [216], used with permission
from Springer Nature Customer Service Centre GmbH.

BTQ TTQ 3DQ

HC 3DU-Net 0.847 ± 0.009 0.912 ± 0.008 0.915 ± 0.006

MALC
VNet 0.770 ± 0.013 0.790 ± 0.010 0.802 ± 0.004

3DU-Net 0.735 ± 0.005 0.828 ± 0.007 0.844 ± 0.006

3DQ was compared with its full precision counterpart to evaluate whether quantized networks
are capable of matching the performance of full precision models. TernaryNet [121], which
was recently proposed for the compression of 2D U-Net [236] for pancreas CT segmentation
was also compared with 3DQ. As an alternative compression baseline, we selected knowledge
distillation with a temperature T = 40 to train scaled-down versions [125] of 3D U-Net and
V-Net, that take up exactly the same storage space as the quantized networks compressed with
3DQ.

5.4.2 Results and Discussion

Ablative Testing

Table 5.1 shows that models quantized with ternary weights outperform their binary versions
by 3-11% for MALC and 7% for HC due to their higher learning capacity justifying the choice of
ternary weights in 3DQ. Furthermore, Table 5.1 highlights the positive effect of scaling factor
α, which allowed the performance of 3DQ to be increased by 1-2% in comparison to TTQ for
both datasets, with lower standard deviation. α overcomes the quantization drawbacks since
it enables the ternary weights to have a larger range of values, better approximating their full
precision counterparts.
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Comparative Methods

As can be observed in Table 5.2, 3D U-Net quantized with 3DQ performs 1% better than the
full precision model in the case of HC and over 2% better for MALC. This can be attributed
to the fact that model quantization acts as a regularization method by limiting the dynamic
range of the weights. Specifically, in the task at hand, where the models were trained with a
limited amount of volumes, reducing the model capacity with the quantized weights leads to
reduced overfitting and better generalization for 3D U-Net.

3DQ also outperformed TernaryNet in all experiments for MALC and HC, with a margin ranging
from 7 to over 10%. We attribute this to the learned scaling factors γ± and the absence of the
hyperbolic ternary tangent that clips the activation values and limits the network’s capacity.

Figure 5.4 showcases sample segmentations for a slice of volume from MALC with prediction
maps produced for 3D U-Net. A zoomed-in view of the segmentation maps highlights crucial
subcortical structures with a white arrow. The full precision and TernaryNet predictions are
characterized by over-inclusions of small structures and misclassified areas. The box plot in
Figure 5.5 certifies the higher quality of the segmentation maps predicted by models quantized
with 3DQ, showing the Dice scores on the right hemisphere structures. 3DQ performed better
than both full precision and TernaryNet, and had fewer outliers, exhibiting more uniform
results among all test samples.

Comparison with Knowledge Distillation

Another experiment shown in Table 5.2 is comparing 3DQ with knowledge distillation. The
distilled networks have 16x fewer parameters than the full precision models in order to
match the 3DQ model sizes while retaining full precision weights. Despite the fact that the
compressed networks achieve almost equal performance with the full prediction model for HC,
the margin is increased for MALC, where the student distilled models achieved 9-10% lower
Dice score than the full models for both 3D U-Net and V-Net. This drop in Dice score can be
attributed to the 16x smaller size of the distilled models in comparison to the original ones.
Additionally, the student networks rely on a teacher model’s predictions, limiting their learning
capacity [125]. 3DQ is a successful model compression technique since it outperforms the
distilled networks in all cases by a substantial 8-11% on MALC.

Quantization on Different Architectures

Table 5.2 shows the impact of quantization in two different 3D model architectures, namely 3D
U-Net and V-Net. Even though 3D U-Net is 3x smaller than V-Net, it reached higher Dice scores
in our experiments on MALC, especially after quantization. While the full precision networks
achieved similar Dice scores with a difference of 1%, the quantized 3D U-Net achieved 4%
higher Dice score than the quantized V-Net. This difference in performance can be attributed
to the fact that MALC consists of only 15 training volumes, which is a very small amount of
data to train V-Net, which has 45M parameters compared to 3D U-Net that has 16M. Therefore
3D U-Net was a more suitable model for the task at hand and achieved less overfitting and
improved generalizability for both datasets and all baselines.
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Tab. 5.2. Comparison of Dice scores of 3DQ with baseline methods. Tests performed on HC and MALC, with 3D
U-Net and V-Net. ± denotes the standard deviation. Table published in [216], used with permission
from Springer Nature Customer Service Centre GmbH.

Full Distilled TernaryNet 3DQ

HC 3DU-Net 0.914 ± 0.005 0.908 ± 0.019 0.845 ± 0.013 0.915 ± 0.006

MALC
VNet 0.815 ± 0.008 0.715 ± 0.001 0.696 ± 0.016 0.802 ± 0.004

3DU-Net 0.822 ± 0.005 0.730 ± 0.008 0.774 ± 0.012 0.844 ± 0.006

Tab. 5.3. Model size in MBytes for full precision and baseline compressed models. Table published in [216], used
with permission from Springer Nature Customer Service Centre GmbH.

Full Distilled Ternary Binary

3DU-Net 63MB 3.9MB 3.9MB 2.0MB

V-Net 175MB 11MB 11MB 5.5MB

Compression

The storage size for the models is showcased in Table 5.3. Quantized ternary weights in
TernaryNet, TTQ, and 3DQ reduce the storage requirements by a factor of 16, compared to full
precision models. The introduced scaling factors influence the storage by only a few KBytes.
Binary weights further reduce the storage size by 2 times compared to the ternary ones, at the
cost of decreased segmentation performance, due to limited training capacity.
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Part III

Robustness Evaluation
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In this Chapter we describe the third contribution of this dissertation which has been published
in [215]. Figures 6.5-6.7 and Tables 6.1-6.3 are used with permission from Springer Nature
Customer Service Centre GmbH with License Number: 5058281246956.

6.1 Introduction

Thorough model evaluation is crucial before integrating a DNN into a framework deployed in
the real world. Applications such as autonomous driving, online financial systems, and, of
course, healthcare deal with sensitive input data and are required to make critical decisions.
Testing a model’s performance on an unseen test set is the most commonly used practice,
which can successfully measure its performance on data points from the same distribution as
the training set. However, a machine learning-powered system could be subjected to various
unexpected input types, from outliers, unseen classes, edge-case samples, or, as we discussed
previously, adversarial examples.

To that end, developing thorough model benchmarking techniques is valuable and necessary
for model deployment.

6.2 Related Work

6.2.1 Benchmarking Datasets

A straightforward way to evaluate a model’s performance under many circumstances is stan-
dardized, publicly available benchmarking datasets investigating various types of adversity.
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Fig. 6.1. Examples produced with the distortion mechanisms proposed by Hendryks et al. [123]. The images are
part of the ImageNet-C Benchmarking dataset [74, 123].

Corruptions

Hendrycks and Dietterich [123] introduced two benchmarks, ImageNet-C, which includes
standardized corruption types, and ImageNet-P, which benchmarks a classifier’s robustness to
common perturbations. In Fig. 6.1 some examples are shown from ImageNet-C along with
their corresponding corruption type. ImageNet-C, includes 15 common visual corruptions
applied to the ImageNet dataset [74].

Gaussian noise can appear in low-lighting conditions, shot or Poisson noise, is electronic noise
caused by properties of light. Impulse noise is a color analog of salt-and-pepper noise caused
by bit errors. Defocus blur happens when a sample is out of focus. Frosted Glass Blur simulates
frosted glass windows. Motion blur occurs when a camera is moving fast. Zoom blur happens
when a camera moves toward an object quickly. Snow is a visually obstruction caused by
weather phenomenons. Frost simulates the lenses or windows when they are coated with ice
crystals. Brightness simulates varying daylight intensity. Contrast depends on the lighting, and
the color of the pictures objected. Elastic transformations stretch or contract small regions in
the image. Pixelation is an effect of upsampling or downsampling an image. Finally, JPEG is
an image compression format that could introduce compression artifacts [123].

The corrupted samples should only be used during the inference of a model. To evaluate a
model’s robustness to a specific type of corruption, they also introduced a score across five
corruption severity levels. The aggregated score across severity levels is called Corruption
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Fig. 6.2. Examples taken from the Camelyon17-Wilds Benchmarking dataset in [159] The aim is to predict the
presence of tumor tissue in patches taken from sites that are not included in the training set. Patches
released in the Chamelyon 17 dataset [22].

Error [123]. Their experiments found that even state-of-the-art architectures are susceptible to
data corruption and that defense strategies should be employed to increase their robustness.

Hendrycks et al. [122] also introduced ImageNet-Renditions (ImageNet-R), a test set of
30,000 images with renditions i.e. paintings, embroidery, and more of ImageNet [74]. These
variations are naturally occurring, with textures and local image statistics. This benchmark
can be used to investigate whether a classifier suffers from texture bias [95] or is biased to
synthetic images [274]. They also explored natural shifts within the image capturing process
and introduce a benchmark that includes object occlusion, a shift in orientation, zoom, and
scale at test time [122].

Tian et al. [279] introduced DeepTest, a systematic testing tool for detecting erroneous
behaviors for autonomous driving powered by DNNs. The method synthesizes test cases
that maximize neuron coverage [219]. Neuron coverage is the ratio of unique neurons that
get activated for an input over the total number of neurons in a DNN. The synthetic test set
includes the following distortions: varying brightness, Contrast, translation, scaling, horizontal
shearing, rotation, blurring, and adding fog and rain [279]. Those transformations are applied
to an input to maximize the neuron coverage. Experiments showed that neuron coverage
varied significantly for different input-output samples and different types of transformations.
Thus, a neuron-coverage-based testing scheme could help in identifying the edge cases.

Kaman and Rother [142] benchmarked DNNs for the task of semantic segmentation against
real-world corruptions. Their work extended the corruptions introduced in ImageNet-C. Exper-
iments with a variety of datasets and architectures showed that Xception-based networks [64]
were generally more robust than ResNets [117] and that MobileNet-V2 [243] was vulnerable
to most image corruptions besides blurring [142].

Distribution Shift
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Distribution shift should also be thoroughly evaluated for systems deployed in production.
However, such shifts are usually not modeled in publicly available datasets. To this end,
Koh et al. [159] recently introduced a collection of 8 benchmark datasets that include an
extensive range of distribution shifts that naturally occur in real-world applications, such
as variations across hospital sites, cameras for wildlife monitoring, and time or location in
satellite imaging. For each dataset, they showed that standard training results in substantially
lower out-of-distribution performance and that even if models are trained using methods to
overcome the distribution shift, the gap remains. Specifically for medical imaging applications,
they curated the Camelyon17 dataset [22]. Whole slide images from 3 hospital sites are
used for training while images from different sites are used for validation and testing as
out-of-distribution (OOD), as can be seen in Fig. 6.2.

The Breed dataset [245] is a large-scale subpopulation shift benchmark, in which the data
subpopulations differ between training and evaluation. This dataset aims to assess how
robustly models generalize beyond their training datasets. This approach leverages existing
dataset labels to identify groups of semantically similar classes, called superclasses. For
example, all different breeds of dogs belong to the superclass "Dog." Afterwards, the original
dataset classes are considered subpopulations. The subpopulation shift is introduced by
making the subpopulations in the training and test set disjoint. Thus, a model could be
trained on the dog class "Dalmatian," but it would be evaluated on the class "Poodle." Their
experiments found that model performance drops significantly on the shifted distribution
and that models that are more accurate on the original distribution are often more robust to
subpopulation shifts [245].

Adversarial Examples

Chet et al. [58] created DAmageNet, a dataset containing adversarial examples with a minimal
perturbation but a high transfer rate among architectures. DAmageNet can be used as a
benchmark to evaluate the robustness of DNNs to adversarial samples. DAmageNet consists of
50000 adversarial samples from ImageNet validation set crafted using Attack-on-Attention
(AoA) also proposed in [58]. AoA attempts to change the attention heat map by shifting the
attention away from the correct class. Experiments on 13 different commonly used model
architectures showed that all models were vulnerable to DAmageNet, even when adversarial
defenses were applied.

Similarly, Kang et al. [144] proposed an evaluation framework with Unforeseen Attacks called
ImageNet-UA. They propose the following attack strategies: JPEG attack, where perturbations
are computed in the compressed JPEG space, the Fog attack which is adversarially optimized,
the Snow attack with adversarial perturbations that optimize its intensity and direction and the
Gabor noise attack. Their experiments showed that even models that had been adversarially
trained with attacks like PGD remain vulnerable to such distortion-based attacks.

Finally, RobustBench [69] contains an ensemble of white- and black-box attacks with clearly
defined threat models that can be leveraged to evaluate the robustness of DNNs. The challenge
examined various defense mechanisms, and pre-trained robust models are publicly available
to be used for downstream tasks.
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Fig. 6.3. Model Testing: The task and predicted model boundaries are shown, along with training, testing and
adversarial samples. With model testing using adversarial examples we are creating inputs that are
crossing the model’s decision boundary and cause misclassification, uncovering the model’s vulnerability
to this type of input [277].

Medical Imaging

Recently, efforts have been made to benchmark different models regarding their robustness
to outliers for medical applications. Specifically, the Medical Out Of Distribution (MOOD)
Challenge [315] provided two large-scale standardized benchmark datasets, one consisting of
brain MRI scans and one with abdominal CT scans. The training sets contain samples where
no anomalies were identified. However, the test sets contain naturally occurring and synthetic
anomalies to cover a broad and unpredictable range of outliers. The challenge aims to provide
an analysis of the weaknesses and strengths of the methods based on various factors [315].

6.2.2 Verification Methods

The methods we discussed above perform model testing, i.e., evaluating a model under various
conditions and monitoring its behavior. Testing can be performed on legitimate, “naturally
occurring” inputs, or as we saw, it could include adversarial examples and other degenerate
inputs. Even though testing can be sufficient for traditional machine learning applications, it
does not provide security guarantees [277]. An attacker can still craft an input that was not
seen in the test process, for example, a new adversarial attack or distortion.

An approach that can provide security guarantees for machine learning models is model
verification. Creating guarantees that can define the space of inputs that are always processed
correctly by a model is a critical step for adversarial security and model evaluation.
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Fig. 6.4. Model verification. The task and predicted model boundaries are shown, along with training and testing
samples. Model verification guarantees that a model’s decision will be correct for a new sample for a
constant region regardless of the type of the input [277].

Current approaches of model verification verify that a classifier f assigns the same class to
every sample within a specified region around a sample x as can be seen in Fig. 6.4 [277].
Pulina et al. [224] proposed one of the first verification systems. They showed that the
output class of a neural network is constant across a specified neighborhood. However, their
system was limited to one hidden layer and to networks with few hidden units. Huang et
al. [132] extended this method to deeper architectures that could be used for ImageNet [74]
classification. Reluplex [146] is another verification system that uses linear programming
solvers to scale to deeper architectures and specializes in ReLU networks. CLEVER [291] is
an approach based on extreme value theory that can provide a lower bound on the minimal
perturbation needed to generate an adversarial example. The proposed score is attack-agnostic
and computationally feasible for deep architectures.

However, there are still limitations to the verification approaches, namely that the system
relies on assumptions, such as that a given input is only relevant to a subset of the hidden
neurons [277]. Thus, inputs that violate those assumptions can still harm the performance
of verified models. Furthermore, they verify only that the output class remains constant in
a given neighborhood of a sample x. However, it is challenging, if possible, to exhaustively
validate all inputs x near which the prediction should remain constant. In the scope of this
thesis, our contribution presented below is a model testing method.
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6.3 Evaluating models for medical imaging
applications with adversarial examples

6.3.1 Introduction

As previously discussed in this dissertation, deep learning is increasingly adopted within the
medical imaging field for various tasks such as classification, segmentation, detection, and
more. The traditional technique for the assessment of machine learning models consists of the
evaluation of their generalizability i.e. their performance on unseen test cases. However, for
applications with limited training data, such as medical imaging, training over-parameterized
deep learning models can lead to the "memorization" of the training dataset. Validating
the performance of such models on an available non-overlapping test set is common, yet
substantially limited in exploring the model’s robustness to outliers, noisy data or labels,
and more. Furthermore, the limited interpretability of DNNs due to their “black-box” nature
hinders their adoption into clinically-used frameworks.

Existing model benchmarking schemes focus on model over-fitting but insufficiently investigate
cases of model sensitivity to variations of the input data. When a DNN is driven to its limits,
robustness evaluation could estimate the likelihood of failure. In this work, we address model
evaluation utilizing adversarial examples [273] that are purposefully crafted to fool a DNN
and can uncover scenarios where its performance may decrease. Our method leveraging
adversarial examples as a benchmark is also substantially less strenuous and costly than
creating a sufficiently diverse test set with manual expert annotations.

Furthermore, creating synthetic distortions like brightness variations or weather condition
changes is not directly applicable to medical applications. Modalities such as MRI or CT
scans need to be carefully distorted, for example, with realistic acquisition or motion artefacts
to create meaningful test samples. Shaw et al. [251], for instance, proposed an MRI data
augmentation method introducing motion artefacts in k-space. Such an approach could
increase the generalization and robustness of the model but could not be directly generalized
to other medical imaging applications.

Furthermore, creating synthetic samples with GANs can lead to model hallucinations [67]
since the training and target distributions do not always match and can create model bias.
To that end, utilizing adversarial examples is a straightforward way to model edge cases and
evaluate the robustness of DNNs for medical imaging applications.

As discussed earlier in this dissertation, adversarial examples are images created to fool
machine learning models, while the added perturbations are not perceptible to human
eyes [273], as can be seen in Fig. 6.5. Our work is among the first that investigate adversarial
examples in medical imaging and use them in a constructive way to benchmark model
performance not only on clean and noisy but also on adversarial data. In a medical setting,
Zhu et al. augmented their dataset with adversarial examples to limit overfitting and increase
the performance of their model on mass segmentation [314].
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Fig. 6.5. Overview of Adversarial Crafting and its effect on the prediction of a DNN. Even though the difference
between the crafted adversarial example and the original image is imperceptible, DNNs are successfully
fooled into erroneous predictions. Figure published in [215], used with permission from Springer Nature
Customer Service Centre GmbH.

Although adversarial examples may not occur naturally in acquired data, they could be used
as benchmark during test time or during training to increase model robustness and optimize
the decision boundaries learned for various tasks.

õ
Contributions:

• We leverage adversarial examples crafted with 3 widely used attack mecha-
nisms to benchmark the robustness of deep models.

• We highlight the difference between random noise and adversarial per-
turbation and show their different effect on the model embeddings and
performance.

• We compare a variety of commonly used architectures, such as Incep-
tion [272] and UNet [236] for classification and segmentation and discuss
the architectural features that contribute to their robustness or vulnerability.

• We demonstrate that widely used state-of-the-art models are not only vul-
nerable to adversarial examples but also exhibit substantially different
behaviors under attack.

6.3.2 Methodology

Adversarial Crafting

For a trained model f and an original input image x with output label y we craft an adversarial
image x̂ by solving a box-constrained optimization problem argminx̂‖x̂−x‖ subject to f (x) =
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y, f(x̂) = ŷ, ŷ 6= y. Such an optimization scheme minimizes the computed perturbation,
ε, x̂ = x + ε, while simultaneously fooling the model f [273]. By enforcing a constraint
such as ‖ε‖ ≤ η, where η is a hyperparameter chosen by the attacker we can limit the added
perturbation to be so small that it is imperceptible to human eyes.

Classification

Gradient-based adversarial example crafting techniques have been proposed to compute the
minimum amount of perturbation epsilon that misclassifies x̂. Such techniques include
the Fast Gradient Sign Method (FGSM) [102], DeepFool (DF) [202], Jacobian Saliency Map
Attacks (SM) [213] and Projected Gradient Descent (PGD) [183]. Adversarial examples
generated with some of these methods for dermatology and radiology are shown in Fig. 6.6.
For a trained classifier f , FGSM [102] performs a one-step update along the sign of the
gradient that maximizes the task loss L and the resulting perturbation is described as ε =
ηsign (∇xL(θ,x, y)), where θ are the parameters of the model. The strength of the added
perturbation is determined by a hyper-parameter η that is in most cases assigned a low value
so that x̂ is imperceptible from x.

In contrast to FGSM, DeepFool [202] consists of an iterative greedy search process. In every
iteration, the projections of the input image to the decision boundaries of all classes are
calculated, and an ε is inferred to push x towards the decision boundary of the closest class,
besides the ground truth. In Saliency Map Attacks [213], we estimate the impact of each pixel
on the prediction of the DNN, and afterwards, the input image is selectively perturbed so that
it causes the highest-impact change to the prediction.

Segmentation

In [301], Dense Adversarial Generation (DAG) was proposed for crafting adversarial examples
for image segmentation, operating like a per-pixel targeted version of FGSM. DAG uses an
incorrect segmentation map, an input image, and a target set of non-background pixels. The
aim is to compute a minimum perturbation r that will change the pixel-wise prediction from
the ground truth class to the incorrect target class.

DAG utilizes (1) an incorrect segmentation mask ŷ = {ŷ1, . . . , ŷn} for an image x (2) the
ground truth mask y = {y1, . . . , yn}, where yn ∈ {1, 2, . . . , C} and C is the number of classes
and (3) a set of N pixels T = {t1, t2, . . . , tn}. In semantic segmentation T is composed of all
pixels of the image but in order to constrain the search-space of the perturbations we limit T
to the non-background pixels of the image.

The goal of DAG is to minimize the distance between the prediction of the ground truth and
the incorrect target, as can be shown in [301]:

L(x, T, y, ŷ) =
N∑
n=1

[zyn(x, tn)− zŷn(x, tn)], (6.1)
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where Z = {z1, . . . , zC} are the logits of the model, i.e. the output of the classifier f before the
Softmax activation function. In step m the image has been perturbed to xm = x+

∑M
m=0 rm,

where the perturbation rm is computed by:

rm =
∑
tn∈T

[∇xmzŷn(xm, tn)−∇xmzyn(xm, tn)]. (6.2)

We use DAG to create adversarial images, as can be seen in Fig. 6.6, by selecting targets
with varying degrees of difficulty. Notably, in Type A attack, we set the target to consist of
background pixels; in Type B, we randomly assign 2000 pixels of the image to a randomly
chosen adversarial class, and in Type C, we dilate a particular target class keeping all other
classes unchanged. In our case, the class that was dilated was the skull. Of the described
attack types, Type A is the most difficult, causing the highest amount of perturbation, while
Type C is expected to cause the lowest distortion to the image, as demonstrated in Fig. 6.6.

In order to make sure that the adversarial perturbations were imperceptible, we measured the
Mean Square Error (MSE) between the original and adversarial examples. The MSE remained
extremely low, ranging from 0.004 for adversarial examples of Type A to 0.002 for Types B
and C.

The introduced technique for evaluating model robustness includes benchmarking DNNs
against task-specific adversarial attacks and is consistent across tasks. In the case of clas-
sification, we created adversarial examples with FGSM, DeepFool, and Jacobian Saliency
Map Attack, while for segmentation, we used DAG with the three different types of targets
(Type A-C) described above. We created adversarial examples only from the test set of each
dataset, which was non-overlapping with the training set and only used the adversaries during
inference time.

We selected a black-box threat model for the adversarial crafting, meaning that we first trained
DNNs to craft the adversarial examples and then attacked independently trained DNNs that
were not used for any adversarial crafting.

Contrasting with Noise

It could be argued that applying random noise on the test samples at inference time could
replace adversarial examples. However, challenging ambiguous images and outliers cannot be
modeled by noise distributions. Adversarial examples, which are created purposefully to cause
failure in DNNs, are more suitable for investigating the behavior of a model when subject to
extreme input changes.

To validate this statement, we also created samples perturbed with modality-specific noise
to highlight further how adversarial perturbations differ from random noise. In the case of
dermatoscopic images, we selected Gaussian noise and for T1w MRIs Rician noise. For a fair
visual comparison, the Structural Similarity (SSIM) between the clean and noisy examples
was the same as the one between the original and adversarial examples, ranging from 0.97 to
0.99.
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Fig. 6.6. Overview of adversarial examples along with their impact on the predictions of the model. Left: Fine-
grained skin lesion classification and Right: Whole brain segmentation. The arrow for the SM attack
indicates the minimal amount of pixels that needed to be perturbed in the original image. Unlike
the predictions on original images, the adversarial examples successfully fool the models into either
wrong classification or predicting incorrect segmentation masks. Figure published in [215], used with
permission from Springer Nature Customer Service Centre GmbH.

To highlight the difference between clean and noisy images in the feature space, we show the
t-Stochastic Neighbor Embedding representation (t-SNE) from InceptionV3 for clean, noisy,
and adversarial examples crafted with FGSM in Fig. 6.7 for the classification task.

Contrasting Fig. 6.7(L) with Fig. 6.7(R), we can observe that images perturbed with noise are
embedded close in space to clean samples, in contrast to adversarial examples that are pushed
further towards other classes. The adversarial examples’ behavior strongly supports that they
do not resemble random noise and can serve as a strong benchmark for assessing a model’s
robustness.

6.3.3 Experiments

For the proposed robustness evaluation scheme, we performed fine-grained skin lesion clas-
sification and segmentation of the whole brain. The task-specific DNN training is described
below:

Classification
For this task we fine-tune three commonly used deep learning architectures specifically, Incep-
tionV3 [272], InceptionV4 [272] and MobileNet [129]. Both IInceptionV3 and InceptionV4
are particularly deep architectures (> 100 layers), while MobileNet is significantly more
compact, suitable for deploying on mobile devices as suggested by its name. We selected these
models because comparing these architectures can uncover a relationship between model
complexity, in terms of depth and number of parameters, and robustness.

For a fair comparison, all models were initialized with their respective ImageNet parameters
and trained with a weighted cross-entropy loss with random data augmentation with affine
transformations. The class weights were computed using Median Frequency Balancing [238]
to combat the severe class imbalance. The models were optimized using stochastic gradient
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Fig. 6.7. t-SNE representation of the embeddings of IV3 for 3 classes of dermatoscopy images (shown in red, blue,
and green) from clean (•), noisy (◦) and adversarial images (+) crafted with FGSM. The noisy examples
(◦) are closer to the clean data in the embedding space (L), while adversarial samples are pushed to
the boundaries and remain further away from the clean samples in the embedding space(R). Figure
published in [215], used with permission from Springer Nature Customer Service Centre GmbH.

descent with a decaying learning rate initialized at 0.01, momentum of 0.9, and dropout
of 0.8 to limit overfitting. We utilize the publicly-available Dermofit [19] image collection
consisting of 1300 dermatoscopic images, with histologically validated expert annotations
splitting them into 10 classes, namely Actinic Keratosis, Basal Cell Carcinoma, Melanocytic
Nevus, Seborrhoeic Keratosis, Squamous Cell Carcinoma, Intraepithelial Carcinoma, Pyogenic
Granuloma, Haemangioma, Dermatofibroma and Malignant Melanoma. The dataset was split
patient-level with non-overlapping folds. 50% of the images were used for training, and the
rest 50% for testing.

Segmentation

Regarding segmentation we evaluated three widely used fully-convolutional architectures,
specifically SegNet [16], UNet [236] and DenseNet [136]. Among the selected models, we
explore the impact of skip connections to robustness ranging from no skip connections at
all in SegNet to long-range skips in UNet and both long and short-range skip connections in
DenseNet. The network parameters concerning depth and layers were set to maintain compa-
rable model complexity to investigate the impact of skip connections on model robustness.

The segmentation models were trained with a combined loss function, consisting of equally
contributing weighted-cross entropy and Dice loss. The class weights in the cross-entropy
loss were computed using Median Frequency Balancing following [238]. The models were
optimized with Adam optimizer [154] with an initial learning rate of 0.001. We leverage
27 MRI T1 scans from the publicly available whole-brain segmentation Multi-Atlas Labeling
Challenge (MALC) Dataset [186]. MALC is a subset of Open Access Series of the Imaging
Studies (OASIS) dataset [187] that was released in MICCAI 2012 [166]. We use an 80-
20 patient-level split for training and testing. We segment the brain scans to 15 different
structures with manual expert annotations provided by Neuromorphometrics, Inc. with an
academic subscription.
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The models for both tasks were trained using TensorFlow [2], and adversarial examples for
DeepFool and Saliency Map Attacks were creating using the FoolBox [232] library.

The model performance and robustness are evaluated using classification accuracy for the
skin lesion classification and Dice score for the brain segmentation. Dice was calculated
volume-wise, without considering the background class, and averaged across test subject
volumes. The overall performance of the models on clean and noisy examples is reported in
Table 6.1. The average score against all adversarial attacks is also shown for easier comparison
and the drop in performance after the attacks. Moreover, Table 6.2 and Table 6.3 show the
performance of each model for all individual black-box attacks.

6.3.4 Results and Discussion

Robustness Evaluation for Classification
Below we will discuss the results of the evaluation on the classification task.

Visual Evaluation

Fig. 6.6 (Left) shows adversarial images of an unseen test example of the class malignant
melanoma for each classification attack, namely FGSM, DeepFool, and Saliency Map Attack,
along with an image distorted with Gaussian noise for comparison. A scaled version of the
difference between the original and adversarial image is illustrated along with the class
probabilities of InceptionV3.

Regardless of the attack, all adversarial examples are consistently assigned to the wrong class
with high confidence by the model. However, adding Gaussian noise results only in confidence
reduction, while the model prediction remains correct. Moreover, it is shown that FGSM
creates perturbations across all pixels on the whole image, while DeepFool and Saliency Map
Attack craft perturbations localized to the lesion area. Specifically, the Saliency Map Attack
only perturbs very few pixels of the whole image while still fooling the target model.

Attacks

Table 6.1 shows that InceptionV4 and MobileNet both reach comparable accuracy on the
clean data (0.81/0.80), which is higher than InceptionV3 (0.71). Considering only a model’s
performance on clean data, one could conclude that IV3 achieves the worst comparative
performance. However, when comparing the robustness of these models regarding their
average performance under all attacks, we observe a different trend. The average performance
drop across all the attacks for InceptionV3 is substantially lower (-6.89%) in comparison to
InceptionV4 (-17.72%) and MobileNet (-24.55%).

Comparing each attack individually in Table 6.2 we can see that Inception V3 outperforms both
the other models for FGSM by 0.1 compared to InceptionV4 and 0.3 against MobileNet. For
DeepFool, InceptionV4 achieved the highest robustness by a small margin of 0.05. Regarding
Saliency Map Attacks, InceptionV3 and InceptionV4 performed similarly and had a marginally
lower drop in performance than MobileNet.
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Tab. 6.1. Comparative evaluation of the classification and segmentation models on clean, noisy and adversarial
examples. We report the average accuracy for the classification task and Dice Score for segmentation
along with the % drop in performance on adversarial examples with respect to performance on the clean
test set. Table published in [215], used with permission from Springer Nature Customer Service Centre
GmbH.

Classification

Clean Gaussian Noise Adversarial Average % Adversarial Drop

InceptionV3 0.710 0.693 0.641 -6.897

InceptionV4 0.810 0.761 0.633 -17.72

MobileNet 0.800 0.647 0.564 -24.55

Segmentation

Clean Rician Noise Adversarial Average % Adversarial Drop

SegNet 0.842 0.595 0.470 -37.17

UNet 0.862 0.759 0.453 -40.92

DenseNet 0.861 0.848 0.667 -19.53

Contrasting InceptionV4 and MobileNet on their performance on the adversarial attacks, it is
clear that InceptionV4 shows enhanced robustness capabilities, even though their performance
on the clean dataset differed by only 0.01. Furthermore, even though InceptionV3 had 0.1
lower accuracy than InceptionV4 on the clean data, it achieved comparable robustness and
even outperformed InceptionV4 for FGSM attacks.

Performance on Random Noise

Table 6.1 shows that the drop in performance caused by the Gaussian noise distortion was
substantially lower in comparison to the adversarial perturbations. The accuracy of Incep-
tionV4 and InceptionV3 only dropped by 0.05 and 0.01, respectively, showing the robustness
of these models to noise. MobileNet’s accuracy dropped by 0.15, showing the decreased
capabilities of this model compared to the other two, both in terms of random and adversarial
perturbations.

Architecture Comparison

From our experiments, we found that InceptionV3 and InceptionV4 achieved higher robustness
than MobileNet. That could be attributed to the fact that MobileNet’s shallow architecture
could not learn the underlying distribution of the training data properly. InceptionV3 and V4
were comparable in terms of robustness to noise and attacks; however, InceptionV4 achieved
overall better performance in the cleat test set. As we discussed above, a combination of a
deeper architecture like InceptionV3/4 with a pruning or quantization technique [109, 176]
could lead to a good overall solution for models that perform successfully both on clean and
adversarial inputs.
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Tab. 6.2. Comparative evaluation of model robustness using black-box attacks for the task of classification. The
average accuracy is reported. Table published in [215], used with permission from Springer Nature
Customer Service Centre GmbH.

FGSM DeepFool SMA

IV3 IV4 MN IV3 IV4 MN IV3 IV4 MN

InceptionV3 0.449 0.548 0.567 0.729 0.707 0.664 0.738 0.701 0.669

InceptionV4 0.429 0.411 0.451 0.743 0.768 0.697 0.735 0.778 0.683

MobileNet 0.335 0.275 0.213 0.726 0.731 0.672 0.732 0.735 0.661

Tab. 6.3. Comparative evaluation of model robustness using black-box attacks for the task of segmentation. The
average Dice score is reported. Table published in [215], used with permission from Springer Nature
Customer Service Centre GmbH.

Type A Type B Type C

SegNet UNet DenseNet SegNet UNet DenseNet SegNet UNet DenseNet

SegNet 0.277 0.272 0.309 0.397 0.473 0.428 0.669 0.702 0.705

UNet 0.248 0.434 0.258 0.364 0.434 0.368 0.636 0.653 0.677

DenseNet 0.600 0.528 0.415 0.749 0.721 0.563 0.819 0.791 0.814

Furthermore, Table 6.2 showed that all attacks were successful to all models regardless of
the architecture that was used to craft them. This showcases the transferability of adversarial
examples and the close decision boundaries of different DNNs [282].

Robustness Evaluation for Segmentation

Below we will discuss the performance of the selected segmentation networks in terms of
generalizability and robustness.

Visual Evaluation

Fig. 6.6 (Right) illustrates how the prediction maps of the trained DN model change with
adversarial input. Initially, we can see that the model’s prediction on the original input is very
close to the ground truth. However, the crafted DAG attacks of Type A-C successfully influence
the model into predicting incorrect segmentation maps.

Specifically, Type A attack is severely influencing the model and has eliminated even the
general structure of the brain from the prediction. Type B similarly distorted the prediction
and, as expected by the shuffled pixels on the target, the model predicts pixels from every class
scattered across the segmentation map. Finally, Type C mainly affected the skull segmentation
but also decreased the quality of the neighboring structures.

The prediction on the image distorted with Rician noise is visually similar to the one of the
original image and the ground truth. This demonstrates that adding adversarial perturbation
on an image does not resemble distorting it with random noise.
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Attacks

In Table 6.1, we see that DenseNet (0.861) and UNet (0.862) achieve nearly equal perfor-
mance on the clean unseen test set and perform better than SegNet (0.842). However, the
performance gap increases dramatically for the adversarial attacks. DenseNet outperforms
both UNet and SegNet by 0.2 and achieves the lowest drop in Dice score of -19.53%. UNet
and SegNet achieve similar performance under attack, with a drop of -37.17% for SegNet and
-40.92% for UNet. We notice that even though UNet had the highest Dice Score on the clean
test set, it has the lowest one under attack, showing its vulnerability.

In Table 6.3 we can see the superiority of DenseNet in comparison to the other models for all
attack types. As expected, Type A causes the highest drop in Dice score, and the predictions of
SegNet and UNet have a Dice of around 0.2 to 0.4. However, DenseNet manages to maintain
a higher Dice of 0.4 to 0.6. The Type B attack drops the performance of DenseNet by 0.1 to
0.2, while the drop for Unit and SegNet is comparable and ranges between 0.4 to 0.5. Type
C is the least powerful attack, causing the smallest drop for all models. However, DenseNet
remains more robust than UNet and SegNet.

Moreover, the fact that the performance drop caused by the addition of Rician noise remains
low both for UNet and DenseNet (10% and 1% respectively) reinforces the contrast between
noise and adversarial perturbations.

In Fig. 6.8 we visualize the predictions of UNet and DenseNet for a Type C attack for three-
volume slices. DenseNet predicts dilation in the skull for all three slices, as expected by
the attack target. However, the regions inside the brain remain, for the most part, correctly
segmented in comparison to the ground truth. However, UNet’s predictions have lower quality,
distorting the classes within the brain and the skull. These findings showcase the superiority
of DenseNet in terms of robustness, even though both models achieve the same performance
on clean data.

Performance on Rician Noise

In agreement with the classification results, the performance of all segmentation models to
Rician noise, shown in Table 6.1 was higher than their performance on adversarial attacks.
Specifically, DenseNet had the highest Dice score of 0.848, which was only 0.02 lower than its
Dice on clean samples. UNet had a 0.11 Dise score decrease for Rician noise, while SegNet’s
Dice score dropped by 0.25. This experiment further underlined the superior robustness of
DenseNet in comparison to UNet, even though UNet had a higher Dice score by 0.01 for clean
data.

Architecture Comparison

Across the board, UNet and DenseNet outperformed SegNet for clean, noisy, and adversarial
samples. This showcases the improvement brought upon the models using skip connections,
which offer increased trainability and better gradient flow [117]. Based on the experiments on
noisy and adversarial data, DenseNet outperformed UNet, showing that dense skip connections

70 Chapter 6 Model Benchmarking



Generalizability vs Robustness: Investigating medical 
imaging networks using adversarial examples

1 Chair for Computer Aided Medical Procedures, Technische Universität München, Germany.
2 German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
3 Chair for Computer Aided Medical Procedures, Johns Hopkins University, USA

Magdalini Paschali1, Sailesh Conjeti2, Fernando Navarro1 and Nassir Navab1, 3

• Adversarial examples can successfully be used as surrogates to evaluate a model’s 
performance in hard cases, such as outliers, ambiguity and severe noise.

• Two models with comparable performance may have significant differences regarding their 
relative exploration of the underlying data manifold, resulting in varying robustness and 
model sensitivities.

• Future work includes the definition of universally adopted measures for the robustness of 
neural networks and the explainability of their prediction.

• Networks that are right for the right reasons.

1. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. 
In ICLR 2014

2. C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A.L. Yuille. Adversarial Examples for Semantic Segmentation and Object Detection. In 
ICCV 2017

3. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015.
4. S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method to fool deep neural networks.

In CVPR 2016
5. N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B.Celik, and A. Swami. The limitations of deep learning in adversarial 

settings. In Security and Privacy (EuroS&P) 2016
6. L. Ballerini, R.B. Fisher, R.B. Aldridge, J. Rees. A Color and Texture Based Hierarchical K-NN Approach to the Classification of 

Non-melanoma Skin Lesions. In Color Medical Image Analysis 2013
7. D.S. Marcus, T.H. Wang, J. Parker, J.G. Csernansky, J.C. Morris, R.L. Buckner. Open Access Series of Imaging Studies (OASIS): 

Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. In J. Cognitive Neuroscience 2007
8. Image from: https://www.crowdai.org/challenges/adversarial-vision-challenge

Adversarial Examples Medical Applications

Robustness Evaluation of Medical Imaging Networks

Results

Conclusion & Future Work References

Adversarial 
Examples

Ground Truth
Prediction 

UNet
Prediction 
DenseNet

Skin Lesion Classification

● Fine-grained classification to 10 classes
● Fully Connected Fine-tuned Networks
● Weighted Cross Entropy Loss

Whole Brain Segmentation

● Segmentation to 15 Classes
● Fully Convolutional Networks
● Composite Loss with Weighted Cross Entropy 

and Dice Loss

Problem

● The performance of CNNs, i.e. generalizability, is measured 
on clean images from the test set.

●  However, medical datasets suffer from:
○ Outliers
○ Noise in the labels  due to  inter-observer variability
○ Noise in the data due to different scanners, data 

gathering centers etc

Adversarial Examples for Skin Lesion Classification

● Additive Gaussian Noise to showcase that random noise 
does not alter a network’s prediction

● Fast Gradient Sign Method (FGSM)
● DeepFool (DF)
● Saliency Map Attack (SM)

Proposed Solution

● Utilize adversarial examples as benchmark for the worst 
case scenarios of the performance.

● Measure  the robustness of a state-of-the-art network in hard 
fail cases.

Adversarial Examples for Whole Brain Segmentation

● Additive Rician Noise to showcase that random noise 
does not alter a network’s prediction

● Dense Adversarial Example Generation, similar to 
targeted per pixel FGSM.

￫ Target Type A: 
Everything predicted 
as background.

￫ Target Type B: 
Random pixels 
assigned to random 
classes.

￫ Target Type C: 
Skull should be 
dilated in the 
prediction map

IV3: InceptionV3  IV4: InceptionV4  MN: MobileNet  
SN: SegNet  UN: UNet  DN: DenseNet

● Networks with similar accuracy and dice score on clean data 
had significant performance variations under attack.

● Adversarial examples generated by independant models are 
consistently transferable across architectures.

● DenseNet clearly outperforms UNet for all types of attacks, 
even though it did not achieve the highest score for the clean 
test data.

● Random noise didn’t cause significant drop in performance.

● In case of skin lesion classification, the network that performs 
the poorest in clean test samples is the most robust under 
attack.

Qualitative evaluation of the predictions of UNet and 
DenseNet under attack Type C

● Adding imperceptible non-random perturbations 
on top of images can change the network’s 
prediction.

● Attacks can be crafted using:
○ Gradients or genetic algorithms
○ Decision rules
○ Spatial transformations
○ GANs

Summary: We utilize adversarial examples for the comparative evaluation of different CNNs and showcase the difference in the 
robustness of models that performed equally good on clean data.

● The combination of short-term and long-term skip 
connections improves a model’s robustness the most.

Fast Gradient Sign Method (FGSM): Simple and Quick Attack

1. Calculate the gradient of the model’s cost with respect to the 
input pixels.

2. Optimize the image pixels to increase the loss, holding the 
parameters of the model constant.

3. Propagate the gradients and get a pixel matrix indicating how 
much the loss would change if that pixel value would be 
updated by a single unit.

4. Multiply that matrix by a value epsilon, which is a 
hyperparameter regulating the distortion allowed in the 
adversarial example.

5. Compute example.

Code available on request

Fig. 6.8. Qualitative assessment of the predicted segmentation maps of UNet and DenseNet under attack Type C -
skull dilation. Even though UNet achieves the same Dice score on the clean test set, its predictions are
substantially more distorted in comparison to DenseNet.

further increase the robustness of the model and contribute to a better understanding of the
underlying data distribution.

Moreover, the transferability of adversarial attacks across models is also shown in Table 6.3,
where attacks of all source models cause comparable drop inaccuracy to all target models.

Overall our experiments showed that comparing the three segmentation models based on
their generalizability would not have been adequate to determine the best model. Only after
benchmarking the models with adversarial attacks and noise were we able to determine the
best one. Both its resilience to samples distorted with Rician noise and its consistent resistance
to adversarial attacks make DenseNet the most robust model among its competitors for this
task.
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7.1 Tabular Data for Medical Diagnosis

So far in this dissertation, we have discussed contributions and related work in the field of
medical imaging. However, various medical data, such as electronic health records, written
assessments, metadata regarding a patient’s age, sex, or more, are tabular information.
Methods that can successfully perform a diagnosis or treatment planning based solely on
tabular data or combining tabular and imaging data could benefit the healthcare system
and mine the patient information effectively. Furthermore, it has been shown that providing
additional information to a DNN along with images in the form of the volumes of each brain
region [174] contributes to the improvement of robustness.

Moreover, medical information is, in many cases, longitudinal since it is common to monitor
the progress of a disease or the development of a child. Combining such longitudinal data for
every patient would increase a DNN’s understanding of the training distribution and allow for
enhanced performance and robustness.

Thorough evaluation of a DNN can be achieved with model benchmarking, as discussed earlier.
However, statistically analyzing the results of a model and interpreting its decisions can also
contribute towards ensuring that the model is making correct predictions based on meaningful
input features.
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To that end, in this Chapter, we will discuss the final contribution of this dissertation. We
perform depression score prediction for adolescents using solely longitudinal tabular data.
Afterwards, we thoroughly evaluate the model’s predictions and statistically analyze its
performance. Our novel pipeline provides not only a DNN prediction score but an overall
analysis of the model’s behavior.

7.2 Related Work

7.2.1 Learning from Metadata

Medical diagnosis relies heavily on combining information from multiple sources; these
include imaging data, laboratory data, or observational data. Medical image interpretation
provides important clinical context that is often essential for diagnosis [170]. However, it has
been shown that lack of clinical and laboratory during image interpretation can lead to lower
radiologist performance [32].

Data fusion describes the combination of data from multiple modalities in order to extract
complete information that could increase the performance and robustness of machine learning
models in comparison to using a single modality. The most commonly used strategies for
combining multi-modal information, such as imaging and tabular data, are early, joint, and
late fusion and can be seen in Fig. 7.1

Early fusion includes joining multiple inputs into a single feature vector before feeding into a
single model for training. The aggregation can be performed using concatenation or pooling.
The aggregated features could be used without any pre-processing (Type I) or could first be
pre-processed by a manual or learned feature extractor (Type II) [131].

Joint fusion describes the combination of learned feature representations from intermediate
layers of DNNs with features from other input modalities. Feature extraction can be performed
for one of the input modalities (Type II) or for both inputs (Type I). The main difference with
early fusion is that the loss of the final Models is propagated to the feature extraction CNNs,
enhancing the extracted feature quality during training [131].

In Late Fusion [230] different input modalities are used to train separate DNNs, and then
the final prediction is made with an aggregation function that combines the predictions of
multiple models. The aggregation functions can be averaging, majority voting, weighted
voting, or a meta-classifier.

7.2.2 Longitudinal Predictions

Longitudinal data has been used in various medical imaging applications to predict the
progression of Alzheimer’s disease [6, 27], for survival analysis [168] and for lung infection
progression [152].
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Fig. 7.1. Overview of different types of multi-modal fusion [131]. Early fusion joins original or extracted features
at the input level. Joint fusion combines features at the input, but the loss is propagated back to the
feature extraction model. Late fusion joins the predictions at the decision stage.

Aghili et al. [6] utilized recurrent neural networks (RNNs) to analyze regression patterns
from longitudinal data with missing variables and perform classification between Alzheimer’s
Disease, Mild Cognitive Impairment, and healthy subjects. For this task, they successfully used
two variations of RNNs, namely Long Short Term Memory and Gated Recurrent Unit.

In our work with Kim et al. [152] we analyzed longitudinal CT Scans from patients suffering
from COVID-19. A longitudinal segmentation network was used to identify the regions of
healthy lung, consolidation, GGO, and pleural effusion. Experiments showed that analyzing
longitudinal information significantly improved the performance of a DNN in comparison to
the use of static data.

7.2.3 Adversarial Attacks on Tabular Data

Adversarial attack crafting has not been as explored for the field of tabular data as for the
imaging inputs. There have been few attacks proposed on tabular data for fraud detection
that will be discussed below.

Cartella et al. [52] proposed a model agnostic attack applicable to any architecture, even
decision trees for fraud detection systems. They also discuss the challenges of crafting a
tabular data attack. Specifically, image data normally vary within a limited range and data
types; however, tabular data include different types of information, such as demographic
information, surnames, or amounts. Even if all values are numerically encoded, it is still
challenging to create realistic and imperceptible adversarial attacks for tabular data. Their
attack was based on the Zeroth Order Optimization (ZOO) [56] algorithm modified for tabular
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data with class imbalance. Their attacks were able to decrease the performance of fraud
detection systems dramatically.

Ballet et al. [20] focused on the imperceptibility of the tabular adversarial attacks. Their
method, called LowProFool (low profile) Attack finds the features of the tabular data with the
highest importance using Pearson’s correlation coefficient and adopts a black-box gradient-
based attack method applicable to DNNs.

PermuteAttack [113] introduced a counterfactual example generation method for tabular
data with discrete and categorical variables. The proposed algorithm used a gradient-free
optimization based on genetic algorithms and was applicable to any classification model.

Finally, An et al. [8] introduced Longitudinal AdVersarial Attack (LAVA) on electronic health
records tabular data. LAVA introduced a small amount of perturbations on clinical features
that were not likely to be detected based on the Jacobian Saliency Map Attack [213] and a
dual attention mechanism. Their attack had a low detectability rate as the perturbations were
spread across multiple visits and features of each subject.

Overall, tabular data include nominal, ordinal, and real-valued data. Furthermore, different
features have substantially different value ranges. Oftentimes, tabular data have missing
values, and the interactions between features are complex [171]. All those factors increase the
difficulty of designing successful adversarial attacks on tabular data. Therefore it is beneficial
to include such data in the input of a DNN to increase the difficulty of an attack and enhance
the model robustness [174].

To this end, in this work, we focus on analyzing tabular, longitudinal data using recurrent
neural networks.

7.3 Depression Score Prediction from Longitudinal
Tabular Data

7.3.1 Introduction

During adolescence, the prevalence of major depressive disorder (MDD) increases from 1–3%
to 20% by the age of 18 [15]. Heightened vulnerability and early onset of mood disorders
during adolescence are hypothesized to relate to the dramatic developmental changes that
occur during these sensitive years [169]. This period is characterized by key behavioral,
hormonal, and physical changes linked to puberty, brain plasticity [93, 97, 270], changes
in circadian and homeostatic bioregulatory processes [309], and increased susceptibility to
psychosocial stressors.

Depression during adolescence is associated with long-term clinical course [89], anxiety
disorders [196], sleep disturbances [253], eating disorders [127], substance use [149], and
suicide attempts, with trajectories extending into adulthood [96]. Given the prevalence and
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considerable costs of depression in this population, there is an urgent need to identify the risk
and protective factors of depression in youth, considering the presence of depressive symptoms
that may preclude the development of major depressive disorder. Because of the variation of
symptoms, clinical subtypes, and the prevalence of subclinical and mild depression [252], it
has been suggested to shift the focus of research on the continuums on which symptoms occur,
rather than the diagnostic criteria [133].

The RDoC (NIMH Research Domain Criteria - RDoC) [134] framework provides a transdiag-
nostic approach to symptoms common across several disorders, integrating recent advances in
genetics, neuroscience, and cognitive science. This approach introduces six systems encom-
passing broad domains of human functioning, namely the Positive Valence Systems, Negative
Valence Systems, Cognitive Systems, Systems for Social Processes, Arousal/Regulatory Sys-
tems, and Sensorimotor Systems. Inspired by the RDoC matrix, the current work focuses on
two topics central to depressive disorders—namely, anhedonia (as part of the Positive Valence
Systems domain of reward learning) and negative valence (covering areas of the Negative
Valence Systems domain).

Given the rapid transitions from dependence on parents to relative independence in the
developmental context of middle and late adolescence, understanding the effects of different
psychosocial and cognitive factors on the risk for youth depression could be particularly
important to advance effective preventive and intervention efforts. There is growing evidence
suggesting that in addition to the developmental changes, personality traits [157], stressful
life events [193], social relationships [91, 278], sleep health [180, 253], and cognition [191,
222] also play a critical role in the onset and maintenance of depressive disorders. Thus,
elucidating developmental risk models for depressive symptoms requires investigation of
multiple psychosocial and behavioral constructs that interact to increase the risk of mental
health problems.

The psychiatric symptom of anhedonia reduced pleasure, and interest in previously enjoyable,
rewarding experiences, is a key symptom of major depressive disorder [25, 115]. Persistent
anhedonia in childhood and adolescence is an important predictor of adult-onset MDD [293]. It
is considered a motivational, reward-processing deficit which might be the result of underlying
brain level reward system dysfunctions [283].

Furthermore, depression is often associated with feelings of sadness and loss, which can be
responses to frustrating and unpleasant situations, such as sustained anxiety, fear, threat. These
feelings and responses can be combined under the broad construct of negative valence [71].
Symptoms of negative valence are less responsive to antidepressants [79, 194] than anhedonia,
and are related to different clinical features [194]. Moreover, depressed individuals tend to
a negativity bias in information processing, which is reflected in lower valence ratings for
emotional faces, especially for happy and neutral faces [73].

In this work, we used a framework based on a recurrent neural network to track anhedonia,
and negative valence across adolescence in a large sample of participating in the National
Consortium of Alcohol and Neurodevelopment in Adolescence (NCANDA) [38], to determine
the predictive value of different psychological and life domains. Importantly, and follow-
ing the RDoC approach, the current model integrates the psychosocial information about
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individuals over time and takes the mood history of the person into account when making
predictions [244]. We report findings based on two of the RDoC units of analysis, namely,
behavior and self-reports. The current longitudinal approach helps map developmental trajec-
tories that differentially lead to psychological dysfunction reflected in anhedonia and negative
valence. Furthermore, along with the dysfunctions we predict a subject’s age in a multi-task
fashion, which allows the proposed model to take the developmental context into account
during the classification task.

õ
Contributions:

• We utilize a longitudinal multi-task model and accurately predict depression
scores in adolescents.

• We leverage permutation testing and identify the most significant input
measurement categories.

• We use model interpretation and pinpoint the individual input variables
that contributed the most to the model’s decision.

• We perform statistical analysis and validate the significance of the most
important input variables for the model.

7.3.2 Predicted Measurements

Anhedonia

At each assessment, psychiatric symptoms were evaluated in participants using the Achenbach
System of Empirically Based Assessments (ASEBA; [4]). As a measure for the construct, within
the Positive Valence Systems [23], we used a single item for anhedonia: “There is very little
that I enjoy,” dichotomizing the items into 0 (not true) and 1 (sometimes or often true), as
in [25].

Negative Valence

As a composite measure of acute threat (fear), potential threat (anxiety), and loss constructs
within the Negative Valence Systems, we used the depression/anxious subscale, which is com-
prised of 13 items, including being fearful/anxious, nervous/tense, and cries a lot. Normalized
T-scores were calculated based on age and sex, and a dichotomized variable was created (>
T-score of 65 = depressed/anxious).
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7.3.3 Input Measurement Categories

As input to our recurrent neural network, for every subject we used a set of measurements in
the form of tabular data that were acquired multiple times over the course of their adolescence.
The measurements can be grouped in the following categories:

Sleep

Sleep characteristics [114] were assessed through several measures taken from established
measures [200, 259], assessing morningness, eveningness [43], sleep timing and dura-
tion [200], and finally, sleep disturbance [43]. Circadian preference was assessed using an
abbreviated 4-item version (CSM-4) of the Composite Scale of Morningness (CSM; [259]).
The CSM-4 score ranges from 4 to 18, with higher scores indicating greater morningness.
Sleep disturbance was assessed using a single item (“During the past month, how would
you rate your sleep quality overall?”) drawn from the Pittsburgh Sleep Quality Index [43].
Response options ranged from 1 to 4 in this order: “very good,” “fairly good,” “fairly bad,”
and “very bad.” Finally, habitual sleep timing (bedtime and rise time) and sleep duration were
assessed separately for weekdays and weekends, and weekday-weekend shifts in sleep timing
(weekend minus weekday) were calculated separately for bedtime and rise time.

Personality

Personality and temperament were assessed using the UPPS-P Impulsive Behavior Scale
(UPPS-P [72]) and the Ten-Item Personality Inventory (TIPI [105]). The UPPS uses 20
statements (scale of 1-4) to examine facets of impulsivity, including behaviors influenced by
changes in effect (e.g., positive and negative urgency), lack of planfulness, and behavioral
persistence. The TIPI assesses broad personality domains of Conscientiousness, Agreeableness,
Extraversion, Emotional Stability, and Openness to Experiences.

Moreover, cognitive coping strategies employed to manage interpersonal stressors were
measured using the Response to Stress Questionnaire (RSQ) [68]. Participants rated how
often they used each coping method or experienced each type of involuntary stress response
on a scale of 1 (Not at all) to 4 (A lot). The RSQ contains items to measure three types of
coping mechanisms and two types of involuntary stress responses.

Substance Use

Subjects participated in the Customary Drinking and Substance Use Record (CDDR [40]) to
characterize their alcohol and substance use history and current use. This measure includes
questions about use frequency, and the maximum number of drinks in a drinking episode,
during the past year. Using these data, NCANDA participants were defined at study entry as
“no/low” drinking (majority of the sample, 83%) or “exceeds criteria” (17%). Past year alcohol
use data were also used to categorize participants as heavy, moderate, and no/low drinkers
using the modified [44] inventory, comprising quantity (average and maximum consumption)
and frequency combinations.
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Participants also completed a modified Semi-Structured Assessment of the Genetics of Alco-
holism (SSAGA; [42, 124]), which assessed Axis I diagnoses, including alcohol and substance
use, mood, anxiety, and conduct, disorders. Participants and one parent (for participants under
age 18) completed the self-report instruments from the Achenbach System of Empirically
Based Assessments (ASEBA). Participants who endorsed one or more symptoms of conduct
disorder or antisocial personality disorder were considered high risk (externalizing symptoms)
for alcohol use and problems (21%).

Internalizing symptoms were assessed with the SSAGA and participants who met criteria
(28% of the total sample) were considered at risk for alcohol use and problems (internalizing
symptoms).

Furthermore, family history of substance use disorders was assessed with the Family History
Assessment Module (FHAM; [234]). Family history positive participants had at least one
biological parent with problems related to alcohol/drug use; or two or more biological
grandparents with significant problems related to alcohol/drug use; or one or more biological
grandparent and two or more other biological 2nd-degree relatives with significant problems
related to alcohol/drug use. Using these criteria, 17% of the sample was positive for familial
alcohol use problems and 8% for familial drug use problems [38].

Life

The Childhood Trauma Questionnaire (CTQ; [26]), a reliable and validated measure of self-
reported traumatic experiences during childhood, was used. It consists of five subscales
about negative childhood experiences, each comprised of 5 items: emotional and physical
neglect and physical, emotional, and sexual abuse. Higher scores indicate increased severity
of childhood maltreatment.

We used the Adverse Childhood Events - International Questionnaire [5], a 29-item measure
that assesses exposure to three domains of childhood adversities: childhood maltreatment,
family/ household dysfunction, and violence outside the home. Respondents are asked to
respond to questions about their experiences during the first 18 years of their lives.

Support

The self-report California Healthy Kids Survey (CHKS) [46] was utilized to assess the health
risk behaviors and resilience information. The overall instrument contains 65 items, with
responses on a 4-point Likert scale, ranging from “not at all true” to “very much true.” We
used the following items: “Who really cares about me.” (adults at school), “Who always wants
me to do my best.”, “Whom I trust.”, “I am part of clubs, sports teams, church/temple, or other
group activities.”, “I am involved in music, art, literature, sports, or a hobby.”, “I help other
people.”

Executive dysfunction - BRIEF

To assess the inhibitory control and flexibility of adolescents, we utilized the self-reported
variant of the Behavior Rating Inventory of Executive Function (BRIEF-SR: [98]). BRIEF-SR
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comprises 80 items distributed into eight subscales designed to measure impulsivity across the
domains of executive functioning.

Neuropsychological measures

In the Delay Discounting task [263] participants made preference judgments about accepting
a small immediate reward ($100.00) over a larger hypothetical ($1000.00) reward given at
varying delays (e.g., 1 day, 1 week, 1 month, or 6 months) in the future. The immediate
reward is automatically adjusted according to the participant’s choices; it increases if the
future reward was chosen or decreases if the immediate reward was just chosen. Impulsivity or
impulsive decision-making is associated with a higher tendency to devalue larger longer-term
gains over short-term benefits, and it is reflected by a steeper discounting rate. Further details
of the test administration are described in [268].

The Stroop task, originally proposed by Stroop [266] measures the ability to inhibit automated
reading responses. The Stroop Match to-Sample task [246] was administered and consisted of
two conditions. The task required adolescents to match the color of a sample stimulus to the
color of a Stroop word. The participants were required to read names of colors and respond
with “Yes” if the displayed word’s font color matches the initially presented sample color and
respond with “No” when the sample and the target word’s font color do not match.

Attention and working memory were measured by the Short fractal N-back test [155]. In
the 0-back condition, the target was a fractal design displayed on the computer screen that
matched a pre-specified fractal image. This condition requires sustained attention with low
working memory load.

The Penn Emotion Recognition Test (PERT: [110]) measures the ability to identify six basic
emotions in facial expressions displayed on a screen. The computer-morphed target images
(40-item) that are derived from the facial features of real individuals (20 female and 20 male),
each showing a specific emotion. The images present angry, scared, happy, sad, and neutral
faces varying between low and high intensity. The task required participants to indicate the
expressed emotion from a list of 5 choices.

7.3.4 Participants

The study consisted of 621 youths (ages 12 to 17 years at baseline) who were recruited by
NCANDA from November 2012 to October 2014 across five sites: University of California at
San Diego (UCSD), SRI International, Duke University Medical Center, University of Pittsburgh
(UPMC), and Oregon Health & Science University (OHSU) [39]. The participants and parents
provided written informed consent before participation in the study. The Institutional Review
Boards (IRB) of each site approved data collection and use. Each subject participated in up
to 7 assessments, with the average time between assessments being 1.05 years. It should be
noted that, assessments were excluded from the analysis once the subject turned 18 years
old.
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Tab. 7.1. Demographics of the NCANDA cohort. ± denotes the average and standard deviation

General

Sex (Female/Male) 310 / 311

Number of Assessments 3.20 ± 1.66

Time Between Assessments in Years 1.05 ± 0.15

Baseline

Age in Years 15.02 ± 1.69

Pubertal Development Score (PBS) 3.04 ± 0.69

Body Mass Index (BMI; z-score) 0.32 ± 1.01

Parents Education in Years 16.88 ± 2.46

Race

Caucasian 438 (70.53%)

Hispanic 74 (11.82%)

African-American 81 (13.05%)

Asian 38 (6.12%)

Other 64 (10.31%)

Site

UCSD 154 (24.80%)

SRI International 146 (23.51%)

Duke 137 (22.06%)

OHSU 108 (17.39%)

UPMC 76 (12.24%)

At each assessment, participants completed a battery of neuropsychological and clinical
assessments, which covered eight categories that were described above: personality, sleep,
life, Behavior Rating Inventory of Executive Function (BRIEF) [99], neuropsych, substance
use, support, and additionally, demographics. Demographics incorporates all variables listed
in Table 7.1 except age.

Assessments of participants were divided into groups based on their self-reported emotion
measures. Anhedonia was observed if the individual reported very little joy within the
last 6 months of an assessment. The criteria for negative valence was whether the Anxi-
ety/Depression trait T-score was 65 or higher or they often experienced unhappiness, sadness,
or depression in the last six months.

Among the 621 youths, 116 individuals reported anhedonia, and 81 reported negative
valence in at least one of their assessments. 51 youths reported at least once both con-
structs and 475 participants were viewed as controls as they reported neither construct
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Fig. 7.2. Overview of the proposed pipeline. Annual assessments of 621 NCANDA youths split into con-
trol/anhedonia/negative valence groups were processed by a longitudinal neural network, which
predicted each individual’s age and diagnostic status at every assessment. Afterwards, the measurements
of each variable category were permuted and reassessed by the trained model to identify the significance
of each category. Furthermore, the individual measurements of the significant categories were ranked
using the gradient magnitudes of the trained model. Finally, the measurements identified as most
important, and the respective predicted scores and assigned status (control/anhedonia/negative valence)
were correlated.

in any of the assessments. The analysis was performed based on the public data release
NCANDA_PUBLIC_6Y_REDCAP_V01 [140].

7.3.5 Machine Learning and Statistical Analysis

First it should be noted that missing measurements in the neuropsychological and clinical
assessments of the subjects were replaced with those of the nearest assessment for that
individual. If the measurement was never recorded for the subject, the mean across all
subjects was used to fill out the missing value.

Step 1: Anhedonia/Negative Valence Prediction

Separately for anhedonia and negative valence, the completed measurements were analyzed
by a longitudinal deep learning model (Fig. 7.2(a)) consisting of a Fully Connected Layer [104]
and a Recurrent Neural Network with a gating mechanism [62]. This model was trained
and tested in determining the age and the confidence score (between 0 and 1) regarding the
presence of a construct at an assessment of a subject via 5-fold stratified cross validation [11],
i.e., dividing the subjects into 5 folds, selecting 4 folds for training the model and 1 fold for
testing the model, and repeating training and testing until each fold was used for testing.

To evaluate the performance of the model Balanced Accuracy (BACC) was used since the
dataset was characterized by class imbalance [37]. Specifically, the accuracy for each class was
measured and then averaged across the two classes. The significance of the BACC (p-value <
0.001) was computed using the Fisher exact test [88].

The model was trained on both age and anhedonia/negative valence score in a multi-task
manner so that the ages of subjects across assessments could be implicitly aligned. As can be
seen in Table 7.2, subject ages varied from 12 to 17 years old at every assessment. Furthermore,
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Tab. 7.2. Age of subjects at each assessment, starting from the baseline up to the 6-year follow-up under the age
of 18. Notice the varying age at the baseline assessment, showcasing the need to provide additional age
information to the model to implicitly align the visits. The number of annual assessment decreases from
621 for the baseline to only 4 subjects with 6 follow-up assessments.

12 13 14 15 16 17 #Subjects

Baseline 92 111 104 109 108 97 621

Follow-up 1yr 2 86 99 103 103 96 489

Follow-up 2yr 0 4 77 101 91 101 374

Follow-up 3yr 0 0 3 76 90 98 267

Follow-up 4yr 0 0 0 1 70 90 161

Follow-up 5yr 0 0 0 0 1 67 68

Follow-up 6yr 0 0 0 0 0 4 4

there were more than 100 measurements used as input to the model. Thus, separating age
from the input and modelling it as an auxiliary task would be beneficial for the longitudinal
prediction.

Step 2: Category Permutation Testing

For each of the 8 aforementioned categories (personality, sleep, life, BRIEF, neuropsych,
substance use, support, and demographics), its importance in the process of predicting a
construct was determined via permutation testing [101] (Fig. 7.2(b)). Permutation testing
randomly rearranged the values of each measurement only in that category among subjects
in the test set. Afterwards the BACC of the trained model on the permutated data was
recorded. It should be noted that all measurements from the 8 categories were forwarded to
the model. However, only the measurements from one category at a time were permutated.
This procedure was repeated 500 times to compute the percentage of trials (p-value) that
resulted in BACCs at least as high as the original (unpermutated) accuracy. The impact of the
category on the prediction process was then viewed as significant if the p-value was smaller
than 0.05 (or less than 25 permutations with at least as high accuracy scores). With this
evaluation step, the measurement categories that were most important were identified.

Step 3: Individual Feature Importance & Model Interpretation

In this step, the most important individual measurements for the model were identified.
For each category that met the significance level for both anhedonia and negative valence,
the influences of individual measurements of that category on predicting a construct were
determined by performing 100 runs of bootstrapping [81] (Fig. 7.2(c)). Each run consisted
of randomly selecting (with replacement) 475 controls and 116 subjects with anhedonia (or
81 with negative valence) and then training the prediction model on the resulting data set.

The importance of a measurement towards correct predictions was then quantified by its
magnitude according to guided backpropagation [262]. Guided Backpropagation is usually
used to interpret the model decision on imaging data, but it can also be applied in non-imaging,
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Fig. 7.3. Overview of the multi-task longitudinal model for depression score prediction from neuropsychological
and clinical data for adolescents. All reports of one subject were jointly forwarded to the model. One
branch consisted of a GRU [62] and a FC Layer [104] to perform longitudinal prediction of the status of
anhedonia or negative valence. The other branch consisted of two FC layers and regressed the age of
each subject at every assessment to encourage the alignment of subject ages across annual reports.

tabular data. Specifically, the magnitude of the model gradient with respect to the input
features using backpropagation was calculated after setting all negative gradients to 0. After
completing the 100 runs, each measurement within the significant categories was ranked
according to their averaged magnitude across those runs.

Step 4: Correlation of Top Measurements with Predictions & Ground Truth

In this step, the aim was to validate, whether the measurements that were ranked with highest
importance for the model, had meaningful correlation with the ground truth. To validate
the significance (p<0.05) of the most critical measurement for the model, the Spearman
correlation [261] was computed between the values of each measurement across assessments
with the corresponding predicted score. In parallel, the Mann–Whitney U test [184] examined
the difference in the average measurement values between controls and the anhedonia (or
negative valence) group. A high correlation between measurement and predictions and
measurement and ground truth, would highlight whether the model was influenced by a
meaningful feature.

7.3.6 Network Architecture and Optimization

The selected model architecture can be seen in Fig. 7.3. After a Fully Connected Layer
(FC) [104], [204], the model was split into two branches. For the longitudinal prediction
of the anhedonia or negative valence score, a Gated Recurrent Unit (GRU) [62] Layer was
employed. A GRU was suitable for this task due to its capability of taking into account the
information of all assessments provided for each subject and was not limited to processing
one report at a time [126]. Furthermore, the low amount of trainable parameters in a GRU
contributed towards combating overfitting.
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Tab. 7.3. P-value of each category in predicting anhedonia and negative valence and the average difference and
standard deviation in BACC when the category was permuted compared to the unpermuted data (i.e.,
BACC of 0.7513 for anhedonia and 0.7957 for negative valence). Categories are ranked with respect to
anhedonia according to their p-values and difference if they had the same p-value. Bold marks p-values
of significant importance (p<0.05).

Anhedonia Negative Valence

Category p-value Difference p-value Difference

Personality <0.002 -0.0753 ± 0.045 <0.002 -0.1517 ± 0.062

Life 0.008 -0.0233 ± 0.040 <0.002 -0.0427 ± 0.085

BRIEF 0.008 -0.0173 ± 0.061 <0.002 -0.0417 ± 0.106

Support 0.010 -0.0233 ± 0.063 0.432 -0.0007 ± 0.079

Sleep 0.042 -0.0133 ± 0.054 0.024 -0.0157 ± 0.093

Neuropsych 0.328 -0.0033 ± 0.055 0.562 +0.0013 ± 0.088

Substance Use 0.332 -0.0023 ± 0.048 0.048 -0.0097 ± 0.098

Demographics 0.672 +0.0017 ± 0.059 0.764 +0.0033 ± 0.096

Since the age of subjects varied across time-steps, the auxiliary task of age regression was
utilized to encourage the model to align the reports across subjects implicitly. For the age-
prediction branch, two FC layers were used. The final output of the model was the predicted
score for anhedonia or negative valence per assessment, along with the regressed subject
age.

The loss function used to train the status for anhedonia, and negative valence was a binary
cross entropy loss LBCE [204]. Since the dataset is characterized by class imbalance loss
weighting was used to alleviate this problem. Specifically, the ratio of control to positive

subjects, R = Ncontrol

Npositive
was calculated, so that the loss would act as if the dataset contained

R×Npositive positive subjects [78].

For the regression of the subject ages at each assessment, the Mean Squared Error Loss was
selected LMSE. The model was trained with a composite loss function L = αLBCE +(1−α)LMSE,
where α moderated the contribution of each loss towards the overall optimization. In the
experiments, α was empirically set to 0.8. Additionally, L1 weight regularization was employed
to limit overfitting [307]. The model was trained for 30 epochs with learning rate 0.0001 and
the Adam Optimizer [154] and was implemented in PyTorch [218]. Every batch contained all
the assessments of one subject.

7.3.7 Results

The model’s prediction accuracy was significant (p<0.001) for both constructs, i.e., the BACC
was 75.13% for anhedonia and 79.57% for negative valence.
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Tab. 7.4. The 3 most important measurements of categories crucial to predicting both constructs computed using
guided backpropagation.

Anhedonia Negative Valence

Personality

Extraversion Emotional Stability

Emotional Stability Extraversion

Acceptance Acceptance

Life

Negative Events Positive Events

Sexual Abuse Sexual Abuse

Positive Events Chronic Negative Scale

BRIEF

Cognitive Shift T-score Cognitive Shift T-score

Behavioral Shift T-score Behavioral Shift T-score

Inhibit T-score Inhibit T-score

Sleep

Trouble Sleeping Circadian Preference

Weekday Wake-up Weekend Sleep

Weekday Sleep Trouble Sleeping

Of significant importance for predicting anhedonia, as can be seen in Table 7.3 were the cate-
gories personality (p<0.002), life (p=0.008), BRIEF (p=0.008), support (p=0.01), and sleep
(p=0.042). For negative valence, categories of importance, as can be seen in Table 7.3 were
personality (p<0.002), life (p<0.002), BRIEF (p<0.002), sleep (p=0.024), and substance use
(p=0.048).

For the four categories that were of significant importance for predicting both constructs (i.e.,
personality, life, BRIEF, and sleep), the three most important measurements indicated by the
guided backpropagation are listed in Table 7.4. Important for predicting either construct
were the personality trades of extroversion, emotional stability, and acceptance. Aspects of
life predicting both constructs were sexual abuse and positive events. BRIEF measurements
important for both prediction tasks were the cognitive shift, inhibit, and behavioral shift
T-scores. Finally, sleep disorder was important for predicting both anhedonia and negative
valence.

For both anhedonia, as can be seen in Fig. 7.4 and negative valence in Fig. 7.5, the most
critical measurements of each category significantly correlated (p<0.05) with the prediction
score of the deep learning model (top) and reported ground truth status for each construct
(bottom).

A higher prediction score was associated with lower extraversion for anhedonia, higher
negative events, higher cognitive shift T-score, and increased sleep disorder. A higher negative
valence score was associated with lower emotional stability, less positive controllable events,
higher metacognition, and decreased circadian preference. Those findings for both constructs
were confirmed when comparing controls with individuals reporting anhedonia or negative
valence at least once.
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Fig. 7.4. Top: Correlation between the predicted score and the most important measurement value in each
significant category for anhedonia. ρ denotes the Spearman’s rank correlation coefficient. Bottom:
Distribution of the most important measurements for controls with individuals reporting anhedonia
at least in one assessment (medians ± Interquartile range and outliers). The predicted scores and
measurements have been averaged across assessments.

7.3.8 Discussion

The longitudinal machine learning model accurately predicted the status of anhedonia (75.13%
BACC) and negative valence (79.57% BACC) by also predicting the age of the subject at each
assessment. Doing so, implicitly modeled differences in the characteristics of each construct
across the adolescent age span.

The stability of the analysis was underlined by the consistent results of the permutation test
for the two constructs, as can be seen in Table 7.3: 4 out of 8 categories were significantly
important for both prediction tasks (i.e., personality, life, BRIEF, and sleep - in that order),
while Neuropsych and Demographics did not have significant importance for either task. The
only exception was Support in predicting anhedonia, which was, besides Substance use, the
only category of significant importance for only one prediction task. Finally, the stability of
our analysis was underlined by the significant correlations of the most essential measurements
of each of the four significant categories with the prediction scores and the self-reported
constructs as can be seen in Fig. 7.4 and Fig. 7.5.

Personality factors, particularly lower extraversion, lower emotional stability, and lower
acceptance, were strong predictors of anhedonia. These findings are in line with previous
literature showing a link between depression and extraversion [157], especially with the low
positive emotionality component of extraversion [290].

Our model identified negative life events in general (controllable negative events for anhedonia,
chronic events for negative valence), childhood sexual abuse, and low positive events as
predictors of both anhedonia and negative valence. Research has consistently documented
increased susceptibility to depression in youth with more adverse life events [264]. It has
specifically been well documented [148] that sexual abuse has a strong association with
depression. Adolescents might differ in their reactions to life events based on their control
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Personality Life BRIEF Sleep

Fig. 7.5. Top: Correlation between the predicted score and the most important measurement value in each
significant category for negative valence. ρ denotes the Spearman’s rank correlation coefficient. Bottom:
Distribution of the most important measurements for controls with individuals reporting negative valence
at least in one assessment (medians ± Interquartile range and outliers). The predicted scores and
measurements have been averaged across assessments.

in the situation. Life events that fall beyond individual control are labeled as uncontrollable
events, while events influenced by the individuals are referred to as and controllable life
events [190]. Our results highlighting the effect of controllable negative life events confirm
the results of others [137], who argue that controllable events are more likely to increase the
likelihood of psychiatric morbidity and exacerbate the symptom levels over time.

Moreover, our results show a consistent association between depressive symptoms and ex-
ecutive dysfunction. Namely, higher inhibitory control and lower flexibility (cognitive and
behavioral shift) are associated with both anhedonia and negative valence. Impaired executive
control over negative information may lead to increased negative cognitions and prolonged
negative affect, increasing the risk for depression. Depressed subjects recognize happy facial
expressions more slowly [269] than controls. Subsequent studies have similarly noted that
adolescents with a recent first episode of major depression show attention shift towards sad
stimuli and more impulsive behavior in decision making [165]. These results suggest that
specific patterns of neuropsychological functions may be impacted selectively in the first
episode of major depression [165].

Current results indicate the importance of sleep behavior as a predictor of both anhedonia
and negative valence. Specifically, poor sleep quality, frequent awakenings, and shortened
sleep duration predicted anhedonia and circadian preference towards morningness along
with shorter sleep duration. Disturbed sleep predicted negative valence. During pubertal
development, adolescents tend to move towards later chronotypes [235], and their sleep
time is highly variable [94] which puts them uniquely at risk of sleep problems. Adolescents
with shorter sleep duration assessed by daily self-report measures report greater depression,
anxiety, fatigue, and lower subjective well-being controlling for average sleep duration [94].

The results confirm the previously documented circadian preference towards eveningness
being related to poorer mental health and higher prevalence of clinical depression [156].
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Given that sleep is a modifiable factor [30], improving sleep quality could be an important
intervention strategy to avoid the development of mood problems during adolescence. Studies
suggest that sleep has an active role in brain maturation [275]. Our data support sleep as
a protective factor against the emergence of depressive symptoms, which could ultimately
translate into reduced risk for depressive disorder.

Identifying the developmental characteristics is out of the scope of the current analysis;
however, previous results show that anhedonia stabilizes over adolescence [25]. The lack
of social support appeared to be important in anhedonia suggesting supportive, and age
congruent interpersonal relationships contribute to the resilience of youth to anhedonia
specifically.

Substance use was a risk factor for negative valence. There is a bidirectional relationship
between heavy alcohol use and depression, with shared risk factors; alcohol may be used to
relieve negative feelings, but alcohol problems can also predispose people to depression [189].
A meta-analysis of several studies showed that more frequent engagement in alcohol use and
binge drinking are associated with higher levels of depression in adolescents [45].

Sex was not a significant predictor of either anhedonia or negative valence. Sex differences
in depression are well documented, being more common in women, beginning during ado-
lescence [112], and reflected in the higher proportion of girls in the anhedonia and negative
valence groups. However, we intentionally made the models sensitive to the developmental
transitions by partially predicting age, which likely reduced sensitivity to any sex effect.

Our experiments showed that training and analyzing a model using solely tabular data success-
fully predicted anhedonia and negative valence. Moreover, even though model interpretation
methods, such as guided backpropagation, have been proposed for imaging-based models, we
showed that they could be applied to tabular data as well.

Future work includes incorporating network-based brain activation patterns based on func-
tional or resting-state MRI data to determine whether our current results based on self-reported
measures are reflected in the subsequent neural substrates. Studies [197] have highlighted
that high-risk adolescents are characterized by altered cortical thickness in regions of the brain
involved in cognitive control, emotional regulation, and default mode networks, and suggest
that alternative modeling, focusing on the underlying neural representation may provide
additional insights about the development of depression and characterization of anhedonia
and negative valence in adolescents [9, 90].

Overall our permutation testing identified categories highly associated with adolescent de-
pression. The proposed pipeline achieved interpretable and meaningful predictions and
gave insights into which factors and measurements contribute the most to two constructs of
adolescent major depressive disorder.
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8.1 Summary and Findings

In this dissertation, we discussed the concept of robustness in deep models for medical imaging
applications. In this Chapter, we will provide an overall summary for each work and discuss
future outlooks.

8.1.1 Robustness Improvement

Chapter 3 provided an overview of adversarial attack crafting methods and their applications
to semantic segmentation, detection, and speech recognition. Furthermore, a taxonomy of
adversarial defenses was described, and the most prominent defense methods were discussed.
Finally, we showed how adversarial examples have been used so far in the context of medical
imaging.

Chapter 4 described a novel data augmentation method using affine geometric transformations
and quantified the robustness of machine learning models. Extensive experiments on medical
imaging diagnostic tasks, namely fine-grained skin lesion classification and mammogram
tumor classification, highlighted the advantages of ManiFool Augmentation. Models trained
with the proposed augmentation outperformed other data augmentation approaches on the
clean test set. Moreover, the robustness of the models trained with ManiFool Augmentation
was drastically increased both for random affine and projective transformations. Experiments
across datasets in an unseen test scenario also underlined the increased capabilities of the
models trained with ManiFool augmentation.

Additionally, a quantitative metric for the robustness of machine learning models was com-
puted based on the geodesic distance of the clean samples to the model decision boundaries.
Our experiments showed how different state-of-the-art architectures could achieve various
levels of robustness for different datasets. The proposed augmentation method and metric are
general and could be applied to various imaging diagnostic tasks for different modalities.
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8.1.2 Enhanced Training Dynamics

In Chapter 5, we introduced 3DQ, a ternary quantization technique that can achieve 16x
model compression. For the first time, our method was applied to 3D F-CNNs that performed
volumetric whole-brain and hippocampus segmentation of MRI scans. Our experiments
validated that the models quantized with 3DQ performed equally well or better than the
baselines, including the full precision networks, for two medical imaging datasets.

Comparing our model to other compression techniques, such as knowledge distillation, show-
cased the increased performance of 3DQ. Finally, for 3DU-Net, our approach outperformed
the full precision models for both tasks, highlighting that 3DQ can limit overfitting and en-
hance training dynamics when training large models with limited data. Finally, due to 16x
network compression, 3DQ constitutes a solid approach for space-critical applications, like
patient-specific models or model weight transfer for Federated Learning.

8.1.3 Model Benchmarking with Adversarial Examples

In Chapter 6, we discussed methods that evaluate the model robustness, namely model testing
and verification. We described the most commonly used and practical model benchmarking
datasets and the limitations of current model verification techniques. Afterwards, we described
our contribution, benchmarking models for medical image classification and segmentation
using task-specific adversarial attacks. We evaluated 3 commonly used network architectures
for each task using 3 different attack mechanisms in a black-box scenario.

Our experiments found that models with similar performance on clean data have notable
differences in their relative exploration of the underlying data manifold, resulting in varying
robustness capabilities. Specifically, we illustrated that for segmentation tasks, dense blocks
and skip connections contributed to enhanced generalizability and robustness, while model
depth seemed to increase the resilience of classification models to adversarial examples.

8.1.4 Robustness of Non-Imaging Data

In Chapter 7, we discussed the concept of robustness beyond imaging data. Specifically, we
introduced the challenges of crafting adversarial attacks for tabular data and different ways
that imaging and non-imaging data can be fused before being processed by a DNN. Afterwards,
we discussed how major depressive disorder can be increased during adolescence and that
there is a need to identify the risk and protective factors of depression in youth.

Moreover, we designed a novel type of mental health prediction in adolescents using a multi-
task recurrent neural network. Based on individual histories, we identified risk factors for
symptoms of depression, specifically anhedonia and negative valence, from a large pool of
cognitive, emotional and personality factors, considered in the context of developmental
changes occurring across this age span.
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In order to evaluate our model, we performed permutation testing and identified the most
significant variable categories that contributed to the model’s decision. Afterwards, we used
model interpretation techniques to rank the importance of individual input measurements.
Finally, we correlated the top-ranked measurements with the predicted scores and the ground
truth to evaluate their significance.

8.2 Future Outlook

This dissertation focused on methods to improve and evaluate the robustness in the context of
supervised learning. However, curating and annotating large-scale datasets is time-consuming,
costly, and in some cases, infeasible. Therefore, robustness investigation for unsupervised
learning is an interesting and valuable direction.

Furthermore, identifying the types of robustness most relevant for every medical application is
key. Some of the most common challenges faced by computer-aided systems are dataset shift
and outliers or anomalies. Thus, ensuring models are resilient against these circumstances
will highly benefit DNNs for medical applications. Moreover, developing accurate outlier or
adversarial example detection systems incorporating model uncertainty and interpretation
will lower the risk of test-time threats.

Furthermore, incorporating additional information in the form of anatomical context or tabular
data is a promising direction to enhance the performance and robustness of DNNs for medical
applications. Combining tabular and imaging data is an open field of study, where novel
model architectures and aggregation schemes could be very beneficial.

Overall, thoroughly evaluating the performance of a DNN beyond an unseen test set is
extremely critical. As we showed, models with similar performances on clean data can
vary significantly in terms of robustness. Therefore, designing an evaluation pipeline that
includes model interpretation, statistical analysis, and a diverse test-set of potential inputs that
could cause model failure is highly recommended. Similarly, developing model verification
techniques that will overcome the discussed limitations and provide guarantees for a model’s
performance will be a large step forward in deep learning security.

We hope this dissertation will inspire future research towards building more robust machine
learning systems for healthcare and crafting thorough evaluation pipelines that analyze and
interpret the model’s decisions.
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OperA: Attention-Regularized Transformers for Surgical Phase
Recognition

T. Czempiel, M. Paschali, D. Ostler, S.T. Kim, B. Busam, N. Navab. International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI), Strasbourg,
2021

Abstract used with permission from Springer Nature Customer Service Centre GmbH with
license number: 5175920414050

In this paper we introduce OperA, a transformer-based model that accurately predicts surgical
phases from long video sequences. A novel attention regularization loss encourages the
model to focus on high-quality frames during training. Moreover, the attention weights are
utilized to identify characteristic high attention frames for each surgical phase, which could
further be used for surgery summarization. OperA is thoroughly evaluated on two datasets
of laparoscopic cholecystectomy videos, outperforming various state-of-the-art temporal
refinement approaches.

Longitudinal Quantitative Assessment of COVID-19 Infection
Progression from Chest CTs

S.T. Kim, L. Goli, M. Paschali, A. Khakzar, M. Keicher, T. Czempiel, E. Burian, R. Braren, N.
Navab, T. Wendler. International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), Strasbourg, 2021

Abstract used with permission from Springer Nature Customer Service Centre GmbH with
license number: 5175920548475

Chest computed tomography (CT) has played an essential diagnostic role in assessing patients
with COVID-19 by showing disease-specific image features such as ground-glass opacity and
consolidation. Image segmentation methods have proven to help quantify the disease burden
and even help predict the outcome. The availability of longitudinal CT series may also result
in an efficient and effective method to reliably assess the progression of COVID-19, monitor
the healing process and the response to different therapeutic strategies. In this paper, we
propose a new framework to identify infection at a voxel level (identification of healthy
lung, consolidation, and ground-glass opacity) and visualize the progression of COVID-19
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using sequential low-dose non-contrast CT scans. In particular, we devise a longitudinal
segmentation network that utilizes the reference scan information to improve the performance
of disease identification. Experimental results on a clinical longitudinal dataset collected in
our institution show the effectiveness of the proposed method compared to the static deep
neural networks for disease quantification.

Rethinking Ultrasound Augmentation: A Physics-Inspired
Approach

M. Tirindelli*, C. Eilers*, W. Simson, M. Paschali, M.F. Azampour, N. Navab. International
Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI),
Strasbourg, 2021 (Equal Contribution)

Abstract used with permission from Springer Nature Customer Service Centre GmbH with
license number: 5175920621524

Medical Ultrasound (US), despite its wide use, is characterized by artifacts and operator
dependency. Those attributes hinder the gathering and utilization of US datasets for the
training of Deep Neural Networks used for Computer-Assisted Intervention Systems. Data
augmentation is commonly used to enhance model generalization and performance. However,
common data augmentation techniques, such as affine transformations do not align with the
physics of US and, when used carelessly can lead to unrealistic US images. To this end, we
propose a set of physics-inspired transformations, including deformation, reverb and Signal-
to-Noise Ratio, that we apply on US B-mode images for data augmentation. We evaluate our
method on a new spine US dataset for the tasks of bone segmentation and classification.

Confidence-based Out-of-Distribution Detection: A
Comparative Study and Analysis.

C. Berger, M. Paschali, B. Glocker, K. Kamnitsas. International Conference on Medical Image
Computing and Computer Assisted Intervention Workshop - Uncertainty for Safe Utilization of
Machine Learning in Medical Imaging (UNSURE), 2021

Abstract used with permission from Springer Nature Customer Service Centre GmbH with
license number: 5175920757328

Image classification models deployed in the real world may receive inputs outside the intended
data distribution. For critical applications such as clinical decision making, it is important that
a model can detect such out-of-distribution (OOD) inputs and express its uncertainty. In this
work, we assess the capability of various state-of-the-art approaches for confidence-based OOD
detection through a comparative study and in-depth analysis. First, we leverage a computer
vision benchmark to reproduce and compare multiple OOD detection methods. We then
evaluate their capabilities on the challenging task of disease classification using chest X-rays.
Our study shows that high performance in a computer vision task does not directly translate to
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accuracy in a medical imaging task. We analyse factors that affect performance of the methods
between the two tasks. Our results provide useful insights for developing the next generation
of OOD detection methods.

U-GAT: Multimodal Graph Attention Network for COVID-19
Outcome Prediction

M. Keicher*, H. Burwinkel*, D. Bani-Harouni*, M. Paschali, T. Czempiel, E. Burian, M.R.
Makowski, R. Braren, N. Navab, T. Wendler. arXiv preprint arXiv:2108.00860, 2021 (Equal
Contribution)

During the first wave of COVID-19, hospitals were overwhelmed with the high number of
admitted patients. An accurate prediction of the most likely individual disease progression
can improve the planning of limited resources and finding the optimal treatment for patients.
However, when dealing with a newly emerging disease such as COVID-19, the impact of
patient- and disease-specific factors (e.g. body weight or known co-morbidities) on the
immediate course of disease is by and large unknown. In the case of COVID-19, the need for
intensive care unit (ICU) admission of pneumonia patients is often determined only by acute
indicators such as vital signs (e.g. breathing rate, blood oxygen levels), whereas statistical
analysis and decision support systems that integrate all of the available data could enable an
earlier prognosis. To this end, we propose a holistic graph-based approach combining both
imaging and non-imaging information. Specifically, we introduce a multimodal similarity
metric to build a population graph for clustering patients and an image-based end-to-end
Graph Attention Network to process this graph and predict the COVID-19 patient outcomes:
admission to ICU, need for ventilation and mortality. Additionally, the network segments
chest CT images as an auxiliary task and extracts image features and radiomics for feature
fusion with the available metadata. Results on a dataset collected in Klinikum rechts der Isar
in Munich, Germany show that our approach outperforms single modality and non-graph
baselines. Moreover, our clustering and graph attention allow for increased understanding of
the patient relationships within the population graph and provide insight into the network’s
decision-making process.

Investigating Pulse-Echo Sound Speed Estimation in Breast
Ultrasound with Deep Learning

W. Simson, M. Paschali, V. Sideri-Lampretsa, N. Navab, J.J. Dahl. Under Submission, 2021

Ultrasound is an adjunct tool to mammography that can quickly and safely aid physicians
with diagnosing breast abnormalities. In clinical ultrasound, a constant speed of sound
is used to form the B-mode images for diagnosis. However, the various types of breast
tissue, such as glandular, fat, and lesions, differ in speed of sound. These differences can
degrade the image reconstruction process. Alternatively, speed of sound can be utilized as
a powerful tool for identifying disease. To this end, we propose a deep-learning approach
for sound speed estimation from IQ ultrasound signals. First, we develop a large-scale
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simulated ultrasound dataset that approximates realistic breast tissue which models breast
gland, skin and lesions with varying echogenicity and speed of sound. We developed a fully
convolutional network architecture that is trained with the simulated dataset to produce an
estimated map of the speed of sound from the input of three complex-valued IQ ultrasound
images formed from plane-wave transmissions at separate angles. Furthermore, thermal
noise augmentation is used during model optimization to enhance generalizability to real
ultrasound data. Our model is extensively evaluated on simulated, phantom and in-vivo
breast ultrasound data, demonstrating its ability to accurately estimate sound speeds that are
consistent with previously reported values in the literature. Our simulated dataset and model
will become publicly available to provide a step towards accurate and generalizable sound
speed estimation for pulse-echo ultrasound imaging.

Interactive Segmentation for COVID-19 Infection Quantification
on Longitudinal CT scans

M.X. Foo, S.T. Kim, M. Paschali, L. Goli, E. Burian, M. Makowski, R. Braren, N. Navab, T.
Wendler. arXiv preprint arXiv:2110.00948, 2021

Consistent segmentation of COVID-19 patient’s CT scans across multiple time points is essential
to assess disease progression and response to therapy accurately. Existing automatic and
interactive segmentation models for medical images only use data from a single time point
(static). However, valuable segmentation information from previous time points is often not
used to aid the segmentation of a patient’s follow-up scans. Also, fully automatic segmentation
techniques frequently produce results that would need further editing for clinical use. In
this work, we propose a new single network model for interactive segmentation that fully
utilizes all available past information to refine the segmentation of follow-up scans. In the
first segmentation round, our model takes 3D volumes of medical images from two-time
points (target and reference) as concatenated slices with the additional reference time point
segmentation as a guide to segment the target scan. In subsequent segmentation refinement
rounds, user feedback in the form of scribbles that correct the segmentation and the target’s
previous segmentation results are additionally fed into the model. This ensures that the
segmentation information from previous refinement rounds is retained. Experimental results
on our in-house multiclass longitudinal COVID-19 dataset show that the proposed model
outperforms its static version and can assist in localizing COVID-19 infections in patient’s
follow-up scans.

TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks

T. Czempiel, M. Paschali, M. Keicher, W. Simson, H. Feussner, S.T. Kim, N. Navab. Interna-
tional Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI),
Lima, 2020
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Abstract used with permission from Springer Nature Customer Service Centre GmbH with
license number: 5058411382589

Automatic surgical phase recognition is a challenging and crucial task with the potential
to improve patient safety and become an integral part of intra-operative decision-support
systems. In this paper, we propose, for the first time in workflow analysis, a Multi-Stage
Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement
for surgical phase recognition. Causal, dilated convolutions allow for a large receptive field
and online inference with smooth predictions even during ambiguous transitions. Our method
is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and
without the use of additional surgical tool information. Outperforming various state-of-the-art
LSTM approaches, we verify the suitability of the proposed causal MS-TCN for surgical phase
recognition.

Ultrasound-Guided Robotic Navigation with Deep
Reinforcement Learning

H. Hase*, M.F. Azampour*, M. Tirindelli, M. Paschali, W. Simson, E. Fatemizadeh, N. Navab.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, 2020
(Equal Contribution)

Abstract ©[2020] IEEE. Reprinted, with permission.

In this paper we introduce the first reinforcement learning (RL) based robotic navigation
method which utilizes ultrasound (US) images as an input. Our approach combines state-of-
the-art RL techniques, specifically deep Q-networks (DQN) with memory buffers and a binary
classifier for deciding when to terminate the task. Our method is trained and evaluated on an
in-house collected data-set of 34 volunteers and when compared to pure RL and supervised
learning (SL) techniques, it performs substantially better, which highlights the suitability of
RL navigation for US-guided procedures. When testing our proposed model, we obtained a
82.91% chance of navigating correctly to the sacrum from 165 different starting positions on
5 different unseen simulated environments.

Signal Clustering With Class-Independent Segmentation

S. Gasperini, M. Paschali, C. Hopke, D. Wittmann, N. Navab. International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, 2020

Abstract ©[2020] IEEE. Reprinted, with permission.

Radar signals have been dramatically increasing in complexity, limiting the source separation
ability of traditional approaches. In this paper we propose a Deep Learning-based clustering
method, which encodes concurrent signals into images, and, for the first time, tackles clustering
with image segmentation. Novel loss functions are introduced to optimize a Neural Network
to separate the input pulses into pure and non-fragmented clusters. Outperforming a variety
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of baselines, the proposed approach is capable of clustering inputs directly with a Neural
Network, in an end-to-end fashion.

Deep Learning Under the Microscope: Improving the
Interpretability of Medical Imaging Neural Networks

M. Paschali*, M.F. Naeem*, W. Simson, K. Steiger, M. Mollenhauer, N. Navab. arXiv preprint
arXiv:1904.03127, 2019 (Equal Contribution)

In this paper, we propose a novel interpretation method tailored to histological Whole Slide
Image (WSI) processing. A Deep Neural Network (DNN), inspired by Bag-of-Features models
is equipped with a Multiple Instance Learning (MIL) branch and trained with weak supervision
for WSI classification. MIL avoids label ambiguity and enhances our model’s expressive
power without guiding its attention. We utilize a fine-grained logit heatmap of the models
activations to interpret its decision-making process. The proposed method is quantitatively
and qualitatively evaluated on two challenging histology datasets, outperforming a variety of
baselines. In addition, two expert pathologists were consulted regarding the interpretability
provided by our method and acknowledged its potential for integration into several clinical
applications.

Deep learning beamforming for sub-sampled ultrasound data

W. Simson, M. Paschali, N. Navab, G. Zahnd. IEEE International Ultrasonics Symposium
(IUS), Kobe, 2018

Abstract ©[2018] IEEE. Reprinted, with permission.

In medical imaging tasks, such as cardiac imaging, ultrasound acquisition time is crucial,
however traditional high-quality beamforming techniques are computationally expensive and
their performance is hindered by sub-sampled data. To this end, we propose DeepFormer, a
method to reconstruct high quality ultrasound images in real-time on sub-sampled raw data by
performing an end-to-end deep learning-based reconstruction. Results on an in vivo dataset of
19 participants show that DeepFormer offers promising advantages over traditional processing
of sub-sampled raw-ultrasound data and produces reconstructions that are both qualitatively
and visually equivalent to fully-sampled DeepFormed images.

End-to-end learning-based ultrasound reconstruction

W. Simson, R. Göbl, M. Paschali, M. Krönke, K. Scheidhauer, W. Weber, N. Navab. arXiv
preprint arXiv/1904.04696, 2019

Ultrasound imaging is caught between the quest for the highest image quality, and the
necessity for clinical usability. Our contribution is two-fold: First, we propose a novel fully
convolutional neural network for ultrasound reconstruction. Second, a custom loss function
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tailored to the modality is employed for end-to-end training of the network. We demonstrate
that training a network to map time-delayed raw data to a minimum variance ground truth
offers performance increases in a clinical environment. In doing so, a path is explored towards
improved clinically viable ultrasound reconstruction. The proposed method displays both
promising image reconstruction quality and acquisition frequency when integrated for live
ultrasound scanning. A clinical evaluation is conducted to verify the diagnostic usefulness of
the proposed method in a clinical setting.

Radar Emitter Classification with Attribute-specific Recurrent
Neural Networks

P. Notaro, M. Paschali, C. Hopke, D. Wittmann, N. Navab. arXiv preprint arXiv/1911.07683,
2019

Radar pulse streams exhibit increasingly complex temporal patterns and can no longer rely on
a purely value-based analysis of the pulse attributes for the purpose of emitter classification.
In this paper, we employ Recurrent Neural Networks (RNNs) to efficiently model and exploit
the temporal dependencies present inside pulse streams. With the purpose of enhancing the
network prediction capability, we introduce two novel techniques: a per-sequence normal-
ization, able to mine the useful temporal patterns; and attribute-specific RNN processing,
capable of processing the extracted information effectively. The new techniques are evaluated
with an ablation study and the proposed solution is compared to previous Deep Learning
(DL) approaches. Finally, a comparative study on the robustness of the same approaches is
conducted and its results are presented.
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